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Abstract

Motivated by the data explosion in the automobile industry due to technological innovations,
this report aims to provide an outline of how dimension reduction methods can be used in
modelling automobile insurance claim amounts. The framework is based on a generalized
linear model (GLM) with Tweedie distribution. Three popular methods are discussed in
detail, the stepwise method, the principal component analysis (PCA) using the nonlinear
iterative partial least squares (NIPALS) method, and the partial least squares method. The
effectiveness and predictability of the three methods are compared using a car insurance
data example. The results show that a small number of latent variables can effectively
capture sufficient information in the explanatory variables, and can be utilized to build a
decent predictive model for loss costs. Our study confirms that when multicollinearity exists
in the dataset, using orthogonal latent variables can generally result in better modelling
performance than ordinary variable selection methods.

Keywords: auto insurance; principal component analysis; partial least squares; generalized
linear model
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Chapter 1

Introduction

1.1 Motivation

In light of the rapid growth of data collection in every aspect of people’s lives, business
analysts are now challenged with utilizing mass data for better and more efficient mod-
elling. In the automobile insurance industry, we see that emerging technologies such as
vehicle telematics provides actuaries with an abundance of raw data. The newly launched
Tesla Insurance introduced by American electrical car giant Tesla calculates policyholders’
premiums using metrics such as percentage of aggressive turning, hard breaking and unsafe
following 1 . These new metrics, combined with the traditional vehicular information (vehi-
cle value, automatic emergency braking system, etc.) and drivers’ information (geographical
area, driving experience, etc.) pose a new opportunity for improving model accuracy but
also challenge actuaries to control the number of predictors in their models for efficiency.

There are numerous methods that help actuaries to reduce the number of variables. They
can be generalized into two types: supervised learning methods and unsupervised learning
methods. Some popular supervised dimension reduction methods include least absolute
shrinkage and selection operator (LASSO), stepwise methods and partial least square algo-
rithm, and unsupervised dimension reduction methods include principal component analysis
(PCA) and clustering. The unsupervised methods focus on finding a low-dimensional rep-
resentation that captures the most variance in the input variables, whereas the supervised
methods allow researchers to project the relationship between the input data and output
data, and build predictive models. Stepwise methods and LASSO are typical methods of
feature selection. The goal of feature selection is to preserve the most informative variables
and eliminate the redundant ones. Stepwise methods are greedy approaches as they try to
find the subset of features using the least amount of computing power, even though they
may only find local optimal subsets instead of global optimal subsets. LASSO allows ana-
lysts to regulate the models to avoid overfitting; however, the results can be unstable and

1https://www.tesla.com/insurance
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less intuitive. Partial least squares and principal components both utilize latent variables
to represent the original variables. Each component is a linear combination of the original
variables. By assigning different weights (loadings), the methods can give more weight to
significant variables and less weight to noises. The advantages of using these latent variables
are that it removes collinearity among the predictors, and can reduce dimension at a low
cost of model accuracy.

Loss cost, also known as pure premium, is the proportion of the premiums collected
from policyholders that is used to cover the claim amounts incurred. This equals to the
expected cost of all future claims from the policyholder. It is the primary interest of pricing
actuaries. Combined with profit loading and overhead costs, the loss cost is the basis of
the premium calculation. In an ideal situation, the price of an insurance product should
be high enough to cover the losses, but also low enough to stay desirable compared to
its competitors. Thus, an accurate estimation of the loss cost is the key to maintaining
insurance companies’ solvency and competitiveness. In the automobile insurance industry,
a common practice involves dividing policyholders into homogeneous subgroups based on
their risk characteristics, and a tariff for each group is calculated using regression methods.
Each insurance company has its own models for calculating appropriate tariffs to neutralize
the risks; however, they usually involve using statistical models to predict claim frequency
and claim severity. Some novel studies explored other modelling approaches, for example,
Guelman (2012) used gradient boosting trees for auto insurance loss cost modelling and
prediction. Some insurance companies use variations of experience rating, which calculates
premiums based on policyholders’ claim history. It is also possible to use some form of the
combination of risk classification and experience rating.

This report aims to provide a few dimension reduction methods for actuaries in modelling
lost costs and compare them using an application in automobile insurance.

1.2 Outline

The report is organized as follows. Chapter 2 provides a literature review on modelling
the loss cost in the automobile industry, and a number of dimensionality reduction methods
and their applications. Chapter 3 presents the generalized linear model (GLM) framework
and a special case of Tweedie GLM. Chapter 4 explains the modern dimensionality reduc-
tion methods extensively. This chapter is divided into two parts: the unsupervised learning
methods and the supervised learning methods. In the unsupervised learning methods sec-
tion, we mainly discuss principal component analysis (PCA), including different methods
to conduct PCA. In the supervised learning methods section, we discuss two dimensionality
reduction methods: variable selection and partial least squares (PLS). Chapter 5 provides
an application using an automobile dataset to demonstrate the strengths and weaknesses

2



of each method, and Chapter 6 draws actuarial implications from this application. Finally,
Chapter 7 concludes the key findings of this report.
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Chapter 2

Literature review

2.1 Generalized linear model and actuarial ratemaking

The generalized linear model (GLM) is an extension of the Gaussian linear models.
It loosens the normality assumption and homoscedasticity assumption of the error; thus it
allows researchers to fit a variety of models of response variables with different distributions.
The process of model selection, parameter estimation and prediction in GLM is discussed
in detail in McCullagh and Nelder (2019).

Modelling the claims is critical in insurance ratemaking. The claim frequency and claim
severity are two interests of pricing actuaries. Yip and Yau (2005) used six regression models
to explore which could successfully capture the zero inflation in the distribution of claim
frequency. The same dataset used by Yip and Yau (2005) is discussed in this report. While
Yip and Yau (2005) focused on modelling the claim frequency, in property and casualty
insurance it is common to model the severity of claims too. The aggregate claim amounts
can be modelled by combining the two models, assuming that the frequency and severity
are independent. Poisson distribution or negative binomial distribution is often used for the
mean frequency estimation and a gamma distribution is used for the mean severity esti-
mation. Jørgensen and Paes De Souza (1994) suggested a compound Poisson distribution
with a gamma random variable called Tweedie to estimate the aggregate loss. The Tweedie
distribution can be viewed as a re-parameterization of the compound Poisson-gamma dis-
tribution (Quijano Xacur and Garrido, 2015). As the Tweedie distribution belongs to the
linear exponential family, we thus can use it directly to estimate the mean aggregate loss
in a GLM setting. Dunn and Smyth (2018) demonstrated the estimation of Tweedie GLM
parameters using R. Numerous studies have tried to use the Tweedie GLM for loss predic-
tion and insurance ratemaking; see, for example, Smyth and Jørgensen (2002) and Yang
et al. (2018). Denuit et al. (2007) discussed in detail the ratemaking process in the property
and casualty industry, including risk classification, credibility and bonus-malus systems.
Although the focus of this book is the modelling of claim counts, it provides a broader
perspective on how statistical modelling is applied in the automobile insurance industry.
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2.2 Development on regression with latent variables

Principal component analysis (PCA) was initially developed in the field of chemometrics
before it gained popularity in many other scientific fields. Wold (1968) outlined the nonlinear
iterative partial least squares (NIPALS) algorithm to derive the principal components, while
singular value decomposition (SVD) of the data matrix and eigen-decomposition of the
covariance matrix are also two commonly used methods. Abdi and Williams (2010) showed
that how PCA can be obtained from the SVD of the data matrix. They also illustrated
how to find the principal components geometrically by first finding the main direction (first
component) where the data points exhibit the largest variance, and then the second principal
component orthogonal to the first can be found.

Although PCA is initially developed for numeric variables, a few methods are proposed
to circumvent the existence of categorical variables. Filmer and Pritchett (2001) proposed
to use dummy variables for each categorical variable level, as an analogy for how categorical
variables are used in regression models. Although this method can be simple and efficient
for PCA, a shortcoming of the dummy variables is that they cannot incorporate ordering.
By using a large simulation study, Kolenikov and Angeles (2004) showed that when non-
ordering of categorical variables cannot be assumed, the method proposed by Filmer and
Pritchett (2001) is inferior to using ordinal variables or polychoric correlations.

The purpose of PCA is to reduce the dimensionality of the data and the multicollinearity
problem that resulted from it. PCA is an unsupervised method as the derivation of the prin-
cipal components does not involve any response variable. Principal component regression
(PCR) is a regression model that uses a selected number of principal components as the in-
dependent variables instead of the original variables; however, it has a critical disadvantage:
the derivation of the components and the regressing are two separate steps; thus, we may
risk discarding principal components that contain useful information or keeping principal
components that consist mainly of noise (Wold et al., 1987). To remedy this disadvantage,
a supervised version of the PCA, partial least squares (PLS), is developed. The PLS model
consists of two relations: the inner relation that links both the explanatory variables (or
blocks) X and the response variables (or blocks) Y , and the outer relation that treats the
explanatory block and response block individually (Wold et al., 1987). Similar to PCA, a
selected number of partial least square components can be used to model one or multiple
response variables, known as partial least squares regression (PLSR).

Bastien et al. (2005) extended PLSR to generalized linear regression. The PLS general-
ized linear regression (PLS-GLR) algorithm has the same rationale as the PLSR, but when
building the inner link between X and Y , the algorithm uses an assumed GLM instead of a
linear model (Bastien et al., 2005). The PLS-GLR presents many possibilities for empirical
studies.

5



Chapter 3

Generalized linear model

This section discusses the theoretical framework of the generalized linear model, in-
cluding the assumptions of GLM, and also the estimation and testing of GLM. We then
narrow our focus on the GLM that is used in modelling the aggregate claim amounts in
auto insurance, specifically, the Tweedie GLM.

3.1 General framework

This report focuses on modelling the generalized linear model (GLM) with an underlying
Tweedie distribution. The GLM is an extension of the Gaussian linear models and consists
of three components: probability distribution, linear predictor and link function.

The probability distribution used in the GLM is the random component of the model.
Compared to the linear model, GLM loosens the assumption of normal distribution of
the response variable Y . Instead, we assume that Y follows a distribution from the linear
exponential family (see, for example, Frees, 2009 and Goldburd et al., 2016); it includes
the normal, exponential, Poisson, Bernoulli and Tweedie distributions as special cases. A
probability distribution is a member of the linear exponential family if its density function
can be expressed as:

f(y; θ, ϕ) = exp
(

yθ − b(θ)
ϕ

+ S(y, ϕ)
)

, (3.1)

where y is the response (or dependent) variable (discrete or continuous), θ is the natural
parameter and ϕ is a scale parameter, Note here that function b(θ) depends only on the
parameter θ, while S(y, ϕ) is a function of the response variable y and the scale parameter
ϕ. The mean and variance of Y can be easily obtained from (3.1) as

E[Y ] = b′(θ), Var(Y ) = ϕ b′′(θ).
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The linear predictors of a GLM are the systematic component of the model. A linear
predictor expressed as a linear combination of the explanatory variables x1, x2, . . . , xp:

η =
p∑

j=0
x′

jβj = x′β,

where x = (1, x1, x2, . . . , xp)′, and β = (β0, β1, β2, . . . , βp)′ is a column vector of (unknown)
parameters to be estimated.

In the context of GLM, a link function represents how the mean response is linked with
the predictors. It is customary to use µi = E[Yi] to represent the mean of the ith response
variable Yi, and it is associated with the linear predictors through the expression

ηi = x′
iβ = g(µi),

where function g is known as the link function. Accordingly, the mean function can be
expressed as µi = g−1(x′

iβ). Recall that ηi = g(µi) and µi = b′(θi). When function g is
chosen in terms of the inverse of b′(θi) (i.e., g−1 = b′, implying that ηi = g(b′(θi)) = θi), the
link function g is called the canonical link.

Table 3.1 presents some special cases of GLM along with their corresponding name
and formula of the (canonical) link function g(µi), mean function b′(θi), and the range of
response random variable. Note that the

Table 3.1: Some special cases of GLM

Distribution Link function Formula Mean function Range
Normal identity µi θi (−∞, +∞)

Bernoulli Logit log
(

µi
1−µi

)
eθi

1+eθi
{0, 1}

Poisson Log log(µi) eθi N+

Inverse Gaussian Inverse-square − 1
2µ2

i
(−2θi)−1/2 (0, +∞)

Gamma Inverse − 1
µi

− 1
θi

(0, +∞)

Before we present the general estimation method for the model parameters of GLMs,
we state below the assumptions used in GLMs. They are:

(A1) The response variables are independently distributed conditional on the observed ex-
planatory variables;

(A2) Explanatory variables are non-stochastic and exogenous;

(A3) The response variables follow a specified distribution in the linear exponential family
described by (3.1);

(A4) The mean of the response variable is linked to the linear predictors through the link
function, while the variance of the response variable can be written as a function of

7



the mean of the response variable, i.e., Var(Yi) = ϕ v(µi), where ϕ is a constant known
as the scale parameter and v(µi) is the variance function.

The maximum likelihood estimation method can be used for estimating the GLM pa-
rameters. The parameters are estimated by maximizing the likelihood, or equivalently, the
log-likelihood of the parameters from the observed data (McCullagh and Nelder, 2019).

The log-likelihood of independent observation y1, y2, . . . , yn is the sum of the individual
log-likelihood based on (3.1), i.e.,

l(ϑ; y) =
n∑

i=1

(
yiθi − b(θi)

ϕi
+ S(yi, ϕi)

)
, (3.2)

where y = (y1, y2, . . . , yn)′ is a vector of n observations, and ϑ = {θ1, . . . , θn, ϕ1, . . . , ϕn} is
a set of parameters to be estimated.

When the distribution parameter varies by known weight factors, we can write ϕi =
ϕ/wi. Recall that θi = ηi = x′

iβ, then equation (3.2) can be rewritten as a function of
parameter β and ϕ, namely,

l(β, ϕ; y, X) =
n∑

i=1

{
wi

yix
′
iβ − b(x′

iβ)
ϕ

+ S

(
yi,

ϕ

wi

)}
, (3.3)

where X = (x′
1, x′

2, . . . , x′
n)′ is the design matrix containing explanatory variables.

To find β that maximizes log-likelihood function (3.3), the score function is calculated
by taking the partial derivative of equation (3.3) with respect to β; this gives

U(β) = ∂

∂β
l(β, ϕ; y, X) = 1

ϕ

n∑
i=1

(
yi − b′(x′

iβ)
)

wixi. (3.4)

By setting the score function (3.4) to zero we obtain

0 =
n∑

i=1
wi
(
yi − b′(x′

iβ)
)

xi. (3.5)

The parameters estimated by maximizing the log-likelihood are known as the maximum
likelihood estimators (MLE), denoted β̂. Apart from a few special cases, there is no closed-
form solution to finding the MLE in GLM. Instead, they can be calculated using an iterative
weighted least squares procedure (Frees, 2009). A variation of the Newton-Raphson method
called Fisher scoring can be used. The algorithm initiates by a guess of β, denoted by βold,
and then updates it by using the following iteration relationship:

βnew = βold − I(βold)−1U(βold), (3.6)

8



where I(βold) is the observed information matrix valued at βold and U(βold) is the score
function given by (3.4) valued at βold. The expression of the information matrix is derived
from the negative expected value of the second derivative of the log-likelihood function with
respect to β; it is given by

I(β) = −E
[

∂2

∂β∂β′ l(β, ϕ; y)
]

.

This gives

I(βold) = 1
ϕ

n∑
i=1

wib
′′(x′

iβold)xix
′
i

Thus, equation (3.6) can be re-written as

βnew = βold −
(

n∑
i=1

wib
′′(x′

iβold)xix
′
i

)−1( n∑
i=1

wi(yi − b′(x′
iβold))xi

)
. (3.7)

When the difference between βnew and βold is smaller than a predetermined criterion
(usually very small), the algorithm converges and reports β̂. This method is math-intensive
and time-consuming if solved by hand. Luckily, most software today can produce the solution
in a few seconds. Asymptotically, the MLE β̂ is consistent and the variance-covariance
matrix of β are given by I−1(β). The variance of βj is the jth diagonal of I−1(β), and
the off-diagonal element is the covariance of βi and βj , where i ̸= j. The parameter ϕ can
be estimated by the Pearson estimate as indicated in Dunn and Smyth (2018), where the
estimation of the parameters in Tweedie GLMs using R is presented with details.

The strong correlation that exists in pairs of explanatory variables can cause GLM
regression to be highly unstable (Goldburd et al., 2016). When similar information is entered
into GLM twice, it may cause coefficients to be extremely high or low, and also have large
standard errors. Another issue associated with correlation is multicollinearity. It is caused
when the combination of two or more predictors is strongly predictive of another variable.
It is harder to detect multicollinearity from a correlation matrix because the variable may
not be highly correlated with the other variables individually (Goldburd et al., 2016).

3.2 Tweedie GLM

In the application of automobile insurance, the pure premium, also known as loss cost,
is the total claim amount incurred in a policy period (normally a year). The modelling of
pure premium is the primary interest of pricing actuaries since it is the proportion of the
collected premium that is used to cover the loss. Correct modelling of pure premium helps to
price the insurance product so enough premium is collected to cover the loss while keeping
the product competitive in the market. The distribution of the loss costs is composed of two
components: the frequency component and the severity component. The claim frequency
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denotes the number of claims per policy period. The claim severity is the average size of the
claim, which equals to the total claim amount incurred in a policy period divided by the
number of claims. The total claim amount during a policy period is also called the aggregate
loss amount; it is calculated by adding all the claim amounts incurred during the policy
period. The duration of a policy is called the exposure. In automobile insurance, one full
year of policy duration from one policyholder is one exposure. In this project, we consider
policyholders who keep the policy until it expires after a full year. For policyholders with
various exposures, an offset can be added to modify the model, this will be discussed later
in this section.

Because of the nature of the insurance claims, the distribution of aggregate loss amount
is highly skewed. There is generally a large mass at point zero that represents policies with
no claims throughout the policy period, and the remaining mass is the distribution of non-
zero claims. Generally, the aggregate loss can be modelled using two alternative methods.
The separated Poisson-gamma approach (SPGA) models the frequency component and the
severity component separately, and Tweedie GLM models the aggregated loss using only
one distributional model. The comparison between these two approaches is discussed by
Quijano Xacur and Garrido (2015). Since Tweedie GLM is a simpler model, it is preferred
over SPGA when the parsimony principle applies.

To introduce Tweedie GLM, we first introduce the Tweedie family of distributions. In
addition to the mean parameter µ and the scale parameter ϕ, a distribution that belongs
to the Tweedie family has a third parameter p, called the power parameter. A distribution
belongs to the Tweedie family if the variance function mentioned in assumption (A4) can
be written as

v(µ) = µp,

for some real number p that is not in the interval 0 to 1 (non-inclusive).
A distribution that belongs to the Tweedie family is characterized by the value of p

(Quijano Xacur and Garrido, 2015). Table 3.2 lists some popular distributions that belong
to the Tweedie family. A Tweedie distribution with a power parameter between 1 and 2 can

Value of p Distribution
p = 0 normal
p = 1 Poisson

p ∈ (1, 2) compound Poisson-gamma
p = 2 gamma
p = 3 inverse Gaussian

Table 3.2: Tweedie distributions with different power parameter p

be used to represent the characteristics of aggregate loss. It is also known as a compound
Poisson-Gamma distribution.
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Let N be the count variable representing the number of claims in a policy period. We
assume that N follows a Poisson distribution with parameter (mean) λ. Its probability
function is given by

pn = P(N = n) = eλλn

n! , n = 0, 1, 2, . . . .

Let Xi be a random variable representing the ith claim amount. Suppose that X1, X2, ...

are identically and independently distributed with a Gamma(α, τ) distribution, and is in-
dependent of N . The density function of the Gamma(α, τ) distribution is given by

fX(x) = τα

Γ(α)xα−1e−τx, x > 0, α > 0, τ > 0,

where α and τ are the shape and rate parameters, respectively. The mean of X is α/τ and
the variance of X is α/τ2.

Then, the aggregate loss S defined as

S = X1 + X2 + ...XN

follows a compound Poisson-gamma distribution. Its probability density function can be
expressed as

fS(x) =


e−λ, y = 0
∞∑

k=1

(
e−λλk

k! · τkαykα−1e−τy

Γ(kα)

)
, y > 0

. (3.8)

Note that the probability of the aggregate loss S = 0 is equal to the probability of zero
claims, i.e., N = 0. The distribution of S with its density function given by (3.8) is param-
eterized by the three parameters λ, α and τ .

The mean and the variance of S can be easily calculated as

E[S] = λα

τ
, Var(S) = λα

τ2 (1 + α).

Frees (2009) states that the Tweedie distribution can be shown as a member of the linear
exponential family by defining three parameters µ, ϕ and p by the relations

λ = µ2−p

ϕ(2 − p) , α = 2 − p

p − 1 ,
1
τ

= ϕ(p − 1)µp−1. (3.9)

Then (3.8) can be written, for y ≥ 0, as

fS(y) = exp
{

−1
ϕ

(
µ2−p

2 − p
+ y

(p − 1)µp−1

)
+ S(y, ϕ)

}
. (3.10)
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Note here the distribution of S with its density function given by (3.10) is parameterized
by the three parameters µ, ϕ and p with p ∈ (1, 2). The derivation of an explicit expression
of S(y, ϕ) can be found in Wüthrich (2003). If we further set θ = µ1−p/(1 − p) and b(θ) =
µ2−p/(2 − p), we can see that the density of S given by (3.10) is of the form of (3.1) for
the linear exponential family. It is worth mentioning that the Tweedie distribution when
p /∈ (0, 1) also belongs to the exponential dispersion family because it extends the linear
exponential family (Jørgensen, 1992). In this sense, parameter p is also called the dispersion
parameter.

From (3.9), we get the power parameter of the Tweedie distribution p = (2+α)/(α+1),
which is a function of the shape parameter α of the gamma distribution. If p is close to 2
(implying α tends to zero), there is little variance in the gamma distribution, so the Poisson
distribution is the main source of the randomness in the Tweedie distribution. The shape
of the probability density function of this Tweedie distribution is close to the probability
density function of a Poisson distribution. On the other hand, if p is close to 1 (implying
α tends to be very large), the probability density function of the Tweedie distribution
resembles a gamma distribution, but with a mass at point zero (Goldburd et al., 2016).

In application, a number of possible p candidates are used for testing and the optimal
value of p is chosen using the maximum likelihood method when data is available. In in-
surance modelling, the value of p is generally between 1.5 and 1.8, many modellers simply
choose a value when fine-tuning the value of p becomes costly. Some common choices are
1.6, 1.67 and 1.7 (Goldburd et al., 2016).

The Tweedie distribution is a member of the linear exponential family and thus can be
used as an underlying distribution in GLM. It is typical to use a log link when modelling
with Tweedie GLM as it captures the non-negativity of the response variable, namely,

log(µi) = x′
iβ,

where µi = E[Si], xi represents the explanatory variable and β is a vector of corresponding
coefficients.

The aggregate loss amounts are expected to vary directly with exposure. With everything
else held fixed, a policy with one exposure is expected to have twice the claim amounts than
a policy with half an exposure. This expectation can be reflected in a GLM as an exposure
offset (Goldburd et al., 2016). When we consider policyholders with different exposure in
the Tweedie GLM model, it becomes

log(µi) = x′
iβ + offset,

where offset=log(number of exposures).

12



Chapter 4

Dimension reduction methods

When modelling with a large number of predictors, two major problems one is likely to
encounter are high-dimension and in turn, multicollinearity. The word curse of dimension-
ality describes the situation that the sample size needed to maintain model accuracy grows
exponentially with the number of variables. Dimension reduction methods refer to tech-
niques that transform high-dimensional data into low-dimensional representations (Chao
et al., 2019). After these representations are obtained, they can be used for classification
and regression applications. The dimension reduction methods can be classified into two
types, supervised learning methods and unsupervised learning methods. The main differ-
ence between the two is that the supervised learning methods incorporate both input and
output variables when deriving the low-dimensional representations and the unsupervised
learning methods only try to capture the information in the input variables. In this report,
three methods are discussed: the forward stepwise selection, the principal component anal-
ysis and the partial least squares. The forward stepwise selection is an example of feature
selection where only significant variables are kept. The principal component analysis is a
popular learning method that tries to find a few latent variables to capture most infor-
mation in the original inputs. The partial least squares method is similar to the principal
component analysis but incorporates output variables in the algorithm. Among these three
methods, principal component analysis is an unsupervised method and forward stepwise
selection and partial least squares are supervised methods.

4.1 Unsupervised learning method

4.1.1 Principal component analysis

Principal component analysis (PCA) is an unsupervised learning method that utilizes
a few orthogonal components that capture sufficient variability in all the explanatory vari-
ables in a dataset. These components are latent variables. They cannot be observed in the
data, and can only be calculated. PCA is "unsupervised" as the derivation of the principal
components does not involve the response variable. There are three popular methods that
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are used to calculate the principal components: eigenvalue decomposition, singular value
decomposition (SVD) and non-linear iterative partial least squares (NIPALS).

This section briefly reviews the eigenvalue decomposition (eigen-decomposition) method
and SVD method, and focuses on the NIPALS algorithm. The algorithms are well docu-
mented by Wold et al. (1987) and Abdi and Williams (2010).

Let X be an I × J data matrix that we are interested in, where I is the number of
observations and J is the number of variables. If we fit a regression model or classification
model, then X represents the explanatory variable matrix, where X = (xi,j), It is customary
to centre the columns of X. This is done by subtracting the mean of the column from each
element in the column. After centring, the mean of each column equals zero. In this case,
matrix X ′X is the variance-covariance matrix. When the variables have different units, it
is also important to normalize the columns. This is obtained by dividing each column by
the standard deviation of this column. After centring and scaling, matrix X ′X becomes the
correlation matrix of X. We further assume that the rank of X, r, satisfies r ≤ {I, J} in
general, or specifically, r < J because we suppose that our data matrix contains correlated
variables that we aim to reduce.

PCA is used to provide an approximation of the data matrix X, in terms of the product
of two matrices T and P ′, namely,

X = T P ′ + E, (4.1)

where P = (pj,m) = (p1, p2, . . . , pM ) is a J × M matrix and T = (ti,m) = (t1, t2, . . . , tM ) is
a I × M matrix. If X has full rank, then J = M and P is a square matrix. In expression
(4.1), the matrix T is known as the score matrix, and its columns are called score vectors.
In this report, the words scores and principal components are used interchangeably. The
matrix P is known as the loading matrix and its columns are called loading vectors. The
residual matrix E represents the part that is not explained by the principal components.
By design, the loading vectors are all orthogonal to each other, i.e., p′

ipj = 0, for i ̸= j,
implying P ′P = I, where I is the identity matrix.

Once the scores and loadings are found with the data, we can use them to estimate new
data or "test data", denoted by Xnew. It can be used to estimate a new score matrix, Tnew,
through the relationship

Tnew = XnewP .

It can be seen that each component is a linear combination of the explanatory variables,
and P contains the weights of Xnew in this linear relationship. A scree plot is used to show
the proportion of variance explained (also called variance accounted for (VAF) in some
literature) by each component in both the eigenvalue and SVD decomposition methods
that are presented below with details. The variance is explained by the mth component,
denoted by σ2

m. The proportion of the variance explained by the mth component is then
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given by

σ2
m

M∑
k=1

σ2
k

=

I∑
i=1

(
J∑

j=1
xi,jpj,m

)2

I∑
i=1

J∑
j=1

x2
i,j

. (4.2)

If one is interested in the cumulative variance explained by the first m components, denoted
by ρm, it can be obtained by summing up the proportion of the variance explained from
the first component to the mth component using (4.2); that is,

ρm =

m∑
k=1

σ2
k

M∑
k=1

σ2
k

.

We now present the basic idea of these three methods.

Eigen-decomposition method

The first method to find the loadings and scores is by the eigen-decomposition of the cor-
relation matrix. A matrix is said to be positive semi-definite when it can be obtained as the
product of a matrix by its transpose. A positive semi-definite square matrix can be decom-
posed into eigenvectors and eigenvalues. This process is known as the eigen-decomposition.
A vector u is said to be an eigenvector and a scalar λ is said to be the corresponding
eigenvalue of square matrix A if it satisfies

Au = λu,

or alternatively,
(A − λI) = 0.

The eigen-decomposition method used in PCA can be considered an optimization method.
The goal is to maximize the variance explained by the principal components (recall that
X ′X is the correlation matrix), under the constraint that the loading matrix is an orthog-
onal matrix, i.e.,

max T ′T = P ′X ′XP

s.t. P ′P = I.
(4.3)

Equation (4.3) can be solved using the Lagrangian multiplier λ, i.e., solve for P :

max L = trace(P ′X ′XP − λ(P ′P − I)),

where λ is a diagonal M × M matrix, and the trace operator sums the diagonal elements
of a square matrix.
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To solve for P that maximizes L, we can take the derivative of L with respect to P and
set it to zero. This gives

∂L
∂P

= 2(X ′XP − P λ) = 0,

and we then have X ′XP = P λ. By right multiplying P ′ on both sides, we get

X ′X = P λP ′. (4.4)

Equation (4.4) is the eigen-decomposition of the matrix X ′X. The diagonal matrix λ con-
sists of eigenvalues and the columns of the matrix P are the eigenvectors of the correlation
matrix X ′X paired to the eigenvalues in λ.

Finally, we can find the score matrix T by T = XP . It is easy to see that

T ′T = P ′X ′XP = P ′P λP ′P = λ

as P ′P = I. Denote the mth diagonal element of λ as λm, and then λm/(n − 1) is the
variance explained by the mth component. When using eigen-decomposition, the cumulative
proportion of variance explained by the first m components can be expressed as

ρm =

m∑
k=1

λk

M∑
k=1

λk

. (4.5)

SVD method

The singular vector decomposition method is closely related to the eigen-decomposition
method. Under the SVD method, equation (4.1) becomes

X = UDV ′ + E. (4.6)

We call UDV ′ as the SVD of the matrix X, where U is the normalized eigenvectors of
the matrix XX ′ and the columns in U are called left singular vectors of X. The matrix V

is the normalized eigenvectors of the matrix X ′X, and the columns in V are called right
singular vectors of X. The matrix D is the diagonal matrix with the singular values of X

and D2 is the diagonal matrix of (non-zero) eigenvalues of the matrix X ′X and matrix
XX ′. As it can be seen that instead of decomposing the correlation matrix X ′X, we now
work on the data matrix X directly.

When we use the SVD method, V ′ plays the same role as P ′, and the matrix D is a
diagonal matrix with each diagonal element equal to the lengths of the column vectors of T .
The matrix U is the same as T , but each column is normalized to length one. Thus the prod-
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uct UD is equivalent to T . Unlike eigen-decomposition, the singular vector decomposition
is not limited to square matrices; this is, in (4.6), X can be of any dimension.

NIPALS algorithm

The algorithm of NIPALS is well demonstrated by Wold (1968), Wold et al. (1987)
and Geladi and Kowalski (1986). Unlike the first two methods, the NIPALS algorithm
does not calculate all principal components at once, rather it is an iterative method. It
is an important building block for a good understanding of partial least squares methods
introduced in Section 4.2.2. The NIPALS algorithm calculates the first loading vector p1 and
score vector t1, subtracts their product from X and uses the residual matrix to calculate
the next component. The NIPALS algorithm is composed of the following steps.

Step 1: Start with a random column in X and denote it as t; some people choose the
column with largest absolute sum, but the choice of different initial t will arrive at
the same result.

Step 2: Calculate loading vector p′ = t′X/t′t; this is the ordinary least squares solution
for regressing all the columns of X onto t.

Step 3: Normalize p to length one p/∥p∥.

Step 4: Calculate score vector t = Xp/p′p, with p′p = 1; this is the ordinary least squares
solution for regressing all the rows of X onto normalized p′.

Step 5: Check for convergence of score vector t (check if the difference between t used in
Step 2 and obtained in Step 4 is smaller than some predetermined criterion); if
convergence did not happen, go to Step 2.

Step 6: Deflate X by subtracting the variability capture by this component: E = X − tp′,
and use the residual matrix E as X in the next iteration.

The vectors t and p from each iteration form the columns of the score matrix T and
loading matrix P . Note in Step 3, the vector p is normalized by dividing its length ∥p∥.
After normalizing, the length of p is equal to one. The length of vector p is defined as the
square root of the sum of its squared elements, or the square root of p′p (Strang, 2006).

It can be shown that at convergence, the loading matrix and the score matrix calculated
using the NIPALS method are the same as the ones calculated using eigen-decomposition: by
denoting the scalar t′t in Step 2 as C and by substituting t = Xp in Step 4 into p′ = t′X/C

in Step 2, we get Cp′ = p′X ′X or pCp′ = X ′X. Therefore, C = t′t is an eigenvalue of
the matrix X ′X, which is denoted as a diagonal element of λ earlier in this section, and
p is the eigenvector paired with the eigenvalue. Although the eigen-decomposition of the
correlation matrix and the NIPALS algorithm produces the same results, one important
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difference between the two methods should be noted. If X contains missing values, the
eigen-decomposition method is unfeasible as the square matrix X ′X cannot be calculated,
whereas the NIPALS method is still functional. To see this, observe the loading vector p′

can still be estimated in Step 2 in the NIPALS algorithm. The regressions of columns of X

onto t can still be estimated with a few missing values.
It is worth noting that PCA is also applicable when some or all the explanatory variables

are categorical variables. A common treatment is to transform these categorical variables
into dummy variables as proposed by Filmer and Pritchett (2001).

The score matrix T is a representation of the original matrix X, and thus can be used
to build multivariate linear regression (MLR) models on the response variable Y . In the
linear regression model, the MLR can be written as:

E[Y ] =
M∑

h=1
chth,

where the parameter ch can be estimated using the ordinary least squares method. In the
GLM framework, we can compose

g(µ) =
M∑

h=1
chth,

where g is the link function used in GLM, µ is the mean vector of Y and the parameter
ch can be estimated using the maximum likelihood method. The regression models using
principal components are also called principal component regression (PCR).

To choose the number of principal components to be included in a model, two common
methods are used: 1) find the number of components that explains enough (usually at least
80% or 90%) variance in the explanatory variables, and 2) find the number of components
that gives the least cross-validation error.

4.2 Supervised learning method

4.2.1 Stepwise selection

This section discusses variable selection using a stepwise method in the generalized
linear model framework. There are three types of stepwise methods: forward selection,
backward elimination and stepwise regression (Keith, 2019). The last one is often referred
to as the hybrid method because it can be considered a combination of forward selection
and backward elimination.

The forward selection method can be summarized in the following steps: step 0) construct
the null model by using only the intercept; step 1) add one more predictor each time to the
model, using a specified criterion, the best predictor from all the remaining predictors is
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kept; step 2) repeat step 1) until a specific stop criterion is reached. The criterion of which
predictor is entered into the model in step 1) is subjective. Some commonly used criteria
are the p-value of the predictor, R2 (coefficient of determination), AIC (Akaike information
criterion) and BIC (Bayesian information criterion).

Using the p-value for the addition criterion and stopping criterion requires one to choose
a specific p-value, usually 0.01 or 0.05. In step 1), the predictor with the smallest p-value
will be added. When the smallest p-value is greater than the pre-set value, the algorithm
stops. When the data contains categorical variables, using the p-value directly might lead
to erroneous results. As Cohen (1991) points out that when dummy variables are used
to map the categorical variables, treating them as different predictors provide meaningless
results in the forward selection procedure. Moreover, when the reference level of the variable
changes in the model, it will lead to different conclusions. Thus, when the dataset contains
categorical variables, at each step of the forward selection, all levels of the same categorical
variable should be tested at the same time, with the degree of freedom equal to the number
of levels minus 1.

Adding the predictor that produces the largest coefficient of determination R2 is also
a common practice; however, R2 that is calculated based on the residual sum of squares
in the linear model cannot be extended to the cases under the generalized linear model
framework. Instead, some equivalent measures can be calculated, known as the pseudo-R2.
The most popular pseudo R2 is introduced by McFadden (1973), later known as Mcfadden’s
R2. Mcfadden’s R2, denoted as R2

mf , is based on the likelihood theory, and is given by

R2
mf = 1 − Lp

L0
, (4.7)

where Lp is the log-likelihood of the model with p predictors and L0 is the log-likelihood of
the null model. When the saturated model is fitted, the model explains the data perfectly
and the log-likelihood of the model is 0. We can easily see that the maximum value of R2

mf

is 1. It is worth noting that even when the model is well-fitted, the pseudo R2 can be really
small (Hosmer Jr et al., 2013).

The AIC is another popular selection criterion. Akaike (1974) first introduced this in-
formation criterion as an extension to the maximum likelihood principle. The AIC is given
by

AIC = 2k − 2Lp, (4.8)

where k is the number of independent parameters. The AIC statistic provides an overview of
the performance of the models that take the number of model parameters into consideration.
Throughout this report, AIC is used as a goodness-of-fit measure of models. A smaller AIC
statistic implies a better fitted model so that small AIC values are desired. The algorithm
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stops when AIC values start to increase. Using (4.7) in equation (4.8), we get

AIC = 2k − 2Lp

= 2k − 2L0
(
1 − R2

mf

)
.

With a negative L0 (almost always true), we can see that AIC is minimized only when R2
mf

is maximized, and vice versa. This shows that the decision of whether or not to include a
predictor using either AIC or Mcfadden’s R2 criterion is the same.

The forward selection is greedy and reduces the computing power needed for variable
selection significantly, because it only adds one predictor at a time, rather than comparing
every possible subset of predictors.

The drawbacks of stepwise methods are well documented. Since the stepwise methods
do not consider all possible subsets of predictors, it is well likely that significant predictors
do not make it to the optimal model because of the stopping criterion. Using AIC as an
example, the forward selection procedure may choose a local minimum instead of the global
minimum. Moreover, one of the most critical concerns is that the stepwise methods will not
select the best subset of predictors when multicollinearity exists (Fox, 2019).

4.2.2 Partial least squares

The partial least squares method is closely related to the NIPALS methods discussed in
Section 4.1.1. In fact, some refer to the PLS method as a supervised version of the NIPALS
method (Gareth et al., 2013). Geladi and Kowalski (1986) summarized the algorithm in
a concise manner. Bastien et al. (2005) extended the method from linear regression to
generalized linear regression. This section discusses the details of the derivation of PLS
components and PLS generalized linear regression (PLS-GLR).

The complete PLS procedure consists of the following steps.

Step 1: Compute all the PLS components th and select the number of components wished
to use in the regression model using cross-validation.

Step 2: Regress y on the selected PLS components using a generalized linear model.

Step 3: Express the PLS-GLR in terms of original explanatory variables.

To compute the PLS components, we first assume explanatory vectors x1, x2, . . . , xp

are centred, and scaled if they have different units. If the PLS is used with multiple linear
regression, it is also customary to centre and scale the response variables y; however, for
our purpose of constructing GLM, we leave y as is. The following algorithm shows the steps
of calculating the 1st PLS component and the hth PLS component for h = 2, . . . , M .

Computation of the 1st PLS component
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Step 1: Regress y on xj for each j, j = 1, 2, . . . , J , using generalized linear model and
obtain the regression coefficients a11, a12, . . . , a1J .

Step 2: Normalize the vector a1 = (a11, a12, . . . , a1J)′ and obtain the first loading vector
w1 = a1/∥a1∥.

Step 3: Compute the component t1 = Xw1/w′
1w1, where w′

1w1 = 1.

Computation of the hth PLS component

Step 1: Regress y on t1, t2, . . . , th−1 and xj for each j, j = 1, 2 . . . , J , using generalized
linear model and obtain the regression coefficients for xj , ah1, ah2, . . . , ahJ .

Step 2: Normalize the vector ah = (ah1, ah2, . . . , ahJ)′ and obtain the hth loading vector
wh = ah/∥ah∥.

Step 3: Compute the residual matrix Xh−1 from the regression of X on t1, t2, . . . , th−1.

Step 4: Compute the component th = Xh−1wh/w′
hwh, where w′

hwh = 1.

Step 5: Express th in terms of original variables: th = Xwh.

By construction, the algorithm ensures the orthogonality of the PLS components because
they are computed from the residual matrix from the last iteration. Step 5 and Step 4 are
equivalent, but th is expressed in different ways. This is because

th = Xh−1
wh

w′
hwh

(Step 4)

=
(

X −
h−1∑
i=1

tiw
′
i

)
wh (w′

hwh = 1)

= Xwh −
h−1∑
i=1

tiw
′
iwh (w′

iwj = 0, i ̸= j)

= Xwh. (Step 5)

By comparing Step 1 of the PLS algorithm and Step 2 in the NIPALS algorithm, we can
see that they demonstrate a similar idea. Instead of regressing the selected column of X

onto other columns of X using simple linear regression, the PLS algorithm uses GLM to
regress y instead. The distribution of the response variable can be chosen by researchers to
fit their assumptions.

Similar to PCR, the PLS-GLR model with m components can be expressed as

g(µ) =
M∑

h=1
chth
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=
M∑

h=1
ch

 J∑
j=1

whjxj

 , (4.9)

where g is the link function used in GLM, µ is the mean vector of y, th =
(

J∑
j=1

whjxj

)
are the orthogonal PLS components that can be expressed as a linear combination of xj

for j = 1, 2, . . . , J , ch are the coefficients to be estimated in the GLM, and {whj} are the
loadings calculated in the PLS algorithm.

By changing the order of the summation in equation (4.9), we can see that

g(µ) =
J∑

j=1

(
M∑

h=1
chwhj

)
xj

=
J∑

j=1
βjxj , (4.10)

where βj =
M∑

h=1
chwhj , j = 1, 2, . . . , J , are the coefficients of multiple generalized linear

regression.
For predictive analysis using PLS components, pre-process the new matrix Xnew so that

the variables are treated the same way as X; then obtain the new score matrix by

Tnew = XnewW ,

where W = (w1, w2, . . . , wM ) is the weight matrix obtained from the PLS algorithm using
X. The new score matrix Tnew can then be used for predictive analysis using PLS-GLR.
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Chapter 5

Application

To compare the proposed dimension reduction methods presented in Chapter 4, we
apply those methods to an automobile insurance dataset. After the number of predictors
is reduced, the retained predictors are used to fit a Tweedie GLM that models aggregate
claim amounts. The goal is to evaluate the forward selection, NIPALS, and PLS methods
by model accuracy and the ability to reduce the number of variables.

5.1 Data description

In this study, we consider an auto insurance dataset studied by Yip and Yau (2005).
The dataset is from SAS Enterprise Miner and can also be retrieved from R package ‘cplm’.
The original dataset contains 10,296 records over the period of 1993-1999. We consider only
the policyholders who held the policy in the latest year with complete information. This is
consistent with Yip and Yau (2005). There are 2,341 records left after the selection. There
are twenty variables of driver characteristics and vehicle characteristics such as distance
to work, the value of the vehicle and the driver’s violation record. These variables are
treated as explanatory variables for the GLM. The descriptions of the variables are listed
in Table 5.1. Out of twenty variables, ten are numerical variables and ten are categorical
variables (including binary variables). The categorical variables are followed by their levels.
For example, policyholders need to specify the primary use of their vehicle when purchasing
or renewing their policy: either for private use or for commercial use. Thus there are two
levels for variable CAR_USE: Commercial and Private. All the numerical variables such
as BLUEBOOK (the value of the vehicle, in thousands) and MVR_PTS (Motor Vehicle
Record violation records) have integer values. The empirical distributions of these variables
are shown in Figure 5.1. The distribution of HOME_VAL has a mass at point zero. Although
not specified in the original data description, it is assumed the policyholders with zero
HOME_VAL value do not own a home but, for example, renting or living with parents.

In this study, we use the total claim amount in a policy year as the response variable for
the model. Because the dataset includes only the total claim amounts for the past five years,
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Variable Levels Description
CLM_AMT5 the total claim amount in the past 5 years
KIDSDRIV the number of driving children
TRAVTIME the distance to work
CAR_USE Commercial the primary use of the vehicle

Private
BLUEBOOK the value of the vehicle, in thousands
CAR_TYPE Panel Truck the type of the car

Pickup
Sedan

Sports Car
SUV
Van

RED_CAR No whether the color of the car is red
Yes

REVOKED No whether the driver’s license was invoked in the past 7 years
Yes

MVR_PTS MVR violation records
AGE the age of the driver

HOMEKIDS the number of children at home
YOJ years at current job

INCOME annual income
GENDER No the gender of the driver

Yes
MARRIED No married or not

Yes
PARENT1 No single parent

Yes
JOBCLASS Unknown the profession of driver

Blue Collar
Clerical
Doctor

Home Maker
Lawyer

Manager
Professional

Student
MAX_EDUC <High School maximum education level

High School
Bachelors
Masters

PhD
HOME_VAL the value of the insured’s home
SAMEHOME years in the current address

AREA Rural home/work area
Urban
Note. Variables without levels are numeric variables.

Table 5.1: Variable Descriptions

24



Figure 5.1: Distribution of Independent Variables

the response variable is calculated by dividing the total claim amount by five. As expected,
there is a large number of policies with zero claims: out of 2,341 recorded policies, 1,599 of
them have zero claim amounts. A histogram of the annual claim amount is illustrated in
Figure 5.2. The distribution of the non-zero claim amounts is highly right-skewed, as shown
in Figure 5.3: the majority of them concentrate between $1 and $2000, and there are also a
few observations of extreme claim amounts that exceed $10,000. The summary statistics of
the non-zero claim amounts are shown in Table 5.2.

Min. 1st Quantile Median Mean 3rd Quantile Max.
100.8 758.0 1225.6 2136.2 1921.8 11407.4

Table 5.2: Claim Amount Summary

Some of the explanatory variables exhibit correlation. Figure 5.4 shows the correlation
matrix of the numeric variables. The strongest correlation occurs between INCOME and
HOME_VAL. This is unsurprising considering people with high income tend to purchase
homes of high value. There is also a strong negative correlation between AGE and HOME-
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Figure 5.2: Distribution of Claim Amount

Figure 5.3: Distribution of Non-Zero Claims
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KIDS. As the drivers get older, their kids move out for school or work resulting in a negative
relationship between the two variables.

Figure 5.4: Correlation among numeric variables

5.2 Forward selection

The forward stepwise variable selection method initializes with the null model, which
only includes the intercept, denoted β0, and no other predictors.

log(µi) = β0, i = 1, 2, . . . , 2, 341,

where µi is the expected claim amount from the ith policyholder.
The estimated β0 is denoted β̂0, which is equal to 6.7296 when fitted to the automobile

insurance dataset. The null model implies all the policyholders have the same expected pure
premium equalling to exp{6.7296} = $836.78, which is also the empirical mean of the claim
amounts in this dataset.
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The process then adds one predictor to the model of the logarithm of the expected
aggregate claim amount. By adding the jth variable we have

log(µi) = β0 + β1xij , i = 1, 2, . . . , 2, 341,

for j = 1, 2, . . . , 20.

The twenty models are then compared, using the AIC criterion; the model with the
variable REVOKED decreases the AIC value of the null model the most. Accordingly,
REVOKED is chosen and carried forward to the next step. This is not surprising because
REVOKED is the indicator variable of whether a driver’s license has been revoked before.
It indicates whether the driver exhibits poor judgement on the road, for example, impaired
driving and reckless driving, and may carry it even after reinstatement.

The variable selection process continues by adding one more variable at a time until
the AIC does not decrease anymore. In each step, the model that decreases the AIC value
the most is the optimal model and the variables in the optimal model are retained. Each
time a model is fitted, the power parameter for the Tweedie GLM is re-estimated using
the maximum likelihood method. The selected variable from each step is shown in column
2 of Table 5.3. The AIC values from the optimal models are shown in column 3 of Table
5.3. In Figure 5.8, the red line shows the change in AIC as we add more variables to fit
the model. The lowest AIC value acquired is 18402.51. The number of variables retained in
the model after forward selection is eight. A heuristic method that can be applied to the
model selection based on AIC values is the elbow method. The elbow method suggests that
the selection should stop at the ‘elbow point’ of the AIC curve, instead of the lowest point.
Although not used in this study, it is worth mentioning that using the elbow method may
result in a more parsimonious model.

Number of Steps New Variable Added AIC
0 (INTERCEPT) 19031.14
1 REVOKED 18669.32
2 MVR_PTS 18474.40
3 AREA 18413.22
4 BLUEBOOK 18404.56
5 GENDER 18403.90
6 CAR_USE 18403.31
7 AGE 18402.59
8 MARRIED 18402.51

Table 5.3: Forward Stepwise Selection

The change in the AIC values is obvious in the first four steps; however, the changes are
minimum thereafter, suggesting that the additional variables add little improvement to the
goodness-of-fit of the model. After the eighth variable MARRIED is added, the model cannot
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be improved further by adding more variables. The forward stepwise variable selection
method suggests that the best model is the one with REVOKED, MVR_PTS, AREA,
BLUEBOOK, GENDER, CAR_USE, AGE and MARRIED as explanatory variables with

log(µ̂i) = β̂0 + β̂1 · REVOKED_Yes + β̂2 · MVR_PTS + β̂3 · AREA_Urban

+ β̂4 · BLUEBOOK + β̂5 · GENDER_M + β̂6 · CAR_USE_Commercial

+ β̂7 · AGE + β̂8 · MARRIED_Yes.

The model results are shown in Table 5.4. To find whether an individual variable is
significant, we need to test the hypothesis of its coefficient equal to zero using the Wald test
(Wald, 1943). The null hypothesis of the Wald test for the jth variable selected is that the
coefficient is equal to zero, i.e., H0 : βj = 0. The Wald statistics can be calculated by

Wj = β̂j

SE(β̂j)
,

where SE(βj) denotes the standard error of βj .
Wald (1943) showed that when the number of observations approaches infinity, un-

der the null hypothesis, the Wald statistic is asymptotically standard normal. Thus we
can calculate the p-value using the standard normal distribution. A small p-value indi-
cates that the variable selected is statistically significant. The p-values show that variables
REVOKED, MVR_PTS, AREA, and BLUEBOOK are significant and each variable of
GENDER, CAR_USE, AGE and MARRIED improves little model performance, if any.
This is consistent with what we observed earlier in the AIC values. In fact, if we use the p-
value > 0.05 as the stopping criterion, then the forward selection method chooses only four
variables. For completeness and later comparison, the model with all the available variables
is also considered. It is referred to as the full model later in this report.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0050 0.2716 18.43 0.0000***

REVOKED_Yes 1.4884 0.0949 15.69 0.0000***
MVR_PTS 0.1888 0.0172 10.95 0.0000***

AREA_Urban 0.9360 0.1459 6.41 0.0000***
BLUEBOOK -0.0150 0.0058 -2.60 0.0094**
GENDER_M -0.1699 0.0939 -1.81 0.0707

CAR_USE_Commercial 0.1433 0.0979 1.46 0.1434
AGE 0.0076 0.0051 1.48 0.1389

MARRIED_Yes -0.1054 0.0902 -1.17 0.2431
p 1.3469
ϕ 332.8252

Table 5.4: Model summary after forward selection
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5.3 Principal component regression using NIPALS

In our data, variables CAR_USE, CAR_TYPE, RED_CAR, REVOKED, MARRIED,
GENDER, AREA, PARENT1, JOBCLASS and MAX_EDUC are considered nominal cat-
egorical variables. To find the principal components, we first transform these categorical
variables into dummy variables. Thirty-three indicator variables are created from the ten
categorical variables. There is no data with JOB_CLASS level Unknown, so no indicator
variable is created for this level. The rank of the explanatory variable matrix is 33. This
can be viewed as the sum of the 23 indicator variables and 10 numerical variables in the
dataset, since one level from each of the 10 categorical variables is used as a reference level.
The maximum number of principal components that can be calculated is 33. All variables
are standardized by subtracting their means and scaled by their corresponding standard
deviations. We denote these standardized variables as xij and its standard deviation as sj

for j = 1, 2, . . . , J and J = 33.
Since the NIPALS is an iterative method, the algorithm initiates by finding the first

principal component and then calculates the other components sequentially. The algorithm
produces a loading matrix of dimension 33 × 33 and a score matrix of dimension 2, 341 × 33
(i.e., I = 2, 341, J = M = 33).

The scores tim can be written as a linear combination of the variables with loadings pjm

as the weights of the variables; that is,

ti1 = p11xi1 + p21xi2 + ... + p33,1xi33,

· · · · · ·

ti33 = p1,33xi1 + p2,33xi2 + ... + p33,33xi33,

for i = 1, 2, . . . , 2, 341.
Table 5.5 reports the loadings (i.e., p11, . . . , p33,1) from the principal component analysis

for the first component ti1. The interpretation of these loadings for the dummy variables is
that a change of dummy variable xij from 0 to 1 adds the score by pj1/sj . For the numeric
variables, an increase of 1 unit adds the score by pj1/sj .

A glimpse of the first three components is shown in Table 5.6. These principal com-
ponents can be seen as a series of arbitrary numbers created to represent the original
explanatory variables. It is worth noting that the signs of all the loadings and principal
components can be changed simultaneously without losing their authenticity. This is be-
cause if we multiply −1 to both T and P in X = T P ′, the relationship still holds.

The principal component regression can be built with the principal component scores
calculated using the NIPALS method. The generalized linear model with principal compo-
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Variable Loading Variable Loading
KIDSDRIV 0.065 MARRIED_No 0.088
TRAVTIME 0.026 MARRIED_Yes -0.088
GENDER_F 0.343 GENDER_M -0.343
BLUEBOOK -0.161 AREA_Rural 0.101
MVR_PTS 0.034 AREA_Urban -0.101

AGE -0.156 PARENT1_No -0.170
HOMEKIDS 0.150 PARENT1_Yes 0.170

YOJ -0.138 JOBCLASS_Blue Collar -0.034
INCOME -0.236 JOBCLASS_Clerical 0.095

HOME_VAL -0.212 JOBCLASS_Doctor -0.069
SAMEHOME -0.132 JOBCLASS_Home Maker 0.176

CAR_USE_Private 0.124 JOBCLASS_Lawyer -0.059
CAR_USE_Commercial -0.124 JOBCLASS_Manager -0.112

CAR_TYPE_Panel Truck -0.156 JOBCLASS_Professional -0.074
CAR_TYPE_Pickup -0.058 JOBCLASS_Student 0.078
CAR_TYPE_Sedan -0.140 MAX_EDUC_<High School 0.089

CAR_TYPE_Sports Car 0.134 MAX_EDUC_Bachelors -0.056
CAR_TYPE_SUV 0.234 MAX_EDUC_High School 0.109
CAR_TYPE_Van -0.111 MAX_EDUC_Masters -0.094

RED_CAR_No 0.299 MAX_EDUC_PhD -0.080
RED_CAR_Yes -0.299 REVOKED_Yes 0.030
REVOKED_No -0.030

Table 5.5: Loadings of the first principal components

nents can be expressed as

log(µi) = c0 + c1ti1 + c2ti2 + ... + cT tiT ,

where T is the number of components included in the model. To determine the appropriate
number of components T to be included, the cumulative variance explained and the cross-
validation errors are calculated.

The cumulative variance explained by the principal components can be calculated using
Equation (4.5). This can be done because the dataset does not contain missing values, and
the variance explained calculated in the NIPALS algorithm is the same as the eigenvalues in
the eigen-decomposition method. The cumulative variance explained is illustrated in Figure
5.5. The red line represents 90% mark. In the figure, the cumulative variance explained
exhibits concavity. This is because, by construction, the preceding principal component
always captures a larger variation than the following component. We observe that 22 prin-
cipal components are needed to explain more than 90% of the variance in the independent
variables.

The K-fold cross-validation (Hastie et al., 2009) is also a popular choice when choosing
the number of components. The general procedure can be described as follows.
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PC1 PC2 PC3
1 -2.645 2.532 0.374
2 -2.631 0.426 1.806
3 1.790 1.311 3.061
4 2.265 -0.496 0.496
5 0.633 -3.041 1.327
6 2.955 -0.906 -2.083
7 -2.149 0.705 1.044
8 0.554 0.358 -2.420
9 2.436 -0.383 -1.725
10 -0.694 -0.183 -1.004
...

...
...

...
2341 1.310 2.418 -0.726

Table 5.6: A glimpse of the first three components calculated using NIPALS algorithm

(1) Randomly divide dataset into K roughly equal sized groups.

(2) Fit the model using K − 1 groups and calculate the root mean square error of the
fitted model predicting the remaining part of the data.

(3) Repeat (2) K times so that every group is used once as a test group.

(4) Obtain the cross-validation error by averaging the root mean square error across all
groups.

The root mean square error is calculated as the square root of the sum of the squared
difference between the actual response value and the predicted value; that is,

RMSE =

√∑n
i=1(yi − ŷi)2

n
.

In this report K = 10 is used. The cross-validation shows a similar result as the scree plot,
as shown in Figure 5.6. The lowest RMSE occurs when including 20 principal components
in the model, compared to 22 components chosen using the scree plot (see Figure 5.5). For
comparison purposes, the RMSE for the full model is indicated by the red line in Figure
5.6. The full model is the model that includes all twenty variables. The graph shows only
when 20 components or 25 components are included, the PCR is better than the full model;
otherwise the full model has a smaller RMSE.

Using 22 principal components, the result of the principal component regression is shown
in Table 5.7. The interpretation of these coefficients can be baffling. It is one of the disad-
vantages of PCR. One way to understand these coefficients is to combine them with the
loading matrix, as shown in Equation (4.10), and then interpret the resulting coefficient in
terms of the original variables.
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Figure 5.5: Cumulative variance explained by components

Figure 5.6: Cross-validation result
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.2936 0.0504 124.98 0.0000***

PC1 0.0238 0.0207 1.15 0.2503
PC2 -0.0037 0.0215 -0.17 0.8618
PC3 0.1388 0.0241 5.76 0.0000***
PC4 0.1165 0.0274 4.26 0.0000***
PC5 -0.4896 0.0303 -16.14 0.0000***
PC6 -0.0685 0.0304 -2.26 0.0241*
PC7 -0.0353 0.0328 -1.08 0.2819
PC8 0.0217 0.0327 0.66 0.5066
PC9 0.0431 0.0342 1.26 0.2088
PC10 -0.0698 0.0351 -1.99 0.0471*
PC11 -0.0005 0.0375 -0.01 0.9902
PC12 -0.0674 0.0398 -1.70 0.0901
PC13 0.0596 0.0376 1.59 0.1129
PC14 0.0712 0.0384 1.86 0.0637
PC15 0.0124 0.0401 0.31 0.7566
PC16 0.1309 0.0418 3.13 0.0018**
PC17 0.0444 0.0447 0.99 0.3206
PC18 0.2321 0.0435 5.33 0.0000***
PC19 -0.0029 0.0450 -0.06 0.9488
PC20 0.1242 0.0439 2.83 0.0047**
PC21 0.0137 0.0447 0.31 0.7597
PC22 -0.1335 0.0465 -2.87 0.0041**

p 1.3469
ϕ 320.1748

Table 5.7: Estimates for PCR

5.4 Partial least squares regression

The processing of the original data matrix is the same as what was done in the NIPALS
section. The loading vector w1 for the first partial least squares component is calculated
using w1 = a1/∥a1∥, where a1 = (a11, a12...a1J)′. The regression coefficient a1j is calcu-
lated in the Tweedie GLM of claim amounts on each predictor xj , for j = 1, 2, . . . , J . The
result of w1 is shown in Table 5.8. A large absolute value of loading indicates that the
(standardized) predictor has a large contribution in calculating the first component. From
Table 5.8, the largest three contributors of the first component is REVOKED, MVR_PTS
and AREA. These three variables are also the most significant variables suggested in the
forward selection regression.

The first component t1 can then be calculated using t1 = Xw1/w′
1w1. The first ten

rows of the first component are shown as column "PLSC1" in Table 5.9.
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Variable Loading Variable Loading
KIDSDRIV 0.059 MARRIED_No 0.048
TRAVTIME -0.017 MARRIED_Yes -0.048
GENDER_F 0.050 GENDER_M -0.050
BLUEBOOK -0.090 AREA_Rural -0.396
MVR_PTS 0.407 AREA_Urban 0.396

AGE 0.017 PARENT1_No -0.050
HOMEKIDS 0.032 PARENT1_Yes 0.050

YOJ 0.034 JOBCLASS_Blue Collar 0.070
INCOME -0.019 JOBCLASS_Clerical -0.016

HOME_VAL -0.041 JOBCLASS_Doctor -0.030
SAMEHOME -0.050 JOBCLASS_Home Maker -0.046

CAR_USE_Private -0.042 JOBCLASS_Lawyer -0.067
CAR_USE_Commercial 0.042 JOBCLASS_Manager 0.037

CAR_TYPE_Panel Truck -0.063 JOBCLASS_Professional -0.026
CAR_TYPE_Pickup 0.027 JOBCLASS_Student 0.023
CAR_TYPE_Sedan -0.033 MAX_EDUC_<High School 0.032

CAR_TYPE_Sports Car 0.100 MAX_EDUC_Bachelors -0.003
CAR_TYPE_SUV -0.009 MAX_EDUC_High School 0.024
CAR_TYPE_Van -0.070 MAX_EDUC_Masters -0.060

RED_CAR_No 0.041 MAX_EDUC_PhD -0.001
RED_CAR_Yes -0.041 REVOKED_Yes 0.468
REVOKED_No -0.468

Table 5.8: Loadings for the first Partial Least Sqaures component

For the second PLS component, the regression coefficients a2j is calculated using

y = c1t1 + a2jx1j ,

where x1j is the residual from the regressions of each xj on t1 to ensure the orthogonality
of t1 and t2, satisfying

x1j = xj − c1jt1.

The second loading vector equals to w2 = a2/∥a2∥ and then the second PLS component
t2 = Xw2/w′

2w2 is calculated. The process continues by including the score vector in
the GLM and calculating the next loading vector by using the residual matrix from the
preceding step until all the components are found. The first ten rows of the first three PLS
components are shown in Table 5.9.

To determine the number of components to be included in the PLS regression model,
we use AIC to compare the goodness-of-fit of the Tweedie GLM when different numbers of
components are included. In Figure 5.8, the green line shows the AIC values of the PLS
regression using different numbers of partial least square components. The AIC is minimized
when two components are included in the regression model. The cross-validation error is
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PLSC1 PLSC2 PLSC3
1 -0.189 0.407 -0.973
2 -0.365 1.129 -0.073
3 0.792 -2.740 -0.373
4 -0.099 -1.589 -0.541
5 -0.187 0.009 -0.412
6 0.188 -0.314 0.499
7 0.416 2.572 1.838
8 0.515 0.210 -0.691
9 -0.223 -1.393 -1.070
10 -0.468 0.484 -0.853
...

...
...

...
2341 -1.950 -1.010 1.504

Table 5.9: A glance of the first three components calculated using PLS algorithm

shown in Figure 5.7. The RMSE is minimized when two PLS components are included in
the regression, which gives us the same conclusion as using the AIC. The RMSE of the full
model is indicated by the red line in the figure, we observe that the PLS regression is almost
always better than the full model. The result of the regression model that includes two PLS

Figure 5.7: Cross-validation for PLS regression
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components is shown in Table 5.10. The corresponding model is given by

log(µ) = c0 + c1t1 + c2t2,

where the estimation of c0, c1, c2 is listed in the second column of Table 5.10. The result
shows that both components are significant, with p-values close to zero.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.2942 0.0513 122.63 0.0000***

PLSC1 0.5810 0.0265 21.94 0.0000***
PLSC2 0.1411 0.0289 4.88 0.0000***

p 1.3469
ϕ 334.8544

Table 5.10: Model summary from PLS regression model

5.5 Model comparison

This section compares the three dimension reduction methods. The AIC values shown
in Figure 5.8 correspond to regression models with different numbers of predictors using
the three dimension reduction methods. The largest possible number of predictors is 33,
which is the sum of 10 numeric variables and 23 levels of categorical variables, where each
level is represented by a dummy variable (1 level from each categorical variable is used as
a reference level, and thus not included here).

We observe that the PLS regression model with two components has the smallest AIC
value among all models. With a given number of predictors, PLS regression always has a
smaller AIC value than that from GLM with forward selection and PCR in this application.
Table 5.11 summarises the RMSEs from 10-fold cross-validation of the regression model
using eight variables chosen by the forward stepwise selection, the PCR with 22 principal
components and the PLS regression with two partial least square components. The PLS
regression has the smallest cross-validation error and is also the model with the smallest
number of predictors.

The PCR performs poorly compared to the other two methods. Given the number of
predictors, the PCR has the worst goodness-of-fit based on AIC. The principal component
analysis concludes 22 components are needed to build the optimal PCR model, which is the
largest number of predictors needed among all three dimension reduction methods. Even
with the optimal PCR model, the cross-validation error is the largest compared to that for
GLM after forward selection and PLS regression using two PLS components. The cross-
validation error of the full model is also listed in Table 5.11 for reference. We can see that
the model with the smallest RMSE is PLS regression, followed by regression with forward
selection, the full model and then the PCR. This result shows that the PCR does not improve
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model performance from the full model. Some critiques (see, for example, Kolenikov and
Angeles, 2004) are against the use of dummy variables in PCA. When the data contains
categorical variables, instead of making dummy variables for each level of these categorical
variables, there are different ways that are considered to be better approaches, for example,
functional PCA (Segovia-Gonzalez et al., 2009), nested neural networks (Schelldorfer and
Wuthrich, 2019), and PCA with embedded categorical variables (Jeong, 2022).

Figure 5.8: AIC comparison among four different models

Full Model Forward Selection PCR PLSR
Cross-Validation Error 1630.67 1614.86 1637.89 1568.29

Table 5.11: Cross-Validation Error
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Chapter 6

Actuarial implication

Actuaries aim to balance the premium collected to cover the aggregate loss (claim
amounts), operating cost and cost of capital. Thus, the estimation of all future claims
helps in determining the price of insurance products and is also a crucial part of maintain-
ing the solvency of insurance companies. The actuarial ratemaking principle is based on the
cost-based pricing of individual risks (Denuit et al., 2007). The observable variables used
for classification are known as a priori variables. Traditionally, these variables are informa-
tion collected when policies are purchased or renewed. Some examples of a priori variables
include years of driving experience, location of residence, and age of the driver. The pure
premium that is estimated based on the data collected for these classified groups plays a
significant part in the pricing of insurance products.

The ratemaking in property and casualty insurance is based on claim frequency dis-
tribution and loss distribution. Under the independence assumption, the pure premium is
the product of average claim frequency and average loss severity. When modelling discrete
count data, the Poisson distribution plays a prominent role when the underlying population
is homogeneous. When this assumption is not reasonable, we can divide the population into
finite homogeneous sub-populations, In this case, a mixture of Poisson distributions can be
useful in modelling claim frequency (Denuit et al., 2007). The modelling of claim costs is
more complicated in the real world. One reason is that in most cases, the cost of an accident
cannot be determined by the policyholder. The care exercised by drivers mostly influences
the number of accidents but not the costs of accidents (Denuit et al., 2007). Thus, in most
statistical modelling, the observable variables are much less relevant in predicting the sever-
ity. Nevertheless, different GLM models such as gamma, inverse Gaussian and lognormal are
used by actuaries to model the claim sizes, and hence the unobservable risk characteristics,
such as the aggressiveness behind the wheel, can be captured through the observed response
variables based on drivers’ experience.

This report compares the prediction of the pure premium using Tweedie GLM with
the forward stepwise selection, NIPALS and PLS. While Chapter 5 shows in detail how
these GLMs are estimated, this chapter focuses on the comparison of ratemaking using
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these estimated GLMs. The ratemaking process in automobile insurance involves classifying
policies according to their risk characteristics. Thus, we divide the data presented in Chapter
5 into subgroups according to their characteristics and estimate the pure premium for each
subgroup.

6.1 Forward selection

The pure premium estimated using the GLM with forward selection utilizes eight vari-
ables in total. The variables are listed in Table 5.3 and the GLM estimation results are
shown in Table 5.4. We can produce a tariff table based on each risk group with different
risk characteristics. To limit the number of groups created, the numeric variables BLUE-
BOOK (the value of the vehicle) and AGE (the age of the driver) are binned. The the risk
classes for BLUEBOOK are manually set as $0-$14,444, $14,445-$27,300, $27,301-$40,200,
$40,201-$53,100, and $53,101-$66,000 (the maximum value of BLUEBOOK in the dataset
is $65,970). When the value of BLUEBOOK falls into an interval, the middle point of the
interval is used to estimate the pure premium. For example, if the true value of BLUEBOOK
is $12,080, this belongs to the risk group $0-$14,444, and the pure premium is calculated
using $7,222 (7.222 thousand). Similarly, AGE is grouped into five risk classes: 18-28, 29-
39, 40-50, 51-61, and 62-73 (the oldest driver in the dataset is 73 years old). After binning
BLUEBOOK and AGE, there are 11,200 risk groups in total. Table 6.1 shows nine of these
risk groups. The first group is the group with the most exposures, so is used as a reference
group in the discussion. The estimated pure premium using the GLM with forward selection
is shown in column 4 of Table 6.2; the relative changes compared to the reference group are
shown in column 5.

GROUP REVOKED MVR_PTS AREA BLUEBOOK GENDER CAR_USE AGE MARRIED
1 No 0 Urban 0-14444 F Private 51-61 Yes
2 No 0 Urban 0-14444 F Commercial 51-61 Yes
3 Yes 0 Urban 0-14444 F Private 51-61 Yes
4 No 0 Rural 0-14444 F Private 51-61 Yes
5 No 0 Urban 14445-27300 F Private 51-61 Yes
6 No 0 Urban 0-14444 M Private 51-61 Yes
7 No 0 Urban 0-14444 F Private 62-73 Yes
8 No 0 Urban 0-14444 F Private 51-61 No
9 No 5 Urban 0-14444 F Private 51-61 Yes

Table 6.1: Risk Groups

The largest pure premium estimation among all nine rating groups appears when RE-
VOKED is Yes. A driver’s license is revoked when one or more serious offence(s) is commit-
ted by the driver; examples include impaired driving, or when the driver has too many traffic
points. It is possible for drivers who had revoked driver’s licenses to apply for new ones. In
these cases, drivers with previously revoked driver’s licenses are considered high risk. By
comparing the pure premium estimation between group 1 and group 3, we observe when
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holding other factors fixed as risk group 1, a policyholder with a previously revoked driver’s
license has an estimated pure premium that is $1916.84 − $432.69 = $1484.15 more than a
policyholder without a previously revoked driver’s license. Another risk factor that causes
an increased pure premium estimation is MVR_PTS. Similar to REVOKED, MVR_PTS
is a good indicator of drivers’ riskiness and driving habits. As shown in Table 6.2, holding
other factors fixed, drivers with 5 violation points have a pure premium estimation that is
157% more than drivers with 0 violation points.

The location of the driver’s residency also has a considerable impact on the pure premium
estimation. The smallest pure premium estimation among these nine groups occurs in group
4. In risk group 4, the location of residency of the driver is a rural area. The pure premium of
risk group 4 is $432.69−$169.70 = $262.99 less compared to the reference group. Because of
the low population density in rural areas, it is less likely for drivers to encounter an accident,
and when they do, the costs of accidents are likely to be lower compared to accidents that
happened in urban areas. Consequently, the pure premium estimation is lower compared to
drivers from urban areas, holding other factors fixed.

If the car is used for commercial purposes (e.g., trucking, Uber), the pure premium
estimation is 15.4% higher than if used for private purposes. This is not surprising as
commercial cars are on the road more often than private cars.

Our results also show that younger drivers have a lower pure premium estimate. A driver
who is between 62-73 years old has a pure premium estimate that is 18.2% higher than a
driver who is between 51-61 years old. In addition, the younger the driver is, the lower the
pure premium estimates. This is arguable to some degree. Intuitively, drivers tend to cause
fewer accidents when they have certain years of driving experience and have good reflex
speed. A quadratic relationship between age and claim amounts may fit better in this case.
Our results also show that the value of BLUEBOOK is negatively related to pure premium
estimation. This is counter-intuitive as more expensive cars are expected to have higher
repair costs. It can be caused by the limited number of data records.

6.2 Principal component regression

In this section, the pre-processed predictors from the risk groups and the loadings cal-
culated in Section 5.3 are used to find the updated score matrix. Then the updated score
matrix is used to predict the pure premium using the PCR with 22 components discussed
in Section 5.3. The summary of the fitted model is shown in Table 5.7.

Since the PCR method utilizes all the variables, the number of risk groups is extremely
large. For comparison purposes, the pure premiums of the same nine risk groups are calcu-
lated and the results are shown in column 6 of Table 6.2; the relative changes compared to
the reference group is shown in column 7. The predictors that are not listed in Table 6.1
are held fixed during the calculation. The fixed variables take the value or the level with
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the highest frequency. From the result, the pure premium estimated using PCR is higher
than the one estimated using the forward selection method across all nine groups. This is
mainly caused by the value of the fixed variables used in the PCR, which are not selected
using forward selection. When different values of these variables are tried, the pure premium
estimates using PCR can be lower or higher than the pure premium estimates using GLM
with forward selection. The patterns of the change in pure premium estimation relative
to the reference group discussed in Section 6.1 can also be observed here: the signs of the
relative changes in column 7 are the same as in column 5, just with different magnitudes.
Overall, the relative changes from the reference group are smaller compared to that from
Section 6.1.

6.3 Partial least squares

When calculating pure premium using PLS regression, the setup is the same as the
PCR. After pre-processing the risk characteristics and multiplying by the loading matrix,
the updated score matrix is used to predict the pure premium using the PLSR with two
components discussed in Section 5.4. The summary of the fitted model is shown in Table
5.10. The pure premium estimates using PLS regression are shown in column 8 of Table 6.2;
the relative changes from the reference group are shown in column 9. Like the other two
dimension reduction methods, group 4 (driver from rural area) has the lowest pure premium
estimates and group 3 (driver with previously revoked driver’s license) has the highest pure
premium estimates.

An illustration of the pure premium estimated using three methods is shown in Figure
6.1. Compared to the forward selection method and PCR, PLSR "punishes" the drivers with
revoked driver’s licences and violation points less (see the bar graph of group 3 and group 9)
but charges a little more to other groups (except group 4); therefore, the results in general
balance out.

For comparison purposes, the pure premium estimations using all the explanatory vari-
ables are shown in column 2 and the relative changes are shown in column 3 in Table 6.2.
The relative changes from the reference group mostly are consistent with the findings ear-
lier; however, group 2 receives a lower pure premium estimation than that for group 1 under
the full model, which contradicts the other regression models and our intuition. Generally,
all three methods are able to capture the riskiness of drivers from their characteristics and
use them to estimate the pure premium; however, the PLSR requires the least predictors
when fitting the GLM.
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GROUP Full Model Forward Selection PCR PLS
1 474.46 432.69 474.44 514.09
2 470.62 -0.8% 499.37 15.4% 517.26 9.0% 561.24 9.2%
3 2092.04 440.93% 1916.84 343.0% 2076.05 337.6% 1962.98 281.8%
4 184.54 -61.11% 169.70 -60.8% 186.29 -60.7% 173.71 -66.2%
5 431.11 -9.2% 393.02 -9.2% 448.12 -5.5% 488.27 -5.0%
6 385.40 -18.77% 365.09 -15.6% 449.51 -5.3% 488.61 -5.0%
7 550.65 16.06% 511.54 18.2% 556.21 17.2% 580.10 12.8%
8 560.21 18.07% 480.76 11.1% 508.57 7.2% 538.87 4.8%
9 1216.87 156.47% 1111.86 157.0% 1199.59 152.8% 1084.76 111.0%

Table 6.2: Pure premium estimation using four methods

Figure 6.1: Pure premium estimation using four methods
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Chapter 7

Conclusion

The booming technological innovation brings both opportunities and challenges. Tra-
ditionally in automobile insurance, the observable risk characteristics for modelling are
limited to the vehicular information such as the make and use of the car, and drivers’ per-
sonal information such as the location of residency and occupation. With the development
of telematics, now information such as speed, number of lane changes, and frequency of
emergency brakes are also available. It is challenging to use all the observable risk char-
acteristics for a few reasons: over-fitting, computational limitation, multicollinearity and
loss of interpretability. With a large amount of information available, it becomes a pressing
issue for actuaries in the property and casualty industry to utilize the data effectively and
efficiently. For example, recently Jeong (2022) discussed dimension reduction techniques
specifically for telematics data.

In this report, three dimension reduction methods are discussed in detail: the for-
ward stepwise selection, principal component analysis using nonlinear iterative partial least
squares algorithm and partial least squares algorithm. The forward selection and the partial
least squares method are supervised learning methods, whereas the NIPALS is an unsuper-
vised method. To evaluate these dimension reduction methods, we fit a generalized linear
model for aggregate claim amounts using the reduced variables under each method and
compare the model performance.

By using an application of an automobile dataset, we observe that the partial least
squares regression model performs better than the other two methods in terms of both model
accuracy and the number of variables reduced. Compared to unsupervised methods such as
principal component analysis, the partial least squares algorithm incorporates the response
variable, and thus provides better performance when regression is the objective. The forward
selection has the advantage of interpretability over the methods using latent variables. It is
easier to interpret regression parameters using forward selection to policyholders who may
not have been exposed to statistical modelling methods. The claim amounts also depend on
unobservable characteristics such as drinking behaviour and the reflex speed of the driver.
Thus when using unsupervised methods, these unobservable characteristics are completely

44



omitted as the response variable is not used to generate the components. Overall, principal
component analysis is not highly recommended for property and casualty pricing modelling,
because it provides neither good model performance nor easy interpretability based on our
study on the automobile dataset. In future studies, feature selection methods can be applied
before PCA to remedy the disadvantages of PCA.

Quijano Xacur and Garrido (2015) has shown that the Tweedie GLM and the separate
frequency and severity GLMs perform equally well; however, the Tweedie GLM is a sim-
pler model, and thus should be preferred when possible. In situations when actuaries are
interested in either claim frequency or severity, separate models should be applied. In real
applications, it is often the case that there exists a very large proportion of zero claims, so
zero-inflated models can be a better choice for modelling these situations. Zhou et al. (2022)
presented a boosting-assisted zero-inflated Tweedie model for extremely unbalanced zero-
inflated data. Further research could be done on applying dimension reduction methods for
zero-inflated parametric Tweedie models.

This study investigates parametric dimension reduction methods. However, some lit-
erature has proposed interesting non-parametric methods such as gradient boosting trees
for automobile insurance loss cost modelling (see, for example, Guelman, 2012 and Yang
et al., 2018). Further research could be done on comparing the modelling performance of
parametric dimension reduction methods and non-parametric ones. In application, another
issue worth discussing is the presence of missing data. In real scenarios, it is unreasonable
to assume that the data collected from policyholders are complete. Thus, when studying
dimension reduction methods, further studies can be done on how the loss cost regression
models with reduced variables perform in the presence of missing data.
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