
Corpus-based Symbolic Music Generation:
Data, Representation, Models, Evaluation

by

Jeffrey Ens

B.F.A., Simon Fraser University, 2015

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in the

School of Interactive Arts and Technology

Faculty of Communication, Art and Technology

© Jeffrey Ens 2023
SIMON FRASER UNIVERSITY

Spring 2023

Copyright in this work is held by the author. Please ensure that any reproduction or re-use
is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Jeffrey Ens

Degree: Doctor of Philosophy

Thesis title: Corpus-based Symbolic Music Generation: Data,
Representation, Models, Evaluation

Committee: Chair: Kate Hennessy
Associate Professor, Interactive Arts and
Technology

Philippe Pasquier
Supervisor
Professor, Interactive Arts and Technology

Steve DiPaola
Committee Member
Professor, Interactive Arts and Technology

Bob L. T. Sturm
Committee Member
Associate Professor, Computing Science
KTH Royal Institute of Technology

Ö. Nilay Yalcin
Examiner
Assistant Professor, Interactive Arts and Technology

Tom Collins
External Examiner
Associate Professor, Music Technology
University of York

ii

Ethics Statement

iii

Abstract

Enabled by advances in artificial intelligence, research exploring the computational simulation of

creative behaviours has produced human competitive generative systems in a variety of creative

domains. This thesis focuses on developing generative music systems using machine learning, and

evaluating these systems using statistical methods. After introducing related work in the area of

generative music systems, we describe the MetaMIDI Dataset, the dataset that we will use for train-

ing, which is comprised of over 440,000 MIDI files. We adapt a pre-existing Audio-MIDI matching

technique to match files in our MIDI dataset with audio previews of tracks available via the Spotify

public API, since each Spotify track is associated with rich set of metadata, including information

such as the artist, genre, arousal, valence and danceability. Furthermore, we provide an assessment

of the accuracy of the Audio-MIDI matching technique, highlighting areas for future improvement.

Then we describe two analytic evaluation methods that we developed: CAEMSI, which is domain-

agnostic; and StyleRank, which is designed for music generative systems specifically. CAEMSI

is a Cross-domain Analytic Evaluation Methodology for Style-Imitation systems. Note that style-

imitation systems are simply generative systems that are trained to produce artifacts in a particular

style. In the context of evaluating style-imitation systems, we are often interested in determining

if there is a statistically significant difference or equivalence between the training data and a set

of artifacts generated by the system. To this end, we outline a statistical method to measure the

equivalence and difference between two sets of artifacts, given an arbitrary similarity or distance

measure. Using normalized compression distance, we conduct experiments which demonstrate that

CAEMSI frequently detects a significant difference between the work of two different visual artists

and detects a significant equivalence between two disjoint sets of work from the same visual artist.

The same test is repeated for music composers, with similar results.

StyleRank is a system for ranking symbolic musical excerpts based on their similarity to a style.

Note that we consider a style to simply be the stylistic characteristics delineated by an arbitrary col-

lection of symbolic musical excerpts, which we refer to as the corpus. Musical excerpts are repre-

sented using a variety of features, and a Random Forest is trained to discriminate between the corpus

and the set of excerpts we wish to rank. An embedding is extracted from a trained Random Forest,

from which the rankings are directly derived. We outline two experiments which demonstrate that:

StyleRank can proficiently distinguish between the musical styles of different composers; and that

StyleRank is congruent with human perception, using data collected from thousands of participants

iv

in an online listening study. We anticipate that this system will be useful for researchers who wish

to evaluate the performance of many systems, or investigate the effects of various hyper-parameters,

employing experimental designs which would be incompatible with a listening test experimental

design.

Motivated by lack of consensus within the research community, we make some recommendations

for the listening experiment design, examining the role of two parameters, the proportion of ques-

tions and the proportion of participants, both of which are measured relative to the total number of

observations. Using experimental data collected from previous studies, we compare the power and

reliability of various experimental designs to arrive at substantiated recommendations regarding

these proportions.

Finally, we propose the Multi-Track Music Machine (MMM), a generative system trained using the

MetaMIDI dataset, that is designed to support co-creative music composition workflows. MMM

supports the infilling of musical material on the track and bar level, and can condition generation on

particular attributes including: instrument type, note density, polyphony level, and note duration. In

order to integrate these features, we employ a different type of representation for musical material,

creating a time-ordered sequence of musical events for each track and concatenating several tracks

into a single sequence, rather than using a single time-ordered sequence where the musical events

corresponding to different tracks are interleaved. We present experimental results which demon-

strate that MMM is able to consistently avoid duplicating the musical material it was trained on,

generate music that is stylistically similar (as measured using StyleRank) to the training dataset,

and that attribute controls can be employed to enforce various constraints on the generated mate-

rial. We also outline several real world applications of MMM, including the production of musical

albums, and collaborations with industry partners that explore integrating MMM into real-world

products.

Keywords: Generative Music; Evaluation; Machine Learning; Big Data

v

Dedication

For my loving family

vi

Acknowledgements

First, I want to acknowledge that the work presented in this thesis has been conducted on the unceded

Traditional Coast Salish Lands including the Katzie, Kwikwetlem, Kwantlen, Musqueam, Qayqayt,

Semiahmoo, Squamish, Tsawwassen, Tsleil-Waututh Nations.

I would like to thank my supervisor, Philippe Pasquier, for the guidance and feedback he pro-

vided throughout my Ph.D. studies. Also I would like to thank my committe members, Steve Di-

Paola and Bob Sturm. Thanks to my collaborators Cale Plut and Renaud Tchemeube, as well as my

colleagues in the Metacreation lab. I would also like to thank Tiffany Taylor, Lisa DaSilva and all

the other SIAT administrative staff for their much appreciated assistance throughout my studies.

Thanks to my parents, who instilled in me a curiosity to learn, experiment and explore new

things, and the confidence to fail sometimes.

Thanks to my daughter, who’s arrival served as increased motivation to bring this chapter of my

life to a close. Here’s hoping that you’ll be interested enough to read this someday.

Thanks to Megan. Without her support, understanding, compassion and love, I would not have

been able to complete this journey. I can’t thank you enough for providing an environment that is

conducive to achieving my goals.

vii

Table of Contents

Declaration of Committee ii

Ethics Statement iii

Abstract iv

Dedication vi

Acknowledgements vii

Table of Contents viii

List of Tables xiv

List of Figures xvi

1 Introduction 1
1.1 Introduction and Motivations . 2

1.1.1 Thesis format . 2

1.1.2 Overview . 2

1.1.3 Motivations . 4

1.2 Thesis structure . 5

1.2.1 Research questions . 5

1.2.2 Outline of Contributions and Motivations 7

1.2.3 Publications and Authorship . 15

1.3 Conclusion . 16

2 Related Work on Symbolic Polyphonic Music Generation 22
2.1 Introduction . 22

2.2 Typology . 23

2.2.1 Model . 27

2.2.2 Musical Texture . 27

2.2.3 Representation . 27

2.2.4 Data . 29

viii

2.2.5 Evaluation of CSPG Systems . 32

2.3 Markov Models . 35

2.3.1 Markov Chain . 35

2.3.2 Hidden Markov Models . 36

2.4 Neural Networks . 37

2.4.1 Feed Forward Networks . 38

2.4.2 Convolutional Neural Networks . 38

2.4.3 Generative Adversarial Network . 39

2.4.4 Recurrent Neural Networks . 40

2.4.5 Transformer . 44

2.4.6 Variational Autoencoder . 46

2.5 Variable Neighborhood Search . 47

2.6 Challenges and Opportunities . 47

2.6.1 Data Quality . 48

2.6.2 Generating non-Western Music . 48

2.6.3 Controlling Generation . 48

2.6.4 Plagiarism, Novelty, and Other Issues Related to Creativity 49

2.6.5 Evaluation of CSPG Systems . 50

2.7 Conclusion . 50

3 Building the MetaMIDI Dataset: Linking Symbolic and Audio Musical Data 59

Abstract 60
3.1 Introduction . 61

3.2 Data Collection . 61

3.3 Audio Midi Matching . 61

3.3.1 Modifications to the Matching Procedure 63

3.3.2 Training the Embedding Networks . 64

3.3.3 Evaluating the Embedding Networks . 64

3.3.4 Matching Against 32,000,000 Audio Files 64

3.3.5 High Reliability Audio-MIDI Matches . 66

3.4 Linking Spotify and MusicBrainz . 67

3.5 Analyzing the Dataset . 68

3.5.1 Overview Statistics for the Midi Files . 68

3.5.2 Estimating the Reliability of Scraped Metadata 69

3.5.3 False Positives and Audio Midi Matching 70

3.6 Using the MetaMIDI Dataset . 71

3.7 Conclusion . 71

4 CAEMSI : A Cross-Domain Analytic Evaluation Methodology for Style Imitation 75

ix

Abstract 76
4.1 Introduction . 77

4.2 Evaluation Methodologies . 78

4.3 Related Work . 78

4.4 Motivation . 79

4.4.1 Domain Knowledge . 79

4.4.2 Bias Against Generative Systems . 79

4.4.3 Variability . 80

4.4.4 Scalability . 80

4.4.5 The Proposed Solution . 80

4.5 Statistical Tests for Typicality . 81

4.5.1 Normalized Compression Distance . 81

4.5.2 Distance Matrix Construction . 82

4.5.3 Permutation Testing . 82

4.5.4 Testing for Difference . 83

4.5.5 Testing for Equivalence . 83

4.6 Experiment . 87

4.6.1 Methodology . 87

4.6.2 Data Pre-Processing . 87

4.6.3 Data Representation . 88

4.6.4 Results . 88

4.7 Discussion . 90

4.8 Application . 90

4.9 Conclusion . 91

5 Quantifying Musical Style: Ranking Symbolic Music based on Similarity to a Style 96

Abstract 97
5.1 Introduction . 98

5.2 Motivations . 98

5.3 Related Work . 99

5.4 Features . 100

5.4.1 Pitch Class Set Representations . 100

5.4.2 Feature Definitions . 101

5.4.3 Implementation . 102

5.5 Similarity Computation . 102

5.6 Experiments . 104

5.6.1 Experiment 1 : Analytic Testing . 104

5.6.2 Experiment 2: Congruity with Human Perception 105

5.7 Discussion . 106

x

5.8 Application . 107

5.9 Conclusion . 108

6 Improved Listening Experiment Design for Generative Systems 113

Abstract 114
6.1 Introduction . 115

6.2 Experimental Design . 115

6.3 Motivation . 117

6.4 Experiment 1 : Calculating Experimental Power 117

6.5 Experiment 2 : Simulating Inter-Experiment Variance 119

6.6 Discussion and Recommendations . 120

6.7 Conclusion . 122

7 The Multi-Track Music Machine: A Generative System Designed for Co-Creative
Music Composition 125

Abstract 125
7.1 Introduction . 127

7.2 Comparison to Related Work . 127

7.2.1 Input Specifications . 128

7.2.2 Generation Methods . 128

7.3 Proposed Representation . 129

7.4 Attribute Control . 130

7.5 Training MMM . 131

7.6 Evaluation and Applications . 132

7.6.1 Evaluating the Originality of Generated Material 133

7.6.2 Quantifying Stylistic Similarity . 136

7.6.3 Evaluating the Effectiveness of Attribute Controls 137

7.7 Limitations and Future Work . 138

7.8 Conclusion . 138

8 Conclusion 142
8.1 Summary . 142

8.2 Applications of the Multi-Track Music Machine 142

8.2.1 Calliope . 142

8.2.2 Affect Models for Game Design . 143

8.2.3 Industry Collaborations . 143

8.2.4 Music Composition . 143

8.3 Limitations and Future Work . 143

8.3.1 MetaMIDI Dataset . 144

xi

8.3.2 CSMG Evaluation Methods . 144

8.3.3 Optimization of the Multi-Track Music Machine 145

8.3.4 Improving Attribute Control in the Multi-Track Music Machine 146

8.3.5 Expanding the Rhythmic Capabilities of the Multi-Track Music Machine . 146

8.3.6 Performative Interpretation with the Multi-Track Music Machine 147

Bibliography 150

Appendix A Cumulative Dissertation information 150

Appendix B The Significance of the Low Complexity Dimension in Music Similarity
Judgements 153

Appendix Abstract 154
B.1 Introduction . 155

B.2 Related Work . 155

B.3 Motivation . 156

B.4 Methodology . 157

B.4.1 Participants . 157

B.4.2 Stimuli . 157

B.4.3 Experimental Design . 160

B.4.4 Procedure . 160

B.5 Results . 161

B.6 Discussion . 162

B.7 Conclusion . 163

Appendix C Discriminating Symbolic Continuations with GenDetect 167

Appendix Abstract 168
C.1 Introduction . 169

C.2 Methodology . 169

C.2.1 Data Representation . 169

C.2.2 Training . 170

C.3 Acknowledgments . 171

Appendix D Copyright Considerations for the MetaMIDI Dataset 173

Appendix E StyleRank Appendix 175
E.1 Features . 175

E.2 Experiment 1 Expanded . 177

E.3 Experiment 1 Data . 178

E.4 Experiment 2 Data . 179

xii

Appendix F Examples 182
F.1 Unconditioned Generation . 183

F.2 Track Infilling . 192

F.3 Attribute Control - Note Density . 198

F.4 Bar Infilling . 201

xiii

List of Tables

Table 1.1 Structure of the thesis outlining Chapters (Chap.), Research Areas (RA),

Research Questions (RQ), Contributions and Publications (- denotes unpub-

lished material) . 6

Table 1.2 A summary of relevant CSPG/SMG systems. An× is used to denote systems

that are capable of a particular sampling method. 12

Table 2.1 An overview of CSPG systems where Univar., Multivar., and VNS denote

univariate, multivariate, and variable neighbourhood search, respectively. The

example (Ex.) column provides links to audio samples. When available, the

size of a dataset is shown in parenthesis. In cases where authors created their

own dataset, demarcated by a ?, a general description is provided instead of

the dataset name. The metric column lists the quantitative measures used to

evaluate the system. The listening test column indicates the number of par-

ticipants or comparisons in the study, where † indicates that the artifacts gen-

erated by the system are human competitive. For each column, more details

are available in the corresponding section specified in parentheses. 26

Table 2.2 Datasets that are used by CSPG systems. ? denotes datasets that are no longer

available. The expressive parameters column indicates if the dataset contains

attributes related to the expressive performance of a musical excerpt such as

velocity, and note articulation (timing). 31

Table 3.1 Statistics for the audio-MIDI matching. Note that the MusicBrainz matches

were computed by combining the Spotify audio-MIDI matches and the Spotify-

MusicBrainz links (Section 4). The Percentage of MIDIs Matched column re-

ports the percentage of MIDI files in the respective dataset that have at least

one match to an audio file. Total Matches denotes the total number of unique

audio-MIDI pairs matched. 66

Table 3.2 Statistics for the Spotify-MusicBrainz matching. 68

Table 4.1 The corpus size after each preprocessing step 88

Table 4.2 The results of 1000 randomized trials for each statistical test (peqv, pdiff) using

a variety of corpora sizes. 89

xiv

Table 5.1 Definitions for Chord features, Chord Transition features, Melody features

(Mel.), and Interval features (Inter.). The ? symbol indicates that a categorical

distribution is weighted by chord duration. 103

Table 5.2 The normalized frequency over 1000 trials where x̄ > ȳ (µ), px̄>ȳ < 0.05
(Sig), px̄>ȳ is significant after applying the FDR correction (FDR), and px̄>ȳ

is significant after applying the Bonferonni correction (Bon). Size denotes

the size of the corpus ||C|| = ||GA|| = ||GB||. 105

Table 5.3 The accuracy of each model, calculated using Eq. (5.5b), with standard error

calculated over 10 trials. 106

Table 6.1 The proportion of trials where Ψα exhibits more variance than Ψβ 120

Table 7.1 A summary of the input specifications and generation methods of recently

published generative music systems, where - indicates the absence of a par-

ticular feature. The ? indicates that MMM does not have an explicit track

limit. 127

xv

List of Figures

Figure 1.1 The experimental designs employed in recent listening studies for genera-

tive systems . 10

Figure 3.1 Percentage of MIDI files matched at thresholds. 65

Figure 3.2 The number of MIDI files matched, Audio recordings matched and average

match run-time for different thresholds. On the left, the first value denotes

t1 and the second value denotes t2. 65

Figure 3.3 The distributions for various features computed on LMD, MMD ∆ LMD

and MMD. 69

Figure 3.4 The distribution of genres for matched MIDI files using two methods: au-

dio and audio + text. 71

Figure 4.1 The cumulative NCD distributions (wA, wB , and bA,B) used to compare

50 of Edgar Degas’ (A) artworks and 50 of Gustave Dor’s (B) artworks. . 85

Figure 4.2 The cumulative NCD distributions (wA, wB , and bA,B) used to compare

two disjoint subsets of Edgar Degas’ artwork, both of size 50. 86

Figure 6.1 Three different experimental designs: crossed-question (a), partially-crossed-

question (b) and nested-question (c). The cells with x denote the observa-

tions that are collected. 117

Figure 6.2 The experimental designs employed in recent listening studies for gen-

erative systems. Stars indicate that the number/proportion of participants

could not be calculated exactly. 118

Figure 6.3 Power simulation for nested-question (left) and crossed-question (right)

experimental designs using variance components estimated from Collins’

study. Each dashed line in left plot illustrates the possible combinations of

npar and questions per participant given a constant number of observations

(nobs). 119

Figure 7.1 The MultiTrack and BarFill representations are shown. The <bar> tokens

correspond to complete bars, the <track> tokens correspond to complete

tracks, and the <CONTROL> tokens refer to attribute control tokens. . . . 129

xvi

Figure 7.2 The percentage of generated excerpts (gi) for which the Hamming distance

between any excerpt from the training dataset and gi is on the range [a,b).

A Hamming distance of 0 indicates two excerpts are identical, while 1

indicates they are very different. 132

Figure 7.3 The percentage of generated excerpts with a Jaccard Index J (oi, gi) on

the range [a,b). A Jaccard Index of 1.0 indicates two excerpts are identical,

while 0 indicates they are very different. 132

Figure 7.4 Two bars with a Jaccard Index of 0.76 and a normalized Hamming Dis-

tance of 0.25. 134

Figure 7.5 The percentage of trials where SC
?
50
Ô?25,Ĝ

?
25

(Ô?25, C?50) ≤ SC
?
50
Ô?25,Ĝ

?
25

(Ĝ?25, C?50).

Hatching indicates that the binomial test was insignificant, indicating that

Ô? is not more similar to C than Ĝ?. 136

Figure 7.6 The percentage of trials for each absolute difference between anticipated

and actual note density level. 136

Figure 7.7 The percentage of note durations within the range shown for 100 trials. . . 136

Figure 7.8 The percentage of polyphony levels within the range shown for 100 trials. 136

xvii

Chapter 1

Introduction

1

1.1 Introduction and Motivations

1.1.1 Thesis format

This thesis takes the form of a cumulative thesis. In lieu of a monograph dissertation, cumulative

theses are comprised of a collection of scholarly peer-reviewed articles. This thesis consists of a

total of 5 conference papers, 4 of which have been published. Collectively, these articles summarize

our contributions in two areas: developing a generative music system, and evaluation methods for

generative music systems in general. The introduction outlines the research topic and factors which

motivate the research questions addressed within the thesis. The second chapter summarizes related

work in the area of symbolic generative music systems. The following five chapters are comprised

of the aforementioned conference papers. The final chapter in the thesis summarizes the research

contributions and discusses future work. Specific guidelines for a cumulative dissertation at the

School of Interactive Arts and Technology can be found in Appendix A. Appendix B is a conference

paper which investigates the influence of rhythm and pitch complexity on similarity judgements

between melodies. Appendix C describes GenDetect, a system that was able to discriminate between

generated and human-composed musical excerpts with 99% accuracy1, winning the MIREX 2019

patterns for prediction competition. Appendix D summarizes pertinent considerations with regards

to Canadian copyright law and the distribution of the MetaMIDI dataset, which is introduced in

Chapter 3. Appendix E is an appendix for the StyleRank system that is introduced in Chapter 5.

1.1.2 Overview

The research presented in this thesis can be categorized into two research areas (RA): (A) the devel-

opment of a generative music system; and (B) contributions related to the evaluation of generative

music systems.

Research Area A : Developing Generative Music Systems

Although the music generation task has been explored in both the audio [14, 9] and symbolic do-

mains [3], we focus on the symbolic music generation task exclusively throughout the thesis. Mu-

sical material is typically represented in two different ways: as an audio signal; or using a discrete

set of symbols. In what follows, we refer to the former as Audio representations, and the later as

Symbolic representations. The main aspect that distinguishes symbolic representations from audio

representations, is that symbolic representations notate each discrete musical event (such as a note

onset) and the time at which that event occurs. In contrast, since audio representations only provide

the raw audio signal, individual events are not immediately accessible, however, computational ap-

proaches to recovering discrete information from a signal is an active area of research [17, 35, 47].

1https://www.music-ir.org/mirex/wiki/2019:Patterns_for_Prediction_Results

2

https://www.music-ir.org/mirex/wiki/2019:Patterns_for_Prediction_Results

It is worth noting, that there are some inherent limitations to using symbolic representations, as it is

difficult to capture complex timbres using a symbolic representation.

More specifically, this thesis explores the design and evaluation of Corpus-based Symbolic

Polyphonic music Generation (CSPG) systems, which are systems that are trained to generate sym-

bolic polyphonic music using a corpus of musical data. Although the dataset (Ch. 3) and evaluation

methodologies (Ch. 4,5, and 6) we develop are equally applicable to the broader category of Sym-

bolic Music Generation (SMG) systems, to support the narrative of the thesis, which culminates in

the development and evaluation of a CSPG system (Ch. 7), we place an emphasis on CSPG systems

throughout.

Research Area B : Evaluation of Generative Music Systems

In contrast to most problems that are addressed in the field of artificial intelligence, there are no

optimal solutions for most creative problems, as it is simply not possible to define the optimal

choreography, narrative, poetry or musical composition [41]. Although this is a subtle difference, it

complicates the process of evaluating generative systems, as there is not necessarily a single correct

way to conduct an evaluation. As a result, the way in which a generative system is evaluated varies,

however, the evaluation methodology is typically informed by the goals of the research being con-

ducted, and the context in which the generative system is to be used. For example, researchers with

the goal of developing a system that exhibits creative behaviours in a variety of domains (i.e. gen-

eral creativity), may be interested in evaluating how a generative system makes creative decisions.

Alternatively, researchers with the goal of developing a generative system that can be applied in a

commercial setting would likely focus on measuring attributes of the generated artifacts themselves.

Note that a more detailed discussion on evaluation methodologies for CSPG systems can be found

in Section 2.2.5. In this thesis, we eschew the difficulties associated with developing and evaluating

a system capable of exhibiting general creativity, instead focusing on creating a usable generative

system. Consequently, the evaluation methodologies that we develop and employ are focused on

measuring attributes of the generated artifacts, without any consideration of the inner workings of

the generative system itself.

Brief Overview of Thesis Topics

In Chapter 2, we provide an overview of CSPG systems, summarizing the datasets that have previ-

ously been employed, the manner in which musical data is symbolically represented, and the various

model architectures which are employed. In Chapter 3, we introduce the Meta-MIDI dataset, a large

collection of MIDI files and metadata which can be used to train CSPG/SMG systems. Chapter

4 outlines CAEMSI, which provides a domain-agnostic statistical framework for evaluating style

imitation. Chapter 5 describes our work on Style Rank, a technique for ranking the similarity of

musical excerpts to a style, as delineated by an arbitrary collection of musical excerpts. Chapter 6

outlines actionable recommendations for improved listening experiment design, addressing the lack

of consistency in listening experiment designs. Finally, Chapter 7 outlines our own flexible CSPG

3

system, the Multi-Track Music Machine, which we evaluate using some of the work presented in

previous chapters.

1.1.3 Motivations

In this section, we discuss the broad motivating factors for our research, reserving our discussion

of the motivations related to specific research questions until Section 1.2.2, where the research

questions and contributions are also outlined.

Research Area A : Developing Generative Music Systems

We identify two broad motivating factors for our research involving the development of generative

music systems. First of all, computational creativity explores the automation of creative processes,

with the aim of deepening our understanding of human creativity through the simulation of creative

behaviours, and investigating creative processes which are beyond current human capability [41].

Since creativity is a complex phenomenon, the simulation of creative behaviours is an ideal method

of scientific inquiry, which has the potential to directly inform our understanding of human creativ-

ity. Increasingly, research has focused on the simulation of creative tasks via state-of-the-art tech-

niques in artificial intelligence, developing generative systems that can produce human-competitive

creative artifacts, including visual art [13], poetry [5], video game levels [49], and music [48, 43,

20].

Secondly, there is increasing demand for generative systems in creative industries, which can

directly benefit from systems that automate or expedite portions of the music composition process.

For example, interactive video games which allow the player to progress through the game in a

non-linear manner, are an excellent match for generative music systems. The prototypical solution

involving looping linear music compositions is quite rigid, and developing generative music systems

that can flexibly adapt to the current game scenario is an active area of research. The demand for

customized musical content extends far beyond the video game industry, as any media creator will

likely need to incorporate music into the content they are producing. Due to the costs of licensing or

commissioning human-composed music, there is certainly an opportunity for AI-based generative

systems that can generate compelling music.

Research Area B : Evaluation of Generative Music Systems

In many lines of research, evaluation methods are a necessity, as there must be a way to quantify

what is being studied. Unsurprisingly, this is the most prevalent motivation for developing and refin-

ing evaluation methodologies for generative music systems. However, in this thesis we emphasize

analytic evaluation methodologies that rely purely on computation (Ch. 4 and 5), rather than on col-

lecting feedback from human participants via a listening study, a decision which has several specific

motivations.

4

The first motivation is related to domain knowledge. Ideally, participants in a listening study

should be experienced with the style of music that is being generated by the system. Clearly, this

can place limitations on the types of scientific inquiries that are addressed, as it may be difficult

or expensive to source participants with sufficient domain knowledge for some types of music.

Theoretically, computational approaches can obtain sufficient domain knowledge from the training

corpus, which removes restrictions on the style of music contained in the training corpus.

Second, listening studies can be difficult to reproduce. In contrast to computational methods,

which will produce the same result given the same input, factors such as the listening environment,

cultural context [12], and expertise level [30, 31], can influence the result. Furthermore, some re-

search [8, 39, 7], has found evidence of human bias against generative systems. Although similar

studies have failed to find this same effect [37, 15], this is undoubtedly another factor which can

effect the reproducibility of an experiment.

Finally, in study designs that involve human participants, there are clear limitations on the total

number of observations that can be collected, as fatigue will eventually being to degrade the quality

of their responses. Furthermore, the involvement of human participants imposes monetary and tem-

poral constraints. Collectively, these factors place inherent limitations on the number of systems that

can be simultaneously evaluated, and on the number of generated artifacts that can be used to evalu-

ate each system. In contrast, computational methods are typically easily parallelizable, inexpensive

and can be run non-stop until completion.

Of course, we willingly acknowledge that computational evaluation methodologies are not with-

out their limitations. We are simply outlining the issues with listening studies that have motivated

our research on computational evaluation methodologies for generative music systems.

1.2 Thesis structure

1.2.1 Research questions

In this section, we outline the research questions and summarize the motivations and contributions

for each chapter of this thesis. Table 1.1 describes the papers included in the thesis and the research

question(s) that they address.

RQ1 How can we build a large and rich dataset for training a CSPG/SMG system?

RQ2 How can we determine whether there is a statistically significant difference or equivalence

between two sets of musical artifacts?

RQ3 How can we measure the similarity between musical artifacts?

RQ4 How can we employ statistical methods to develop evidence-based recommendations for im-

proved listening experiment design?

RQ5 How can we create a CSPG system that accommodates flexible generation?

5

Chap. RA RQ Contributions Publication Reference /
Publication Appendix

Ch. 1
General Introduction, Research
Questions and Contributions

Appendices: B[27] & C[23]

Ch. 2 Review of CSPG systems,
datasets, and evaluation methods

-

Ch. 3 A 1 A large collection of MIDI files
and metadata which can be used
to train CSPG/SMG systems.

Ens & Pasquier (2021) [21]

Ch. 4 B 2 A domain-agnostic statistical
method to evaluate style imitation
systems.

Ens & Pasquier (2018) [22]

Ch. 5 B 3 A method to rank the similarity of
several MIDI files against a style
delineated by a set of MIDI files.

Ens & Pasquier (2019) [26]

Ch. 6 B 4 Actionable improvements to
listening experiment design that
increase statistical power

Ens & Pasquier (2020) [24]

Ch. 7 A 5 & 6 The Multi-Track Music Machine,
a flexible CSPG system that
accommodates bar and track level
inpainting, and attribute control.

-

Ch. 8 Concluding remarks and future work -

Table 1.1: Structure of the thesis outlining Chapters (Chap.), Research Areas (RA), Research Ques-
tions (RQ), Contributions and Publications (- denotes unpublished material)

6

RQ6 How can we evaluate MMM?

1.2.2 Outline of Contributions and Motivations

Chapter 1 – Introduction

We introduce the material to be presented in this cumulative thesis. We present the Research Ques-

tions, and motivation for our research. We also summarize contributions, and outline the structure

of the thesis.

Chapter 2 – Related Work

In Chapter 2, we provide an overview of the of CSPG systems. We discuss several factors related

to CSPG systems including: the data on which the system is trained; the representation which is

employed to encode musical material; the texture of music that is generated (i.e. polyphonic or

monophonic); the model architecture or machine learning method that is used to learn from the data;

and the evaluation methods applied to the system. Collectively these factors provide a broad lens

through which we can analyze the merits of each system. We close this chapter with a discussion of

the opportunities for future work, some of which are directly addressed in the remaining chapters of

this thesis.

Chapter 3 – Building the MetaMIDI Dataset:Linking Symbolic and Audio Musical Data

Research questions addressed:

RQ1 How can we build a large and rich dataset for training a CSPG/SMG system?

Motivation: In Chapter 3, we describe the process of building the MetaMIDI Dataset, a collection

of MIDI files linked to additional metadata. Our primary motivation for developing this dataset was

twofold: first, we want to increase the amount and diversity of MIDI data available for training

CSPG/SMG systems; and second, we wanted to apply audio-MIDI matching techniques to augment

the MIDI data with metadata from a large audio dataset.

Contribution: We provide the MetaMIDI (MMD) dataset, a collection of 436,631 MIDI files and

metadata. The MMD contains artist and title metdata for 221,504 MIDI files and genre metadata for

143,868 MIDI files, which was collected from the websites on which the MIDI files were hosted.

In order to expand the metadata available for each MIDI file, we employ the same technique used

to construct the Lahk MIDI Dataset [45]. Raffel et al. matched 30-second audio previews from

the Million Song Dataset [1] against the MIDI files in the Lahk MIDI Dataset, to augment the

metadata for each MIDI file. Since the Million Song Dataset is no longer readily available online,

we elected to use the 30-second audio previews which are available through Spotify’s public API.

After matching the MIDI files in the MMD against 32,000,000 30-second audio clips, we produced

over 10,796,557 audio-MIDI matches. In addition, we linked 600,142 Spotify tracks with 1,094,901

7

MusicBrainz recordings to produce a set of 168,032 MIDI files that are matched to the MusicBrainz

database. To increase the reliability of the audio-MIDI matches, we also computed audio-MIDI

matches where the Spotify artist and title metadata are a fuzzy match to the web-scraped metadata.

This process produced 53,496 matched MIDI files. Since the Spotify API and MusicBrainz database

provide extensive metadata, the links between MIDI files and these two data sources can be easily

used to gather additional data about each matched MIDI file. At the time of writing, this collection of

MIDI files is currently the largest available, making it a valuable asset to MIR researchers. Important

considerations with regards to Canadian copyright law and the distribution of the MetaMIDI dataset

are presented in Appendix D.

Chapter 4 – CAEMSI : A Cross-Domain Analytic Evaluation Methodology for Style Imitation

Research questions addressed:

RQ2 How can we determine whether there is a statistically significant difference or equivalence

between two sets of musical artifacts?

Motivation: This research contribution is domain agnostic and can be applied to the evaluation

of all style-imitation systems, of which CSPG/SMG systems are a subset. When evaluating a style-

imitation system, which is simply a generative system trained to produce artifacts in a particular

style, we are often interested in comparing the corpus (C) and a set of artifacts generated by the

system (G). Given a suitable similarity measure, this amounts to determining if there is a statistically

significant difference or equivalence between C and G. Simply reporting the average similarity,

does not provide sufficient information, as it does not indicate whether the observed difference or

equivalence is simply a random effect. Notably, in the case of style imitation [41], we are interested

in emulating the style delineated by C, and ideally wish to demonstrate that G is equivalent to C in

some respect. Since the absence of a significant statistical difference is not the same as significant

statistical equivalence, it is worth developing a framework which accommodates both these types of

statistical enquiries.

Contribution: We propose CAEMSI (Cross-domain Analytic Evaluation Methodology for Style

Imitation systems) [22], which is based on a set of statistical tests that allow hypotheses comparing

two sets of artifacts to be tested. Given a corpus C = {C1, ..., Cn}, and a set of generated artifacts

G = {G1, ...,Gm}, we can compute three distributions: SC,G , the set of inter-set similarities between

items in C and G; SC , the set of intra-set similarities within C; and SG , the set of intra-set similari-

ties within G. Using a permutation testing framework, we present a way to test the hypothesis that

SC,G = SC = SG (equivalence) and SC,G 6= SC 6= SG (difference). Using the inverse of Nor-

malized Compression Distance (NCD) as a generic similarity measure (domain specific similarity

measures are preferable in practice), we measure the power of these statistical tests using the Clas-

sical Archives MIDI dataset and the WikiArt dataset. The Classical Archrives MIDI dataset consists

8

of 14,724 compositions by 843 distinct composers. The WikiArt dataset consists of 19,052 paintings

by 23 artists. We found that when comparing sets of artifacts from two different artists/composers,

CAEMSI would reliably detect a significant difference, and when comparing two distinct subsets of

artifacts from the same artist/composer, CAEMSI would reliably detect a significant equivalence.

Chapter 5 – Quantifying Musical Style: Ranking Symbolic Music based on Similarity to a
Style

Research questions addressed:

RQ3 How can we measure the similarity between musical artifacts?

Motivation: Typically, when we are evaluating a CSPG/SMG system, we are interested in com-

paring two sets of musical excerpts: A set of pieces C = {C1, ..., Cn} representative of the data

on which the model was trained, which we refer to as the corpus; and a set of generated artifacts

G = {G1, ...,Gm}. As a result, a reliable and meaningful measure of similarity between the corpus

(C) and a generated artifact Gi is needed. Although CAEMSI (Ch. 4) was able to reliably distinguish

between the compositions from two different composers using a generic similarity measure (inverse

of normalized compression distance), we aim to achieve improved performance using a similarity

measure that is specifically designed for symbolic polyphonic music.

Contribution: We propose StyleRank [26], a method to measure the similarity between a MIDI

file and an arbitrary musical style delineated by a collection of MIDI files. MIDI files are encoded

using a novel set of features and an embedding is learned using Random Forests. Using this embed-

ding, the similarity between two artifacts can be directly computed. One advantage of this approach,

is that the similarity between two artifacts is informed by the characteristics of the entire set of MIDI

files on which the embedding is learned. We conduct experiments which demonstrate that StyleR-

ank is highly correlated with human perception of stylistic similarity, and that it is precise enough

to rank generated samples based on their similarity to the style of a corpus. We compare StyleRank

against Yang’s approach [52], which involves applying classical distance metrics directly to the fea-

ture vectors, and found that StyleRank was much more accurate. Somewhat surprisingly, we found

that StyleRank was more accurate than using log-likelihood to predict stylistic similarity, using

data collected in the BachBot listening study [33]. Since similarity is computed in a large feature

space, we can also measure similarity with respect to a single feature, allowing specific discrep-

ancies between generated samples and a particular musical style to be identified. Building on this

approach, we developed a GenDetect [23] (Appendix C) which discriminates between generated

and human-composed continuations of a musical prompt. The system won the 2019 MIREX Pat-

terns for Prediction competition, reliably discriminating generated continuations from those which

were human composed over 99% of the time, on an undisclosed test set.

9

Chapter 6 – Improved Listening Experiment Design for Generative Systems

Research questions addressed:

RQ4 How can we employ statistical methods to develop evidence-based recommendations for im-

proved listening experiment design?

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Participants

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 Q
ue

st
io

ns

BachBotRacchmaninof

CoCoNet

HRNN

LahkNES

Wave2Midi2Wave

Music Transformer

Thickstun
Bretan

Figure 1.1: The experimental designs employed in recent listening studies for generative systems

Motivation: Despite the advantages of purely analytic methods of evaluation, many researchers

still choose to conduct a listening test, which has become the standard approach for CSPG/SMG sys-

tem evaluation [44]. However, there are significant discrepancies between studies. Consider an ex-

periment E = {(Qγ1 , Sα1 , R1), ..., (Qγnobs , Sαnobs , Rnobs)} consisting of nobs observations (Ri),

given a set of questions Q = {Q1, ..., Qnques} and a set of participants S = {S1, ..., Snpar}. Note

that a question is simply a set of musical excerpts sampled from one or more sources, from which

a participant must formulate a response (Ri). Given E , the proportion of participants is npar/nobs
and the proportion of questions is nques/nobs. In Figure 1.1, we plot the proportion of questions

(nquesnobs
), the proportion of participants (nparnobs

), the experimental design, and the methodology for sev-

eral recent listening experiments for which the relevant information was available. The noticeable

discrepancies with respect to the proportion of questions and proportion of participants, indicates a

10

lack of consensus amongst the research community, directly motivating a rigorous analysis of these

experimental hyper-parameters.

Contribution To answer this research question, we examine the role of two parameters, the pro-

portion of questions (nquesnobs
) and the proportion of participants (nparnobs

), through the lens of two exper-

iments [24]. In the first experiment, we conduct a parameter sweep, manipulating the proportion of

participants and questions, using power calculations designed for experiments with two random fac-

tors [51]. The results demonstrate that increasing the proportion of questions and participants results

in increases in experimental power. Notably, we observe limitations to the amount of power that can

be gained by manipulating a single parameter (either the proportion of participants or questions).

The second experiment attempts to quantify the inter-experiment variance by simulating thousands

of miniature experiments, using the raw experimental data collected from previous listening stud-

ies. The results in the second experiment corroborate findings in the first experiment, demonstrating

that inter-experimental variance is minimized when the proportion of questions and participants are

as close to 1 as possible. Fortunately, these issues can be fairly easily addressed, as increasing the

number of questions simply involves collecting more samples from each generative system being

studied.

Chapter 7 – MMM : Exploring Conditional Multi-Track Music Generation with the Trans-
former

Research questions addressed:

RQ5 How can we create a CSPG system that accommodates flexible generation?

RQ6 How can we evaluate MMM?

Motivation: Although one-shot generation of musical material is impressive from a technical

standpoint, it is not that useful in a practical context, as the composition process is frequently an

iterative process which involves gradually refining a piece of music. As a result, there is a large

incentive to develop models which accommodate the natural workflow of the composer, so these

systems can be adopted into the music making process. As a result, we aim to develop a CSPG

system that generates multi-track musical material, offering control over musical attributes, as well

as the flexibility of track-level and bar-level inpainting. Although there has been some work in this

area [19, 32, 43, 36] (Table 1.2), at the time of writing, there are no systems which accommodate

both inpainting and attribute control.

Contribution: We developed the Multi-Track Music Machine (MMM) [25], a generative system

based on the Transformer architecture that is capable of generating multi-track music. In contrast

to previous work, which represents musical material as a single time-ordered sequence, where the

11

System Model Dataset C
on

tin
ua

tio
n

N
ot

e-
Le

ve
l I

np
ai

nt
in

g
Ba

r-
Le

ve
l I

np
ai

nt
in

g
Tr

ac
k-

Le
ve

l I
np

ai
nt

in
g

A
ttr

ib
ut

e
C

on
tr

ol
N

um
M

on
o.

Tr
ac

ks
N

um
Po

ly
. T

ra
ck

s
N

um
In

st
ru

m
en

ts

C1 CoCoNet[19] CNN Bach Chorales (DT2) × × × × 4 0 4
C2 C-RBM[32] CNN Mozart/Batik (DT9) × × × - 1 1
D1 Hild[18] FFNN Bach Chorales (DT2) × 4 0 4
E1 MuseGan[11] GAN Lakh Midi (DT7) × × - 4 4
E2 C-RNN-GAN[38] GAN Classical (3697) ? × - 1 1
F1 DeepBach[16] RNN Bach Chorales (DT2) × × 4 0 4
F2 Josyln et al.[29] RNN Nottingham (DT4) × 1 1 2
F3 DeepJ[34] RNN Classical ? × × - 1 1
F4 Johnson[28] RNN Bach Chorales (DT2)

Nottingham (DT4)
Musedata (DT5)
Piano-Midi.de (DT6)

× - 1 1

F7 RNN-RBM[2] RNN Bach Chorales (DT2)
Nottingham (DT4)
Musedata (DT5)
Piano-Midi.de (DT6)

× - 1 1

F8 BachBot[33] RNN Bach Chorales (DT2) × × 4 0 4
F9 Choi et al.[6] RNN Jazz Lead Sheets ? × - 1 1
F10 Meade et al.[36] RNN Piano-e-

Competition (DT3)
× × - 1 1

F11 PerformanceRNN[40] RNN Piano-e-
Competition (DT3)

× - 1 1

F12 Walder et al.[50] RNN Bach Chorales (DT2)
Nottingham (DT4)
Musedata (DT5)
Piano-Midi.de (DT6)

× - 1 1

- FolkRNN [48] RNN 23,000 Folk
Transcriptions

× - - -

G1 MuseNet[43] Trans. Custom ? × × - 10 10
G2 Music Trans.[20] Trans. Maestro

Dataset (DT10)
× - 1 1

G5 LahkNES[10] Trans. Lahk Midi (DT7)
NESMDB (DT13)

× 4 0 4

H1 MidiVAE[4] VAE Jazz / Pop / Classical ? × - 1 1
H2 MusicVAE[46] VAE Custom (1.5 million) ? × × 3 0 3
- InpaintNet[42] VAE - × × 1 0 1
G3 MMM[25] Trans. MetaMIDI (Ch. 3) × × × × - 12 128

Table 1.2: A summary of relevant CSPG/SMG systems. An × is used to denote systems that are
capable of a particular sampling method.

12

musical events corresponding to different tracks are interleaved, we create a time-ordered sequence

of musical events for each track and concatenate several tracks into a single sequence. This takes

advantage of the Transformer’s attention-mechanism, which can adeptly handle long-term depen-

dencies. We explore how our novel representations can offer the user a high degree of control at

generation time, accommodating track-level and bar-level inpainting while offering control over

track instrumentation and per-track note density.

In contrast to previous systems (see Table 1.2), which support at most 10 different instruments

[43], MMM supports each of the 128 different general MIDI instruments. Furthermore, MMM al-

lows for an arbitrary collection of tracks to be used. This differs from all of the systems in Table

1.2, which are trained on a fixed set of tracks. For example, MusicVAE [46] can only handle drum,

bass and melody trios while LahkNES [10] only accommodates 4 track NES style arrangements.

Although MuseNet offers the user control over the instruments to be used in the generated mate-

rial, the model only treats this input as a suggestion, and may generate a subset or super-set of the

suggested instruments. In contrast, instrument selection with MMM is guaranteed. One current lim-

itation of MMM, is that the length of musical material that can be generated is limited by the size

of the attention window, placing an upper bound on the number of bars that can be generated.

Notably, there have been several real-word applications of MMM, including integration into mu-

sic software, collaborations with industry partners, and most importantly, music that was produced

using the system. More detailed information on these various applications can be found elsewhere2.

Chapter 8 – Conclusion

We conclude this thesis by summarizing and outlining the main contributions of the research, and

suggest future areas for investigation.

Appendix B - The Significance of the Low Complexity Dimension in Music Similarity Judge-
ments

Understanding how similarity is perceived by humans in a musical context is fundamental to many

areas of Music Information Retrieval (MIR) research. Our study demonstrates that ones perception

of musical similarity varies with respect to the musical content being compared, as the dimension

(either pitch or rhythm) bearing low complexity information was found to be the predominant factor

influencing similarity judgements.

Appendix C - Discriminating Symbolic Continuations with GenDetect

We propose GenDetect, an algorithm designed to discriminate between two possible continuations

of a musical prompt, distinguishing human composed continuations from those which are generated.

2https://metacreation.net/mmm-examples/

13

https://metacreation.net/mmm-examples/

GenDetect is based on the StyleRank algorithm, and won the 2019 MIREX Patterns for Prediction

task, achieving 99% accuracy in discriminating continuations.

Appendix D - Copyright Considerations for the MetaMIDI Dataset

We discuss considerations with respect to Canadian copyright law as it pertains to the distribution

of the MetaMIDI dataset. Based on the recommendations of a copyright officer at Simon Fraser

University, we limit the release the dataset to prospective users who will be using it for research.

Appendix E - StyleRank Appendix

We expand on the experiments validating StyleRank that are presented in Chapter 5. We also provide

a more detailed explanation of some of the more complex features that the StyleRank uses.

14

1.2.3 Publications and Authorship

For each of the publications listed below, Philippe Pasquier was involved in the ideation of research

questions, iterative reviews of research progress, and revising the paper content for publication.

[21] Building the MetaMIDI Dataset: Linking Symbolic and Audio Musical Data

Ens, J. & Pasquier, P. (2021). Building the MetaMIDI Dataset: Linking Symbolic and Audio Musical

Data. In the International Society for Music Information Retrieval (ISMIR). (pp. 182-188).

Note about authorship: Jeff Ens is the first author on this paper, who assembled the the MetaMIDI

Dataset, implemented the symbolic-audio metadata matching techniques, and wrote and revised the

paper content for publication.

[22] CAEMSI : A Cross-Domain Analytic Evaluation Methodology for Style Imitation

Ens, J. & Pasquier, P. (2018). CAEMSI : A Cross-Domain Analytic Evaluation Methodology for

Style Imitation. In the International Conference on Computational Creativity (ICCC). (pp. 64-71).

(Best Student Paper Award)

Note about authorship: Jeff Ens is the first author on this paper, who developed the statistic

methods outlined in the paper, implemented several experiments outlined in the paper which demon-

strate the effectiveness of the approach, and wrote and revised the paper content for publication.

[26] Quantifying Musical Style: Ranking Symbolic Music based on Similarity to a Style

Ens, J. & Pasquier, P. (2019). Quantifying Musical Style: Ranking Symbolic Music based on Similar-

ity to a Style. In the International Society for Music Information Retrieval (ISMIR). (pp. 870-877).

Note about authorship: Jeff Ens is the first author on this paper, who developed the similarity

measure / ranking mechanism known as StyleRank, implemented several experiments outlined in

the paper which demonstrate the effectiveness of StyleRank, and wrote and revised the paper content

for publication.

[24] Improved Listening Experiment Design for Generative Systems

Ens, J. & Pasquier, P. (2020). Improved Listening Experiment Design for Generative Systems. 1st

Conference on AI Music Creativity (AIMC).

Note about authorship: Jeff Ens is the first author on this paper, who implemented the ex-

perimental evidence which is presented in the paper, and wrote and revised the paper content for

publication.

The Multi-Track Music Machine: A Generative System Designed for Co-Creative Music Com-
position

Ens, J. & Pasquier, P. (2022). The Multi-Track Music Machine: A Generative System Designed for

Co-Creative Music Composition. In preparation for submission.

15

Note about authorship: Jeff Ens is the first author on this paper, who designed the Multi-Track

Music Machine (MMM), implemented the experiments evaluating MMM in terms of plagiarism,

stylistic similarity, and attribute control, and wrote and revised the paper content for publication.

[27] The Significance of the Low Complexity Dimension in Music Similarity Judgements

Ens, J., Riecke, B.E., & Pasquier, P. (2017). The Significance of the Low Complexity Dimension in

Music Similarity Judgements. In the International Society for Music Information Retrieval (ISMIR).

(pp. 31-38).

Note about authorship: Jeff Ens is the first on this paper, who conducted the research under the

supervision of Bernhard Riecke and Philippe Pasquier, designed the study, ran the study, collated

the findings, conducted statistical analysis on the results, and wrote and revised the paper content

for publication.

[23] Discriminating Symbolic Continuations with GenDetect

Ens, J. & Pasquier, P. (2019). Discrimiating Symbolic Continuations with GenDetect. MIREX Pat-

terns for Prediction Task Results (ISMIR).

Note about authorship: Jeff Ens is the first on this paper, who designed and implemented the

GenDetect algorithm, and wrote and revised the paper content for publication.

1.3 Conclusion

In conclusion, we will briefly review the structure of the thesis. The narrative of the thesis begins

by exploring the literature and related work for CSPG systems (Ch. 2). Then we outline contribu-

tions related to research areas A and B including the MetaMIDI Dataset (Ch. 3), CAEMSI (Ch. 4),

StyleRank (Ch. 5), and recommendations for listening study design (Ch. 6). The thesis concludes

with the Multi-Track Music Machine (MMM) (Ch. 7), a CSPG system trained using the MetaMIDI

Dataset, with an evaluation that incorporates our previous research (StyleRank). Content provided

in the appendix is not central to the thesis but provides context. As a result, it is not crucial for the

reader to read the appendices in their entirety.

16

Bibliography

[1] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. “The million

song dataset”. In: (2011).

[2] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. “Modeling temporal

dependencies in high-dimensional sequences: Application to polyphonic music generation

and transcription”. In: International Conference on Machine Learning (2012).

[3] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pachet. Deep Learning Techniques for

Music Generation. Computational Synthesis and Creative Systems. Springer International

Publishing, 2019.

[4] Gino Brunner, Andres Konrad, Yuyi Wang, and Roger Wattenhofer. “MIDI-VAE: Modeling

Dynamics and Instrumentation of Music with Applications to Style Transfer”. In: Proceed-

ings of the 19th International Symposium for Music Information Retrieval. 2018, pp. 747–

754.

[5] Huimin Chen, Xiaoyuan Yi, Maosong Sun, Wenhao Li, Cheng Yang, and Zhipeng Guo.

“Sentiment-Controllable Chinese Poetry Generation.” In: IJCAI. 2019, pp. 4925–4931.

[6] Keunwoo Choi, George Fazekas, and Mark Sandler. “Text-based LSTM networks for auto-

matic music composition”. In: arXiv preprint arXiv:1604.05358 (2016).

[7] Ewa Dahlig. “Judgments of humans and machine authorship in real and artificial folksongs”.

In: Computing in musicology: a directory of research 11 (1998), pp. 211–219.

[8] Ken Déguernel, Bob LT Sturm, and Hugo Maruri-Aguilar. “Investigating the relationship

between liking and belief in AI authorship in the context of Irish traditional music”. In:

CREAI 2022 Workshop on Artificial Intelligence and Creativity. 2022.

[9] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya

Sutskever. “Jukebox: A generative model for music”. In: arXiv preprint arXiv:2005.00341

(2020).

[10] Chris Donahue, Huanru Henry Mao, Yiting Ethan Li, Garrison W Cottrell, and Julian

McAuley. “LakhNES: Improving multi-instrumental music generation with cross-domain

pre-training”. In: Proc. of the 20th International Society for Music Information Retrieval

Conference. 2019, pp. 685–692.

17

[11] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. “MuseGAN: Multi-

track sequential generative adversarial networks for symbolic music generation and accom-

paniment”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018, pp. 34–41.

[12] Tuomas Eerola, Tommi Himberg, Petri Toiviainen, and Jukka Louhivuori. “Perceived com-

plexity of western and African folk melodies by western and African listeners”. In: Psychol-

ogy of Music 34.3 (2006), pp. 337–371.

[13] Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. “Can: Cre-

ative adversarial networks, generating" art" by learning about styles and deviating from style

norms”. In: arXiv preprint arXiv:1706.07068 (2017).

[14] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad Norouzi, Dou-

glas Eck, and Karen Simonyan. “Neural audio synthesis of musical notes with wavenet au-

toencoders”. In: International Conference on Machine Learning. PMLR. 2017, pp. 1068–

1077.

[15] Ronald S Friedman and Christa L Taylor. “Exploring emotional responses to computationally-

created music.” In: Psychology of Aesthetics, Creativity, and the Arts 8.1 (2014), p. 87.

[16] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. “Deepbach: a steerable model for

bach chorales generation”. In: Proceedings of the 34th International Conference on Machine

Learning. 2017, pp. 1362–1371.

[17] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,

Sander Dieleman, Erich Elsen, Jesse H. Engel, and Douglas Eck. “Enabling Factorized Pi-

ano Music Modeling and Generation with the MAESTRO Dataset”. In: 7th International

Conference on Learning Representations. 2019.

[18] Hermann Hild, Johannes Feulner, and Wolfram Menzel. “HARMONET: A neural net for

harmonizing chorales in the style of JS Bach”. In: Advances in neural information process-

ing systems. 1992, pp. 267–274.

[19] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville, and Douglas

Eck. “Counterpoint by Convolution”. In: Proceedings of the 18th International Society for

Music Information. 2017, pp. 211–218.

[20] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne,

Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas

Eck. “Music Transformer: Generating Music with Long-Term Structure”. In: 7th Interna-

tional Conference on Learning Representations. 2019.

[21] Jeff Ens and Philippe Pasquier. “Building the MetaMIDI Dataset: Linking Symbolic and

Audio Musical Data”. In: Proc. of the International Symposium on Music Information Re-

trieval. 2021, pp. 182–188.

18

[22] Jeff Ens and Philippe Pasquier. “CAEMSI: A Cross-Domain Analytic Evaluation Method-

ology for Style Imitation.” In: Proceedings of the International Conference on Computa-

tional Creativity. 2018, pp. 64–71.

[23] Jeff Ens and Philippe Pasquier. “Discriminating Symbolic Continuations with GenDetect”.

In: MIREX Patterns for Prediction Task Results (ISMIR). 2019.

[24] Jeff Ens and Philippe Pasquier. “Improved Listening Experiment Design for Generative

Systems”. In: Proc. of the Joint Conference on AI Music Creativity. 2020.

[25] Jeff Ens and Philippe Pasquier. “MMM : Exploring Conditional Multi-Track Music Gener-

ation with the Transformer”. In: arXiv:2008.06048. 2020.

[26] Jeff Ens and Philippe Pasquier. “Quantifying Musical Style: Ranking Symbolic Music

based on Similarity to a Style”. In: Proc. of the International Symposium on Music In-

formation Retrieval. 2019, pp. 870–877.

[27] Jeff Ens, Bernhard Riecke, and Philippe Pasquier. “The Significance of the Low Complex-

ity Dimension in Music Similarity Judgements”. In: Proceed. of the International Sympo-

sium on Music Information Retrieval. Vol. 18. 2017, pp. 31–38.

[28] Daniel D Johnson. “Generating polyphonic music using tied parallel networks”. In: Interna-

tional conference on evolutionary and biologically inspired music and art. Springer. 2017,

pp. 128–143.

[29] Kevin Joslyn, Naifan Zhuang, and Kien A Hua. “Deep Segment Hash Learning for Music

Generation”. In: arXiv preprint arXiv:1805.12176 (2018).

[30] James C Kaufman, John Baer, and Jason C Cole. “Expertise, domains, and the consensual

assessment technique”. In: The Journal of creative behavior 43.4 (2009), pp. 223–233.

[31] Carolyn Lamb, Daniel G Brown, and Charles LA Clarke. “Human Competence in Creativity

Evaluation.” In: ICCC. 2015, pp. 102–109.

[32] Stefan Lattner, Maarten Grachten, and Gerhard Widmer. “Imposing higher-level structure in

polyphonic music generation using convolutional restricted boltzmann machines and con-

straints”. In: Journal of Creative Music Systems (2018).

[33] Feynman Liang, Mark Gotham, Matthew Johnson, and Jamie Shotton. “Automatic Stylistic

Composition of Bach Chorales with Deep LSTM.” In: Proceedings of the International

Symposium on Music Information Retrieval. 2017, pp. 449–456.

[34] Huanru Henry Mao, Taylor Shin, and Garrison W. Cottrell. “DeepJ: Style-Specific Mu-

sic Generation”. In: 12th IEEE International Conference on Semantic Computing. 2018,

pp. 377–382.

[35] Matt McVicar, Raúl Santos-Rodrıguez, Yizhao Ni, and Tijl De Bie. “Automatic chord esti-

mation from audio: A review of the state of the art”. In: IEEE/ACM Transactions on Audio,

Speech, and Language Processing 22.2 (2014), pp. 556–575.

19

[36] Nicholas Meade, Nicholas Barreyre, Scott C. Lowe, and Sageev Oore. “Exploring Condi-

tioning for Generative Music Systems with Human-Interpretable Controls”. In: Proceedings

of the International Conference for Computational Creativity (2019), pp. 148–155.

[37] David C Moffat and Martin Kelly. “An investigation into people’s bias against computa-

tional creativity in music composition”. In: Assessment 13.11 (2006), pp. 1–8.

[38] Olof Mogren. “C-RNN-GAN: Continuous recurrent neural networks with adversarial train-

ing”. In: arXiv preprint arXiv:1611.09904 (2016).

[39] David Norton, Derrall Heath, and Dan Ventura. “Accounting for Bias in the Evaluation of

Creative Computational Systems: An Assessment of DARCI.” In: ICCC. 2015, pp. 31–38.

[40] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan. “This time

with feeling: learning expressive musical performance”. In: Neural Computing and Appli-

cations (2018), pp. 1–13.

[41] Philippe Pasquier, Arne Eigenfeldt, Oliver Bown, and Shlomo Dubnov. “An introduction to

musical metacreation”. In: Computers in Entertainment (CIE) 14.2 (2016), pp. 2–16.

[42] Ashis Pati, Alexander Lerch, and Gaëtan Hadjeres. “Learning to Traverse Latent Spaces for

Musical Score Inpainting”. In: Proc. of the 20th International Society for Music Information

Retrieval Conference. 2019, pp. 343–351.

[43] Christine Payne. “MuseNet”. In: OpenAI (Apr. 2019). openai.com/blog/musenet.

[44] Marcus T. Pearce and Geraint A. Wiggins. “Evaluating cognitive models of musical compo-

sition”. In: Proceedings of the 4th international joint workshop on computational creativity.

Goldsmiths, University of London. 2007, pp. 73–80.

[45] Colin Raffel. “Learning-based methods for comparing sequences, with applications to audio-

to-midi alignment and matching”. PhD thesis. Columbia University, 2016.

[46] Adam Roberts, Jesse H. Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. “A Hier-

archical Latent Vector Model for Learning Long-Term Structure in Music”. In: Proceedings

of the 35th International Conference on Machine Learning. 2018, pp. 4361–4370.

[47] Bob L Sturm. “The state of the art ten years after a state of the art: Future research in music

information retrieval”. In: Journal of new music research 43.2 (2014), pp. 147–172.

[48] Bob L Sturm and Oded Ben-Tal. “Taking the models back to music practice: Evaluating

generative transcription models built using deep learning”. In: Journal of Creative Music

Systems 2.1 (2017).

[49] Ruben Rodriguez Torrado, Ahmed Khalifa, Michael Cerny Green, Niels Justesen, Sebastian

Risi, and Julian Togelius. “Bootstrapping conditional gans for video game level generation”.

In: 2020 IEEE Conference on Games (CoG). IEEE. 2020, pp. 41–48.

[50] Christian Walder. “Modelling symbolic music: Beyond the piano roll”. In: Asian Conference

on Machine Learning. 2016, pp. 174–189.

20

[51] Jacob Westfall, David A Kenny, and Charles M Judd. “Statistical power and optimal design

in experiments in which samples of participants respond to samples of stimuli.” In: Journal

of Experimental Psychology: General 143.5 (2014).

[52] Li-Chia Yang and Alexander Lerch. “On the evaluation of generative models in music”. In:

Neural Computing and Applications (2018), pp. 1–12.

21

Chapter 2

Related Work on Symbolic Polyphonic
Music Generation

2.1 Introduction

Many researchers have sought to develop creative systems capable of generating musical mate-

rial. Research involving musical meta-creative (MuMe) [75] systems is a subfield of computational

creativity, an emerging field of research which focuses on the simulation or replication of creativity

using a computer [20]. In contrast to many problems in AI, where the notion of an optimal solution is

well-defined, when generating a creative artifact, such as music, there is no clear best solution [75].

Although this poses difficulties when developing and evaluating these systems, recent advancements

in Deep Learning have resulted in state-of-the-art MuMe systems [60] that are human competitive

in certain contexts.

In what follows, we will summarize key developments involving corpus-based symbolic poly-

phonic music generation (CSPG) systems. Before moving any further, it is necessary to clarify what

is meant by the terms corpus-based, symbolic, and polyphonic. In contrast with a rule-based system,

where relevant domain knowledge is encapsulated in a set of explicit rules [35], a corpus-based sys-

tem extracts knowledge from data. Here, we consider any non-empty set of data to be a valid corpus,

so models that are trained on a single musical excerpt [41] are included. The term symbolic music

refers to representations where musical events, such as notes, are explicitly encoded [23]. Note that

this differs from raw audio, which is a continuous stream of scalar values, and contains no explicit

information about what notes are sounding.

Although many of the contributions outlined throughout this thesis are broadly related to the

topic of symbolic music generation (SMG), we restrict our summary of related work to CSPG sys-

tems, ignoring non-corpus-based and non-polyphonic systems for the following reason. The Multi-

track Music Machine (MMM) (Ch. 7) is a CSPG, and including systems that are tangentially related

to the design of MMM (i.e. non-corpus-based, non-polyphonic) would do little but provide distrac-

tion. Furthermore, since there is a large body of research discussing CSPG systems, let alone SMG

22

systems, there is a substantial amount of ground which must be covered whilst imposing this con-

straint anyways.

This chapter is organized as follows. In Section 2.2, we outline the typology that we use to

organize CSPG systems. Then the specifics of each system will be outlined. To conclude, we discuss

the current challenges and propose avenues for future research (Section 2.6).

2.2 Typology

To organize our discussion, we categorize CSPG systems using several factors: the computation

model (2.2.1); the musical texture of the output (2.2.2); and the data representation employed

(2.2.3). When available, we also provide information on the dataset (2.2.4), analytic evaluation

methods (2.2.5), listening test (2.2.5), and a link to musical examples generated by the system.

Table 2.1 lists the CSPG systems discussed throughout the chapter, and additional details on the

typology are detailed in the rest of this section.

23

Sy
st

em
E

x.
M

od
el

(2
.2

.1
)

Te
xt

ur
e

(2
.2

.2
)

R
ep

.(
2.

2.
3)

D
at

as
et

(2
.2

.4
)

M
et

ri
c

(2
.2

.5
)

L
is

te
ni

ng
Te

st
(2

.2
.5

)

A
1

Pa
di

lla
et

al
.[7

1]
-

M
ar

ko
v

ch
ai

n
Fi

xe
d

U
ni

va
r.

Se
qu

en
ce

Pa
le

st
ri

na
?

In
fo

rm
at

io
n

C
on

te
nt

55
pa

rt
ic

ip
an

ts
†

A
2

W
ho

rl
ey

et
al

.[9
7]

-
M

ar
ko

v
ch

ai
n

Fi
xe

d
U

ni
va

r.
Se

qu
en

ce
E

ng
lis

h
H

ym
ns

(1
00

)?
12

cu
st

om
m

et
ri

cs
-

A
3

E
ig

en
fe

ld
te

ta
l.[

28
]

-
M

ar
ko

v
ch

ai
n

H
om

.
U

ni
va

r.
Se

qu
en

ce
A

ss
or

te
d

G
en

re
s
?

-
-

A
4

Fl
ow

C
om

po
se

r[
73

]
lin

k
M

ar
ko

v
ch

ai
n

H
om

.
U

ni
va

r.
Se

qu
en

ce
L

ea
d

Sh
ee

tD
at

ab
as

e
-

-

A
5

Po
ns

fo
rd

et
al

.[7
9]

-
M

ar
ko

v
ch

ai
n

H
om

.
U

ni
va

r .
Se

qu
en

ce
17

th
C

en
tu

ry
(8

4)
?

-
-

A
6

R
ac

ch
m

an
in

of
[1

7]
lin

k
M

ar
ko

v
ch

ai
n

Po
ly

.
U

ni
va

r .
Se

qu
en

ce
B

ac
h

C
ho

ra
le

s
(D

T
2)

‘
C

ho
pi

n
?

-
16

no
n-

m
us

ic
ia

n
15

m
us

ic
ia

n

B
1

A
lla

n
et

al
.[2

]
lin

k
H

M
M

Fi
xe

d
G

ra
ph

B
ac

h
C

ho
ra

le
s

(D
T

2)
-

-

B
2

i-
R

in
g[

59
]

-
H

M
M

H
om

.
G

ra
ph

U
ns

pe
ci

fie
d

(1
50

)?
-

10
pa

rt
ic

ip
an

ts

B
3

K
al

ia
ka

ts
os

et
al

.[5
3]

-
H

M
M

H
om

.
G

ra
ph

Su
bs

et
of

B
ac

h
C

ho
ra

le
s

(D
T

2)
Pi

tc
h

C
la

ss
Si

m
ila

ri
ty

R
oo

tS
im

ila
ri

ty
E

xa
ct

M
at

ch
es

-

B
4

Pa
ie

m
en

te
t a

l.[
72

]
-

H
M

M
H

om
.

G
ra

ph
L

ea
d

Sh
ee

ts
(4

7)
?

L
og

-l
os

s
-

B
5

R
ac

zy
ns

ki
et

al
.[8

0]
-

H
M

M
H

om
.

G
ra

ph
W

ik
if

on
ia

(D
T

1)
L

og
-l

os
s

-

B
6

Si
m

on
et

al
.[8

7]
lin

k
H

M
M

H
om

.
G

ra
ph

L
ea

d
Sh

ee
ts

(2
98

)?
-

30
pa

rt
ic

ip
an

ts

C
1

C
oC

oN
et

[4
6]

lin
k

C
N

N
Fi

xe
d

M
ul

tiv
ar

.V
ec

to
r

B
ac

h
C

ho
ra

le
s

(D
T

2)
L

og
-l

os
s

96
co

m
pa

ri
so

ns
†

C
2

C
-R

B
M

[5
7]

lin
k

C
N

N
Po

ly
.

M
ul

tiv
ar

.V
ec

to
r

M
oz

ar
t/B

at
ik

(D
T

9)
In

fo
rm

at
io

n
R

at
e

-

D
1

H
ild

[4
2]

-
FF

N
N

Fi
xe

d
M

ul
tiv

ar
.

Se
qu

en
ce

B
ac

h
C

ho
ra

le
s

(D
T

2)
-

-

E
1

M
us

eG
an

[2
7]

lin
k

G
A

N
Po

ly
.

M
ul

tiv
ar

.V
ec

to
r

L
ak

h
M

id
iD

at
as

et
(C

le
an

)(
D

T
8)

Q
ua

lifi
ed

N
ot

e
R

at
e

Po
ly

ph
on

ic
ity

To
na

lD
is

ta
nc

e
L

og
-l

os
s

20
pa

rt
ic

ip
an

ts

24

http://www.flow-machines.com/
https://www.tomcollinsresearch.net/supporting-material.html
https://tardis.ed.ac.uk/~moray/harmony/
http://research.microsoft.com/~dan/mysong
https://coconets.github.io/
https://soundcloud.com/pmgrbm
https://salu133445.github.io/musegan/results

Sy
st

em
E

x.
M

od
el

(2
.2

.1
)

Te
xt

ur
e

(2
.2

.2
)

R
ep

.(
2.

2.
3)

D
at

as
et

(2
.2

.4
)

M
et

ri
c

(2
.2

.5
)

L
is

te
ni

ng
Te

st
(2

.2
.5

)

E
2

C
-R

N
N

-G
A

N
[6

6]
lin

k
G

A
N

Po
ly

.
M

ul
tiv

ar
.

Se
qu

en
ce

C
la

ss
ic

al
(3

69
7)
?

Sc
al

e
co

ns
is

-
te

nc
y

N
ot

e
ra

ng
e

To
ne

co
un

t
V

el
oc

ity
ra

ng
e

Po
ly

ph
on

y
3-

to
ne

re
pe

ti-
tio

n

-

F1
D

ee
pB

ac
h[

38
]

lin
k

R
N

N
Fi

xe
d

M
ul

tiv
ar

.
Se

qu
en

ce
B

ac
h

C
ho

ra
le

s
(D

T
2)

L
og

-l
os

s
12

72
pa

rt
ic

ip
an

ts
†

F2
Jo

sy
ln

et
al

.[5
2]

-
R

N
N

H
om

.
M

ul
tiv

ar
.

Se
qu

en
ce

N
ot

tin
gh

am
(D

T
4)

L
og

-l
os

s
-

F3
D

ee
pJ

[6
2]

-
R

N
N

Po
ly

.
M

ul
tiv

ar
.

Se
qu

en
ce

C
la

ss
ic

al
?

L
og

-l
os

s
20

pa
rt

ic
ip

an
ts

F4
Jo

hn
so

n[
50

]
lin

k
R

N
N

Po
ly

.
M

ul
tiv

ar
.

Se
qu

en
ce

B
ac

h
C

ho
ra

le
s

(D
T

2)
N

ot
tin

gh
am

(D
T

4)
M

us
ed

at
a

(D
T

5)
Pi

an
o-

M
id

i.d
e

(D
T

6)

L
og

-l
os

s
-

F5
L

ST
M

-D
B

N
[9

5]
-

R
N

N
Po

ly
.

M
ul

tiv
ar

.
Se

qu
en

ce
B

ac
h

C
ho

ra
le

s
(D

T
2)

N
ot

tin
gh

am
(D

T
4)

M
us

ed
at

a
(D

T
5)

Pi
an

o-
M

id
i.d

e
(D

T
6)

L
og

-l
os

s
-

F6
R

N
N

-D
B

N
[3

2]
-

R
N

N
Po

ly
.

M
ul

tiv
ar

.
Se

qu
en

ce
B

ac
h

C
ho

ra
le

s
(D

T
2)

N
ot

tin
gh

am
(D

T
4)

M
us

ed
at

a
(D

T
5)

Pi
an

o-
M

id
i.d

e
(D

T
6)

L
og

-l
os

s
-

F7
R

N
N

-R
B

M
[8

]
lin

k
R

N
N

Po
ly

.
M

ul
tiv

ar
.

Se
qu

en
ce

B
ac

h
C

ho
ra

le
s

(D
T

2)
N

ot
tin

gh
am

(D
T

4)
M

us
ed

at
a

(D
T

5)
Pi

an
o-

M
id

i.d
e

(D
T

6)

L
og

-l
os

s
-

F8
B

ac
hB

ot
[6

0]
lin

k
R

N
N

Fi
xe

d
U

ni
va

r.
Se

qu
en

ce
B

ac
h

C
ho

ra
le

s
(D

T
2)

L
og

-l
os

s
23

36
pa

rt
ic

ip
an

ts
†

F9
C

ho
ie

ta
l.[

15
]

lin
k

R
N

N
H

om
.

U
ni

va
r.

Se
qu

en
ce

Ja
zz

L
ea

d
Sh

ee
ts
?

L
og

-l
os

s
-

F1
0

M
ea

de
et

al
.[6

4]
lin

k
R

N
N

Po
ly

.
U

ni
va

r.
Se

qu
en

ce
Pi

an
o-

e-
C

om
pe

tit
io

n
(D

T
3)

-
-

F1
1

Pe
rf

or
m

an
ce

R
N

N
[6

9]
lin

k
R

N
N

Po
ly

.
U

ni
va

r .
Se

qu
en

ce
Pi

an
o-

e-
C

om
pe

tit
io

n
(D

T
3)

L
og

-l
os

s
-

25

https://github.com/olofmogren/c-rnn-gan-samples/
https://sites.google.com/site/deepbachexamples/
https://www.cs.hmc.edu/~ddjohnson/tied-parallel/
http://www-etud.iro.umontreal.ca/~boulanni/icml2012
https://bachbot.com
https://soundcloud.com/kchoi-research/sets/lstm-realbook-1-5
https://clyp.it/user/4cxzkq0v
https://clyp.it/user/3mdslat4

Sy
st

em
E

x.
M

od
el

(2
.2

.1
)

Te
xt

ur
e

(2
.2

.2
)

R
ep

.(
2.

2.
3)

D
at

as
et

(2
.2

.4
)

M
et

ri
c

(2
.2

.5
)

L
is

te
ni

ng
Te

st
(2

.2
.5

)

F1
2

W
al

de
re

ta
l.[

96
]

lin
k

R
N

N
Po

ly
.

U
ni

va
r.

Se
qu

en
ce

B
ac

h
C

ho
ra

le
s

(D
T

2)
N

ot
tin

gh
am

(D
T

4)
M

us
ed

at
a

(D
T

5)
Pi

an
o-

M
id

i.d
e

(D
T

6)

L
og

-l
os

s
-

G
1

M
us

eN
et

[7
6]

lin
k

Tr
an

sf
or

m
er

Po
ly

.
U

ni
va

r .
Se

qu
en

ce
A

ss
or

te
d

G
en

re
s
?

-
-

G
2

M
us

ic
Tr

an
sf

or
m

er
[4

7]
lin

k
Tr

an
sf

or
m

er
Po

ly
.

U
ni

va
r .

Se
qu

en
ce

M
ae

st
ro

D
at

as
et

(D
T

10
)

L
og

-l
os

s
18

0
co

m
pa

ri
so

ns
†

G
3

M
ul

ti-
Tr

ac
k

M
us

ic
M

ac
hi

ne
(C

h.
7)

lin
k

Tr
an

sf
or

m
er

Po
ly

.
U

ni
va

r.
Se

qu
en

ce
M

et
aM

ID
ID

at
as

et
Se

e
Se

ct
io

n
7.

6
-

G
4

M
us

IA
C

[3
6]

-
Tr

an
sf

or
m

er
Po

ly
.

U
ni

va
r .

Se
qu

en
ce

L
ak

h
M

ID
I(

D
T

7)
-

-

G
5

L
ak

hN
E

S[
25

]
lin

k
Tr

an
sf

or
m

er
Po

ly
.

U
ni

va
r.

Se
qu

en
ce

L
ak

h
M

ID
I(

D
T

7)
N

E
S

M
us

ic
D

at
ab

as
e

L
og

-l
os

s
18

0
pa

rt
ic

ip
an

ts

H
1

M
id

iV
A

E
[9

]
lin

k
VA

E
Po

ly
.

M
ul

tiv
ar

.
Se

qu
en

ce
Ja

zz
/P

op
/C

la
ss

ic
al
?

St
yl

e
C

la
ss

ifi
er

D
is

ta
nc

e
-

H
2

M
us

ic
VA

E
[8

4]
lin

k
VA

E
Fi

xe
d

U
ni

va
r.

Se
qu

en
ce

A
ss

or
te

d
G

en
re

s
(1

.5
m

ill
io

n)
?

L
og

-l
os

s
19

2
co

m
pa

ri
so

ns
†

I1
M

or
ph

eu
S[

41
]

lin
k

V
N

S
Po

ly
.

-
Ti

m
e

C
om

-
pl

ex
ity

-

Ta
bl

e
2.

1:
A

n
ov

er
vi

ew
of

C
SP

G
sy

st
em

s
w

he
re

U
ni

va
r.,

M
ul

tiv
ar

.,
an

d
V

N
S

de
no

te
un

iv
ar

ia
te

,m
ul

tiv
ar

ia
te

,a
nd

va
ri

ab
le

ne
ig

hb
ou

rh
oo

d
se

ar
ch

,
re

sp
ec

tiv
el

y.
T

he
ex

am
pl

e
(E

x.
)

co
lu

m
n

pr
ov

id
es

lin
ks

to
au

di
o

sa
m

pl
es

.W
he

n
av

ai
la

bl
e,

th
e

si
ze

of
a

da
ta

se
t

is
sh

ow
n

in
pa

re
nt

he
si

s.
In

ca
se

s
w

he
re

au
th

or
s

cr
ea

te
d

th
ei

r
ow

n
da

ta
se

t,
de

m
ar

ca
te

d
by

a
?,

a
ge

ne
ra

ld
es

cr
ip

tio
n

is
pr

ov
id

ed
in

st
ea

d
of

th
e

da
ta

se
tn

am
e.

T
he

m
et

ri
c

co
lu

m
n

lis
ts

th
e

qu
an

tit
at

iv
e

m
ea

su
re

s
us

ed
to

ev
al

ua
te

th
e

sy
st

em
.T

he
lis

te
ni

ng
te

st
co

lu
m

n
in

di
ca

te
s

th
e

nu
m

be
r

of
pa

rt
ic

ip
an

ts
or

co
m

pa
ri

so
ns

in
th

e
st

ud
y,

w
he

re
†i

nd
ic

at
es

th
at

th
e

ar
tif

ac
ts

ge
ne

ra
te

d
by

th
e

sy
st

em
ar

e
hu

m
an

co
m

pe
tit

iv
e.

Fo
re

ac
h

co
lu

m
n,

m
or

e
de

ta
ils

ar
e

av
ai

la
bl

e
in

th
e

co
rr

es
po

nd
in

g
se

ct
io

n
sp

ec
ifi

ed
in

pa
re

nt
he

se
s.

26

http://users.cecs.anu.edu.au/~christian.walder/beyondthepianoroll.html
https://openai.com/blog/musenet/
https://storage.googleapis.com/music-transformer/index.html
https://jeffreyjohnens.github.io/MMM/
https://github.com/chrisdonahue/LakhNES
https://github.com/brunnergino/MIDI-VAE
https://storage.googleapis.com/magentadata/papers/musicvae/index.html
http://dorienherremans.com/morpheus/

2.2.1 Model

Any CSPG system must employ some sort of model that is capable of extracting the relevant in-

formation from a corpus of musical data after undergoing some sort of training process. Although

neural networks are the typical choice, other models have been employed, including Markov chain,

Hidden Markov Models, and Variable Neighbourhood Search. In many cases, selecting a particular

model, imposes constraints on the representations that can be used to represent musical data. For

example, using a Markov chain requires data to be represented as a univariate sequence of discrete

tokens. Early work involving neural networks used Feed-Forward Networks (FNN) and Recurrent

Neural Networks (RNN) to model musical material. However, in recent years, CSPG systems have

been developed that use a variety of neural network architectures, including Convolutional Neural

Networks (CNN), Generative Adversarial Networks (GAN), Variational Auto-Encoders (VAE) and

attention-based neural networks such as the Transformer.

2.2.2 Musical Texture

In general, there are three types of musical texture: Monophonic, which consists of a single melodic

line with no accompaniment; Homophonic, which consists of a single melody and chordal accom-

paniment; and Polyphonic, which contains multiple melodic voices which exhibit some degree of

independence from each other [6]. To be clear, in a polyphonic texture, melodic voices are not com-

pletely independent from each other, as each voice is dependant on the pitch and rhythmic content

of other voices. However, in contrast to homophonic textures, where the chordal accompaniment is

comprised of multiple voices that share the same rhythm, the voices in a polyphonic texture will

employ different rhythms. Notably, it is common for the term Polyphonic to refer to all musical

textures that are not monophonic [24]. To account for this ambiguity, and the fact that some systems

could be construed as either generating homophony or polyphony (D1, A3, B1, A2), we adopt the

broad definition of polyphony (anything not monophonic) as a condition for inclusion in this survey,

yet retain the specific definitions for the convenience of categorization.

2.2.3 Representation

We identify four different approaches to representing musical material: univariate sequences, mul-

tivariate sequences, multivariate vectors and graphs. Note that we consider the manner in which

musical material is represented from the perspective of the model (2.2.1).

Univariate Sequence

Using a univariate sequence involves providing a series of scalar values to the model (x0, x1, ...xn)

one by one, and conditioning the generation of each scalar value (xt) on the series of scalar values

that have previously been provided (x0, x1, ..., xt−1). Typically, representing music as a univariate

sequence involves constructing a sequence of tokens (i.e. integers) using a discrete alphabet con-

sisting of n distinct tokens which each correspond to a specific musical event. For example, 128

27

distinct NOTE_ON tokens may be used to indicate the onset of each possible MIDI pitch, and a

TIME_SHIFT token may be used to indicate some passage of time. Some systems (F11, G2) use a

single TIME_SHIFT token (F8), while others use n distinct TIME_SHIFT tokens to represent the

passage of different lengths of time.

Multivariate Sequence

The only difference between multivariate sequences and univariate sequences, is that each item in

a multivariate sequence is comprised of multiple scalar values (multivariate) rather than a single

scalar value (univariate). For example, Mogren et al. (E2) represent each note using four real valued

scalars: note length, frequency, velocity and time-delta (in seconds), and train an RNN using a

multivariate sequence of continuous 4-dimensional vectors.

Multivariate Vector

Using a multivariate vector involves providing multiple scalar values to the model, generating a

prediction using these values exclusively. One example of a system which uses this representation

is CoCoNet (C1), which takes an incomplete piano roll as input and generates the missing parts of

the piano roll (filling in the blanks).

Graph

Other systems (B1, B6, B3, B4, B5) adopt a graph representation, where musical events are the

nodes, and edges denote relationships between events. For example, Allan and Williams (B1) rep-

resent fixed voice polyphony using a hidden Markov model (HMM), where each melody note is an

observed node, all notes in other voices are hidden nodes, and each edge represents the conditional

probability of a transition between states.

Ambiguity of the Piano Roll

Since we categorize systems based on the manner in which musical material is processed by the

model, we are able to make distinctions between systems that use a piano roll representation based

on the way the information is actually processed. A piano roll is a boolean matrix x ∈ {0, 1}T×P ,

where T is the number of time-steps and P is the number of pitches. Typically P = 128, allowing

the piano roll to represent all possible MIDI pitches. Each column represents the pitches that are

sounding at a particular time-step, which is an even subdivision of the beat, as discussed in 2.2.4.

Some models process several time-steps of piano roll simultaneously (multivariate vector) (C1,

C2, E1), while others process each time-step conditioned on previous time-steps (multivariate se-

quence) (F7, F6, F5, F4, F3). Furthermore, by traversing the piano roll in column-major or row-

major order, it can be represented as a univariate sequence of boolean values, and provided to a

model that is designed to learn univariate sequences (RNN, Transformer). However, this is clearly a

sub-optimal approach due to the extremely long sequences required to represent musical material.

28

2.2.4 Data

Datasets

Table 2.2 provides an overview of the datasets used by the systems discussed in this chapter. Al-

though a dataset may have been cleaned and pre-processed, this does not guarantee that it is free

of problems. For example, large datasets like the Lakh MIDI Dataset (DT7) may contain corrupt

MIDI files that are unusable. Another example, discovered by Sturm [88], is the Jukedeck MIDI

versions 1 of the Nottingham Dataset (DT4), which do not correctly encode the repetition structure

of the tunes as originally notated in the ABC format. Ultimately, the quality of a generative system

is limited by the quality of the data, so one should take care to audit the quality of datasets being

used.

Storage Specifications and Standards

A common format for representing symbolic music is the Musical Instrument Digital Interface

(MIDI) protocol [67], which was developed in the early 1980’s to standardize the representation of

musical performance information in a digital format [40]. MIDI files are simply a series of mes-

sages, and notes are represented using two types of MIDI message: the NOTE_ON, and NOTE_OFF

messages, which both consist of a channel number, a pitch and a velocity (loudness). There are a

variety of messages that can control various musical features, such as the tempo, time-signature

markings, and even changes in instrumentation. Timing information is specified in ticks, with a

single tick defined as a fraction of a quarter note beat. The number of ticks per quarter note beat

is specific to each MIDI file, and is specified in the MIDI file header. In the case that data is not

available in MIDI format, code libraries are readily available that produce MIDI files from a variety

of formats including ABC, musicXML and Humdrum [22].

Notably, the MIDI format is not without its limitations, and may not be the ideal for all use-cases,

especially in cases where a encoding format has been specifically developed for a particular type of

music. For example, ABC notation was designed to encode folk and traditional tunes, providing an

efficient method to notate structural repetition, which is not possible using MIDI. Another example

is a lead sheet, which is typically used to represent jazz music, and is comprised of a melody and

chord symbols denoting the harmonic accompaniment.

Pre-processing

When working with symbolic musical data, one common form of data pre-processing involves quan-

tizing rhythmic information to an even subdivision of the beat. Often, note onsets and offsets are

quantized to 4 subdivisions per beat (F7, F6, F5, F8, F1), resulting in a sixteenth note resolution,

however, some models (F11, E1, G2) have been trained on data quantized at a much higher resolu-

tion. When an appropriate quantization threshold is selected, such as a sixteenth note resolution for

1https://github.com/jukedeck/nottingham-dataset

29

https://github.com/jukedeck/nottingham-dataset

Bach Chorales, the musical composition will not be affected. However, the small rhythmic devia-

tions from the metric grid that are found in an expressive musical performance will be lost unless

rhythmic information is quantized at an extremely high resolution.

Many CSPG systems generate compositional material which can optionally be performed by

an expressive performance system [11]. However, some CSPG systems are designed to generate

both the compositional material and the expressive performance (F11, G1, G2, F3), which neces-

sitates quantization of rhythmic information at a much higher threshold, retaining the expressive

micro-timing of the performer. In addition, these systems integrate quantized velocity information,

capturing variations in loudness which are characteristic of compelling musical performances. An-

other type of pre-processing involves transposing pitches so that the key of each piece is in either A

minor or C major (F7, F2).

Data Augmentation

Data augmentation applies various manipulations to the data to increase the diversity and amount

of data. Even simple data augmentation strategies for image based corpora that involve cropping,

padding, vertical flipping, horizontal flipping, and rotation can be very effective [58, 55]. For mu-

sical data, one common data augmentation technique is transposition, which usually involves ran-

domly transposing each piece ±6 semitones (F12, G5, E1), as this enables the trained model to

generate music in any key. In the process of training the Performance RNN, Oore et al. (F11) aug-

mented the duration of all notes within a piece by stretching/compressing notes up to 10%.

30

D
at

as
et

D
es

cr
ip

tio
n

E
xp

re
ss

iv
e

Pa
ra

m
et

er
s

Si
ze

Fo
rm

at
L

in
k

D
T

1
W

ik
if

on
ia
?

A
ss

or
te

d
le

ad
sh

ee
ts

.
-

2,
00

0
-

-
D

T
2

B
ac

h
C

ho
ra

le
s

B
ac

h
ch

or
al

es
co

rp
us

av
ai

la
bl

e
in

m
us

ic
21

.
-

38
2

m
us

ic
X

M
L

ht
tp

s:
//w

eb
.m

it.
ed

u/
m

us
ic

21
/

D
T

3
Pi

an
o-

e-
C

om
pe

tit
io

n
Pe

rf
or

m
an

ce
s

of
cl

as
si

ca
l p

ia
no

co
m

po
-

si
tio

ns
re

co
rd

ed
on

a
D

is
kl

av
ie

ra
tt

he
Pi

an
o-

e-
C

om
pe

tit
io

n.

ve
lo

ci
ty

, t
im

in
g

1,
40

0
M

ID
I

ht
tp

://
w

w
w

.p
ia

no
-e

-c
om

pe
tit

io
n.

co
m

D
T

4
N

ot
tin

gh
am

Fo
lk

tu
ne

s.
-

1,
00

0
M

ID
I

ht
tp

s:
//g

ith
ub

.c
om

/ju
ke

de
ck

/n
ot

tin
gh

am
-d

at
as

et
D

T
5

M
us

eD
at

a
A

ss
or

te
d

cl
as

si
ca

lc
om

po
si

tio
ns

.
-

88
1

M
ID

I
ht

tp
://

m
us

ed
at

a.
or

g/
D

T
6

Pi
an

o-
M

id
i.d

e
A

ss
or

te
d

cl
as

si
ca

lc
om

po
si

tio
ns

fr
om

25
co

m
po

se
rs

.
-

13
0

M
ID

I
ht

tp
://

w
w

w
.p

ia
no

-m
id

i.d
e/

D
T

7
L

ak
h

M
id

iD
at

as
et

[8
1]

D
e-

du
pl

ic
at

ed
M

ID
Ifi

le
s,

in
cl

ud
in

g
a

w
id

e
va

ri
et

y
of

ge
nr

es
.

-
17

4,
15

4
M

ID
I

ht
tp

s:
//c

ol
in

ra
ff

el
.c

om
/p

ro
je

ct
s/

lm
d/

D
T

8
L

ak
h

M
id

iD
at

as
et

(C
le

an
)[

81
]

A
su

bs
et

of
th

e
L

ak
h

M
id

iD
at

as
et

w
ith

fil
en

am
es

w
hi

ch
in

di
ca

te
th

ei
ra

rt
is

ta
nd

tit
le

.

-
21

,4
25

M
ID

I
ht

tp
s:

//c
ol

in
ra

ff
el

.c
om

/p
ro

je
ct

s/
lm

d/

D
T

9
M

oz
ar

t/B
at

ik
[9

8]
N

ot
e-

w
is

e
m

at
ch

ed
da

ta
se

tc
on

ta
in

in
g

R
ol

an
d

B
at

ik
’s

pe
rf

or
m

an
ce

s
an

d
th

e
co

rr
e-

sp
on

di
ng

sc
or

ed
m

at
er

ia
l.

ve
lo

ci
ty

,t
im

in
g

37
In

-h
ou

se
fo

rm
at

-

D
T

10
M

ae
st

ro
D

at
as

et
[3

9]
Pa

ir
ed

au
di

o
an

d
M

ID
Ir

ec
or

di
ng

s
fr

om
te

n
ye

ar
s

of
In

te
rn

at
io

na
lP

ia
no

-e
-C

om
pe

tit
io

n.
ve

lo
ci

ty
, t

im
in

g
11

84
M

ID
I+

A
ud

io
ht

tp
s:

//m
ag

en
ta

.te
ns

or
flo

w
.o

r g
/d

at
as

et
s/

m
ae

st
ro

D
T

11
Pa

le
st

ri
na

[2
2]

Pa
le

st
ri

na
m

as
se

s
co

rp
us

av
ai

la
bl

e
in

m
u-

si
c2

1.
-

m
us

ic
X

M
L

ht
tp

s:
//w

eb
.m

it.
ed

u/
m

us
ic

21
/

D
T

12
L

ea
d

Sh
ee

tD
at

ab
as

e
?

[7
0]

A
ss

or
te

d
le

ad
sh

ee
ts

.
-

10
,0

00
-

-
D

T
13

N
E

S
M

us
ic

D
at

ab
as

e[
26

]
N

E
S

vi
de

o
ga

m
e

m
us

ic
-

5,
27

8
-

ht
tp

s:
//g

ith
ub

.c
om

/c
hr

is
do

na
hu

e/
ne

sm
db

Ta
bl

e
2.

2:
D

at
as

et
s

th
at

ar
e

us
ed

by
C

SP
G

sy
st

em
s.
?

de
no

te
s

da
ta

se
ts

th
at

ar
e

no
lo

ng
er

av
ai

la
bl

e.
T

he
ex

pr
es

si
ve

pa
ra

m
et

er
s

co
lu

m
n

in
di

ca
te

s
if

th
e

da
ta

se
tc

on
ta

in
s

at
tr

ib
ut

es
re

la
te

d
to

th
e

ex
pr

es
si

ve
pe

rf
or

m
an

ce
of

a
m

us
ic

al
ex

ce
rp

ts
uc

h
as

ve
lo

ci
ty

,a
nd

no
te

ar
tic

ul
at

io
n

(t
im

in
g)

.

31

2.2.5 Evaluation of CSPG Systems

Since CSPG systems can more broadly be considered creative systems, we can apply evaluation

methodologies designed for creative systems to CSPG systems. To frame our discussion we consider

four perspectives from which a creative system can be evaluated. These perspectives were initially

identified by Rhodes [82] and have been contextualized for the evaluation of creative computational

systems by Lamb et al. [56]. The four perspectives include: the Person, which focuses on the creative

capacity of a system; the Process, which concerns the specific actions that a system takes to produce

a creative artifact; the Product, which analyzes artifacts produced by a system; and Press, which

considers the cultural perception of a system.

Since evaluating a system from the Person perspective involves assessing its creative capacity,

Lamb et al. suggest that methodologies designed to measure human creativity are most appropriate.

Although computational systems can pass these types of tests, this can largely be attributed to limi-

tations with the evaluation methodology, and the fact that these systems are designed specifically to

do nothing more than pass a particular test. For example, comRAT-C [68] can solve a Remote Asso-

ciates Test by using a database of common bi-grams, but it is not capable of performing any creative

tasks beyond this. Furthermore, since CSPG systems are predominantly domain-specific, and do not

exhibit domain-general creativity, evaluation from the Person perspective is rarely employed.

The Process perspective integrates theories about how creative products are made. Clearly, this

requires a cogent understanding of how a system actually produces a generative artifact. Given

the inherent complexity of most neural network based systems, it would be extremely difficult to

meaningfully describe the processes by which these systems produce generative artifacts. Under-

standably, evaluation via the process perspective is much more amenable to rule-based systems,

where processes are explicitly laid out in a set of rules, rather than so-called "black-box" systems.

It is very common to evaluate a system from the Product perspective, allowing an evaluation to

be formed based on attributes of the generated artifacts. There is a general consensus that both the

novelty, and quality of the generated artifacts should be taken into consideration [83]. A desirable

creative system will generate artifacts which are both novel and exhibit quality, as novelty without

quality is often perceived as randomness, and quality without novelty often results in plagiarism

of pre-existing material. Typically, a quantitative methodology is applied either using humans or

computational techniques, however, informal qualitative feedback has been used to evaluate the

output of some CSPG systems (F11).

The Press perspective, which evaluates a system based on its social effect, is inherently linked

to the other perspectives, as evaluation from the Person, Process or Product perspective is unavoid-

ably biased by our own cultural context. Of course, evaluation via the Press perspective can also be

conducted by observing engagement with the system across different media platforms, and materi-

als published via traditional media. However, it is worth noting that large research institutions can

dominate coverage, which should be taken into account when evaluating from the Press perspective.

Furthermore, since media coverage and social media engagement can build slowly over longer pe-

32

riods of time, it can be difficult or infeasible to conduct an evaluation from this perspective in many

circumstances. Of course, it is also possible to evaluate a system from multiple perspectives simul-

taneously. One notable example is SPECS[51], which requires participants to rate a system based

on 14 components of creativity, incorporating both the Process and Product perspectives. However,

in what follows, we discuss the evaluation of CSPG systems from the Process and Product perspec-

tive, as these perspective are more frequently employed by researchers. Notably, the contributions

outlined in the later chapters adopt the Product perspective exclusively.

Process Perspective Evaluation Methods

We begin by describing evaluation methods from the Process perspective. Note that these meth-

ods are quite generic and are designed to accommodate any creative system. Colton et al. propose

FACE [19], an evaluation framework that is based on the concept of generative acts. They describe

a variety of generative acts, including creating a concept, an expression of a concept, an aesthetic

measure, framing information, as well as creating methods to generate any of the former generative

acts. The authors propose that creative systems can be evaluated by adding up the total number of

generative acts performed by a system, or by ranking the importance of different generative acts in

order to compare the entire creative process. Admittedly, this framework could use further specifi-

cation to enable consistent application in various evaluation scenarios, however, it still provides a

useful conceptual framework for evaluation from the process perspective.

Ventura et al. [93] proposes a seven level hierarchy of creative systems, which includes the fol-

lowing levels: Randomization, Plagiarization, Memorization, Generalization, Filtration, Inception,

Creation. At the bottom of the hierarchy, are systems that are only capable of random generation.

In contrast to random generation systems, which do not learn from any data, the remaining six

levels in the hierarchy integrate knowledge from a dataset in some manner. Memorization systems

are distinct from plagiarism systems, as errors in the memorization process introduce novelty. Gen-

eralization systems are capable of generating new material, while filtration systems are capable of

filtering out undesirable generations. The final two levels, inception and creation, require the system

to use additional knowledge that is not contained in the dataset. Creation systems, the highest level

in the hierarchy, should be capable of perceiving their context and letting that influence generation.

One of the disadvantages of this approach is that the levels are quite coarse. For example, many

of the systems we describe in this chapter would be considered generalization systems, leaving us

without a way to make meaningful comparisons between systems.

Process and Product Perspective Evaluation Methods

As was noted earlier, the SPECS methodology [51] incorporates both the Process and Product

perspectives. SPECS is based on 14 components of creativity, which were derived from keywords

aggregated from a large collection of papers discussing creativity. The methodology involves 3 steps.

First, researchers must define creativity, which involves assigning varying levels of importance to

the 14 components depending on the specifics of the creative domain or task. The second step

33

involves determining the exact standards by which the system(s) will be evaluated, informed by the

decisions made in step 1. The final step involves collecting feedback and ratings from participants

in accordance with the standards defined in step 2. Although this approach is more time consuming

than others, as the standards must also be determined by the researcher, it is capable of providing a

more detailed picture of the strengths and weaknesses of the systems being evaluated.

Product Perspective Evaluation Methods with Human Participants

Evaluation of a CSPG system from the product perspective often involves collecting feedback from

human participants who listen to excerpts generated by the system. The Consensual Assessment

Technique (CAT) [3] averages domain experts independent assessment of the creativity of a prod-

uct. Although the CAT has been used to evaluate generative music systems [77, 17], the difficulty

of collecting assessments from domain experts has limited widespread use. A modified Turing test

[90] has been used frequently in practice, where participants are asked to discriminate between

computer-generated and human-composed musical excerpts. Although this experimental methodol-

ogy is commonly referred to as a Turing test throughout related literature, this is technically incor-

rect [4]. One major weakness of this approach, is that participants may focus on identifying errors,

rather than focusing on the general stylistic characteristics of the musical excerpts [4]. In order to

compare multiple systems, participants can rank randomly paired musical excerpts from two differ-

ent sources, where one or more of the excerpts is generated by a system [47]. Once the rankings

have been collected, the number of wins can be counted for each distinct source (human-composed,

system A, system B, etc.).

It is also possible to create evaluation methodologies based on various physiological measure-

ments. One approach [13] uses electroencephalography (EEG), and involves training a linear model

to predict ratings based on EEG data. The ground truth data used to train the linear model is col-

lected while participants listen to musical excerpts. In order to produce musical excerpts of varying

quality, human composed musical excerpts are randomly distorted by replacing a percentage of

notes with random notes. Agres et al. discuss several physiological measurements that have been

used in the context of music research and can potentially be employed to evaluate generative music

systems [1]. These include measurements of pulse, Galvanic skin response, eye-tracking and motion

capture.

Product Perspective Analytic Evaluation Metrics

The computational evaluation of systems from the Product perspective involves comparing measur-

able attributes of the training data C against a large collection of generated excerpts G. In contrast

to human-based evaluation methodologies, where the number of musical excerpts that can be feasi-

bly evaluated is quite small (often less than 20), computational methods can handle a much larger

number of excerpts, reducing the chance of errors in evaluation due to sample size. However, hu-

man perception is often considered the gold-standard for evaluation of CSPG systems, and since

34

there is no guarantee that analytic evaluation methods correlate with human perception, they must

be validated before widespread use.

The simplest approach involves a set of metrics m = {m1, ...,mk}, which given a musical

excerpt x produce a single scalar value mi(x). Then the mean and standard deviation of the distri-

butions [mi(c) : c ∈ C] and [mi(g)] : g ∈ G] can be compared for each mi in m. This approach

has been used to evaluate several systems (E1, E2, A2), however, a standard set of metrics has

not yet been established. CAEMSI, a domain-agnostic evaluation methodology for style-imitation,

provides statistical tests to determine if the distributions [D(ci, cj) : ci ∈ C, cj ∈ C, i 6= j],
[D(gi, gj) : gi ∈ G, gj ∈ G, i 6= j], and [D(c, g) : c ∈ C, g ∈ G] are equivalent or different, where

D is an arbitrary distance metric [48]. Yang et al. take the distance between [||fk(ci) − fk(cj)||2 :
ci ∈ C, cj ∈ C, i 6= j] and [||fk(c) − fk(g)||2 : c ∈ C, g ∈ G] for each feature fk, as a measure

of stylistic similarity [99]. They propose 9 features (fk), which include a pitch class histogram,

note length histogram, and a note length transition matrix. StyleRank [49] uses a large collection

of features and a random forest embedding technique to rank each musical excerpts based on their

similarity to C. Notably, experimental evidence demonstrates that StyleRank correlates with human

perception of musical similarity.

2.3 Markov Models

A Markov model [31] is a stochastic model based on the Markov assumption, which states that

given the present state, future states are independent from past states. Here, we discuss the use of

two Markov models, Markov chains and hidden Markov models, to generate polyphonic content.

2.3.1 Markov Chain

A Markov chain [31] is a simple Markov model where the state of the model is a random variable

that changes through time. Concretely, given a sequence x = {x0, x1, ..., xn}, a dth-order Markov

assumption implies that p(xt|x0, x1, ..., xt−1) = p(xt|xt−d, ..., xt−1). As a result, given a second-

order Markov model trained on a sequence x = babcabd, p(c|ab) = .5 is simply the occurrence

count of the tri-gram abc divided by the occurrence count of tri-grams starting with ab. A variable-

order Markov model (VOMM) is an extension of the Markov chain, which varies the order of the

assumption based on the conditional probability components found in the data.

A multiple viewpoint system (MVS) [21] is a collection of Markov chains m = {m1, ...,mn},
where each mi models a distinct viewpoint. Viewpoints can be vertical or horizontal. For example,

a sequence of note durations could be considered a single horizontal viewpoint. Vertical viewpoints

can be used to enforce harmonic constraints between simultaneously sounding notes. To generate

music, the predictions from each Markov chain mi are combined, often using a weighted arithmetic

or geometric approach [78].

35

Fixed Voice Polyphony with Univariate Sequences

Padilla and Conklin (A1) generate two voice counterpoint with an MVS. A variety of horizontal and

vertical viewpoints are incorporated into the model, including pitch, contour, relative pitch position

within the dominant scale, and vertical interval. Patterns extracted from a template piece specify

global repetition across multiple viewpoints, and a backtracking algorithm is used to generate musi-

cal material that respects these constraints. Whorley and Conklin (A2) use an MVS to generate four

part harmony given a melody. Both vertical (inter-voice) and horizontal (intra-voice) viewpoints are

used, which are selected objectively by minimizing the cross-entropy measured via cross-validation

on the corpus.

Homophony with Univariate Sequences

Eigenfeldt and Pasquier (A3) use a VOMM to generate chord sequences. The users preferences are

incorporated through additional factors that condition the generation such as harmonic complexity,

chord transition tension, and the bass-line contour. Ponsford et al. (A5) use a Markov chain, trained

on seventeenth century music, to generate chord sequences. The Flow Composer system (A4), gen-

erates lead sheets using a metrically constrained Markov chain [85], which ensures that generated

sequences adhere to a particular time signature. Musical material is generated in two steps, first the

chord sequence is generated, and then the melody is generated, conditioned on the chord sequence.

Polyphony with Univariate Sequences

The Racchmaninof (A6) system uses a first-order Markov chain to generate polyphonic music.

Each chord segment is represented by two pieces of information: the beat position relative to the

bar in which the note/chord/rest occurs, and the pitches relative to the global tonic. A point set

compression algorithm, SIACT [18], is used to extract a template that delineates all occurrences

of repetition within a single piece, which is used to constrain generation. Since these repetition

structures can be nested, generation starts with the smallest repeated fragment. In order to fill in

the space Xi between two generated segments Xi−1 and Xi+1, a forward and backward sequence

are generated and a join is made by randomly selecting from their intersection points. In the case

that there are no intersections, Xi−1 and Xi+1 can be partially overwritten until a valid intersection

point is found. The authors train the model on a collection of Chopin’s mazurkas and a collection of

Bach chorales. A listening test indicated that participants were no better than random at identifying

generated Bach, however, a large majority were able to identify generated Chopin.

2.3.2 Hidden Markov Models

A hidden Markov model (HMM) [5] is a probabilistic graphical model which allows for the predic-

tion of a set of hidden variables (X) based on a set of observed variables (Y). In order to compute

the hidden states, three things must be known: the transition probability p(Xj |Xi), which is the

probability of transitioning to a new state Xj given the current state Xi is known; the emission

36

probability p(Yj |Xi), which is the probability of transitioning to an observed state Yj given the

hidden state Xi is known; and the prior probability p(Xi) of each hidden state. Given a set of

observed states, the maximum probability set of hidden states can be calculated using the Viterbi

algorithm [94].

Fixed Voice Polyphony with HMMs

Allan and Williams (B1) generate Bach chorales with a pair of HMMs. In the harmonization HMM,

the observed states are the melody notes and the hidden states are the intervals between the melody

note and each respective voice (alto, tenor bass). There is an additional hidden variable for each

chord, which describes the chord function (e.g. Tonic, Dominant). To construct the ornamentation

HMM, the alto, tenor, and bass voices are observed variables at each downbeat, and the following

three sixteenth notes of each beat are hidden states. In order to sample from the model, the harmo-

nization HMM is sampled first, using a backwards sampling procedure, and then the ornamentation

HMM is sampled using the predictions from the harmonization HMM as visible states. As a result,

the expressive capacity of the combined model is similar to BachBot (F8). They evaluate the system

informally, and concluded that the maximum probability harmonizations, found using the Viterbi

algorithm, are high quality. However, the backwards sampled harmonizations are of lower quality,

featuring an inordinate amount of large leaps.

Homophony with HMMs

Lee et al. propose i-Ring (B2), an HMM trained with a dataset of 150 MIDI files, which infers

the optimal chord sequence (hidden variables) for the provided melody (observed variables). Sim-

ilarly, Simon et al. (B6) use a HMM to generate a sequence of chords accompanying a melody,

given a collection of 298 lead sheets. Both authors conduct a listening test with results that affirm

the quality of the generated harmonizations. Paiement et al. (B4) harmonize melodies with a hier-

archical HMM, accounting for longer-term dependencies between chords, that is trained on a set

of lead sheets. Another system (B5) interpolates between three trained models: a chord bi-gram

HMM, which models chord transitions under a first order Markov assumption; a tonality HMM,

which models the probability of a chord given a tonality label (e.g. C-major); and a melody HMM,

which models the probability of a chord given a melody note. This system was trained on a collec-

tion of lead sheets sourced from Wikifonia. Another system (B3), uses an HMM to generate Bach

chorale harmonizations constrained by intermediate anchor chords, providing an additional degree

of control over the generation process.

2.4 Neural Networks

Neural networks [33], which were inspired by the structure of a human brain [63], are comprised

of computational units (neurons) arranged into layers, with connections between different layers.

37

Although they were inspired by the structure of a human brain, they are not designed to be biolog-

ically realistic models. According to the Universal Approximation Theorem [45], any continuous

function on a bounded set can be approximated within a given accuracy by a trained neural network.

Typically, training a neural network involves optimizing a set of parameters θ with respect to a loss

function L using gradient descent [12]. For the interested reader, Goodfellow et al. [33] provide a

detailed account on neural network techniques and architectures.

2.4.1 Feed Forward Networks

In a feedforward neural network (FFNN), inputs flow directly through the network to the output [33].

Fixed Voice Polyphony with Multivariate Vectors

Hild et al. (D1) developed a system, comprised of three FFNNs, that generate Bach chorale harmo-

nizations. Each FFNN accepts a multivariate vector as input. The first network predicts the chord Ct
given the previous three chords (Ct−3, Ct−2, Ct−1) and the entire melody. The next FFNN predicts

the alto and tenor voices, given the chords and the melody. Since the bass note is included in the

chord representation, it was already generated by the first FFNN. The final FFNN generates eighth

note ornamentations from the output of the second FFNN.

2.4.2 Convolutional Neural Networks

Convolutional neural networks (CNN) [30] are designed to process a tensor of shape (c,N1, N2),

where c is the number of channels. CNNs are a multi-layer network comprised of two distinct types

of layers: convolutional layers, and pooling layers. A convolutional layer convolves a set of l 2-

dimensional filters across the last two dimensions (N1, N2) of the input. A pooling layer applies a

down-sampling operation, partitioning the last two dimensions into a set of non-overlapping rectan-

gular windows, and outputting the representative value for each window. Typically, the maximum

value is selected from the values in each window, a process which is known as max-pooling. CNNs

are shift invariant, which makes them adept at capturing features irrespective of their location within

an input. As a result, CNNs are often used for image processing [55], however, as we will discuss in

this section, they have also been successfully applied to the task of generating symbolic polyphonic

music (C2, C1, E1).

Fixed Voice Polyphony with Multivariate Vectors

CoCoNet (C1) is a CNN, trained under the orderless NADE framework [91], that is trained using

the Back Chorales dataset (DT2). For a simplified explanation of the orderless NADE framework,

consider a D-dimensional vector x, and an arbitrary model m. The goal is to train m to model

p(xOj |xO<j) for any j and any random ordering O of the set ID = {i|0 ≤ i < D}. Note that O<j
denotes the first j elements (zero indexed), and O≥j denotes the last D− j elements in the ordering

O. To accomplish this, m is trained to predict xO≥j given xO<j for a uniformly sampled ordering

38

O and index j. Here, m is a deep CNN consisting of 64 layers. Each convolution is padded so that

the output is the same shape as the input, and batch normalization is applied after each convolution.

Although we defined the input x as a vector for notational clarity, the actual input to CocoNet is a

three dimensional tensor x ∈ {0, 1}V×T×P , where V is the fixed number of voices, T is the number

of time-steps, P is the number of pitches, and each voice is a piano roll. As a result, D = V TP and

O is a random ordering of tensor indices rather than vector indices.

In order to evaluate the model, the authors conduct a listening test, asking participants to select

the more “Bach-like" musical excerpt given a pair of samples. The experimental results demon-

strate that autoregressive sampling (sampling p(xOj |xO<j) for 0 < j < D) generates lower quality

samples than an annealed independent blocked Gibbs (iGibbs) sampling procedure. Interestingly,

although the mean rating for the actual Bach chorales was higher, there was not a significant differ-

ence between actual Bach chorales and those generated using iGibbs.

Polyphony with Multivariate Vectors

Lattner et al. (C2) apply constraints while sampling from a convolutional restricted Boltzmann

machine (C-RBM), to enforce structural similarity to a template piece T . Concretely, they specify

three constraints on the generated piano roll G ∈ {0, 1}T×P : a self-similarity constraint, which

minimizes the mean squared error (MSE) between self-similarity matrices derived from T and G;

a tonality constraint, which minimizes the MSE between key estimation matrices derived from T
and G; and a meter constraint, which minimizes the MSE between onset distribution vectors derived

from T and G. Samples are drawn from the model by alternating between two steps: a gradient

descent step, to minimize MSE for the constraints; and a Gibbs sampling step, to sample from the

learned data distribution. The authors provide examples generated by a model trained on 3 Mozart

sonatas to validate their approach.

2.4.3 Generative Adversarial Network

Generative Adversarial Nets (GAN) [34] are an unsupervised training framework for generative

models. A GAN is comprised of two networks, a discriminatorD and a generatorG, which compete

in a minimax two-player game.D attempts to determine whether a sample belongs to the generative

distribution or the training data distribution, while G attempts to generate samples that D will miss-

classify. Concretely, G accepts a random vector z as input, and produces an output with the same

dimensionality as the training data, whileD accepts a sample and outputs a scalar value on the range

[0, 1] corresponding to the probability that the sample is real. Notably, there are no restrictions

on the exact architecture of D and G. A variety of modifications to the loss function have been

proposed [44] in an effort to stabilize training and promote quicker convergence.

39

Polyphony with Multivariate Vectors

Dong et al. use the GAN framework to train MuseGAN (E1), a system that generates multi-track

piano rolls x ∈ {0, 1}M×T×P , where M is the number of tracks. They experiment with three

different architectures. The Jamming model is comprised of M generators, and M discriminators.

Each generator is conditioned on an independent random vector, and evaluated by the corresponding

discriminator. The Composer model consists of a single generator G, which, given a single random

vector z, generates M tracks that are evaluated by a single discriminator D. The Hybrid model,

which is comprised of M distinct generators that accept an inter-track random vector (z) and an

intra-track random vector (zi), generate music evaluated by a single discriminator. Since a single

measure is generated at a time, the authors propose two methods to generate a sequence of measures.

The first, involves a generatorGtemp that maps a random vector to a sequence of latent vectors, from

which a sequence of measures can be generated. The second, involves conditioning the generation

on previously generated measures.

The models are trained using a subset of the Lakh Midi Dataset (DT7) containing only Rock

songs in a 4/4 time-signature. Several metrics are used to dissect the differences between models:

the percentage of empty bars; the number of distinct pitch classes used in a bar; the percentage

of notes longer than a 32nd note the percentage of notes in a 8 or 16 note beat pattern; and the

tonal distance between tracks. A listening test demonstrated that the hybrid model was preferred by

participants, in a comparison between the Jamming, Composer and Hybrid models.

Polyphony with Multivariate Sequences

Mogren proposed the Continuous RNN GAN (C-RNN-GAN) (E2), which models each note with

four real valued scalars: note length, frequency, velocity and time-delta in seconds. The model is

trained on 3697 MIDI files scraped from the internet, featuring 160 different classical composers.

The authors compare the performance of their model against a baseline, an RNN trained with a

maximum likelihood criterion, with respect to several musical metrics. The metrics measure scale

consistency, the range of generated notes, the number of unique tones, the range of generated veloc-

ities, the amount of polyphony, and the number of 3-tone repetitions.

Although the adversarially trained model outperforms the maximum likelihood RNN with re-

spect to the metrics, musical excerpts generated by the C-RNN-GAN appear to be very low-quality.

Previous research has shown that log-likelihood and sample quality are largely independent for

GANs that generate high-dimensional image outputs [89], demonstrating that evaluation metrics

must be validated against human perception, which was not the case in the experiment evaluating

the C-RNN-GAN.

2.4.4 Recurrent Neural Networks

Recurrent neural networks (RNN) [86] are used to model sequential data. They have an internal

memory state which allows the network to make predictions based on previously seen data. More

40

concretely, given a sequence x = {x0, x1, ..., xn}, an RNN is trained to model p(xt|x<t). In or-

der to address the vanishing gradient issue, where the learning signal becomes vanishingly small

after being back-propagated over many time-steps, more complex recurrent units have been pro-

posed. These include the Long Short-Term Memory (LSTM) [43] and the Gated Recurrent Unit

(GRU) [16].

Fixed Voice Polyphony with Multivariate Sequences

Hadjeres et al. propose DeepBach (F1), a network on the Bach chorales dataset (DT2). The data

is represented as a sequence of 6-dimensional vectors representing each time-step at a sixteenth

note resolution. The first 4 dimensions of the input specify the soprano, alto, tenor and bass pitches

respectively. A special hold token is used to represent ties. The last two dimensions specify the time

relative to a beat, and whether or not the time-step is a fermata.

The architecture has four components: the past encoder, a 2-layer LSTM that summarizes the

last T steps; the future encoder, a 2-layer LSTM that summarizes the next T steps in reverse order;

the present encoder, a feed forward network that encodes information about the current time-step;

and a feedforward network that predicts a single pitch based on the three encoded vectors. For both

the past and future encoder, only the last output is kept, which encodes information from the entire

sequence passed into the encoder. For their experiments, T = 16, which means the network only

considers the bar before and after the notes being predicted. A separate model is trained for each

voice (Soprano, Alto, Tenor, Bass). The authors describe a Pseudo-Gibbs sampling algorithm which

is used to generate new pieces.

To evaluate their model, the authors conducted a listening test asking participants to discrim-

inate between a generated piece and the an actual Bach chorale. The results generally indicated

that participants had a difficult time discriminating between DeepBach’s outputs and actual Bach

chorales.

Homophony with Multivariate Sequences

Joslyn et al. (F2) generate music via hashing. The system consists of two LSTM networks, a forward

mf and backward mb encoder, both of which produce k-ary codes (a vector of integers) from a

single measure of musical material. A multivariate sequence representation is used, where each

time-step is a 29-dimensional binary vector that indicates if the melody is articulated, the octave

of the melody, the melody pitch class, and the chord type. Given a corpus C = {C1, ..., CN},
where each piece Ci is represented as a sequence of measures Ci = {Ci1, Ci2, ..., Cini}, the network

is trained to minimize |mf (Cit) − mb(Cit+1)| for all valid i and t. Once the encoders are trained,

the forward and backward k-ary codes for all measures added to a database. Then, to generate a

continuation for a measure x, the database is queried to find a measure y for which |mf (x)−mb(y)|
is minimized or below some threshold. The authors perform an informal evaluation of the samples

generated by a model trained on the Nottingham corpus (DT4).

41

Polyphony with Multivariate Sequences

Boulanger et al. (F7) generate polyphonic music by extending an RNN with a distribution estimator.

Here, the network learns to predict a column of a piano roll, representing all the notes sounding at

a particular time-step, conditioned on previous columns. In order to model the high-dimensional

multivariate output (a column of a piano roll) at each time-step, the outputs of the RNN are used

to condition a distribution estimator, which is then used to predict the final output. The authors

experiment with a Neural Autoregressive Density Estimator (NADE) and an Restricted Boltzmann

Machine (RBM). Experimental results demonstrate that the RNN-NADE is more effective at mod-

eling music than the RNN-RBM, as it achieves the lowest log-loss on a collection of datasets (Bach

chorales (DT2), Piano-Midi.de (DT6), MuseData (DT5), and Nottingham (DT4)). This architecture

was extended to create two systems [32, 95], both using a Deep Belief network (DBN) as the density

estimator. Although the log-loss across the same test datasets is lowest using the LSTM-DBN [95],

it should be noted that the likelihoods are optimistic bounds on the intractable true values [96].

Furthermore, no listening tests were conducted to validate any of these models.

Johnson (F4) proposes two approaches to generating polyphonic music. The Tied-Parallel LSTM

NADE (TP-LSTM-NADE) consists of 128 note-networks (TP-LSTM), each of which are respon-

sible for a single pitch p ∈ [0, 128), and share weights with all other note-networks. Let x ∈
{0, 1}T×P be a piano roll with P = 128. For a note p at time-step t, each note-network is provided

with three inputs: a local window wt−1 = [xt−1,i : p − 12 ≤ i ≤ p + 12], containing all notes in

the previous time-step within a range of ±12 semitones; a relative pitch class vector vt−1, where

vit−1 =
∑∞
m=−∞ xt−1,p+i+12m, counting the number of pitch classes that are played at each interval

to relative to p; and the midi pitch number p. The TP-LSTM outputs at time-step t, are simply the

concatenated output for each p ∈ [0, 128), which can be accomplished in practice through batch

processing as the network weights are tied across each note-network. The outputs of the TP-LSTM

are used to condition a NADE, based on the approach used by the RNN-NADE (F7). The Bi-Axial

LSTM (BALSTM), replaces the NADE portion of the TP-LSTM-NADE with an LSTM, which we

refer to as the chord-LSTM. In contrast to the TP-LSTM that has recurrent connections along the

time axis, the chord-LSTM has recurrent connections along the note axis. The chord-LSTM is pro-

vided with two inputs: the final outputs from the TP-LSTM, and the previous time-step xt−1. To

evaluate the TP-LSTM-NADE and the BALSTM, the authors use the same datasets as Boulanger et

al., demonstrating an improvement over the RNN-NADE. They also perform an informal qualitative

analysis.

Mao et al. propose DeepJ (F3), an extension of the BALSTM architecture, where the chord-

LSTM produces three outputs: the probability of an onset, the probability of a tie, and the velocity

of the note scaled onto the range [0, 1]. In addition, they condition the network using a n-dimensional

style vector s. The authors train a model on baroque, romantic and classical music, and conduct two

listening tests. The first compared samples generated by the BALSTM and DeepJ, finding that lis-

teners preferred those generated by DeepJ. This result is not surprising, as the BALSTM does not

42

generate velocity. Another experiment compared the listeners genre (baroque, romantic and clas-

sical) classification accuracy for human-composed and computer-generated samples. A statistical

test revealed no significant difference between either condition (human-composed and computer-

generated). For both conditions the listeners accuracy ranged from 50-60%. More than anything,

this seems to indicate that more experienced listeners should have been selected.

Fixed Voice Polyphony with Univariate Sequences

BachBot (F8) is a system that generates Bach chorales using an LSTM network trained on a uni-

variate representation of the Bach Chorale dataset (DT2). Musical material is represented using 130

distinct tokens, 128 corresponding to each possible midi-note, a token to indicate a tie, and a token

to indicate a time-shift of one sixteenth note. As a result, each time-step can be represented by 9

tokens, 4 tokens for the pitches in each voice, 4 tokens to indicate whether or not the notes are tied,

and one time-shift token. The listening experiment, which collected over 2,300 participants, is the

largest study of its kind. Each participant was asked to discriminate between a computer-generated

chorale and an actual Bach chorale. For some versions of the model, they found that participants

were unable to reliably discriminate the generated music, making a compelling case for the quality

of the generated material.

Homophony with Univariate Sequences

Using a text-based univariate representation, Choi et al. (F9) model jazz chord sequences with a 2-

layer LSTM. Chord sequences are represented in text format (e.g. C:maj | F:maj G:maj | D:min7),

where | denotes a bar-line. As a result, the representation consists of 64 distinct tokens, including

52 tokens for lowercase and uppercase letters, 10 tokens for numbers, and 2 additional tokens (|,:).
The authors conduct an informal analysis of the generated material.

Polyphony with Univariate Sequences

Walder et al. (F12) propose a method to predict the pitch content given a fixed rhythmic structure.

Note that this system uses a multivariate sequence as input, and a univariate sequence as output.

Since the system is modeling a univariate sequence, and exhibits similarities to other systems in this

section, we include it here. The network attempts to predict the next pitch given: a boolean vector

x ∈ {0, 1}128 specifying each pitch that is currently sounding, and five scalar values describing

the rhythmic structure (t,∆tevent,∆tstep, εon, εoff). t indicates the relative position within the piece

scaled onto the range [0, 1]. ∆tevent denotes the duration of the current note being predicted. ∆tstep

is the time shift since the last prediction. Both ∆tevent and ∆tstep are scaled relative to a quarter note

(e.g. a dotted quarter note is 1.5). εon is 1 only if notes are being turned on at the same time as the

last prediction, and εoff is 1 only if notes are being turned off at the same time as the last prediction.

One benefit of this representation, is that it does not require uniform time-steps, as ∆tstep can take

on any scalar value. Since notes are sorted lexicographically, first by onset and then by pitch, notes

43

lower than or equal to the last predicted note can be masked when ∆tstep = 0. The authors train

a multi-layer LSTM, based on the architecture used by Zaremba et al. [102], on the four datasets

used by Boulanger et al. (F7) (DT2, DT6, DT5, DT4), and compare log-loss against several models.

They also train the network on a larger dataset, combining the four aforementioned datasets, and the

Classical Music Archives dataset, informally analyzing the generated samples.

PerformanceRNN (F11) is an LSTM network trained on a univariate representation to generate

expressive polyphonic music. The representation consists of 128 NOTE_ON tokens, 128 NOTE_OFF

tokens, 125 TIME_SHIFT tokens corresponding to each 8ms increment in the range [8ms,1s], and

32 VELOCITY tokens, which apply to all subsequent note onsets. Informal feedback from musicians

is used to validate the quality of the generated samples. Meade et al. (F10) experiment with various

approaches to conditioning generation. They train PerformanceRNNs conditioned on: composers;

styles; time-periods; composers clustered by latitude, longitude and birth year; scale type (major,

minor and unknown); tempo; form (e.g. ballade); and velocity. Overall, the authors found the results

unsatisfactory, as the conditioning fails exert enough control over the sampling process.

2.4.5 Transformer

The Transformer [92] is a deep feedforward network that makes use of soft attention, which enables

a network to focus on a specific subset of its inputs. The implementation presented in the original

paper consists of 6 encoding layers and 6 decoding layers. Each encoding layer consists of two

parts: a self-attention sub-layer, and a feedforward sub-layer. The self-attention sub-layer is multi-

headed, which means attention is computed across the input n times. Furthermore, attention is

computed with a position matrix S, specifying the relative position of each input. Each decoding

layer includes an additional attention-mechanism, placed in between the self-attention sub-layer

and the feedforward sub-layer, which computes attention across the outputs of the final encoding

layer. In contrast to RNNs which transmit information about past time-steps via the hidden state,

an attention-based network can directly attend to time-steps in the distant past, which improves the

learning of long-term dependencies.

Polyphony with Univariate Sequences

The Music Transformer (G2) is based on the Transformer architecture. The main modification that

the authors propose, is a memory efficient method for computing the relative position matrix S. Due

to memory limitations, it is not possible to take an entire piece as input, so the model is trained on

randomly selected excerpts of length L = 2048 tokens. The authors use the same representation

as the PerformanceRNN (F11) to encode the Maestro dataset (DT10). They also train on the Bach

chorales dataset (DT2), lexicographically sorting notes first by onset and then by pitch, and using

128 tokens to represent the pitches.

To evaluate the Music Transformer, the authors compare log-loss on held-out test data against

a baseline model. They compare the system against CoCoNet (C1) for the Bach chorales corpus,

44

and against the PerformanceRNN (F11) for the Maestro corpus. In both cases, the Music Trans-

former significantly outperforms the baseline. The authors conduct a listening test for the Maestro

model, which demonstrates that the Music Transformer generates higher quality output than the

PerformanceRNN. Qualitative experimentation suggests that the model is able to return to previous

motifs, demonstrating some knowledge of long term structure.

MuseNet (G1) is a 72-layer Transformer architecture with 24-headed attention over a context of

L = 4096 tokens. Their dataset is sourced from the internet, and includes Classical Archives, files

scraped from BitMidi, and the Maestro dataset (DT10). Musical material is represented as a uni-

variate sequence. After experimenting with different representations, Payne found that combining

P pitches, N instruments and V velocities into a single token produced the best results, resulting in

P ×N × V distinct tokens. Some additional tokens are used to condition generation according to a

composer or an instrument combination. There is no formal evaluation of the model.

LakhNES (G5) uses the Transformer architecture to generate NES music, which is comprised

of four monophonic tracks: melody, harmony, bass and drums. Musical material is represented as a

univariate sequence, using a similar approach to MuseNet (G1), where there are distinct note onset

tokens for each pitch on each track, and the note onset from all four tracks are interleaved into a

single sequence. This results in 4P tokens, where P is the number of pitches represented. LakhNES

is trained in two phases. In the first phase, a heuristic is used to transform MIDI files from the Lakh

MIDI dataset (DT7) into 4 track NES style arrangements. For example, percussive MIDI instru-

ments are mapped onto the drum track, while melodic MIDI instruments like the saxophone and

flute are mapped onto the melody and harmony tracks. Polyphonic tracks are simply discarded. Af-

ter the first, pre-training phase is complete, the network is fine-tuned using the much smaller NES

Music Database (DT13). The authors evaluate their system using a listening test, which demon-

strates that the transformer architecture outperforms LSTM and n-gram models (trained using the

same procedure). However, the results show that the participants were still able to distinguish human

composed NES music from music generated by LahkNES.

MusIAC (G4) is a generative system designed to accommodate infilling, using a fixed schema of

three tracks: melody, bass, and harmony (homophonic). The system allows for a variety of attribute

controls, including track-level control over note density, polyphony, and occupation (the inverse of

rest percentage); as well as bar-level control over tensile strain and cloud diameter. Tensile strain

and cloud diameter are parameters derived from the Spiral Array [14], which is a 3-dimensional

harmonic space where individual pitches correspond to specific 3-dimensional coordinates. The

system is trained using the Lakh MIDI Dataset (DT7). No listening test is conducted to evaluate the

quality of the music generated by the system.

The Multi-Track Music Machine (MMM) (Ch. 7) is based on the Transformer architecture, and

is designed to support co-creative music composition workflows. MMM supports the infilling of

musical material on the track and bar level, and can condition generation on particular attributes

including: instrument type, note density, polyphony level, and note duration. In order to integrate

these features, we employ a different type of representation for musical material, creating a time-

45

ordered sequence of musical events for each track and concatenating several tracks into a single

sequence, rather than using a single time-ordered sequence where the musical events corresponding

to different tracks are interleaved. A more detailed discussion of MMM can be found in Chapter 7.

2.4.6 Variational Autoencoder

A variational autoencoder (VAE) [54] is comprised of an encoder, which encodes an input x into a

latent vector z, and a decoder, which decodes z into an output x̂ with the same dimensionality as

x. The network is trained to jointly minimize two objectives: the reconstructed output x̂ should be

as similar to x as possible, and the distribution of encoded samples in the latent space should be

as close to a Normal distribution as possible. The importance assigned to each objective can have

a significant impact on the samples produced by the decoder, as overemphasizing the latter objec-

tive impairs the networks ability to reconstruct a given input, while overemphasizing the former

objective results in a disorganized latent space. An optimal VAE allows for interpolation between

samples, and the generation of novel samples by providing a randomly sampled latent vector z to

the decoder.

Polyphony with Multivariate Sequences

Brunner et al. (H1) use a VAE to manipulate the musical style of a single bar of music. In addition

to a standardM -track piano roll x ∈ {0, 1}M×T×P , two other matrices are passed into the network.

The instrument assignment matrix I ∈ {0, 1}M×N , where N is the number of instruments, repre-

sents the instrument corresponding to each of the M tracks. The velocity matrix V ∈ RM×T×P ,

where velocity values are mapped onto the range [0.5, 1].
There is a separate GRU encoder for x, I and V . Since RNNs can only process 2-dimensional

input, the first two axes are combined resulting in matrices x̂ ∈ {0, 1}MT×P and V̂ ∈ {0, 1}MT×P ,

so that each successive set of M vectors corresponds to a single time-step. The outputs of the GRU

encoders are combined and passed through some feedforward layers to produce a latent vector z.

z<k is passed to a style classifier, which is trained to predict the correct style, ensuring that the first k

dimensions of the latent vector represent style information. There are three separate GRU decoders

which aim to reconstruct x̂, V̂ and I given the latent code z.

To evaluate the model, the authors train an ensemble of style classifiers C which take x̂, V̂ and

I as input. Using a dataset consisting of 5 different styles (Classic, Jazz, Pop, Bach and Mozart),

models are trained on two styles (k = 2), and for each musical excerpt m another version m̂ is

generated where the style swapped. Then the difference between C(m) and C(m̂) is calculated to

provide an estimate of how well the style was manipulated.

Fixed Voice Polyphony with Univariate and Multivariate Sequences

Roberts et al. propose MusicVAE (H2), a VAE with a bi-directional LSTM encoder, and a hierar-

chical LSTM decoder to model a variety of subsets of a trio consisting of melody, bass and drums.

46

The melody and bass are represented using a univariate sequence consisting of 128 NOTE_ONSET

tokens, 1 REST token, and 1 NOTE_OFF token. The drums are represented using a multivariate

sequence resembling a piano roll. In contrast to a standard LSTM, which has recurrent connections

moving forward in time, a bi-directional LSTM also incorporates recurrent connections that move

backwards in time. When generating particularly long sequences, the authors found that a standard

LSTM decoder will tend to ignore the latent code. In order to address this issue, a Conductor LSTM

generates a sequence of latent codes, one for each measure, taking the original latent code as input.

Then a standard LSTM decoder generates each measure using the latent codes produced by the

Conductor. Models are trained to generate 2 bars of melody, 2 bars of drums, 16 bars of melody, 16

bars of drums, and 16 bars of the full trio. For the trio model, three separate encoders (melody, bass,

drums) produce a latent vector, which is used to condition the melody, bass and drum decoders. The

authors conduct a listening test, which demonstrates that the hierarchical decoder produces higher

quality samples than a non-hierarchical decoder, and that the generated samples are of similar qual-

ity to the original data.

2.5 Variable Neighborhood Search

Herremans et al. frame the music generation problem as an optimization problem, developing Mor-

pheous (I1), a system that generates pitches for a fixed rhythmic structure, with repetition con-

strained by a template piece. An optimal solution matches a harmonic tension profile provided by

a user. Tension is computed using the Spiral Array [14], a 3-dimensional harmonic space where

each pitch corresponds to a specific 3-dimensional coordinate. To measure the tension of a mu-

sical excerpt, the excerpt is divided into 1/8 note segments. For each segment, three metrics are

calculated: Cloud Diameter, which measures the dispersion of notes within a segment; Cloud Mo-

mentum, which measures the amount of tonal movement between successive segments; and Ten-

sile strain, which measures the distance between each segment and the global key. Repetition in

pitch/time space is detected using the COSIATEC and SIATECCompress algorithm [65]. Then,

Variable Neighborhood Search is used to find the optimal pitch assignments, given the repetition

structure, and the tension constraints. Unfortunately, in some circumstances, the optimization pro-

cess ends up converging to the original piece. To evaluate the system, the authors informally discuss

some of the material that was generated.

2.6 Challenges and Opportunities

Based on the limitations of CSPG systems discussed in our survey, we propose five challenge areas:

the quality of data; the generation of non-Western music; explicit control over the generation pro-

cess; comparative evaluation of CSPG systems; and the development of increasingly creative CSPG

systems.

47

2.6.1 Data Quality

There are several issues with regards to data quality. The first, is related to the loudness of individual

notes, which is referred to as velocity in the MIDI protocol [67]. In many cases, meaningful veloc-

ity information is not present in MIDI files, as all velocity values may be set to the same value, or

only a small range of the possible velocity values are used. This makes it difficult to train a CSPG

system that models composition and performance jointly, such as the PerformanceRNN (F11). Cur-

rently, the largest dataset containing valid velocity data is the Piano-e-competition dataset, which is

approximately 100 times smaller than the Lakh Midi Dataset [81]. Another issue, is the lack of re-

liable voice separation. For example, the musicVAE (H2), which generates musical trios consisting

of a bass-line, melody and drums, was trained using a heuristic to infer which MIDI tracks belonged

to a particular voice type (i.e. melody). In cases where a MIDI file contains more than one candi-

date melody or bass-line, all possible combinations are used to train the model. Unfortunately, some

combinations will lack essential aspects of the original piece, diluting the quality of the samples that

the network is trained on.

2.6.2 Generating non-Western Music

With relatively few exceptions, data representations and computational models are designed to ac-

commodate Western music, which is broadly characterized by its use of 12 pitch classes per octave,

and simple meter. As a result, musical traditions which make use of microtonal pitches, such as

Indian, Persian, and Indonesian Gamelan music [10], are severely underserved. However, digital

representation protocols are currently under development for traditional Indian music [61]. Notably,

the C-RNN-GAN (E2) is capable of handling microtonal pitches, however, the authors limit their

experiments to Western music. With respect to this challenge, the development of accessible datasets

should be a focus for future research, followed by research examining alternate data representations

and computational models.

2.6.3 Controlling Generation

In many contexts, it is desirable to have some degree of control over the generation process, however,

many models do not afford any type of control. There are different degrees of control ranging from

low-level control, which specifies the explicit constraints, to high-level control, which conditions

generation on general attributes.

Infilling, an example of low level control, conditions generation on a set of notes, requiring the

system to predict the remaining notes. Although Liang et al. (F8) infill a single chorale voice by

restricting the sampling process, the model was unable to anticipate these constraints, resulting in a

decrease in sample quality. The anticipationRNN [37] addresses this problem, using a bi-directional

RNN encoder to learn constraint embeddings which condition another RNN at each time-step, how-

ever, this approach has only been applied to monophonic music. CoCoNet (C1) is trained under the

48

NADE framework, which is designed to accommodate infilling, however, this model only handles

fixed-voice polyphony.

In contrast, specifying structural repetition within a piece is an example of mid-level control.

Three models have been proposed that constrain structure in this manner (I1, A6, C2), however

there are limitations to each model. The C-RBM (C2) only works on small datasets (∼5 pieces),

as the authors explicitly state they rely on overfitting, requiring a new model to be trained for each

small dataset. Furthermore, inference is very slow. MorpheuS (I1) tends to converge to the template

piece from which the structure is extracted, and Racchmaninof (A6) exhibits poor performance on

corpora that are more complex than Bach chorales, due to the limited capacity of first-order Markov

model. Factorized generation could also be considered mid-level control. Examples of factorized

generation include generating pitch conditioned on rhythm and vice versa. Walder et al. (F12) train

a model to generate pitch given rhythm, using a complex representation. Yang et al. [101, 100]

describe two approaches to the factorized (pitch and rhythm) generation of melodies.

Another approach to control, which has been explored in several systems (F10, H1, G1), in-

volves conditioning generation on high-level attributes, such as style, tempo, and instrumentation.

MuseNet (G1), a Transformer-based neural network, provides an example of this type of control,

allowing the user to mix and match composers with a variety of instrument combinations.

Future work should focus on integrating these different levels of control into CSPG systems,

allowing for generation to be steered by the user. Extending the style manipulation model proposed

by Bruner et al. may prove fruitful, as the choice to train the model on only two styles may have lim-

ited the models ability to learn what constitutes a single style. Further experimentation with attention

based networks, such as the Transformer (G2, G1), is worth exploring, as their ability to learn long-

term musical dependencies is currently unparalleled. Furthermore, the attention mechanism could

be adapted to allow for the anticipation of future constraints, building on the ideas motivating the

AnticipationRNN architecture. Template-based approaches such as Racchmaninof (A6) and Mor-

pheuS (I1) could be implemented using deep learning, as the AnticipationRNN should be capable of

imposing constraints on an arbitrary univariate sequence, despite only being tested on a univariate

representation of melody.

2.6.4 Plagiarism, Novelty, and Other Issues Related to Creativity

Although CSPG systems are trained in an attempt to emulate the stylistic characteristics of a par-

ticular corpus C, these systems may in fact plagiarize directly from C in practice. Since CSPG

systems are usually trained to predict patterns found in C, not patterns that simply exhibit the same

stylistic characteristics as those found in C, it is unsurprising that plagiarism can be an issue. At

worst, near-exact replicas are generated (I1), however, frequent smaller instances of plagiarism do

demonstrate a decreased capacity for generating novel musical material, and should be minimized.

Potential solutions include: training models on a superset of C produced via novel data augmenta-

tion techniques; and sampling with constraints prohibiting plagiarism, an approach which has been

49

applied to melodies [74]. In addition, the development of methods that calculate the degree to which

a system plagiarizes would be beneficial.

Since most systems exhibit Exploratory creativity [7], generating musical material within a par-

ticular style, future research may focus on systems that exhibit Combinatorial, and where possible,

Transformational creativity. Systems have been proposed which manipulate style (H1, F10, G1), but

this area of research is still in its infancy. Factorized generation presents interesting opportunities for

developing systems that exhibit Combinatorial creativity, allowing for different factors to be gen-

erated in different styles. Adapting the Creative Adversarial Network [29], a GAN-based network

that attempts to generate images in novel style, to the music domain could prove interesting.

2.6.5 Evaluation of CSPG Systems

There are two main challenges surrounding the evaluation of generative models. First of all, the

number of generated samples that are included in a listening test is still quite small, increasing

chances that the system will be misrepresented. For example, the BachBot (F8) and Music Trans-

former (G2) listening experiments were comprised of 36 and 10 generated excerpts, respectively.

To address this issue, some studies include analytic experimental results with a much larger sample

size (E1, A2, B3), however, this approach is uncommon. Note that this topic is addressed in greater

detail in Chapter 7. Second, the lack of a standardized evaluation procedure makes comparison

difficult. This difficulty is compounded for listening studies, which would have to be completely

redone to compare additional models. Some analytic approaches have been proposed [48, 99], but

are not yet widely adopted. Although code is increasingly being open sourced, the author-trained

model is rarely provided, which makes a large scale analysis of CSPG systems difficult. Future

research should focus on standard practices and methodologies for system evaluation that can be

easily adopted by the research community.

2.7 Conclusion

Motivated by practical use-cases in the creative industries, and recent developments related to A.I.,

a variety of CSPG systems have been proposed in recent years. In order to organize this large body

of research, we provided a typology of CSPG systems, organizing each system according to the data

representation, computational model, and generated musical texture. Overall the results are encour-

aging, as state-of-the-art systems are capable of generating human competitive musical artifacts,

which are nearly indistinguishable from human-composed music. However, there still challenges

which have yet to be sufficiently addressed, ranging from data quality to the evaluation process,

which are undoubtedly critical aspects of future research.

50

Bibliography

[1] Kat Agres, Jamie Forth, and Geraint A Wiggins. “Evaluation of musical creativity and mu-

sical metacreation systems”. In: Computers in Entertainment (CIE) 14.3 (2016), pp. 1–33.

[2] Moray Allan and Christopher Williams. “Harmonising chorales by probabilistic inference”.

In: Advances in neural information processing systems. 2005, pp. 25–32.

[3] Teresa M Amabile. “Social psychology of creativity: A consensual assessment technique.”

In: Journal of personality and social psychology 43.5 (1982), pp. 997–1013.

[4] Christopher Ariza. “The interrogator as critic: The turing test and the evaluation of genera-

tive music systems”. In: Computer Music Journal 33.2 (2009), pp. 48–70.

[5] Leonard E Baum and Ted Petrie. “Statistical inference for probabilistic functions of finite

state Markov chains”. In: The annals of mathematical statistics 37.6 (1966), pp. 1554–1563.

[6] Bruce Benward and Marilyn Saker. Music in Theory and Practice. Music in Theory and

Practice v. 1. McGraw-Hill, 2003.

[7] Margaret A Boden. The creative mind: Myths and mechanisms. Routledge, 2004.

[8] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. “Modeling temporal

dependencies in high-dimensional sequences: Application to polyphonic music generation

and transcription”. In: International Conference on Machine Learning (2012).

[9] Gino Brunner, Andres Konrad, Yuyi Wang, and Roger Wattenhofer. “MIDI-VAE: Modeling

Dynamics and Instrumentation of Music with Applications to Style Transfer”. In: Proceed-

ings of the 19th International Symposium for Music Information Retrieval. 2018, pp. 747–

754.

[10] Edward M Burns. “Intervals, scales, and tuning”. In: The psychology of music. Elsevier,

1999, pp. 215–264.

[11] Carlos Eduardo Cancino-Chacón, Maarten Grachten, Werner Goebl, and Gerhard Widmer.

“Computational models of expressive music performance: A comprehensive and critical

review”. In: Frontiers in Digital Humanities 5 (2018), p. 25.

[12] Augustin Cauchy. “Méthode générale pour la résolution des systemes d’équations simul-

tanées”. In: Comp. Rend. Sci. Paris 25.1847 (1847), pp. 536–538.

51

[13] Gong Chen. “Who Composes the Music?: Musicality Evaluation for Algorithmic Com-

position via Electroencephalography”. In: Proceedings of the 2017 ACM on Multimedia

Conference MM 2017 Mountain View CA USA October 23-27 2017. 2017, pp. 826–830.

[14] Elaine Chew. Mathematical and Computational Modeling of Tonality - Theory and Appli-

cations. Springer, 2014.

[15] Keunwoo Choi, George Fazekas, and Mark Sandler. “Text-based LSTM networks for auto-

matic music composition”. In: arXiv preprint arXiv:1604.05358 (2016).

[16] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. “Empirical Eval-

uation of Gated Recurrent Neural Networks on Sequence Modeling”. In: NIPS 2014 Deep

Learning and Representation Learning Workshop (2014).

[17] Tom Collins and Robin Laney. “Computer-generated stylistic compositions with long-term

repetitive and phrasal structure”. In: Journal of Creative Music Systems 1.2 (2017).

[18] Tom Collins, Jeremy Thurlow, Robin Laney, Alistair Willis, and Paul Garthwaite. “A com-

parative evaluation of algorithms for discovering translational patterns in baroque keyboard

works”. In: Proceedings of the International Symposium on Music Information Retrieval

(2010), pp. 3–8.

[19] Simon Colton, John William Charnley, and Alison Pease. “Computational Creativity The-

ory: The FACE and IDEA Descriptive Models.” In: ICCC. Mexico City. 2011, pp. 90–95.

[20] Association for Computational Creativity. Computational Creativity. [Online; accessed 17-

12-2019]. 2019.

[21] Darrell Conklin and Ian H Witten. “Multiple viewpoint systems for music prediction”. In:

Journal of New Music Research 24.1 (1995), pp. 51–73.

[22] Michael Scott Cuthbert and Christopher Ariza. “music21: A toolkit for computer-aided mu-

sicology and symbolic music data”. In: Proceedings of the 11th International Society for

Music Information Retrieval Conference (2010), pp. 637–642.

[23] Roger B Dannenberg. “Music representation issues, techniques, and systems”. In: Computer

Music Journal 17.3 (1993), pp. 20–30.

[24] Mark DeVoto. Encyclopædia Britannica. Sept. 2017.

[25] Chris Donahue, Huanru Henry Mao, Yiting Ethan Li, Garrison W Cottrell, and Julian

McAuley. “LakhNES: Improving multi-instrumental music generation with cross-domain

pre-training”. In: Proc. of the 20th International Society for Music Information Retrieval

Conference. 2019, pp. 685–692.

[26] Chris Donahue, Huanru Henry Mao, and Julian McAuley. “The NES music database: A

multi-instrumental dataset with expressive performance attributes”. In: arXiv preprint arXiv:1806.04278

(2018).

52

[27] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. “MuseGAN: Multi-

track sequential generative adversarial networks for symbolic music generation and accom-

paniment”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018, pp. 34–41.

[28] Arne Eigenfeldt and Philippe Pasquier. “Realtime generation of harmonic progressions us-

ing controlled markov selection”. In: Proceedings of the International Conference on Com-

putational Creativity. 2010, pp. 16–25.

[29] Ahmed M. Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. “CAN:

Creative Adversarial Networks, Generating "Art" by Learning About Styles and Deviating

from Style Norms”. In: Proceedings of the Eighth International Conference on Computa-

tional Creativity. 2017, pp. 96–103.

[30] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for a mech-

anism of pattern recognition unaffected by shift in position”. In: Biological cybernetics 36.4

(1980), pp. 193–202.

[31] Paul A Gagniuc. Markov chains: from theory to implementation and experimentation. John

Wiley & Sons, 2017.

[32] Kratarth Goel, Raunaq Vohra, and Jajati Sahoo. “Polyphonic music generation by modeling

temporal dependencies using a rnn-dbn”. In: International Conference on Artificial Neural

Networks. Springer. 2014, pp. 217–224.

[33] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[34] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil

Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversarial nets”. In: Advances in

neural information processing systems. 2014, pp. 2672–2680.

[35] Crina Grosan and Ajith Abraham. “Rule-Based Expert Systems”. In: Intelligent Systems: A

Modern Approach. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 149–185.

[36] Rui Guo, Ivor Simpson, Chris Kiefer, Thor Magnusson, and Dorien Herremans. “MusIAC:

An extensible generative framework for Music Infilling Applications with multi-level Con-

trol”. In: International Conference on Computational Intelligence in Music, Sound, Art and

Design (Part of EvoStar). Springer. 2022, pp. 341–356.

[37] Gaëtan Hadjeres and Frank Nielsen. “Anticipation-RNN: enforcing unary constraints in se-

quence generation, with application to interactive music generation”. In: Neural Computing

and Applications (Nov. 2018).

[38] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. “Deepbach: a steerable model for

bach chorales generation”. In: Proceedings of the 34th International Conference on Machine

Learning. 2017, pp. 1362–1371.

53

[39] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,

Sander Dieleman, Erich Elsen, Jesse H. Engel, and Douglas Eck. “Enabling Factorized Pi-

ano Music Modeling and Generation with the MAESTRO Dataset”. In: 7th International

Conference on Learning Representations. 2019.

[40] Jim Heckroth. “A tutorial on MIDI and wavetable music synthesis”. In: Application Note,

CRYSTAL a division of CIRRUS LOGIC (1998).

[41] Dorien Herremans and Elaine Chew. “MorpheuS: generating structured music with con-

strained patterns and tension”. In: IEEE Transactions on Affective Computing (2017).

[42] Hermann Hild, Johannes Feulner, and Wolfram Menzel. “HARMONET: A neural net for

harmonizing chorales in the style of JS Bach”. In: Advances in neural information process-

ing systems. 1992, pp. 267–274.

[43] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural compu-

tation 9.8 (1997), pp. 1735–1780.

[44] Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. “How Generative Adver-

sarial Networks and Their Variants Work: An Overview”. In: ACM Computing Surveys 52.1

(2019), 1:43.

[45] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks

are universal approximators”. In: Neural networks 2.5 (1989), pp. 359–366.

[46] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville, and Douglas

Eck. “Counterpoint by Convolution”. In: Proceedings of the 18th International Society for

Music Information. 2017, pp. 211–218.

[47] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne,

Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas

Eck. “Music Transformer: Generating Music with Long-Term Structure”. In: 7th Interna-

tional Conference on Learning Representations. 2019.

[48] Jeff Ens and Philippe Pasquier. “CAEMSI: A Cross-Domain Analytic Evaluation Method-

ology for Style Imitation.” In: Proceedings of the International Conference on Computa-

tional Creativity. 2018, pp. 64–71.

[49] Jeff Ens and Philippe Pasquier. “Quantifying Musical Style: Ranking Symbolic Music

based on Similarity to a Style”. In: Proc. of the International Symposium on Music In-

formation Retrieval. 2019, pp. 870–877.

[50] Daniel D Johnson. “Generating polyphonic music using tied parallel networks”. In: Interna-

tional conference on evolutionary and biologically inspired music and art. Springer. 2017,

pp. 128–143.

54

[51] Anna Jordanous. “Stepping Back to Progress Forwards: Setting Standards for Meta-Evaluation

of Computational Creativity”. In: Proceedings of the Fifth International Conference on

Computational Creativity Ljubljana Slovenia June 10-13 2014. 2014, pp. 129–136.

[52] Kevin Joslyn, Naifan Zhuang, and Kien A Hua. “Deep Segment Hash Learning for Music

Generation”. In: arXiv preprint arXiv:1805.12176 (2018).

[53] Maximos A. Kaliakatsos-Papakostas and Emilios Cambouropoulos. “Probabilistic harmo-

nization with fixed intermediate chord constraints”. In: Proceedings of the 40th Interna-

tional Computer Music Conference. 2014, pp. 1083–1090.

[54] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: 2nd Inter-

national Conference on Learning Representations. 2014.

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep

convolutional neural networks”. In: Advances in neural information processing systems.

2012, pp. 1097–1105.

[56] Carolyn Lamb, Daniel G Brown, and Charles LA Clarke. “Evaluating computational cre-

ativity: An interdisciplinary tutorial”. In: ACM Computing Surveys 51.2 (2018), pp. 1–34.

[57] Stefan Lattner, Maarten Grachten, and Gerhard Widmer. “Imposing higher-level structure in

polyphonic music generation using convolutional restricted boltzmann machines and con-

straints”. In: Journal of Creative Music Systems (2018).

[58] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. “Gradient-based learning

applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–

2324.

[59] Hong-Ru Lee and Jyh-Shing R. Jang. “i-Ring: A system for humming transcription and

chord generation”. In: International Conference on Multimedia and Expo. Vol. 2. IEEE.

2004, pp. 1031–1034.

[60] Feynman Liang, Mark Gotham, Matthew Johnson, and Jamie Shotton. “Automatic Stylistic

Composition of Bach Chorales with Deep LSTM.” In: Proceedings of the International

Symposium on Music Information Retrieval. 2017, pp. 449–456.

[61] Stanly Mammen, Ilango Krishnamurthi, A Jalaja Varma, and G Sujatha. “iSargam: music

notation representation for Indian Carnatic music”. In: EURASIP Journal on Audio, Speech,

and Music Processing 2016.1 (2016), pp. 1–12.

[62] Huanru Henry Mao, Taylor Shin, and Garrison W. Cottrell. “DeepJ: Style-Specific Mu-

sic Generation”. In: 12th IEEE International Conference on Semantic Computing. 2018,

pp. 377–382.

[63] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous

activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133.

55

[64] Nicholas Meade, Nicholas Barreyre, Scott C. Lowe, and Sageev Oore. “Exploring Condi-

tioning for Generative Music Systems with Human-Interpretable Controls”. In: Proceedings

of the International Conference for Computational Creativity (2019), pp. 148–155.

[65] David Meredith. “COSIATEC and SIATECCompress: Pattern discovery by geometric com-

pression”. English. In: Music Information Retrieval Evaluation eXchange (MIREX 2013).

International Society for Music Information Retrieval, 2013.

[66] Olof Mogren. “C-RNN-GAN: Continuous recurrent neural networks with adversarial train-

ing”. In: arXiv preprint arXiv:1611.09904 (2016).

[67] Robert A Moog. “MIDI: musical instrument digital interface”. In: Journal of the Audio

Engineering Society 34.5 (1986), pp. 394–404.

[68] Ana-Maria Olteţeanu and Zoe Falomir. “comRAT-C: A computational compound Remote

Associates Test solver based on language data and its comparison to human performance”.

In: Pattern Recognition Letters 67 (2015), pp. 81–90.

[69] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan. “This time

with feeling: learning expressive musical performance”. In: Neural Computing and Appli-

cations (2018), pp. 1–13.

[70] François Pachet, Jeff Suzda, and Dani Martinez. “A Comprehensive Online Database of

Machine-Readable Lead-Sheets for Jazz Standards.” In: Proceedings of the International

Symposium on Music information Retrieval. 2013, pp. 275–280.

[71] Victor Padilla and Darrell Conklin. “Generation of Two-Voice Imitative Counterpoint from

Statistical Models”. In: IJIMAI 5.3 (2018), pp. 22–33.

[72] Jean-François Paiement, Douglas Eck, and Samy Bengio. “Probabilistic melodic harmo-

nization”. In: Conference of the Canadian Society for Computational Studies of Intelligence.

Springer. 2006, pp. 218–229.

[73] Alexandre Papadopoulos, Pierre Roy, and François Pachet. “Assisted lead sheet composition

using flowcomposer”. In: International Conference on Principles and Practice of Constraint

Programming. Springer. 2016, pp. 769–785.

[74] Alexandre Papadopoulos, Pierre Roy, and François Pachet. “Avoiding Plagiarism in Markov

Sequence Generation”. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial

Intelligence. 2014, pp. 2731–2737.

[75] Philippe Pasquier, Arne Eigenfeldt, Oliver Bown, and Shlomo Dubnov. “An introduction to

musical metacreation”. In: Computers in Entertainment (CIE) 14.2 (2016), pp. 2–16.

[76] Christine Payne. “MuseNet”. In: OpenAI (Apr. 2019). openai.com/blog/musenet.

[77] Marcus T Pearce and Geraint A Wiggins. “Evaluating cognitive models of musical compo-

sition”. In: Proceedings of the 4th international joint workshop on computational creativity.

Goldsmiths, University of London. 2007, pp. 73–80.

56

[78] Marcus T. Pearce, Darrell Conklin, and Geraint A. Wiggins. “Methods for Combining Sta-

tistical Models of Music”. In: Computer Music Modeling and Retrieval: Second Interna-

tional Symposium. 2004, pp. 295–312.

[79] Dan Ponsford, Geraint Wiggins, and Chris Mellish. “Statistical learning of harmonic move-

ment”. In: Journal of New Music Research 28.2 (1999), pp. 150–177.

[80] Stanisław A Raczyński, Satoru Fukayama, and Emmanuel Vincent. “Melody harmonization

with interpolated probabilistic models”. In: Journal of New Music Research 42.3 (2013),

pp. 223–235.

[81] Colin Raffel. “Learning-based methods for comparing sequences, with applications to audio-

to-midi alignment and matching”. PhD thesis. Columbia University, 2016.

[82] Mel Rhodes. “An analysis of creativity”. In: The Phi Delta Kappan 42.7 (1961), pp. 305–

310.

[83] Graeme Ritchie. “Some Empirical Criteria for Attributing Creativity to a Computer Pro-

gram”. In: Minds and Machines 17.1 (2007), pp. 67–99.

[84] Adam Roberts, Jesse H. Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. “A Hier-

archical Latent Vector Model for Learning Long-Term Structure in Music”. In: Proceedings

of the 35th International Conference on Machine Learning. 2018, pp. 4361–4370.

[85] Pierre Roy and François Pachet. “Enforcing meter in finite-length markov sequences”. In:

Twenty-Seventh AAAI Conference on Artificial Intelligence. 2013, pp. 854–861.

[86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal repre-

sentations by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for

Cognitive Science, 1985.

[87] Ian Simon, Dan Morris, and Sumit Basu. “MySong: automatic accompaniment generation

for vocal melodies”. In: Proceedings of the SIGCHI conference on human factors in com-

puting systems. ACM. 2008, pp. 725–734.

[88] Bob L. T. Sturm. Going to use the Nottingham Music Database? Oct. 2018.

[89] Lucas Theis, Aäron van den Oord, and Matthias Bethge. “A note on the evaluation of gen-

erative models”. In: Proceedings of the International Conference on Learning Representa-

tions. 2016.

[90] Alan M. Turing. “Computing machinery and intelligence”. In: Parsing the Turing Test.

Springer, 2009, pp. 23–65.

[91] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle.

“Neural autoregressive distribution estimation”. In: The Journal of Machine Learning Re-

search 17.1 (2016), pp. 7184–7220.

57

[92] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural in-

formation processing systems. 2017, pp. 5998–6008.

[93] Dan Ventura. “Mere generation: Essential barometer or dated concept”. In: Proceedings of

the Seventh International Conference on Computational Creativity. Sony CSL, Paris. 2016,

pp. 17–24.

[94] Andrew Viterbi. “Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm”. In: IEEE transactions on Information Theory 13.2 (1967), pp. 260–

269.

[95] Raunaq Vohra, Kratarth Goel, and Jajati Sahoo. “Modeling temporal dependencies in data

using a DBN-LSTM”. In: IEEE International Conference on Data Science and Advanced

Analytics. 2015, pp. 1–4.

[96] Christian Walder. “Modelling symbolic music: Beyond the piano roll”. In: Asian Conference

on Machine Learning. 2016, pp. 174–189.

[97] Raymond P Whorley and Darrell Conklin. “Music generation from statistical models of

harmony”. In: Journal of New Music Research 45.2 (2016), pp. 160–183.

[98] Gerhard Widmer and Asmir Tobudic. “Playing Mozart by analogy: Learning multi-level

timing and dynamics strategies”. In: Journal of New Music Research 32.3 (2003), pp. 259–

268.

[99] Li-Chia Yang and Alexander Lerch. “On the evaluation of generative models in music”. In:

Neural Computing and Applications (2018), pp. 1–12.

[100] Ruihan Yang, Tianyao Chen, Yiyi Zhang, and Gus Xia. “Inspecting and Interacting with

Meaningful Music Representations using VAE”. In: Proceedings of the International Con-

ference on New Interfaces for Musical Expression (2019).

[101] Ruihan Yang, Dingsu Wang, Ziyu Wang, Tianyao Chen, Junyan Jiang, and Gus Xia. “Deep

Music Analogy Via Latent Representation Disentanglement”. In: Proceedings of the Inter-

national Symposium for Music Information Retrieval (2019). (in press).

[102] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. “Recurrent neural network regular-

ization”. In: arXiv preprint arXiv:1409.2329 (2014).

58

Chapter 3

Building the MetaMIDI Dataset:
Linking Symbolic and Audio Musical
Data

As published in Ens, J. & Pasquier, P. (2021). Building the MetaMIDI Dataset: Linking Symbolic

and Audio Musical Data. ISMIR.

59

Abstract

We introduce the MetaMIDI Dataset (MMD), a large scale collection of 436,631 MIDI files and

metadata. MMD contains artist and title metadata for 221,504 MIDI files, and genre metadata for

143,868 MIDI files, collected during the web-scraping process. MIDI files in MMD were matched

against a collection of 32,000,000 30-second audio clips retrieved from Spotify, resulting in over

10,796,557 audio-MIDI matches. In addition, we linked 600,142 Spotify tracks with 1,094,901

MusicBrainz recordings to produce a set of 168,032 MIDI files that are matched to the MusicBrainz

database. We also provide a set of 53,496 MIDI files using audio-MIDI matches where the derived

metadata on Spotify is a fuzzy match to the web-scraped metadata. These links augment many

files in the dataset with the extensive metadata available via the Spotify API and the MusicBrainz

database. We anticipate that this collection of data will be of great use to MIR researchers addressing

a variety of research topics.

Keywords: Generative Music; Evaluation; Machine Learning; Big Data

60

3.1 Introduction

Large-scale metadata-rich MIDI datasets containing audio-MIDI matches [12, 10, 15] are indis-

pensable in a wide variety of research contexts. For example, the Lakh Midi Dataset (LMD) [15]

has been applied in many different contexts, including training generative music systems [7, 18],

tempo-estimation [19], genre classification [9] and even as a primary data-source for new datasets

[13, 8]. Motivated by the widespread demand for datasets of this nature, we created the MetaMIDI

Dataset (MMD), which contains 2.4 times the number of MIDI files in the LMD, and audio-MIDI

matches associating MIDI files with Spotify and MusicBrainz. To put the following numbers into

context, we note that there is a many-to-one relationship between Spotify track ids and the actual

audio recording. In this paper, we describe the process of assembling the dataset, which consists of

the following contributions:

• Collection of 436,631 MIDI files.

• Scraped artist + title metadata for 221,504 MIDIs (10 times more than the LMD).

• Scraped genre metadata for 143,868 MIDIs.

• An improved audio-MIDI matching procedure, which produced 10,796,557 audio-MIDI matches

linking 237,236 MIDIs to one or more tracks on Spotify.

• 829,728 high reliability audio-MIDI + scraped metadata (artist and title) matches linking

53,496 MIDIs to one or more tracks on Spotify.

• A method for linking Spotify tracks and MusicBrainz recordings, producing 8,263,482 unique

links that associate 1,094,901 MusicBrainz recordings with 600,142 Spotify tracks.

• 168,032 MIDIs matched to MusicBrainz IDs via the Spotify/MusicBrainz linking procedure.

3.2 Data Collection

We scraped publicly available websites and were able to amass a collection of 436,631 unique MIDI

files. Candidate websites were selected using a search engine to query various phrases including

keywords such as MIDI, music, and a variety of musical genres. A list of the sites scraped and

the number of MIDI files found on each site is provided in the dataset. Where possible, we also

collected additional metadata, such as the artist, title and genre of associated with a particular MIDI

file.

3.3 Audio Midi Matching

To augment MMD with additional metadata, we match the MIDI files against a large metadata-rich

collection of audio clips. Although the LMD is comprised of audio-MIDI matches against the Mil-

lion Song Dataset [1], we decided to use 30-second preview clips made available through the Spotify

61

API1. The primary motivation for this decision was the fact that the Spotify API provides over an

order of magnitude more data. Using the Spotify API, we were able to collect 32,000,000 30-second

MP3 files (over 13TB of raw data). To compute the audio-MIDI matches, we model our approach

after the procedure employed by Raffel [15], who matched the 176,581 MIDI files in the LMD with

1,000,000 audio files in the Million Song Dataset [1]. However, we make some modifications to the

matching algorithm to accommodate the large amount of data which was collected.

Raffel’s audio-MIDI matching procedure is comprised of two stages [15]. In the first stage,

which we refer to as the blocking stage, audio-MIDI pairs which are unlikely to be a match are

removed from consideration. In the second stage, which we refer to as the matching stage, a confi-

dence score (on the range [0,1]) is computed for each remaining audio-MIDI pair. To be considered

a valid match, the audio-MIDI pair must have a confidence score greater than 0.5. To compute the

confidence score for an audio-MIDI pair, Raffel computes the Constant-Q Transform (CQT) [4] for

the audio file and the audio-rendered MIDI file, using 48 logarithmically-spaced bins from C2 to B5

(12 bins per octave). Then, the dynamic time warping (DTW) algorithm is used to find the optimal

alignment, from which the confidence score is directly computed [15]. Although this procedure pro-

duces good results, it is extremely slow, as DTW has quadratic run-time, which makes this approach

intractable.

To speed up the matching process, Raffel proposes learning distance preserving low-dimension

embedding spaces, which should allow for highly dissimilar matches to be efficiently removed from

the search space. Raffel explores two approaches, an attention-based network (H∞) that embeds

arbitrary length CQT matrices into a 128-bit hash code [17], and a convolution-based network (Hk)
that maps k×48 CQT matrices into 32-bit hash codes [16], which can be used to transform a n×48
CQT matrix into a sequence of bnk c 32-bit hash codes. Using trained embedding networksH∞ and

H8, Raffel employs the following procedure to match a single MIDI CQT m against a set of audio

CQTs A.

1. Blocking Stage

(a) Compute DH(H∞(a),H∞(m)) for each a ∈ A, where DH is the bitwise hamming distance.

(b) Construct a setA′, containing the t1 = 100,000 a ∈ A that are closest tom, using the distances

calculated in 1a.

(c) Compute DTW(H8(a),H8(m)) for each a ∈ A′.

(d) Construct a set A′′ containing the t2 = 250 a ∈ A′ that are closest to m, using the distances

calculated in 1c.

2. Matching Stage

(a) Compute DTW(a,m) for each a ∈ A′′ and record any matches with more than .5 confidence.

1https://developer.spotify.com/documentation/web-api/

62

https://developer.spotify.com/documentation/web-api/

3.3.1 Modifications to the Matching Procedure

According to Raffel’s measurements, it takes an average of 108 seconds on a single CPU to match

one MIDI file against 1,000,000 Audio files. As a result, without making modifications to Raffel’s

procedure, it would take roughly 558 days on a 32-core CPU to match our collections of audio and

MIDI files. In order to optimize the audio-MIDI matching procedure to our specific context, we

make changes to the blocking stage. Notably, since we do not modify the second stage, and use

Raffel’s code2 to compute the confidence scores, our matches can be considered to be the same

quality as those found in the LMD.

The simplest modification involved implementing a c++ version of the DTW code for 32-bit hash

sequences, used in the blocking stage, which runs 2 times faster than Raffel’s jit-compiled Cython

implementation according to our measurements. We also reconsider the use of the attention based

embedding network H∞ in Steps 1a and 1b. Using Raffel’s approach, Step 1a can be computed

very quickly, accounting for less than 1% of the total algorithm run-time. However, due to the

low reliability of distance measurements in this embedding space, relatively few audio files can be

removed from consideration. As a result, Step 1c takes much longer to run, accounting for roughly

half of the total run-time. One reason for the limited accuracy of this approach, is that H∞ must

embed MIDI and audio CQTs into the same 128-bit hash code, despite MIDI files being much

longer than the audio files.

To address this issue, we use DW, defined in Eq. 3.1, to compute the distances in Step 1a. Given

an n × 48 MIDI CQT m and an audio CQT a, we build a set of 30-second length sub-sequences

(Xm) fromm, as defined in Eq. 1a, where s is the stride. UsingH128 we map each 30-second length

CQT matrix (i.e. 646×48) x to a hash code by splitting x into contiguous windowed sub-sequences,

computingH128(·) for each sub-sequence, and concatenating the resulting hash codes. Formally, we

refer to this process as H?k, which we define in Eq. 1b, where ⊕ denotes concatenation. Then, as

shown in Eq. 1c, we compute the bitwise hamming distance (DH) between H?128(x) and H?128(a)
for each x ∈ Xm, considering the minimum distance to be representative of the distance between

m and a.

Xm = {m[si :si+646] : 0 ≤ i <

⌊
n−646+1

s

⌋
} (3.1a)

H?k(x) = ⊕{Hk(x[ki :k(i+1)]) : 0≤ i<
⌊||x||
k

⌋
} (3.1b)

DW(a,m) = min({DH(H?128(a),H?128(x)) :x∈Xm}) (3.1c)

2https://github.com/craffel/midi-dataset

63

3.3.2 Training the Embedding Networks

We derive our neural network architecture from the one used by Raffel [15]. The first section of

the network is comprised of k groups, with each group is containing 2 3 × 3 convolutional layers,

followed by a 2×1 max pooling layer. The second section contains two dense layers with 2048 units

each, followed by a 32-dimensional output. The ReLU activation is used in all layers, except for the

last layer, which uses the tanh activation function to effectively binarize the output. For the H128

network, which learns to downsample a sequence of 128× 48 CQT matrix into a 32-bit hash code,

there are k = 5 groups, using the filter sizes 64, 64, 64, 32, and 16 for each group respectively. For

the H8 network, which learns to downsample a 8 × 48 CQT matrix into a 32-bit hash code, there

are k = 3 groups, using 64, 32, and 16 filters per group respectively. We train H128 and H8 using

the same triplet loss as Raffel. In terms of training data, we use the 116,189 audio-MIDI matches

from the LMD, which we split into testing, validation and training datasets. We train each network

with a learning rate of 1e−4, and early stopping on validation every 1000 batches, using Keras [6].

3.3.3 Evaluating the Embedding Networks

To evaluate the expected accuracy of distance calculations using our trained embedding networks,

we use the same method proposed by Raffel. For a known audio-MIDI pair (m, a), we measure the

distance between m and a set of 1,000,000 audio files X , with a ∈ X , to determine the rank of

the correct match. After repeating this process for 1,000 audio-MIDI pairs in our test set, we can

measure the proportion of MIDI files where the correct match ranks below a particular threshold.

The results are presented in Figure 3.1, including results previously presented by Raffel for purposes

of comparison [15]. Although Raffel used different data to train and evaluate the embedding, we

can be fairly confident in the reliability of our comparison, as the curve for our H8 embedding

network (Step 1c (Ours)) is nearly identical to the curve for Raffel’s H8 embedding network (Step

1c (Raffel)). Although using DW slows down Step 1, the results demonstrate that it is much more

accurate, which means we can reduce the number of comparisons needed in Steps 1c and 1d, which

ultimately speeds up the algorithm, as Step 1c accounts for roughly half of the total run-time.

3.3.4 Matching Against 32,000,000 Audio Files

Clearly, a large factor contributing to the run-time of the matching algorithm is the threshold levels

(t1, t2) for each stage of the search. Raffel et al. determine t1 and t2 based on the evaluation method

presented in Figure 3.1. However, this approach is merely a proxy for what we are actually trying

accomplish. Put simply, in matching a large collection of MIDI files with a large collection of Audio

Files, we are trying to maximize the number of matches. In order to get a sense of the relationship

between run-time and the number of matches, we run our matching procedure with 1,000 MIDI

files and 10,000,000 audio files, using various thresholds. The results in figure 3.2 show that we pay

a high computational cost to increase the number of MIDIs matched. For example, increasing the

thresholds from t1 = 100,000 / t2 = 250 to t1 = 1,000,000 / t2 = 2,500 increases the run-time by

64

100 101 102 103 104 105 106

Threshold

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 M

ID
I f

ile
s m

at
ch

ed

Step 1a stride=0 (Ours)
Step 1a stride=32 (Ours)
Step 1a (Raffel)
Step 1c (Ours)
Step 1c (Raffel)

Figure 3.1: Percentage of MIDI files matched at thresholds.

500 520 540 560 580 600
MIDIs Matched

100000 250
200000 250
500000 250

1000000 1000
1000000 2500

0 5000 10000 15000 20000
Audios Matched

0 200 400 600
Average Run-Time

Figure 3.2: The number of MIDI files matched, Audio recordings matched and average match run-
time for different thresholds. On the left, the first value denotes t1 and the second value denotes
t2.

65

560%, while only yielding a 10% increase in the number of MIDIs matched and a 200% increase in

the number of Audio files matched.

Due to memory limitations, it is not possible to match a MIDI CQT against all 32,000,000 audio

CQTs at once. As a result, we subdivide the audio CQTs into four chunks, and process them each

separately. In light of the results in the previous section, we decided to set t1 = 100,000 and t2 =
250 for each chunk. In Table 3.1, we report the results of the Audio-MIDI matching procedure. In

comparison to the LMD, where only 26% of the MIDI files were matched to at least one Audio file,

we were able to match 56% of the MIDI files, for a total of 237,236 MIDI files matched. Notably,

our modifications to the matching procedure also had a substantial impact on the run-time, as the

average run-time per match was only 3.3 times more than the run-time for LMD matching, despite

matching against over 32 times more audio.

Dataset MIDIs Audio
Source

Matching
Method

Matched
MIDIs

Matched
Audios

Total
Matches

MIDI Match
Percentage

LMD 176,581 MSD[1] Audio 45,129 31,034 116,189 25.6%
MMD 436,631 Spotify Audio 237,236 2,209,941 10,796,557 52.7%
MMD 436,631 Spotify Audio+Text 53,496 347,703 829,728 12.3%
MMD 436,631 MusicBrainz Audio 168,032 1,094,901 8,384,256 38.5%
MMD 436,631 MusicBrainz Audio+Text 34,174 408,922 1,232,909 7.8%

Table 3.1: Statistics for the audio-MIDI matching. Note that the MusicBrainz matches were com-
puted by combining the Spotify audio-MIDI matches and the Spotify-MusicBrainz links (Section
4). The Percentage of MIDIs Matched column reports the percentage of MIDI files in the respec-
tive dataset that have at least one match to an audio file. Total Matches denotes the total number of
unique audio-MIDI pairs matched.

3.3.5 High Reliability Audio-MIDI Matches

Although the audio-MIDI matches are fairly reliable, Raffel notes that it is not uncommon for

there to be false positives when an audio-MIDI pair share the same chord progression [15]. To ad-

dress these issues, we produce a subset of the audio-MIDI matches which are more reliable, using

artist+title metadata that was collected during the scraping process. In short, we only retain audio-

MIDI matches where the title or artist scraped with the MIDI file is a fuzzy match to the metadata

on Spotify. Since artists and title metadata frequently contain extraneous information, we remove

all content in parenthesis or square brackets, and remove all content following a dash. As a result,

the Spotify track titled "Rain Is Falling (Karaoke Version) - Originally Performed By Electric Light

Orchestra" would be reduced to "Rain is Falling" after pre-processing. We measure the similarity

between two strings using cosine similarity on their tri-gram profiles, and only keep matches when

the similarity exceeds .8 for either the artist or the title metadata. Once this procedure has been

completed, we are left with 53,496 (12%) matched MIDI files and 829,728 total matches.

66

3.4 Linking Spotify and MusicBrainz

To further expand the dataset, we make links between Spotify track ids to MusicBrainz recording

ids using a classifier trained on audio features. Although AcousticBrainz Labs has provided an

archive3 of the Echo Nest mappings between MusicBrainz and Spotify, we were only able to match

24,363 MIDI files to MusicBrainz IDs using this resource. To train our classifier, we gathered a set

of ground truth data using International Standard Recording Codes (ISRC), which are provided by

both Spotify and MusicBrainz. Although Spotify provides this information for almost all of their

tracks via their API, only a percentage of recordings in the MusicBrainz database have been labeled

with an ISRC code. Using the ISRC codes which were available, we were able to compile about

100,000 unique ground truth matches. This data was divided into training, validation and testing

sets.

We use the AcousticBrainz API4 to obtain features for recordings in the MusicBrainz database,

since the actual audio is not provided by MusicBrainz or AcousticBrainz. To extract features from

the 30-second Spotify preview clips, we use the same feature extractor as AcousticBrainz (Essentia

[2]). Using the low-level features extrated via Essentia, we obtain a feature vector of dimension

1773 to represent each audio clip. Then we trained a classifier to predict whether a pair of vectors,

one collected from the AcousticBrainz database, and another from Spotify, correspond to the same

recording. To train the classifier, we expose the model to ground truth matches, where the Acous-

ticBrainz recording and Spotify recording share the same ISRC, and negative matches, where both

recordings do not share the same ISRC. To construct a negative match, we randomly select one

recording from each data source (AcousticBrainz and Spotify). Note that for training, validation

and testing we make sure the model is exposed to both conditions (ground truth and negative match)

an equal number of times.

We use the XGBoost library [5] to train a gradient boosting model. To determine the optimal

hyper-parameters for the model, we perform a grid search using the following parameters: nesti-

mators {2500, 5000}, learning rate {.1, .25, .5, .75}, and max depth of {2, 3, 4}. To evaluate the

models, we calculate the accuracy with which the model was able to predict if the pair of recordings

was a positive (ground-truth) or negative match. We found the model with nestimators=2500 learn-

ing rate=.25 and max depth=4 to perform the best on the validation set, achieving 97.6% accuracy.

To give us some indication that we are not simply over-fitting on the validation set, we compute the

accuracy of the best model using the testing set. Based on the fact that the best model scored 97.5%

accuracy on the test set, which was only used once, we can be fairly confident that the model will

generalize with this level of accuracy.

Since, at the time of writing, there are 5,534,103 unique recordings in the AcousticBrainz

dataset, and 2,209,941 Spotify audio previews (see Table 3.1) which we want to match against,

3https://labs.acousticbrainz.org/million-song-dataset-echonest-archive/

4https://acousticbrainz.org/data

67

https://labs.acousticbrainz.org/million-song-dataset-echonest-archive/
https://acousticbrainz.org/data

Matched
Spotify IDs

Matched
MusicBrainz IDs

Spotify-MusicBrainz
Matches

MIDI-MusicBrainz
Matches

MSD Echo Nest 1,307,152 675,240 3,168,164 24,363
ISRC Matches 104,404 69,006 104,404 82,951

Ours 600,142 1,094,901 8,263,482 168,032

Table 3.2: Statistics for the Spotify-MusicBrainz matching.

collecting the model’s predictions for each pairwise match would be extremely computationally ex-

pensive. To make this process feasible, we first match all the artists in the MusicBrainz database

against a list of artists from Spotify using tri-gram cosine distance with a threshold of .7. Then we

match each the titles of each recording if the artists were a match, once again using tri-gram co-

sine distance with a threshold of .7. Then for each potential match, we use the classifier to predict

whether it is actually an audio match. Consequently, the error rate should be lower than 2.5% since

matches must also have similar metadata (artist title) to be considered a match. The entire process

took about 3 days on a single computer. In Table 3.2 below, we outline the results of the Spotify-

MusicBrainz linking process. We provide details on the MIDI-MusicBrainz matches which were

derived from the audio-MIDI matches in Table 3.1.

3.5 Analyzing the Dataset

3.5.1 Overview Statistics for the Midi Files

In order get a sense of the type of data that was collected, we compute the distributions for several

features. We parse a MIDI file into a set of tracks, where a track is simply the set of note onsets and

offsets belonging to a (MIDI track,channel,instrument) tuple. Each track is subdivided

into a sequence of bars, using the time signature information present in the MIDI file. Due to space

limitations, we present a few of the most pertinent features below, providing a more comprehensive

overview elsewhere5:

1. Number of Tracks : The number of tracks, as defined above, in a MIDI file.

2. Beat Length : The total length in quarter note beats of an entire MIDI file.

3. Notes Per Bar : The number of note onsets occurring in a bar. We measure this on each track

separately, so that we do not conflate notes per bar and number of tracks.

We compute the distribution of each of these features across three different sets of data: the

LMD, MMD, and their symmetric difference MMD ∆ LMD. These distributions are shown in

Figure 3.3. On a whole, the graphs demonstrate that LMD, MMD ∆ LMD and MMD are all fairly

similar, however there are some differences worth noting. The two most obvious differences, are

5https://github.com/jeffreyjohnens/MetaMIDIDataset

68

https://github.com/jeffreyjohnens/MetaMIDIDataset

0 5 10 15 20 25

num
tracks

Lakh Midi Dataset (LMD)

0 5 10 15 20 25

MMD LMD

0 5 10 15 20 25

MetaMIDI Dataset (MMD)

0 200 400 600 800 1000

beat
length

0 200 400 600 800 1000 0 200 400 600 800 1000

0 2 4 6 8

notes
per
bar

0 2 4 6 8 0 2 4 6 8

Figure 3.3: The distributions for various features computed on LMD, MMD ∆ LMD and MMD.

the beat length and number of tracks. The difference in beat length distributions can mainly be

explained by the fact that two of the sites we scraped MIDIs from only provide 30s preview MIDI

clips for free. Since the musical quality of these shorter MIDIs is comparable to that found in the

LMD, we saw no real reason to exclude these files. The difference in track counts per MIDI does

not have an obvious explanation, but is worth noting nonetheless.

3.5.2 Estimating the Reliability of Scraped Metadata

To gauge the reliability of the scraped metadata, we analyze instances where metadata was col-

lected for the same MIDI file (md5 checksum) from multiple sources. In total, there are over 10,000

MIDI files which satisfy this criteria. For each of these MIDI files, we compare the title/artist and

genre/category metadata separately. For the title/artist metadata, we concatenate this metadata into

a single string, delimited by a "-", and compute cosine similarity on their tri-gram profiles. For the

genre metadata, we compute tri-gram cosine similarity between each pairwise combination of el-

ements between two genre/category lists, and report the maximum similarity. The mean similarity

is 73.7% for title/artist metadata and 1.1% for genre metadata. Immediately apparent, is the signifi-

cant discrepancy, as title/artist metadata appears to be fairly consistent from site to site, while genre

metadata is not. Further manual analysis reveals that the genres/categories are often very generic,

which may make them unsuitable for some purposes. In some respects, this is not altogether surpris-

ing, as determining the genre/category of a piece of music is a highly subjective process, and other

research has shown a significant level of disagreement [3]. However, with regards to the artist/title

metadata, these results seem to indicate that we can be fairly confident in this form of metadata. It is

worth noting that this type of analysis does not rule out cases where artist/title metadata on multiple

sites was derived from a single inaccurate source to begin with.

69

3.5.3 False Positives and Audio Midi Matching

Using the standard and high-reliability sets of audio-MIDI matches, we can further analyze the

source of false positives in the matching procedure. To do this, we compare the genre distribution

of each set of audio-MIDI matches. Since Spotify uses more than 5,000 genres, many of which

contain descriptors of particular locations (ex. Louisville Indie) or languages (ex. Spanish Indie

Pop), we pre-process the data to remove geographical locations, demonyms and languoids. This

results in about 2,500 genres. To further aggregate these genres into broader categories we employ a

graph embedding approach. Using the Spotify API, we collect a list of genres for 336,507 different

artists. For example, the band U2 has a genre list containing three genres: Irish Rock, Permanent

Wave, and Rock. Note that after we apply our pre-processing procedure, U2 has two genres: Rock

and Permanent Wave. Of particular interest for our purposes here, is artists which have a genre list

containing more than one genre, as the overall frequency with which two genres co-occur within

genre lists should provide a good indication of their similarity.

Then we construct a graph where each genre is a node, and the edge weights between nodes are

the count of co-occurrences within the genre lists. To create the embedding, we use the Node2Vec

algorithm [11], which creates an embedding space that is trained on relations found within the graph.

Similar to the word2vec algorithm [14], where adjacent groupings of words inform the embedding,

random walks on the graph are used to infer a context for each node. We use the nodevectors6

implementation of Node2Vec to learn a 32-dimensional embedding space, training with random

walks of length 30 for 100 epochs. To determine a small set of k representative genres, we use

Agglomerative Hierarchical Clustering with Ward linkage to partition the embedded genre vectors

into k clusters. In order to give each cluster a human-readable label, we count the frequency with

which each of the genres belonging to the cluster is used in the genre lists. The most frequently

used genre is taken as the label for each genre. We set k = 15, which produces the following set of

genres: indie, rock, experimental, jazz, pop, metal, musica, electronic, folk, choir, classical, punk,

punk rock, hip-hop, and electronica. We admit that our decision to set k = 15 is fairly arbitrary,

however, due to the nature of our clustering procedure, selecting a different value for k would not

have a large impact. For example, setting k = 16 produces the same set of 15 genres with one new

genre cluster.

In Figure 3.4 the genre distributions are plotted for each version of the matching procedure.

Since we can be fairly confident that the audio + text matches are more accurate, analyzing the

discrepancies between the genre distributions can help identify some of the shortcomings of the

DTW audio-MIDI match algorithm. In the audio matches distribution, we see a large increase in

pieces classified as pop and electronic, which indicates these pieces are likely the source of most

of the error. This may be a byproduct of their simple harmonic structure, and/or the prevalence of

remixes and covers within these particular genres.

6https://github.com/VHRanger/nodevectors

70

https://github.com/VHRanger/nodevectors

0.00 0.05 0.10 0.15

pop
classical

indie
electronic

folk
rock
jazz

musica
punk rock

choir
metal

hip hop
experimental

electronica
punk

audio matches

0.0 0.1 0.2

audio + text matches

Figure 3.4: The distribution of genres for matched MIDI files using two methods: audio and audio
+ text.

3.6 Using the MetaMIDI Dataset

The dataset, as well as a detailed description of its contents, can be accessed through the MetaMIDI

Dataset repository7. Throughout the dataset, MIDI files are identified by their md5 checksum. We

provide mappings from md5 checksums to Spotify track ids and MusicBrainz recording ids, which

can be used to access a plethora of metadata. The MusicBrainz database provides access to variety

of linked entities including artists, recordings, releases, composers, producers, recording engineers

and labels. Detailed attributes are available for most entities. For example, the MusicBrainz entry for

the group Bon Iver, provides the date and location where the group was established, a list of aliases,

a set of genre tags, and a comprehensive list of links to external websites. Using the Spotify API,

a variety of metadata can be accessed, including track-based audio features such as danceability,

valence, liveness and energy; and additional metadata ranging from genre to artist popularity.

3.7 Conclusion

Although the primary contribution is the dataset itself, we have also provided reusable insights

related to the audio-MIDI matching algorithm and the Spotify-MusicBrainz linking procedure. One

limitation worth noting, is the uncertainty in relying on Spotify’s 30-second clips to persist into the

future, which unfortunately has already become an issue with the 7Digital clips in the Million Song

Dataset [1]. With regards to the dataset, we anticipate a wide variety of potential use-cases for this

7https://github.com/jeffreyjohnens/MetaMIDIDataset

71

https://github.com/jeffreyjohnens/MetaMIDIDataset

data. Since many generative systems have been trained using the Lakh MIDI Dataset [7, 8, 18], the

MMD will undoubtedly be a valuable asset to research in this area, as it features 2.4 times more

MIDI files. More broadly, the metadata that our audio-MIDI matches provide access to, as well as

the audio-MIDI matches themselves, can be used to support a variety of scientific inquires related

to MIR and Musicology.

72

Bibliography

[1] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. “The Million

Song Dataset”. In: Proc. of the 12th International Society for Music Information Retrieval

Conference. 2011.

[2] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez Gutiérrez, Sankalp Gulati, Herrera Boyer,

Oscar Mayor, Gerard Roma Trepat, Justin Salamon, José Ricardo Zapata González, Xavier

Serra, et al. “Essentia: An audio analysis library for music information retrieval”. In: Proc.

of the 14th International Society for Music Information Retrieval Conference. 2013.

[3] Romain Brisson and Renzo Bianchi. “On the relevance of music genre-based analysis in

research on musical tastes”. In: Psychology of Music 48.6 (2020), pp. 777–794.

[4] Judith C Brown. “Calculation of a constant Q spectral transform”. In: The Journal of the

Acoustical Society of America 89.1 (1991), pp. 425–434.

[5] Tianqi Chen and Carlos Guestrin. “XGBoost: A scalable tree boosting system”. In: Proc.

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 2016, pp. 785–794.

[6] François Chollet et al. Keras. https://keras.io. 2015.

[7] Chris Donahue, Huanru Henry Mao, Yiting Ethan Li, Garrison W Cottrell, and Julian

McAuley. “LakhNES: Improving multi-instrumental music generation with cross-domain

pre-training”. In: Proc. of the 20th International Society for Music Information Retrieval

Conference. 2019, pp. 685–692.

[8] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. “MuseGAN: Multi-

track sequential generative adversarial networks for symbolic music generation and accom-

paniment”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018, pp. 34–41.

[9] Andres Ferraro and Kjell Lemström. “On large-scale genre classification in symbolically

encoded music by automatic identification of repeating patterns”. In: Proc. of the 5th Inter-

national Conference on Digital Libraries for Musicology. 2018, pp. 34–37.

[10] Francesco Foscarin, Andrew Mcleod, Philippe Rigaux, Florent Jacquemard, and Masahiko

Sakai. “ASAP: a dataset of aligned scores and performances for piano transcription”. In:

Proc. of the 21st International Society for Music Information Retrieval Conference. 2020.

73

https://keras.io

[11] Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning for networks”. In:

Proc. of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. 2016, pp. 855–864.

[12] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,

Sander Dieleman, Erich Elsen, Jesse H. Engel, and Douglas Eck. “Enabling Factorized Pi-

ano Music Modeling and Generation with the MAESTRO Dataset”. In: 7th International

Conference on Learning Representations. 2019.

[13] Ethan Manilow, Gordon Wichern, Prem Seetharaman, and Jonathan Le Roux. “Cutting mu-

sic source separation some Slakh: A dataset to study the impact of training data quality and

quantity”. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

2019, pp. 45–49.

[14] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient estimation of word

representations in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[15] Colin Raffel. “Learning-based methods for comparing sequences, with applications to audio-

to-midi alignment and matching”. PhD thesis. Columbia University, 2016.

[16] Colin Raffel and Daniel PW Ellis. “Large-Scale Content-Based Matching of MIDI and Au-

dio Files.” In: Proc. of the 16th International Society for Music Information Retrieval Con-

ference. 2015, pp. 234–240.

[17] Colin Raffel and Daniel PW Ellis. “Pruning subsequence search with attention-based em-

bedding”. In: IEEE International Conference on Acoustics, Speech and Signal Processing.

IEEE. 2016, pp. 554–558.

[18] Adam Roberts, Jesse H. Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. “A Hier-

archical Latent Vector Model for Learning Long-Term Structure in Music”. In: Proceedings

of the 35th International Conference on Machine Learning. 2018, pp. 4361–4370.

[19] Hendrik Schreiber and Meinard Müller. “A Single-Step Approach to Musical Tempo Esti-

mation Using a Convolutional Neural Network.” In: Proc. of the 19th International Society

for Music Information Retrieval Conference. 2018, pp. 98–105.

74

Chapter 4

CAEMSI : A Cross-Domain Analytic
Evaluation Methodology for Style
Imitation

As published in Ens, J. & Pasquier, P. (2018). CAEMSI : A Cross-Domain Analytic Evaluation

Methodology for Style Imitation. International Conference on Computational Creativity (ICCC).

(pp. 64-71).

75

Abstract

We propose CAEMSI, a cross-domain analytic evaluation methodology for Style Imitation (SI) sys-

tems, based on a set of statistical significance tests that allow hypotheses comparing two corpora

to be tested. Typically, SI systems are evaluated using human participants, however, this type of

approach has several weaknesses. For humans to provide reliable assessments of an SI system, they

must possess a sufficient degree of domain knowledge, which can place significant limitations on

the pool of participants. Furthermore, both human bias against computer-generated artifacts, and the

variability of participants’ assessments call the reliability of the results into question. Most impor-

tantly, the use of human participants places limitations on the number of generated artifacts and SI

systems which can be feasibly evaluated. Directly motivated by these shortcomings, CAEMSI pro-

vides a robust and scalable approach to the evaluation problem. Normalized Compression Distance,

a domain-independent distance metric, is used to measure the distance between individual artifacts

within a corpus. The difference between corpora is measured using test statistics derived from these

inter-artifact distances, and permutation testing is used to determine the significance of the differ-

ence. We provide empirical evidence validating the statistical significance tests, using datasets from

two distinct domains.

Keywords: Generative Music; Evaluation; Machine Learning; Big Data

76

4.1 Introduction

There is growing demand for creative generative systems in the entertainment industry, which

has prompted an abundance of research in the area of Style Imitation (SI). Given a corpus C =
{c1, ..., cn}, SI systems aim to generate new artifacts that emulate the stylistic characteristics of C.

Many of these SI systems generate some form of musical content, including; harmonic progressions,

melodies [42], and polyphonic compositions [22]. A more comprehensive overview of the work in

the domain can be found elsewhere [29, 5]. In the visual art domain, the Creative Adversarial Net-

work (CAN) is trained to generate visual art that deviates from the styles it has already learned [13].

Moreover, many Natural Language Generation (NLG) systems have been developed that generate

jokes, poetry, and narratives in a particular style [16]. To accommodate the large influx of generative

systems in recent years, we propose CAEMSI 1.

Ritchie mentions two conditions for determining if creativity has occurred: novelty, the degree

to which an artifact is dissimilar to other examples within the corpus and quality [34]. He also

emphasizes the notion of typicality, the degree to which a generated artifact is representative of the

source corpus (C). In the context of style imitation, measuring typicality is of critical importance,

as the performance of an SI system hinges on its ability to emulate the stylistic characteristics of

the source corpus. As a result, CAEMSI focuses on measuring the typicality of a generated corpus,

with respect to the source corpus. Although novelty is also an important indicator of the system’s

quality, as it is generally undesireable for an SI system to plagiarize large sections from the source

corpus, we leave this aspect of evaluation for future work.

Traditionally, participants assess the capacity of a particular system to emulate a particular style,

allowing researchers to make claims about the success of that system. Unfortunately, this is not a

scalable solution, and can make it difficult to compare SI systems. With the long-term goal of cre-

ating highly capable SI systems, it is necessary to develop robust methods for the evaluation of

these systems, as a lack of methodical evaluation can have a negative effect on research progress

[31]. The approach described in this paper is domain independent, harnessing the power of Nor-

malized Compression Distance (NCD) [8] and permutation testing to provide a scalable solution

to the problem of SI system evaluation. In order to demonstrate the effectiveness of this approach,

we conduct experiments on datasets in two different domains; the Wikiart image dataset2 and the

Classical Archives MIDI dataset3.

1The code is available https://goo.gl/ejN1RM

2https://www.wikiart.org/

3https://www.classicalarchives.com/midi.html

77

4.2 Evaluation Methodologies

Although many methodologies that evaluate the creative capacity of a generative system have been

proposed, we will limit our discussion to those which have been used to measure typicality. In

general, we can divide these methodologies into two categories, those which rely on human partic-

ipants, and those based purely on computation. Unto our knowledge, the only statistical evaluation

methodology for typicality was proposed by Thomas et al., however it is only capable of evaluating

melodic composition systems [39].

The Consensual Assessment Technique (CAT) [1] is based on the notion that experts are the

most capable of distinguishing creative artifacts within their respective domain. To account for

discrepancies, which arise given the subjective nature of these assessments, the CAT averages the

assessments of several experts. Pearce et al. employ the CAT to evaluate the success of melodic

generation algorithms [32].

Another approach, inspired by the Turing-test, measures participants ability to discriminate be-

tween computer-generated artifacts and artifacts from the source corpus. This evaluation methodol-

ogy has been used to evaluate many SI systems, including a Deep LSTM Network that generates

Bach chorales [22], and a Generative Adversarial Network that generates images [13].

4.3 Related Work

With regards to typicality, Conklin [10] provides a statistical framework to measure distinctiveness,

which can be understood as the inverse of typicality. Although the pattern representation that Con-

klin employs is designed for musical data, this approach could be adapted to other domains provided

a suitable pattern based representation is specified. More generally, several quantitative metrics for

creative systems have been proposed. Maher has proposed two metrics for measuring creativity

quantitatively. The first, equates novelty with distance from predominant clusters of artifacts, mea-

sures surprise using pattern matching algorithms, and calculates value using a fitness function [23].

However, it is not clear how the proposed metrics would be applied to an arbitrary domain, and

no proof of concept is provided. The second, uses Bayesian inference to measure the novelty of an

artifact, which is used to evaluate potential designs for laptop computers [24].

Burns measures creativity as the combination of psychological arousal, which is computed us-

ing Shannon entropy, and appraisal, which is computed using Bayesian theory [6]. The Regent-

Dependent Creativity (RDC) metric measures value and novelty. Artifacts are represented by a set

of pairs (P (regent, dependent)), where regent is an action or attribute, and dependent is a state or

target for an action [14]. Using a graph, which includes associations between artifacts, they pro-

pose metrics to measure synergy, the value produced by various elements acting cooperatively, and

Bayesian surprise, the degree to which an artifact is unexpected or novel. Although this metric

seems to work well for the low dimensional problems presented in the paper, it is not clear that this

approach could efficiently handle artifacts which require a large number of pairs for representation.

78

Furthermore, it relies on the domain knowledge of synergy, which is difficult to determine in some

domains.

4.4 Motivation

Although human-based evaluation methodologies are not without their strengths, the shortcomings

of these methodologies directly motivated the development of the statistical tests proposed in this

paper.

4.4.1 Domain Knowledge

Accurately assessing the typicality of an artifact with respect to a source corpus, requires a signifi-

cant amount of domain knowledge, as the participant must be familiar with the stylistic characteris-

tics of the source corpus. This issue is exacerbated when performing a CAT, since participants must

have an expert level knowledge of the source corpus. Undoubtedly, this is one of the primary rea-

sons an abundance of musical SI systems have focused on imitating Bach chorales, as there is a large

pool of experts, and most people are familiar with Bach’s work. Since a lack of domain knowledge

undermines the reliability of the evaluation process, the types of scientific inquiries which have been

explored are biased by restrictions on the source corpora, placing limitations on scientific progress

in this area.

4.4.2 Bias Against Generative Systems

Previous research has shown that when participants were asked to distinguish between two folk

melodies, some of which were human-composed and others which were recombinations of the

human-composed melodies, participants attributed unusual or disagreeable human compositions

to the computer [11]. Norton found a significant bias against images labeled as being generated by

a computer [27]. In contrast, several studies have demonstrated that the knowledge that a computer

created a piece of music, does not significantly affect the participants’ evaluation and enjoyment of

the piece [26, 15, 28]. Although Moffat’s study did not explicity test the same hypothesis as Dahlig,

their results corroborate the same conclusion, as participants attributed compositions they disliked

to the computer, independent of their actual authorship.

When participants are tasked with making the distinction between human-generated and computer-

generated artworks, they may in fact be searching for features which they expect to be generated

by a computer, rather than focusing on the broader style of the composition [2]. As a result, the

test degenerates to one which is focused on counting perceived mistakes. This issue has been high-

lighted by Pearce in his discussion on the evaluation of musical composition systems [30]. Clearly,

this type of bias is very problematic when attempting to evaluate an SI system that imitates artifacts

that humans tend to find disagreeable, such as the atonal works of Arnold Schoenberg.

79

4.4.3 Variability

The subjective nature of creativity-based assessments poses problems for the systematic evaluation

of creative systems in general. There is evidence that cultural background can have an effect on

how an artifact is perceived. For example, Eerola found that western and African listeners perceived

musical attributes differently [12]. Furthermore, environmental factors will affect the reliability of

these assessments, including the equipment used to observe the artifact, and the physical condition

of the participant. Although those who design experiments take many steps to mitigate the effects

of these factors, Schedl at al. [36] provide evidence that inter-rater agreement is still limited in

a practical setting. In one case, non-experts’ assessments of poetry were found to be negatively

correlated with the assessments of experts [19]. Similarly, Kaufman found that experts were far

more reliable than non-experts, when asked to judge the creativity of a short story, as measured by

inter-rater reliability for both groups [17].

4.4.4 Scalability

Unfortunately, using human participants places limitations on the total number of assessments that

can be collected. Participants are only capable of making so many assessments before fatigue will

begin to degrade the quality of their responses. Notably, this problem is exacerbated by the limited

number of participants involved when conducting a CAT. Although crowdsourcing does make it

easier to collect a large number of assessments, there are still monetary and time limitations that

place restrictions on the the total number of assessments that can be feasibly collected. Clearly, the

limited scalability of these evaluation methods is in direct conflict with the large number of artifacts

which generative systems can produce.

In many cases, a small subset of the generated artifacts is used to evaluate the system, decreasing

the number of assessments required. However, issues will naturally arise when the selected subset

is not adequately representative of the system’s output as a whole [2]. Moreover, it is not trivial to

determine if a subset of artifacts is representative of the systems output a priori. Most importantly,

these limitations make it increasingly difficult to evaluate a large number of systems.

4.4.5 The Proposed Solution

In contrast to human-based evaluation methods, CAEMSI eschews the issues of domain knowledge,

human bias, and variability. Admittedly, there are still limitations with respect to the size of corpora,

which will be addressed in future work. However, computation based methods of evaluation are far

more scalable than human-based solutions, as computers can process artifacts much faster than

humans can.

80

4.5 Statistical Tests for Typicality

In what follows, X = [xi, i = 1, ..., n] denotes a vector X , containing n elements. X ⊕ Y denotes

the concatenation of two vectors. We use the term corpora to denote a vector of binary strings.

µ(X) denotes the mean of a vector X , while φ(X) denotes the median. pdiff and peqv denote the

significance of the statistical test for difference and equivalence respectively.

Given two corpora, A = [ai, i = 1, ..., n] and B = [bi, i = 1, ...,m], we test the null hypothesis

HD0 : A = B (pdiff > α) against HD1 : A 6= B (pdiff ≤ α) and the null hypothesis HE0 : A 6= B

(peqv > α) against HE1 : A = B (peqv ≤ α). When the result of a statistical test is insignificant, we

accept the null hypothesis, which only indicates that there was insufficient evidence to support the

alternate hypothesis, and does not validate or invalidate the null hypothesis. As a result, accepting

the null hypothesis HD0 : A = B is not the same as rejecting the null hypothesis HE0 : A 6= B

and accepting the alternative hypothesis HE1 : A = B, as only the latter indicates that A = B.

Consequently, we can determine if A = B using peqv and if A 6= B using pdiff.

4.5.1 Normalized Compression Distance

Put simply, the Kolmogorov complexity (K(x)) of a finite length binary string x is the minimum

number of bits required to store x without any loss of information. More formally, K(x) denotes

the length of the shortest Universal Turing Machine that prints x and stops [38]. Intuitively, the

minimum number of bits required to store a random string would be close to the number of bits

used to represent the original string. As a result, a random string would have a high Kolmogorov

complexity. In contrast, a string with a large number of repeated subsequences, would have a low

Kolmogorov complexity. Although Kolmogorov complexity provides an absolute lower bound on

the compression of a string, K(x) is non-computable [20], so a real-world compressor is used to

approximate K(x) in practice.

The conditional Kolmogorov complexity (K(x|y)) of a string x relative to a string y, denotes

the length of the shortest program that prints x and stops, with y provided as additional input to the

computational process. For example, if x ' y, K(x|y) would be very small, as the program could

reproduce x from y without requiring much additional information. In contrast, if x and y are highly

dissimilar, K(x|y) would be quite large.

Information distance is the length of the shortest binary program that can compute x from y and

y from x. As a result, when x and y have a lot of mutual information, the length of this program

will be fairly short. Li et al. propose the normalized information distance (4.1).

d(x, y) = max(K(x|y),K(y|x))
max(K(x),K(y)) (4.1)

Since K(x|y) ' K(xy) −K(x) [20], where xy denotes the concatenation of strings x and y,

we can reformulate (4.1) to arrive at a computable normalized compression distance (NCD) (4.2).

In practice, K(x) is the length of string produced by a real-world compression algorithm, such as

81

zlib. Although we tested several compression algorithms, we did not notice significant variation in

terms of performance.

D(x, y) = K(xy)−min(K(x),K(y))
max(K(x),K(y)) (4.2)

Li et al. demonstrate that NCD is a universal distance metric, satisfying the following con-

straints.

1. D(x, y) = 0 iffx = y (Identity)

2. D(x, y) +D(y, z) ≥ D(x, z) (Triangle Equality)

3. D(x, y) = D(y, x) (Symmetry)

Notably, NCD has been applied to problems in a variety of domains, including music classifica-

tion [7, 21], protein sequence classification [18], image registration [4], and document classification

[3]. Others used NCD to evaluate machine translation (MT) by measuring the distance between the

predicted translation and the ground truth translation [40].

4.5.2 Distance Matrix Construction

Given a valid distance metric D and two corpora (A = [ai, i = 1, ..., n] and B = [bi, i = 1, ...,m]),
we can construct a pairwise distance matrix M , where Mij = D(ci, cj), and C = A⊕B = [ci, i =
1, ..., n+m]. We use several subsets of M to perform the proposed statistical tests. In the formula

below, wA and wB are vectors containing all distinct within group distances for corpora A, and B

respectively, while bA,B contains all between group distances. Notably, l = n+m in the equations

below.

wA = [Mij , i = 1, ..., n; j = 1, ..., n; j>i] (4.3)

wB = [Mij , i = n+1, ..., l; j = n+1, ..., l; j>i] (4.4)

bA,B = [Mij , i = 1, ..., n; j = n+1, ..., l] (4.5)

4.5.3 Permutation Testing

A permutation test is a statistical significance test which requires no prior knowledge about the dis-

tribution of the test statistic under the null hypothesis, as this distribution is generated by calculating

the test statistic for each possible labelling of the data. For example, consider the vectorC = A⊕B,

which is comprised of two corpora delineated by the labels L = [li, i = 1, ..., n + m; li≤n =
0, li>n = 1], and a test statistic S = µ(C0) − µ(C1), where Cj = {ci | li = j}. First, compute S

using L. Then compute S for each possible permutation of L to construct the distribution under the

null hypothesis. Since the number of permutations grows exponentially, as comparing two corpora

82

of size 50 would require
(100

50
)
' 1029 distinct permutations, we approximate this procedure by ran-

domly selecting m permutations. This procedure accommodates complex test statistics, for which

it would be intractable, or overly difficult, to compute the distribution of the test statistic under the

null hypothesis.

4.5.4 Testing for Difference

To test the hypothesis that two corpora are different, we adapt a permutation testing framework that

was used to compare two groups of brain networks [37]. Simpson et al. create a pairwise distance

matrix M using the Kolmogorov-Smirnov statistic, however, we use NCD instead.

R(M) = µ(bA,B)
µ(wA ⊕ wB) (4.6)

When R is greater than 1, the average between group distance is greater than the within group

distance. Therefore, R > 1 suggests that the two corpora are likely distinct. In contrast, when

R ' 1, there is likely no difference between the two corpora. The proposed test is detailed in the

steps below, where I(·) = 1 if (·) is true and 0 otherwise.

1. Given two corporaA = [ai, i = 1, ..., n] andB = [bi, i = 1, ...,m], create a pairwise distance

matrix M using (4.2).

2. Calculate the test statistic T = R(M) using (4.6).

3. Take a random permutation (u∗) of the ordering u = (1, ..., n+m) and reorder the columns

and rows using this ordering to create M∗.

4. Calculate the test statistic T ∗ = R(M∗) using (4.6).

5. Repeat steps 3 and 4 N times, producing the output [T ∗n , n = 1, ..., N].

6. Calculate the p-value, pdiff =
∑N
n=1 I(T ∗n ≥ T)/N .

4.5.5 Testing for Equivalence

The proposed test for the equivalence of two corpora, is based on the following assumption.

(wA = bA,B) ∧ (wB = bA,B) =⇒ A = B (4.7)

The intuition behind this assumption is shown in Figure 4.1 and 4.2, which show the cumulative

distributions of wA, wB , and bA,B for an intra-artist comparison and an inter-artist comparison

respectively. When two distinct corpora are compared, bA,B 6= wA and bA,B 6= wB , as shown in

Figure 4.1. In contrast, when two similar corpora are compared, bA,B ' wA ' wB , as shown in

Figure 4.2. In practice, the distributions of wA, wB , and bA,B are frequently skewed, and sometimes

multi-modal, which necessitates a non-parametric test for equivalence.

83

As a result, we employ a permutation testing framework [33], which is based on Roy’s Union-

Intersection approach [35], to test for the equivalence of two distributions. First, it is necessary to

define an equivalence interval on which the two distributions will be considered equal. εI and εS
denote the inferior and superior margins, respectively. Then we test two hypotheses; HI0 : δ ≥ −εI
against HI1 : δ < −εI and HS0 : δ ≤ εS against HS1 : δ > εS , where δ is the divergence between

the two distributions being compared. In some cases, this is measured as the difference between the

means (µ), however we use the difference between the medians (φ), as it is more robust to outliers.

As a result, the global null hypothesis (HE0) is true if both one-sided null hypotheses (HI0, HS0)
are true, and the global alternative hypothesis (HE1) is true if at least one of HI1 and HS1 is true.

The following algorithm is used to test for the equivalence of two distributions.

1. Given two vectors F = [fi, i = 1, ..., n] and G = [gi, i = 1, ...,m], compute the rank

transform of F ⊕G to derive a rank transformed version F and G.

2. Given the superior and inferior equivalence margins (εI , εS), we create two vectors XI =
F ⊕ (G+ εI) and XS = F ⊕ (G− εS), and an ordering u = (1, ..., n+m).

3. Compute the test statistic for both hypothesis TI = φ(XIF)− φ(XIG) and TS = φ(XSG)−
φ(XSF) where

XIF = [XI(ui), i = 1, ..., n]

XIG = [XI(ui), i = n+1, ..., n+m]

XSF = [XS(ui), i = 1, ..., n]

XSG = [XS(ui), i = n+1, ..., n+m]

and X(j) denotes the jth element in X .

4. Take a random permutation (u∗) of the ordering u.

5. Compute the test statistics using the ordering u∗. T ∗I = φ(XIF) − φ(XIG) and T ∗S =
φ(XSG)− φ(XSF).

6. Repeat steps 3 and 4 N times to simulate the distribution of the two partial test statistics,

producing the output [(T ∗In, T ∗Sn), n = 1, ..., N].

7. Compute the two partial test statistics λh =
∑N
n=1 I(T ∗hn ≥ Th)/N for h = I, S. Then the

global test statistic is λ(F,G) = max(1− λI , 1− λS).

To test for the equivalence of two corpora, we compute the distance matrix M using NCD,

then we compute (4.8). As a result, if both λ(wA, bA,B) and λ(wB, bA,B) are significant, then we

consider the two corpora equivalent.

peqv = max(λ(wA, bA,B), λ(wB, bA,B)) (4.8)

84

Normalized Compression Distance

Figure 4.1: The cumulative NCD distributions (wA, wB , and bA,B) used to compare 50 of Edgar
Degas’ (A) artworks and 50 of Gustave Dor’s (B) artworks.

85

Normalized Compression Distance

Figure 4.2: The cumulative NCD distributions (wA, wB , and bA,B) used to compare two disjoint
subsets of Edgar Degas’ artwork, both of size 50.

86

4.6 Experiment

4.6.1 Methodology

To evaluate the proposed statistical tests, we use datasets from two different domains; the classical

archives MIDI dataset, which consists of 14,724 compositions by 843 distinct composers, and the

Wikiart dataset, which consists of 19,052 paintings by 23 artists. There are two conditions, one

where both corpora (A,B) have the same class (they are created by the same composer or artist),

and another where the corpora have a different class. Therefore, the ground truth is calculated using

(4.9), and the condition predicted by each statistical test is calculated using (4.10), with the standard

significance level (α = 0.05). To create corpora of different sizes, we randomly select artifacts

without replacement belonging to the same class.

g(a, b) =

0, if class(a) 6= class(b)

1, else
(4.9)

ĝ(a, b) =

0, if peqv ≥ α or pdiff < α

1, if peqv < α or pdiff ≥ α
(4.10)

4.6.2 Data Pre-Processing

Since our test statistic takes the pairwise distance of all items within a corpora into consideration,

having a number of duplicate items would artificially decrease values in wA and wB . As a result,

we took the following steps to remove duplicate items in each dataset.

1. Remove all artifacts which belong to the same class and have the same title.

2. Remove all artifacts which belong to the same class and have a similarity greater than a

threshold (tsim).

We measure the similarity between two images using the structural similarity index [41], which

takes structural information into account, rather than quantifying visible differences. To measure the

similarity of two MIDI files, we extract a list of the pitches in the MIDI file ordered by onset time.

Given compute time constraints, we only take the first 1000 notes into consideration. The following

equation is used to quantify similarity, where E(a, b) denotes the edit distance between two pitch

sequences.

s = 1− E(a, b)
1000 (4.11)

We set the similarity threshold (tsim) at 0.75. Although this is quite conservative, we found that

this did not eliminate too many artifacts, while providing confidence that duplicate artifacts are not

included in the dataset. Table 4.1 lists the size of each corpus after each preprocessing step.

87

Preprocessing Step 0 1 2
Wikiart 19052 19052 18874
Classical MIDI Archives 14724 12117 11943

Table 4.1: The corpus size after each preprocessing step

4.6.3 Data Representation

In order to avoid taking metadata, such as the title, composer, and author into consideration when

computing the NCD, we do not use a binary representation of the MIDI files. Instead we create a

representation which excludes irrelevant data. Since the velocity of MIDI note onsets is primarily

based on the performer’s interpretation of the composition, and in some cases may be set to a

constant value if the MIDI file was created in a notation editor, we ignore this information. As a

result, we represent a MIDI file as a sequence of onsets, offsets and time deltas. We represent onsets

on the range [0, 127], offsets on the range [128, 255], and time deltas on the range [256−). This

results in a sequence of integers, which is then converted to a binary string before measuring the

NCD. The representation used for images is much simpler. Each image is resized to have the shape

64×64, with three color channels (RGB), where each pixel is represented as an integer on the range

[0, 255].

4.6.4 Results

In Table 4.2 we present the results of 1000 trials, half of which have a ground truth of 0, and half

which have a ground truth of 1, for a variety of corpora sizes. The accuracy (ACC), true positive

rate (TPR), false positive rate (FPR), true negative rate (TNR), and false negative rate (FNR), are

reported, using the formulas shown below, where n is the number of trials. True positive indicates

trials in which the statistical test predicts 1 and the ground truth is also 1 (ĝ(a, b) = 1∧g(a, b) = 1).

Similarly, true negative indicates trials in which the statistical test predicts 0 and the ground truth is

also 0 (ĝ(a, b) = 0∧ g(a, b) = 0). ε = εI = εS denotes the equivalence range, which is normalized

with respect to the length of F = [fi, i = 1, ..., n] and G = [gi, i = 1, ...,m] in Table 4.2. For

example, if ε = 0.1 denotes an equivalence range of (m+ n) ∗ 0.1.

88

Test Corpus A Corpus B ACC TPR TNR PPV NPV ε
Size Classes Size Classes

WikiArt pdiff 25 23 25 23 0.85 0.96 0.75 0.79 0.95 -
peqv 25 23 25 23 0.78 0.78 0.77 0.78 0.77 0.15
pdiff 50 23 50 23 0.92 0.97 0.87 0.88 0.96 -
peqv 50 23 50 23 0.86 0.85 0.87 0.87 0.85 0.1
pdiff 100 23 100 23 0.94 0.98 0.90 0.90 0.98 -
peqv 100 23 100 23 0.92 0.94 0.90 0.90 0.93 0.075
pdiff 50 23 100 23 0.82 0.98 0.67 0.75 0.97 -
peqv 50 23 100 23 0.88 0.87 0.88 0.88 0.88 0.0875

Classical pdiff 25 74 25 74 0.98 0.99 0.97 0.97 0.99 -
Archvies peqv 25 74 25 74 0.92 0.88 0.95 0.94 0.89 0.15

pdiff 50 37 50 37 0.99 1.00 0.99 0.99 1.00 -
peqv 50 37 50 37 0.91 0.92 0.90 0.90 0.92 0.1
pdiff 100 20 100 20 0.99 1.00 0.99 0.99 1.00 -
peqv 100 20 100 20 0.93 0.94 0.91 0.92 0.94 0.075
pdiff 50 37 100 20 0.85 1.00 0.75 0.77 0.99 -
peqv 50 37 100 20 0.89 0.87 0.91 0.91 0.87 0.0875

Table 4.2: The results of 1000 randomized trials for each statistical test (peqv, pdiff) using a variety
of corpora sizes.

ACC =
∑

True positive +
∑

True negative
n

(4.12)

TPR = 2
∑

True positive
n

(4.13)

TNR = 2
∑

True negative
n

(4.14)

PPV =
∑

True positive∑
Predicted positive

(4.15)

NPV =
∑

True positive∑
Predicted negative

(4.16)

A robust statistical test, will minimize the probability of type I error (α), incorrectly rejecting

a true null hypothesis, and type II error (β), incorrectly rejecting a true alternative hypothesis. The

power of a statistical test is 1 − β, which is equivalent to the TNR with respect to the test for

difference (pdiff), and the TPR with respect to the test for equivalence (peqv). Since we also must

verify that the tests minimize type I error, we provide the TPR and TNR which are equivalent to

statistical sensitivity, for pdiff and peqv respectively. For each trial, we perform 1000 permutations,

as this is what Marozzi suggests when estimating the power of a permutation test [25].

89

4.7 Discussion

Given the degree of intra-corpus variation, and inter-corpus similarity, it is difficult to establish a

ground truth for corpus comparison. In many cases, an artist or composer may explore several differ-

ent sub-styles over the span of their career. Furthermore, artists and composers are often inspired by

their colleagues, creating works that exhibit a greater than average degree of similarity. As a result,

it would be unreasonable to expect extremely high values of accuracy. Nevertheless, according to

Cohen, 0.80 is an adequate level for statistical power [9], which most of the tests surpass. Overall,

the results of the experiment demonstrate that the proposed tests provide a robust measurement of

the stylistic difference between two corpora.

We used different values for ε to account for the decrease in variability of wA, wB and bA,B as

the size of the corpora increases. For example, if two paintings are randomly selected from the work

of a single artist, in some cases, given the variability of that artist’s work, the mutual information

between these two paintings will be fairly low. In other cases, when both paintings are part of the

same sub-style, the mutual information may be fairly high. However, as we increase the number of

paintings selected, stylistic tendencies will start to emerge, and the amount of mutual information

amongst the selected paintings will converge. As a result, wA and wB will decrease in variability as

the size of the corpora is increased, which allows us to decrease the size of the equivalence interval

by decreasing ε.

The results in Table 4.2 show two trends. On average the statistical tests performed better on

MIDI than on images. There are two possible explanations for this; composers may have a more

consistent style than artists, or the representation we used for images is not optimized for compar-

ison. However, the fact that images were not preprocessed, as we simply resized each image and

extracted the raw pixel values, demonstrates that NCD is capable of finding commonalities in the

raw data. Secondly, the statistical tests perform better on larger corpora than smaller corpora, which

is primarily the result of decreasing stylistic variability as the size increases.

Since the strings that are being compared were quite long, the NCD between two items was

heavily skewed towards 1, as shown in Figure 4.1 and 4.2. Consequently, we do not suggest in-

terpreting these values as interval, but rather as ordinal values. Despite the skew of these values,

discrepancies between wA, wB , and bA,B can be quite pronounced.

4.8 Application

There are several ways in which the proposed tests could be used. In the most basic sense, the tests

could be used to compare the source corpus (C) with a corpus of artifacts generated by the SI system

(G). The magnitude of peqv can indicate how similar the two corpora are. In the case that peqv >= α,

the test for difference can be used to determine if there is a significant difference between the two

corpora. In addition, it may be of particular interest to measure the similarity of Ĉs and Ĝs, which

denotes the projection of C and G into a lower dimensional feature space s. For example, in the

90

music domain, one could use a representation that only contains rhythmic information, and another

that only contains information about the harmonic progression, to gauge the degree to which the SI

emulates the rhythm, and harmonic progressions which characterize C.

These tests could also be used to assess the CAN [13], which attempts to produce visual art in

a style that is distinct from those it is trained on. In this scenario, we would have a set of corpora

on which the CAN is trained (S = Ci : i = 1, ..., n), and for each Ci ∈ S we would need to

verify that pdiff < α, using corrections for multiple hypothesis testing. Most importantly, since

NCD operates on binary strings, these statistical tests are domain independent, as any digital data

can be represented as a binary string.

4.9 Conclusion

Scientific progress is hindered in the absence of robust evaluation methodologies. This is an issue

of particular contention in the field of computational creativity, as the subjective nature of assess-

ments on creative artifacts can be problematic. In addition to issues of adequate domain knowledge,

bias, and inter-rater reliability, the finite capacity of human participants limits the scalability of

many evaluation approaches. This is a particular issue for SI systems, where the source corpus is

often large, and the generated corpus is infinite. To address this issue, we propose CAEMSI for the

evaluation of SI systems, providing compelling evidence that the statistical tests are reliable in two

distinct domains. Future work involves further experimention with datasets from other domains, and

the evaluation of generative systems with CAEMSI.

91

Bibliography

[1] Teresa M Amabile. “Social psychology of creativity: A consensual assessment technique.”

In: Journal of Personality and Social Psychology 43.5 (1982), pp. 997–1013.

[2] Christopher Ariza. “The interrogator as critic: The turing test and the evaluation of genera-

tive music systems”. In: Computer Music Journal 33.2 (2009), pp. 48–70.

[3] Stefan Axelsson. “Using normalized compression distance for classifying file fragments”.

In: 2010 International Conference on Availability, Reliability and Security. IEEE. 2010,

pp. 641–646.

[4] Anton Bardera, Miquel Feixas, Imma Boada, and Mateu Sbert. “Image registration by com-

pression”. In: Information Sciences 180.7 (2010), pp. 1121–1133.

[5] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pachet. Deep Learning Techniques for

Music Generation. Computational Synthesis and Creative Systems. Springer International

Publishing, 2019.

[6] Kevin Burns. “Computing the creativeness of amusing advertisements: A Bayesian model

of Burma-Shave’s muse”. In: AI EDAM 29.1 (2015), pp. 109–128.

[7] Rudi Cilibrasi, Paul Vitányi, and Ronald De Wolf. “Algorithmic clustering of music”. In:

Proceedings of the Fourth International Conference onWeb Delivering of Music, 2004.

EDELMUSIC 2004. IEEE. 2004, pp. 110–117.

[8] Rudi Cilibrasi and Paul MB Vitányi. “Clustering by compression”. In: IEEE Transactions

on Information theory 51.4 (2005), pp. 1523–1545.

[9] Jacob Cohen. Statistical power analysis for the behavioral sciences. Academic press, 2013.

[10] Darrell Conklin. “Discovery of distinctive patterns in music”. In: Intelligent Data Analysis

14.5 (2010), pp. 547–554.

[11] Ewa Dahlig. “Judgments of humans and machine authorship in real and artificial folksongs”.

In: Computing in musicology: a directory of research 11 (1998), pp. 211–219.

[12] Tuomas Eerola, Tommi Himberg, Petri Toiviainen, and Jukka Louhivuori. “Perceived com-

plexity of western and African folk melodies by western and African listeners”. In: Psychol-

ogy of Music 34.3 (2006), pp. 337–371.

92

[13] Ahmed M. Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. “CAN:

Creative Adversarial Networks, Generating "Art" by Learning About Styles and Deviating

from Style Norms”. In: Proceedings of the Eighth International Conference on Computa-

tional Creativity. 2017, pp. 96–103.

[14] Celso França, Luıs Fabrıcio W Góes, Alvaro Amorim, Rodrigo Rocha, and Alysson Ribeiro

Da Silva. “Regent-dependent creativity: A domain independent metric for the assessment

of creative artifacts”. In: Proceedings of the Seventh International Conference on Computa-

tional Creativity. Citeseer. 2016, pp. 68–75.

[15] Ronald S Friedman and Christa L Taylor. “Exploring emotional responses to computationally-

created music.” In: Psychology of Aesthetics, Creativity, and the Arts 8.1 (2014), p. 87.

[16] Albert Gatt and Emiel Krahmer. “Survey of the state of the art in natural language genera-

tion: Core tasks, applications and evaluation”. In: Journal of Artificial Intelligence Research

61 (2018), pp. 65–170.

[17] James C Kaufman, John Baer, and Jason C Cole. “Expertise, domains, and the consensual

assessment technique”. In: The Journal of creative behavior 43.4 (2009), pp. 223–233.

[18] András Kocsor, Attila Kertész-Farkas, László Kaján, and Sándor Pongor. “Application of

compression-based distance measures to protein sequence classification: a methodological

study”. In: Bioinformatics 22.4 (2006), pp. 407–412.

[19] Carolyn Lamb, Daniel G Brown, and Charles LA Clarke. “Human Competence in Creativity

Evaluation.” In: ICCC. 2015, pp. 102–109.

[20] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul MB Vitányi. “The similarity metric”. In: IEEE

transactions on Information Theory 50.12 (2004), pp. 3250–3264.

[21] Ming Li and Ronan Sleep. “Genre Classification via a LZ78-Based String Kernel”. In: IS-

MIR. 2005, pp. 252–259.

[22] Feynman Liang, Mark Gotham, Matthew Johnson, and Jamie Shotton. “Automatic Stylistic

Composition of Bach Chorales with Deep LSTM.” In: Proceedings of the International

Symposium on Music Information Retrieval. 2017, pp. 449–456.

[23] Mary Lou Maher. “Evaluating creativity in humans, computers, and collectively intelligent

systems”. In: Proceedings of the 1st DESIRE Network Conference on Creativity and Inno-

vation in Design. Citeseer. 2010, pp. 22–28.

[24] Mary Lou Maher and Douglas H Fisher. “Using AI to evaluate creative designs”. In: DS 73-

1 Proceedings of the 2nd International Conference on Design Creativity Volume 1. 2012.

[25] Marco Marozzi. “Some remarks about the number of permutations one should consider to

perform a permutation test”. In: Statistica 64.1 (2004), pp. 193–201.

[26] David C Moffat and Martin Kelly. “An investigation into people’s bias against computa-

tional creativity in music composition”. In: Assessment 13.11 (2006), pp. 1–8.

93

[27] David Norton, Derrall Heath, and Dan Ventura. “Accounting for Bias in the Evaluation of

Creative Computational Systems: An Assessment of DARCI.” In: ICCC. 2015, pp. 31–38.

[28] Philippe Pasquier, Adam Burnett, Nicolas Gonzalez Thomas, James B Maxwell, Arne Eigen-

feldt, and Tom Loughin. “Investigating listener bias against musical metacreativity”. In:

Proceedings of the Seventh International Conference on Computational Creativity. 2016,

pp. 42–51.

[29] Philippe Pasquier, Arne Eigenfeldt, Oliver Bown, and Shlomo Dubnov. “An Introduction to

Musical Metacreation”. In: Computer Entertainment 14.2 (2017), pp. 3–17.

[30] Marcus T. Pearce. “The construction and evaluation of statistical models of melodic struc-

ture in music perception and composition”. Dec. 2005.

[31] Marcus T. Pearce, David Meredith, and Geraint Wiggins. “Motivations and methodologies

for automation of the compositional process”. In: Musicae Scientiae 6.2 (2002), pp. 119–

147.

[32] Marcus T. Pearce and Geraint A. Wiggins. “Evaluating cognitive models of musical compo-

sition”. In: Proceedings of the 4th international joint workshop on computational creativity.

Goldsmiths, University of London. 2007, pp. 73–80.

[33] Fortunato Pesarin, Luigi Salmaso, Eleonora Carrozzo, and Rosa Arboretti. “Union–intersection

permutation solution for two-sample equivalence testing”. In: Statistics and Computing 26.3

(2016), pp. 693–701.

[34] Graeme Ritchie. “Some empirical criteria for attributing creativity to a computer program”.

In: Minds and Machines 17.1 (2007), pp. 67–99.

[35] Samarendra Nath Roy. “On a heuristic method of test construction and its use in multivariate

analysis”. In: The Annals of Mathematical Statistics (1953), pp. 220–238.

[36] Markus Schedl, Arthur Flexer, and Julián Urbano. “The neglected user in music information

retrieval research”. In: Journal of Intelligent Information Systems 41.3 (2013), pp. 523–539.

[37] Sean L Simpson, Robert G Lyday, Satoru Hayasaka, Anthony P Marsh, and Paul J Laurienti.

“A permutation testing framework to compare groups of brain networks”. In: Frontiers in

computational neuroscience 7 (2013), p. 171.

[38] Ray J Solomonoff. “A formal theory of inductive inference. Part I”. In: Information and

control 7.1 (1964), pp. 1–22.

[39] Nicolas Gonzalez Thomas, Philippe Pasquier, Arne Eigenfeldt, and James B Maxwell. “A

Methodology for the Comparison of Melodic Generation Models Using Meta-Melo.” In:

ISMIR. 2013, pp. 561–566.

[40] Jaakko J Väyrynen, Tero Tapiovaara, Kimmo Kettunen, and Marcus Dobrinkat. “Normal-

ized compression distance as an automatic MT evaluation metric”. In: Proceedings of MT

25 (2010), pp. 21–22.

94

[41] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. “Image quality as-

sessment: from error visibility to structural similarity”. In: IEEE transactions on image

processing 13.4 (2004), pp. 600–612.

[42] Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. “MidiNet: A convolutional generative ad-

versarial network for symbolic-domain music generation”. In: arXiv preprint arXiv:1703.10847

(2017).

95

Chapter 5

Quantifying Musical Style: Ranking
Symbolic Music based on Similarity to a
Style

As published in Ens, J. & Pasquier, P. (2019). Quantifying Musical Style: Ranking Symbolic Music

based on Similarity to a Style. ISMIR.

96

Abstract

Modelling human perception of musical similarity is critical for the evaluation of generative mu-

sic systems, musicological research, and many Music Information Retrieval tasks. Although human

similarity judgments are the gold standard, computational analysis is often preferable, since results

are often easier to reproduce, and computational methods are much more scalable. Moreover, com-

putation based approaches can be calculated quickly and on demand, which is a prerequisite for use

with an online system. We propose StyleRank, a method to measure the similarity between a MIDI

file and an arbitrary musical style delineated by a collection of MIDI files. MIDI files are encoded

using a novel set of features and an embedding is learned using Random Forests. Experimental

evidence demonstrates that StyleRank is highly correlated with human perception of stylistic simi-

larity, and that it is precise enough to rank generated samples based on their similarity to the style of

a corpus. In addition, similarity can be measured with respect to a single feature, allowing specific

discrepancies between generated samples and a particular musical style to be identified.

Keywords: Generative Music; Evaluation; Machine Learning; Big Data

97

5.1 Introduction

Measuring musical similarity is a fundamental challenge, related to many tasks in Music Informa-

tion Retrieval (MIR). In this paper, we focus on measuring the similarity between a MIDI file and

an arbitrary musical style. In a musical context, the term style can refer to historical periods, com-

posers, performers, sonic texture, emotion, and genre [9]. Here, we use the term style to denote the

musical characteristics exhibited by a corpus C = {C1, ..., Cn}, as expressed by a feature set F .

Depending on the contents of C, style may correspond to something as specific as a subset of a com-

poser’s work, as general as the entirety of Western Classical Music, or as personal as the musical

preferences of an individual.

We propose StyleRank1, a method for ranking MIDI files based on their similarity to a style

delineated by C. It can be used as a tool for musicological research, to evaluate Style Imitation (SI)

systems, and to filter the output of an SI system. An SI system aims to generate music that exhibits

the stylistic characteristics of C [28]. The primary contributions are as follows: a collection of novel

features for symbolic music representation; an efficient MIDI feature extraction tool written in C++

with bindings in Python; a measure of similarity with respect to an arbitrary style delineated by C;

and two experiments demonstrating that this measure is robust, and highly correlated with human

perception of stylistic similarity.

5.2 Motivations

There are several motivating factors for this research. In general, modelling human perception of

musical similarity is of particular interest within the areas of Musicology, Music Cognition, and

Music Theory [43]. Moreover, robust measures of musical similarity are critical for many MIR

tasks, including database querying, music recommendation, and genre recognition. Although human

perception is the gold standard for measuring musical similarity, natural human limitations place

restrictions on the quantity and speed at which judgments can be collected, directly motivating

automated measures of musical similarity.

More specifically, there are inherent challenges in designing a robust and reproducible listening

experiment to evaluate SI systems. There are many variables which directly effect the quality of

an experimental result, such as the number of participants, the listening environment, the sound

equipment, and the number of samples selected for comparison. Even controlling for those variables,

there is significant variability in how music is perceived, based on one’s level of training [5] and

musical background [16, 33, 14], which can result in a limited inter-rater agreement [35]. This is a

particular issue, as it may hamper reproducibility and comparison with previously published results.

In most cases, sampling from an SI system is a stochastic process, and as a result, generated

samples vary in quality. Developing a filtering process for generated material is a high priority

1The code is available at https://github.com/jeffreyjohnens/style_rank

98

https://github.com/jeffreyjohnens/style_rank

concern, as low quality samples are undesirable when using a generative model in a production

setting. Although measuring the log-likelihood of a sample can be useful as a proxy for quality, there

are cases where log-likelihood significantly diverges from human perception. Theis et al. provide

examples of generated images with high log-likelihood and extremely low quality [38]. With the

exception of the feature-based statistical model of stylistic success proposed by Collins et al. [8],

the authors are unaware of any pre-existing methods for ranking generated samples with respect to

an arbitrary musical style.

5.3 Related Work

A wide variety of similarity measures have been developed to measure melodic [42], harmonic [32,

26, 10] and rhythmic similarity [39]. Many of these algorithms measure similarity by comparing

two symbolic sequences [44]. Stylistic similarity, however, is rarely exhibited through sequence

similarity, but rather through the repeated use of particular musical devices (i.e. melodic phrases,

voice leading, and chord voicing) interspersed throughout the material [44]. In order to address this

concern, approaches based on compression or pattern extraction have been proposed to measure

similarity [22, 2, 6]. Since we aim to measure similarity with respect to C, a more suitable approach

will leverage information about the discriminative aspects of the entire corpus C, rather than only

taking two MIDI files into consideration.

In the context of SI system evaluation, the Turing Test [41] and the Consensual Assessment

Technique [3] have been used to measure the stylistic similarity between generated artifacts G =
{G1, ...,Gm} and a particular style C [21, 29]. Objective measures have also been used to evaluate SI

systems. Dong et al. measure the ratio of empty bars, pitch class diversity, note duration, rhythmic

consistency, and tonal distance [11]. Trieu and Keller propose a variety of metrics ranging from

rhythmic variety to harmonic consistency [40]. Since these metrics produce a single scalar value, it

is easy to compare C and G. However, these high-level metrics are likely only capable of measuring

stylistic similarity in a very general sense. Sturm and Ben-Tal. plot distributions of meter, mode,

number of tokens, pitch and pitch class for C and G, but do not provide an automated method for

analyzing discrepancies [37].

More comprehensive methodologies have been proposed, which involve computing all pairwise

inter-set distances between samples in C and G (DCG = [dist(c, g) : (c ∈ C) ∧ (g ∈ G)]), as

well as all pairwise intra-set distances for samples within a set (DGG = [dist(gi, gj) : (gi ∈
G) ∧ (gj ∈ G) ∧ (gi 6= gj)]). 2 CAEMSI [18], a domain independent framework for the analysis

of SI systems, provides a statistical method to test the null hypothesis H0 : (DGG 6= DCG) ∨
(DCC 6= DCG) ∨ (DCC 6= DGG) against the alternative hypothesis H1 : DGG = DCC = DCG .

Yang and Lerch extract multi-dimensional features from each MIDI file [45]. For each feature, DCG

2Note that we adapt the set-builder notation to construct a list (e.g., [i/2 : 0 ≤ i < 4] = [0, 0, 1, 1]), which unlike a
set, may contain duplicate values.

99

and DCC are constructed using Euclidean distance and smoothed using kernel density estimation

[34, 27]. The distance between DCC and DCG is measured using (1) the area of overlap and (2) the

Kullback–Leibler Divergence [19]. In contrast to both of these approaches, which involve evaluating

the similarity between G and C, StyleRank is optimized to evaluate the similarity of a single sample

g ∈ G to C.

5.4 Features

Although the features extracted by jSymbolic2 [24] are quite comprehensive, many features are

high-level, and thus, ill-suited for the fine-grained distinctions that are necessary to rank stylisti-

cally similar MIDI files. For example, the Chord Type Histogram feature contains only 11

categories. In order to capture the complexity of the musical material being analyzed, we extract a

variety of high-dimensional categorical distributions from a single MIDI file. A categorical distri-

bution is a discrete probability distribution describing a random variable that has k possible distinct

states. In what follows we adopt the following notation. Given a set x, ||x|| denotes the number of

elements in the set x, min(x) and max(x) denote the minimum and maximum element in x respec-

tively, and xi denotes the ith element in x. x \ y is the set difference between x and y, and x y is

the Cartesian product of x and y.� indicates a left bitwise shift and� indicates a right bitwise

shift. & , ∨ , and | refer to the bitwise AND, XOR, and OR operations, respectively.

5.4.1 Pitch Class Set Representations

In order to reduce the number of chords, we discard octave information and represent chords as

pitch class sets, using a 12-bit integer to denote the presence or absence of a particular pitch class

(C = 0,C# = 1, ...,B = 11). For example, the C-major chord {60, 64, 67} corresponds to the pitch

class set x = {0, 4, 7}, which corresponds to the integer
∑||x||
i=1(1 � xi) = 20 + 24 + 27 = 145.

Since there are 12 pitch classes, there are 212 = 4096 pitch class sets, which greatly reduces the

possible number of chords. However, it is possible to further reduce this space if we create an

equivalence class for all transpositionally equivalent pitch class sets. For example, the pitch class

sets {0, 4, 7} and {2, 5, 10} are transpositionally equivalent, as both are major chords, the only

difference being their root. This results in 352 distinct pitch class sets (PCD). Using Eq. (5.1c)

a PCD can be calculated, where x is an 12-bit integer. Notably, pitch class sets are considered

equivalent under the reversal operation when calculating the Forte number of a pitch class set [15].

Consequently, the pitch class sets {0, 4, 7} and {0, 3, 7} have the same Forte number, but correspond

to different PCD’s.

100

rot(x, n, i) = (x� i) | (x� (n−i)) & (2n−1) (5.1a)

reduce(x, n) = min({rot(x, n, i) : 0 ≤ i < n}) (5.1b)

pcd(x) = reduce(x, 12) (5.1c)

Alternatively, a pitch class set x can be represented as the set of scales which are supersets of

x. Given a scale S, let Si = {(s+ i) mod 12 : s ∈ S}. The scale representation can be calculated

with Eq. (5.2), where SM = {0, 2, 4, 5, 7, 9, 11} and SH = {0, 2, 3, 5, 7, 8, 11} denote the major and

harmonic minor scales respectively. φ(·) returns 1 if the predicate · is true and 0 otherwise.

sc(x)=
(12∑
i=1
φ(x⊆SMi)�i

)
+
(12∑
i=1
φ(x⊆SHi)�(12+i)

)
(5.2)

5.4.2 Feature Definitions

Given a MIDI file M , for each note n ∈ M , ons(n) returns the onset time of n in ticks, dur(n)
returns the duration of n in ticks, and pitch(n) returns the pitch. An ordered set containing the

unique onsets O = {ons(n) : n ∈ M} is constructed, and the ith chord is the set of notes

Ci = {n : (ons(n) ≤ Oi) ∧ (ons(n) + dur(n) > Oi)}. isOns(C, n) and isTie(C, n) are

functions that return 1 if n is an onset or a tie respectively, and 0 otherwise. The function pci(C, n)
returns 1 if n corresponds to the pitch class i and 0 otherwise. In order to simplify the feature

definitions, we use Eq. (5.3d), which accepts a chord C and a set of functions F , and only returns 1
if there is an element in X for which each f ∈ F evaluates to 1. As a result, I

(
C, {isOns,pci}

)
is

1 if there is a note n ∈ C that is an onset and is equivalent to the pitch class i.

pci(C,n)=

0, if pitch(n) mod 12 ≡ i

1, otherwise
(5.3a)

isOns(C,n)=

0, if max({ons(n):n∈C})>ons(n)

1, otherwise
(5.3b)

isTie(C,n)= 1 − isOns(C,n) (5.3c)

I(C,F)=

0, if max
(
{
∏||F ||
i=1 Fi(C,n):n∈C}

)
<1

1, otherwise
(5.3d)

Table 5.1 provides formal definitions of all the features, where Ct denotes the tth chord, Mt

denotes the tth melody pitch, Pt = {pitch(n) : n ∈ Ct}, Ot = {ons(n) : n ∈ Ct}, and Kt =
{pitch(n) : (n ∈ Ct) ∧ isOns(n)}. popcount(·) is a function that counts the number of set

bits in an integer, pc(x) = x mod 12 and pcc(x) = |(x mod 12)− 6|. Dissonance is calculated

101

using Stolzenburg’s periodicity function [36], which we refer to as stol(·). Let diss(P,T) =
1
||T||

∑
x∈T stol(P̄x), where P and T are pitch sets, and P̄x = {Pi−x : Pi ∈ P}. voiceMotion(·)

is a function that accepts two successive pitch sets (Pt,Pt+1) and returns an integer corresponding

to the type of voice motion. tonnetzLength(·) is a function that accepts a pitch class set and

returns the length of the shortest path through Tonnetz [25] vertices containing each pitch class.

Each function is calculated for all valid values of t, resulting in a categorical distribution with

unsigned 64-bit integers as the categories. For example, given a standard 4-voice Bach chorale con-

tainingm chords, the function ChordSize is calculated for 0 ≤ t < m−2, producing a categorical

distribution with the categories {0, 1, 2, 3, 4}. In some cases, we weight values by chord duration,

denoted by a ? in the table. In the case that a function returns a set of values (IntervalDist),

we combine the returned sets to form the categorical distribution. Since the number of categories k

grows exponentially large for some features (e.g., ChordShape), we restrict k ≤ 1000 by rank-

ing categories according to the number of samples they appear in, removing infrequently occurring

categories.

5.4.3 Implementation

We implement the feature extraction tool in C++, using pybind11 [17] to create Python bindings.

The Midifile library3 is used to parse MIDI files.

5.5 Similarity Computation

In the most general sense, we are interested in measuring the similarity between a single MIDI file

X and a corpus C = {C1, ..., Cn}. We represent each MIDI file by applying a non-empty set of

feature transformations F = {f1, ..., fk}, producing a set of categorical distributions for each MIDI

file. For each fi ∈ F , we aim to measure the similarity between a single categorical distribution

fi(X) and a set of categorical distributions fi(C) = {fi(C1), ..., fi(Cn)}. Using a distance metric

D , the average similarity could be calculated 1
n

∑n
i=1 1−D(fi(Ci), fi(X)). However, this approach

does not leverage information about the discriminative aspects of the entire corpus. The results in

Experiment 1 demonstrate the deficiencies of this approach. Instead, we use Random Forests [7] to

construct an embedding space before measuring the average similarity. Although neural networks

are often ideal for learning embeddings, the time required to train k neural networks is prohibitive

for an online system.

Decision trees are commonly used to model complex data. When used to classify data, each ter-

minal node represents a discrete class label, and an arbitrary input is classified based on the terminal

node it reaches. Using a trained Random Forest, an input can be represented based on the terminal

node it reaches in each decision tree. Given a Random Forest containing N decision trees each with

L terminal nodes, an input can be represented as a vector v ∈ {0, 1}N×L. To learn an embedding for

3https://midifile.sapp.org/

102

https://midifile.sapp.org/

Feature Name Function Description

C
ho

rd

ChordDissonance ? bdiss(Kt,Kt)c the dissonance of onsets based on periodicity [36]
ChordDistinctDurationRatio

(
1� ||{dur(n) : n ∈ Ct}||

)
| 2||Ct|| the ratio of distinct note durations to chord size

ChordDuration max(Ot+1)−max(Ot) the duration of a chord
ChordLowestInterval min

(
Pt \ {min(Pt)}

)
−min(Pt) the difference between the lowest two notes

ChordOnset
(∑||Ct||

i=1 (isOns(Cti)� (i− 1))
)
| 2||Ct|| an integer representing which notes are onsets

ChordOnsetPCD ? pcd
(∑11

i=0(I(Ct, {isOns,pci})� i)
)

distinct pitch class set excluding ties
ChordOnsetRatio

(
1�

∑
n∈Ct isOns(n)

)
| 2||Ct|| the ratio of onsets to chord size

ChordOnsetShape ?
∑||Ct||
i=1 (isOns(Ct,Cti)� (Pti −min(Pt))) piano roll type representation of onset pitches

ChordOnsetTiePCD ? pcd
(∑11

i=0(I(Ct, {isOns,pci})� i)
)

+ concatenated distinct pitch class set of onsets
pcd

(∑11
i=0(I(Ct, {isTie,pci})� i)

)
� 12 and distinct pitch class set of ties

ChordOnsetTieReduced ? reduce
((∑11

i=0(I(Ct, {isOns,pci})� i)
)

+ concatenated pitch class set of onsets and pitch(∑11
i=0(I(Ct, {isTie,pci}

)
� (12 + i))

))
class set of ties reduced using Eq. (5.1b)

ChordPCD ? pcd
(∑11

i=0(I(Ct, {pci})� i)
)

distinct pitch class set
ChordPCDWBass ? pcd

(∑11
i=0(I(Ct, {pci})� i)

)
+ 212+pc(min(Pt)) distinct pitch class set with bass pitch class

ChordPCSizeRatio
(
1� ||{pc(p) : p ∈ Pt}||

)
| 2||Pt|| the ratio of distinct pitch classes to chord size

ChordRange (φ1) max(Pt)−min(Pt) the range of pitches in a chord
ChordShape ?

∑
p∈Pt(1� (p−min(Pt))) piano roll type representation of chord pitches

ChordSize ||Ct|| the number of notes in a chord
ChordTonnetz ? tonnetzLength({pc(x) : x ∈ Pt}) length of shortest path through Tonnetz [25] vertices

C
ho

rd
Tr

an
si

tio
n

ChordSizeNgram ||Ct||+ (||Ct+1|| � 8) + (||Ct+2|| � 16) an n-gram of chord sizes (n = 3)
ChordTranBassInterval pc(min(Pt+1)−min(Pt)) pitch class interval between two lowest notes
ChordTranDissonance bdiss(Pt,Pt+1)c the dissonance of intervals based on periodicity [36]
ChordTranDistance |min(Pt+1)−min(Pt)|+ |max(Pt+1)−max(Pt)| approximated voice leading distance
ChordTranOuter pc(φ1(Pt)) + (pc(φ1(Pt+1))� 8)+ pitch class transition using only the outer notes

(pc(min(Pt)−min(Pt+1))� 16)
ChordTranPCD reduce

((∑11
i=0(I(Ct, {pci})� i)

)
+ transition between distinct pitch class sets(∑11

i=0(I(Ct+1, {pci})� (12 + i))
)
, 24
)

ChordTranRepeat (
∏
n∈Ct isOns(n))(Pt = Pt+1) chord repetition with onsets

ChordTranScaleDistance popcount
(
sc(Pt) ∨ sc(Pt+1)

)
hamming distance between scale representations

ChordTranScaleUnion popcount
(
sc(Pt) |sc(Pt+1)

)
the union between scale representations

ChordTranVoiceMotion voiceMotion(Pt,Pt+1) type of voice motion (contrary, oblique, etc.)

M
el

. MelodyNgram
∑3
i=0(Mt+i+1 −Mt+i mod 12)� 8i n-gram of melodic intervals (n = 3)

MelodyPCD pcd
(∑11

i=0 I
(
{Mt+i : 0 ≤ i < 5}, {pci}

)
� i

)
distinct pitch class of successive melody notes

In
te

r. IntervalClassDist {pcc(pi − pj) : (pj < pi) ∧ (pi, pj ∈ Pt Pt)} interval class for each combination of chord pitches
IntervalDist {pc(pi − pj) : (pj < pi) ∧ (pi, pj ∈ Pt Pt)} interval for each combination of chord pitches

Table 5.1: Definitions for Chord features, Chord Transition features, Melody features (Mel.), and
Interval features (Inter.). The ? symbol indicates that a categorical distribution is weighted by chord
duration.

a single feature transformation fi ∈ F , we train a Random Forest to discriminate between a collec-

tion of items fi(G) = {fi(G1), .., fi(Gm)} and a corpus fi(C) = {fi(C1), ..., fi(Cn)}. Concretely,

each fi(Gi) ∈ fi(G) is given the label 0, and each fi(Ci) ∈ fi(C) is given the label 1. We refer to the

vector produced for a sample X as RG,C,fiX . Breiman measures the similarity of two vectors using

the dot product [7]. In order to weight each feature transformation (fi ∈ F) equally, we use cosine

similarity (Eq. (5.4a)), which is simply the normalized dot product. The similarity between X and

103

C with respect to a set of features F is computed using Eq. (5.4b), which produces a scalar value on

the range [0, 1].

cos(X,Y) = X · Y√∑N
i=1X

2
i

√∑N
i=1 Y

2
i

(5.4a)

SG,C,FX = 1
||C||||F||

∑
c∈C

∑
f∈F

cos(RG,C,fX ,RG,C,fc) (5.4b)

5.6 Experiments

In the following experiments, we train a Random Forest [7] using the scikit-learn python module

[31]. We set the maximum tree depth at 5, the number of trees to 500, and measure the quality of

the split using entropy. The class weight is balanced to be robust against size discrepancies between

C and G.

5.6.1 Experiment 1 : Analytic Testing

We test StyleRank with styles delineated by a single composer, and by an entire genre, using the

Classical Archives MIDI dataset4. In total there are 75 composers, and 6 musical genres. More

details on the composition of the dataset can be found in the Appendix5. We keep only one MIDI

file per composition. Each MIDI file is represented as a list of pitches, sorted lexicographically

according to onset and pitch. To compare two pieces, the Levenshtein distance [20] is measured

twice, once for the first 100 pitches in each piece, and once for the last 100 pitches. We eliminate

pieces which have a Levenshtein distance less than 0.75, after normalizing the distance on the range

[0, 1]. We choose this conservative value to ensure all duplicates are removed.

Given two styles A = {a1, ..., am} and B = {b1, ..., bn}, where m = 2n, let C = {ai : 1 ≤ i ≤
n}, GA = {ai : n < i ≤ 2n}, GB = B, and G = GA ∪ GB . By construction G ∩ C = ∅. We train a

Random Forest and compare two distributions x = [SG,C,Fg : g ∈ GA] and y = [SG,C,Fg : g ∈ GB],
where F denotes the set of features described in Table 5.1. Ideally, each value in x should be larger

than all values in y, since elements in GA and C belong to the same style (A). However, depending

on the specificity of the style, there may be some degree of overlap between A and B. In order

to determine if there is a measurable difference between x and y we directly compare the means

(x̄ > ȳ), and we calculate the p-value (px̄>ȳ) for a One-Sided Mann-Whitney test [23] with the

alternative hypothesis that x̄ > ȳ.

In cases where multiple statistical comparisons are performed, it is common practice to apply

a correction to the raw p-values. The Bonferroni correction [12] is calculated by dividing the de-

4https://www.classicalarchives.com/midi.html

5https://github.com/jeffreyjohnens/style_rank/tree/master/appendix

104

https://www.classicalarchives.com/midi.html
https://github.com/jeffreyjohnens/style_rank/tree/master/appendix

StyleRank Cosine Manhattan Euclidean
size µ Sig FDR Bon µ Sig FDR Bon µ Sig FDR Bon µ Sig FDR Bon

C
om

po
se

r 10 0.963 0.86 0.725 0.0 0.837 0.624 0.381 0.0 0.879 0.662 0.413 0.0 0.827 0.565 0.28 0.0
25 0.951 0.888 0.807 0.609 0.808 0.583 0.422 0.24 0.793 0.578 0.415 0.244 0.729 0.532 0.363 0.226
50 0.926 0.905 0.873 0.78 0.705 0.559 0.454 0.333 0.751 0.599 0.468 0.34 0.717 0.565 0.428 0.3
100 1.0 0.986 0.973 0.951 0.713 0.636 0.59 0.515 0.723 0.633 0.568 0.486 0.715 0.626 0.571 0.504

G
en

re

10 0.81 0.379 0.0 0.0 0.68 0.193 0.0 0.0 0.686 0.2 0.0 0.0 0.645 0.176 0.0 0.0
25 0.867 0.578 0.376 0.198 0.729 0.348 0.084 0.038 0.74 0.374 0.053 0.021 0.691 0.298 0.06 0.022
50 0.88 0.715 0.59 0.432 0.776 0.484 0.266 0.126 0.747 0.489 0.253 0.088 0.714 0.344 0.158 0.082
100 0.927 0.847 0.774 0.671 0.766 0.555 0.406 0.265 0.755 0.566 0.44 0.284 0.785 0.462 0.269 0.178

Table 5.2: The normalized frequency over 1000 trials where x̄ > ȳ (µ), px̄>ȳ < 0.05 (Sig), px̄>ȳ

is significant after applying the FDR correction (FDR), and px̄>ȳ is significant after applying the
Bonferonni correction (Bon). Size denotes the size of the corpus ||C|| = ||GA|| = ||GB||.

sired level of significance (α = 0.05) by the number of comparisons. The Benjamini–Yekutieli

procedure [4] controls the false discovery rate under arbitrary dependence assumptions, and is less

conservative than the Bonferroni correction. Given m null hypotheses and their corresponding p-

values P1, ..., Pm, the p-values are sorted in ascending order. For a given level of significance, in

our case α = 0.05, reject the null hypothesis for the first k values that satisfy Pk ≤ kα/(m ∗ c(m))
where c(m) =

∑m
i=1 1/i.

Table 5.2 shows the results of 1000 trials, reporting the percentage of trials where x̄ > ȳ, and

the percentage of trials where px̄>ȳ is significant, applying no correction (α = 0.05), the Ben-

jamini–Yekutieli procedure (FDR), and the Bonferroni correction (Bon). We compare StyleRank

against three distance measures, Cosine, Manhattan and Euclidean, replacing SG,C,Fg with
1

||C||||F||
∑
c∈C

∑
f∈F 1−D(f(c), f(g)).

5.6.2 Experiment 2: Congruity with Human Perception

In order to evaluate how well StyleRank correlates with human perception, we use data from the

BachBot [21] experiment. In total, there were 5,967 participants, including 1329 novices, 2786 in-

termediate, 1341 advanced and 511 experts. Liang et al. generated 36 samples (G) from a neural

network trained on a collection of Bach Chorales (C). Participants were asked to discriminate be-

tween a generated musical excerpt and an actual Bach chorale. They were each asked to complete 5

comparisons.

For each g ∈ G, we count the number of times it was mistakenly classified as a Bach chorale

Nmiss
g , and the number of times it was correctly identified as computer generated N corr

g . The raw

count data can be found in the Appendix. We take the relative frequency of miss-classifications

Tg = Nmiss
g /(Nmiss

g + N corr
g) as an indication of how similar g is to the style of Bach’s Chorales

(C). This results in
(36

2
)

= 630 pairwise comparisons for which we have a ground truth ranking.

Using a chi-square contingency test [30] we can measure the degree to which we are certain that

there is a difference between two samples. We measure accuracy using Eq. (5.5b), where pij is the

p-value for the chi-square contingency test comparing the counts for the ith and jth examples, φ(·)

105

Novice Intermediate
α = 5.0 α = 0.5 α = 0.05 α = 0.005 α = 5.0 α = 0.5 α = 0.05 α = 0.005

Random .482 ± .025 .479 ± .031 .466 ± .044 .440 ± .062 .500 ± .023 .500 ± .026 .502 ± .033 .499 ± .037
jSymbolic .471 ± .006 .463 ± .008 .472 ± .012 .491 ± .015 .478 ± .011 .474 ± .013 .467 ± .014 .456 ± .017

Loglik .629 ± .000 .669 ± .000 .764 ± .000 .817 ± .000 .654 ± .000 .668 ± .000 .690 ± .000 .732 ± .000
StyleRank .716 ± .001 .774 ± .002 .855 ± .004 .899 ± .005 .702 ± .002 .715 ± .002 .758 ± .002 .808 ± .002

Advanced Expert
Random .511 ± .010 .514 ± .013 .512 ± .017 .515 ± .019 .493 ± .019 .492 ± .025 .492 ± .032 .485 ± .038

jSymbolic .481 ± .011 .480 ± .011 .470 ± .014 .474 ± .013 .452 ± .008 .449 ± .009 .482 ± .012 .464 ± .013
Loglik .673 ± .000 .694 ± .000 .730 ± .000 .724 ± .000 .657 ± .000 .692 ± .000 .741 ± .000 .800 ± .000

StyleRank .718 ± .001 .756 ± .001 .806 ± .002 .808 ± .002 .692 ± .002 .745 ± .003 .821 ± .004 .881 ± .005

Table 5.3: The accuracy of each model, calculated using Eq. (5.5b), with standard error calculated
over 10 trials.

is a function returning 1 if the predicate · is true and 0 otherwise, and α denotes the threshold for

significance.

f(x, y) =

1, if φ
(
SG,C,Fx < SG,C,Fy

)
= φ

(
Tx < Ty

)
0, otherwise

(5.5a)

acc(G, C, α) =
∑||G||
i=1

∑||G||
j=i+1 f(Gi,Gj)φ(pij < α)∑||G||

i=1
∑||G||
j=i+1 φ(pij < α)

(5.5b)

The results for Experiment 2 are presented in Table 5.3. We report the accuracy, calculated

using Eq. (5.5b), for a random ranking (Random), StyleRank with the jSymbolic [24] features

(jSymbolic), Log-likelihood (Loglik), and StyleRank. All the default features are extracted using

jSymbolic, and features with zero standard deviation are removed. This results in a single feature

vector with dimension of 453, for which we train a single Random Forest. Using the Performance

RNN [13], which was trained with the same representation and data as the original BachBot, we

evaluate the negative log-likelihood Lg of each of the generated examples (loglik). To calculate the

accuracy we simply replace the term SG,C,FX < SG,C,FY with LX < LY in Eq. (5.5a).

5.7 Discussion

Collectively, the results of both experiments demonstrate that StyleRank is robust to corpora of

varying sizes, and highly correlated with human perception of stylistic similarity. In the Appendix,

we expand Experiment 1 to demonstrate that StyleRank’s performance is robust, even when the

number of distinct styles in G is increased. In Experiment 1, there is a large difference between

raw distance measures and StyleRank. This highlights the limitations of the approach described by

Yang and Lerch, which uses euclidean distance to measure the distance between feature vectors

[45]. Although euclidean distance works well in low-dimensional settings, it does not scale well to

high dimensions. In fact, it has been shown that Manhattan distance performs better than Euclidean

106

distance in high dimensional settings [1], which we also see in our own experimental results. Un-

derstandably, there is a decrease in performance when analyzing styles delineated by genre, as these

styles have more variance, and are less consistent than the work of a single composer. Overall, these

results demonstrate that StyleRank can proficiently rank MIDI files with different styles.

The results for Experiment 2 demonstrate that StyleRank is capable of making fine-grained

distinctions between MIDI files that correspond with human perception of stylistic similarity. It

is worth noting that participants found it difficult to discriminate between generated and human-

composed samples in the BachBot experiment, evidenced by the average classification accuracy of

novice (0.57), intermediate (0.64), advanced (0.68), and expert (0.71) participants [21]. Based on

our experimental results, the jSymbolic [24] feature set is no better at predicting rankings than a

random model. This is likely due to the fact that high level features are not sufficiently discrimi-

native for this task. In contrast to the jSymbolic feature set, our method involves full categorical

distributions, which we believe are critical in measuring fine-grained differences. Importantly, there

is a substantial difference between the accuracy of rankings based on log-likelihood and StyleRank.

Interestingly, both log-likelihood and StyleRank best model high certainty (α = 0.005) compar-

isons made by self identified novices. This may be an artifact of increased variance as the number

of ground truth comparisons decreases as α increases.

It should be noted that participants in the BachBot experiment were not directly asked to rank

samples according to their similarity to the style of Bach’s chorales. We extrapolated a ranking from

the number of times a sample was miss-classified, which is an indirect way of measuring stylistic

similarity. However, since these rankings were based on a large sample size, we are confident that

they are reflective of human perception.

5.8 Application

StyleRank can be used in a variety of settings. Importantly, we must note that there are no lim-

itations on the composition of G. For example, one could compare k different sets with G =
{G1

i , ...,G1
n1 ,G

2
1 , ...,G2

n2 , ...,G
k
1 , ...,Gknk}. First of all, the method can be use to rank samples gener-

ated by an SI system, based on their similarity to C. StyleRank can be used to filter highly dissimilar

samples automatically. Filtering is as simple as taking the samples g ∈ G with a similarity SG,C,Fg

above some threshold, and discarding the rest. Secondly, StyleRank can be used to rank models.

Given k models, let G = {G1, ...,Gk} = {G1
i , ...,G1

n1 , ...,G
k
1 , ...,Gknk}, where Gi denotes the set of

samples generated by the ith model. Then the distributions xi = [SG,C,Fg : g ∈ Gi] can be compared

using an appropriate statistical test. Third, the method can be used to isolate the specific features f

that deviate from the style delineated by C by comparing the distributions xf = [SG,C,fg : g ∈ G]
for each f in a set of features F . In addition, StyleRank can be used as a tool for musicologists to

explore variations in style.

107

5.9 Conclusion

Quantifying musical stylistic similarity is a difficult task. We propose StyleRank, a method to rank

individual MIDI files based on their similarity to an arbitrary style. Experimental evidence supports

our approach, demonstrating that our method is robust, and is highly correlated with human per-

ception of stylistic similarity. Future work involves applying this approach to other domains where

SI systems are being developed. Additional features can be added to the current collection, in par-

ticular rhythm-based features, as the current collection is pitch-centric. Although we believe our

experiments to be fairly comprehensive, continued validation of the proposed method on additional

data is always beneficial.

108

Bibliography

[1] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. “On the surprising behavior

of distance metrics in high dimensional space”. In: International Conference on Database

Theory. 2001, pp. 420–434.

[2] Teppo E Ahonen, Kjell Lemström, and Simo Linkola. “Compression-based Similarity Mea-

sures in Symbolic, Polyphonic Music.” In: ISMIR. 2011, pp. 91–96.

[3] Teresa M Amabile. “Social psychology of creativity: A consensual assessment technique.”

In: Journal of Personality and Social Psychology 43.5 (1982), pp. 997–1013.

[4] Yoav Benjamini and Daniel Yekutieli. “The control of the false discovery rate in multiple

testing under dependency”. In: The Annals of Statistics 29.4 (2001), pp. 1165–1188.

[5] Mireille Besson, Daniele Schön, Sylvain Moreno, Andréia Santos, and Cyrille Magne. “In-

fluence of musical expertise and musical training on pitch processing in music and lan-

guage”. In: Restorative Neurology and Neuroscience 25.3-4 (2007), pp. 399–410.

[6] Peter Boot, Anja Volk, and W Bas de Haas. “Evaluating the role of repeated patterns in

folk song classification and compression”. In: Journal of New Music Research 45.3 (2016),

pp. 223–238.

[7] Leo Breiman. “Random forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

[8] Tom Collins, Robin Laney, Alistair Willis, and Paul H Garthwaite. “Developing and evalu-

ating computational models of musical style”. In: AI EDAM 30.1 (2016), pp. 16–43.

[9] Roger B. Dannenberg. “Style in Music”. In: The Structure of Style: Algorithmic Approaches

to Understanding Manner and Meaning. Ed. by Shlomo Argamon, Kevin Burns, and Shlomo

Dubnov. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 45–57.

[10] W Bas De Haas, Frans Wiering, and Remco C Veltkamp. “A geometrical distance measure

for determining the similarity of musical harmony”. In: International Journal of Multimedia

Information Retrieval 2.3 (Sept. 2013), pp. 189–202.

[11] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. “MuseGAN: Multi-

track sequential generative adversarial networks for symbolic music generation and accom-

paniment”. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018, pp. 34–41.

109

[12] Olive J. Dunn. “Multiple comparisons among means”. In: Journal of the American Statisti-

cal Association 56.293 (1961), pp. 52–64.

[13] Douglas Eck, Adam Roberts, Jesse Engel, Curtis Hawthorne, and Ian Simon. Magenta. Apr.

2019.

[14] Tuomas Eerola, Tommi Himberg, Petri Toiviainen, and Jukka Louhivuori. “Perceived com-

plexity of western and African folk melodies by western and African listeners”. In: Psychol-

ogy of Music 34.3 (2006), pp. 337–371.

[15] Allen Forte. The Structure of Atonal Music. Yale [paperbacks]. Yale University Press, 1973.

[16] Erin E Hannon and Sandra E Trehub. “Metrical categories in infancy and adulthood”. In:

Psychological Science 16.1 (2005), pp. 48–55.

[17] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – Seamless operability

between C++11 and Python. https://github.com/pybind/pybind11. 2017.

[18] Jeff Ens and Philippe Pasquier. “CAEMSI : A Cross-Domain Analytic Evaluation Method-

ology for Style Imitation”. In: International Conference on Computational Creativity. 2018,

pp. 64–71.

[19] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In: The Annals

of Mathematical Statistics 22.1 (1951), pp. 79–86.

[20] Vladimir Levenshtein. “Binary codes capable of correcting deletions, insertions, and rever-

sals”. In: Soviet Physics-Doklady 10.8 (1966), pp. 707–710.

[21] Feynman Liang, Mark Gotham, Matthew Johnson, and Jamie Shotton. “Automatic Stylistic

Composition of Bach Chorales with Deep LSTM.” In: Proceedings of the International

Symposium on Music Information Retrieval. 2017, pp. 449–456.

[22] Ning-Han Liu, Yi-Hung Wu, and Arbee LP Chen. “Efficient kNN search in polyphonic

music databases using a lower bounding mechanism”. In: Multimedia systems 10.6 (2005),

pp. 513–528.

[23] Henry B Mann and Donald R Whitney. “On a test of whether one of two random variables is

stochastically larger than the other”. In: The Annals of Mathematical Statistics 18.1 (1947),

pp. 50–60.

[24] Cory McKay, Julie Cumming, and Ichiro Fujinaga. “jSymbolic 2.2: Extracting features from

symbolic music for use in musicological and MIR research”. In: Proc. of the International

Symp. on Music Information Retrieval. 2018.

[25] Arthur Oettingen. Harmoniesystem in dualer Entwickelung. Dorpat: W. Glaser, 1866.

[26] Jean-François Paiement, Douglas Eck, and Samy Bengio. “A probabilistic model for chord

progressions”. In: Proc. of the International Symp. on Music Information Retrieval. 2005,

pp. 11–15.

110

[27] Emanuel Parzen. “On estimation of a probability density function and mode”. In: The annals

of mathematical statistics 33.3 (1962), pp. 1065–1076.

[28] Philippe Pasquier, Arne Eigenfeldt, Oliver Bown, and Shlomo Dubnov. “An Introduction to

Musical Metacreation”. In: Computer Entertainment 14.2 (2017), pp. 3–17.

[29] Marcus T. Pearce and Geraint A. Wiggins. “Evaluating cognitive models of musical compo-

sition”. In: Proceedings of the 4th international joint workshop on computational creativity.

Goldsmiths, University of London. 2007, pp. 73–80.

[30] Karl Pearson. “On the Criterion that a Given System of Deviations from the Probable in

the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed

to have Arisen from Random Sampling”. In: Breakthroughs in Statistics: Methodology and

Distribution. Ed. by Samuel Kotz and Norman L. Johnson. New York, NY: Springer New

York, 1992, pp. 11–28.

[31] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.

“Scikit-learn: Machine learning in Python”. In: the Journal of machine Learning research

12 (2011), pp. 2825–2830.

[32] Jeremy Pickens and Tim Crawford. “Harmonic models for polyphonic music retrieval”. In:

Proc. of the International Conference on Information and Knowledge Management. 2002,

pp. 430–437.

[33] Jon B Prince, Mark A Schmuckler, and William F Thompson. “The effect of task and

pitch structure on pitch-time interactions in music”. In: Memory & Cognition 37.3 (2009),

pp. 368–381.

[34] Murray Rosenblatt. “Remarks on some nonparametric estimates of a density function”. In:

The Annals of Mathematical Statistics (1956), pp. 832–837.

[35] Markus Schedl, Arthur Flexer, and Julián Urbano. “The neglected user in music information

retrieval research”. In: Journal of Intelligent Information Systems 41.3 (2013), pp. 523–539.

[36] Frieder Stolzenburg. “Harmony perception by periodicity detection”. In: Journal of Mathe-

matics and Music 9.3 (2015), pp. 215–238.

[37] Bob L. Sturm and Oded Ben-Tal. “Taking the models back to music practice: Evaluating

generative transcription models built using deep learning”. In: Journal of Creative Music

Systems 2.1 (2017), pp. 1–29.

[38] Lucas Theis, Aäron van den Oord, and Matthias Bethge. “A note on the evaluation of gener-

ative models”. In: International Conference on Learning Representations. arXiv:1511.01844.

2016.

[39] Godfried T. Toussaint. “A Comparison of Rhythmic Similarity Measures.” In: Proc. of the

International Symp. on Music Information Retrieval. 2004, pp. 242–245.

111

[40] Nicolas Trieu and Robert Keller. “JazzGAN: Improvising with Generative Adversarial Net-

works”. In: 6th International Workshop on Musical Metacreation. 2018.

[41] Alan M. Turing. “Computing Machinery and Intelligence”. In: Mind 59 (1950), pp. 433–

460.

[42] Valerio Velardo, Mauro Vallati, and Steven Jan. “Symbolic melodic similarity: State of the

art and future challenges”. In: Computer Music Journal 40.2 (2016), pp. 70–83.

[43] Anja Volk, Elaine Chew, Elizabeth Hellmuth Margulis, and Christina Anagnostopoulou.

Music similarity: Concepts, cognition and computation. 2016.

[44] Anja Volk, W Bas de Haas, and Peter Van Kranenburg. “Towards modelling variation in

music as foundation for similarity”. In: Proceedings of the 12th International Conference

on Music Perception and Cognition and the 8th Triennial Conference of the European So-

ciety for the Cognitive Sciences of Music. School of Music Studies, Aristotle University of

Thessaloniki. 2012.

[45] Li-Chia Yang and Alexander Lerch. “On the evaluation of generative models in music”. In:

Neural Computing and Applications 1 (Nov. 2018), pp. 1–12.

112

Chapter 6

Improved Listening Experiment Design
for Generative Systems

As published in Ens, J. & Pasquier, P. (2020). Improved Listening Experiment Design for Generative

Systems. AIMC.

113

Abstract

Designing robust listening experiments is a critical component of research on generative music

systems, as they are often the primary mechanism by which systems are bench-marked. However,

the field lacks a set of guidelines for designing these types of experiments. In order to provide

substantiated recommendations for experimental design, we examine the role of two parameters: the

proportion of questions and the proportion of participants, both of which are measured relative to the

total number of observations. Somewhat surprisingly, these parameters vary significantly from study

to study, demonstrating a lack of consensus within the research community. Using experimental

data collected from previous studies, we compare the power and reliability of various experimental

designs, and arrive at guidelines regarding these proportions.

Keywords: Evaluation, Methodology, Generative Systems

114

6.1 Introduction

When evaluating a generative music system (audio or symbolic), human-based assessments are

considered the gold standard. In most cases, participants are provided with one or more musical

excerpts, and are asked to rate or rank the provided excerpts based on their quality. However, there

are no generally accepted guidelines or recommendations for the design of these studies, which is

directly evidenced by a high level of variance in experimental designs across studies published in re-

cent years. We use experimental evidence and theoretical reasoning to critically evaluate the design

of previously published experiments, and rationalize recommendations for improved experimental

design.

We make the distinction between four different methodologies for quantitatively evaluating gen-

erative musical systems via a listening test. A modified Turing test [16] can take two forms, one

where participants are asked whether a single musical excerpt is computer-generated or human-

composed (I) [6, 15, 4], and another where participants select the human-composed musical excerpt

from a pair of musical excerpts (II) [12]. Another approach (III) tasks participants with selecting the

higher quality excerpt from a pair of musical excerpts [9, 8, 7, 14], where one or more of the excerpts

is computer-generated. The final method involves computing the average rating for excerpts from

each source (IV) [2, 3, 13]. Note that we use the term source here rather than generative system, as

real data is often included as a condition in the experiment.

There are many factors which influence the outcome of a listening experiment. These include,

the cultural background of the participant [5], the listening equipment used in the study, and the

physical condition of the participant. However, many of these factors can be difficult for experi-

menters to control, especially when conducting a listening test via an online crowd-sourcing plat-

form. Here we focus on two hyper-parameters which can be directly controlled by the exper-

imenter, the proportion of questions and the proportion of participants. Consider an experiment

E = {(Qγ1 , Sα1 , R1), ..., (Qγnobs , Sαnobs , Rnobs)} consisting of nobs observations, given a set of

questions Q = {Q1, ..., Qnques} and a set of participants S = {S1, ..., Snpar}. Note that a question

is simply a set of musical excerpts sampled from one or more sources, from which a participant

must formulate a response. Given E , the proportion of participants is npar/nobs and the proportion

of questions is nques/nobs. Although these hyper-parameters play a significant role, they have not

been thoroughly scrutinized in this context.

6.2 Experimental Design

An experiment is comprised of factors, which are simply independent variables that are manipu-

lated by the experimenter. There are two types of factors: fixed factors, which have a fixed number

of levels that are of interest to the researcher; and random factors, where a random subset of the

large number of possible levels that are of interest to the researcher are included in the experiment.

Typically, in a listening experiment evaluating generative systems, there is one fixed factor, where

115

each level is a different source (i.e. a generative system or real data). The participant factor, is a

well-known random factor included in most experiments. Practical limitations place restrictions on

the total number of levels (i.e. participants) that can be feasible included in the experiment, which

forces the experimenter to randomly sample from the participant population of interest. In experi-

ments that evaluate generative systems, there is another important random factor, the questions. It

is clearly impossible to include all possible questions within an experiment, so we must settle for a

random sample of questions.

Once we have established the factors within an experiment, it is necessary to determine the ex-

periment design, which specifies the relationship between factors. Pairs of factors can be crossed

or nested. If two factors are crossed, every level of one factor co-occurs with every level the other

factor. If factors are nested, each level of a factor co-occurs with only one level of the other. For ex-

ample, consider a methodology I experiment conducted with two participants (S1, S2), comparing

two sources (M1,M2), where 2 excerpts (eMk

1 , eM
k

2) are generated from each source Mk. Since

methodology I asks participants to listen to a single excerpt and predict whether it was computer-

generated or human-composed, we have two unique questions (QMk

1 , QM
k

2) per source, where each

question consists of a single musical excerpt. Here, the question factor is nested within the source

factor, as each question QM
k

i is unique to the source Mk. Note that this is the case for all listening

experiments evaluating generative systems, since it is exceedingly rare to sample the same question

from two different sources. If each of the 4 questions are shown to each participant, then the par-

ticipant factor would be crossed with the question factor, as each participant-excerpt combination

(Si, eMk

j) is part of the experiment.

There are three common experimental designs: crossed-question, partially-crossed-question and

nested-question. A crossed-question design, shown in Figure 1a, exposes each participant to the

same set of questions. A nested-question design, shown in Figure 1c, nests questions within par-

ticipants, so that each participant is exposed to a different set of questions. It is also possible to

employ a partially-crossed-question design, shown in Figure 1b, where the set of questions that

each participant is exposed to is randomly drawn from a set of questions. As a result, participants

will sometimes be exposed to the same question. Although 6 observations are collected in each of

the experimental designs shown in Figure 1, the sample size of the question random factor varies.

Consequently, the proportion of questions is smallest for a crossed-question design (nquesnobs
= 2

6) and

largest for a nested-question design (nquesnobs
= 6

6).

For purposes of conceptual clarity, we only consider the case where an experiment consists of

≤ 2 sources, as this is an atomic unit that larger experiments are easily factored into. For exam-

ple, consider the paired listening experiment presented in the Music Transformer paper [9], which

compares four sources (Music Transformer, Transformer, LSTM, and the Maestro dataset [7]) using

methodology III. This can be factored into 6 =
(4
2
)

distinct sub-experiments corresponding to each

possible pair of sources. Clearly, if we take steps to improve each sub-experiment, it will have a

positive effect on the experiment as a whole.

116

QM1
1 QM2

2
S1 x x
S2 x x
S3 x x

(a)

QM1
1 QM1

2 QM2
3 QM2

4
S1 x - x -
S2 - x x -
S3 - x - x

(b)

QM1
1 QM1

2 QM1
3 QM2

4 QM2
5 QM2

6
S1 x - - x - -
S2 - x - - x -
S3 - - x - - x

(c)

Figure 6.1: Three different experimental designs: crossed-question (a), partially-crossed-question
(b) and nested-question (c). The cells with x denote the observations that are collected.

6.3 Motivation

There are several motivating factors for this research. First and foremost, without robust experi-

mental design, any claims based on the experimental results are weakened, and in the extreme case

completely invalid. Secondly, there are currently no standard recommendations for experimental de-

sign, which results significant discrepancies between studies. In Figure 6.2, we plot the proportion

of questions (nquesnobs
), the proportion of participants (nparnobs

), the experimental design, and the method-

ology for several recent listening experiments for which the relevant information was available. Of

particular concern, is the fact that the proportion of questions, and experiment design vary signifi-

cantly across experiments, indicating a lack of consensus amongst the research community. Finally,

given the high costs of conducting a study, it is essential that the studies produce accurate results

and are implemented to make efficient use of the allocated resources.

6.4 Experiment 1 : Calculating Experimental Power

A typical approach to evaluate an experimental design is to calculate the power, which is simply the

inverse of the probability of Type II error. In order to calculate the power of an experiment, there

are two factors which must be considered: the variance components, and the sample size [10]. Note

that in our case, there is not a single sample size, but rather a sample size for the participant random

factor, and a sample size for the question random factor. To explore the differences between nested-

question and crossed-question experiment designs, we conduct a parameter sweep for the number

of participants, and the number of questions per participants, calculating the power for each pair

of parameters. We use power calculations designed for experiments with two random factors [17],

and compute the variance components from a previous experiment [2], which featured a crossed-

question design. Since power calculations are not available for partially-crossed designs we can not

117

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Participants

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n
of

 Q
ue

st
io

ns

BachBot (I)Racchmaninof (IV)

CoCoNet* (III)

HRNN (I)

LahkNES [turing/pref] (III)
Wave2Midi2Wave (III)

Music Tran.* (III)

Thickstun (I)Bretan (III)

0 500 1000 1500 2000
Number of Participants

0

100

200

300

400

Nu
m

be
r o

f Q
ue

st
io

ns

BachBot (I)
Racchmaninof (IV)
CoCoNet* (III)

HRNN (I)

LahkNES [pref] (II)

LahkNES [turing] (III)

Wave2Midi2Wave (III)

Music Tran.* (III)

Thickstun (I)

Bretan (III)

Partially-Crossed-Question Crossed-Question Nested-Question

Figure 6.2: The experimental designs employed in recent listening studies for generative systems.
Stars indicate that the number/proportion of participants could not be calculated exactly.

explicitly explore this experiment design here. We deliberately set the x axis of Figure 6.3 to be the

number of questions per participant, rather than the total number of questions, so that the power at

each (x,y) coordinate can be directly compared, as the total number of observations is equivalent for

each experimental design.

The results in Figure 6.3 demonstrate that nested designs are uniformly more powerful than

crossed designs, as we get an average of 2.3 times more power when using a nested experiment with

the same number of total observations. The reason for this is rather straightforward, as a nested-

question experiment design can make use of nobs unique questions, while in a crossed design we

are restricted to nobs
npar

unique questions. Provided that variance components related to the question

factor are non-zero and npar ≥ 1, nested-question experiments will always be more powerful than

crossed question experiments, as they increase the sample size for the question factor by a factor of

npar [10].

The dashed lines in Figure 3a show the different possible combinations of participants (npar)
and questions per participant given a constant number of observations (nobs). This reveals that the

power decreases when we decrease the proportion of participants npar
nobs

, while holding the proportion

of questions constant (nquesnobs
= 1). Note that we cannot observe this same effect in Figure 3b,

since changes to the proportion of participants are confounded with changes to the proportion of

questions. The same type of effect can be observed in a nested-participant experiment design, where

118

4 6 8 10 12 14 16 18 20
number of questions per participant

20

40

60

80

100

120

140

160

180

200

nu
m

be
r o

f p
ar

tic
ip

an
ts

200

600

1000

1400

1800

2200

2600

3000

0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500
0.550

0.600

0.650

0.700

0.750

0.800

4 6 8 10 12 14 16 18 20
number of questions per participant

20

40

60

80

100

120

140

160

180

200

0.150

0.200

0.250

0.300
0.350

0.400

Figure 6.3: Power simulation for nested-question (left) and crossed-question (right) experimental
designs using variance components estimated from Collins’ study. Each dashed line in left plot
illustrates the possible combinations of npar and questions per participant given a constant number
of observations (nobs).

the power decreases when the proportion of questions decreases. However, this type of experiment

design is highly impractical as it requires collecting a single response from each participant.

We can also observe that in a crossed design, there is little advantage to increasing the number

of participants or increasing the number of questions per participant separately. Power mainly in-

creases when the number of participants and the number of questions per participant are increased

together. Furthermore, it is possible to reach a point when adding an additional participant has no

effect on the power at all, since the contour lines eventually become almost vertical. In contrast,

when using a nested design most of the gains come from adding participants, since this effectively

increases the total number of questions in the experiment, as the questions at each participant level

are unique. The efficiency of the nested-question experiment design, is that it allows for both the

sample size for participants and questions to be increased simultaneously. Collectively, these results

demonstrate that crossed-question experiments are under-powered, and that decreasing the propor-

tion of participants or the proportion of questions decreases the power.

6.5 Experiment 2 : Simulating Inter-Experiment Variance

In this experiment, we aim to measure inter-experiment variability, quantifying the reliability of

different experimental designs. Formally, given an experiment E , let ψknpar,nques denote the result

(i.e. the average score for a source) for a randomly sampled subset of E , containing k observations,

npar participants, and nques questions, where each each observation in ψknpar,nques involves the

same source(s). To observe the difference between two experimental designs (α and β), we compute

ψknαpar,nαques and ψk
nβpar,n

β
ques

r times, resulting in the sets Ψα and Ψβ . Then we use Levene’s test [11]

119

data source k nαpar nαques nβpar nβques proportion of significant trials
LahkNES [pref] 10 5 10 10 10 1.00

LahkNES [turing] 10 5 10 10 10 1.00
BachBot 10 10 2 10 10 1.00

Racchmaninoff 9 3 3 9 3 .95

Table 6.1: The proportion of trials where Ψα exhibits more variance than Ψβ .

to determine if the variance of Ψα and Ψβ differs significantly. The entire procedure is repeated 100

times with r = 50000, producing 100 p-values. In order to be sure that our results are simply not

an artifact of the sub-experiment sampling procedure, we also conduct the same procedure using a

version of the data where the responses have been randomly sampled from a uniform distribution,

counting the proportion of times that σ(Ψα) < σ(Ψβ), where σ(Ψi) denotes the variance of the

set Ψi. If the sub-experiment sampling procedure has a significant effect on the outcome, we would

expect this proportion to vary significantly from 0.5, a hypothesis which can be tested using the

Binomial test.

We use the experimental results provided by the authors of following four listening experi-

ments: BachBot [12], Wave2Midi2Wave [7], LahkNES [4], and Racchmaninoff [2]. Although we

contacted the authors of 15 different studies, we only received experimental results from the four

listed above. Note that the experimental design of the original experiments will place inherent lim-

itations on the types of simulations that we can conduct. In the BachBot study, each participant is

presented with two different questions, randomly selected from a pool of 13 questions, resulting

in a partially-crossed-question design. With this data, we can simulate a partially-crossed-question

design ψ10
10,2 and a nested-question design ψ10

10,10. In the Wave2Midi2Wave and LahkNES studies,

there are almost no duplicate questions in the entire experiment, which only allows us to manipulate

the proportion of participants. We simulate two nested-question designs: ψ10
5,10, and ψ10

10,10. Using

the Racchmaninoff data, we can simulate a crossed-question design ψ9
3,3 and a partially-crossed-

question design ψ9
9,3. For each comparison, the proportion of significant results after applying the

false discovery rate correction [1] is shown in Table 6.1. The Binomial test for the Wave2Midi2Wave

simulations was significant, indicating that the sub-experiment sampling procedure biased the result,

so this simulation was excluded from the results. In all other cases, the Binomial test was insignifi-

cant. Collectively, the results demonstrate that increasing the proportion of participants or questions

decreases the inter-experiment variance, confirming the theoretical results presented in experiment

1.

6.6 Discussion and Recommendations

In addition to considering the power and reliability of a particular experimental design, it is also

worth taking the end-point of the experiment into account. In most cases, the end-point of a listening

study for the evaluation of generative systems is an average score for each system. In contrast, the

120

endpoint of an experiment measuring the valence and arousal of audio clips, is the average valence

and arousal for each audio clip. There is a subtle difference between these two types of experiments.

In the first experiment, audio excerpts are a random factor, where we take a random sample from the

entire population of possible generated excerpts. In the second experiment, audio excerpts are a fixed

factor, where we are interested only in the levels contained within the experiment. We do not expect

that the results for one particular audio excerpt will generalize to another audio excerpt in the second

experiment. As a result, it makes sense to collect multiple observations from multiple participants

for each audio excerpt, as we need the average response for each excerpt to be reflective of how

the entire participant population feels about that excerpt. However, when conducting a prototypical

listening experiment for generative systems, we care about what the entire population thinks of each

source, not the individual audio excerpts. To make matters worse, our experiments demonstrated that

collecting multiple observations for a single audio excerpt actually makes the results we actually

care about less reliable and the experiment as a whole less powerful, as the size of the random

sample for audio excerpts representing each source is unnecessarily reduced.

This is not to say that collecting multiple observations for a single audio excerpt is always waste-

ful. In fact, a crossed-question experiment was necessary for calculating the variance components

used our simulations. Furthermore, in cases where inter-rater agreement is the endpoint of an exper-

iment, it is necessary for nquesnobs
< 1. However, most listening experiments for generative systems do

not measure inter-rater agreement. Ultimately, it is absolutely essential that the experiment design

matches the goals of the research question, otherwise we often end up needlessly sacrificing power

and reliability in our experiments. For those who are conducting a prototypical listening experiment

for generative systems, we offer the following advice. Since resources (i.e. time and money) are

finite, we will assume that a fixed number of observations (nobs) can be collected, irrespective of

the experiment design. As our experimental results demonstrate that the sample size of the question

and participant random factors have a significant effect on the power and reliability of the experi-

ment, an ideal experimental design will maximize nques
nobs

and npar
nobs

. First and foremost, this means it

is essential to avoid crossed-question experimental designs, as they reduce nques
nobs

by a factor of npar.

In most cases, there are relatively few barriers to selecting a nested-question design (nquesnobs
= 1) or a

partially-crossed-question design with a large proportion of questions, as sampling from most mod-

els is cheap. In fact, we have seen this experimental design employed in several listening studies

[4, 15, 7]. However, there are many listening studies which feature a small proportion of questions,

needlessly sacrificing power and reliability. Although our results demonstrate that collecting each

response from a unique participant (nparnobs
= 1) would be optimal, this may not be practical, as

there are costs associated with obtaining each participant. Fortunately, most experiments do a good

job balancing the proportion of participants, collecting a modest amount of responses from each

participant.

121

6.7 Conclusion

We have examined two critical parameters for the experimental design of listening studies: the pro-

portion of questions nques
nobs

, and the proportion of participants npar
nobs

. Through experimentation we

demonstrated that when nques
nobs

< 1 or npar
nobs

< 1, the power and reliability of the experiment are

reduced. Since listening studies are a fundamental aspect of research involving generative systems,

and a consensus on best practices for listening experiment design has yet to emerge, these recom-

mendations will undoubtedly be a useful reference point for future research.

122

Bibliography

[1] Yoav Benjamini and Daniel Yekutieli. “The control of the false discovery rate in multiple

testing under dependency”. In: Annals of statistics (2001), pp. 1165–1188.

[2] Tom Collins and Robin Laney. “Computer-generated stylistic compositions with long-term

repetitive and phrasal structure”. In: Journal of Creative Music Systems 1.2 (2017).

[3] Tom Collins, Robin Laney, Alistair Willis, and Paul H Garthwaite. “Developing and evalu-

ating computational models of musical style”. In: AI EDAM 30.1 (2016), pp. 16–43.

[4] Chris Donahue, Huanru Henry Mao, Yiting Ethan Li, Garrison W Cottrell, and Julian

McAuley. “LakhNES: Improving multi-instrumental music generation with cross-domain

pre-training”. In: Proc. of the 20th International Society for Music Information Retrieval

Conference. 2019, pp. 685–692.

[5] Tuomas Eerola, Tommi Himberg, Petri Toiviainen, and Jukka Louhivuori. “Perceived com-

plexity of western and African folk melodies by western and African listeners”. In: Psychol-

ogy of Music 34.3 (2006), pp. 337–371.

[6] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. “Deepbach: a steerable model for

bach chorales generation”. In: Proceedings of the 34th International Conference on Machine

Learning. 2017, pp. 1362–1371.

[7] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,

Sander Dieleman, Erich Elsen, Jesse H. Engel, and Douglas Eck. “Enabling Factorized Pi-

ano Music Modeling and Generation with the MAESTRO Dataset”. In: 7th International

Conference on Learning Representations. 2019.

[8] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville, and Douglas

Eck. “Counterpoint by Convolution”. In: Proceedings of the 18th International Society for

Music Information. 2017, pp. 211–218.

[9] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne,

Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas

Eck. “Music Transformer: Generating Music with Long-Term Structure”. In: 7th Interna-

tional Conference on Learning Representations. 2019.

123

[10] Charles M Judd, Jacob Westfall, and David A Kenny. “Experiments with more than one

random factor: Designs, analytic models, and statistical power”. In: Annual Review of Psy-

chology 68 (2017), pp. 601–625.

[11] Howard Levene. “Contributions to probability and statistics”. In: Essays in honor of Harold

Hotelling (1960), pp. 278–292.

[12] Feynman Liang, Mark Gotham, Matthew Johnson, and Jamie Shotton. “Automatic Stylistic

Composition of Bach Chorales with Deep LSTM.” In: Proceedings of the International

Symposium on Music Information Retrieval. 2017, pp. 449–456.

[13] Marcus T. Pearce and Geraint A. Wiggins. “Evaluating cognitive models of musical compo-

sition”. In: Proceedings of the 4th international joint workshop on computational creativity.

Goldsmiths, University of London. 2007, pp. 73–80.

[14] Adam Roberts, Jesse H. Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. “A Hier-

archical Latent Vector Model for Learning Long-Term Structure in Music”. In: Proceedings

of the 35th International Conference on Machine Learning. 2018, pp. 4361–4370.

[15] John Thickstun, Zaid Harchaoui, Dean P Foster, and Sham M Kakade. “Coupled Recurrent

Models for Polyphonic Music Composition”. In: Proc. of the 20th international society for

music information retreival conference. 2018, pp. 311–318.

[16] Alan M. Turing. “Computing machinery and intelligence”. In: Parsing the Turing Test.

Springer, 2009, pp. 23–65.

[17] Jacob Westfall, David A Kenny, and Charles M Judd. “Statistical power and optimal design

in experiments in which samples of participants respond to samples of stimuli.” In: Journal

of Experimental Psychology: General 143.5 (2014).

124

Chapter 7

The Multi-Track Music Machine: A
Generative System Designed for
Co-Creative Music Composition

125

Abstract

We propose the Multi-Track Music Machine (MMM), a generative system based on the Transformer

architecture that is designed to support co-creative music composition workflows. MMM supports

the infilling of musical material on the track and bar level, and can condition generation on particular

attributes including: instrument type, note density, polyphony level, and note duration. In order to

integrate these features, we employ a different type of representation for musical material, creating a

time-ordered sequence of musical events for each track and concatenating several tracks into a single

sequence, rather than using a single time-ordered sequence where the musical events corresponding

to different tracks are interleaved. We present experimental results which demonstrate that MMM

is able to consistently avoid duplicating the musical material it was trained on, generate music that

is stylistically similar to the training dataset, and that attribute controls can be employed to enforce

various constraints on the generated material. We also outline several real world applications of

MMM , including the production of musical albums, and collaborations with industry partners that

explore integrating MMM into real-world products.

Keywords: Generative Music; Evaluation; Machine Learning; Big Data

126

Input Specifications Generation Methods
System Tracks Instruments Fixed Schema Drums Polyphony Infill Attr. Control
MMM ? 128 - x x x Section 7.4

MuseNet [16] 10 10 - x x - x
MuseGAN [8] 4 4 x x x - -
LahkNES [7] 4 4 x x - - -
CoCoNet [9] 4 4 x - - x -

MusicVae [18] 3 3 x x - - -
SketchNet [4] 1 - x - - x x

[15, 12] 1 - x - - x -
[3, 5] 1 - x - x x -

[20, 22, 21] 1 - x - x - x

Table 7.1: A summary of the input specifications and generation methods of recently published
generative music systems, where - indicates the absence of a particular feature. The ? indicates that
MMM does not have an explicit track limit.

7.1 Introduction

Research involving generative music systems has focused on modelling musical material as an end-

goal, rather than on the affordances of such systems in practical scenarios [19]. As a result, there

has been a focus on developing novel architectures and demonstrating that music generated with

these architectures is of comparable quality to human-composed music, often via a listening test.

Although this is a necessary first step, as systems must be capable of generating compelling material

before they can be useful in a practical context, given the impressive capabilities of the Transformer-

based models in the music domain [7, 10], we shift our focus to increasing the affordances of a

Transformer-based system. Our primary contribution is the Multi-Track Music Machine (MMM),

which utilizes a novel representation for multi-track musical material, resulting in an expressive

and steerable generative system. We discuss ongoing real-world usage of MMM and provide quan-

titative evidence demonstrating that MMM : produces original variations without duplicating the

training data; generates musical material that retains the stylistic characteristics of the training data;

and that attribute control methods are an effective way to steer generation.

7.2 Comparison to Related Work

Given our interest in developing a system which is well-suited to co-creative music composition,

it is worth identifying different factors which enhance the real-world usability of a generative mu-

sic system. We consider two main categories: input specifications, which place restrictions on the

musical material that can be processed by the system; and generation methods, which in some way

augment the interaction between the user and the generative system.

127

7.2.1 Input Specifications

With regards to input specifications, we consider the number of tracks, the number of instruments,

whether a fixed schema of instruments is required, support for drum tracks, and support for poly-

phonic tracks. Note that we define a track to be a distinct set of musical material that is played

by a single instrument, which may be monophonic or polyphonic (i.e. contain multiple notes that

sound simultaneously). Clearly, reducing the restrictions on input material increases the usability of

a system, as it can accommodate a greater number of musical styles and user workflows.

As shown in Table 7.1, most systems either support a single track or require a fixed schema

of instruments. For example, MusicVAE[18] has a fixed schema of instruments, as it is trained to

generate bass, melody and drum trios. One exception is MuseNet[16], which supports up to 10

tracks and any subset of the 10 available instruments. However, there are significant differences

between MuseNet and MMM. MuseNet uses separate NOTE_ON and NOTE_OFF tokens for each

pitch on each track, placing inherent limitations on the number of tracks that can be represented,

as the token vocabulary size cannot grow unbounded. Considering that MuseNet is currently the

largest (in terms of number of weights) music generation model, the number of tracks is unlikely

to be increased without altering the representation. Instead, we decouple track information from

NOTE_ON and NOTE_OFF tokens, allowing the use of the same NOTE_ON and NOTE_OFF tokens

in each track. Although this is a relatively small change, it enables us to accommodate all 128

general MIDI instruments. Furthermore, there is no inherent limit on the number of tracks, as long

as the entire n-bar multi-track sequence can be encoded using less than 2048 tokens. Practically, this

means more than 10 tracks can be generated at once depending on their content. Both MuseNet and

MMM do not require a fixed instrument schema, however, MuseNet treats instruments selections

as a suggestion, while MMM guarantees a particular instrument will be used.

7.2.2 Generation Methods

We consider four different generation methods: unconditional generation, continuation, infilling and

attribute control. Unconditioned generation is analogous to generating music from scratch. Besides

changing the data that the model is trained on, the user has limited control over the output of the

model. Continuation involves conditioning the model with musical material that precedes (tempo-

rally) the music that is to be generated. Since both unconditioned generation and continuation come

for free with any auto-regressive model trained on a temporally ordered sequence of musical events,

most systems are capable of generating musical material in this manner. Infilling, occasionally re-

ferred to as inpainting, conditions generation on a subset of musical material, asking the model to fill

in the blanks, so to speak. Note that infilling can occur at different levels (i.e. note-level, bar-level,

track-level). Track-level infilling is the most coarse, and allows a set of n-tracks to be generated that

are conditioned on a set of k-tracks. Bar-level and Note-level infilling allow for n-bars (resp. notes)

selected across one or more tracks to be re-generated, conditioned on the remaining bars (resp.

notes) in all other tracks. Attribute-control involves conditioning generation on high-level attributes

128

BAR TRACK MULTI-TRACK BAR-FILL

NOTE_ON=60

TIME_DELTA=2

NOTE_OFF=60

NOTE_ON=64

NOTE_ON=67

TIME_DELTA=4

NOTE_OFF=64

TIME_DELTA=4

NOTE_OFF=67

INST=30

<CONTROL>

BAR_START

<BAR>

BAR_END

BAR_START

<BAR>

BAR_END

BAR_START

<BAR>

BAR_END

BAR_START

<BAR>

BAR_END

START

TRACK_START

<TRACK>

TRACK_END

TRACK_START

<TRACK>

TRACK_END

TRACK_START

<TRACK>

TRACK_END

START_FILL

TRACK_START

INST=30

<CONTROL>

BAR_START

FILL_IN

BAR_END

...

TRACK_END

FILL_START

<BAR>

FILL_END

FILL_START

<BAR>

FILL_END

Figure 7.1: The MultiTrack and BarFill representations are shown. The <bar> tokens correspond
to complete bars, the <track> tokens correspond to complete tracks, and the <CONTROL> tokens
refer to attribute control tokens.

such as style, tempo or density. For example, music generated by MuseNet [16] can be conditioned

on a musical style. As shown in Table 7.1, with the exception of SketchNet[4], it is rare to find

systems that support both infilling and attribute control. The current version of the MMM supports

both track-level and bar-level infilling, and allows for attribute control over instrument, note density,

polyphony and note duration. However, we are also actively experimenting with additional attribute

controls. Collectively, these improvements afford the end-user a high-degree of control over the

generated material, which has previously been proposed as a critical area of research [2].

7.3 Proposed Representation

To provide a comprehensive overview of the proposed representation, we first describe how a sin-

gle bar of musical material is represented. Based on representations explored in previous studies

[13, 10], we represent musical material using 128 NOTE_ON tokens, 128 NOTE_OFF tokens, and

48 TIME_SHIFT tokens. Since musical events are quantized using 12 subdivisions per beat, 48

TIME_SHIFT tokens allow for the representation of any rhythmic unit from sixteenth note triplets

129

to a full 4-beat bar of silence. Each bar begins with a BAR_START token, and ends with a BAR_END

token. Tracks are simply a sequence of bars delimited by TRACK_START and TRACK_END tokens.

At the start of each track, immediately following the TRACK_START token, an INSTRUMENT to-

ken is used to specify the MIDI program which is to be used to play the notes on this particular track.

Since there are 128 possible MIDI programs, we have 128 distinct INSTRUMENT tokens. Tokens

which condition generation of each track on various musical attributes follow the INSTRUMENT

token, which will be discussed in Section 7.4. A multi-track piece is simply a sequence of tracks,

however, note that all tracks sound simultaneously rather than being played one after the other. A

piece begins with the START token. This process of nesting bars within a track and tracks within a

piece is illustrated in Figure 1a. Notably, we do not use an END token, as we can simply sample until

we reach the nth TRACK_END token if we wish to generate n tracks. We refer to this representation

as the MultiTrack representation.

Using the MultiTrack representation, the model learns to condition the generation of each track

on the tracks which precede it. At generation time, this allows for a subset of the musical mate-

rial to be fixed while generating additional tracks. However, while the MultiTrack representation

offers control at the track level, it does not allow for control at the bar level, except in cases where

the model is asked to complete the remaining bars of a track. Without some changes, it is not

possible to generate the second bar in a track conditioned on the first, third, and fourth bars. In

order to accommodate this scenario, we must guarantee that the bars on which we want to con-

dition precede the bars we wish to predict in the sequence of tokens that is passed to the model.

To do this, we remove all the bars which are to be predicted from the piece, and replace each bar

with a FILL_PLACEHOLDER token. Then, at the end of the piece (i.e. immediately after the last

TRACK_END token), we insert each bar, delimiting each bar with FILL_START and FILL_END

tokens instead of BAR_START and BAR_END tokens. Note that these bars must appear in the same

order as the they appeared in the original MultiTrack representation, shown in Figure 1b. We refer to

this representation as the BarFill representation. Note that the MultiTrack representation is simply

a special case of the BarFill representation, where no bars are selected for inpainting. To differen-

tiate the BarFill representation from the MultiTrack representation, a START_FILL token is used

instead of a START token.

7.4 Attribute Control

The premise behind attribute controls is quite simple. Given a musical excerpt x, and a measurable

musical attribute a for which we can compute a categorical or ordinal value from x (i.e. a(x)),

the model will learn the conditional relationship between tokens representing a(x) and the musical

material on a track, provided these tokens precede the musical material. Practically, this is accom-

plished by inserting one or more tokens which specify the level of a particular musical attribute a(x)
immediately after the INSTRUMENT token (see Figure 7.1), and before the tokens which specify

the musical material. As a result, our approach is most certainly not limited to the specific musical

130

attributes we discuss below, and can be applied to control any musical feature that can be measured.

We employ three approaches to control musical attributes of the generated material: categorical con-

trols, which condition generation on one of n different categories; value controls, which condition

generation on one of n different ordinal values; and range controls, which condition the system to

generate music wherein a particular musical attribute has values that fall within a specified range.

Note that value controls could be considered a special case of range controls, where the lower bound

and upper bound on the range are equivalent.

Instrument control is an example of a categorical control, as one of 128 different instrument

types can be selected. We use a value control for note density, however, the density categories are

determined relative to the instrument type, as average note density varies significantly between

instruments. For each of the 128 general MIDI instruments, we calculate the number of note onsets

for each bar in the dataset. We divide the distribution for each instrument σ into 10 regions with

the range [P10i(σ), P10(i+1)(σ)) for 0 ≤ i < 10, where Pn(σ) denotes the nth percentile of the

distribution σ. Each region corresponds to a different note density level.

We choose to apply range controls to note duration and polyphony. Each note duration (d) is

quantized as follows blog2(d)c. The quantization process groups note durations into 5 different

bins [1
32 ,

1
16), [1

16 ,
1
8), [1

8 ,
1
4), [1

4 ,
1
2) and [1

2 ,
1
1), which we will refer to as note duration levels. Then

the 15th and 85th percentiles of a distribution containing all note duration levels within a track is

used to condition generation. Polyphony level follows a similar approach. The number of notes

simultaneously sounding (i.e. polyphony level) at each timestep is calculated (a timestep is one 16th

note triplet). Then we use the 15th and 85th percentiles of a distribution containing all polyphony

levels within a track. For both these controls, we use two tokens, one to specify the lower bound

and another for the upper bound. Admittedly, this is fuzzy range control, as strict range control

would typically use the smallest and largest values in the distribution (0th and 100th percentiles

respectively). We elected to use the 15th and 85th percentiles in order to mitigate the effect of

outliers within the distribution, decreasing the probability of exposing the model to ranges in which

values are heavily skewed to one side of the range.

7.5 Training MMM

We use the MetaMIDI Dataset (Chap. 3) to train our model. We train a GPT2 [17] model using

the HuggingFace Transformers library [23] with 8 attention heads, 6 layers, an embedding size of

512, and an attention window of 2048 tokens. Each time we select a n-bar segment during training,

we randomly order the tracks so that the model learns each possible conditional ordering between

different types of tracks. We also select a random subset of bars for inpainting, masking up to 0.75%

of the bars in a single excerpt. Training typically takes 2-3 days using 4 V100 GPUs.

131

[0,0.05) [0,0.1) [0,0.25)
Hamming Distance

10

30

50

70

90

P
er

ce
nt Num Bars

1
2
4
8

Figure 7.2: The percentage of generated excerpts (gi) for which the Hamming distance between any
excerpt from the training dataset and gi is on the range [a,b). A Hamming distance of 0 indicates
two excerpts are identical, while 1 indicates they are very different.

[0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1.0) 1.0
Jaccard Index

10

30

50

70

90

P
er

ce
nt Num Bars

1
2
4
8

Figure 7.3: The percentage of generated excerpts with a Jaccard Index J (oi, gi) on the range [a,b).
A Jaccard Index of 1.0 indicates two excerpts are identical, while 0 indicates they are very different.

7.6 Evaluation and Applications

MMM has seen real-world usage in several contexts, which directly supports our assertion that

MMM is a powerful tool for computationally assisted composition. There is ongoing work involv-

ing the integration of MMM into synthesizers, audio engines for game design, and a digital audio

workstation. MMM has been integrated into a web application, and an Ableton plugin has been

developed. MMM has been used to compose music including an album realized with a prototype

software integrating MMM into Teenage Engineering synthesizers. More details on the real-world

usage of MMM can be found elsewhere1. We also make available examples2 generated by the sys-

tem, as well as an interactive demo in Google collab3 that allows one to generate music with MMM.

Bougueng Tchemeube et al. [1] conducted a user-study to evaluate an integration of MMM

into Cubase, a popular digital audio workstation. The study measured usability, user experience

and technology acceptance for two groups of experienced composers; hobbyists and professionals.

Participants conducted three tasks: producing an arrangement by adding generated tracks to an

existing track, producing a variation of a pre-existing 16-bar multi-track composition, and creating

an original 16-bar composition. One of the strongest findings in the study was that participants

1https://metacreation.net/mmm-examples/

2https://jeffreyjohnens.github.io/MMM/

3https://colab.research.google.com/drive/10ZAdEwHDbL1lVcUGeCdj9FxXnQSNFSH4?usp=sharing

132

https://metacreation.net/mmm-examples/
https://jeffreyjohnens.github.io/MMM/
https://colab.research.google.com/drive/10ZAdEwHDbL1lVcUGeCdj9FxXnQSNFSH4?usp=sharing

enjoyed using the system, relaying experiences of positive surprises that were generated. However,

the study also highlighted room for improvement when it comes to steering MMM’s generations

in a particular direction. Since Bougueng Tchemeube et al. has already conducted a comprehensive

user-study, we do not conduct a listening study for MMM in this chapter. Instead, our experiments

are designed to address other aspects which impact the usability of the system in a real-world setting.

Our evaluation of MMM gauges performance of the system by addressing the following re-

search questions:

1. Originality: Does MMM generate original variations or simply duplicate material from the

dataset?

2. Stylisitc Similarity: Does MMM generate musical material that is stylistically similar to the

dataset?

3. Attribute Controls: How effective are density level, polyphony range and note duration range

controls?

7.6.1 Evaluating the Originality of Generated Material

Intra-Dataset Originality

It is increasingly prescient to quantify the frequency with which a generative system is producing

musical material that is nearly identical to the training dataset, given potential legal issues that may

arise when these systems are deployed into the real world, and the difficulty of guaranteeing that a

generative system does not engage in this type of behaviour [14].

Alternate approaches for measuring originality have been proposed. Collins and Laney proposed

the Cardinality Score [6], which is based on a transposition invariant measure of similarity between

two musical excerpts, with notes represented as a series of onset-time and pitch tuples. One disad-

vantage of this approach is that it if two sets of notes differ from one another by a small non-constant

amount, the similarity will be low, despite being very similar perceptually. Fortunately, this is not

an issue for our approach as each note is represented using multiple cells in a piano roll matrix,

rather than representing notes using onset-time and pitch tuples. Another more promising approach,

is the Originality Report [24], which uses symbolic fingerprinting to measure the similarity be-

tween musical excerpts. However, we elected not to use this approach for several reasons. First, the

run-time of the Originality Report would be quite substantial when working with a large dataset

like the MMD. According to Yin et al., it takes 600 seconds to compute a single query against the

Maestro dataset, which is comprised of 962 MIDI files. Using the MMD, which contains 436,631

MIDI files, a single query would take approximately 37 hours. Note that our estimate accounts for

the fact that the average MIDI file in the Maestro dataset contain 2 times more notes than those in

the MMD. Moreover, since our experiment involves computing hundreds of queries, this approach

quickly becomes intractable on a dataset as large as the MMD. Second, the Originality Report is

not designed to accommodate multi-track music. The symbolic fingerprinting method hashes sets

133

0 10 20 30 40

F3

A#4

F4

0 10 20 30 40

F3

F#3

A#4

F4

Figure 7.4: Two bars with a Jaccard Index of 0.76 and a normalized Hamming Distance of 0.25.

of three note onset and pitch tuples. To avoid selecting sets that span multiple parts or voices, the

authors filter sets based on pitch intervals and time intervals. This works well for string quartets and

piano compositions where individuals parts or voices rarely overlap, but is ill-suited to multi-track

music where note ranges on different tracks frequently overlap. Although there are surely ways to

address this issue, it is likely that these solutions would further impact the run-time of the algo-

rithm. Consequently, we elect to develop our own approach that is suitable for large multi-track

MIDI datasets.

In Section 7.6.1, musical material is represented using a piano roll, which is a T × 128 boolean

matrix specifying when particular pitches are sounding, where T is the number of time-steps. Note

that when we calculate Hamming distance between two piano rolls, we normalize the distance by

the number of non-zero cells in the query piano roll. Therefore, the distance between maximally

different piano rolls is 1. In Figure 7.4, we provide an example of two bars and the normalized

Hamming Distance between them.

Since the dataset contains hundreds of thousands of unique MIDI files, we are faced with a

time complexity issue, and must employ some heuristics to speed this process up. First, rather than

134

searching nearly identical n-bar piano rolls, we search using single-bar piano rolls, and aggregate

the results of n search processes. Note that this means that if n − 1 of the bars have a match in the

dataset, but one of the bars does not, the n-bar excerpt will not be considered to have a match in the

dataset. However, since we are interested in identifying nearly identical matches, this is unlikely to

cause much of an issue. To filter out highly dissimilar candidate matches efficiently, we compute

the Hamming distance between compressed piano rolls first. Given a 48 × 128 piano roll x that

represents a single 4/4 bar of musical material, we discard notes outside the range [21, 109) and take

the maximum value over each consecutive set of 6 time-steps (equivalent to one 1/8 note) on the

first axis, producing a 8×88 matrix x. We calculate the Hamming distance between the compressed

piano rolls, discarding any candidate matches which have a distance greater than 0.25, and then

compute Hamming distance on the full sized piano rolls for the remaining candidate matches. Even

with these optimizations, the search is executed in parallel a 32 core machine and takes an average

of 83 seconds to complete a search for a single 4 bar excerpt. In the worst case, it can take up

to an hour for a single query. Although we would have preferred to use Jaccard index rather than

Hamming distance, as we do in Section 7.6.1, the nature of the heuristics employed prohibited this

option.

We compute 100 trials where we randomly select a 4 track 8 bar musical segment from the test

split of the dataset, blank out n consecutive bars on a single track and generate (i.e. infill) a new set

of bars (gi). Given a hamming distance threshold we determine if gi is nearly identical to any n-bar

excerpt in the training split of dataset, using the method described above. In Figure 7.2 we present

the percentage of trials for which the Hamming distance between any excerpt in the training dataset

and gi is on the specified range. Unsurprisingly, as the number of bars increases, the percentage

of instances where MMM duplicates the training data decrease significantly. This correlation was

expected as shorter generations are more constrained by the surrounding musical content.

Infilling Originality

We also consider the case when the original musical material is simply duplicated when infilling,

resulting in no change to the musical material, and inevitable frustration on the part of the user.

To measure the frequency with which this occurs, we randomly select a 4 track 8 bar musical

segment from the test split of the dataset, blank out n consecutive bars on a single track (oi), and

generate a new set of n bars (gi) to replace (oi). Then we measure the Jaccard index between

piano roll representations of oi and gi. We repeat this process 250 times for each number of bars

(n = 1, 2, 4, 8) and report the results in Figure 7.3. On a whole, as the number of bars increases, the

frequency with which the original material is duplicated decreases. Taken collectively, the results

in Section 7.6.1 and 7.6.1 seem to indicate that the MMM can reliably produce original variations

when the generating 4 or more bars.

135

0.75 1.0 1.25
Temperature

10

30

50

70

90

P
er

ce
nt Num Bars

1
2
4
8

Figure 7.5: The percentage of trials where SC
?
50
Ô?25,Ĝ

?
25

(Ô?25, C?50) ≤ SC
?
50
Ô?25,Ĝ

?
25

(Ĝ?25, C?50). Hatching in-

dicates that the binomial test was insignificant, indicating that Ô? is not more similar to C than
Ĝ?.

0 1 2 3 4 5 6 7 8 9
Note Density Level

10

30

50

70

90

P
er

ce
nt Absolute Difference

0
1
2

Figure 7.6: The percentage of trials for each absolute difference between anticipated and actual note
density level.

[
1

32 , 1
16) [

1
32 , 1

8) [
1

32 , 1
4) [

1
32 , 1

2) [
1

32 , 1
1) [

1
16 , 1

8) [
1

16 , 1
4) [

1
16 , 1

2) [
1

16 , 1
1) [

1
8 , 1

4) [
1
8 , 1

2) [
1
8 , 1

1) [1
4 , 1

2) [1
4 , 1

1) [1
2 , 1

1)
Note Duration Range

10
30
50
70
90

P
er

ce
nt

ag
e

in
 R

an
ge

Figure 7.7: The percentage of note durations within the range shown for 100 trials.

[
1

32 , 1
16) [

1
32 , 1

8) [
1

32 , 1
4) [

1
32 , 1

2) [
1

32 , 1
1) [

1
16 , 1

8) [
1

16 , 1
4) [

1
16 , 1

2) [
1

16 , 1
1) [

1
8 , 1

4) [
1
8 , 1

2) [
1
8 , 1

1) [1
4 , 1

2) [1
4 , 1

1) [1
2 , 1

1)
Note Duration Range

10
30
50
70
90

P
er

ce
nt

ag
e

in
 R

an
ge

Figure 7.8: The percentage of polyphony levels within the range shown for 100 trials.

7.6.2 Quantifying Stylistic Similarity

It is also important that the variations generated by the system are stylistically similar to the dataset.

We use StyleRank (Chap. 5) to measure the stylistic similarity of generated material. StyleRank is

designed to measure the similarity of two or more groups of musical excerpts (G1, ...,Gk) relative

to a style delineated by a collection of ground truth musical excerpts (C). Each musical excerpt is

136

represented using a set of features, described in detail in the original paper, and a Random Forest

classifier is trained to discriminate between G1, ...,Gk and C. Using an embedding space constructed

from the trained Random Forest classifier, the average similarity between Gi and C can be computed

for each i. In what follows, let SCG1,...,Gk(a, b) denote the median similarity between a and b, calcu-

lated using a StyleRank instance trained on G1, ...,Gk and C.

For this experiment, we use the same musical excerpts from Section 7.6.1 (O = {o1, ..., o250},G =
{g1, ..., g250}), however, we remove each pair (oi, gi) where J (oi, gi) ≥ 0.75, producing Ô and

Ĝ. This ensures that we do not bias our measurements by including generated material that is

nearly identical to the original preexisting material (oi) from the dataset. We also assemble a set

of 1000 n-bar segments (C) from the dataset. For each trial, we compute SC
?
50
Ô?25,Ĝ

?
25

(Ô?25, C?50) ≤

SC
?
50
Ô?25,Ĝ

?
25

(Ĝ?25, C?50), where X?
n denotes a subset of X containing n elements, which are selected

randomly for each trial. We collect the results for 100 trials, and compute a binomial test. An in-

significant result indicates that Ô and Ĝ are equally similar to C. We report the results of this test

using different number of bars and temperature in Figure 7.5.

The results indicate that when generating with a temperature of 1.0, infilled generations are

roughly equivalent to the original preexisting material in terms of musical style (as quantified by

StyleRank). Our results also show that when temperature is greater than 1.0, the generated material

is more frequently considered less similar to the dataset (C) than Ô, an effect that increases along

with the number of generated bars. This demonstrates that our measurement instrument is capable

of detecting small differences in musical style, which are the byproduct of slightly changing the

temperature, increasing the entropy of the probabilities output by the model.

7.6.3 Evaluating the Effectiveness of Attribute Controls

MMM allows the user to condition generation on various attributes such as note density, polyphony

level, and note duration. To evaluate how effective these control mechanisms are, we conduct 100

trials where we generate 8-bar segments using a particular attribute control method, and measure

the difference between the anticipated outcome and the actual outcome. For note density control,

we measure the absolute difference between the density level the generation was conditioned on and

the density level of the generated material. For polyphony level and note duration, we compute the

distribution of values (either polyphony level or note duration level) from the generated material, and

count the percentage of values that fall within the specified range. If attribute control is successful,

we would expect at least 70% of the values to be within this range, as we used the 15th and 85th

percentiles while training.

The results for note density, shown in Figure 7.6, demonstrate that the majority of times the

absolute difference between the anticipated and actual density level is most often 0, and rarely

exceeds 1. This seems to indicate that this control method is quite effective. The results for Note

Duration, shown in Figure 7.7 demonstrate that this attribute control method is quite effective, as

the median outcome (in terms of percentage of note durations within the specified range) is at or

137

above 70% in all cases except for [1
4 ,

1
2), [1

4 ,
1
1) and [1

2 ,
1
1). In contrast the Polyphony Level control

is less effective, with the median outcome lying below the 70% threshold in many cases. Calculating

polyphony level at a single time-step is inherently more difficult than note duration, as the former

requires knowledge of where multiple notes start and end, while the later only requires knowing

where one note starts and ends. This difference in difficulty seems to be reflected in the results, as

the MMM is better at controlling note duration than polyphony.

7.7 Limitations and Future Work

Although we pre-processed MIDI files from the MMD by discarding those with irregular time signa-

tures, and quantizing note onsets to a 16th-note triplet grid, this process may be insufficient in some

cases. Both the Lakh MIDI dataset and the MMD contain MIDI files that have been performed, and

thus, do not always align to a fixed temporal grid, even after quantization. Since research [11] has

demonstrated that the performance of a model is bounded by the quality of the training data, future

work may involve improvements to the data pre-processing pipeline, to ensure MMM is trained

on high quality data exclusively. With regards to our experiments that measure the originality of

material generated by MMM, our approach only detects highly similar matches that have been

transposed on the range [-6,6) semitones. The basis for this decision was that MMM is trained on

excerpts from the dataset that have been transposed on the range [-6,6) semitones. Although our

tests would demonstrate if excerpts generated by MMM copy directly from the training data, they

would not detect transpositions outside this range. Although the Originality Report [24] is transpo-

sitionally invariant and does not suffer from this limitation, the run-time of this approach made it

intractable. A tractable solution which can be applied in future work, would involve increasing the

transposition range for our method.

7.8 Conclusion

In this paper, we introduced MMM, a generative system which employs a novel approach to rep-

resenting musical material, resulting in increased control over the generated output. We provided

experimental evidence demonstrating the effectiveness of the system, and outlined several ongoing

real-world applications. One main limitation is that the model can only generate 8 bars at once.

However, using an auto-regressive approach longer pieces can be generated by repeatedly condi-

tioning on some portion of the preexisting material. Future work involves optimizing the model for

real-time generation, expanding the set of attribute controls, and continued integration of MMM

into real-world products and platforms.

138

Bibliography

[1] Renaud Bougueng Tchemeube, Jeff Ens, and Philippe Pasquier. “Evaluating Human-AI

Interaction with MMM-Cubase: A Creative AI System for Music Composition”. In: Under

Review at the 32nd International Joint Conference of Artificial Intelligence. 2023.

[2] Jean-Pierre Briot, Gaëtan Hadjeres, and François Pachet. Deep Learning Techniques for

Music Generation. Computational Synthesis and Creative Systems. Springer International

Publishing, 2019.

[3] Chin-Jui Chang, Chun-Yi Lee, and Yi-Hsuan Yang. “Variable-Length Music Score Infilling

via XLNet and Musically Specialized Positional Encoding”. In: Proceedings of the 22nd

ISMIR. Ed. by Jin Ha Lee, Alexander Lerch, Zhiyao Duan, Juhan Nam, Preeti Rao, Peter

van Kranenburg, and Ajay Srinivasamurthy. 2021, pp. 97–104.

[4] Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. “Music Sketch-

Net: Controllable Music Generation via Factorized Representations of Pitch and Rhythm”.

In: Proceedings of the 21st ISMIR. Ed. by Julie Cumming, Jin Ha Lee, Brian McFee,

Markus Schedl, Johanna Devaney, Cory McKay, Eva Zangerle, and Timothy de Reuse.

2020, pp. 77–84.

[5] Wayne Chi, Prachi Kumar, Suri Yaddanapudi, Rahul Suresh, and Umut Isik. “Generating

Music with a Self-Correcting Non-Chronological Autoregressive Model”. In: Proceedings

of the 21st ISMIR. Ed. by Julie Cumming, Jin Ha Lee, Brian McFee, Markus Schedl, Jo-

hanna Devaney, Cory McKay, Eva Zangerle, and Timothy de Reuse. 2020, pp. 893–900.

[6] Tom Collins and Robin Laney. “Computer-generated stylistic compositions with long-term

repetitive and phrasal structure”. In: Journal of Creative Music Systems 1.2 (2017).

[7] Chris Donahue, Huanru Henry Mao, Yiting Ethan Li, Garrison W Cottrell, and Julian

McAuley. “LakhNES: Improving multi-instrumental music generation with cross-domain

pre-training”. In: Proc. of the 20th International Society for Music Information Retrieval

Conference. 2019, pp. 685–692.

[8] Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo, and Sungroh Yoon. “How Generative Adver-

sarial Networks and Their Variants Work: An Overview”. In: ACM Computing Surveys 52.1

(2019), 1:43.

139

[9] Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron C. Courville, and Douglas

Eck. “Counterpoint by Convolution”. In: Proceedings of the 18th International Society for

Music Information. 2017, pp. 211–218.

[10] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne,

Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas

Eck. “Music Transformer: Generating Music with Long-Term Structure”. In: 7th Interna-

tional Conference on Learning Representations. 2019.

[11] Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep Mehta, Shanmukha

Guttula, Shashank Mujumdar, Shazia Afzal, Ruhi Sharma Mittal, and Vitobha Munigala.

“Overview and importance of data quality for machine learning tasks”. In: Proceedings of

the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

2020, pp. 3561–3562.

[12] Gautam Mittal, Jesse H. Engel, Curtis Hawthorne, and Ian Simon. “Symbolic Music Gen-

eration with Diffusion Models”. In: Proceedings of the 22nd ISMIR. Ed. by Jin Ha Lee,

Alexander Lerch, Zhiyao Duan, Juhan Nam, Preeti Rao, Peter van Kranenburg, and Ajay

Srinivasamurthy. 2021, pp. 468–475.

[13] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Simonyan. “This time

with feeling: learning expressive musical performance”. In: Neural Computing and Appli-

cations (2018), pp. 1–13.

[14] Alexandre Papadopoulos, Pierre Roy, and François Pachet. “Avoiding Plagiarism in Markov

Sequence Generation”. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial

Intelligence. Ed. by Carla E. Brodley and Peter Stone. AAAI Press, 2014, pp. 2731–2737.

[15] Ashis Pati, Alexander Lerch, and Gaëtan Hadjeres. “Learning to Traverse Latent Spaces for

Musical Score Inpainting”. In: Proc. of the 20th International Society for Music Information

Retrieval Conference. 2019, pp. 343–351.

[16] Christine Payne. “MuseNet”. In: OpenAI (Apr. 2019). openai.com/blog/musenet.

[17] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

“Language models are unsupervised multitask learners”. In: OpenAI Blog 1.8 (2019), p. 9.

[18] Adam Roberts, Jesse H. Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. “A Hier-

archical Latent Vector Model for Learning Long-Term Structure in Music”. In: Proceedings

of the 35th International Conference on Machine Learning. 2018, pp. 4361–4370.

[19] Bob L Sturm, Oded Ben-Tal, Úna Monaghan, Nick Collins, Dorien Herremans, Elaine

Chew, Gaëtan Hadjeres, Emmanuel Deruty, and François Pachet. “Machine learning re-

search that matters for music creation: A case study”. In: Journal of New Music Research

48.1 (2019), pp. 36–55.

140

[20] Hao Hao Tan and Dorien Herremans. “Music FaderNets: Controllable Music Generation

Based On High-Level Features via Low-Level Feature Modelling”. In: Proceedings of the

21st ISMIR. Ed. by Julie Cumming, Jin Ha Lee, Brian McFee, Markus Schedl, Johanna

Devaney, Cory McKay, Eva Zangerle, and Timothy de Reuse. 2020, pp. 109–116.

[21] Ziyu Wang, Dingsu Wang, Yixiao Zhang, and Gus Xia. “Learning Interpretable Represen-

tation for Controllable Polyphonic Music Generation”. In: Proceedings of the 21st ISMIR.

Ed. by Julie Cumming, Jin Ha Lee, Brian McFee, Markus Schedl, Johanna Devaney, Cory

McKay, Eva Zangerle, and Timothy de Reuse. 2020, pp. 662–669.

[22] Ziyu Wang and Gus Xia. “MuseBERT: Pre-training Music Representation for Music Under-

standing and Controllable Generation”. In: Proceedings of the 22nd ISMIR. Ed. by Jin Ha

Lee, Alexander Lerch, Zhiyao Duan, Juhan Nam, Preeti Rao, Peter van Kranenburg, and

Ajay Srinivasamurthy. 2021, pp. 722–729.

[23] Thomas Wolf et al. “HuggingFace’s Transformers: State-of-the-art Natural Language Pro-

cessing”. In: ArXiv abs/1910.03771 (2019).

[24] Zongyu Yin, Federico Reuben, Susan Stepney, and Tom Collins. “Measuring When a Mu-

sic Generation Algorithm Copies Too Much: The Originality Report, Cardinality Score,

and Symbolic Fingerprinting by Geometric Hashing”. In: SN Computer Science 3.5 (2022),

p. 340.

141

Chapter 8

Conclusion

8.1 Summary

This thesis presents contributions related to the evaluation of CSMG systems (Chapters 4, 5, 6),

as well as the MetaMIDI Dataset (Chapter 3), and the Multi-Track Music Machine (Chapter 7).

In Chapter 1, we specify the structure of the thesis, outlining the motivations and contributions.

Chapter 2 provides an overview of related work in the area of CSMG systems, detailing the data,

representation, architectures and evaluation methods that have previously been employed. Chap-

ter 3 details the process of assembling the MetaMIDI Dataset, the largest publicly available MIDI

dataset to date, comprised for over 440,000 MIDI files and an expanded set of metadata for many

of the MIDI files. CAEMSI is introduced in Chapter 4, which is a domain-agnostic analytic evalu-

ation methodology for style imitation, which employs permutation testing to measure the statistical

equivalence or difference between two sets of artifacts. StyleRank is described in Chapter 5, a sys-

tem for ranking symbolic musical excerpts based on their similarity to a style, as delineated by an

arbitrary collection of MIDI files. Chapter 6 advances recommendations for listening test design,

motivated by a lack of consensus within the research community, as evidenced by inconsistencies

across listening study experimental designs. Finally, the Multi-Track Music Machine is proposed in

Chapter 7, and StyleRank is employed as part of the evaluation process.

8.2 Applications of the Multi-Track Music Machine

The Multi-Track Music Machine (MMM) has been integrated into several related areas of research

including: Calliope [1], an online computer-assisted composition system for music generation; and

studies on generative music for game design. In addition, we have several ongoing collaborations

with industry partners, who are interested in integrating MMM into their products.

8.2.1 Calliope

The Calliope system [1] is a co-creative interface for multi-track music generation, which uses the

Multi-Track Music Machine to generate musical material. It provides many features that are similar

142

to a standard DAW, such as the ability to view and play MIDI files, as well as add and remove tracks.

However, it is also designed with the features of MMM in mind, providing a convenient interface

for bar and track infilling, and an interface for controlling various hyper-parameters which influence

the generation process. Calliope also integrated StyleRank [8], which is used to rank a collection

of MIDI files with respect to their musical similarity to a target MIDI file. This can be especially

useful when Calliope’s batch generation mode is employed to generate many different variations, as

they can be ranked based on similarity to the original.

8.2.2 Affect Models for Game Design

The research of Plut et al. [11] used the MMM system to expand a manually composed score into

a generative score. To accomplish this, manually composed MIDI files were provided to MMM and

bars were progressively infilled to create many variations of the original MIDI file. The resulting

generative score was incorporated into a game (Galactic Deffense) that was used by Plut et al. to

evaluate the Predictive Gameplay-based Layered Affect Model (PreGLAM) in a real-world setting.

8.2.3 Industry Collaborations

There are ongoing collaborations with industry partners which involve integrating MMM into vari-

ous products, and exploring issues related to the acceptability and usability of these systems in the

real-world. With Steinberg, which develops Cubase, we have developed a streamlined integration of

MMM, and are currently running a user-experiment which measures the acceptability and usability

of the system within this context. With another industry partner we are exploring the integration of

MMM into a portable audio synthesizer. Finally, we are also collaborating with another industry

partner who is interested in integrating MMM into software that is used to create adaptive music for

video games. An Ableton plugin has also been developed for MMM.

8.2.4 Music Composition

MMM has been also used to compose music including: an album 1 realized with a prototype soft-

ware integrating MMM into Teenage Engineering synthesizers; and an entry into the AI Song Con-

test 2.

8.3 Limitations and Future Work

In this section, we discuss limitations and opportunities for future work related to the research

presented in this thesis.

1https://open.spotify.com/artist/3AcNnEmImsLGiOQbv9r3Ha

2https://www.aisongcontest.com/participants-2022/monobor-x-mashmachine

143

https://open.spotify.com/artist/3AcNnEmImsLGiOQbv9r3Ha
https://www.aisongcontest.com/participants-2022/monobor-x-mashmachine

8.3.1 MetaMIDI Dataset

The MIDI files contained in the MetaMIDI Dataset (MMD) and the Lakh MIDI Dataset (LMD) are

heterogeneous, in stark contrast to smaller homogeneous datasets like the Maestro Dataset [6]. Al-

though some may view the heterogeneity of the MMD and LMD as a cause for concern, in our view,

this is a positive feature of both datasets. First, one of the primary contributions of these datasets

is that they aggregate and de-duplicate a large collection of MIDI files, which were previously dis-

persed across hundreds of different websites. Second, the heterogeneous nature of the data means

that these datasets can support the development of a variety of generative systems. Moreover, once

the data has been aggregated, it is relatively easy for researchers to define a pre-processing pipeline

that suits the particular needs of the research project. For example, although non-quantized MIDI

files may be of little use for developing a system that generates musical scores, they are essential for

developing systems that generate music that sounds like a human performance. Rather than implic-

itly imposing a specific research agenda on the users of the dataset by curating or pre-processing

the MIDI files, we elect to provide the MIDI files as is.

8.3.2 CSMG Evaluation Methods

A substantive portion of the thesis was devoted to the development of analytic evaluation methods

for CSMG systems [7, 8]. Although these methodologies were specifically designed to address the

limitations of the prototypical listening test, they are not without their own limitations.

CAEMSI is based on the Frequentist Hypothesis Testing (FHT) paradigm, which introduces

some limitations when testing for equivalence. When conducting an equivalence test using CAEMSI,

an equivalence interval must be defined, that specifies the range on which the two distributions will

be considered equivalent. In general, choosing an appropriate equivalence interval is domain depen-

dant. To complicate matters further, CAEMSI is technically distance metric agnostic. As a result,

when determining a suitable equivalence interval, one must also account for the distance metric

that is being employed. Consequently, alternate approaches that are based on Bayes Factor Analysis

(BFA) may be more appropriate solution. For example, Yin et al. [14] have used non-parametric

equivalence tests based on the BFA paradigm to compare several generative music systems. How-

ever, we must note that the non-parametric tests [4] used by Yin et al. were unavailable at the time

our research was being conducted, as they were published several years later.

In the chapter that introduces CAEMSI, we use Normalized Compression Distance [10] (NCD),

which is a highly generalized distance metric that is domain agnostic. Unsurprisingly, when using

such a metric, there are limitations when applied to specific domains. For example, in a musical

context it is often desirable to account for transposition or time shift when measuring the distance

between two excepts, however, NCD is unable to account for these types of transformations. As

a result, NCD(X,Y) would not be at a minimum when Y is a transposition of X, or when Y is a

time-stretched version of X. Since NCD is based on information theory and utilizes compression

to measure the distance between two inputs, it is unlikely that it corresponds to human perception

144

uniformly. With respect to this limitation, it is important to reiterate that CAEMSI can accommodate

any distance metric, so it is possible to use a distance metric that is more suited to a particular

domain. Importantly, the results presented in Chapter 4 demonstrate that NCD can discriminate

between the work of two different composers, despite the domain specific limitations discussed

above. However, since this thesis focuses on the music domain, NCD’s limitations with respect

to common musical transformations directly motivated the development of StyleRank, a domain

specific solution.

StyleRank represents musical material using a set of features, however, these features may be in-

adequate for some types of music, as the experiments which validated StyleRank only used classical

music. Furthermore, we feel it is necessary to moderate our claim in Section 5.9 that "[StyleRank]

is highly correlated with human perception of stylistic similarity", as the experimental results only

demonstrate a correlation with human perception of stylistic similarity for J.S. Bach chorales, which

certainly does not guarantee generalization across all musical styles. Although StyleRank appears

to work effectively with the other genres of music present in the MetaMIDI dataset, an expanded

evaluation of StyleRank was beyond the scope of this thesis.

To validate both CAEMSI and StyleRank, we employed a test where we measured their ability

to discriminate between the work of two different composers. Admittedly, when evaluating a genera-

tive music system, we are testing for a much smaller difference, as we aim to measure the difference

between human-composed music and generated music in the same style as the human composer. As

with human participants, there are inherent limitations to the differences that can be perceived when

comparing musical stimulus, and this limitation may have some impact on the results. However, the

results presented in section 7.6.2 do indicate that StyleRank is capable of detecting the difference

between generated and human-composed music when the temperature is slightly increased, which

directly supports the claim that these evaluation methods are suitable for the task. Future work in

this area could involve a larger studies comparing the results of human-listening experiments with

these analytic methods across a wide variety of musical genres.

When discussing the motivating factors for CAEMSI and StyleRank, we emphasize the limita-

tions of listening studies with respect to domain knowledge, human bias against generative systems,

variability and scalability. However, it is important to acknowledge that human assessments are the

gold standard when it comes to evaluating generative music systems. As a result, any analytic met-

ric or methodology must be validated against human perception. Undoubtedly, this is a fundamental

limitation of any analytic evaluation method, as we first must demonstrate that it corresponds to

human perception, before it can be applied.

8.3.3 Optimization of the Multi-Track Music Machine

Although we are satisfied by the generative capabilities of MMM, the computational demands of the

system impose some limitations on where it can be deployed. When processing larger sections of

musical material, MMM can require up to 32GB of memory, which currently prohibits deployment

145

on many devices. Furthermore, the time which is required to process a generative request currently

prohibits real-time applications.

There are several promising areas of future work, which may assist in mitigating issues related

to memory consumption and running time. First, it would be worthwhile to experiment with replac-

ing the GPT-2 [12] architecture, which has an attention mechanism [13] with quadratic complexity,

with an architecture that reduces the computational complexity of the attention mechanism [9, 3,

2]. Second, the knowledge distillation [5] technique could be used to train a smaller network to

replicate the probability distributions output by the original network using inputs from the training

dataset. Another possibility, is to employ compressed vector-based representations of musical ma-

terial, allowing a set of bars to be represented using a set of fixed-size vectors. These vectors could

be used to represent portions of the musical context instead of the lengthy discrete token sequences

that are currently used. This would reduce memory consumption and running time without major

changes to the architecture. Since the development of attention-based architectures and knowledge-

distillation training curriculum are active areas of research, there are a myriad of possibilities to be

explored, which was simply beyond the scope of this thesis, and have thus been left to future work.

8.3.4 Improving Attribute Control in the Multi-Track Music Machine

The current attribute controls for note duration and polyphony level can be considered "fuzzy"

controls. Since minimum and maximum are not robust estimators of the bounds of a distribution,

as these values can be skewed by a single outlier, we elected to use the 15% and 85% percentiles

to determine the bounds of note duration and polyphony level distributions. Collecting informal

feedback from users of MMM made it clear that the trade-off for statistical validity, was users ability

to understand and interpret these controls. Unfortunately, in some cases, directly contributed to a

lack of trust in the system, which is undoubtedly something important to address in future iterations

of the system.

Future work in this area may involve using hard controls that prohibit MMM from generating

note durations or polyphony levels outside of the specified range. Since the framework for inte-

grating attribute controls is quite general, as we can train a model to respect any control specified

by a programmatic function that can assign a discrete valued output to each item in the training

dataset, additional attribute controls may be developed in the future. These may include controls

for: genre, silence amount, pitch range, musical key, melodic complexity, rhythmic complexity, va-

lence, arousal and tension. It is also worth exploring controls using vectors of continuous values, as

this will accommodate control over domains that are not best represented using discrete values.

8.3.5 Expanding the Rhythmic Capabilities of the Multi-Track Music Machine

When assembling the MIDI files from which the MetaMIDI dataset is comprised, a specific effort

was not made to include MIDI files exclusively containing rhythmic musical material. Since MMM

146

was trained using the MetaMIDI dataset, it may be worth aggregating rhythmic MIDI files, and

including these files in the training dataset to improve the rhythmic generation capabilities of MMM.

8.3.6 Performative Interpretation with the Multi-Track Music Machine

MMM is trained using MIDI files that are quantized to the nearest sixteenth note triplet, and thus

generates quantized musical material. Future work will likely involve exploring various approaches

to integrating performed interpretation of note timing, as well as velocity.

147

Bibliography

[1] Renaud Bougueng Tchemeube, Jeff Ens, and Philippe Pasquier. “Calliope: An Online Gen-

erative Music System for Symbolic Multi-TrackComposition”. In: Proceedings of the Inter-

national Conference on Computational Creativity (2022).

[2] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. “Generating long sequences

with sparse transformers”. In: arXiv preprint arXiv:1904.10509 (2019).

[3] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,

Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. “Re-

thinking attention with performers”. In: arXiv preprint arXiv:2009.14794 (2020).

[4] Johnny van Doorn, Alexander Ly, Maarten Marsman, and E-J Wagenmakers. “Bayesian

rank-based hypothesis testing for the rank sum test, the signed rank test, and Spearman’s

ρ”. In: Journal of Applied Statistics 47.16 (2020), pp. 2984–3006.

[5] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. “Knowledge distilla-

tion: A survey”. In: International Journal of Computer Vision 129.6 (2021), pp. 1789–1819.

[6] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-Zhi Anna Huang,

Sander Dieleman, Erich Elsen, Jesse H. Engel, and Douglas Eck. “Enabling Factorized Pi-

ano Music Modeling and Generation with the MAESTRO Dataset”. In: 7th International

Conference on Learning Representations. 2019.

[7] Jeff Ens and Philippe Pasquier. “CAEMSI: A Cross-Domain Analytic Evaluation Method-

ology for Style Imitation.” In: Proceedings of the International Conference on Computa-

tional Creativity. 2018, pp. 64–71.

[8] Jeff Ens and Philippe Pasquier. “Quantifying Musical Style: Ranking Symbolic Music

based on Similarity to a Style”. In: Proc. of the International Symposium on Music In-

formation Retrieval. 2019, pp. 870–877.

[9] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. “Reformer: The efficient transformer”.

In: arXiv preprint arXiv:2001.04451 (2020).

[10] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul MB Vitányi. “The similarity metric”. In: IEEE

transactions on Information Theory 50.12 (2004), pp. 3250–3264.

[11] Cale Plut, Philippe Pasquier, Jeff Ens, and Renaud Bougueng. “Preglam: A Predictive,

Gameplay-Based Layered Affect Model”. In: Gameplay-Based Layered Affect Model ().

148

[12] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

“Language models are unsupervised multitask learners”. In: OpenAI Blog 1.8 (2019), p. 9.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural in-

formation processing systems. 2017, pp. 5998–6008.

[14] Zongyu Yin. “New evaluation methods for automatic music generation”. PhD thesis. Uni-

versity of York, 2022.

149

Appendix A

Cumulative Dissertation information

150

SIAT Guidelines

WRITING A CUMULATIVE THESIS

Produced by the SIAT Graduate Program Committee, 6 November 2013, amended May 2021

This document is adjunct to SIAT's calendar entry and to SFU's Graduate General Regulations. It

describes SIAT's normal practice with respect to the topic it addresses.

It has been approved by SIAT's Graduate Caucus.

The PhD and Masters thesis may have the form of a monograph (i.e., the classic thesis format of one

single document), or of a compilation with a number of scholarly peer-reviewed articles (“cumulative

thesis”). Students should always consult early on with their senior supervisor and committee, who will

discuss with them and decide what form of thesis is the most suitable for a given case.

Please note that, the guidelines suggested here are to outline possible criteria and courses of actions

when preparing a cumulative thesis. The students’ supervisory committee might have different criteria

or requirements and will decide on what contributions constitute a thesis.

1. In the case of a cumulative thesis, the selected scholarly articles are to be connected by an initial

introduction chapter (explaining the subject and scope of the work and how the different articles

contribute) and a summative final discussion chapter (that includes the overall contributions, main

conclusions, and an outlook). This serves to interrelate the contributions as well as discuss and draw

conclusions from the entire work. The publications need to be integrated as chapters into the theme of

the thesis and must deal with the overall topic of the thesis. The thesis should have continuous

pagination and an aggregated bibliography. The individual papers may still have their own bibliography

in addition.

2 a) Phd Thesis: The PhD thesis should have a content and depth corresponding to a classic (monograph-

style) thesis. E.g., this might be achieved by about 3-6 peer-reviewed conference papers, journal articles,

or other written scholarly contributions of high value where the supervisory committee assesses the

quality as being appropriate. The articles should maintain such a level that they could be accepted for

publication in an international scholarly journal with a rigorous referee procedure. At least two of these

articles should already have been accepted for publication or be published. All may already be

published. For published articles, the comprehensive bibliographic reference should be stated. For

accepted or submitted manuscripts, the venue and date of acceptance/submission should be included.

2 b) Masters thesis: The Masters thesis should have a content and depth corresponding to a classic

(monograph-style) thesis. E.g., this might be achieved by at least 2 peer-reviewed conference papers,

journal articles, or other scholarly written contributions of high value where the supervisory committee

assesses the quality as being appropriate. The articles should maintain such a level that they could be

accepted for publication in an international scholarly journal with a rigorous referee procedure. All of

these articles need to be submissible (as judged by the supervisory committee), submitted, accepted, or

published. For published articles, the comprehensive bibliographic reference should be stated. For

accepted or submitted manuscripts, the venue and date of acceptance/submission should be included.

151

3. The individual articles may have been written together with the main supervisor, another supervisor

or other persons. In order to show that the candidate has attained the intended proficiency, the

majority of the articles must have been written by the candidate personally (which should normally

result in first authorship) and comprise a substantial part of the thesis as a whole. The thesis should be

accompanied by a detailed description of all the authors’ contributions to each of the articles.

4. In terms of its scholarly contribution, a cumulative thesis in its entirety shall satisfy the same academic

requirements as a thesis in the form of a monograph. Any submission of constituent parts that had been

published/submitted/written before the student started his/her doctoral/masters studies or is primarily

based on prior work may be included to contextualize the thesis if properly declared, but typically does

not count towards the scholarly contribution of the thesis.

5. Before your article is published by a publisher, you can attempt to retain specific rights to your work

through a publication agreement addendum, such as the SPARC Canadian Author Addendum. If you did

not retain rights to re-use your article, you can request permission to include your article in your thesis

by emailing or writing to the copyright holder, explaining how and why you want to use the work and

requesting permission. If granted permission, you should keep a record of who gave the permission,

what was permitted, the date, and how to contact the person who gave the permission. A copy of each

relevant copyright release must be included in your Thesis Package. If the publisher will not grant you

permission, it may still be possible to use the content of the pre-print or post-print of your article,

depending on the publisher’s copyright policies outlined in the publisher's copyright transfer / author

publication agreement, many of which can be found on the SHERPA/RoMEO website. You can find the

latest information about copyright on the Copyright at SFU website. If you have questions about

retaining or obtaining copyright permission, you can always contact your liaison librarian.

152

Appendix B

The Significance of the Low Complexity
Dimension in Music Similarity
Judgements

As published in Ens, J. & Pasquier, P. (2017). The Significance of the Low Complexity Dimension
in Music Similarity Judgements. ISMIR.

153

Abstract

Previous research has demonstrated that similarity judgements are context specific, as they are
shaped by cultural exposure, familiarity, and the musical aesthetic of the content being compared.
Although such research suggests that the criterion for similarity judgement varies with respect to
the musical style of the content being compared, the specific musical factors which shape this crite-
rion are unknown. Since dimensional complexity differentiates musical genres, and has been shown
to affect similarity judgements following lifelong exposure, this experiment investigates the short-
term influence of dimensional complexity on similarity judgements. Rhythmic and pitch sequences
with two levels of complexity were factorially combined to create four distinct types of prototype
melodies. 51 participants rated the similarity of each type of prototype melody (M) to two varia-
tions, one in which the pitch content was modified (M̄p), and another in which the rhythmic content
was modified (M̄r). The results indicate that rhythm and pitch complexity both play a significant
role, influencing the perceived similarity of M̄p, and M̄r. The dimension bearing low complexity
information was found to be the predominant factor in similarity judgements, as participants found
modifications to this dimension to significantly decrease perceived similarity.

Keywords: Generative Music; Evaluation; Machine Learning; Big Data

154

B.1 Introduction

Similarity directly informs our experience of music, enabling the perception of cohesion within a
musical work, and the categorization of musical works. Consequently, developing models that en-
capsulate the manner in which similarity is perceived, is of critical importance within the areas of
Musicology, Music Cognition and Music Theory [30]. In particular, the search for robust and flexi-
ble similarity measures has dominated research in the Music Information Retrieval (MIR) domain,
as large digital databases of music information necessitate content-based querying and retrieval, and
classification. Although there is a large body of research that explores similarity perception within
music, many aspects of similarity perception are not yet fully understood. The current study cor-
roborates previous evidence that similarity criterion vary with respect to the musical content being
compared [9], demonstrating that the complexity of pitch and rhythmic content influence similarity
perception.

Since pitch and rhythm are the two most prominent musical dimensions in the context of symbolic
notation, the current study will manipulate complexity along these dimensions and observe the ef-
fects on similarity perception. Although no musical dimensions are completely orthogonal, as a
modification in a particular dimension may affect the perception of other dimensions, the complex-
ity of pitch and rhythmic content can be measured independently, and there is evidence that these
dimensions are processed separately in cognition [13, 27]. Therefore, pitch and rhythm complexity
were considered to be independent for the purposes of this study. Pitch content refers to the sequence
of pitches encapsulated in a particular melody, and rhythm content refers to the sequence of dura-
tions. Dimensional complexity refers to the absolute level of complexity along a particular musical
dimension. In this study we measure the dimensional complexity of pitch and rhythm content.

B.2 Related Work

Previous work examining the perception of musical similarity, has focused on establishing a hi-
erarchy of musical dimensions, ranking their observed contributions to similarity perception. On
a whole, most research claims that rhythmic information is the most important. Halpern [7] con-
structed 16 melodies — a factorial combination of two pitch sequences, two rhythmic sequences,
two tonal structures and forward and reversed versions — and found that rhythm was the most
important distinguishing factor, followed by pitch, direction and tonal structure. Similarly, Rosner
and Meyer [19] found rhythm to be the strongest determinant of melodic similarity. Despite the
general consensus that rhythm plays a dominant role in similarity judgements, pitch still plays a
considerable role. Dowling [2] demonstrated that a modified imitation of a prototype melody is
often misidentified as the prototype when it has a similar pitch contour.

Given the multidimensional nature of music, many researchers have found it useful to make the
distinction between surface-level and structural features. In general, surface-level attributes include
contour, loudness and tempo while structural attributes denote aspects of form, thematic devel-
opment and patterns. In short term contexts, where participants are unfamiliar with the musical
material being compared, surface-level features are a strong predictor of both melodic [19, 15, 22]
and polyphonic [9] similarity. Prince [15] found that rhythm was the dominant aspect informing
perceived melodic similarity, followed by contour, meter, and tonal structure.

155

However, there is increasing evidence which questions the generality of these results, as contextual
factors including familiarity, cultural exposure, and the aesthetic of the musical content being com-
pared, have been shown to have a considerable effect on similarity perception. Pollard-Gott found
that with repeated listening, surface level features became less influential and thematic material be-
came more important [14]. Similarly, the long term analysis of a collection of folk melodies by a
panel of experts, placed emphasis on thematic and motivic similarity above all other factors [31].
Schubert and Stevens [22] found that contour is more important than harmonic structure for making
similarity comparisons, but with musical expertise, harmonic structure also has an effect.

Other research has shown that cultural exposure affects similarity perception. Hannon and Trehub
[8] found the metrical bias of North American adults to be the result of an enculturation processes,
with no evidence of a natural predisposition for the simple meters which characterize much of
western music. Goldstone [6] suggests that humans learn by focusing on perceptual features that are
more informative, at the cost of decreased attention towards other dimensions. This phenomenon has
been observed in a musical context, where the voice that consists of immediate and exact repetitions
of a short musical fragment tends to perceptually decrease in salience for the listener over time
[24]. Instead, the listener is naturally drawn to focus on the high complexity voice. Since distinct
rhythmic durations occur at a relatively higher frequency than distinct pitches in western music, they
demand less attention than pitch content. After years of exposure, this likely results in an increased
sensitivity to the pitch content in a melody [17]. Notably, Eerola et al. [3] demonstrated that musical
complexity perceptions are shaped by exposure to different musical culture, which likely results
from the mechanisms described above.

In addition to the factors mentioned above, music aesthetic has been shown to influence how simi-
larity is perceived. Lamont and Dibben [9] examined similarity relationships in two contrasting mu-
sical styles, requiring participants to rate the similarity of extracts from a Beethoven sonata (op. 10,
no. 1, first movement) and a dodecaphonic work composed by Schoenberg (Klavierstück op. 33a).
Nine polyphonic excerpts were selected from each piece, each approximately eight measures long,
and the similarity of each possible combination was rated by participants, resulting in 36 similarity
ratings for each piece. Notably, both pieces are composed for solo piano, and have more than one
theme which is developed throughout the duration of each work. They found that similarity judge-
ments were primarily based on surface level features, however, the similarity judgements for each
piece were predominantly influenced by different surface features. These results suggested that each
piece establishes a different similarity criterion within which listeners make appropriate similarity
judgements. Although Lamont and Dibben demonstrated that the criterion for similarity judgements
varies with respect to the musical aesthetic of the stimuli being compared, the specific musical fac-
tors which caused this phenomenon are still unknown, directly motivating our experiment.

B.3 Motivation

As evidenced by the brief overview in section B.2, numerous studies have demonstrated the preva-
lent influence of contextual factors on musical similarity judgements [14, 31, 8, 17, 9], directly
motivating further study in this area. Since contextual factors like cultural exposure and familiarity
are difficult to integrate into a similarity measure, this study examines the third contextual factor, the
role of the musical content itself in shaping a criterion for similarity judgements. The phenomenon
that Lamont and Dibben [9] observed, provides evidence that musical content influences the manner

156

in which music is compared, as participants used different musical dimensions to make comparisons
depending on the nature of the musical content. In light of this evidence, it is worthwhile to exam-
ine how specific musical characteristics of the content being compared shape similarity judgements,
which does not appear to have been examined previously. Due to the fact that dimensional complex-
ity differentiates musical genres [3], and affects similarity judgements following lifelong exposure
[8], this experiment investigates the short-term influence of dimensional complexity on melodic
similarity judgements. More specifically, this study investigates the role of dimensional complex-
ity in shaping awareness to modifications in that particular dimension, effectively establishing a
criterion for melodic similarity judgements.

Previous research has shown that limitations on the human capacity for musical memory, have an
effect on musical perception. Participants found it more difficult to retain melodies with complex
contours, which were devoid of any repetition, and were often unable to distinguish them from an-
other complex contour [18]. Moreover, complexity was one of four variables which collectively pre-
dicted the recognizability of melodies when presented a second time [20]. In these cases, it seems
likely that working memory limitations make it difficult to encapsulate all aspects of a complex
melody on first exposure. In summarizing recent research on working memory limitations, Cowan
[1] proposes that there is a capacity of three to five chunks in working memory for young adults.
According to these findings, modifications to the musical dimension bearing the least complex mu-
sical material should be the easiest to detect, which suggests that this musical dimension would have
a predominant influence on similarity judgements. Collectively, this research supports the follow-
ing hypothesis: modifications to the musical dimension bearing low complexity information will
result in a significant decrease in similarity, in comparison to similar modifications to the musical
dimension bearing high complexity information.

B.4 Methodology

B.4.1 Participants

The participants were recruited online using the Crowdflower 1 crowdsourcing platform, and re-
quired to pass a test before participating in the experiment. Participants were paid $0.02 USD for
each question they answered, in accordance with the typical compensation offered to Crowdflower
users. Of the 96 participants who took the test, 76 passed (79.2%) and 63 completed the experiment.
12 participants responses were deemed ineligible based on the inconsistent responses to an identical
question. In total, 51 participants came from 25 different countries.

B.4.2 Stimuli

Measuring Complexity

Given the multifaceted nature of complexity, it is necessary to make the distinction between the
entropy based complexity measures proposed by Eerola et al. [3], and the notion of complexity

1https://www.crowdflower.com/

157

which grounds the current study. Shannon Entropy quantifies the disorder or uncertainty inherent in
an information source based on a representative probability distribution [23]. Eerola et al. calculate
entropy using the marginal probability of each symbol in a sequence. This type of complexity will
be referred to as entropym. Although entropym has been shown to correlate with the percieved com-
plexity of musical sequences [16], this measurement of complexity does not provide the necessary
resolution to make comparisons between many musical sequences. For an explicit example, con-
sider the following pitch sequences, s1 = {c, d, e, f, c, d, e, f}, and s2 = {c, f, e, d, e, c, d, f}. Even
though s1 exhibits less complexity than s2, both s1 and s2 have the same entropym, as this mea-
surement does not take the repetition of longer phrases into consideration. Clearly, it is necessary to
take the repetition of phrases into consideration when measuring complexity.

Admittedly, this can be accomplished by calculating the entropy rate of an n-th order markov chain
derived from the musical sequence being measured, however there are still issues with this approach.
In contrast to the manner in which humans perceive musical content, and by extension musical com-
plexity, the entropy rate is not designed to distinguish between repetition which occurs within the
prevailing metric structure, and repetition which spans metrical boundaries. Research suggests that
humans perceive music by breaking it into a series of chunks [5], and have a natural tendency to
project metre onto sequences of sound, despite the absence of acoustic cues for metric organization
[4]. In addition, when listening to music, humans naturally extract motivic patterns [32], and larger
formal structures [12]. Since humans segment music in accordance with metrical boundaries, it is
likely that humans are less sensitive to repetition which is obscured by these boundaries. Conse-
quently, a true measure of musical complexity must take this distinction into account.

Furthermore, an entropy based model of complexity is not capable of taking similarity into consid-
eration, as entropy is based on the lossless encoding of an information source [23]. This becomes
more of an issue when entropy is being measured with respect to larger subsequences, as is the case
when measuring the n-th order entropy rate. This formulation of complexity cannot make the dis-
tinction between a collection of subsequences which share the same contour, and a collection that
does not. As a result, it seems most reasonable to take the collective dissimilarity of subsequences
segmented with respect to the prevailing metric structure, as a measure of complexity. Consequently,
a homogeneous collection of segments would be perceived as having a low complexity, while a di-
verse collection of segments would be perceived as having a high complexity. We use the term
redundancy to refer to this type of complexity throughout the paper.

In order to quantify redundancy, two different measures were used. Thul’s [28] adaptation of Tan-
guiane’s [26, 25] algorithm, measures redundancy by counting the number of root patterns, at sev-
eral hierarchical levels. This will be referred to as Tanguiane’s Rhythmic Complexity (TRC). The
other measure of redundancy is calculated using Eqn (B.1), where (S) is a set of subsequences,
derived by segmenting a sequence of symbols into measures. Notably, Eqn (B.1) also requires a
distance metric (D). Chronotonic distance [29] is used to measure Rhythmic Sequence Complex-
ity (RSC), and a similarity measure proposed by Maidín [10] is used to measure Pitch Sequence
Complexity (PSC). Admittedly, segmenting a pitch sequence according to metre means that PSC is
dependant on the rhythmic content, however, within-measure rhythmic patterns have no bearing on
PSC in this paradigm, and the metric structure is not being manipulated in this study. Although PSC
does not account for the complexity of individual segments, section B.4.2 describes how complex-
ity is restricted in this experiment, effectively mitigating the variance of segment complexity in the
current study.

158

A

A4 B4 C5 D5

A B

 A4 B4 C5 D5 E5 A4 B4 G4

A B C

 1/8 1/8 1/4 1/2 1/2 1/8 1/8 1/4 3/8 1/4 1/8 1/4

A B A*

A B B B*

INST-0

INST-1

 = 120

OPUSMODUS

Figure B.1: A melody with complex rhythm and simple pitch, using letters to show the form of each
dimension.

f(S) = 1
|S|

|S|∑
i=1

min{D(Si, Sj) : j 6= i; 1 ≤ j ≤ |S|} (B.1)

Prototype Melodies

In this experiment, there were four types of melodies; rhythms-pitchs, rhythms-pitchc, rhythmc-pitchs,
and rhythmc-pitchc, where s denotes a simple or low complexity sequence, and c denotes a complex
sequence 2. In addition, eight versions of each melody type were constructed, resulting in 32 (4×8)
prototype melodies of equal length (three measures). As mentioned in section B.4.2, redundancy
quantifies the degree to which an information source is self similar and contains periodic repetition
in conjunction with the prevailing metrical structure. In light of this aim, melodies were comprised
of three measure-length phrases, with phrase repetition varied to create two distinct levels of com-
plexity. Low complexity sequences had a formal pattern AAB, where a pattern is repeated in the first
two measures, and a new pattern is introduced in the last measure. High complexity sequences had a
formal pattern ABC, where each measure is dissimilar. This construction process is demonstrated in
Figure B.1, which shows a high complexity rhythm sequence and a low complexity pitch sequence.

Care was taken to restrict the variability of entropym based complexity, using measures proposed by
Eerola et al. [3]. Since the pitch sequences were constructed from scales consisting of five distinct
pitch classes, Entropy of pitch class distribution and Entropy of interval distribution did not vary
significantly. Similarly, rhythm sequences were constructed from four distinct durations, limiting
the variance of Entropy of note duration distribution and Rhythmic variability. Notably, it seemed
reasonable to have fewer distinct durations than pitch classes, as research has demonstrated that
most listeners are able to perceive pitch diversity more readily [17]. A One-Way Analysis of Vari-
ance (ANOVA) across all four prototype melody types demonstrated that none of these entropym
based complexity measures were a significant source of variance, while PSC, RSC and TRC var-
ied significantly. Furthermore, the entropy rate – calculated using a first order markov chain – did
not vary significantly across melody type. This verified that our experiment measured the effect of
variations in redundancy in relative isolation.

In order to restrict the variance of segment complexity, Mean interval size and Note density were
restricted, which Eerola et al. [3] found to be a significant source of complexity. Each melody was
constrained to an octave range, restricting the Mean interval size. The Note density, was invariant

2The melodies used in this experiment can be found at https://mlab-experiments.iat.sfu.ca/ismir2017/audio

159

https://mlab-experiments.iat.sfu.ca/ismir2017/audio

for each constructed melody, as each melody had four notes per measure, and was three measures
long.

Modified Melodies

For each prototype melody (M), two modified versions were constructed for the main experiment:
a version in which the pitch is modified (M̄p), and a version in which the rhythm is modified
(M̄r). This process involved reversing the order of the measures in the dimension which is to be
modified. As a result, regardless of the nature of the prototype melody, the first and last measures
of the modified melody were different. Since test questions required a ground truth answer, three
additional types of modified melodies were constructed: a melody in which the pattern form of M
was transformed from AAB to ABA in the pitch dimension (M̄rp̄), a melody in which the pattern
form of M was transformed from AAB to ABA in the rhythm dimension (M̄pr̄), and a melody in
which both dimensions were modified (M̄b).

B.4.3 Experimental Design

The experiment consisted of two independent variables, rhythm and pitch content complexity. Both
rhythm and pitch complexity had two levels, low and high. This resulted in a 2 × 2 repeated mea-
sures experimental design, with four distinct types of prototype melodies. Participants were pre-
sented with a series of questions, consisting of a prototype melody (M) and two modified melodies
(melody A, melody B). There were two types of test questions, which were developed using the
modified melodies described above. The first type of question, compared either M̄rp̄ and M against
the prototypeM , or M̄pr̄ andM againstM . This had an indisputable answer, as one of the modified
melodies was in fact an exact replica of the prototype. The second type of question, compared M̄p

and M̄b to the prototype, or compared M̄r and M̄b to the prototype. Given the manner in which
these melodies were constructed, M̄p and M̄r are more similar to the prototype, as they are identical
to the prototype along a single dimension, while M̄b is dissimilar in both dimensions.

For the actual experiment itself, there was a single type of question, in which M̄r and M̄p were com-
pared against the prototype. Irregardless of the type of question, the two modified melodies were
randomly assigned to be melody A or melody B. For each question, participants rated the similarity
of melody A to M , and melody B to M , on a Likert scale from 1 to 20, where 20 indicates maximal
similarity. In the analysis below, the difference (D = S(M, M̄r) − S(M, M̄p)) between the per-
ceived similarity of M̄r to M (S(M, M̄r)), and the perceived similarity of M̄p to M (S(M, M̄p)),
is taken as the dependent variable. As a result, a positive value of D indicates that modifications to
the rhythm dimension have less of an effect on similarity than modifications to the pitch dimension,
while a negative value of D indicates the opposite.

B.4.4 Procedure

Before participating in the experiment, participants were required to complete 10 test questions with
a minimum accuracy of 80%. The test questions served two purposes, eliminating those who were
not taking the task seriously, and familiarizing participants with the similarity domain within which

160

Simple Pitch Complex Pitch Simple Pitch Complex Pitch
Simple Rhythm Complex Rhythm

Simple Pitch Complex Pitch Simple Rhythm Complex Rhythm

Mr is more
similar

Mp is more
similar

D
iff

er
en

ce
 b

et
w

ee
n

S(
M

,M
r)

an
d

S(
M

,M
p)

Prototype Melody Pitch Complexity Rhythm Complexity

Figure B.2: (a) The difference between the perceived similarity of the modified rhythm melody
and the perceived similarity of the modified pitch version for each prototype melody complexity
category, with 95% confidence intervals. (b) The main effects of pitch and rhythm complexity with
95% confidence intervals

they were being asked to make comparisons. Once the test was successfully completed, partici-
pants were presented with 10 randomly ordered questions, consisting of eight different experiment
questions (representing each of the eight different types of prototype melodies), a test question, and
a repeated experiment question. The repeated experiment question was used to determine if par-
ticipants were answering the questions consistently. For each question, the prototype melody was
selected randomly from a collection of eight versions, and the key was randomly transposed so that
the content varied from question to question. After listening to all three melodies, participants were
asked to indicate which of the two modified versions was more similar to the prototype, and rate the
similarity of melody A and melody B on a Likert scale from 1 to 20.

B.5 Results

Since the ANOVA is relatively robust to violations of normality [21], the 2-Way ANOVA was con-
ducted without transforming the data, despite the violation of the assumption of normality. A 2-Way
ANOVA revealed the main effect of rhythm complexity (F (50) = 9.17, p = .004, η2

p = .155)
and pitch complexity (F (50) = 5.31, p = .025, η2

p = .096), while the interaction between rhythm
complexity and pitch complexity was insignificant (p = .657). To be thorough, an Aligned Rank
Transform was performed on the data, correcting for the effects of the non-normal distributions
of the data [33]. Using the transformed data, a 2-Way ANOVA revealed main effect of rhythm
complexity (F (50) = 9.82, p = .003, η2

p = .164) and pitch complexity (F (50) = 6.26, p =
.016, η2

p = .111), while the interaction between rhythm complexity and pitch complexity was in-
significant (p = .601). These results corroborate the analysis of the untransformed data, indicating
that 16.4% of the variability in similarity ratings were explained by changes in rhythm complexity,
and 11.1% of the variability was explained by changes in pitch complexity.

As predicted, there was a main effect of rhythm complexity and pitch complexity, both shown in Fig-
ure B.2. Melodies containing low complexity rhythmic content (M = 0.451, SD = 5.26) were sig-
nificantly lower than those containing high complexity rhythmic content (M = 2.49, SD = 5.81),

161

which indicates that participants were more sensitive to pitch modifications when pitch sequences
were less complex. This effect was pronounced in cases where the rhythmic sequence was more
complex, as participants found pitch modified melodies (M̄p) to be significantly less similar to
rhythmc-pitchs prototype melodies than rhythm modified melodies (M̄r). Conversely, melodies con-
taining low complexity pitch content (M = 2.26, SD = 5.43) were significantly higher than those
containing high complexity pitch content (M = 0.676, SD = 5.73), which indicates that partici-
pants were more sensitive to rhythmic modifications when rhythmic sequences were less complex.
Similarly, this effect was pronounced in cases where the pitch sequence was more complex, as par-
ticipants found rhythm modified melodies (M̄r) to be significantly less similar to rhythms-pitchc
prototype melodies than pitch modified melodies (M̄p). Therefore, the dimension bearing low com-
plexity musical content was found to play a significant role in similarity judgements, as modifica-
tions to that dimension significantly decreased perceived similarity.

An analysis of the individual prototype melody conditions revealed that the rhythms-pitchc condi-
tion (M = −0.235, SD = 5.21) was significantly less than the rhythmc-pitchs condition (M =
3.39, SD = 5.39), as pitch modified melodies were the most similar to rhythms-pitchc proto-
types, and rhythm modified melodies were the most similar to rhythmc-pitchs prototypes. The
rhythms-pitchs condition (M = 1.14, SD = 5.27) and the rhythmc-pitchc condition (M = 1.59, SD =
6.12) were roughly equivalent, and participants did not find a particular type of modified melody to
be more similar, relative to the two other conditions. Collectively, these results indicate that melodies
which are modified in the dimension bearing low complexity information are perceived as signif-
icantly less similar than melodies which are modified in the dimension bearing high complexity
information.

B.6 Discussion

As evidenced by the results presented above, modifications to the dimension bearing low complexity
information result in a significant decrease in perceived similarity, demonstrating that the dimension
bearing low complexity information plays a more significant role in melodic similarity judgments.
On a whole, the values for all four conditions were positively skewed (Figure 2a), indicating that
modifications to the pitch content of a melody had a greater influence on perceived similarity. Since
there is no benchmark with which to compare rhythmic sequence complexity and pitch sequence
complexity, it was not possible to equate the complexity across dimensions. Consequently, some
skew in either direction was expected. The positive skew may indicate that the rhythmic content
of the melodies in this experiment was on average more complex, and participants had difficulty
noticing modifications in the rhythm dimension. Alternatively, due to the enculturation process that
Hannon and Trehub [8] observed, participants may have paid more attention to the pitch content, re-
sulting in the slight positive skew. When these factors are considered, it is arguably most meaningful
to interpret the conditions in relation to each other, as some skew in either direction was inevitable.
Viewed from this perspective, the hypothesis is directly corroborated, as the rhythms-pitchc con-
dition is the lowest, the rhythmc-pitchs is the highest, and the rhythms-pitchs and rhythmc-pitchc
conditions are in the middle.

Further analysis reveals that previous experiments are likely a special case of the generalized theory
proposed in this paper. Monahan et al. [11] and Halpern [7] both make the claim that rhythm con-
tributes more significantly to similarity perception, however, the rhythmic component of their stim-

162

uli is predominantly low complexity, and the pitch component of their stimuli is relatively higher on
average. Notably, this was measured using PSC, RSC, and TRC. Although Halpern and Monahan et
al. attribute their results to an inherent bias towards rhythm, the results of this experiment suggest
that the relative complexity of the rhythm and pitch content provides a more robust explanation.

Admittedly, there are several limitations to the generalization of the results of this study. First and
foremost, the observed relationship between dimensional complexity and similarity judgements may
manifest itself quite differently when working with longer melodies, or polyphonic music. Sec-
ondly, due to the fact that musical complexity is multifaceted and far from understood, determining
the relatively low complexity dimension may be quite difficult in some contexts. Despite the afore-
mentioned limitations, the limited variance of Eerola et al.’s entropy based complexity measures
provides substantial support for the generalization of these findings, as most western music makes
use of the same limited collection of distinct note durations and pitch classes [16]. As a result, al-
though this form of entropy based complexity is the source of some variability within the musical
cannon, redundancy arguably accounts for more of this variation. Consequently, the results of this
study are not restricted to a particular genre, and are relevant across musical genres.

B.7 Conclusion

Similarity is shaped by several factors, including familiarity, and cultural conditioning. This study
asserts the significance of another factor – the nature of the musical content which is being compared
– by examining the effects of dimensional complexity on similarity judgements. The general notion
that characteristics of the musical content being compared have some bearing on the criterion used
to make similarity judgements, is not new, and has been observed in past experiments [9]. However,
the manner in which musical content establishes a criterion for similarity judgements has not been
explored previously. The results of this study provide evidence that pitch and rhythmic complexity
are factors which shape the criterion used in similarity judgements, as the dimension bearing rel-
atively low complexity information has a greater influence on similarity perception. Furthermore,
the results of this experiment are corroborated by previous experiments [7, 11], offering a general
explanation for these previous findings.

Developing robust and flexible similarity measures continues to be a dominant area of research
in the MIR domain, as large digital databases of music information necessitate accurate methods
for comparison and categorization. As a result, adapting existing similarity measures to take di-
mensional complexity into account, is a possible application of the findings of this study. Future
research is also necessary to investigate the role of complexity along other dimensions, including
dynamics, articulation and timbre. Furthermore, the manner in which complexity is perceived along
a single dimension is in need of continued exploration, as several issues with pre–existing meth-
ods for measuring complexity have been discussed in section B.4.2. Clearly, musical similarity is a
complex phenomenon which is deserving of continued exploration, as the results of this experiment
have explicitly demonstrated that similarity judgements are dependant on another contextual factor,
the complexity of pitch and rhythm content in the musical material being compared.

163

Bibliography

[1] Nelson Cowan. “The Magical Mystery Four: How Is Working Memory Capacity Limited,
and Why?” In: Current Directions in Psychological Science 19.1 (2010), pp. 51–57.

[2] Walter J. Dowling. “Scale and contour: Two components of a theory of memory for melodies.”
In: Psychological Review 85.4 (1978), pp. 341–354.

[3] Tuomas Eerola, Tommi Himberg, Petri Toiviainen, and Jukka Louhivuori. “Perceived com-
plexity of western and African folk melodies by western and African listeners”. In: Psychol-
ogy of Music 34.3 (2006), pp. 337–371.

[4] Paul Fraisse. “Rhythm and Tempo”. In: The Psychology of Music. Ed. by Diana Deutsch.
New York: Academic Press, 1982, pp. 149–181.

[5] Rolf Inge Godøy, Alexander Refsum Jensenius, and Kristian Nymoen. “Chunking in music
by coarticulation”. In: Acta Acustica united with Acustica 96.4 (2010), pp. 690–700.

[6] Robert L. Goldstone. “Learning to perceive while perceiving to learn”. In: Perceptual Orga-
nization in Vision: Behavioural and Neural Perspectives. Ed. by R Kimchi, M Behrmann,
and C Olson. New Jersey: Lawrence Erlbaum Associates, 2003, pp. 233–278.

[7] Andrea R. Halpern. “Perception of structure in novel music”. In: Memory & cognition 12.2
(1984), pp. 163–170.

[8] Erin E Hannon and Sandra E Trehub. “Metrical categories in infancy and adulthood”. In:
Psychological Science 16.1 (2005), pp. 48–55.

[9] Alexandra Lamont and Nicola Dibben. “Motivic Structure and the Perception of Similarity”.
In: Music Perception: An Interdisciplinary Journal 18.3 (2001), pp. 245–274.

[10] Donncha O. Maidín. “A geometrical algorithm for melodic difference”. In: Computing in
musicology: a directory of research 11 (1998), pp. 65–72.

[11] Caroline B Monahan and Edward C Carterette. “Pitch and Duration as Determinants of
Musical Space”. In: Music Perception: An Interdisciplinary Journal 3.1 (1985), pp. 1–32.

[12] Christiane Neuhaus, Thomas R Knösche, and Angela D Friederici. “Similarity and repeti-
tion: An ERP study on musical form perception”. In: Annals of the New York Academy of
Sciences 1169 (2009), pp. 485–489.

[13] Isabelle Peretz and Max Coltheart. “Modularity of music processing.” In: Nature neuro-
science 6.7 (2003), pp. 688–691.

[14] Lucy Pollard-Gott. “Emergence of Thematic Concepts in Repeated Listening to Music”. In:
Cognitive psychology 15.1 (1983), pp. 66–94.

164

[15] Jon B. Prince. “Contributions of pitch contour, tonality, rhythm, and meter to melodic sim-
ilarity.” In: Journal of experimental psychology. Human perception and performance 40.6
(2014), pp. 2319–37.

[16] Jon B. Prince and Peter Q. Pfordresher. “The role of pitch and temporal diversity in the per-
ception and production of musical sequences”. In: Acta Psychologica 141.2 (2012), pp. 184–
198.

[17] Jon B. Prince, Mark A. Schmuckler, and William F. Thompson. “The effect of task and
pitch structure on pitch-time interactions in music”. In: Memory & cognition 37.3 (2009),
pp. 368–381.

[18] Thomas W. Reiner. “Pitch-distance and contour complexity in the recognition of short
melodies”. In: Journal of Scientific Psychology September (2011), pp. 27–36.

[19] Burton S. Rosner and Leonard B. Meyer. “The perceptual roles of melodic process, contour,
and form”. In: Music Perception 4.1 (1986), pp. 1–39.

[20] P. A. Russell. “Memory for music: A study of musical and listener factors”. In: British
Journal of Psychology 78.3 (1987), pp. 335–347.

[21] Emanuel Schmider, Matthias Ziegler, Erik Danay, Luzi Beyer, and Markus Bühner. “Is It
Really Robust?: Reinvestigating the robustness of ANOVA against violations of the normal
distribution assumption”. In: Methodology 6.4 (2010), pp. 147–151.

[22] Emery Schubert and Catherine Stevens. “The effect of implied harmony, contour and mu-
sical expertise on judgments of similarity of familiar melodies”. In: Journal of New Music
Research 35.2 (2006), pp. 161–174.

[23] Claude Elwood Shannon. “A Mathematical Theory of Communication”. In: The Bell System
Technical Journal 27.July (1948), pp. 379–423.

[24] Cecilia Taher, René Rusch, and Stephen McAdams. “Effects of Repetition on Attention in
Two-Part Counterpoint”. In: Music Perception 33.3 (2016), pp. 306–318.

[25] Andranick S. Tanguiane. “A Principle of Correlativity of Perception and Its Application
to Music Recognition”. In: Music Perception: An Interdisciplinary Journal 11.4 (1994),
pp. 465–502.

[26] Andranick S. Tanguiane. Artificial Perception and Music Recognition. Berlin: Springer-
Verlag, 1993, pp. 1–210.

[27] William Forde Thompson, Michael D Hall, and Jeff Pressing. “Illusory conjunctions of pitch
and duration in unfamiliar tone sequences”. In: J Exp Psychol Hum Percept Perform 27.1
(2001), pp. 128–140.

[28] Eric Thul. “Measuring the Complexity of Musical Rhythm”. PhD thesis. McGill University,
2008.

[29] Godfried T. Toussaint. “A comparison of rhythmic similarity measures”. In: Proc. Interna-
tional Conference on Music Information Retrieval (ISMIR 2004) (2004), pp. 242–245.

[30] Anja Volk, Elaine Chew, Elizabeth Hellmuth Margulis, and Christina Anagnostopoulou.
“Music Similarity: Concepts, Cognition and Computation”. In: Journal of New Music Re-
search 45.3 (2016), pp. 207–209.

[31] Anja Volk and Peter Kranenburg. “Melodic similarity among folk songs: An annotation
study on similarity-based categorization in music”. In: Musicae Scientiae 16.3 (2012), pp. 1–
23.

165

[32] Robert L. Welker. “Abstraction of Themes from Melodic Variations”. In: Journal of Exper-
imental Psychology. Human Perception and Performance 8.3 (1982), pp. 435–447.

[33] Jacob O Wobbrock, Leah Findlater, Darren Gergle, and James J Higgins. “The aligned
rank transform for nonparametric factorial analyses using only ANOVA procedures”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2011),
pp. 143–146.

166

Appendix C

Discriminating Symbolic Continuations
with GenDetect

As published in Ens, J. & Pasquier, P. (2019). Discriminating Symbolic Continuations with GenDe-
tect. MIREX 2019 Results.

167

Abstract

We describe GenDetect, an algorithm that was submitted to the 2019 MIREX Patterns for Predic-
tion task. GenDetect is used to discriminate between two possible continuations of a prime, dis-
tinguishing a genuine continuation from a generated one. Each musical excerpt is represented by
a collection of categorical distributions and a Gradient Boosting Classifier is trained to predict the
genuine continuation using this representation. Two versions of the algorithm were submitted, one
for polyphonic music and another for monophonic music.

Keywords: Generative Music; Evaluation; Machine Learning; Big Data

168

C.1 Introduction

The 2019 MIREX Patterns for Prediction task consists of two sub-tasks. GenDetect is designed for
the second sub-task, which involves discriminating between two continuations (Ma,Mb) of a prime
Mprime. In contrast to BachProp [1], which ranks Ma and Mb) according to their probability under
a recurrent neural network that is trained to model musical material, we train a Gradient Boosting
Classifier [2] to predict the genuine continuation given a feature-based representation of Ma, Mb and
Mprime. We build on the data representation used by StyleRank, representing each musical excerpt
(e.g. Ma) with a collection of categorical distributions [3].

C.2 Methodology

In what follows we adopt the following notation. Given a set x, ||x|| denotes the number of elements
in the set x, and xi denotes the ith element in x (1-indexed). max(x) and min(x) denote the max-
imum and minimum elements in x respectively.� indicates a left bitwise shift. I(·) is a function
that returns 1 if the predicate · is true and 0 otherwise. Let ⊕ denote the concatenation operation.

C.2.1 Data Representation

Consider a musical excerpt M = [m1, ...,mn], consisting of n notes (mi) ordered lexicographically,
sorting first by onset and then by pitch height. Let P = [pitch(mi) : 1 ≤ i ≤ n] 1, O =
[qnt(ons(mi)) : 1 ≤ i ≤ n], and D = [qnt(dur(mi)) : 1 ≤ i ≤ n], where pitch, ons and
dur are functions returning the pitch, onset and duration of a note respectively. qnt refers to Eq.
(C.1), which accepts time-based values (e.g. onset and duration) and returns an integer rounded to
the nearest rth subdivision of a beat.

qnt(x) = dxr − 0.5e (C.1)

The following procedure is applied to segment M into chords, where off(mi) = qnt(ons(mi) +
dur(mi)). First we construct two sets, one containing all unique note onsets Bonset = {ons(mi) :
mi ∈ M} and another containing all unique note offsets Boffset = {off(mi) : mi ∈ M}. Then
we construct the ordered set B = Bonset ∪ Boffset, where the elements are arranged in ascending
order. The ith chord is the set of notes that completely overlap the interval [Bi,Bi+1], and can be
calculated using Eq. (C.2). As a result, there are ||B|| − 1 chords in M, and rests are equivalent to
chords containing no notes (Ci = ∅). In what follows, let Cji denote the jth note in the ith chord,
and ψ(Ci) = {pitch(Cji) : Cji ∈ Ci}. In addition , we sort the notes in each chord in ascending
order according to pitch height.

Ci = {n : (n ∈M) ∧ (ons(n) ≤ Bi) ∧ (off(n) ≥ Bi+1)} (C.2)

1Note that we adapt the set-builder notation to construct a list (e.g., [i/2 : 0 ≤ i < 4] = [0, 0, 1, 1]), which unlike a
set, may contain duplicate values, and has a specific order.

169

Feature Name Function Domain

M
on

o. Chord Size ?
∑||B||−1
i=1 Ik(||Ci||)(Bi+1 − Bi) [0, 2)

Melodic n-gram PCD
∑||P||−w+1
i=1 Ik(PCD({Pj mod 12 : i ≤ j < i+ w})) [0, 352)

B
ot

h

Note Duration
∑||D||
i=1 Ik(Di) [0, 16r)

Note Duration Difference
∑||D||−1
i=1 Ik(Di+1 − Di + 16r) [0, 32r)

Note Offset
∑||O||
i=1 Ik((Oi + Di) mod 16R) [0, 16R)

Note Onset
∑||O||
i=1 Ik(Oi mod 4R) [0, 4r),

Note Onset Difference
∑||O||−1
i=1 Ik(Oi+1 −Oi) [0, 16r)

Pitch Interval
∑||P||−1
i=1 Ik(Pi+1 − Pi + 128) [0, 256)

Po
ly

ph
on

ic

Chord Duration ?
∑||B||−1
i=1 I(||Ci|| > 0)Ik(Bi+1 − Bi) [0, 16r)

Chord Jaccard Distance
∑||B||−2
i=1 Ik

(⌈
(d− 1) ||ψ(Ci) ∩ ψ(Ci+1)||

||ψ(Ci) ∪ ψ(Ci+1)|| − 0.5
⌉)

[0, d)

Chord Onset
∑||B||−1
i=1 Ik

(∑||Ci||
j=1 (1� j)I(ons(Cji) = Bi)

)
[0, 352)

Chord Onset ?
∑||B||−1
i=1 Ik

(∑||Ci||
j=1 (1� j)I(ons(Cji) = Bi)

)
(Bi+1 − Bi) [0, 352)

Chord Onset Difference
∑||B||−1
i=1 Ik(Bi+1 − Bi + 128) [0, 256)

Chord Onset PCD ?
∑||B||−1
i=1 Ik

(
PCD({pitch(x) mod 12 : (x ∈ Ci) ∧ (ons(x) = Bi)})

)
(Bi+1 − Bi) [0, 352)

Chord Outer Interval
∑||B||−1
i=1 Ik

(
(max(ψ(Ci))−min(ψ(Ci))) mod 12

)
[0, 12)

Chord PCD
∑||B||−1
i=1 Ik

(
PCD({pitch(x) mod 12 : x ∈ Ci})

)
[0, 352)

Chord PCD ?
∑||B||−1
i=1 Ik

(
PCD({pitch(x) mod 12 : x ∈ Ci})

)
(Bi+1 − Bi) [0, 352)

Chord Size ?
∑||B||−1
i=1 Ik(||Ci||)(Bi+1 − Bi) [0, 12)

Note Pitch
∑||P||
i=1 Ik(Pi) [0, 128)

Table C.1: Formal definitions for the feature transformations used by monophonic, polyphonic and
both models. ? denotes feature transformations that are weighted by chord duration, using the term
(Bi+1−Bi). The domain [a, b) sets the bounds of the categorical distribution. In our implementation,
we set d = 25 and r = 8.

We use distinct pitch class sets (PCD) [3] to represent pitched material, which reduces the 212 =
4096 possible pitch class sets to 352 equivalence classes, grouping pitch class sets that are transpo-
sitionally equivalent. For example, the pitch class sets {0, 4, 7} and {2, 5, 10} are transpositionally
equivalent, as both are major chords, the only difference being their root. PCD(·) is a function that
accepts a pitch class set and returns an integer corresponding to the PCD. For more details on cal-
culating the PCD, see the original paper [3].

We represent each musical excerpt (M) by applying a non-empty set of feature transformations
F = {f1, ..., fd}, producing a set of categorical distributions FM = {fM1 ..., fMd }. A categorical
distribution is a discrete probability distribution describing a random variable that has k possible
distinct states. Concretely, fMi = [fi(k) : a ≤ k < b], where a and b are the upper and lower
bounds of the domain respectively. The categorical distributions in FM are concatenated, resulting
in a single vector representing M, which we refer to as vF ,M. Table C.1 provides formal definitions
for each of the feature transformations (fi), and specifies the domain used to construct the corre-
sponding categorical distribution (fMi). Note that in some cases, the domain is dependant on the
number of subdivisions per beat (r). Let Ik(·) be a function that returns 1 if · = k and 0 otherwise.

C.2.2 Training

Given a prime Mprime, and two possible continuations (Ma, Mb), we train a Gradient Boosting
Classifier [2] to predict whether Ma or Mb is the genuine continuation given vMprime ⊕ vMa ⊕ vMb

170

as input. Concretely, the classifier is trained to output a 0 if Ma is the genuine continuation and 1
otherwise. Notably, we were able to attain the same level of accuracy by training a Gradient Boosting
Classifier to output 1 if the continuation (Mx) is genuine and 0 otherwise given vMprime ⊕ vMx as
input.

The code was implemented in Python using the scikit-learn module [4]. Notably, a model can be
trained on 10, 000 training examples in several minutes on an Intel Core i7-9700, which is much
faster than training BachProp.

C.3 Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC).

171

Bibliography

[1] Florian Colombo. MIREX 2018: Generating and Discriminating Symbolic Music Continu-
ations with BachProp. https://www.music-ir.org/mirex/abstracts/2018/FC1.pdf. Accessed
on August 19, 2019.

[2] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boosting Machine”.
In: Annals of Statistics 29 (2000), pp. 1189–1232.

[3] Jeff Ens and Philippe Pasquier. “Quantifying Musical Style: Ranking Symbolic Music
based on Similarity to a Style”. In: Proc. of the International Symposium on Music In-
formation Retrieval. 2019, pp. 870–877.

[4] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
“Scikit-learn: Machine learning in Python”. In: the Journal of machine Learning research
12 (2011), pp. 2825–2830.

172

https://www.music-ir.org/mirex/abstracts/2018/FC1.pdf

Appendix D

Copyright Considerations for the
MetaMIDI Dataset

When assembling a large dataset of MIDI files that have been scraped from publicly available inter-
net sites, one must consider the implications with regards to copyrights. In order to better understand
any legal issues related to assembling and distributing this dataset as researchers in Canada, we con-
sulted Donald Taylor, a copyright officer at Simon Fraser University. In the following paragraph,
Taylor’s response is summarized.

According to Taylor, a MIDI file is considered to be a derived annotation of an original musical
work, and thus, is treated the same as a machine generated transcription of a speech or lecture under
copyright law. As a result, the rightsholder of the original musical work has the legal right to enforce
copyright. Furthermore, if the rightsholder has not consented to the work being made freely avail-
able for download as a MIDI file, then these MIDI files would be considered a copyright infringing
files. Consequently, using or distributing any of these files would be considered copyright infringe-
ment. Notably, in contrast to Canadian copyright law, the MetaMIDI dataset would be considered
transformative use under the USA’s fair use doctrine, since the dataset is not being used as a source
of music for audio playback, but rather as a source of data to me mined for research purposes. Fortu-
nately, there is a provision in Canada’s Copyright Act, known as the "fair-dealing" exception, which
allows for the use of copyright protected works to conduct research.

Ultimately, we were advised that it could reasonably be considered "fair-dealing" if we release the
dataset under the following conditions.

1. Prospective users must demonstrate that they are using the dataset for research purposes re-
lated to data mining and machine learning. Concretely, this requires that the prospective user
provides their name, institutional affiliation, institutional contact information, the name of
their research project, and the location where the research is taking place.

2. Prospective users must acknowledge they will not further distribute the dataset.

In our best effort to acknowledge any copyrights for the MIDI files contained in the MetaMIDI
dataset, we aggregated all the copyright metadata found in the MIDI files into a single text file,

173

which is distributed as part of the dataset. The dataset is available on zenodo 1, with access restricted
to users who meet conditions 1 and 2 as stated above.

1https://zenodo.org/record/5142664#.Y7xcBuzMKrM

174

https://zenodo.org/record/5142664##.Y7xcBuzMKrM

Appendix E

StyleRank Appendix

The following is an appendix that complements the material presented in Chapter 5.

E.1 Features

To begin, we provide additional explanations for some of the features that StyleRank uses. The
function sc calculates the scale representation described in the text. Let Smaj = {0, 2, 4, 5, 7, 9, 11}
and Sharm = {0, 2, 3, 5, 7, 8, 11}, then Smaji = {(s + i) mod 12 : s ∈ Smaj} denotes the major
scale with pitch class i as a root, and Sharmi = {(s+ i) mod 12 : s ∈ Sharm} denotes the harmonic
minor scale with pitch class i as a root. The scale representation can be calculated using Equation
E.1, where x is a pitch class set, and φ(·) is a function that returns 1 if the predicate · is true, and 0
otherwise.

sc(x) =
(12∑
i=1

φ(x ⊆ Smaji)� i
)

+
(12∑
i=1

φ(x ⊆ Sharmi)� (12 + i)
)

(E.1)

The difference between two pitches p1 and p2 can be represented in several ways: as the absolute
difference between two pitches (dabs(p1, p2) = |p1−p2|); as an interval (dmod(p1, p2) = (p1−p2)
mod 12); and as an interval class. There are 6 interval classes: the unison (dmod(p1, p2) ∈ {0};
the minor second and major seventh (dmod(p1, p2) ∈ {1, 11}; the major second and minor seventh
(dmod(p1, p2) ∈ {2, 10}; the minor third and major sixth (dmod(p1, p2) ∈ {3, 9}; the major third
and minor sixth (dmod(p1, p2) ∈ {4, 8}; the perfect fourth and fifth (dmod(p1, p2) ∈ {5, 7}; and the
tritone (dmod(p1, p2) ∈ {6}. We calculate the interval class using Equation E.2,

pcc(p1, p2) = |((p1 − p2) mod 12)− 6| (E.2)

The ChordTonnetz feature is simply the length of the shortest path which passes through each
of the pitch classes contained in a chord. For example, given a chord C and the corresponding pitch
set P = {48, 55, 60, 62, 64}, the shortest path passing though each pitch class in the set {C,D,E,G}
is shown on the left side of Figure E.1. In this case, the length of the shortest path is 3. In general,

175

Figure E.1: Calculating the ChordTonnetz feature for different pitch class sets

harmonically simple chords will have shorter paths than harmonically complex chords. The shortest
path for the pitch class set {C,F#,A,Bb} is shown on the right side of Figure E.1.

The ChordTranVoiceMotion (CTVM) feature denotes the type of voice motion between two
successive chords. Given two successive pitch class sets Pt and Pt+1 Equation E.3 is used to calcu-
late the type of voice motion, where 0 is no change, 1 is oblique motion, 2 is parallel motion, and 3
is contrary motion.

CTVM(Pt,Pt+1) =

0, if (min(Pt) = min(Pt+1)) ∧ (max(Pt) = max(Pt+1))
1, if (min(Pt) = min(Pt+1)) ∧ (max(Pt) 6= max(Pt+1))
1, if (min(Pt) 6= min(Pt+1)) ∧ (max(Pt) = max(Pt+1))
2, if (min(Pt) > min(Pt+1)) ∧ (max(Pt) > max(Pt+1))
2, if (min(Pt) < min(Pt+1)) ∧ (max(Pt) < max(Pt+1))
3, otherwise

(E.3)

Here, we briefly describe the method for calculating chord periodicity, which is used to calculate the
ChordDissonance and ChordTranDissonance features. For more specific details please
consult the original paper [32]. Given a set of pitches P0 = {0, 3, 9}, which corresponds to the fre-
quency ratios F0 = {1/1, 6/5, 5/3}, the lowest common multiple of the denominators is calculated
(L0 = lcm(1, 5, 3) = 15). To calculate the smoothed periodicity, L1 and L2 are calculated using the
shifted pitch sets P1 = {−3, 0, 6} and P2 = {−9,−6, 0}. The Li values are scaled, and the aver-
age of the three values is taken. ChordTranDissonance slighlty modifies the above procedure.
Given two pitch sets Pt = {0, 3, 9} and Pt+1 = {0, 4, 7}, the L values are calculated for the pitch
sets P0 = {0, 4, 7}, P1 = {−3, 1, 4}, P2 = {−9,−5,−2}. We construct these shifted pitch sets as
follows, where Pi = {p− Pti : p ∈ Pt+1}. The same scaling procedure is applied here, and the av-
erage of the Li values is calculated. Since ChordDissonance and ChordTranDissonance
must be turned into integers, we use the floor operator to turn a float into an integer. In order to have
a larger number of categories, we do not apply the log transform to each Li value.

176

E.2 Experiment 1 Expanded

In order to demonstrate that StyleRank is robust when the size of G, and the number of styles in
G are varied, we modify Experiment 1. Given 2 + k styles Si = {si1, ..., simj}, where m1 = 2n,
mj = n for j > 1, let C = {s1

i : n < i ≤ 2n}, GA = {s1
i : 0 ≤ i < n}, GB = {s2

i : 0 ≤ i < n},
G = {sji : (0 ≤ i < n)∧ (1 ≤ j ≤ 2+k)}. We train a random forest and compare two distributions
x = [SG,C,Fg : g ∈ GA] and y = [SG,C,Fg : g ∈ GB]. When k = 0, the process is identical to
Experiment 1. The results for 0 ≤ k < 4 are shown in Table E.1, with the top scores bolded for
each combination of corpus size (n) and style type (genre,composer).

On a whole, the performance does not decrease as k increases, evidenced by the fact that k > 0
models had better scores than k = 0 in many cases. In the most extreme case, with k = 3 and
n = 100, the size of C and G vary significantly, where ||C|| = 100 and ||G|| = 500. We believe this
provides compelling evidence that StyleRank is robust against discrepancies in size between C and
G, and variations to the number of styles in G.

StyleRank Cosine Manhattan Euclidean
k size µ Sig FDR Bon µ Sig FDR Bon µ Sig FDR Bon µ Sig FDR Bon

G
en

re

0 10 0.81 0.379 0.0 0.0 0.68 0.193 0.0 0.0 0.686 0.2 0.0 0.0 0.645 0.176 0.0 0.0
1 10 0.802 0.355 0.0 0.0 0.689 0.183 0.0 0.0 0.672 0.194 0.0 0.0 0.633 0.164 0.0 0.0
2 10 0.764 0.332 0.0 0.0 0.695 0.212 0.0 0.0 0.68 0.189 0.0 0.0 0.647 0.155 0.0 0.0
3 10 0.744 0.314 0.0 0.0 0.713 0.209 0.0 0.0 0.687 0.209 0.0 0.0 0.651 0.168 0.0 0.0
0 25 0.867 0.578 0.376 0.198 0.729 0.348 0.084 0.038 0.74 0.374 0.053 0.021 0.691 0.298 0.06 0.022
1 25 0.858 0.567 0.339 0.181 0.714 0.343 0.084 0.034 0.752 0.361 0.027 0.012 0.674 0.276 0.037 0.017
2 25 0.841 0.592 0.357 0.197 0.73 0.359 0.068 0.019 0.743 0.363 0.048 0.016 0.71 0.289 0.038 0.017
3 25 0.846 0.581 0.352 0.179 0.736 0.338 0.068 0.024 0.722 0.363 0.041 0.011 0.696 0.286 0.033 0.009
0 50 0.88 0.715 0.59 0.432 0.776 0.484 0.266 0.126 0.747 0.489 0.253 0.088 0.714 0.344 0.158 0.082
1 50 0.897 0.748 0.621 0.458 0.731 0.442 0.236 0.126 0.773 0.488 0.258 0.088 0.744 0.375 0.19 0.117
2 50 0.901 0.739 0.608 0.437 0.755 0.449 0.239 0.118 0.74 0.492 0.287 0.101 0.728 0.366 0.18 0.109
3 50 0.892 0.732 0.577 0.409 0.772 0.451 0.22 0.105 0.752 0.474 0.273 0.097 0.738 0.372 0.172 0.103
0 100 0.927 0.847 0.774 0.671 0.766 0.555 0.406 0.265 0.755 0.566 0.44 0.284 0.785 0.462 0.269 0.178
1 100 0.941 0.855 0.794 0.679 0.768 0.541 0.406 0.279 0.741 0.541 0.416 0.291 0.783 0.439 0.265 0.189
2 100 0.93 0.835 0.775 0.668 0.77 0.562 0.395 0.26 0.753 0.547 0.446 0.308 0.777 0.457 0.264 0.192
3 100 0.937 0.865 0.802 0.697 0.758 0.551 0.4 0.277 0.732 0.564 0.458 0.302 0.785 0.468 0.274 0.199

C
om

po
se

r

0 10 0.963 0.86 0.725 0.0 0.837 0.624 0.381 0.0 0.879 0.662 0.413 0.0 0.827 0.565 0.28 0.0
1 10 0.971 0.849 0.704 0.0 0.85 0.626 0.401 0.0 0.862 0.628 0.392 0.0 0.812 0.568 0.292 0.0
2 10 0.96 0.838 0.646 0.0 0.873 0.633 0.392 0.0 0.843 0.631 0.369 0.0 0.83 0.579 0.314 0.0
3 10 0.954 0.818 0.657 0.0 0.857 0.635 0.388 0.0 0.876 0.663 0.437 0.0 0.835 0.576 0.288 0.0
0 25 0.951 0.888 0.807 0.609 0.808 0.583 0.422 0.24 0.793 0.578 0.415 0.244 0.729 0.532 0.363 0.226
1 25 0.946 0.879 0.812 0.613 0.773 0.561 0.403 0.246 0.818 0.627 0.461 0.276 0.738 0.533 0.36 0.196
2 25 0.941 0.88 0.808 0.613 0.782 0.58 0.422 0.248 0.797 0.601 0.424 0.221 0.746 0.546 0.38 0.219
3 25 0.952 0.881 0.796 0.61 0.802 0.57 0.422 0.246 0.798 0.63 0.431 0.247 0.764 0.568 0.377 0.219
0 50 0.926 0.905 0.873 0.78 0.705 0.559 0.454 0.333 0.751 0.599 0.468 0.34 0.717 0.565 0.428 0.3
1 50 0.943 0.917 0.885 0.785 0.722 0.567 0.444 0.308 0.697 0.54 0.435 0.305 0.686 0.531 0.369 0.262
2 50 0.936 0.902 0.869 0.784 0.732 0.574 0.465 0.326 0.743 0.578 0.453 0.318 0.693 0.549 0.437 0.312
3 50 0.942 0.917 0.892 0.787 0.714 0.557 0.448 0.316 0.721 0.571 0.454 0.325 0.676 0.54 0.421 0.306
0 100 1.0 0.986 0.973 0.951 0.713 0.636 0.59 0.515 0.723 0.633 0.568 0.486 0.715 0.626 0.571 0.504
1 100 1.0 0.988 0.978 0.941 0.745 0.662 0.604 0.539 0.724 0.636 0.572 0.492 0.712 0.62 0.552 0.489
2 100 0.997 0.986 0.97 0.929 0.709 0.623 0.577 0.52 0.731 0.645 0.579 0.5 0.7 0.63 0.572 0.504
3 100 0.994 0.975 0.961 0.918 0.71 0.631 0.585 0.505 0.753 0.665 0.606 0.523 0.689 0.61 0.551 0.494

Table E.1: The normalized frequency over 1000 trials where x̄ > ȳ (µ), px̄>ȳ < 0.05 (Sig), px̄>ȳ

is significant after applying the FDR correction (FDR), and px̄>ȳ is significant after applying the
Bonferonni correction (Bon). Size denotes the size of the corpus ||C|| = ||Gk|| = ||GB||.

177

E.3 Experiment 1 Data

The number of pieces belonging to each genre and composer after duplicates have been removed are
shown in Table E.2 and E.3 respectively. Only the composers with more than 2n pieces are selected
for comparison. As a result, there are only 8 composers to compare when n = 100.

Genre Count
Middle Romantic 447

Post Romantic 515
Late Romantic 577

Early Romantic 777
Late Classical Early Romantic 1100

Late Baroque 2615

Table E.2: The number of pieces in each genre.

Composer Count Composer Count Composer Count
Johann Sebastian Bach 1081 Johann Friedrich Burgmüller 56 Sir Arthur Sullivan 30

Wolfgang Amadeus Mozart 813 Henry Purcell 54 Michael Maier 30
Domenico Scarlatti 551 Georg Philipp Telemann 54 Thomas Morley 29

George Frideric Handel 482 Sergey Vasilyevich Rachmaninov 52 Johann Adolf Hasse 28
Ludwig Van Beethoven 384 Maurice Ravel 52 Bedrich Smetana 27

Franz Liszt 309 Domenico Zipoli 48 Stephen Heller 26
(franz) Joseph Haydn 308 Muzio Clementi 45 Nikolay Rimsky-korsakov 26

Antonio Vivaldi 212 Igor Stravinsky 44 Jean-philippe Rameau 26
Frédéric François Chopin 197 Carl Maria Von Weber 44 Jean-baptiste Lully 26

Franz Peter Schubert 197 Niccolò Paganini 42 Giovanni Pierluigi Da Palestrina 26
Johannes Brahms 184 Jose Mauricio Nunes García 39 Scott Joplin 25

Felix Mendelssohn-bartholdy 141 Erik Satie 39 Leopold Godowsky 25
Johann Nepomuk Hummel 135 Charles-valentin Alkan 39 Gustav Mahler 25
Pyotr Il’yich Tchaikovsky 125 Silvius Leopold Weiss 37 Karl Joachim Andersen 24
Antonín (leopold) Dvořák 125 John Philip Sousa 37 Jacques Offenbach 24

Robert Alexander Schumann 117 John Dowland 37 Anton Bruckner 24
Achille-claude Debussy 103 (wilhelm) Richard Wagner 37 Sir Edward Elgar 23

William Byrd 92 Mauro Giuliani 35 Giovanni Battista Pergolesi 23
Carl Czerny 81 Marin Marais 35 Lorenzo Perosi 22

Camille Saint-saëns 81 Giovanni Battista Sammartini 35 Jean-baptiste Lemire 22
Alexander Scriabin 77 Charles Gounod 35 Giacomo Puccini 22

Isaac Albéniz 68 Béla Bartók 35 Richard Walthew 21
Fernando Sor 66 Johann Pachelbel 34 Ferdinando Carulli 21
Gabriel Fauré 64 Georges Bizet 34 Adriano Banchieri 21
Edvard Grieg 62 Modest Petrovich Mussorgsky 33 Gaetano Donizetti 20

Table E.3: The number of pieces per composer.

178

E.4 Experiment 2 Data

In Table E.6, we provide the raw frequency counts for each piece, from which our ground truth
ranking is constructed. We also calculated the percentage of pairwise comparisons that were iden-
tical for different participant levels (Novice, Intermediate, Advanced and Expert), shown in Table
8. The ranking constructed from Novice data is the most dissimilar from the other three levels. For
varying levels of α, we show the number of significant comparisons for each level in Table E.5.

Novice Intermediate Advanced Expert
Novice 1.0 0.765 0.765 0.747

Intermediate 0.765 1.0 0.904 0.873
Advanced 0.765 0.904 1.0 0.870

Expert 0.747 0.873 0.870 1.0

Table E.4: Percentage of identical pairwise comparisons, based on data from the Bachbot experi-
ment [1].

α = 5.0 α = 0.5 α = 0.05 α = 0.005
Novice 630 432 174 82

Intermediate 630 554 429 351
Advanced 630 533 385 304

Expert 630 484 262 150

Table E.5: Number of comparisons below significance level, based on data from the Bachbot exper-
iment [1].

179

Novice Intermediate Advanced Expert
N corr Nmiss N corr Nmiss N corr Nmiss N corr Nmiss

BWV-310-mask-Alto-Tenor 113 53 308 70 142 26 53 3
BWV-378-mask-Alto-Tenor-Bass 121 57 267 66 146 31 73 6

BWV-11.6-mask-Alto-Tenor 107 71 234 88 124 38 49 6
BWV-419-mask-Soprano 129 39 289 69 142 28 68 9

BWV-430-mask-Alto-Tenor 116 60 290 63 142 17 61 9
BWV-411-mask-Alto-Tenor 107 73 256 96 128 28 53 8
BWV-121.6-mask-Soprano 108 68 254 87 159 39 63 11

BWV-276-mask-Alto-Tenor-Bass 120 65 245 113 146 34 48 10
BWV-372-mask-Alto-Tenor-Bass 97 59 269 78 130 35 52 12

BWV-127.5-mask-Alto-Tenor 74 72 233 104 125 42 59 14
BWV-381-mask-Alto-Tenor 112 60 286 74 143 24 45 11

BWV-166.6-mask-Alto-Tenor 94 69 296 77 151 32 53 14
BWV-65.2-mask-Alto-Tenor 91 57 205 106 130 49 57 16

BWV-268-mask-Alto 92 59 247 108 126 38 54 16
out-28 124 100 305 186 139 62 60 19

BWV-154.3-mask-Alto-Tenor-Bass 97 68 219 138 125 50 52 17
out-45 127 108 283 207 154 80 66 23
out-59 122 103 280 174 160 72 53 19

BWV-168.6-mask-Alto-Tenor-Bass 89 74 221 103 113 36 38 14
BWV-425-mask-Alto-Tenor-Bass 96 57 266 83 127 32 56 21

out-54 116 100 311 158 151 66 68 26
out-56 102 113 289 167 165 44 52 21
out-19 138 92 264 171 164 65 66 27
out-20 108 106 253 175 136 93 47 24

BWV-438-mask-Alto 107 75 204 152 111 50 41 22
BWV-270-mask-Alto-Tenor-Bass 89 77 213 153 88 78 33 18

out-33 136 96 290 191 131 99 57 32
BWV-114.7-mask-Tenor 79 74 198 147 104 64 47 27

out-60 93 129 224 242 118 97 55 37
BWV-248.5-mask-Alto-Tenor-Bass 90 73 177 175 91 79 36 25

out-63 99 116 233 261 113 108 51 43
BWV-102.7-mask-Tenor 88 75 191 154 89 60 21 19

BWV-27.6-mask-Bass 91 71 186 174 89 77 34 31
BWV-293-mask-Bass 77 97 166 160 78 87 24 24

out-10 131 93 222 208 109 129 39 51
out-52 125 81 235 243 84 143 36 50

total 3805 2840 8909 5021 4573 2132 1820 735

Table E.6: Raw count data from the BachBot experiment [1], where Nmiss is the number of times
a generated sample was mistakenly classified as a Bach chorale and N corr is the number of times it
was correctly identified as computer generated.

180

Bibliography

[1] Feynman Liang, Mark Gotham, Matthew Johnson, and Jamie Shotton. “Automatic Stylistic
Composition of Bach Chorales with Deep LSTM.” In: Proceedings of the International
Symposium on Music Information Retrieval. 2017, pp. 449–456.

181

Appendix F

Examples

In this Appendix, we present examples generated using the Multi-Track Music Machine (MMM),
which is described in Chapter 7. We provide examples of unconditioned generation, track-infilling,
attribute control and bar-infilling.

182

F.1 Unconditioned Generation

C#4
D4

D#4
E4
F4

F#4
G4

G#4
A5
B5

C#5
D5
E5

A2
B2

C#2
E2
A3
B3

C#3

A3
B3

C#3
E3
A4
B4
C4

C#4
D4

D#4
E4

F#4
G#4

A5
B5
D5
E5

G#5

A5
B5

C#5
D5
E5

F#5

Honky-tonk Piano

Acoustic Bass

Electric Guitar (jazz)

Soprano Sax

Figure F.1: An example of unconditioned multi-track generation using MMM.

183

47
56
68
69
70

E3
F#3

B4
C#4

D4
E4

F#4
G#4

B5
D5
E5

F#5
G#5

A6
B6

F#6
A7
B7

D3
E3
B4
D4
E4

F#4
G#4

B5
D5
E5

F#5
G#5

B6

Drums

Acoustic Grand Piano

Acoustic Grand Piano

Acoustic Grand Piano

Figure F.2: An example of unconditioned multi-track generation using MMM.

184

35
37
38
42
48
62
63
69
70

G4
G#4
A#5

C5
D#5

F5
G5

G#5
C#6

G2
C3

C#3
F3

G#3
A#4

C4
C#4
D#4

F4
G4

G#4
C5

C#5
D#5

F5
G#5
C#6

C4
C#4
D#4

F4
G4

G#4
A5

A#5
C5

C#5
D5

D#5
F5
G5

G#5
A#6
D#6

Drums

Alto Sax

Acoustic Guitar (steel)

Electric Piano 1

Figure F.3: An example of unconditioned multi-track generation using MMM.

185

36
38

E3
G3
B4
D4
E4

F#4
G4
B5

A3
B3
E3
G3

Drums

Electric Guitar (muted)

Synth Bass 1

Figure F.4: An example of unconditioned multi-track generation using MMM.

35
36
38
40
42

G4
C5
D5
G5
C6
D6
G6

A2
C2
D2
F2
G2
F3
G3

A5
C5
D5
E5
G5
A6
C6
D6

Drums

Trumpet

Slap Bass 2

French Horn

Figure F.5: An example of unconditioned multi-track generation using MMM.

186

36
38
46
54

E5
F5
G5
A6

A#6
D#6

A#3
F3
G3

A#4
D4
F4
G4

F3
G3

A#4

E5
F5
G5
A6

A#6
D#6

A#5
C#5

D5
E5
F5

F#5
G5

G#5
A6

A#6

Drums

Banjo

Acoustic Guitar (nylon)

Acoustic Bass

Acoustic Grand Piano

Violin

Figure F.6: An example of unconditioned multi-track generation using MMM.

187

36
38

C#4
F4

F#4
G#4
A#5

B5
C#5
D#5

F5
F#5
G#5
A#6

B6
C#6
D#6

A#5
B5

C#5
D#5

F5
F#5
G#5
A#6

B6
C#6
D#6

F3
F#3
G#3
A#4

B4
C#4
D#4

F4
F#4
G#4
A#5

Drums

Acoustic Bass

Celesta

Synth Bass 1

Figure F.7: An example of unconditioned multi-track generation using MMM.

188

B5
C#5
D#5

E5
F#5
G#5

A6

G#6
A7
B7

C#7
D#7

E7
F#7

G#3
A4
B4

Acoustic Guitar (nylon)

Drawbar Organ

Acoustic Bass

Figure F.8: An example of unconditioned multi-track generation using MMM.

36
38
39
42
46

C6
C#6
D#6

G#5
G#6

Drums

Shakuhachi

Distortion Guitar

Figure F.9: An example of unconditioned multi-track generation using MMM.

189

36
38
39
44
46
48
50

E3
F#3
G#3

A4
B4
D4

D#4
E4

F#2
A3
B3

C#3
D3

B3
C#3

D3
E3
A4
B4
C4

C#4
D#4

F4
F#4

G4
A5
B5
C5

Drums

Alto Sax

Fretless Bass

Electric Piano 1

Figure F.10: An example of unconditioned multi-track generation using MMM.

190

36
40
42

A5
A#5

E5
F5
A6

A#6

A3
A#3

F3
A4

A#4

Drums

Distortion Guitar

Electric Bass (finger)

Figure F.11: An example of unconditioned multi-track generation using MMM.

191

F.2 Track Infilling

G2
B3
C3
D3
E3
F3
G3
A4

A#4
B4
C4
D4
F4
C6
D6
E6
F6
G6
A7
B7
C7
D7
E7
F7
G7

35

C3
F3
G3
A4
C4
D4
E4
G5
A6
B6
C6
D6
E6
F6
G6

G3
C4
D4
E4
G4
A5

F#5
G5
B6
C6
E6
F6

F2
G2
A3
B3
C3
D3
E3
G3
A4

Bright Acoustic Piano - [Generated]

Drums

Bright Acoustic Piano - [Original]

Electric Guitar (muted)

Acoustic Bass

Figure F.12: An example of track infilling using MMM. The generation of each green track is
conditioned on the beige tracks, replacing the original track(s) (shown in yellow).

192

C#4
D4
E4

F#4
G#4

A5
B5

C#5
D5
F5

G#5

C#5
E5

F#5
G#5

A6
B6

C#6
D6
E6
F6

F#6
G#6

A2
B2

C#2
D2
E2

F#2
G#2

A3
C#3

35
38
39
40
54
57
59
60
61
63
69
82
85

E4
F4

F#4
G#4

A5
B5

C#5
D5
E5
F5

Acoustic Guitar (nylon) - [Generated]

String Ensemble 1

Electric Bass (finger)

Drums

Acoustic Guitar (nylon) - [Original]

Figure F.13: An example of track infilling using MMM. The generation of each green track is
conditioned on the beige tracks, replacing the original track(s) (shown in yellow).

193

36
38
42
46
55
70

C4
D4
E4
F4
G4
A5

A#5
C5
D5

36
42
44
54

G4
A5

A#5
C5
D5
E5
F5
G5

A#3
C3

D#3
F3
G3

A#4

A#3
C3
F3
G3

A#4
C4
D4
E4
F4
G4
A5

A#5
C5
D5
F5

Drums - [Generated]

Acoustic Guitar (nylon) - [Generated]

Drums - [Original]

Acoustic Guitar (steel)

Acoustic Guitar (nylon) - [Original]

Bright Acoustic Piano

Figure F.14: An example of track infilling using MMM. The generation of each green track is
conditioned on the beige tracks, replacing the original track(s) (shown in yellow).

194

36
38
40
42
44
46
55

A3
E3
G3
D4
E4
G4
A5
B5
C5

C#5
E5
G5

35
40
42

E4
G4
B5

C#5
D5
E5

D5
E5
G5
A6
D6
G6
A7

B5
C#5

E5
F#5

G5
A6
B6

G2
A3
D3
E3

F#3
G3
A4

Drums - [Generated]

Electric Piano 2 - [Generated]

Drums - [Original]

Electric Piano 2 - [Original]

Electric Guitar (jazz)

Electric Guitar (clean)

Synth Bass 2

Figure F.15: An example of track infilling using MMM. The generation of each green track is
conditioned on the beige tracks, replacing the original track(s) (shown in yellow).

195

E3
F#3

B4
C#4

E4
F#4

G4
A#5

B5
C#5
D#5

E5
F#5
A#6

B5

B3
C#3

E3
F#3

F#3
B4

C#4
E4

F#4
G4

G#4
A#5

B5
C#5
D#5

E5
F#5

B4
C#4
D#4

E4
F#4

G4
A5
B5

C#5

G#4
A#5

B5
C#5

D5
D#5

E5

Acoustic Guitar (nylon) - [Generated]

Guitar Fret Noise

Acoustic Bass

Acoustic Guitar (nylon) - [Original]

Voice Oohs

Voice Oohs

Figure F.16: An example of track infilling using MMM. The generation of each green track is
conditioned on the beige tracks, replacing the original track(s) (shown in yellow).

196

35
38
59

D#4
F4

F#4
G#4
A#5

B5
C#5
D#5

F5
F#5
G#5

F#4
G#4
A#5

B5
C#5
D#5

F5
F#5

F4
F#4
G#4
A#5

B5
C#5
D#5

35
37
42
46
52
70

G#3
A#4

B4
C#4
D#4

F4
F#4
G#4
A#5
C#5
D#5

F5
F#5
A#6

B6
C#6
D#6

F6
F#6

B4
C#4
D#4

F4
F#4
A#5

C#2
D#2

F2
F#2
G#2
A#3

B3
C#3

Drums - [Generated]

Electric Guitar (jazz) - [Generated]

Electric Guitar (jazz) - [Original]

Acoustic Guitar (steel)

Drums - [Original]

String Ensemble 1

Pad 2 (warm)

Fretless Bass

Figure F.17: An example of track infilling using MMM. The generation of each green track is
conditioned on the beige tracks, replacing the original track(s) (shown in yellow).

197

F.3 Attribute Control - Note Density

36
42
58
70
82

31
36
37
42
49
54

36
37
42

62
64

35
38
40
41
43
44
45
46
49
60
61
62
63

F#3
A4
E4

F#4
A5
B5

C#5
E5

E2
F2

F#2
A3

C#3
E3

F#3

A3
E3

F#3
C#4

E4
F#4
G#4

A5
B5

C#5

Drums - [Generated with High Note Density]

Drums - [Generated with Medium-High Note Density]

Drums - [Generated with Medium-Low Note Density]

Drums - [Generated with Low Note Density]

Drums - [Original]

Acoustic Guitar (nylon)

Electric Bass (finger)

Electric Piano 1

Figure F.18: An example of track infilling with note density attribute control using MMM. Each
green track is conditioned on the beige tracks and a specific note density level.

198

F#4
G#4

A5
B5

C#5
D5

D#5
E5
F5

F#5
G#5

A6
B6

G#4
B5
C5

C#5
D5

62
63
64

69

42
46

B3
E3

F#3
G#3

B4
C#4
D#4

E4
F4

F#4
G#4

A5
B5
C5

C#5
D5

D#5
E5

F#5
G#5

A6
B6

C#6
E6

C#2
D2

D#2
E2
F2

F#2
G#2

A3
B3

C#3

Acoustic Grand Piano - [Generated with High Note Density]

Acoustic Grand Piano - [Generated with Low Note Density]

Drums

Drums

Drums

Acoustic Grand Piano - [Original]

Acoustic Grand Piano

Figure F.19: An example of track infilling with note density attribute control using MMM. Each
green track is conditioned on the beige tracks and a specific note density level.

199

E2
F2
A3
D3
A4
C4
E4
F4

F#4
G4
A5
B5
C5
D5
E5

D5
E5

F#5
G5
A6

A#5
B5
D5
E5

F#5
G5

G#5
A6

A3
D3
E3
D4

D#4
E4
F4

F#4
G4

G#4
A5

A#5
B5
C5

C#5
D5
E5

F#5
G5
A6
B6

A2
A#2

D2
E2
F2

F#2
A3

A#3
B3
D3
E3
F3
A4
B4
C4

35
38
42
51

Acoustic Grand Piano - [Generated with High Note Density]

Acoustic Grand Piano - [Generated with Low Note Density]

Alto Sax

Acoustic Grand Piano - [Original]

Acoustic Bass

Drums

Figure F.20: An example of track infilling with note density attribute control using MMM. Each
green track is conditioned on the beige tracks and a specific note density level.

200

F.4 Bar Infilling

F5
G5
A6

A#6

F4
G4
A5

A#5
C5
D5

D#5

G4
A5

A#5
C5
D5

D#5
F5

D2
D#2

F2
G2

F5
G5
A6

F4
G4
A5

A#5
C5
D5

D#5

F4
G4
A5

A#5
C5
D5

D#5

D#2
F2
G2

A#3

Glockenspiel - [Green Bars Generated via Bar Infilling]

Acoustic Grand Piano - [Green Bars Generated via Bar Infilling]

Synth Strings 1 - [Green Bars Generated via Bar Infilling]

Synth Bass 1 - [Green Bars Generated via Bar Infilling]

Glockenspiel - [Original]

Acoustic Grand Piano - [Original]

Synth Strings 1 - [Original]

Synth Bass 1 - [Original]

Figure F.21: An example of bar infilling using MMM. The yellow bars in the top four tracks are
infilled, producing the green bars (conditioned on beige bars) shown in the bottom four tracks.

201

	Declaration of Committee
	Ethics Statement
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Introduction and Motivations
	Thesis format
	Overview
	Motivations

	Thesis structure
	Research questions
	Outline of Contributions and Motivations
	Publications and Authorship

	Conclusion

	Related Work on Symbolic Polyphonic Music Generation
	Introduction
	Typology
	Model
	Musical Texture
	Representation
	Data
	Evaluation of CSPG Systems

	Markov Models
	Markov Chain
	Hidden Markov Models

	Neural Networks
	Feed Forward Networks
	Convolutional Neural Networks
	Generative Adversarial Network
	Recurrent Neural Networks
	Transformer
	Variational Autoencoder

	Variable Neighborhood Search
	Challenges and Opportunities
	Data Quality
	Generating non-Western Music
	Controlling Generation
	Plagiarism, Novelty, and Other Issues Related to Creativity
	Evaluation of CSPG Systems

	Conclusion

	Building the MetaMIDI Dataset: Linking Symbolic and Audio Musical Data
	Abstract
	Introduction
	Data Collection
	Audio Midi Matching
	Modifications to the Matching Procedure
	Training the Embedding Networks
	Evaluating the Embedding Networks
	Matching Against 32,000,000 Audio Files
	High Reliability Audio-MIDI Matches

	Linking Spotify and MusicBrainz
	Analyzing the Dataset
	Overview Statistics for the Midi Files
	Estimating the Reliability of Scraped Metadata
	False Positives and Audio Midi Matching

	Using the MetaMIDI Dataset
	Conclusion

	CAEMSI : A Cross-Domain Analytic Evaluation Methodology for Style Imitation
	Abstract
	Introduction
	Evaluation Methodologies
	Related Work
	Motivation
	Domain Knowledge
	Bias Against Generative Systems
	Variability
	Scalability
	The Proposed Solution

	Statistical Tests for Typicality
	Normalized Compression Distance
	Distance Matrix Construction
	Permutation Testing
	Testing for Difference
	Testing for Equivalence

	Experiment
	Methodology
	Data Pre-Processing
	Data Representation
	Results

	Discussion
	Application
	Conclusion

	Quantifying Musical Style: Ranking Symbolic Music based on Similarity to a Style
	Abstract
	Introduction
	Motivations
	Related Work
	Features
	Pitch Class Set Representations
	Feature Definitions
	Implementation

	Similarity Computation
	Experiments
	Experiment 1 : Analytic Testing
	Experiment 2: Congruity with Human Perception

	Discussion
	Application
	Conclusion

	Improved Listening Experiment Design for Generative Systems
	Abstract
	Introduction
	Experimental Design
	Motivation
	Experiment 1 : Calculating Experimental Power
	Experiment 2 : Simulating Inter-Experiment Variance
	Discussion and Recommendations
	Conclusion

	The Multi-Track Music Machine: A Generative System Designed for Co-Creative Music Composition
	Abstract
	Introduction
	Comparison to Related Work
	Input Specifications
	Generation Methods

	Proposed Representation
	Attribute Control
	Training MMM
	 Evaluation and Applications
	Evaluating the Originality of Generated Material
	Quantifying Stylistic Similarity
	Evaluating the Effectiveness of Attribute Controls

	Limitations and Future Work
	Conclusion

	Conclusion
	Summary
	Applications of the Multi-Track Music Machine
	Calliope
	Affect Models for Game Design
	Industry Collaborations
	Music Composition

	Limitations and Future Work
	MetaMIDI Dataset
	CSMG Evaluation Methods
	Optimization of the Multi-Track Music Machine
	Improving Attribute Control in the Multi-Track Music Machine
	Expanding the Rhythmic Capabilities of the Multi-Track Music Machine
	Performative Interpretation with the Multi-Track Music Machine

	Bibliography
	Appendix Cumulative Dissertation information
	Appendix The Significance of the Low Complexity Dimension in Music Similarity Judgements
	Appendix Abstract
	Introduction
	Related Work
	Motivation
	Methodology
	Participants
	Stimuli
	Experimental Design
	Procedure

	Results
	Discussion
	Conclusion

	Appendix Discriminating Symbolic Continuations with GenDetect
	Appendix Abstract
	Introduction
	Methodology
	Data Representation
	Training

	Acknowledgments

	Appendix Copyright Considerations for the MetaMIDI Dataset
	Appendix StyleRank Appendix
	Features
	Experiment 1 Expanded
	Experiment 1 Data
	Experiment 2 Data

	Appendix Examples
	Unconditioned Generation
	Track Infilling
	Attribute Control - Note Density
	Bar Infilling

