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Abstract 

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin 

Lymphoma, with ~4,400 Canadians diagnosed annually. DLBCL patients are treated 

with a standard frontline immunochemotherapy (R-CHOP) comprised of several 

chemotherapeutics and the monoclonal antibody rituximab, which binds to the B-cell 

surface marker CD20. While R-CHOP is generally effective for DLBCL, for patients 

where frontline treatment fails (relapsed-refractory DLBCL, rrDLBCL), prognosis is poor 

with a median survival time of 6 months. Although numerous rrDLBCL salvage therapies 

have been developed, their efficacies have been limited partially due to the 

heterogeneity of DLBCL and an incomplete understanding of the genomic features 

associated with relapse disease. We hypothesize that the genomic landscape of 

rrDLBCL will be distinct from diagnostic DLBCL and contain recurrent mutations 

contributing to both treatment failure and advanced disease. To this end, we performed 

ultra-deep targeted sequencing of 63 genes (CAPP-Seq) on 135 rrDLBCL liquid biopsies 

and found six genes significantly enriched for mutations at relapse. KMT2D and TP53 

were mutated in half of all rrDLBCL samples, with TP53 enriched for dominant negative 

hotspot mutations. 8% of rrDLBCL cases harbour MS4A1 mutations, which encodes 

CD20. Mutations in MS4A1 were clonally selected following treatment and in vitro 

attenuated the binding of rituximab and other anti-CD20 antibodies, including those 

undergoing clinical trials. To expand upon these findings, we performed whole exome 

sequencing on 155 rrDLBCL samples and found mutations in TET2 and TMEM30A 

significantly depleted at relapse which, in conjunction with enrichment of mutations in 

KMT2D and CREBBP, suggest broad epigenetic changes in rrDLBCL. Using additional 

copy number information from 77 rrDLBCL liquid biopsies (n=222) we observed a high 

burden of copy number variants in rrDLBCL and novel recurrent deletions of RNA 

regulators HNRNPU and HNRNPD, the MHC Class I regulator IRF2, and recurrent gains 

involving the B-cell proliferation factors IKZF3 and TCF3, representing candidate 

therapeutic targets. 13 regions were significantly enriched for events in rrDLBCL, 

including these novel events and others regulating apoptosis (TP53, PTEN, BCL2) and 

proliferative signaling (MIR17HG, BCL6). Overall, we have further characterized the 

genetics of rrDLBCL and identified mechanisms of treatment resistance and possible 

therapeutic targets. 
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Tumour microenvironment Tumour cells and otherwise normal cells which interact 
with and support the tumour mass 

Tumour purity The proportion of tumour/malignant cells in a tumour 
sample 

Tumour suppressor A gene which inhibits tumour growth when fully functional 
Tumour-normal pair Sequencing both a tumour sample and a sample of 

healthy cells from the same patient 
Unmatched normal A healthy/constitutional sample from a patient other than 

the tumour sample 
Warburg effect A cancer cell will prioritize glycolysis/lactate pathways for 

energy production, over oxidative phosphorylation  
Whole genome 
sequencing 

The process of sequencing the entire human genome 
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Chapter 1.  
 
Introduction 

1.1. Cancer development and genetics 

Fundamentally, cancer is a disease that arises from normal human cells which 

acquire a set of somatic mutations over many rounds of cell division. Under normal 

conditions, cells are placed under extensive regulatory control to divide only when 

necessary (for example, during wound healing1,2 or human development3). Some 

mutations can bypass these regulatory systems, allowing a cell to achieve uncontrolled 

cell division or evasion of apoptosis or other anti-cancer defenses within the body. With 

a sufficient combination of such mutations, clonal populations of cells harbouring such 

mutations can eventually become cancerous. 

1.1.1. Driver and passenger mutations 

Cells obtain somatic mutations through errors in DNA replication4 or through 

DNA-damaging processes such as environmental exposures (carcinogens)5–7. The 

resulting mutations can exhibit various downstream effects depending on the type of 

mutation and where they occur. The human genome in diploid cells comprises 

approximately 6.4 gigabases [Gb] with only small portions directly encoding proteins8. 

While the remaining non-coding portion of the genome does encoding functional regions 

(for example, regulating gene expression, regulatory RNAs) our ability to predict the 

function of mutations in these regions is relatively limited9,10. As most mutational 

processes introduce mutations at semi-arbitrary locations11, most somatic mutations 

acquired by a cell are so-called “passenger” events, as they have no effect on the fitness 

of that cell relative to its normal counterpart. Those mutations with a functional impact 

(for example, those that alter the function of a protein) can either benefit a cancer cell or 

can be detrimental. By chance, most will be detrimental to an important cellular process 

and would result in a fitness disadvantage, thereby undergoing negative selection. 

However, in rare cases mutations will benefit cellular fitness and provide the cell with a 

competitive advantage relative to other cells in the same tissue, and these would 
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undergo positive selection. Such events are termed driver mutations and are key to 

tumour development and cancer progression. Importantly, although these mutations are 

beneficial to the cell in the context of Darwinian evolution, such behaviour can be 

detrimental to the multicellular organism. Tumours generally acquire few driver 

mutations but harbour orders of magnitude more passenger mutations12. It should be 

noted that the functional relevance of mutations is dependent, in part, on the biological 

context such as cell differentiation state, microenvironment or environmental factors. As 

a result, a “passenger” mutation may act as a driver in another context. For instance, 

selective pressure may only exist temporarily such as during exposure to therapies. 

Driver mutations generally contribute to the fitness of cells by modifying either the 

function or dosage of protein-coding genes. While these generally manifest as protein-

coding changes, driver copy number alterations leading to increases or decreases in 

gene dosage, as well as other regulatory mutations that affect protein abundance, have 

also been observed 13–15. 

1.1.2. Oncogenes and tumour suppressors 

Cancer-associated genes are commonly categorized as either tumour 

suppressor genes or oncogenes and tend to display distinct patterns of mutations in 

cancerous cells. If a gene encodes a protein that negatively regulates cell growth and 

division (for example, by preventing the cell from dividing when in close contact with 

other cells) and is predominantly affected by loss-of-function mutations, it is generally 

considered a tumour suppressor gene16. Typically, mutations in tumour suppressor 

genes introduce a premature stop codon in the protein (nonsense mutation); change the 

reading frame (insertion or deletion mutation, indel); or prevent the resulting transcript 

from being properly spliced (splice site mutation). Because diploid cells normally have 

two copies of autosomal genes, tumour cells typically acquire driver mutations perturbing 

both copies of a tumour suppressor gene. Tumour suppressor genes with 

haploinsufficiency been described but are relatively rare17,18. Furthermore, certain loss-

of-function mutations can have a dominant negative effect, disrupting protein function 

even when a functional copy of the gene remains19. These events tend to occur in 

proteins which form protein complexes with multiple subunits, where a non-functional 

molecule of the protein can affect the function of complex. Mutations displaying this 
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phenotype tend to disrupt a key amino acid (missense mutation), typically those involved 

in the enzyme’s active site.  

In contrast to tumour suppressors, the activity of proteins encoded by oncogenes 

drive cellular growth or inhibit apoptosis. Because randomly acquired mutations are 

usually deleterious, mutations within oncogenes tend to be localized to specific amino 

acids or domains that promote sustained activity. These can include mutations which 

disrupt inhibitory domains, modify post translocation modifications, or enhance protein 

activity directly20,21 . Regulatory mutations that directly increase the expression of 

oncogenes are also common, particularly in lymphomas. For instance, genomic 

translocations which place anti-apoptotic genes (such as BCL2) or pro-proliferation 

genes (such as MYC) under control of a constitutively active enhancer in B-cells results 

in significantly increased and constitutive expression of these genes. 

1.1.3. Tumour development and heterogeneity 

Cancers represent a population of cells arising from a single founding cell 

through the stepwise acquisition of mutations while under selective pressure. When a 

cell acquires a malignant mutation, it continues to grow and divide until the cell 

encounters another checkpoint which inhibits growth and division. Benign (or 

premalignant) populations can persist until a subsequent daughter cell acquires an 

additional mutation that enables it to avoid this new restriction, enabling further growth 

and division until another proliferative block is encountered. This process continues until 

a fully formed malignant tumour develops22, able to grow without restriction and 

metastasize to different sites in the body. Solid tumours commonly recruit supporting 

cells from the immune system such as regulatory T-Cells and modulated dendritic cells 

to evade immune destruction23,24, as well as stromal cells such as fibroblasts, which 

further promote immune suppression, produce oncogenic growth factors and induces 

angiogenesis, and supports metastases25. However, even an early tumour is comprised 

of hundreds of thousands or even millions of cells26, and different cells in the tumour can 

acquire different mutations27 (Figure 1-1). This tumour heterogeneity has profound 

biological and clinical implications. From a biological perspective, these subclonal 

populations of cells (termed “subclones”) compete amongst themselves for limiting 

supplies of nutrients and oxygen in their microenvironment. If a subclone harbours a 

beneficial mutation, it can outcompete and eliminate other subclones in a classic 
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selective sweep28. In rare cases, subclones may actually cooperate with one another, 

acquiring synergistic phenotypes which further advance tumour development and 

metastases29,30. Tumour heterogeneity can also arise from differences in the 

environmental conditions of different tumour niches. For instance, the center of a tumour 

is generally deficient of oxygen and nutrients, whereas cells near the tumour’s periphery 

tend to have abundant nutrients and oxygen but are exposed to the body’s immune 

system, thereby having distinct selective pressures within the same population. 

 
Figure 1-1. Example of tumour heterogeneity, where a tumour is comprised of 

multiple subclones (colours), and one of these subclones is 
resistant to treatment (red subclone). This subclone subsequently 
expands and becomes the dominant clone. 

Tumour heterogeneity and the presence of multiple genetically and 

phenotypically distinct subclones is also relevant in the context of treatment. As most 

therapeutics target proteins which tumour cells depend upon31 or features required by 

rapidly growing cells32,33, this treatment constitutes a strong selective pressure on the 

tumour. Subclonal populations may harbour mutations that render them resistant to the 
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chosen therapy and, upon exposure, this subclone can persist while the bulk of the 

tumour cells are killed, which can be perceived as an initial response to treatment. With 

a reduction of competing cells, this resistant subclone can theoretically thrive among 

abundant resources, allowing it to generate a tumour now entirely resistant to therapy. 

Tumour heterogeneity and selection of a resistant subclone are strongly associated with 

treatment failure34–36. 

1.1.4. Hallmarks of cancer and tumour formation 

Numerous biological processes and checkpoints act on a cell to prevent it from 

undergoing unregulated cell division. To become fully malignant, a normal cell must 

acquire several phenotypes to avoid these restrictions, with the comprehensive list of the 

phenotypes required termed the “hallmarks of cancer” and reviewed by Hanahan and 

Weinberg37,38 (Figure 1-2). In brief, there are ten major attributes a cell must acquire to 

become malignant. Cell division is tightly regulated by sustained negative feedback 

loops and anti-proliferative signals which prevent cell division, and expression of pro-

proliferative signals is tightly controlled. Cells which acquire mutations which enable 

constitutive proliferation signaling (for instance, via the Ras signaling39) and ignore anti-

proliferative signals (for instance, by blocking the TFG-β signaling pathway40) enable 

them to grow and divide without the usual external stimulation. 

Each time a cell undergoes cell division, the entire genome of the cell must be 

replicated. As DNA polymerase requires a primer to begin replication, every subsequent 

round of cell division shortens the genome41. Human genomes are protected by 

telomeres, sacrificial DNA sequences on the end of each chromosome which are 

shorted during cell division42. When telomeres become too short (i.e. if the cell has 

undergone too many rounds of cell division), cell division either ceases, or genomic 

damage occurs43. To avoid this biological limitation, malignant cells must acquire 

“replicative immortality” by reactivating the telomerase TERT44 which lengthens the 

telomere sequences. 

As malignant cells continue to acquire driver mutations and the tumour continues 

to increase in size, it eventually outstrips its blood supply and encounters a deficit of 

oxygen and nutrients. To account for this, a tumour tends to both promote the growth of 

new blood vessels (inducing angiogenesis)45 to further supply the tumour, and modifies 
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the cell’s underlying energetics and metabolism. Normal mammalian cells generally 

produce energy from glucose and oxygen through oxidative phosphorylation, although 

some cell types leverage anaerobic glycolysis to produce energy under hypoxic 

conditions46. The latter process generates significant less energy than oxidative 

phosphorylation47, but has the additional effect of generating numerous metabolites used 

by cellular components48,49. Even with functioning mitochondria and when abundant 

oxygen is present, malignant cells tend to prioritize anerobic glycolysis over oxidative 

phosphorylation, as these additional metabolites are required for continued cell division. 

 
Figure 1-2. Hallmarks of cancer. All the phenotypes required by a normal cell to 

become fully malignant. Adapted from Hanahan and Weinberg 
(2011). 

Tumour cells require multiple driver mutations to become fully malignant12, but 

human cells are host to extensive DNA repair50 and carcinogen-processing pathways51 

which ensure a low mutation rate52. As a higher mutation rate increases the likelihood of 

acquiring a beneficial driver mutation, cancer cells frequently inactivate pathways 

responsible for DNA repair and genomic stability53 and become more suspectable to 

mutagens and errors during DNA replication54. Many pathways and proteins involved in 
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DNA repair and maintenance also act as genomic guardians, inducing apoptosis if 

catastrophic DNA damage occurs55. Apoptosis can also be induced when constitutive 

proliferative signaling occurs as a further safeguard against tumour formation56. To avoid 

this, many apoptotic pathways are perturbed by loss-of-function driver mutations in 

malignant cells. Chief among these is the master DNA damage and apoptotic regulator, 

and “guardian of the genome” TP53, which is mutated or otherwise inactivated in half of 

all human cancers57. 

As tumour cells acquire non-synonymous mutations, both driver and passenger, 

they generate mutant proteins not normally present in the body. Almost all human cell 

types present protein peptides on their cellular surface in the Major Histocompatibility 

Complex (MHC) Class 1 complex58. These presented peptides are recognized by CD8+ 

T-Cells which induce destruction of cells presenting foreign proteins (for instance, those 

infected by viruses or cancerous cells). While downregulation of MHC Class 1 is 

common in cancer cells to evade immune destruction59,60, Natural Killer (NK) cells 

destroy cells which don’t present MHC Class 161 which is common in foreign invaders 

such as bacteria. To avoid further immune destruction, tumours generally recruit cells 

which supress the normal immune response, such as regulatory T-cells62 and those 

which promote inflammation of the tumour site23,24. This inflammation has the further 

effect of immune suppression through the release of specific cytokines by pro-

inflammatory cells and by producing factors associated with cell growth and 

angiogenesis63. It should be noted that due to the generally random nature of driver 

mutations, these hallmarks may not be acquired in a specific order, and a single driver 

event can provide multiple hallmarks. 

1.2. Lymphoma and DLBCL 

Lymphomas are a type of cancer which arise from cells involved in the immune 

system, namely lymphocytes, and form a tumour within the lymphatic system. 

Lymphomas are the 5th most common form of cancer within Canada, with an estimated 

12,150 Canadians diagnosed with lymphoma each year64. Despite its high incidence, the 

rate of lymphoma mortality in Canada has notably declined over the past two decades, 

reflecting improvements in disease classification and treatment64. However, lymphoma 

remains the 8th deadliest cancer in Canada, especially among children, accounting for a 
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an estimated 3.5% of all cancer-associated deaths. There remains significant room to 

improve in both disease management and treatment. 

1.2.1. Lymphoma subtypes, and non-Hodgkin lymphoma 

At the broadest level, lymphomas can be divided into three major subgroups: 

Hodgkin Lymphoma, mature T- and NK-cell neoplasms, and B-cell neoplasms. Hodgkin 

lymphoma, a cancer arising from B-Cells and characterized by the presence of Reid-

Sternberg cells in the tumour, is generally rare, accounting for 0.4% of all cancer cases 

diagnosed worldwide65 and only 10% of lymphoma cases66. Of the remaining non-

Hodgkin lymphomas (NHLs), mature T- and NK-Cell neoplasms include lymphomas 

derived from T-lymphocytes and natural killer cells which have migrated out of the 

thymus, and account for 10-12% of all lymphoid malignancies67,68. The remaining NHLs 

largely arise from B-Cells69. B-cell lymphomas are extremely diverse, with 46 distinct 

recognized subtypes70 but can broadly be divided into low-grade/indolent and high-

grade/aggressive B-Cell lymphoma. Low-grade lymphomas generally grow slowly, and 

as such patients with indolent lymphomas generally have superior outcomes compared 

to those with aggressive lymphomas. However, while indolent lymphomas are initially 

responsive to therapies71 these tumours generally persist following treatment and 

gradually becomes treatment resistant. The most common subtype of indolent 

lymphoma (and the second most common type of NHL) is follicular lymphoma (FL), 

which is characterized by a hallmark translocation which places the anti-apoptotic and 

proto-oncogene BCL2 under the control of an immunoglobulin enhancer72 and arise from 

B-cells within follicles of the germinal center73. While patients with follicular lymphoma 

(FL) is generally not fatal in-and-of-itself, with 5-year overall survival (OS) of 92%73, FL 

can undergo histological transformation to more aggressive forms of lymphoma. 

In contrast to the slow growth and long outcomes of indolent lymphomas, high-

grade/aggressive lymphomas are characterized by rapidly growing and generally 

aggressive tumours and inferior patient outcomes if left untreated. Compared to the 

persistence of indolent lymphomas, high-grade lymphomas are generally responsive to 

therapy. These include Burkitt lymphoma, characterized by translocations placing the 

proto-oncogene MYC under control of the immunoglobulin enhancer, and Mantle cell 

lymphoma, which arise from cells in the mantle zone of the germinal center and is 

characterized by translocations of the cell cycle regulator CCND174,75. 



9 

The most common type of NHL is termed diffuse large B-cell lymphoma 

(DLBCL), representing 40% of all NHL cases. DLBCL is so named due to the 

morphological characterization of the disease, where large lymphoid cells diffuse and 

displace normal lymphoid tissue. While distinct subtypes of DLBCL exist corresponding 

to associated viral infection (HHV8+ DLBCL76 and EBV+ DLBCL77), most cases are 

classified as DLBCL, not otherwise specified (NOS). 

1.2.2. Molecular classification of DLBCL, Cell of Origin (COO) 

In 2000, Alizadeh et al discovered a gene expression signature which divided 

DLBCL cases into two molecular subgroups78. The first, termed Germinal Center B-Cell 

DLBCL (GCB), showed elevated expression of genes expressed by B-Cells within the 

germinal center of lymphoid tissues, and thus thought to arise from germinal center B-

cells. The second, termed Activated B-Cell (ABC) DLBCL, shows expression of genes 

associated with plasma cells79 and NF-ĸB signaling80, and thus thought to arise from B-

Cells which are in the process of leaving the germinal center and differentiating into 

plasmablasts. ABC-DLBCL cases shows significantly inferior outcomes when treated 

with chemotherapy compared to GCB-DLBCL78, and thus these molecular subtypes are 

a predictive marker of treatment outcome. The prevalence of ABC and GCB-DLBCL 

varies significantly with geographical location, with GCB-DLBCL more common than 

ABC-DLBCL in North America and many European countries, while ABC-DLBCL is more 

prevalent in Asian and Pacific nations81. 

Initially, molecular classification of DLBCL samples into these prognostic 

subgroups was met with difficulty, as gene expression profiling required fresh frozen 

tissue biopsies. Tumour biopsies are generally stored via formalin fixation, which 

fragments RNA and renders gene expression profiling difficult82. To avoid this issue and 

assign tumours into molecular subgroups using FFPE tissue, several groups developed 

Immunohistochemical methods of assigning cell of origin (COO) via the presence or 

absence of specific proteins within cancerous cells83–85. Chief among these is the Hans 

algorithm, which classifies samples into GCB or non-GCB based on the presence or 

absence of CD10, BCL6, and MUM183. However, these classification approaches had 

notable limitations, such as poor inter-site reproducibility86 and the binary classification of 

any sample into GCB or ABC subgroups with no intermediate/unclassified group for 

samples not expressing any associated signature. To address these limitations, Scott et 
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al.87 developed the Lymph2Cx assay, which calculates a COO-confidence score using 

the expression of 20 genes from FFPE tissue88 using a digital gene expression 

technique called Nanostring89. Lymph2Cx showed high reproducibility between labs and 

recapitulated an Unclassified group for samples presenting neither gene expression 

signature. Lymph2Cx has subsequently been expanded to classify DLBCL into other 

morphological entities90,91, with the most recent iteration being termed DLBCL90. 

1.2.3. Treatment of frontline DLBCL 

Until 2002, patients diagnosed with DLBCL were treated in the frontline setting 

with a chemotherapy combination known as CHOP. CHOP consists of 

cyclophosphamide, doxorubicin, vincristine, and prednisone, which cumulatively inhibit 

DNA synthesis, mitosis, and modulate the tumour microenvironment32,92–96. This regimen 

was standard-of-care for DLBCL until 2002, when Coiffier et al.97 showed significant 

improvements in elderly patients suffering from DLBCL via the addition of the 

monoclonal antibody rituximab. This antibody interacts with the cell surface marker 

CD20, which is present on all mature B-Cells98. Rituximab + CHOP (R-CHOP) has been 

standard-of-care for all DLBCL despite DLBCL’s heterogeneity, with 5-year OS of 55-

65%99–101. Treatment failure and relapse following R-CHOP tend to occur within two 

years of treatment102, with patients disease-free after two years displaying comparable 

overall survival to that of the general population103. While numerous studies have 

attempted to improve upon R-CHOP via the addition of novel agents, none have shown 

significantly improved patient outcomes, and thus most variants to date have attempted 

to reduce toxicity while maintaining overall response rate104–107. 

1.2.4. Treatment of relapsed-refractory DLBCL 

Although R-CHOP is effective for 60-70% of DLBCL cases, for patients where R-

CHOP is ineffective and relapsed disease develops (relapsed-refractory DLBCL, 

rrDLBCL), prognosis is generally poor. This is especially true for cases which are 

refractory to frontline therapy (relapse within 12 months), with salvage therapy response 

rates of 13-23%, and median overall survival of 6.3 months108. In 2014, the Canadian 

cancer trials group (CCTG) established Rituximab plus GDP (R-GDP) as a standard 

salvage therapy option for rrDLBCL109. This is comprised of gemcitabine, a DNA 

nucleoside analog which incorporates itself into a growing DNA strand and prevents 
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further elongation110, dexamethasone, a corticosteroid111, and cisplatin, which generates 

DNA-DNA and DNA-protein crosslinks preventing cell division and inducing apoptosis33. 

While R-GDP displayed an overall response rate (ORR) of 45.1%, only 13% of patients 

displayed a complete response to therapy, and the majority of cases relapse109. 

To address the poor performance of current rrDLBCL therapies, a plethora of 

salvage therapies are currently undergoing investigation for rrDLBCL. Many of these are 

molecularly targeted agents perturbing key components for lymphoma survival. For 

instance, tazemetostat is an EZH2 inhibitor which has shown promise for rrDLBCL cases 

harbouring EZH2 activating mutations112. Ibrutinib is an inhibitor of the protein BTK, 

which is critical for B-cell receptor-mediated NF-ĸB signaling. Given the limited efficacy 

of mono-agent therapies for rrDLBCL, many subsequent studies have combined multiple 

targeted agents, both with and without anti-CD20 antibodies and chemotherapy. A 

phase II study ibrutinib, rituximab, and lenalidomide, which inhibits the B-cell regulators 

IKZF1 and IKZF3, showed an ORR of 65% and a CR rate of 41% in ABC-rrDLBCL 

cases113. VIPOR is a phase II trial combining ibrutinib, prednisone, obinutuzumab (anti-

CD20 monoclonal antibody), lenalidomide, and venetoclax (an inhibitor of the anti-

apoptotic protein BCL2), with an ORR of 86% and CR of 68% in relapsed DLBCL cases, 

and 52% and 29% in refractory DLBCL114. Additional therapies leveraging bivalent 

antibodies (BITE) which bring together malignant cells and T-Cells resulting in T-Cell 

activation have also been explored. Glofitamab is a bivalent anti-CD20/CD3 antibody 

which, in a phase I trial of 171 rrDLBCL cases, showed an ORR of 53.8% and CR of 

36.8%115.  

Currently, the most promising rrDLBCL treatment uses a patient’s own T-Cells 

and genetically modifies them to produce a chimeric antigen receptor (CAR) containing 

both a domain specific for a feature expressed by tumour cells (ex. CD20), and a domain 

that activates the T-cell116–118. These modified T-cells are then provided to the patient 

intravenously and, upon recognizing tumour antigens, further expand and proliferate. Not 

only do these CAR-T cells directly destroy malignant cells, but they can circulate and 

destroy metastatic tumour, and persist as memory cells118. This therapy, called CAR-T, 

has been explored extensively for lymphoid malignancies117,119,120, including rrDLBCL121–

123, with promising efficacy. For instance, a phase 1 trial exploring an anti-CD19 CAR-T 

in 93 rrDLBCL cases showed an ORR of 52% and CR of 40%123. This is especially 

promising given the enrollment criteria for CAR-T clinical trials generally require patients 
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to have undergone not only frontline therapy (R-CHOP), but also multiple rounds of 

salvage therapy. However, as CAR-T cell therapy is personalized by case, it is extremely 

expensive, with CAR-T production alone costing $450,000 for every patient124. Thus, 

CAR-T therapy is commonly used as a last resort when all other treatment options are 

unviable. While several groups are attempting to reduce the cost of CAR-T therapy, 

more cost-effective therapies are required for widespread use. 

1.3. Illumina DNA sequencing 

To determine the sequence of a given strand of DNA, several methods of DNA 

sequencing have been developed, with the continuing goals of lowering cost, increasing 

throughput, and increasing the length of DNA that can be sequenced. Modern 

sequencing techniques enable tumour samples to be sequenced comprehensively and 

cost-effectively, allowing driver and novel mutations in tumour genomes to be 

uncovered. Currently, the most common method of DNA sequencing is Illumina 

sequencing, which leverages a sequencing by synthesis approach to determine the 

sequence of small DNA fragments. 

To sequence a sample using Illumina sequencing,125 input DNA is first 

fragmented to ~150-600bp fragments125 (fragmenting),and the ends of resulting DNA 

fragments are repaired to create blunt-end molecules (end repair). An additional 

adenosine nucleotide is then added to the 3’ end of the dsDNA (A-tailing) which enables 

additional fixed dsDNA sequence (adapters) to be ligated to both ends of each fragment 

(ligation). These adapters contain several important sequences for downstream steps. 

The end product of this is commonly referred to as a DNA library (Figure 1-3A). 

Several optional steps are commonly performed on a library prior to sequencing, 

tailored for the downstream application and type of input. One common clean-up step 

selects for DNA fragments within a given size range (size selection), removing adapter 

dimers (i.e. adapters which have ligated to each other without any source DNA between 

them) and very short DNA fragments. PCR amplification using adapter-specific primers 

is also common to select for DNA fragments ligated to adapters, although this introduces 

PCR-amplification biases and is generally avoided for samples with sufficient input 

DNA126,127. For DNA extracted from formalin-fixed, paraffin embedded (FFPE) tissue 

blocks, library preparation and PCR often introduces C/G -> T/A DNA damage 
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artifacts128 through deamination of cytosine bases to uracil129. Thus, some protocols 

include treatment with a uracil DNA glycosylase to remove uracil bases prior to PCR 

amplification130,131. For studies focused on specific regions of the genome, hybridization-

capture (hybrid-capture) of DNA fragments corresponding to given regions of the 

genome is also performed (explained in more detail in 1.4.2). 

To obtain the sequence of a DNA library, the library is first passed over a glass 

slide (termed a flowcell) which harbour bound oligonucleotides complimentary to the 

adapter sequences (termed the P5 and P7 sequences, on the very end of the adapters). 

When passed over the flowcell, the DNA library hybridizes to the flowcell, and the 

complimentary strand is synthesized to generate a DNA fragment physically bound to 

the flowcell. The original (and physically not attached) template is then washed away. As 

the opposite end of this DNA fragment contains the adapter and P5/P7 sequence, which 

is complimentary to the flowcell oligonucleotides, these synthesized DNA fragments tend 

to bend over and hybridize to another bound oligonucleotide, which is then synthesized 

again to yield a second DNA molecule with an identical sequence (minus any PCR 

errors). This process is termed bridge amplification and is repeated numerous times to 

form a cluster of DNA molecules on the flowcell close together with an “identical” DNA 

sequence (Figure 1-3B). 
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Figure 1-3. Overview of Illumina sequencing, including (A) library preparation, and 

(B) Sequencing by synthesis 
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To sequence these individual clusters, and thus obtain a sequence for the 

original DNA fragment, a DNA polymerase and four types of modified nucleotides are 

passed over the flowcell. These nucleotides harbour both a reversible terminator bound 

to the 3’hydroxyl group and a fluorophore/linker combination, with a different colour 

fluorophore corresponding to each base. A single nucleotide is then incorporated into 

each growing daughter strand and replication ceases. The leftover nucleotides and DNA 

polymerase are then washed away, and the fluorescence of each cluster is read by the 

sequencing machine. To sequence the next base, the reversible terminator and 

fluorophore are removed, and the above process is repeated for the next base. This 

process is repeated until the desired number of bases (commonly referred to as read 

length) is obtained.  

Illumina sequencing processes several advantages compared to Sanger 

sequencing, due to the shotgun sequencing approach where smaller DNA fragments are 

sequenced in parallel compared to a single larger molecule. While this approach 

drastically improves sequencing throughput and reduces costs by orders of magnitude132 

while maintaining sequencing accuracy, it comes with notable disadvantages, mainly the 

limited size of DNA fragments which can be sequenced. While improvements to Illumina 

sequencing and the advent of paired-end sequencing (where both ends of the DNA 

fragment are sequenced) have improved fragment size133, the ~500 base pair limit of 

paired-end sequencing remains a major limitation for many downstream applications, 

which new sequencing approaches such as nanopore sequencing have attempted to 

address. 

1.4. Illumina sequencing approaches 

Illumina sequencing is currently the most common sequencing technique for 

human genomic studies. As different studies have different objectives and sources of 

DNA, variants of Illumina sequencing have been devised to balance sequencing depth 

(i.e. the number of times a single base was sequenced [fold-coverage]), sequence 

breadth (i.e. how many bases were sequenced [capture regions]) and cost. In cancer 

genomics studies, it is common both to sequence a tumour sample and a sample 

prepared from healthy cells from the same individual (commonly referred to as a tumour-

normal pair) to distinguish germline and somatic variants134 
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1.4.1. Whole genome sequencing 

The original method of sequencing involves sequencing all DNA extracted from a 

given source. In the case of human cells, this would consist of the entire human nuclear 

genome (hence whole genome sequencing [WGS]), mitochondrial genome, and any 

viral sequences integrated into host genome. The resulting sequencing reads thus cover 

all coding and non-coding regions, enabling comprehensive downstream analysis and 

identification of driver and passenger mutations genome-wide. However, given the large 

size of the human genome, the number of reads required to sequence the whole 

genome are relatively high. Samples which undergo WGS are subsequently limited in 

sequencing depth, with 80x fold-coverage common for tumour samples and 40x fold-

coverage common for matched normals/constitutional samples135. Despite this limited 

depth, WGS still costs around 5500 CAD for such a tumour normal pair135, with billions of 

read pairs required per sample. 

One alternative method of WGS while reducing the associated costs is to 

sequence the entire genome extremely shallowly (usually <=1x average fold-coverage). 

While the resulting low-pass WGS (lpWGS) data is coverage-sparse and unusable for 

identifying somatic SNVs or de-novo identification of germline single nucleotide 

polymorphisms (SNPs), it has shown utility in identifying cases harbouring previously 

known SNPs136, as well as identifying somatic and germline copy number variants 

(CNVs)137–139, although the limited resolution prohibits the detection of relatively focal 

copy number events. 

Table 1-1-1. Comparison of Illumina sequencing approaches 

Sequencing type What is it? Benefits Limitations 

Whole genome 
sequencing (WGS) 

Sequence the entire 
human genome 

- Sequencing data 
available for all coding 
and non-coding regions 
in the genome 
- Enables 
comprehensive 
downstream analyses 

- Relatively expensive 
- Issues with repetitive 
regions (Telomeres, 
centromeres etc.) 

Whole exome 
sequencing (WES) 

Sequence only 
protein-coding 
regions 

- Significantly cheaper 
than WGS 
 

- Limited information on 
non-coding regions 
- Introduces capture 
biases in targeted 
regions 

Custom capture Sequence only 
regions of interest 

- Increased sequencing 
target flexibility 

- Limited information on 
regions not sequenced 
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- Decreased sequencing 
costs compared to WES 

- Introduces capture 
biases in targeted 
regions 
- Substantially higher off-
target sequencing rate 
- Custom probes are 
generally expensive 

 

1.4.2. Whole exome sequencing 

In the vast majority of cases, proteins are the effector molecules of the genome, 

but protein-coding sequences comprise a minority of the human genome8. Thus, many 

sequencing studies only sequence protein-coding DNA (i.e. the “exome”). This is 

generally achieved using a hybridization-capture approach140,141, where DNA baits 

complimentary to the sequences of interest are hybridized with the DNA library. The 

baits are covalently bound to a magnetic bead142, and when this mixture is passed 

across a magnet, only the baits (and complimentary DNA) are bound. The DNA is then 

eluted from the beads and sequenced. While whole exome sequencing (WES) is 

significantly cheaper than WGS143,144 despite generally higher sequencing coverage 

(~100x), WES comes with many limitations. Notwithstanding the obvious limitation of not 

sequencing non-coding regions, WES introduces biases in sequencing coverage due to 

differences in probe binding affinity for its target template145, as well as biases due to the 

GC content of the sequenced regions146. It should also be noted that, while many 

commercial exome kits exist, not all exomes are created equal. Some kits specifically 

including baits for the untranslated regions (UTRs) flanking protein-coding genes, and 

differences in the design of each bait will notably influence the inter-probe coverage 

bias. 

1.4.3. Custom captures 

For studies interested in only a handful of genes or regions, custom captures can 

further reduce sequence costs and/or increase sequencing depth compared to WES. 

This requires a custom set of capture probes to be designed for the regions of interest, 

with numerous commercial solutions available (albeit at a non-trivial cost). Compared to 

WES, custom captures allow for substantially greater flexibility, allowing any genomic 

region of interest (coding or non-coding) to be sequenced. However, in addition to all the 
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limitations of WES, whose limitations are often exacerbated due to the smaller capture 

regions, the capture efficiency (i.e. the ratio of reads falling within the capture regions 

compared to non-captured regions) is often lower than WES due to the smaller capture 

space. For ultra-deep sequencing applications, a double-capture, where two rounds of 

hybridization-capture are performed, can be used to improve capture efficiency147. 

1.5. Analysis of Illumina sequencing data 

Following sequencing, Illumina sequencers produce one (single-end sequencing) 

or two (paired-end sequencing, most common) output file(s) containing the basecalls 

and associated quality scores for each cluster (henceforth read). While an assortment of 

bioinformatics workflows are available for human genomic studies, the following sections 

will briefly outline a general workflow for most cancer genomics applications148: This 

includes mapping reads against a reference genome, identifying and flagging duplicate 

reads, and downstream quality control. This is followed by identification of single 

nucleotide variants (SNVs) and small insertions/deletions (indels), identification of copy 

number variants (CNVs) and finally identification of large-scale structural variants (SVs) 

(Figure 1-4). 
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Figure 1-4. A general workflow for analysis of Illumina sequencing data 

1.5.1. Read alignment and duplicate marking 

As shotgun-based sequencing approaches fragment the host genome in small 

segments (<250bp), the first step of any analysis is to determine which fragments of 

DNA represent which portion of the genome. While de novo assembly, where 

overlapping reads are stitched together to form a longer contig, is possible with Illumina 

sequencing, the numerous interspersed repetitive sequences across the human 

genome149 and the short length of Illumina reads render even a partial genome assembly 

extremely difficult150,151. An alternative solution is to compare the sequence of each read 

against an existing fully assembled version of the genome and determine where that 

read (or read pair) originates based on sequence similarity. This process is referred to 

as read mapping, and utilizes existing human genome assemblies (GRCh37, GRCh38, 

T2T-CHM13) (referred to as a reference genome) generated using longer read 

sequencing technologies. A plethora of tools exist for read mapping, with the Burrows-

Wheeler aligner (BWA)152 and minimap2153 commonly used. 

During the process of Illumina library preparation and sequencing, some DNA 

molecules may be sequenced multiple times. These duplicate reads originate from 1) 
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Multiple PCR copies of a DNA fragment binding to the flowcell and being sequenced 

(PCR duplicates, most common), or 2) A single cluster on the flowcell being erroneously 

recognized as multiple clusters (optical duplicates, usually rare). To avoid 

overrepresentation of duplicated sequences in downstream analysis, duplicates are 

flagged and ignored, so that a single sequencing read (pair) corresponds to a single 

DNA molecule in the original library. While numerous tools for marking duplicate reads 

exist154, the Picard toolkit’s MarkDuplicates tool is extensively used for duplicate 

removal. 

1.5.2. Quality control 

Countless issues can affect the quality of Illumina sequencing data (Table 1-2); 

however, the two most common quality control (QC) issues encountered are samples 

prepared from formalin-fixed, paraffin-embedded (FFPE) tissue blocks, and sequencing 

of samples with limited input DNA. Fixation of tissue within paraffin blocks has been 

performed by pathologists and clinicians since the 19th century, as it allows tissues to be 

stored almost indefinitely at room temperature with minimal degregation155. However, 

formalin fixation reduces the amount of DNA that can be sequenced156 and induces C/G 

-> T/A transitions which may erroneously be interpreted as real mutations128. Samples 

with limited amounts of input DNA require several rounds of PCR to generate sufficient 

input for sequencing; thus the duplicate rate of these samples tends to be higher, 

resulting in reduced effective sequencing coverage157. 

To identify samples with reduced coverage, higher error rates, contamination, or 

other QC issues, numerous software packages have been developed operating on 

unaligned (ex. FASTQC) or aligned (ex. Picard toolkit, Qualimap2159, HTQC160) 

sequencing data. Samples with coverage below a given cut-off, those with an extremely 

high background error rate, or extensive contamination are generally excluded from 

further downstream analysis. 
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Table 1-2. A brief set of QC issues encountered during Illumina library preparation 
and sequencing, and their downstream effects on the sequencing 
data 
Sequencing Issue Downstream effects 

Limited input DNA Low sequencing coverage 
High duplicate rate 

Poor capture efficiency Low coverage of on-target regions 
Increased number of off-target reads 

Formalin-Fixed, Paraffin-embedded tissue source Reduced sequencing coverage 
DNA damage artifacts 

Sample contamination (ex. Bacterial 
contamination) 

Large number of unmapped reads (to human 
genome) 

Reduced genome sequencing coverage 

Over-fragmented library Shorter read lengths 
Increased rate of read mismapping 

Reduced sequencing coverage 
Higher duplicate rate 

C/G->A/T DNA damage158 

Excessive PCR cycles Higher duplicate rate 
Increased GC coverage bias 

1.5.3. Simple somatic mutation detection 

Almost all Illumina sequencing projects aim to identify single nucleotide variants 

(SNVs) and small insertions and deletions (indels) (cumulatively simple somatic 

mutations, SSMs) within a sample of interest. At the basic level, a somatic variant caller 

will cycle through every position in the reference genome (or capture regions, if 

specified), and obtain all sequencing reads (and the corresponding base) overlapping 

that position. These bases are then compared to the reference base to find any support 

for a variant. If such support exists, a corresponding confidence score is assigned based 

upon the number of read supporting the alternate allele, base quality scores, mapping 

quality scores, and other features dependent on the variant caller in question. If a 

matched normal is also provided, support for a variant at the genomic locus in question 

is also evaluated in the normal, to distinguish germline variants (supported in the 

matched normal) from somatic variants (no support in the normal). Note that, while this 

process of distinguishing somatic from germline variants appears trivial, it is not unusual 

for constitutional samples (typically sourced from peripheral blood161) to contain some 

level of tumour cells162,163.  

A plethora of somatic variant callers have been developed162,164–170, but 

benchmarking studies171,172 show that Strelka2165 and MuTect2164 outperform other 



22 

variant callers for most use cases. However, it must be strongly emphasized that all 

somatic variant callers have their own strengths and weaknesses, and the end user 

must evaluate how these relate to the features of their dataset in question. In our 

experience, Strelka2 notably outperforms MuTect2 in tumour-normal pairs with high 

levels of tumour cell contamination in the normal, while Strelka2 calls excessive 

numbers of false positive variants in samples prepared from FFPE tissues. MuTect2 

performs de-novo assembly of candidate insertions and deletions (indels) to accurate 

determine how many reads support such an event, while the Strelka2 pipeline allows 

exceptionally large indels (>80bp) to be called. In some use cases (for instance, ultra-

deep targeted sequencing approaches173), neither MuTect2 nor Strelka2 may be 

suitable. Generating a consensus list of variants based on multiple variant callers does 

address the weakness of any one caller and is utilized in practice40,174,175, but this may 

also sacrifice the strengths of any single tool.  

1.5.4. Copy number variant detection 

There are three primary methods of identifying copy number variants (CNVs) 

from Illumina sequencing data: read depth, B-allele frequency, and breakpoint detection. 

In a read depth approach, the genome is broken up into windows or bins (usually several 

hundred base pairs in length), and the number of reads in these bins are counted, 

adjusted for GC content, and compared to expected number of reads in a bin for a copy-

neutral segment. If fewer reads are present than expected, this corresponds to a 

deletion, while additional reads correspond to a gain or high-level amplification of that 

region (Figure 1-5A). The expected number of reads can be calculated from a matched 

normal (if available), or a panel of unrelated normal samples, although the latter 

approach is generally less accurate especially for targeted sequencing approaches. In a 

B-allele frequency approach, heterozygous germline SNPs from a matched normal are 

identified, and the B-allele frequency (i.e. ratio of reads supporting the reference and 

alternate alleles) of this SNP is calculated in the tumour sample (Figure 1-5B). As a 

heterozygous SNP is expected to have a 50/50 ratio of reads supporting each allele, a 

deviation from this ratio indicates additional of fewer copies of a given allele are present. 

For instance, if 66% of reads support allele A of a SNP and 33% support allele B (3:2 

ratio), this indicates that allele A has been duplicated, and there are 3 copies of the 

corresponding locus. In a contrasting example, if 100% of reads support allele A while 
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0% support allele B, this indicates there has been a loss-of-heterozygosity event at this 

locus. This indicates that all copies of this locus represent allele A, either because only a 

single copy of the locus remains (deletion, CN=1), or a reciprocal translocation resulted 

in the loss of allele B (copy number state >1). In breakpoint detection, read pairs 

overlapping genomic positions corresponding to the boundaries of a copy number event 

are identified (described in 1.5.5). 

 
Figure 1-5. Example copy number variant detection using (A) read depth, and (B) 

B-allele frequency. Note that this example utilizes a matched normal 

In contrast to the identification of SNVs, identifying CNVs is relatively difficult due 

to technical and sample-specific biases. For instance, GC bias results in lower coverage 

of regions with high AT or GC content176,177, and thus the expected number of reads in a 

given bin will vary based on GC content. Furthermore, as most tumour samples are 

impure (i.e. contaminated by normal cells), the signal of somatic CNVs will be diluted by 

DNA from healthy diploid cells, and CNVs become increasingly difficult to detect in 

samples with low tumour content178. These features affect both WGS and WES data and 

are generally accounted for by most modern tools. The majority of tools also require a 

corresponding matched normal to be sequenced, both to assist in correcting these 

biases and to enable heterozygous SNPs to be called and leveraged to identify CNVs.  

Detection of CNVs from capture-based sequencing is generally more difficult 

than for WGS data, both because the coverage of off-target regions is almost negligible, 
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and because coverage of on-target regions can vary significantly due to differences in 

the affinity of a given bait for its target DNA fragments. Almost all capture-compatible 

CNV callers require a matched normal179,180, or at the bare minimum a set of unmatched 

normals181 which have undergone an identical sequencing workflow to correct for such 

biases. CNVs within off-target regions are also extremely difficult to detect in capture-

based sequencing data, although tools leveraging off-target reads show promise in 

addressing these limitations180,181. Samples which have undergone lpWGS further 

require custom software and extremely large bin sizes (on the order of 250kb-1mb) to 

account for the sparsity of the corresponding sequencing data182,183. Due to these 

complicating factors and the diversity of datasets, a wide plethora of CNV callers are 

utilized in practice. In general, Battenberg184 is a solid choice for WGS data, Sequenza179 

can be used for WES data, cnvkit181 generally performs well for custom-captures and 

samples without a matched normal, and ichorCNA182 is a good choice for lpWGS data. 

1.5.5. Structural variant detection 

Structural variants are large-scale genomic alterations which re-organize portions 

of the genome. As these events generally occur in repetitive sequences185 and given the 

short length sequencing reads, structural variants (SVs) are generally difficult to detect in 

Illumina sequencing data, and are almost impossible to comprehensively identify from 

WES. SV callers attempt to identify SVs using two types of reads: split reads and 

discordant read pairs (Figure 1-6)186. Sequencing reads overlapping a genomic 

breakpoint will comprise DNA from two distinct (and often distant) genomic loci. Thus, 

when these reads are mapped to the reference genome, a portion of the read will map to 

one portion of the genome while the other maps to the other end of the breakpoint. 

These are termed split reads due to the split alignment. In paired-end sequencing data, it 

is possible for one read to map to one end of the breakpoint completely (i.e. not split) 

while the other maps completely to the other end of the breakpoint (and a distant 

genomic locus), and are termed discordant read pairs. SV callers identify candidate 

breakpoints using these types of reads, then generate a directed acyclic graph of the 

breakpoint and supporting reads187,188. While this has been used to identify SVs in 

practice161, in reality SV calling performance is highly variable, with recall ranging from 

11189-70%190 and relatively high false positive rates191, especially in FFPE samples192. 
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Thus, sequencing approaches with longer reads (for instance, Nanopore sequencing) 

are generally preferred for SV identification. 

 
Figure 1-6. An example structural variant (translocation), and how Illumina 

sequencing reads will appear when mapped to the reference 
genome. Split reads and discordant read pairs (paired-end 
sequencing only) can be used to detect structural variants 

1.6. Biopsies and cell-free DNA 

In cancer genomic studies, a source of both tumour cells and normal cells are 

required to sequence both tumour DNA and the corresponding constitutional DNA. 

There are several candidate sources of both tumour and constitutional samples. 

1.6.1. Tumour tissue biopsies 

The traditional method of obtaining a tumour sample is to physically excise a 

portion of the tumour. These tissue biopsies are commonly used by pathologists to 

inspect the morphology of tumour cells, the tissue itself, as well as associated supporting 

cells, but can be used as a source of tumour material for genomics, transcriptomics, and 

proteomic analyses. Tissue biopsies are generally stored using two approaches; fresh-

frozen, where the sample is snap frozen in liquid nitrogen and stored at -80oC, or 

formalin fixation, paraffin embedded (FFPE), where a tissue sample is fixed in formalin 

and embedded in a paraffin block. While FFPE tissue biopsies can be stored at room 

temperature for extended periods of time without substantial degradation, formalin 
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fixation induces DNA and RNA damage which complicate downstream analysis128,156, 

and thus fresh-frozen biopsies are strongly preferred for genomic studies. 

While tissue biopsies are extensively collected and used in cancer genomics, 

they come with several limitations. First, collection of a physical biopsy may be 

impossible in some cancer types due to the physical location of the tumour, such as 

tumours within the central nervous system193. Second, collection of a tissue biopsy is a 

surgical procedure, and is both expensive and prone to complications194 which can vary 

depending on the tumour type and location195,196. These costs and risks generally inhibit 

multiple biopsies from being collected from a single patient. Furthermore, the amount of 

material collected may limit downstream applications, and insufficient tumour material is 

collected in as many as 30% of tissue biopsies197. 

1.6.2. Whole blood and buffy coat 

A blood sample can be fractionated into three major components via 

centrifugation. Blood plasma comprises the largest fraction by volume and contains 

lightweight components such as cell-free proteins, DNA, lipids, salts, and small 

macromolecules. The middle portion, called the buffy coat, is comprised of leukocytes 

and platelets, and represents ~1% of the blood fraction. The remaining fraction is 

comprised almost exclusively of red blood cells, which grant it its characteristic red 

colour. The buffy coat is particularly useful as it contains whole cells which can be used 

as a source of constitutional DNA161. However, this fraction can also contain malignant 

cells which have detached from the main tumour and are circulating in the bloodstream. 

These are termed circulating tumour cells (CTCs) and can contaminate the buffy coat 

with tumour DNA during bulk sequencing, contaminating the constitutional sample 

(tumour cell contamination)162,163. Although generally rare, CTCs can also be isolated 

and used as a source of tumour DNA and specialized downstream applications, such as 

single cell sequencing198. 

1.6.3. Blood plasma and cell-free DNA 

When a cell undergoes apoptosis, the genome and organelles are disassembled 

and packed into a portion of the cellular membrane (membrane blebbing)199,200. The 

resulting apoptotic bodies are released into the bloodstream and circulate for a brief time 
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until they are cleared by macrophages201. While this extra-cellular DNA, termed cell-free 

DNA (cfDNA), has a relatively short half life of 1-2 hours202, it has profound utility in 

cancer therapy. For instance, cfDNA levels tend to be elevated in patients with cancer, 

and is correlated with tumour size203 and disease stage204. However, cfDNA levels vary 

significantly between individuals and are also elevated by other factors such as injury or 

trama205, and thus caution must be applied when comparing cfDNA levels between 

individuals.  

While the majority of cfDNA in cancer patients originates from healthy cells which 

have undergone apoptosis, a proportion of cfDNA originates from tumour cells and is 

termed circulating tumour DNA (ctDNA). Not only are ctDNA levels (the fraction of 

cfDNA which originates from tumour cells) correlated with tumour stage and burden206 

but represent a candidate source of tumour genetic material. Thus, a liquid biopsy 

(typically a blood sample, but other types of liquid biopsies exist207) can be collected 

from a patient, and the cfDNA extracted and used to detect somatic mutations. 

1.6.4. Characteristics of cfDNA and ctDNA 

The majority of cfDNA and ctDNA originate from cells which have undergone 

apoptosis, although necrosis and other mechanisms also contribute to cfDNA208. The 

human genome is compressed into chromosomes by chromatin subunits, comprised of 

an octamer of histones proteins and 146 bases of DNA wrapped around this histone 

complex209,210. Post-translational modification of individual histones regulate DNA 

accessibility (how “packed up” the DNA is) and is a central component of epigenetic 

regulation of gene expression211. These chromatin subunits are connected by linker DNA 

not bound to a nucleosome and significantly more accessible. Thus, when a cell 

undergoes apoptosis and produces DNA endonucleases212, these endonucleases 

preferentially cleave the more accessible linker DNA and the DNA of actively transcribed 

genes (unpacked from the associated nucleosome, euchromatin). The resulting cfDNA is 

fragmented into small fragments with a mean size of 166bp213, although supplementary 

peaks corresponding the DNA of multiple nucleosomes are also observed (2 

nucleosomes = ~330bp, 3 nucleosomes = ~490bp), albeit at a reduced frequency. 

Longer DNA fragments (commonly referred to as high molecular weight DNA) are also 

observed (>1kb), usually originating from cells which have undergone necrosis. ctDNA 

fragments tend to be shorter than cfDNA, with a mean fragment size of 144bp214, 
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although a significant number of ctDNA fragments shorter than 100bp are also observed. 

This short fragmentation of cfDNA impairs the utility of longer-read sequencing 

technologies such as nanopore sequencing. It should also be strongly emphasized that 

Illumina sequencing libraries prepared from cfDNA should not be fragmented prior to 

library construction, as additional fragmentation will substantially reduce the amount of 

usable DNA (DNA fragments that are too short will fail size selection) and will dilute the 

sample with high molecular weight DNA which tends to originate from healthy cells. The 

regular fragmentation pattern of cfDNA and ctDNA can also be used to determine the 

epigenetic state and expression of a gene, as unpacked euchromatin will be more 

accessible to DNA endonucleases and will show a random fragmentation pattern with 

lower coverage215. 

In a traditional tumour tissue biopsy, the majority of cells originate from the 

tumour, with minor representation of normal cells within the tumour microenvironment. 

Thus, tissue biopsies tend to have high tumour purity (Figure 1-7A). In contrast, the 

majority of cfDNA in liquid biopsies originates from healthy cells, even in highly 

advanced cancer cases, and thus a minority of DNA sequenced originates from 

malignant cells216 (Figure 1-7B). While WES and WGS is possible for liquid biopsies with 

extremely high ctDNA levels (>30%), due to the limited sequencing depth of these 

approaches, specialized sequencing techniques are needed to detect somatic events in 

samples with lower ctDNA levels. One technique developed by Newman et al.173 

leverages a custom capture panel targeting regions recurrently mutated in the disease of 

interest. These regions are then sequenced extremely deeply (~ 10,000x coverage) to 

enable the detection of SSMs in samples with extremely low ctDNA levels (0.01%). 

While this approach (called CAPP-Seq) has been used extensively217, sequencing to this 

depth has several limitations. First, the capture regions must be relatively small to limit 

the sequencing bandwidth (and thus cost) required. Second, some sample lack sufficient 

input DNA to reach the desired sequencing depth. If a liquid biopsy only contains DNA 

representative of 1,000 cells (termed genome equivalents), a given region of the 

genome can only be sequence to that depth. Third, Illumina sequencing has a 

background error rate of 0.1-0.5% (depending on the sequencer)218, and thus it is difficult 

to distinguish real somatic variants from sequencing errors at variant allele frequencies 

(VAF) below 0.1% VAF.  
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Figure 1-7. Overview and key differences between (A) tissue biopsies, and (B) 

liquid biopsies 

One method of detecting SSMs below the error rate of Illumina sequencing 

machines is to leverage the PCR and optical duplicates generated during library 

preparation and sequencing to perform error correction of the resulting read pairs. As all 

duplicates of a DNA molecule should share an identical sequence, if differences exist, 

they must result from errors introduced during DNA replication or sequencing. Molecular 

barcodes are short semi-random DNA sequences ligated to the ends of each DNA 

fragment during library construction (also referred to as Unique Molecular Identifiers, 

UMIs) (Figure 1-8) 219. After sequencing, one can identify all reads which originate from 

the same parental DNA molecule (termed family) as the family will all share the same 

UMI sequence (sequencing errors in the barcode notwithstanding) and map to the same 

place in the reference genome. The DNA sequence between family members can then 

be compared and collapsed to correct errors. While this approach requires a relatively 

high duplicate rate (generally undesirable in most sequencing applications as it reduces 

effective coverage and/or increases sequencing costs), it can reduce sequencing error 
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rate to 0.0001%219, enabling confident detection of somatic mutations even in samples 

with extremely low ctDNA. 

 
Figure 1-8. Leveraging Unique Molecular Identifiers to perform error correction 

following Illumina sequencing 

1.6.5. Applications of liquid biopsies 

Liquid biopsies have numerous advantages compared to traditional biopsies, 

notably their lower costs, minimal invasiveness, and increased accessibility compared to 

traditional tumour biopsies208. Not only can liquid biopsies be collected from cases where 

traditional tumour biopsies are unviable, but their superior accessibility and lower costs 

allow for serial liquid biopsies to be collected from the same patient. This can be applied 

following treatment to evaluate the tumour and evaluate treatment response220,221. 

Furthermore, if treatment is partially effective but the tumour persists (minimal residual 

disease, MRD), serial liquid biopsies can detect MRD with higher sensitivity than other 

approaches204. The relatively low cost and accessibility of liquid biopsies also enables a 

population to be screened for tumour-specific biomarkers and mutations222. However, 

liquid biopsies come with several limitations. For instance, not all cancer patients have 

detectable ctDNA, even following ultra-deep sequencing in highly advanced cases, and 

thus the utility of liquid biopsies in these cases is extremely limited. As RNA is relatively 

unstable compared to DNA223, cell-free RNA has an even shorter half-life in the 
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bloodstream than cfDNA, and samples must be rapidly stored to minimize RNA 

degradation prior to RNA sequencing224. Several studies have shown that miRNAs and 

circular RNAs (which are more stable than mRNA) can act as tumour biomarkers in 

liquid biopsies225. Due to the lack of intact cells, single-cell sequencing is largely unviable 

from liquid biopsies, although sequencing of circulating tumour cells (CTCs) extracted 

from the buffy coat of whole blood can be used. Finally, the fragmented nature of cfDNA, 

while it has its own utility215, largely impairs the use of long-read sequencing 

approaches, and thus detection of structural variants is extremely difficult. 

1.7. Genetics of DLBCL 

One of the overarching goals of cancer genomics is to comprehensively identify 

genes recurrently mutated in a given type of cancer, and the resulting effects of those 

mutations on the cell and tumour. These driver genes can then be explored as candidate 

therapeutic targets. Numerous large-scale sequencing studies and a plethora of smaller 

studies have attempted to comprehensively identify driver genes and mutations in 

DLBCL. 

1.7.1. Genetics of diagnostic DLBCL 

Several large scale genomic studies, utilizing WES226–228 and WGS15 of DLBCL 

FF and FFPE biopsies, have explored the landscape of somatic mutations in diagnostic 

DLBCL. The most commonly mutated gene in diagnostic DLBCL is the lysine 

methyltransferase KMT2D229 and the master tumour suppressor gene TP53, which both 

act as tumour suppressors and acquire loss-of-function mutations. The NF-ĸB signaling 

component MYD88 is also recurrently mutated, and acquires an activating hotspot 

mutation (Leu265Pro) leading to constitutively active NF-ĸB signaling20,230 and promoting 

B-cell survival. Mutations in the Histone H1 (linker histone) gene HIST1H1E leads to 

broad epigenetic dysregulation and results in increased expression of normally 

repressed genes via the formation of euchromatin231. CD79B encodes Igβ, a component 

of the B-cell co-receptor which mediates B-cell receptor signaling. Mutations within 

CD79B tend to occur in the ITAM domain, specifically Tyr196, and prevent active CD79B 

from responding to inhibitory signaling circuitry232. Further recurrently mutated genes 

include the histone acetyltransferase CREBBP, acquiring loss-of-function mutations 
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(specifically within the acetyltransferase domain)233 which impair histone H3 acetylation 

and subsequent transcriptional activation of target genes, and CARD11, which 

accumulates mutations in a coil-coil domain which further enhance NF-ĸB signaling234. 

Copy number alterations also contribute significantly to the genetic landscape of 

DLBCL235,236. Arm-level or whole-chromosome gains of chromosome 7 are relatively 

common, along with recurrent deletions of the q arm of chromosome 6 and the p arm of 

chromosome 17. More specifically, recurrent deletions are observed perturbing the 

master tumour suppressor gene TP53 (cytoband 17p13.1), the MHC Class 1 component 

B2M (15q21.1), the cell cycle regulators CDKN2A/CDKN2B (9p21.3), PTEN (10q23.31) 

and RB1 (13q14.2), and TNRFSF14 (1p36.32), whose deletion leads to recruitment of T-

cells and subsequent production of pro-inflammatory cytokines237. Recurrent copy 

number gains are observed affecting REL (2p16.1, generally extremely focal and high-

level), encoding c-REL which is a component of the NF-ĸB complex and required for 

canonical NF-ĸB signaling238, BCL6 (3q27.3), which prevents B-cell differentiation into 

plasma cells239 and impairs DNA repair and apoptotic pathways240,241, MYC (8q24), 

whose amplification promotes B-cell proliferation, survival, invasion, and deregulates 

cellular energetics242, and the master anti-apoptotic factor BCL2 (18q21.33). Further 

recurrent gains are observed affecting the micro-RNA cluster MIR17HG (13q31.3), 

which promotes cell cycle progression and proliferation243, and MDM2 (12q15), which 

binds and inactivates TP53244. It should also be noted that BCL2, BCL6, and MYC 

commonly experience chromosomal translocations which place these genes adjacent to 

and under control of a constitutively activated enhancer leading to significantly 

expression245. 

1.7.2. Genetics of molecular subgroups 

As DLBCL molecular subgroups are associated with distinct morphological 

stages of B-cell development, with corresponding unique transcriptional profiles78, each 

subgroup acquires a unique pattern of driver mutations. ABC-DLBCL is characterized by 

constitutively active NF-ĸB signaling, and as such ABC-DLBCL tend to acquire driver 

mutations which enable and further enhance NF-ĸB signaling. These include activating 

mutations of CD79B, MYD88, and the NF-ĸB transcription factor complex regulator 

NFKBIZ15. In contrast, GCB-DLBCL commonly acquires mutations perturbing epigenetic 

regulators, with mutations in CREBBP and HIST1H1E, activating mutations in the 
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histone methyltransferase EZH2246 and transcription factor MEF2B (leading to increased 

expression of BCL6)247 enriched in GCB-DLBCL. This distinct pattern of genomic 

alterations also extends to copy number events, with gains of BCL2, BCL6, and 

MIR17HG significantly enriched in ABC-DLBCL, while gains of REL and deletions of 

PTEN, FAS, B2M, and TNRFSF14, as well as rearrangements involving BCL2, are 

enriched in GCB-DLBCL. 

1.7.3. Genetic subgroups 

Several groups have recently uncovered additional DLBCL subgroups harbouring 

shared genetic features, and have attempted to classify DLBCL cases into genetic 

subgroups with prognostic and therapeutic implications227,228,248,249. Chief among these is 

LymphGen249, which classifies DLBCL tumours into six genetic subgroups using SSMs 

(mainly coding mutations, but including some non-coding regions), CNVs, and SVs. 

These genetic subgroups overlap existing molecular subgroups to some extent, with 

GCB samples generally classified into either EZB or ST2 subgroups. EZB is named for a 

high frequency of mutations in EZH2 and translocations of BCL2 and characterized by 

mutations in numerous epigenetic modifiers (CREBBP, KMT2D, EP300, EZH2). ST2 is 

dominated by mutations in SGK1 and TET2 and associated with constitutive PI3K and 

JAK/STAT signaling. DLBCL cases transformed from follicular lymphoma tend to be 

classified within the EZB subgroup. ABC-DLBCL cases tend to be classified as either 

MCD, or BN2. The MCD subgroup dominated by hotspot mutations in MYD88 and 

CD79B and is characterized by constitutively active NF-ĸB signaling, while BN2 is 

named for high frequency of mutations in NOTCH2 and translocations involving BCL6, 

and harbouring mutations in BCR-dependent NF-ĸB signaling pathways. Two additional 

genetic subgroups, A53 and N1, are not strongly associated with either molecular 

subgroup. A53 cases are characterized by loss of TP53 and a high burden of copy 

number alterations, while the N1 subgroup is defined by gain-of-function mutations 

perturbing NOTCH1. These genetic subgroups have prognostic significance, with MCD 

and N1 cases associated with inferior outcomes across DLBCL tumours, while on a 

molecular subgroup basis, MCD and A53 represent cases with inferior prognosis within 

ABC-DLBCL, and EZB and A53 represent a subset of GCB-DLBCL with inferior 

outcomes. 
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1.7.4. Genetics of rrDLBCL 

As treatment exerts a strong selective pressure on the tumour and individual 

cells, one would expect that rrDLBCL tumours would be enriched for mutations which 

contribute to treatment failure. To this end, several studies have attempted to explore the 

landscape of rrDLBCL to identify genetic features underpinning treatment resistance. 

Unfortunately, many of these studies have been limited by small sample sizes, as tissue 

biopsies are generally not collected upon relapse. Previously, the largest genomic study 

of rrDLBCL consisted of WES on 47 rrDLBCL samples250, and observed a high 

frequency of mutations perturbing EZH2, CREBBP, and MYD88. An additional study 

performing exome sequencing on 38 rrDLBCL cases reported an enrichment of 

mutations affecting TP53, KMT2C, FOXO1, STAT6, MYC, and CCND3251. Several 

studies have identified recurrent CNVs which may contribute to immune evasion, 

through recurrent deletions and mutations of genes encoding MHC-Class 1 components, 

and B2M252–254, with functional loss of MHC Class 1 on tumour cells. However, mutations 

directly implicated with treatment resistance have currently not been uncovered, with 

most studies to date limited to a dozen samples. 

1.8. Research Aims and Outline 

During this project, we aimed to explore and characterize the genomic landscape 

of relapsed-refractory DLBCL. If mutations perturbing a gene contribute to treatment 

resistance (and thus provide a selective advantage) one would expect these mutations 

to be enriched and prevalent at relapse. Thus, by characterizing the landscape and 

repertoire of mutations in rrDLBCL, we hope to identify events prevalent at diagnosis but 

further enriched at relapse, representing candidate biomarkers of treatment failure, as 

well as initially rare events which are selected following treatment, representing 

mutations acquired following the selective pressure of therapy. We also aim to identify 

recurrent events in rrDLBCL which could act as therapeutic targets. 

This thesis is comprised of an introductory chapter, two data chapters outlining 

research to this end, and a final overview discussion chapter. 
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2.1. Abstract 

DLBCL patients are typically treated with immunochemotherapy containing 

rituximab (rituximab, cyclophosphamide, oncovin, and prednisone [R-CHOP]); however, 

prognosis is extremely poor if R-CHOP fails. To identify genetic mechanisms 

contributing to primary or acquired R-CHOP resistance, we performed target-panel 

sequencing of 135 relapsed/refractory DLBCLs (rrDLBCLs), primarily comprising 

circulating tumor DNA from patients on clinical trials. Comparison with a metacohort of 

1670 diagnostic DLBCLs identified 6 genes significantly enriched for mutations upon 

relapse. TP53 and KMT2D were mutated in the majority of rrDLBCLs, and these 

mutations remained clonally persistent throughout treatment in paired diagnostic-relapse 

samples, suggesting a role in primary treatment resistance. Nonsense and missense 

mutations affecting MS4A1, which encodes CD20, are exceedingly rare in diagnostic 

samples but show recurrent patterns of clonal expansion following rituximab-based 

therapy. MS4A1 missense mutations within the transmembrane domains lead to loss of 

CD20 in vitro, and patient tumors harbouring these mutations lacked CD20 protein 

expression. In a time-series from a patient treated with multiple rounds of therapy, tumor 

heterogeneity and minor MS4A1-harbouring subclones contributed to rapid disease 

recurrence, with MS4A1 mutations as founding events for these subclones. TP53 and 

KMT2D mutation status, in combination with other prognostic factors, may be used to 

identify high-risk patients prior to R-CHOP for posttreatment monitoring. Using liquid 

biopsies, we show the potential to identify tumors with loss of CD20 surface expression 

stemming from MS4A1 mutations. Implementation of non-invasive assays to detect such 

features of acquired treatment resistance may allow timely transition to more effective 

treatment regimens 

2.2. Introduction 

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin 

Lymphoma (NHL), representing 30-40% of cases diagnosed in North America. DLBCL 
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can arise de-novo or through histologic transformation from indolent lymphoid 

malignancies, most commonly transformed follicular lymphoma (“tFL”). Patients 

diagnosed with DLBCL are generally treated with a standard immunochemotherapy 

regimen comprising four chemotherapeutic agents and the anti-CD20 monoclonal 

antibody rituximab (R-CHOP), which is curative for 60-70% of DLBCL cases103,256. 

However, for patients with DLBCL that which is refractory to frontline treatment and 

those who experience subsequent relapse (relapsed/refractory DLBCL, “rrDLBCL”), 

outcomes are extremely poor, with a 2-year overall survival of 20-40%108,257. While 

numerous treatments are under investigation to improve both frontline and salvage 

therapy, the success of these new therapies has been limited. The advancement of 

therapeutics in the relapse setting has likely been encumbered by our limited 

understanding of the genetic and molecular features that underlie innate and acquired 

resistance to R-CHOP. Identifying such mechanisms may reveal additional treatment 

options and lead to biomarkers allowing patients to be paired with appropriate 

treatments. 

Whereas the genomic landscape of diagnostic DLBCL is well understood, the 

genomic and molecular features of both rrDLBCL and DLBCLs that arise through 

histologic transformation remains elusive due to the difficulties in obtaining tumor tissue 

from relapsed patients. Early studies exploring the genomic landscape of rrDLBCL 

identified several candidate genes enriched for mutations among rrDLBCL cases, 

including TP53, STAT6, FOXO1, SOCS1, and PIM1251,258,259. Indeed, mutations in some 

of these may be prognostic at diagnosis (e.g. FOXO1260 and TP53261,262), whereas others 

may reflect a more diverse representation of DLBCLs beyond those arising de novo 

including tFLs. However, previous studies of rrDLBCL have been limited by small 

sample sizes, with the largest single cohort comprising 47 cases250. In addition to 

comparing mutation prevalence between untreated DLBCL and rrDLBCL, some studies 

compared the clonal population structure and mutation burden between paired 

diagnostic and relapse samples250,263. Such analyses nominated additional candidate 

genes whose mutation could contribute to treatment resistance, such as BCL2 and 

CREBBP250, but these results have not been independently confirmed. The genetic 

heterogeneity of DLBCL warrants a more comprehensive study of rrDLBCL to definitively 

identify genes associated with relapse and to characterize the role of these mutations for 

resistance to components of R-CHOP. 
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Although cell-free DNA is commonly used for non-invasive quantitative 

monitoring of disease burden264–266, with sufficient levels of circulating tumor DNA 

(ctDNA), liquid biopsies can also provide a source of tumor genetic material allowing 

broad genetic characterization of tumors208,267,268. In DLBCL, mutations found within 

ctDNA reflect somatic mutations irrespective of anatomical biases, providing opportunity 

for comprehensive exploration of tumor genetics and heterogeneity269. This can be 

accomplished using a single time point270 but is more powerful when applied to serial 

samples as the variant allele frequency can reveal clonal dynamics and thus putative 

resistance mechanisms271.  

To more thoroughly survey the genetic mechanisms of R-CHOP resistance in 

DLBCL, we explored the genetics of rrDLBCL in 135 cases relying on a combination of 

tumor tissue and plasma-derived ctDNA collected after relapse. By comparing the 

mutational profiles of these cases to a large cohort of untreated DLBCLs, we identified 6 

genes significantly enriched for mutations. Many of these genes are commonly mutated 

in untreated DLBCL, notably KMT2D and TP53, and remain clonally stable over the 

course of therapy. Another of these genes, MS4A1, encodes the B-cell surface marker 

CD20 and is the target of rituximab. MS4A1 missense mutations are restricted to 

transmembrane domains and inhibit binding of both rituximab and other anti-CD20 

antibodies. These finding have the potential to identify patients at a high risk of R-CHOP 

failure prior to frontline treatment and those with tumors likely to be resistant to 

rituximab-based secondary therapies and other CD20-targeted immunotherapies. 

2.3. Methods 

2.3.1. Targeted sequencing and mutational analysis of rrDLBCLs 

This study included samples from 135 patients with rrDLBCL with 117 of these 

comprising plasma collected within 3 clinical trials or the general patient population 

treated in Quebec (Supplemental Table S1, S2, and S3, Appendix A). This study was 

reviewed and approved by the Research Ethics Boards of the University of British 

Columbia-BC Cancer and the Jewish General Hospital (18-030), in accordance with the 

Declaration of Helsinki. Plasmas were collected and processed as previously 

described268,272 and detailed in Section 2.4.2. The remaining 18 cases represent tissue 

biopsies previously described by our group251. With the exception of these 18 cases with 
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existing exome data, all samples were subjected to library construction using custom 

adaptors with unique molecule identifiers. Libraries were enriched by hybridization-

capture using a custom set of LockDown oligonucleotides targeting the exons of 63 

genes (Supplemental Table S4, Appendix A). The genes on this panel represent well-

established DLBCL genes from previous publications and included MS4A1 based on 

preliminary exome and genome data from PT255 and the 18 rrDLBCL exomes. 

Following enrichment, all libraries were multiplexed and sequenced using Illumina 

chemistry using 125- or 150-bp paired reads on either MiSeq or HiSeq2500 instruments. 

After alignment, reads were collapsed into consensus sequences using in-house 

pipeline that leverages unique molecule identifier information. Single nucleotide variants 

and small insertions and deletions (henceforth simple somatic mutations) were identified 

with Strelka2165 with custom post-filtration steps to remove artifacts (Section 2.4.4; 

Supplemental Table S5, Appendix A). 

2.3.2. Meta-analysis of untreated DLBCLs 

To obtain a cohort representative of diagnostic DLBCLs, we compiled exome 

data from three previously published cohorts226–228 and a cohort of paired tumor/normal 

genomes15, amounting to 1670 cases termed the “untreated” cohort, because all 

biopsies were obtained prior to treatment. As matched constitutional samples were not 

available for the majority of these exome cases, and because the supplied variant calls 

were generated using diverse pipelines, we reprocessed all exomes through a 

standardized variant calling workflow for unpaired tumor samples, including filtering of 

common and rare germline variants (see section 2.4.5, Figure 2-1). 
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Figure 2-1. Variant calling workflows for rrDLBCL cases (left), and Untreated 

DLBCL exome cases (right). 

2.3.3. Identifying genes associated with rrDLBCL 

. We identified mutations and hotspots associated with rrDLBCL using two 

complementary approaches. First, we compared the gene and hotspot mutation 

frequency between rrDLBCL and untreated DLBCL to identify genes enriched for 

mutations in rrDLBCL. Mutation hotspots considered here are listed in Supplemental 

Table S6, Appendix A. The mutation frequency of all genes in our panel was compared 

between the rrDLBCL cohort and the untreated DLBCL cohort, as well as an additional 

diagnostic cohort248, using Fisher’s exact test and Benjamini/Hochberg false discovery 

rate threshold of 0.1 (Supplemental Table S7 and S8, Appendix A). Second, leveraging 

the paired samples representing time points prior to and following treatment (Table 2-1), 

we compared the tumor genomic landscape between time points to identify genes that 

recurrently showed evidence of clonal selection. Mutations were classified based on the 

log ratio of the cancer cell fraction (CCF) between the two time points, where log-fold 

change (T2 CCF)/(T1 CCF) > 1.0 indicates a mutation underwent clonal expansion 

following treatment, log-fold change < 1.0 indicated the mutation was depleted following 

treatment, with all other values considered stable. We also explored the prevalence of 
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different genetic subgroups using the LymphGen classifier (See 2.4.7; Supplemental 

Table S2 and S9, Appendix A)249, and the prognostic implications of clonal and highly 

recurrent events in rrDLBCL (See 2.4.8 and Supplemental Table S10, Appendix A) 

Table 2-1. Patients and samples used in clonal evolution analysis 
Cohort Clinical Trial 

Identifier 
Cell-of-origin 
and DHITSig 
assigned using 

Diagnostic 
Tumour 
Source 

Relapse 
Tumour 
Source 

Diagnostic tumour 
biopsy + relapse 
plasma pairs 

LY.17 NCT02436707 DLBCL90 Tumour Biopsy cfDNA 10 

Epizyme NCT01897571 DLBCL90 Tumour Biopsy cfDNA 47 

Total - 
   

57 

 

2.3.4. Evaluation of MS4A1 protein expression and antibody reactivity 

Suspension-adapted Chinese hamster ovary (CHO-S) cells (Life Technologies) 

were cultured in FreestyleCHO media supplemented with 8 mM glutamine (Gibco). Cells 

were maintained between 0.3 and 1.5 x 106 cells/mL in a humidified shaking incubator at 

37°C in 8% CO2. CHO-S cells (107) were transfected with 10 mg of plasmid DNA 

containing MS4A1 wild-type (WT) or mutant constructs. Details of mutagenesis are 

included in 2.4.9 and Supplemental Table S11, Appendix A. For each transfection, 

efficiency was determined using a positive control (green fluorescent protein [GFP]) to 

demonstrate that cells were permissive for transfections. For all experiments, WT CD20 

transfections were performed in parallel with mutants. Transfected cells (1.5 x 105) were 

opsonized with 1.5 mg of unlabeled anti-CD20 antibody for 30 minutes at 4°C. Unbound 

antibody was washed twice in 2 mL wash buffer (phosphate-buffered saline containing 

1% bovine serum albumin and 10 mM sodium azide) and centrifuged at 400g for 5 

minutes and resuspended in ;150 mL of wash buffer. Primary antibody was detected 

with 0.2 mg/mL of anti-human immunoglobulin G (IgG)–phycoerythrin or anti-mouse IgG-

phycoerythrin polyclonal antibodies (Stratech) and stained for 30 minutes at 4°C. Cells 

were washed in 2 mL of wash buffer before acquiring on a FACSCalibur fluorescence-

activated cell sorter. Flow cytometry data were analyzed in FCSExpress v.3 (De Novo 

software, Pasadena, CA). rituximab (human [h]IgG1), ofatumumab (hIgG1), 

tositumomab (B1, murine [m]IgG1), and obinutuzumab (non-glycomodified hIgG1 type II 

relative of obinutuzumab) or an isotype control (mIgG1 or hIgG1) were used to stain the 

cells. Immunoblotting was performed largely as reported previously273. In brief, 5 x 106 
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cells were lysed in radioimmunoprecipitation assay buffer with 20 mg separated on a 

10% Bis-Tris gel. CD20 expression was assessed using rabbit anti-CD20 clone EP459Y 

(Abcam) alongside an HRP-conjugated anti-rabbit secondary antibody (NA9340, Sigma) 

detected using a ChemiDoc-It Imaging System. Full details of immunoblotting are 

included in 2.4.11. 

2.3.5. PT255 exome sequencing and single-cell analysis 

We performed exome sequencing on a single relapsed case (PT255) 

representing 3 time points: (1) the diagnostic biopsy (diagnosis, D); (2) cell-free DNA 

(cfDNA) collected following second relapse (relapse 2, R2/P1); and (3) cfDNA collected 

following third relapse (relapse 3, R3/P5). Somatic variants, copy number alterations, 

and clonal population structure were analyzed as described above. Somatic coding 

variants were chosen from this bulk tumor and plasma exome sequencing to represent 

different clones at varying time points, with the Fluidigm Access Array used for 

multiplexing amplicon sequencing of selected variants in PT255 plasma samples and 

circulating tumor single cells from selected time points following relapse (Supplemental 

Table S12 and S13, Appendix A). 

2.4. Supplemental Methods 

2.4.1. rrDLBCL sample collection 

251 patient samples were collected from three clinical trials exploring candidate 

treatment options for patients with relapsed-refractory DLBCL: LY.17 (NCT02436707), 

Obinituzumab-GDP [OZM073] (NCT02750670), Epizyme (NCT01897571), a 

retrospective cohort of rrDLBCL patients (Montreal), and a previously published rrDLBCL 

cohort (QCROC-2) (Supplementary Table S1 and S2, Appendix A). The LY.17, 

OZM073, Epizyme, and the Montreal cohorts consisted exclusively of blood samples, 

while the QCROC2 cohort consisted of tumor tissue biopsies. All patients were 

previously treated with R-CHOP, and in many cases were treated with several additional 

salvage therapies. COO and DHITsig were assigned for each sample using the 

DLBCL90 Nanostring assay91 except for the Montreal cohort, which was evaluated by 

Immunohistochemistry83 and FISH. Tumors identified as transformed from other 

lymphoid malignancies or clinically identified as PMBCL were analyzed separately. This 
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study was reviewed and approved by the Research Ethics Boards of the University of 

British Columbia-BC Cancer and the Jewish General Hospital (18-030), in accordance 

with the Declaration of Helsinki. For two of the clinical trials (LY.17 and Epizyme), 

diagnostic tumor tissue biopsies were provided prior to therapy for 57 patients (Table 2-1 

and Supplemental Table S3, Appendix A). Both de novo DLBCL cases and cases 

transformed from other lymphoid malignancies were included in this cohort. 

2.4.2. Blood processing and DNA extraction 

Blood samples from DLBCL patients were either immediately centrifuged 

following collection or preserved in Streck Cell-free DNA BCT® blood collection tubes 

(Streck, La Vista, NE, USA) and processed within 1-2 weeks to separate plasma from 

cells. Plasma aliquots were kept at –80 °C for extraction at a later date. We used the 

MagMAX Cell-free DNA isolation kit (ThermoFisher Scientific, Waltham MA, USA) or the 

QIAamp® circulating nucleic acid kit (Qiagen, Hilden, Germany) to isolate cell-free DNA 

from 0.5-4 mL of plasma. Total DNA yields were estimated using a Qubit fluorometer 

(ThermoFisher Scientific). 

Formalin-Fixed Paraffin-Embedded (FFPE) tissue slides and blocks 

corresponding to diagnostic biopsies were manually processed and DNA was extracted 

using the MagMAX™ FFPE DNA/RNA Ultra Kit (ThermoFisher Scientific). Constitutional 

DNA samples for each patient were extracted from buffy coats using the FFPE AllPREP 

kit (Qiagen) (LY.17. tumor biopsies and constitutional DNA samples) or DNeasy Blood & 

Tissue kit (Qiagen) (Epizyme tumor biopsies and constitutional DNA samples). 

2.4.3. Library construction and targeted enrichment 

ctDNA libraries were constructed using Illumina-compatible adapters carrying 

unique molecule identifiers (UMI) as described previously219,274. Equimolar amounts of 

libraries were pooled and enriched using a custom panel of 63 lymphoma-related genes 

(Supplementary Table S4, Appendix B) comprised of xGen® lockdown probes and pre-

designed gene capture pools (Integrated DNA Technologies, Coralville, IA, USA). 

Enriched libraries were analysed on Illumina instruments (MiSeq or NextSeq) using 150 

bp paired-end sequencing chemistry. 
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Tumor and constitutional DNA samples were incorporated into genomic DNA 

libraries by using the QIAseq FX DNA Library Kit (Qiagen). Similarly, we generated 

equimolar pools of tumor and normal DNA libraries and enriched them on coding regions 

using the xGen® Exome Research Panel (Integrated DNA Technologies, Coralville, IA, 

USA). 

2.4.4. Sequence alignment and somatic variant calling 

Raw sequencing reads were mapped to the human reference genome GRCh38 

using BWA mem152. For libraries constructed with custom adapters containing UMIs219, 

aligned reads were processed using Dellingr274 (https://github.com/morinlab/Dellingr), 

which trims the UMIs and leverages them to identify duplicate reads following alignment. 

In this process duplicate reads are combined into a consensus sequence, thereby 

performing error-correction and removal of redundant bases from overlapping read pairs. 

For samples sequenced without UMIs (tumor biopsies), duplicate reads were flagged 

using Picard (http://broadinstitute.github.io/picard/), and soft-clipping of redundant bases 

from overlapping read pairs was performed using bamtools 

(https://github.com/pezmaster31/bamtools). Quality control was performed using 

Qualimap2159 , and samples with insufficient coverage of the capture space were 

excluded from downstream analyses. 

Simple somatic mutations (SSMs) were identified using Strelka2165, providing the 

candidate small insertions and deletions predicted by Manta188 (Figure 2-1). In cases 

where no constitutional DNA from the individual was available, we used sequence data 

from constitutional DNA representing a single (unrelated) patient in place of a matched 

normal and subsequently removed variants with a minor allele frequency above 0.005 in 

any population, as specified in gnomAD275. As Strelka2 was noted to systematically 

under-call variants strongly supported by our molecular barcodes due to low variant 

allele fraction, we supplemented Strelka2 outputs using a previously described Geneious 

workflow which directly leverages the molecular barcodes219. Variant annotation was 

performed using Variant Effect Predictor276, specifically vcf2maf 

(https://github.com/mskcc/vcf2maf). Variant calls were post-filtered to remove those with: 

1) Less than 5 reads supporting the alternate allele, 2) A mean read mapping quality of 

less than 50, 3) Read mapping strand bias p<0.01, as determined using Fisher’s exact 

test, and 4) Base quality bias p<0.01, as determined using Student’s t-test on all reads 
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aligned at this position. Supplemental Table S4, Appendix A contains somatic variant 

calls retained for all downstream analyses. For cases with multiple time points, exome 

sequencing was performed on the diagnostic tumor biopsy and constitutional DNA, 

which also allowed the detection of copy number alterations using Sequenza179. To 

minimize noise, the exome data was pre-filtered to remove any variants not observed in 

the ExAC database for the purposes of B-allele frequency calculation275. Clonal 

population structure was derived using PyClone277 using copy number information from 

the matched tumor, where available. As we were unable to obtain copy number 

alterations from our plasma samples due to low ctDNA levels and the small capture 

space, we used the same copy number information for both the plasma and tissue 

biopsy. In situations where no copy number profile was available for a given patient, we 

specified a default diploid profile for both time points. 

2.4.5. Analysis of untreated DLBCL cohort 

Using the original sequence alignments obtained (Schmitz: NCI NCICCR-

DLBCL, Reddy: EGA EGAS00001002606, Chapuy: dbGAP phs000450.v3.p1), 

candidate somatic variants were first identified using the unfiltered variant calls 

generated from Strelka2165, using small insertion and deletions identified from Manta188. 

Candidate unfiltered variant positions were then converted into BED format and provided 

to MuTect2148, which was run in unpaired mode using a panel of normals generated from 

58 unrelated normal WGS samples. Further candidate germline variants were removed 

by filtering out any variant with a population allele frequency of >0.005 in gnomAD275, 

and using the same post-filtering criteria as the rrDLBCL cohort (described in 2.4.4), 

along with a variant allele frequency filter of 1%. As matched normal genomes were 

available for the Arthur genome cohort, we elected to use the original variant calls 

provided. Variant calls generated from Reddy, Chapuy, and Arthur cohorts were lifted 

over to GRCh38 using Crossmap278. 

2.4.6. Quality control and validation of untreated cohorts and 
mutation frequency 

Due to variable coverage and analytical approaches used for the untreated 

DLBCL exome data sets, all exomes were assessed for sufficient coverage at each 

locus in our panel. This was accomplished using the GATK CollectCallableLoci tool148, 
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using the following criteria to consider a position “callable”: minimum depth of 30, 

maximum fraction of reads with a low mapping quality of 40%, with reads required to 

have a minimum base quality of 10 and minimum mapping quality of 40 to be counted. 

For each sample, any genes whereby less than 50% of the gene was considered 

“callable” was excluded from consideration, unless a mutation had been called in that 

gene. By counting mutations even when they occurred in genes flagged as “uncallable”, 

we artificially increased the mutation prevalence in the untreated cohort, and thus biased 

ourselves against identifying genes enriched for mutations. We subsequently compared 

the mutation frequency of all genes and select hotspots (Supplemental Table S6, 

Appendix A) between the untreated and rrDLBCL cohort using a Fisher’s exact test and 

Benjamin/Hochberg false discovery rate correction, with a padj <0.1 considered 

significant (Supplemental Table S7, Appendix A). To ensure our differentially mutated 

genes were not enriched for mutations simply due to increased sequencing depth in our 

rrDLBCL cohort, and thus ability to detect mutations, we further compared the mutation 

frequency between our rrDLBCL cohort and an additional diagnostic cohort comprised of 

ultra-deep (500x) sequencing of 293 genes248 (Supplemental Table S8, Appendix A). 

2.4.7. Genetic subgroupings of rrDLBCL cases 

We inferred genetic subgroup labels for each rrDLBCL tumor using the 

LymphGen classifier249. As our rrDLBCL cohort is primarily comprised of liquid biopsies 

with limited information of copy-number alterations and structural variants, we assigned 

genetic subgroupings using only simple somatic mutation data. To compare the genetic 

subgroup prevalence against our untreated DLBCL cohort, we restricted our analyses to 

the cohort of cases described by Schmitz et al228, and selected only SNV features in 

genes sequenced in our rrDLBCL cohort, and disregarded copy-number alterations and 

structural alterations to ensure the results were comparable. Notably, this restricted set 

of features precluded cases from being assigned to A53 and reduced the sensitivity of 

the BN2 and ST2 subgroups. The prevalence of each subgroup was compared using a 

chi-squared test and Benjamini/Hochberg false discovery rate correction, with a padj < 

0.1 considered significant (Supplemental Table S2 and S9, Appendix A). 
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2.4.8. Survival analysis in untreated DLBCL 

The prognostic association of each differentially mutated gene or mutation 

hotspot was individually evaluated using overall survival (OS) time from 1670 samples in 

the untreated DLBCL cohort. For each exome, if less than 50% of a given gene was 

considered callable and no mutation was detected in that gene (see 2.4.6), the mutation 

status was considered missing data for that patient (NA) and was excluded from 

analysis. This strict criterion addresses the variable sequence coverage of some genes 

across different cohorts. Univariate survival analysis was performed using the survminer 

package (V 0.4.6, R version 3.5.3) using the Kaplan-Meier method279. Cox proportional 

hazard models280 were fit using the survival package (V2.3.8, R version 3.5.3) 

(Supplemental Table S10, Appendix A). We fit additional Cox models incorporating 

International Prognostic Index (IPI), COO, and the source cohort for each case. 

Additional models were fit using KMT2D truncating mutations to evaluate the effects of 

truncating mutations on patient outcomes. 

2.4.9. Site-directed mutagenesis of MS4A1 

Site-directed mutagenesis (SDM) to generate MS4A1 missense mutations was 

performed using NEB Q5-SDM (protocol E0554) kit. Bespoke non-overlapping primers 

were produced by LifeTechnologies (Supplemental Table S11, Appendix A). 5μL of the 

mutation reaction was used to transform C2571 cells (NEB) by heat shock 

transformation as recommended by NEB Q5-SDM kit. Plasmids were propagated in 10 

to 100 mL bacterial cultures and purified using QIAGEN mini/maxiprep kits. All clones 

were sequenced at Source BioScience and sequences aligned using DNALasergene 

SeqManPro programme to confirm the mutagenesis and the absence of additional 

mutations. 

2.4.10. Immunohistochemistry of tissue sections and cell lines 

Immunohistochemistry was performed at the Segal Cancer Centre Research 

Pathology Facility (Jewish General Hospital). Tumor biopsies from consented patients 

were collected, formalin fixed, and paraffin embedded (FFPE) by clinical pathology at the 

Jewish General Hospital. FFPE blocks were cut at 4 μm and H&E stained to confirm 

tissue morphology. Separate tissue microarray blocks (TMAs) were constructed for 
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diagnostic and relapse samples by selecting representative tissue sections on the FFPE 

block, removing cores from the donor block and placing them into the corresponding 

TMA block. Cell line controls were added to the TMA blocks via similar preparation as 

tumor biopsies. Briefly, cell lines were expanded in standard culture conditions until 

confluence. Cells were pelleted, washed, and fixed in 10% neutral buffered formalin for 

30 minutes at room temperature. Afterwards, the cell pellets were washed and placed in 

70% ethanol for subsequent paraffin embedding. FFPE cell line cores were taken and 

placed into the corresponding TMAs, as previously mentioned. 

Tissue samples were cut at 4-μm, placed on SuperFrost/Plus slides (TOMO, 

VWR) and dried overnight at 37°C, before IHC processing. Slides were then loaded onto 

the Discovery XT Autostainer (Ventana Medical System). Solutions used for automated 

immunohistochemistry were obtained from Ventana Medical System unless otherwise 

specified. Slides underwent d e- paraffinization, heat-induced epitope retrieval (CC1 

prediluted solution Ref: 950-124, standard protocol). Double immunostaining for CD20 

and PAX5 was sequentially performed online using a heat protocol. Mouse monoclonal 

anti-CD20 (Clone L26, Roche) was prediluted and auto- applied for 32 min at 37°C, 

followed by a detection kit (Omnimap anti-Mouse HRP Ref: 760-4310 and ChromoMap-

DAB Ref: 760-159). Slides were washed with warm soapy water, followed by reaction 

buffer (Ref: 950-300) and loaded for a subsequent immunostaining with a rabbit 

monoclonal anti-PAX5 (Clone SP34, Roche) antibody. This was prediluted, and auto- 

applied for 32min at 37°C, then followed by the appropriate detection kit (OmniMap anti-

Rabbit HRP Ref: 760-4311 and the Discovery Purple Kit, Ref: 760-229). A negative 

control was performed through omission of the primary antibody. Slides were 

counterstained with Hematoxylin for 8 minutes, blued with Bluing Reagent for 4 minutes, 

removed from the autostainer, washed in warm soapy water, dehydrated through graded 

alcohols, cleared in xylene, and mounted with Eukitt Mounting Medium (Eukitt, Fluka 

Analytical). Sections were analyzed by conventional light microscopy or scanned at 40X 

using the Aperio AT Turbo Scanner (Leica Biosystems). 

2.4.11. Immunoblotting of cells expressing wild-type or mutant 
CD20 

5x106 cells from each transfection were lysed in 30μL RIPA buffer (25 mM Tris-

HCl, 150 mM NaCl, 1% Nonidet P-40, 1% sodium deoxycholate, 0.1% SDS containing 
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protease inhibitor mixture [Sigma], 50 mM NaF, and 0.2 mM Na3VO3). Whole cell lysate 

protein concentration was measured using a BioRad Protein Assay with known 

concentrations of Bovine Serum Albumin used as a standard curve. 20μg of lysate was 

loaded onto a 10% Bis-Tris gel and separated under a constant voltage. The proteins 

were transferred onto a nitrocellulose membrane using the iBlot (ThermoFisher), blocked 

with 5% w/v milk solution (Marvel) and probed with rabbit anti-CD20 (clone EP459Y, 

Abcam) overnight at 4°C. Unbound antibody was removed by washing three times in 

TBS-Tween, before bound antibody was detected with HRP-conjugated anti-Rabbit 

secondary antibody (NA9340, Sigma) at room temperature for 1 hr. The membrane was 

washed three times in TBS-Tween before ECL substrate (ThermoFisher) was added and 

detected using a ChemiDoc-It Imaging System. Equivalent loading was confirmed by 

blotting with rabbit anti-tubulin (Clone#2144, Cell Signalling Technology). 

2.4.12. Single Cell Analysis of PT255 

To isolate single cells from patient cell population (PT255), surface antigens were 

used to detect and sort the desired cells using flow cytometry (BD FACSAria Fusion, BD 

Biosciences, San Jose, California, USA). To stain and sort the cells, 106 cells were 

thawed, washed, and resuspended in warm PBS and stained with LIVE/DEAD Fixable 

Aqua Dead Cell Stain (ThermoFisher Scientific, Grand Island, New York, USA) to 

assess cell viability. Cells were washed twice with cold PBS and Fc were blocked with 

20% serum for 15 minutes. Cells were washed with staining buffer [PBS supplemented 

with 2% foetal bovine serum (FBS; Wisent, St- Bruno, Québec, Canada)] and labeled (or 

not, for negative controls) with CD3 (1 μl; clone SK7; BD Biosciences), CD19 (1 μl; clone 

H1B19; BD Biosciences) and CD20 (5 μl; clone 2H7; BD Biosciences) antibodies for 1 

hour on ice in the dark. Cells were then washed twice with flow cytometry buffer, 

resuspend in 100% FBS, and analyzed by flow cytometry. The gates for positive-staining 

cells were determined by comparison with unstained cells. Cells that were either CD3(-

)CD19(+)CD20(-) or CD3(-)CD19(+)CD20(+) were single cell sorted in a 96 well plate for 

further genetic analysis. 

Primers were designed for these and germline variants using Primer3 

(Supplemental Table S12, Appendix A). All forward primers were tailed with the 

sequence CGCTCTTCCGATCTCTGNNNN, and all reverse primers were tailed with the 

sequence TGCTCTTCCGATCTGACNNNN for use in downstream sequencing. 48 
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single-plex PCRs were performed using the Fluidigm AccessArray as per manufacturer’s 

protocols in Appendix G Section 4: Amplicon Tagging on the Access Array IFC, with 

some modifications described below. Pre-amplification was performed on isolated single 

cells and plasma DNA using Platinum Multiplex Master Mix, adjusting manufacturer’s 

protocols for a 5μL reaction. A 48-plex primer mix (1μM each primer) was used. Thermal 

cycling conditions were 56°C(10min), 94°C(11min), 30X[94(30sec), 60°C(30sec), 

72°C(30sec)], 4°C(hold). Barcoding was performed using primers with sequences: 

forward, 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

CTCT; reverse, 

CAAGCAGAAGACGGCATACGAGATXXXXXXGTGACTGGAGTTCAGACGTGTGCTCT 

TCCG (with the region denoted as XXXXXX reserved for sample indexes). Products 

were pooled for sequencing using the Post-PCR Amplicon Purification and Quantitation 

protocol and sequenced on an Illumina MiSeq. 

Sequencing reads were aligned against the human reference genome hg19 

using BWA mem152. A custom python script was used to calculate variant allele fractions 

and coverage at each of the 48 variant loci (Supplemental Table S13, Appendix A). 

Samples were analyzed in duplicate, and the average variant allele fraction was used for 

analysis. False positive variants were removed as well as loci where primers failed to 

give a total of 29 variants used for analysis. 

2.5. Results 

2.5.1. Enrichment of mutations in rrDLBCL 

The pattern of mutations observed in rrDLBCL largely resembles that of 

untreated DLBCL (Figure 2-2). As this survey was focused on the genetic landscape 

following relapse, we searched for genes enriched for mutations after treatment failure. 

Such mutations are expected to represent either features of primary treatment 

resistance or examples of mutations subjected to clonal expansion under the selective 

pressures exerted by therapy. This analysis revealed 6 genes enriched for mutations: 

KMT2D, TP53, CREBBP, FOXO1, NFKBIE, and MS4A1, with another two genes 

depleted for mutations in rrDLBCL (Figure 2-3). 
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Figure 2-2. Mutation landscape of lymphoma-related genes in 135 rrDLBCL cases. 

Exonic mutations affecting the top 50 most recurrently mutated genes in 
our cohort of 135 rrDLBCL samples representing 5 different cohorts 
(Section 2.3.1). The inferred effect of each mutation is indicated by 
colour. Noncoding mutations are suppressed with the exception of 
NFKBIZ, which includes 3′ UTR mutations that have been previously 
described as driver mutations. The 2 covariate tracks on the bottom show 
COO information (where available) and the source cohort for each 
sample. Bar plots above and to the right of the plot indicate number of 
mutations per patient and number of patients with a mutation in that gene, 
respectively. Although the mutation landscape closely resembles 
untreated DLBCL, there are some notable differences. For example, 
approximately half of all rrDLBCLs harbored mutations in either TP53 
(51%) or the histone methyltransferase KMT2D (50%) with 31% of cases 
harbouring mutations in both genes. 
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Figure 2-3. Differentially mutated genes between rrDLBCL and untreated DLBCL. 

(A) Mutation type and frequency of each differentially mutated gene in the 
untreated and rrDLBCL cohorts, using a significance threshold of 0.1 
following false discovery rate correction. Untreated cases with insufficient 
coverage (not callable) in the gene of interest were not counted in the 
denominator for that gene (see 2.4.6). (B) Forest plot showing the odds 
ratio for all differentially mutated genes, as determined by the Fisher’s 
exact test, for all differentially mutated genes (Supplemental Table S7, 
Appendix A). CI, confidence interval. 

The lysine methyltransferase KMT2D is a tumor suppressor in DLBCL and 

follicular lymphoma (FL)229 and was mutated in half of all rrDLBCLs (Figure 2-3A). In 

addition to a significant increase in KMT2D mutations in rrDLBCL relative to untreated 

DLBCL (q = 0.0678; OR, 1.68), loss-of-function mutations were further enriched at 

relapse (55/135 rrDLBCLs [40.7%] vs 304/1314 untreated [23.1%], q = 1.7 × 10−5). 

Similar to the pattern in untreated cases, truncating mutations were observed across the 

length of the protein (Figure 2-4A) and tend to occur before the N-terminal SET domain, 

which catalyzes H3K4 methylation. 
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Figure 2-4. Mutation patterns in genes enriched for mutations within the 

population of rrDLBCLs. Lollipop plots displaying the mutations 
discovered in the 6 genes (KMT2D [A], TP53 [B], CREBBP [C], FOXO1 
[D], NFKBIE [E], MS4A1 [F]) found to be significantly enriched for 
mutations at relapse compared with untreated DLBCL. Mutations in 
rrDLBCL are displayed above each gene, and mutations in the untreated 
cohort are displayed below each gene. The number of mutated cases and 
percentage of cases with mutations in that gene are shown beside each 
gene (red: relapse; blue: untreated). The size of a lollipop and vertical 
displacement represent the number of patients with nonsilent mutations 
observed at that position. Note that lollipops were scaled down in the 
untreated cohort, and thus, the size of a lollipop cannot be directly 
compared between the untreated and relapse cohorts. Relevant protein 
domains are displayed for genes with differing mutation patterns within 
these domains. There is a general enrichment for recurrent mutations in 
the untreated cohort, most pronounced in KMT2D. These are attributed to 
rare germline variants that we were unable to filter due to their absence in 
any database of common variants. 

The majority (51%) of rrDLBCLs harbored a TP53 mutation (q = 2.25 × 10−11; OR 

3.99). In contrast to KMT2D, mutations were predominately missense and affected the 

DNA-binding L1-sheet-helix domain (Figure 2-4B). We observed recurrent mutations 

affecting known TP53 hotspots, including Arg175, Arg248, and Arg273, which either bind 

directly to DNA or coordinate DNA binding281. The Arg248 residue, which directly binds 
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to the minor groove of DNA, was the only hotspot significantly enriched for mutations in 

rrDLBCL (q = 0.0807; OR 3.29).  

The rrDLBCLs were also enriched for mutations affecting each of CREBBP (q = 

0.0807; OR 1.74), NFKBIE (q = 0.0232; OR 2.78), and FOXO1 (q = 0.087; OR 2.33). 

The majority of CREBBP missense mutations affected the acetyltransferase domain 

(28/48 mutations, 58%) (Figure 2-4C), with the remainder predominantly causing 

truncation. Mutations in FOXO1 could broadly be defined into 2 classes: those that 

disrupt the forkhead DNA-binding domain and those that disrupt FOXO1 phosphorylation 

(Figure 2-4D). The latter include mutations-targeted Tyr24, adjacent residues, or the 

canonical start codon, which both affect the regulation of FOXO1 nuclear localization260. 

We also observed recurrent frameshift deletions affecting Tyr254 in NFKBIE, a negative 

regulator of NF-ĸB signaling (Figure 2-4E). Although mutations in NFKBIE were 

significantly enriched in rrDLBCL, the prevalence of mutations affecting the Tyr254 

hotspot was not significantly higher in this cohort. 

MS4A1 exhibited the strongest enrichment for mutations in rrDLBCL (q = 0.023; 

OR 4.32). MS4A1 encodes CD20, the B-lymphocyte antigen and target of rituximab and 

several other therapeutic monoclonal antibodies (mAbs). Although truncating mutations 

were observed across the length of MS4A1, a striking number of missense mutations 

were also observed (Figure 2-4F). None of these are predicted to directly affect residues 

comprising the rituximab epitope nor the epitopes of other mAbs. Instead, the recurrent 

missense variants were predicted to affect the transmembrane domains of the small 

loop, including 3 examples of a Tyr86 mutation (2 Tyr86Cys, 1 Tyr86His). Outside of 

rrDLBCL, mutations affecting this residue appear to be exceedingly rare as they were 

absent from the entire untreated DLBCL cohort and only appear in a single tumor in 

COSMIC282. 

2.5.2. Recurrent clonal selection following rituximab-based therapy 

To further explore genetic mechanisms that contribute to treatment resistance, 

we inferred the clonal structure and dynamics in the 57 patients with serially collected 

samples representing time points prior to and following rituximab-containing treatment 

regimens, including de novo DLBCL, tFL, and other B-cell lymphomas. For each set of 

samples, we inferred the CCF of each mutation detected in pre-treatment tumor tissue 
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biopsies and post-treatment plasma samples. We then compared individual CCFs 

between paired samples and categorized mutations as enriched (clonal expansion), 

depleted (clonal regression), or stable at relapse within that tumor (Figure 2-5A). Figure 

2-5B-I shows representative time series for mutations of interest. Overall, coding 

mutations affecting TP53 (Figure 2-5B,D-I) and KMT2D (Figure 2-5D,F-G,I) tended to be 

stable following therapy, including all examples of TP53 Arg248 mutations and KMT2D 

loss-of-function mutations (Figure 2-5D,F,I). We observed numerous examples showing 

clonal expansion of a single KMT2D mutation and clonal depletion of a separate KMT2D 

mutation, suggesting a persistent selective advantage for KMT2D loss (Figure 2-5G). 

Mutations affecting CREBBP and NFKBIE, including NFKBIE Tyr254, were similarly 

stable prior to and following treatment in most patients. Taken together, mutations in 

these genes appear to generally represent a component of the founding clone. 

In contrast to these genes, MS4A1 mutations exhibited a consistent trend toward 

clonal expansion in patients following rituximab-containing therapy (Figure 2-5B-E). This 

includes several cases inferred to harbor multiple subclonal populations with distinct 

MS4A1 mutations, with each exhibiting clonal expansion (Figure 2-5D). MS4A1 

mutations were consistently undetectable in diagnostic tissue and appear to result from 

consistent positive selection under the pressure of R-CHOP and other therapies. This 

trend along with their predominance in rrDLBCL relative to untreated DLBCLs indicates 

a role of these mutations in contributing to acquired treatment resistance during 

exposure to rituximab-containing therapy. 
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Figure 2-5. Clonal evolution patterns of regression and selection in rrDLBCL. (A) 

Number of cases with a mutation that regressed (blue), expanded (pink), 
or remained stable (gray) in a given gene following therapy. Time points 
are from a tumor biopsy before treatment (T1) and a plasma sample after 
treatment (P2). Genes in clusters that predominately undergo clonal 
expansion treatment are near the bottom, and genes in clusters depleted 
following treatment are near the top. (B-I) Clonal evolution plots for 
several patients following therapy, using a pretreatment tumor tissue 
biopsy and a posttreatment plasma sample. Each line represents a single 
coding mutation, and the relative CCF of each mutation before and after 
therapy is used to flag mutations that undergo clonal expansion (pink), 
depletion (blue), or remain stable (gray). The eight genes differentially 
mutated are labeled and highlighted, and the mutation type is indicated by 
the adjacent symbol. 
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2.5.3. KMT2D and TP53 mutations are poor prognostic markers in 
diagnostic DLBCL 

The clonal and stable nature of many rrDLBCL-associated mutations implies they 

may contribute to innate treatment resistance. In this scenario, such mutations should 

intuitively be associated with inferior outcomes. To assess this, we searched for 

associations between non- silent mutations in each of these genes and overall survival 

(OS) and progression-free survival (PFS) in our untreated cohort. Mutations in each of 

TP53 and KMT2D were individually associated with shorter OS and PFS in diagnostic 

DLBCL (Figure 2-6A-D). 

 
Figure 2-6. Prognostic potential of KMT2D and TP53 mutations in untreated 

DLBCL. (A-F) Kaplan-Meier survival curves showing differences in 
overall survival (OS) (A,C,E) and progression-free survival (PFS) (B,D,F) 
in untreated DLBCL cases harbouring TP53 mutations (A,B), KMT2D 
mutations (C,D), or both (E-F), using our cohort of 1670 untreated DLBCL 
cases. Cases with insufficient coverage (not callable) in the gene of 
interest were excluded from analysis (see 2.4.8). All cases were censored 
at 10 years. (G) Cox proportional hazard models for OS and PFS in 
untreated DLBCL. All 6 genes enriched for mutations in rrDLBCL were 
initially included in each model, but only KMT2D and TP53 mutations 
remained significant following feature selection. All cases were censored 
at 10 years. 
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Whereas mutations in TP53 have previously been characterized as a poor 

prognostic marker in DLBCL261, KMT2D has not previously been independently 

associated with inferior outcomes. Cases harbouring both a KMT2D and TP53 mutation 

displayed shorter OS (Figure 2-6E) and PFS (Figure 2-6F), a trend recently observed in 

mantle-cell lymphoma283. This extends to KMT2D truncating mutations, which are 

associated with inferior OS alone (Figure 2-7A-B), and in conjunction with TP53 

mutations (Figure 2-7C-D). In contrast, MS4A1 mutations were not significantly 

associated with patient outcomes, a finding that we attribute to the low mutation 

prevalence in untreated DLBCL. 

 
Figure 2-7. Prognostic potential of TP53 and KMT2D truncating mutations in 

untreated DLBCL. Kaplan-Meier survival curves showing differences in 
overall survival (A,C) and progression-free survival (B,D) in untreated 
DLBCL cases harbouring KMT2D truncating mutations (A,B), or KMT2D 
truncating mutations and TP53 mutations (C-D), using our cohort of 1670 
untreated DLBCL cases. Cases with insufficient coverage (not callable) in 
the gene of interest were excluded from analysis (see 2.4.8). All cases 
were censored at 10 years for plotting. 
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Figure 2-8. Prognostic association of KMT2D and/or TP53 mutations on DLBCL. 

These forest plots summarize the Cox proportional hazard models for 
patient OS (A,C) and PFS (B,D) within the untreated DLBCL cohort. The 
features explored include TP53 mutations, KMT2D mutations (A,B) or 
KMT2D truncating mutations (C,D), as well as IPI and COO classification. 
Cases lacking IPI, COO, or considered “uncallable” within KMT2D or 
TP53 were excluded from analysis (see 2.4.8). PFS information was not 
provided for samples from the Reddy cohort284. 

We next tested showed that KMT2D and TP53 mutations were significantly 

associated with inferior PFS and OS in a multivariate setting (Figure 2-6G), whereas 

KMT2D truncating mutations were only associated with inferior OS. In a model 

incorporating previously described prognostic features of DLBCL, including COO and 

International Prognostic Index classification, KMT2D and TP53 mutation status remained 
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independently associated with shorter survival (Figure 2-8, Supplemental Table S10, 

Appendix A). Due to the high frequency of TP53 and KMT2D mutations in untreated 

DLBCL, and because these mutations tend to remain stable following therapy, these 

each represent strong candidates for prognostic biomarkers of eventual treatment failure 

on R-CHOP. 

2.5.4. Differential representation of EZB and MCD subgroups in 
rrDLBCL 

As DLBCL is a genetically heterogeneous disease, recent studies have 

attempted to classify DLBCL tumors into subgroups based upon shared genetic features 

with therapeutic implications227,228,248,249. To explore this in rrDLBCL, we assigned 

rrDLBCL tumors into genetic subgroups, which enabled classification of 49% (66/135) of 

cases (Supplemental Table S2, Appendix A). Cases were most commonly classified as 

EZB in rrDLBCL (45/135 cases, 33%). In contrast, the prevalence of BN2 (5/135, 3.7%) 

and MCD (6/135, 4.4%) tumors was lower than previously reported249. The majority of 

ABC-DLBCL tumors (31/47, 66%) were not assigned to any genetic subgroup. Given our 

limited feature set, we compared the prevalence of cases in each genetic subgroup to a 

subset of the untreated DLBCL cohort (see 2.4.7). EZB tumors were significantly over-

represented among our rrDLBCL cohort (33% vs 17%, q=0.00023) whereas MCD 

tumours were significantly less prevalent (4.4% vs 14%, q=0.014) (Supplemental Table 

S9, Appendix A). An enrichment of EZB tumors was not particularly surprising given the 

inferior prognosis of some of these cases, particularly those described as EZB-M+. 

Given the inferior outcomes of MCD tumours in ABC-DLBCL78, a reduced representation 

of these cases in rrDLBCL was unexpected. As we anticipate additional methods for 

performing genetic classification of DLBCL, further exploration of the distribution of each 

genetic subgroup in rrDLBCL is clearly warranted. 

2.5.5. Mutations in MS4A1 attenuate rituximab binding 

We next explored the functional effects of MS4A1 mutations and their potential 

role in promoting rituximab resistance. We transfected a CD20− cell line with wild-type 

(WT) or mutant CD20 constructs representing common MS4A1 missense mutations 

observed in patients (Figure 2-9A). We showed that all 3 MS4A1 mutants had 

significantly decreased binding of rituximab or other anti-CD20 antibodies, including 
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tositumomab (B1), ofatumumab, and obinutuzumab derivatives by flow cytometry, with 

two mutants (Y86C and L66R) showing a complete absence of binding (Figure 2-9B; 

Figure 2-10). Consistent with the other mutation tested, cells with ectopic expression of 

Tyr86Cys were not recognized by any of the anti-CD20 antibodies. In contrast, cells 

expressing Tyr86His were recognized by all four antibodies, albeit at a significantly 

reduced amount. Because this assay requires expression on the plasma membrane, we 

next explored whether the mutations affected the expression of CD20 within the cell 

using immunoblotting with a CD20 antibody that binds within the cytoplasmic domain. 

Consistent with the result from flow cytometry, an immunoblot of cell lysates showed 

reduced CD20 protein with the Y86H mutant and no visible expression with the other two 

mutants (Figure 2-9C). We separately performed CD20 staining on cell lines derived 

from tumors naturally harbouring MS4A1 mutations. Both Gly98Arg and Tyr86His cell 

lines were negative for CD20 staining by immunohistochemistry using L26, another mAb 

recognizing the C-terminal cytoplasmic region of CD20 (Figure 2-9D). Taken together, 

we conclude that MS4A1 missense mutations can directly contribute to rituximab 

resistance by reducing CD20 expression and/or stability. 
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Figure 2-9. Distribution and functional impact of MS4A1 mutations in rrDLBCL. (A) 
Topology of MS4A1 transmembrane domains and extracellular loops, as 
annotated by Uniprot and elsewhere285. MS4A1 mutations observed in the 
rrDLBCL cohort have been labeled, along with the predicted binding 
epitope of 4 different CD20 mAbs. (B) Comparison of antibody binding 
between CHO-S cells transfected with plasmids expressing either WT 
CD20 or 1 of 3 mutants (Tyr86His, Tyr86Cys, and Leu66Arg) for 4 
different CD20 antibodies: rituximab (RTX), tositumomab (B1), 
obinutuzumab (BHH-2), or ofatumumab (OFA). The percent of positively 
stained cells was compared between mutants within each antibody 
(adjusted P values from 2-way analysis of variance of 3 replicates: *P > 
.1, **P > .01, ***P > .001, ****P > .0001). See also Figure 2-10. (C) 
Representative western blot (of 2 independent experiments performed) 
showing CD20 expression of CHO-S cells transfected with WT or mutant 
CD20 (Y86H, Y86C, and L66R) and a nontransfected (NT) control. (D) 
Immunohistochemistry of CD20 in a cell line and tumor tissue biopsy 
harbouring WT CD20 as well as 2 patient-derived cell lines harbouring 
G98R (PT255), and Y86H along with a frameshift mutation, respectively. 
CD20 is stained red using the L26 CD20 antibody and B-cell nuclei were 
stained purple using a Pax5 antibody, visualized at ×20 original 
magnification. 
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Figure 2-10. Comparison of CD20 binding of CHO-S cells transfected with 

plasmids containing either wild-type or mutant (Y86H, Y86C and 
L66R) MS4A1. CHO-S cells were transfected with plasmids and then 
assessed 24 hours later for CD20 surface expression using different 
CD20 antibodies: rituximab, tositumomab (B1), obinutuzimab (BHH-2) or 
ofatumumab (OFA) followed by detection with a PE-labelled F(ab)2 
secondary antibody. Representative FSC x FL1 plots shown, indicating 
cut-offs for % positive cells (upper portion). 

2.5.6. MS4A1-harbouring subclones drive rapid treatment resistance 

To further explore how multiple rounds of therapy can influence clonal structure 

in a MS4A1-mutant patient (PT255), we followed the progression of a patient with 

chemorefractory aggressive high-grade B-cell lymphoma using multiple complementary 

approaches (Figure 2-11). We initially performed exome sequencing on 3 time points 

beginning with the untreated diagnostic tumor biopsy (diagnosis, D), followed by cfDNA 



65 

collected after failure of both R-CHOP and subsequent high-dose chemotherapy 

(relapse 2, R2/P1) and a second cfDNA sample following additional rounds of 

chemotherapy including prednisone (relapse 3, R3/P5) (Figure 2-11A). We identified 

several distinct subclonal populations in these samples (Figure 2-11B) and selected 

mutations representative of each population: trunk (clonal), R2-associated (high 

prevalence at R2), and R3-associated (high prevalence at R3) for validation. We 

measured the variant allele frequency for these representative mutations in each time 

point and additional cfDNA samples and circulating tumor cells from blood collected 

between R2 and R3. 

This analysis revealed a heterogenous clonal structure consisting of distinct 

subclones at each relapse (Figure 2-11C). Following R-CHOP and high-dose 

chemotherapy (R2), we observed emergence of a population containing an MS4A1 

truncating mutation and a missense mutation within the kinase domain of DDR2, which 

has been described in lung cancer and may confer susceptibility to dasatinib286. This R2-

associated subclone was undetectable at R3 and was replaced by a distinct population 

harbouring a MS4A1 missense mutation (Gly98Arg) and a truncating mutation affecting 

NR3C1, which encodes the glucocorticoid receptor and could contribute to resistance 

against steroids such as prednisone287. Although some mutations present in this later 

population were detectable at low levels following deep sequencing at R2, the extent of 

clonal expansion was striking given that <3 weeks elapsed between R2 and R3. In 

particular, this subclone exhibited rapid clonal expansion in the 8 days separating 

samples P3 and P4. Taken together, these data show that rapid changes in clonal 

structure can contribute to treatment resistance in DLBCL. 
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Figure 2-11. Plasma and single-cell sequencing of multiple time points in a DLBCL 
patient (PT255). (A) Timeline of events for PT255. Clinical time point 
shows the timing of diagnosis (D) and relapses (R2, relapse 2; and R3, 
relapse 3) relative to blood sample collection (P1 to P6). Bulk tumor DNA 
was separately obtained from a biopsy at diagnosis, circulating tumor 
cells extracted at R2 and R3, and cfDNA extracted from plasma samples 
P1 to P6 after R2. Varying types of sequencing was performed on DNA 
from each time point, as summarized below. (B) Results from running 
PyClone277 on exome sequencing of DNA obtained from diagnosis, 
R2(P1) and R3(P5). Clusters 0 and 1 contain trunk mutations seen at 
both P1 and P5; cluster 2 contains R2-specific mutations, and cluster 3 
contains mutations that were subclonal at R2 and clonal at R3. (C) 
Amplicon sequencing of a subset of mutations found in the clusters in 
panel B from all 6 plasma time points reveal a more complete but similar 
evolution of the tumor as inferred from bulk sequence analysis in panel B. 
Below shows the suspected proportion of the tumor made up of each 
clone at individual time points. (D) Single-cell amplicon sequencing of 
circulating tumor cells taken at R2 and R3 revealed 2 distinct populations 
of cells containing mutations specific to each of R2 and R3. Genes are 
ordered by group and by frequency of mutation detected (top to bottom), 
suggesting a relative order of mutation acquisition. 

Given the emergence of subclones with different genetic features, we next 

sought to validate the clonal dynamics observed in R2 and R3 using single-cell 

sequencing. We determined mutation status and ploidy for the same set of mutations in 

a total of 74 isolated single cells from R2 and 35 isolated cells from R3. This confirmed 

that the R2-associated and R3-associated subclones exist in mutually exclusive 

subpopulations and confirmed the subpopulation at R2 representing the dominant clone 

found at R3 (Figure 2-11D). This also revealed genetic features that could not be 

inferred from bulk sequencing alone, such as a 17p deletion affecting TP53 and TUSC5 

in the R3-associated clone and MS4A1 loss of heterozygosity in the R2-associated 

clone. The MS4A1 missense (R3-associated) and frameshift (R2-associated) mutations 

were detected in the majority of cells from each time point and thus were interpreted to 

represent early events in the foundation and development of these individual subclones. 

The vast majority of cells (> 99%) were negative for cell surface expression of CD20, 

consistent with each of these MS4A1 mutations causing loss of CD20 expression. As 

rituximab can persist for weeks following treatment288, these MS4A1 mutations likely 

provided the founder cells with a strong selective advantage, resulting in the 

independent emergence of multiple resistant subclones. 
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2.6. Discussion 

By comparing the genetic landscapes of untreated and rrDLBCL, we highlight the 

potential role of two DLBCL-associated genes, KMT2D and TP53, as contributors to 

primary treatment resistance. Mutations affecting these genes were enriched in rrDLBCL 

and were typically clonal in matched pretreatment samples (Figure 2-5). TP53 mutations 

are known to be associated with inferior patient outcomes in DLBCL261,262, shown to be 

enriched for mutations in rrDLBCL259, and can contribute to resistance against 

chemotherapeutics, which induce DNA damage289,290. For instance, mutations affecting 

Arg248, a residue critical in DNA-binding that was enriched for mutations in our rrDLBCL 

cohort, can increase expression of cytochrome P450, which promotes resistance against 

a diverse range of chemotherapeutics in vitro and leads to inferior patient outcomes291. 

Given the high prevalence of TP53 and KMT2D mutations in untreated DLBCL (20.7% 

and 36.9%, respectively), and their clonal prevalence and stability, mutations affecting 

these genes likely contribute to lymphomagenesis and primary refractory disease. 

Indeed, KMT2D mutations have been described as early drivers in DLBCL and FL292 and 

contribute to increased cell survival and proliferation293. Although loss of H3K4me3 

methylation results in transcriptional repression of numerous tumor suppressor genes, 

the contribution toward treatment resistance remains to be elucidated. KMT2D is 

commonly mutated in DLBCL overall, and these mutations may be enriched in the C3 

genetic subgroup, which is associated with inferior prognosis within GCB-DLBCL227. 

Here, KMT2D mutations were associated with inferior prognosis in our untreated cohort 

regardless of COO or IPI (Figure 2-8). Together with genetic features such as double-

hit/triple-hit, COO, and the DHITsig expression signature91, KMT2D and TP53 mutations 

may facilitate the identification of high-risk patients for alternative treatments. 

One barrier that has limited the genetic exploration of rrDLBCL is the lack of 

tissue biopsies, which are not routinely collected upon relapse. With sufficient levels of 

ctDNA, liquid biopsies have been shown to accurately reflect that mutational landscape 

of both the primary tumor and the distal sites269. Collection of posttreatment liquid 

biopsies is gaining adoption as it can noninvasively inform on treatment 

response270,272,294 and, as demonstrated herein, affords the opportunity for serial 

sampling such that clonal dynamics can be inferred within the context of treatment 

resistance. As some patients in this study exhibited rapid changes in population 
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structure (Figure 2-11), noninvasive methods will be required to allow prospective 

detection of resistance-associated mutations. 

In this study, mutations in MS4A1 recurrently exhibited clonal expansion 

following rituximab-based therapy (Figure 2-5). Single-cell analysis of a case harbouring 

two mutually exclusive MS4A1-containing subclones revealed that these mutations were 

acquired after exposure to R-CHOP and became founder events for the multiple 

subclones that occurred at both relapses (Figure 2-11). Curiously, many MS4A1 

mutations were not predicted to truncate the protein, and these missense variants did 

not directly affect the rituximab binding epitope. Prior work utilizing Sanger sequencing 

and a smaller rrDLBCL cohort also found limited evidence for MS4A1 mutations within 

the rituximab epitope295, leaving the phenomenon of reduced CD20 expression 

unexplained. We explored the influence of these mutations on anti-CD20 antibody 

interactions and found that common missense mutations attenuated mAb recognition 

(Figure 2-9B), largely as a result of reduced expression, with patient-derived cell lines 

harbouring these mutations appearing on CD20− (Figure 2-9D). Although the underlying 

mechanism of CD20 loss stemming from these transmembrane domain missense 

mutations remains unresolved, the most likely explanation is that they impair correct 

protein folding and subsequent stable expression, rather than simply destroying the 

antibody epitope(s), as five different mAbs were unable to detect expression, including 

one targeting the cytoplasmic domain in the C terminus. Given the low mutation 

frequency and low clonal prevalence of MS4A1 mutations prior to therapy, we 

hypothesize that these mutations provide limited (if any) fitness advantage until the 

tumor is exposed to anti-CD20 antibodies. Furthermore, this suggests additional 

unidentified mechanisms by which tumor cells inhibit CD20 surface expression, possibly 

through other genetic or epigenetic mechanisms. These findings reinforce the necessity 

of evaluating tissue biopsies following relapse for CD20 expression in trials including 

immunotherapy targeting this protein. These CD20− non-Hodgkin lymphoma cases are 

known to have poor outcomes with available therapies296 and thus represent a 

population in need of alternative therapies. 

In summary, we have identified six genes that are significantly enriched for 

mutations in rrDLBCL: KMT2D, TP53, CREBBP, NFKBIE, FOXO1, and MS4A1. The 

enrichment of KMT2D mutations in the rrDLBCL population and its association with 

inferior outcome suggests distinct biology or natural history of these DLBCLs, as KMT2D 
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and CREBBP mutations are among the most common genetic feature of FL. One 

explanation for our observations is that a substantial proportion of de novo DLBCLs 

result from occult transformation from FL. Further evidence supporting this possibility 

has recently been gleaned through the genetic analysis of DLBCLs with MYC and BCL2 

translocations297. In contrast to these early mutations, MS4A1 mutations are rare in 

untreated DLBCL and were generally undetectable prior to therapy. Our data indicate 

that these mutations directly contribute to rituximab resistance, resulting in rapid clonal 

selection and expansion in the presence of rituximab-containing therapy. Furthermore, 

our single-cell data highlight the significant clonal heterogeneity of rrDLBCL, and the 

contribution of MS4A1 mutations toward rapid treatment resistance. The recurrent loss 

of CD20 expression in the rrDLBCL population may have profound implications given the 

widespread use of rituximab and the ongoing targeting of CD20 with additional mAbs 

and more modern forms of immunotherapy. 
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Chapter 3.  
Recurrent copy number alterations contribute to a 
distinct genetic landscape in rrDLBCL 
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3.1. Abstract 

Patients with diffuse large B-cell lymphoma (DLBCL) are generally treated with 

immunochemotherapy (R-CHOP), but for the 30-40% of patients who relapse or who 

have treatment-refractory disease (rrDLBCL), prognosis is generally poor. While 

numerous novel therapies have been developed for rrDLBCL patients with promising 

efficacy, there remain a notable portion of patients where these treatments are 

unavailable or ineffective. To explore genetic features which contribute to rrDLBCL 

biology and identify mechanisms of treatment resistance or actionable events, we 

performed a combination of whole genome sequencing (WGS) and whole exome 

sequencing (WES) on 107 plasma (liquid) and tumour (tissue) biopsies collected 

following R-CHOP and combined this with rrDLBCL sequencing data from previous 

studies for a total of 155 cases with exome sequencing data. Following somatic variant 
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calling exome-wide, we identified four genes significantly enriched for mutations at 

relapse (KMT2D, TP53, STAT6, and MYC), and three (TMEM30A, TET2, and BCL10) 

significantly depleted for events. Based on mutational profiles, EZB was the most 

predominant subgroup in our cohort (26.3% of cases), while the majority (54.5%) of 

ABC-rrDLBCLs were unclassified via LymphGen. We further bolstered our cohort with 

low-pass WGS data from 67 rrDLBCL liquid biopsies, for a total of 222 cases with 

genome-wide copy number data. Analysis of these data identified 13 regions 

significantly enriched for CNVs in rrDLBCL, including well described lymphoma drivers 

(TP53, PTEN, STAT6, MIR17HG), as well as several novel rrDLBCL CNVs. These 

include recurrent deletions of MHC Class I regulator IRF2, RNA splicing regulator 

HNRNPD, and gains of genes involved in B-cell maturation and differentiation, including 

IKZF3 and TCF3. The reduced representation of TET2 mutations and low prevalence of 

ST2 cases could imply that such cases are also less likely to relapse on standard 

therapy. The frequent observation of deletions affecting HNRNPD points to an under-

appreciated role of RNA-binding proteins in DLBCL relapse, while deletions of IRF2 

could contribute to the propensity of rrDLBCL to evade destruction by the immune 

system. 

3.2. Introduction 

Non-Hodgkin lymphoma (NHL) is the 6th most common form of cancer in 

Canada, with an estimated 11,400 new cases diagnosed each year298. 60% of NHL 

cases classified are classified diffuse large B-cell lymphoma (DLBCL)299 which is 

characterized by its genetic, phenotypic, and clinical heterogeneity300. DLBCL can arise 

de novo or through histological transformation from other lymphoid malignancies, most 

commonly follicular lymphoma301,302. DLBCL patients are generally treated with a frontline 

immunochemotherapy (R-CHOP)256, which is effectively curative for 60-70% of 

cases102,103. For the subset of cases where frontline treatment fails (relapsed-refractory 

DLBCL, rrDLBCL), patient outcomes are generally poor, especially cases refractory to 

frontline therapy108. A plethora of salvage therapies are under investigation to improve 

rrDLBCL treatment, including numerous targeted therapies113,114,303–306, bi-specific 

antibodies307,308, and CAR-T cell therapy123,309. While many of these experimental 

therapies show promise, notably CAR-T cell therapy, patient long-term outcomes remain 

heterogeneous and unacceptably poor. To improve the outcomes of patients requiring 
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salvage therapy, the genetic features of rrDLBCL must be characterized to identify 

recurrent genetic aberrations that may lead to novel therapeutic strategies. 

A popular approach to stratifying cases in hopes of overcoming the heterogeneity 

characteristic of DLBCL is to group cases that harbour similar molecular or genetic 

features reflecting shared biology. In the cell-of-origin (COO) system, DLBCL can be 

divided into two molecular subgroups based on gene expression patterns: activated B-

cell like (ABC), characterized by constitutive NF-kB signaling, and germinal center-like 

(GCB), with ABC-DLBCL displaying inferior outcomes following R-CHOP310. Recently, 

several groups have identified genetic subgroups in DLBCL with prognostic and 

therapeutic implications227,228,248,249. In contrast, the LymphGen system assigns cases into 

six genetic subgroups based on single nucleotide variants and small insertions and 

deletions (cumulatively “simple somatic mutations”, SSMs), copy number variants 

(CNVs) and structural variants (SVs), with MCD and EZB subgroups representing a 

subset of ABC and GCB cases, respectively, with inferior outcomes249. While ~60% of 

diagnostic DLBCL tumours are assigned into a genetic subgroup via the LymphGen 

algorithm, with a high prevalence of MCD, BN2, and EZB cases, the prevalence and 

frequency of these genetic subgroups in rrDLBCL has not been established. 

Several large-scale studies have characterized the landscape of somatic 

alterations in DLBCL, mostly in the context of the COO subgroups15,226–228,236. GCB-

DLBCL is dominated by recurrent mutations perturbing epigenetic modifiers, including 

GNA13311, EZH2312, CREBBP, and EP300, as well as recurrent copy number gains of 

REL and deletions of TNFRSF14, B2M, PTEN, and FAS236. ABC-DLBCL is 

characterized by constitutively active NF-kB signaling, with characteristic hotspot 

mutations affecting the NF-kB and JAK-STAT signaling regulator MYD8820,313, CD79B232, 

CARD11, PRDM1, PIM1, and NFKBIZ15. Furthermore, ABC-DLBCLs tend to display 

recurrent amplifications of BCL2 and BCL6236. As described in the previous chapter, 

mutations affecting the lysine methyltransferase KMT2D293 and the master apoptotic 

regulator TP53 are common in both subtypes and may represent prognostic markers of 

poor prognosis in patients treated with R-CHOP227,314,315. 

As the selective pressure of treatment provides a selective pressure that benefits 

cells with natural resistance, it follows that through genomic analysis of rrDLBCL we 
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should be capable of delineating genetic events are enriched at relapse, thereby 

implicating them in treatment resistance. Mutations associated with escape from immune 

surveillance have been reported at a high frequency in rrDLBCL, including recurrent 

deletions and SSMs perturbing HLA-A, HLA-B, HLA-C, CD70, CD58, and B2M, which 

collectively contribute to loss of functional MHC class I protein252–254. A significant 

enrichment of SSMs perturbing NF-kB signaling components MYD88, PIM1, and CD79B 

as well as enrichment of mutations perturbing KMT2D and STAT6 have also been 

observed at relapse263,316,251. Furthermore, recurrent deletions of 6q22, gains of 13q21 

(MIR17HG), 2p14 (REL) and chromosome 7 have been also described, albeit anecdotal 

trends not statistically significant when compared to diagnostic DLBCL263,316. Some of 

these events have therapeutic implications for patients receiving standard of care. For 

instance, gains of BCL2 and loss of TP53 are common in rrDLBCL and are associated 

with resistance against various chemotherapeutics, including components of R-CHOP317. 

Though many of these require further exploration and may not directly lead to alternative 

therapeutics (e.g. TP53), this information can have general utility for determining the risk 

of relapse on standard therapy. In some cases, alternative therapies may be warranted. 

For example, the reliance of a tumour on BCL2 could be exploited with therapeutics that 

disrupt BCL2 activity via the BH3 domain. Our group previously compared the mutation 

frequency of 63 lymphoma-associated genes between 135 rrDLBCL cases to diagnostic 

DLBCL and found six genes significantly enriched for events at relapse, including 

MS4A1, whose mutations attenuated anti-CD20 antibody binding in vitro255. However, 

these previous studies have been generally limited by small sample sizes and a 

restricted view of genetic events, with only a handful of studies performing exome-wide 

comparisons incorporating both SSMs and copy number alterations (CNVs) and lacking 

statistical power, instead opting to compare genetic features between paired diagnostic-

relapse cases252,253. Given the genetic heterogeneity of DLBCL and the high prevalence 

of TP53 alterations at relapse, indicating genomic instability, a broad, exome-wide 

analysis of rrDLBCL including CNVs is needed to fully resolve the complex biology 

underlying treatment resistance in DLBCL, especially within the context of genetic 

subgroups. 

To explore the landscape of SSMs and CNVs in rrDLBCL, we performed a 

combination of whole exome sequencing (WES), whole genome sequencing (WGS), 

and ultra-low pass WGS (lpWGS) on tissue and liquid biopsies from 247 rrDLBCL cases. 



75 

Through an exome-wide analysis, we report five genes significantly enriched for 

mutations in rrDLBCL, and two genes (TMEM30A, TET2) significantly depleted for 

mutations at relapse. Furthermore, we observed a high burden of CNVs in rrDLBCL, with 

many recurrent events encompassing well described lymphoma drivers. 13 of these 

recurrent events were enriched for events at relapse, including several novel relapse-

specific events encompassing genes involved in RNA regulation, antigen presentation, 

and B-cell proliferation. 

3.3. Methods 

3.3.1. rrDLBCL sample collection 

Tissue or liquid biopsies were collected from 199 patients from a combination of 

three clinical trials (LY.17 [NCT02436707], Obinituzumab-GDP 

[OZM073][NCT02750670], and Epizyme [NCT01897571]) or from the routine patient 

population from Quebec (Montreal) or British Columbia, Canada (LSARP) (Supplemental 

Table S1, Appendix B). All cases were treated with R-CHOP or R-CHOP equivalent, and 

biopsies were collected following failure of R-CHOP and, in some cases, additional 

salvage therapies. For patients with a tissue biopsy available, cell-of-origin (COO) was 

assigned using the DLBCL90 Nanostring91 assay except for the Montreal cohort, which 

was assigned using the Hans algorithm83. Note that for many liquid biopsies, the COO 

was assigned at diagnosis. This study was reviewed and approved by the Research 

Ethics Boards of the University of British Columbia-BC Cancer agency and the Jewish 

General Hospital (18-030) in accordance with the Declaration of Helsinki. This cohort 

was additionally augmented with rrDLBCL samples from two previously published 

cohorts: 20 rrDLBCL samples from Schmitz et al228. and 28 rrDLBCL samples from the 

QC2 trial251. 

3.3.2. Sample processing, library preparation, and sequencing 

Formalin-fixed paraffin-embedded (FFPE) tissue samples and matched 

constitutional DNA were extracted as previously described255. DNA libraries were 

prepared using QIAseq FX DNA Library Kit (Qiagen). Blood and plasma samples from 

LY.17, OZM073, Epizyme, and Montreal cohorts were extracted as previously 

described173,255. DNA libraries from liquid biopsies were prepared using either custom in-
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house Unique Molecular Identifiers (UMIs) or using the xGen ctDNA kit (IDT 

technologies). For samples which have undergone whole exome sequencing, target 

enrichment and capture was performed using the XGen exome research panel V1 (IDT 

technologies). All sequencing was performed on an Illumina HiSeq2500 or HiSeqX using 

150bp or 125bp paired-end chemistry. Samples were sequenced to a target depth 80x 

coverage (whole genome sequencing), 150x coverage (whole exome sequencing), or 

0.1-0.3x coverage (ultra-low pass WGS, lpWGS). 

3.3.3. Read alignment and somatic variant calling 

Sequencing reads passing Illumina’s chastity filter were aligned against the 

human reference genome GRCh37 (WGS data) or GRCh38 (WES and lpWGS data) 

using bwa mem152. For exome samples prepared using UMIs, family identification and 

error correction was performed using a custom in-house pipeline as previously 

described219. For samples prepared from tissue biopsies and lpWGS data, duplicate 

reads were identified and flagged using Picard MarkDuplicates318. Quality control was 

performed using Qualimap2159, the Picard toolkit (CollectWGSMetrics and 

CollectHsMetrics), and samtools154.  

Simple somatic mutations and small insertions/deletions (SSMs) were identified 

using a consensus of four variant callers: Strelka2165, MuTect2164, SAGE, and LoFreq169 

(Figure 3-1). All callers were run in paired mode, using an unmatched normal from a 

different patient if a matched normal from the same patient was unavailable. All tools 

were run with the appropriate settings for each sequencing type, disabling depth filters 

and providing the exome capture space for samples which underwent WES. Candidate 

single nucleotide variants and small insertions and deletions (cumulatively simple 

somatic mutations, SSMs) from each tool were compared using Starfish319, and SSMs 

called by at least three tools were considered real. LoFreq does not detect indels, thus 

requiring indels to have been identified by each of Strelka2, MuTect2, and SAGE. For 

both pipelines, variants were annotated using vcf2maf 

(https://github.com/mskcc/vcf2maf), using Variant Effect Predictor276, and post-filtered to 

remove variants with a GnomAD275 population allele frequency >0.01 in any population, 

and to remove recurrent variants which were observed in >20% of unpaired samples. 

Final somatic variant calls from WGS data were converted to hg38 genomic coordinates 

https://github.com/mskcc/vcf2maf
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using Crossmap278 (Supplemental Table S2, Appendix B). Visualizations and quality 

control of final SSM calls were generated using the R packages maftools320 and ggplot2. 

 

 
Figure 3-1. Cohorts and analysis workflows used for the rrDLBCL CNV cohort, 

SNV cohort, and merged cohorts 

3.3.4. Copy number calling 

Copy number variants (CNVs) were identified using three approaches. For 

lpWGS samples, CNVs were identified using ichorCNA182 and HMMCopy’s readCounter  

using 500kb bins and a custom panel of normals generated from 69 samples with no 

detectable ctDNA. All CNV profiles were manually inspected and ichorCNA was re-run 

with fixed purity/ploidy priors for samples where the default ichorCNA solution was 

deemed inaccurate. For paired WES samples, CNVs were identified using Sequenza179, 

pre-filtering bins to remove candidate SNP positions not observed in GnomAD275. For 

paired WGS samples, CNVs were identified using Battenberg184, and CNVs were 

covered to hg38 coordinates using liftover (https://genome.ucsc.edu/cgi-bin/hgLiftOver) 

(Supplemental Table S3, Appendix B). Regions recurrent perturbed were identified using 

GISTIC2321, and were manually inspected using Integrative Genome Viewer322 to filter 

peaks stemming from systematic mapping artifacts, and merge adjacent peaks 

(Supplemental Table S4, Appendix B). The genetic subgroup of each sample was 
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predicted via the LymphGen algorithm249, using a custom python script 

(https://github.com/ckrushton/LGenIC) to format CNV, SSMs, and SV calls (where 

available) to generate the prerequisite input files. Visualizations were generated using 

the R packages GenVisR323, GenomeTornadoPlot324, and ggplot2. 

3.3.5. Diagnostic cohort 

Aligned reads, copy number calls, and associated metadata were downloaded 

from Schmitz et al228 and grouped with a previously published WGS cohort by our 

group15. SSMs were identified using the pipeline listed above, using the same 

unmatched normal from the rrDLBCL cohort for the Schmitz cohort (as no normal was 

available for any Schmitz cases). CNVs from the WGS data were identified using 

Battenberg184. Given the difficulty in calling CNVs from unmatched sequencing data 

which has undergone hybridization capture, we elected to use the array-based CNV 

calls provided by Schmitz et al. We further subset the Schmitz cases to 1) remove 20 

rrDLBCL samples treated with Ibrutinib, 2) select for samples with both SSM and CNV 

data, and 3) Balance the proportion of ABC, GCB, and unclassified cases from our 

combined diagnostic cohort with the proportion observed in rrDLBCL (final n=467). 

Survival analysis was performed R package Survminer (Version 0.4.9, R version 4.1.3), 

excluding any cases with incomplete information for any of the variables considered. 

3.3.6. Mutation frequency comparison 

To compare the frequency of SSMs between the diagnostic and relapse cohort, 

we combined the SSM calls between our diagnostic and relapsed cohort and identified 

58 genes with evidence of positive selection via OncoDriveFML325 (Q<0.01) 

(Supplemental Table S5, Appendix B). We supplemented this with three additional 

genes, FOXO1, MS4A1, and MYC, each having previously been observed enriched for 

mutations in rrDLBCL or identified in preliminary analyses. The frequency of mutations in 

these genes was compared between diagnostic and rrDLBCL cohorts using a Fisher’s 

exact test and Benjamini/Hochberg false discovery correction, with Q<0.1 classified as 

significantly differentially mutated (Supplemental Table S6, Appendix B). We excluded 

genes observed exclusively mutated in one cohort but not the other as these were 

observed to represent recurrent germline events upon manual inspection. To compare 
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CNVs prevalence between the two cohorts, we first normalized all CNV profiles to a 

diploid state, and the copy number state at the center of each GISTIC peak was 

assigned for each sample using a custom python script. The prevalence of gains (CN 

state > 2) and deletions (CN state <2) was then compared for each amplification and 

deletion peak respectively using a fisher’s exact test and Benjamini/Hochberg false 

discovery correction in a custom R script, classifying events with Q<0.1 as significantly 

enriched/depleted for gains/amplifications. 

3.3.7. Mutual exclusivity analysis and clustering 

All rrDLBCL samples with CNV information (n=222) were annotated with the copy 

number state of each recurrently gained/deleted region identified by GISTIC analysis of 

these data321 following ploidy normalization using a custom python script. The co-

occurrence/mutual exclusivity of each recurrent CNV was assigned using maftools 

somaticInteractions320. For clustering, the copy number status of CNVs was converted 

into a binary matrix, and two sets of GISTIC peaks (gains of 1q21.3/1q25.2 and 

deletions of 6q23.3/6q16.3) were merged into a single “meta-peak” due to their close 

genomic proximity and high concordance of events, with events affecting either sub-

peak resulting in the meta-peak being assigned “perturbed”. Clustering was performed 

using the R package NMF (Version 0.2.4, R version 4.1.3), obtaining four clusters using 

after 1000 iterations using the “Brunet” algorithm326. 

3.4. Results 

3.4.1. The exome-wide mutation landscape of rrDLBCL 

To explore the landscape of SSMs in our rrDLBCL cohort, we performed a 

combination of WES and WGS on 155 rrDLBCL samples and identified coding somatic 

variants exome-wide. Overall, the landscape of somatic mutations in rrDLBCL exome-

wide is broadly similar to diagnostic DLBCL (Figure 3-2A), with a high burden of 

mutations perturbing KMT2D (mutated in 41% of rrDLBCL cases), TP53 (32%), 

CREBBP (25%), MYD88 (19%), and PIM1 (15%). Many of these mutation patterns are 

associated with one of the two COO groups, Specifically, mutations in MYD88 and 

CD79B significantly enriched in ABC-rrDLBCL and mutations perturbing SOCS1, 

CREBBP, and EZH2 significantly more abundant in GCB-rrDLBCL (Figure 3-3). 
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Figure 3-2. Landscape of simple somatic mutations in rrDLBCL, exome-wide, and 

events significantly differentially perturbed in rrDLBCL. (A). Mutation 
heatmap displaying the top 40 recurrently mutated genes in rrDLBCL 
exome-wide, across all 155 rrDLBCL samples with exome data (x-axis). 
Box colours correspond to the mutation type(s) observed in that sample. 
Additional covariate tracks are also provided. (B). Distribution of genetic 
subgroups in the rrDLBCL cohort compared to the diagnostic cohort, 
broken down by molecular subgroups. (C) Forest plot (left) and bar plot 
(right) summarizing the odds ratio and mutation frequency, respectively, 
of genes significantly (padj < 0.1) enriched or depleted for mutations in 
rrDLBCL (red) compared to diagnostic DLBCL (blue). 
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Figure 3-3. The mutational landscape of rrDLBCL, broken down by molecular 

subgroups. The mutation frequency and prevalence of ABC-rrDLBCL(A), 
and GCB-rrDLBCL (C), along with a forest plot (B) showing the overall 
frequency of mutations between the two genetic subgroups. 

We next sought to explore the distribution of genetic subgroups within our 

rrDLBCL cohort using the LymphGen classifier (Figure 3-2B). EZB was the most 

prevalent genetic subgroup in our cohort (30.3% of cases and 55.4% of GCB-

rrDLBCLs), and the prevalence of EZB cases was significantly higher (padj = 0.00163) in 

our rrDLBCL cohort compared to diagnostic DLBCL (n=467). This enrichment likely 

reflects the presence of rrDLBCL cases transformed from follicular lymphoma. In 

contrast, BN2 cases were significantly under-represented among rrDLBCL, (padj = 

0.00472), consistent with the superior prognosis of BN2 cases treated with R-CHOP249. 

Curiously, despite the poor prognosis of MCD cases following R-CHOP, we did not 

observe an enrichment of MCD rrDLBCL cases in our cohort, with the majority (53.8%) 

of ABC-rrDLBCLs genetically unclassified via LymphGen. 

3.4.2. Mutations with prognostic potential in rrDLBCL 

We next focused on identifying the individual genes enriched or depleted for 

mutations in rrDLBCL as they might represent candidate biomarkers of poor or good 

treatment outcomes, respectively. We assembled a candidate gene list comprised of 

recurrently mutated genes that displayed mutation patterns consistent with positive 

selection (Supplemental Table S5, Appendix B) and genes previously associated with 

rrDLBCL. The prevalence of mutations in these genes were compared to a 

representative diagnostic cohort comprised of previously published exome and genome 

cases. Seven genes were significantly differentially mutated between diagnostic DLBCL 

and rrDLBCL with 5 having more mutations in the latter (Figure 3-2C). Of the genes 
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enriched for mutations in rrDLBCL, four (TP53, KMT2D, CREBBP, STAT6) were 

previously described in studies from our lab and elsewhere255,316. Three of these genes 

remain significantly enriched in rrDLBCL when a GCB-specific comparison was 

performed (CREBBP, STAT6 and TP53) (Figure 3-4). In contrast, no genes found to be 

enriched for mutations among ABC rrDLBCLs. Mutations in MYC, though enriched in 

rrDLBCL, are almost exclusively missense mutations and most overlap AID recognition 

motifs (18/32, 56%, Supplemental Table S2, Appendix B). 

Only two genes were significantly depleted for mutations in rrDLBCLs, namely 

TET2 and TMEM30A. Mutations in either of these were exceptionally rare in rrDLBCL 

(1.3% and 2.0% of cases, respectively). While mutations in MS4A1 showed evidence of 

positive selection in rrDLBCL (Supplemental Table S5, Appendix B), this comparison did 

not show them to be significantly enriched in rrDLBCL. This can be attributed, in part, to 

the low prevalence of MS4A1 mutations in both cohorts (mutated in 4.5% rrDLBCL and 

0% of diagnostic DLBCL), which may limit our statistical power to detect a difference. 

 
Figure 3-4. Significantly differentially mutated genes between diagnostic DLBCL 

(blue bars) and rrDLBCL (red bars) within the GCB molecular 
subgroup. The left panel shows a forest plot with the odds ratio of each 
significant gene, as determined using a Fisher’s exact test. The right 
panel is a bar plot showing the proportion of each cohort harbouring a 
mutation in the respective gene. 

3.4.3. Recurrent CNVs inform on the biology of rrDLBCL 

Given the low number of genes we found differentially mutated in rrDLBCL, we 

next sought to explore the landscape of recurrent copy number events to determine the 
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interplay between CNV and SSM in rrDLBCL biology. We augmented our cases having 

exome or WGS data with lpWGS from additional samples, yielding a total of 222 

rrDLBCLs with CNV calls. Overall, rrDLBCL tumours are burdened by high levels of 

CNVs (Figure 3-5), with a high frequency of arm-level or whole-chromosome gains 

involving chromosome 7 (47.7% of cases), gains of 18q23 (encompassing BCL2, 

44.1%), as well as deletions of 6q16.3 (43.2%) and 6q23.3 (TNFAIP3, 45.0%), and 

17p13.1 (37.4%). We observed recurrent events perturbing well-described lymphoma 

drivers, including gains of REL (2p16.1), BCL6, (3q29), MIR17HG (13q31.3) and BCL2 

(18q22.1), and deletions of CDKN2A/CDKN2B (9p21.3), PTEN (10q23.31), RB1 

(13q14.2), and B2M (15q15.1). 
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Figure 3-5. The landscape of copy number variants across rrDLBCL. The proportion 

of samples harbouring a copy number gain (red) or deletion (blue) at each 
genomic locus are indicated in the copy number frequency plot, with 
significantly recurrently perturbed regions as identified by GISTIC 
labelled. Recurrent CNVs which have not previously been described in 
DLBCL are labelled, with tornado plots representing the suspected target 
and copy number segments overlapping that region. 

Among the recurrent CNVs we identified several novel events within our cohort 

that have not previously been described in DLBCL (Figure 3-5). We observed recurrent 

deletions of 1q43 and 4q13.3 centered on the RNA splicing regulators HNRNPU and 

HNRNPD, respectively, with the deletion of 1q43 observed almost exclusively in ABC 

cases (Figure 3-6). The deletion of 4q34.3, centered on the MHC Class I regulator IRF2, 

is another prevalent event that has not been described. Deletions of 18q22.3, while rare 

in rrDLBCL, have been previously reported in pancreatic cancer, in a study that 

nominated CYB5A327 as the target of this event. In that study, loss of this locus resulted 

in decreased autophagy in malignant cells. In our cohort, this event was almost 
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exclusively observed in GCB-rrDLBCL cases (Figure 3-6). Two newly identified regions 

subject to recurrent gains in rrDLBCL were 17q21.1 and 19p13.3, with the gain of 

17q21.1 commonly perturbed in GCB-rrDLBCL cases and encompassing the B-cell 

maturation regulator IKZF3/Aiolos. 19p13.3 includes the B-cell differentiation regulator 

TCF3 and copy number gains involving this locus were significantly more prevalent in 

ABC-rrDLBCL cases. 

 
Figure 3-6. Landscape of copy number variants across rrDLBCL, subset to ABC 

(top) and GCB (bottom) cases. The proportion of cases harbouring copy 
number gains (red) or deletions (blue) are indicated at each genomic 
locus 

3.4.4. Recurrent CNV drivers and novel events are enriched in 
rrDLBCL 

As rrDLBCL cases harbour a high burden and repertoire of copy number events, 

we next sought to compare the frequency of these recurrent events to our diagnostic 

cohorts. Of the 29 regions recurrently perturbed in rrDLBCL, 13 were found to be 

significantly enriched at relapse, with one event (gains of 5p13.33) significantly depleted 

(Figure 3-7). This includes four of the novel recurrent events in rrDLBCL 
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(4q13.3/HNRNPD deletions, 4q34.3/IRF2 deletions, 17q21.1/IKZF3 gains, and 

19p13.3/TCF3 gains), with 19p13.3 gains displaying the most significant enrichment. 

Gains of 19p13.3 and 17q21.1 were also enriched in a subtype-specific comparison of 

ABC cases (Figure 3-8). Gains involving the STAT6 locus (12q13.3) were enriched at 

relapse, consistent with the enrichment of SSMs. Of the remaining loci, PTEN and TP53 

are both deleted at a high frequency in rrDLBCL, and gains of MIR17HG and BCL2 are 

associated with increased NF-kB signaling and cell survival. Deletions of TP53 (17p13), 

while prevalent in both ABC and GCB-rrDLBCL, are notable enriched in GCB cases 

(Figure 3-8). We further attempted to compare the prevalence of SSMs and CNVs using 

rrDLBCL cases with SSM and CNV information (n=131). While 10 genes were 

significantly differentially perturbed, representing a combination of differentially perturbed 

genes in the SSM and CNV only comparison, all events failed FDR correction (Q>0.1).  

Given the high frequency and enrichment of recurrent CNVs in rrDLBCL, we next 

sought to establish patterns and identify groups of CNVs which might indicate shared 

biological modules. After comparing all recurrent CNVs across our rrDLBCL cohort 

(Figure 3-9), gains of 18q22.1/BCL2 and deletions of 18q22.3/CYB5A were significantly 

mutually exclusive, consistent with the ABC/GCB pattern observed for these events. 

Deletions of 17p13.2/TP53 significantly co-occurred with deletions of well-established 

tumour suppressors 1p36.32/TNFAIP3, 10q23.31/PTEN, and 15q15.1/B2M, as well as 

several novel rrDLBCL events (deletions of 4q13.3, 4q34.3, and gains of 17q21.1), 

suggesting that loss of TP53 enable a cellular phenotype which enable the acquisition of 

these events. Gains of 3q29/BCL6 also significantly co-occurred with gains of 

13q31.3/MIR17HG and 18q22.1/BCL2. Finally, gains of the 7q22.1 locus, overlapping 

CDK6 and CDK14, also co-occurred with gains of the 12q13.3 locus which, in addition to 

STAT6, overlaps the cell cycle regulators CDK2 and CDK4, suggesting a subset of 

cases with significantly enhanced cell-cycle progression. 
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Figure 3-7. Significantly differentially perturbed events between diagnostic and 

rrDLBCL. (A) Landscape of copy number variants between rrDLBCL 
(top) and diagnostic DLBCL (bottom), with GISTIC peaks and significantly 
differentially perturbed GISTIC peaks indicated by the green and yellow 
bubbles, respectively. (B) Forest plot and bar plot summarizing recurrent 
CNVs which are significantly (padj < 0.1) differentially perturbed between 
diagnostic (blue) and rrDLBCL (red) and their associated frequency in 
each cohort 
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Figure 3-8. Comparison of copy number events between diagnostic DLBCL (B, D) 

and rrDLBCL (A,C), specifically within the ABC (A,B) and GCB (C,D) 
molecular subgroups. The frequency of copy number gains (red) and 
deletions (blue) at each locus are indicated genome-wide. Forest plots 
and copy number frequency bar plot for each significantly differentially 
mutated region within ABC (E) and GCB (F) specific comparisons. 
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Figure 3-9. Patterns of recurrent CNVs across rrDLBCL samples. (A) Somatic 

Interactions plot showing recurrent CNVs which co-occur (green) or are 
mutually exclusive (brown) across rrDLBCL samples. Significant 
interactions are also shown (. and *). (B) NMF clustering results of 
recurrent CNVs across rrDLBCL samples. Each cluster is represented by 
a unique colour, and the proportion of events represented by samples in 
each cluster is reflected in the stacked bar chart on the leftmost side. 
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3.5. Discussion 

Despite numerous candidate salvage therapies available for rrDLBCL, patient 

outcomes generally remain poor, stemming from the genetic and molecular 

heterogeneity of DLBCL and rrDLBCL. Through an exome-wide examination of SSMs 

and CNVs in rrDLBCL, we uncovered a high burden of CNVs and recurrent, enriched 

events perturbing well described lymphoma drivers. These enriched events include 

several novel events encompassing genes involved in antigen presentation (IRF2), B-

cell proliferation and growth (IKZF3, TCF3), and RNA splicing (HNRNPU, HNRNPD). 

Initially, we explored the landscape of SSMs exome-wide in our 155 rrDLBCL 

cases with WES or WGS data. Many genes recurrently mutated at high prevalence 

(KMT2D, TP53, CREBBP, and MYD88), and those enriched for events at relapse 

(KMT2D, TP53, CREBBP, STAT6) have been associated with rrDLBCL by our group 

and others251,253,255,263. We observed two genes, TMEM30A and TET2, significantly 

depleted for mutations at relapse. Homozygous loss of function of TMEM30A have been 

described in DLBCL and are associated with improved prognosis following R-CHOP due 

to elevated macrophage infiltration328, consistent with the depletion of mutations 

observed in rrDLBCL. TET2 is a hydroxymethyltransferase which initiates demethylation 

of 5’ methylcytosine, a common mark of epigenetic silencing, via conversion to 

5’hydroxymethylcytosine, leading to transcriptional activation of the target genes. Loss of 

TET2 has been shown to impair B-Cells from existing the germinal center, thus inhibiting 

plasma cell differentiation, and is an early driver in lymphomagenesis329–332. Curiously, 

not only were SSMs perturbing TET2 significantly depleted in rrDLBCL, but the TET2 

locus (4q24) appeared to be retained (copy-neutral) despite the high prevalence of 

deletions at adjacent loci 4q13.3(HNRNPD) and 4q34.3(IRF2). Many genes perturbed by 

TET2 loss of function are also perturbed by disruption of CREBBP induced H3K27 

acetylation329, which is enriched for mutations in rrDLBCL. In conjunction with the high 

frequency of loss-of-function mutations in KMT2D, this suggests that epigenetic 

dysregulation may contribute significantly to the overall biology of rrDLBCL. As DNA 

methyltransferase inhibitors which promote hypomethylation are currently being 

evaluation for rrDLBCL333, functional TET2 may reduce the effectiveness of this 

therapeutic approach. 
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In contrast to the limited number of genes differentially mutated by SSMs in 

rrDLBCL, the copy number landscape of rrDLBCL was distinct, with an overall higher 

burden of CNVs and numerous recurrent events, many of which were enriched upon 

relapse. This included the 12q13.3 locus, overlapping STAT6, consistent with the 

enrichment of SSMs observed in rrDLBCL. The minimal common region also 

encompasses the B-cell maturation transcription factor IKZF4 and the cell cycle 

regulators CDK2 and CDK4, which are responsible for G1-S transition334. Gains of the 

7q22.1 locus are also enriched in rrDLBCL and encompass the cell cycle regulators 

CDK6 and CDK14, with this recurrent gain significantly co-occurring with gains of 

12q13.3. In conjunction with recurrent deletions of 9p21.3/CDKN2A and 13q14.2/RB1 

further suggests that constitutive proliferation contributes to rrDLBCL biology, with a high 

frequency of 18q22.1/BCL2 gains in ABC-rrDLBCL and deletions of 17p13.2/TP53 

reducing apoptosis. 

Within our rrDLBCL cohort, we identified several recurrent CNVs not previously 

described in lymphomas.  Recurrent deletions of 4q34.3/IRF2 were observed at high 

prevalence in rrDLBCL, and loss of IRF2 has been shown to impair MHC-Class I antigen 

presentation and upregulate expression of PD-L1, contributing to immune evasion335. 

Previous rrDLBCL studies have observed recurrent deletions of HLA-A and B2M, which 

have been associated with immune evasion252,253. Given the sequence similarities 

between HLA-A, HLA-B, and HLA-C and the difficulty in mapping reads to a single HLA 

sequence using Illumina sequencing, we were unable to evaluate the copy number state 

of HLA-A in our study; however, B2M was recurrently deleted in our rrDLBCL cohort.  

We additionally identified two novel recurrent amplification peaks in rrDLBCL, 

centered on 17q21.1/IKZF3 and 19p13.3/TCF3, which were observed and enriched in 

both ABC and GCB-rrDLBCL. IKZF3 encodes the lymphoid-specific transcription factor 

Aiolos and is crucial for B-cell development, with inhibition of Aiolos in DLBCL cell lines 

leading to reduced proliferative signaling and promotion of T-cell activation336. As 25% of 

rrDLBCLs harbour an amplification of IKZF3, this represents a candidate therapeutic 

target, with two existing small molecule inhibitors, avadomide and lenalidomide, leading 

to Aiolos degradation336,337 and promising efficacy for a subset of rrDLBCL cases303,338–

340. We also did not observe any cases harbouring IKZF3-G152A mutations, conveying 

avadomide resistance in our rrDLBCL cohort. The transcription factor TCF3 is also 

essential for B-cell development and lineage commitment341. Fusions involving TCF3 
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have been observed in pediatric lymphomas342,343, and recurrent mutations previously 

have been described in Burkitt lymphoma344–346. Notably, upregulation of TCF3 has been 

observed in prostate cancer and decrease sensitivity to doxorubicin, and could 

contribute to resistance against R-CHOP 347.   

One of the most notable observations in our rrDLBCL cohort were novel 

deletions of the RNA splicing regulators 1q43/HNRNPU and 4q13.3/HNRNPD. HNRNPD 

and HNRNPU recognize and bind AU-rich elements of mRNA, thus regulating 

expression of target genes. Curiously HNRNPU and HNRNPD both target and stabilize 

MYC348–350, and decreased expression of these genes are associated with decreased 

MYC protein abundance349. HNRNPU expression in bladder cancer has been associated 

with resistance against platinum based chemotherapies, with knockdowns of HNRNPU 

increasing cisplatin sensitivity351. While rare, these recurrent deletions of 1q43 may 

identify a subset of cases with promising outcomes following platinum-based 

chemotherapy. Given the high recurrence of CNVs and SSMs perturbing epigenetic 

(KMT2D, CREBBP, TET2) and transcriptomic regulators (HNRPD, HNRNPU), further 

studies exploring the transcriptomic and epigenetic landscape of rrDLBCL are needed to 

fully understand the biology of rrDLBCL and identify additional mechanisms of treatment 

resistance. 



93 

Chapter 4. General Discussion 

4.1. Summary of research findings 

Despite the utility of R-CHOP as a standard frontline therapy for DLBCL, 

outcomes for rrDLBCL patients remain generally poor. While several promising salvage 

therapies for rrDLBCL have recently been explored (notably CAR-T cell therapy and bi-

specific antibodies), along with numerous molecularly targeted agents and inhibitors, 

outcomes for rrDLBCL are heterogeneous, and a notable proportion of cases will fail to 

respond to salvage therrapies. As genetic events which contribute to therapeutic 

resistance will undergo positive selection in the context of therapy, these events are 

expected to be enriched in relapsed tumours. Thus, we collected and sequenced liquid 

and tissue biopsies from rrDLBCL cases to identify such genetic events and discovered 

novel relapse-specific mutations, candidate biomarkers of R-CHOP failure, and 

mutations directly implicated in R-CHOP resistance. 

4.1.1. Mutations in KMT2D and TP53 dominate the landscape of 
rrDLBCL 

At the start of this project, tissue biopsies were generally not collected from 

DLBCL patients upon relapse, and thus genetic characterization of rrDLBCL tended to 

be limited to small-scale studies where such tissue biopsies were available. To avoid 

these limitations, we collected liquid biopsies from rrDLBCL patients enrolled in three 

clinical trials: LY17, a multi-arm clinical trial testing several salvage therapies for 

rrDLBCL, OZM073, examining obinutuzumab-GDP as a salvage therapy in place of the 

standard R-GDP, and Epizyme, exploring the EZH2 inhibitor tazemetostat. Additional 

liquid biopsies were collected from the routine patient population in Montreal, Quebec. 

As liquid biopsies generally harbour low levels of ctDNA, we performed CAPP-Seq of 63 

genes both recurrently mutated in lymphomas as well as candidate drivers of treatment 

resistance. 

Through this comparatively large (135 cases) rrDLBCL study, we observed a 

high prevalence of mutations perturbing the master tumour suppressor gene TP53 and 

the lysine methyltransferase KMT2D, which were mutated in 50% of rrDLBCL cases 

(Figure 2-2) and enriched at relapse. The high prevalence of TP53 mutations 
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corresponds with the poor prognostic potential of such mutations both in DLBCL and 

other cancers 57,262,281. KMT2D mutations were also extremely prevalent in rrDLBCL, and 

although mutations in KMT2D alone had not been implicated as a prognostic marker for 

DLBCL, KMT2D mutations have been associated with genetic subgroups which display 

inferior outcomes following R-CHOP227. KMT2D has been described as a 

haploinsufficient tumour suppressor gene, with loss of KMT2D enhancing B-cell 

proliferation and dysregulating pathways involved in cell cycle regulation and 

apoptosis292. The high prevalence of KMT2D mutations in this initial rrDLBCL cohort may 

also reflect the inclusion of cases transformed from other lymphoid malignancies, as 

KMT2D mutations are common in FL292. In our diagnostic cohort, mutations in KMT2D 

and TP53 were associated with inferior PFS and OS in the context of R-CHOP, further 

supporting the enrichment of these mutations at relapse. As mutations perturbing these 

genes tend to be clonal (Figure 2-5) and persist following salvage therapies, they 

represent candidate predictive biomarkers of both R-CHOP failure and failure of salvage 

therapies. Unfortunately, as we lacked the clinical outcomes of patients enrolled on 

these trials at the time of this study, the prognostic potential of these mutations in the 

context of these salvage therapies could not be evaluated. 

4.1.2. Mutations in MS4A1 directly contribute to treatment resistance 

In this initial rrDLBCL cohort, we also observed an enrichment of mutations 

perturbing MS4A1, which encodes the B-cell surface marker CD20 and the target of both 

rituximab and other anti-CD20 monoclonal antibodies. While frameshift mutations were 

observed in MS4A1 (localized to the large loop [Figure 2-9]), we primarily observed 

missense mutations affecting the small loop of CD20 and neighbouring transmembrane 

domains, generating hydrophilic residues in these domains. These mutations prevented 

affected cells from being recognized and bound by all anti-CD20 mAbs tested, and thus 

represent a direct, acquired mechanism of treatment resistance. This is clinically 

relevant both in the frontline setting and at relapse, where an initially CD20+ tumour can 

lose CD20. As CD20 status is not routinely re-evaluated during salvage therapies, these 

mutations could indicate that “CD20+” tumours may indeed be intrinsically resistant to 

many salvage therapy regimens. 
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4.1.3. Recurrent copy number alterations contribute to a unique 
landscape in rrDLBCL tumours 

While mutations in MS4A1 represent a novel, acquired, and clinically relevant 

mechanism of resistance against anti-CD20 mAbs, MS4A1 mutations are generally rare 

in rrDLBCL (7% of cases), and other genomic features which convey resistance remain 

undiscovered. Our initial study harboured two major limitations: First, we were restricted 

to a small subset of genes which had largely been implicated in DLBCL previously and 

thus our ability to discover novel mechanisms of resistance was limited. Second, 

although large scale copy-number alterations contribute significantly to the genomic 

landscape of DLBCL, we were unable to evaluate their contribution to relapse biology 

given the limitations of CAPP-Seq. To address these limitations, we performed a follow-

up study (Chapter 3) exploring the landscape of SSMs and CNVs in rrDLBCL exome-

wide using a combination of WES and WGS data from both tissue and liquid biopsies 

(n=155). 

The landscape of SSMs in rrDLBCL found in our exome cohort (Figure 3-3) was 

comparable to that found using out CAPP-Seq cohort (Figure 2-2). However, the 

prevalence of mutations perturbing KMT2D (41% vs 51%) and TP53 (32% vs 50%) 

varied substantially between the two cohorts. As the CAPP-Seq cohort was primarily 

comprised of clinical trial samples, which tended to represent more advanced cases 

(failed frontline and multiple salvage therapies), these samples may have represented 

more aggressive, advanced, and resistant cases than the exome cohort, which was 

primarily comprised of samples collected from routine patient care following R-CHOP 

only. These clinical trials may have also excluded cases with extremely poor prognosis 

given their enrollment criteria. 

After selecting for genes which showed evidence of positive selection across 

both DLBCL and rrDLBCL and comparing mutation frequency across these genes, we 

discovered five genes significantly enriched for mutations in rrDLBCL, four of which 

(KMT2D, TP53, CREBBP, STAT6) were found in our previous analysis. We also 

observed an enrichment of mutations perturbing MYC, which are indicative of MYC 

translocations. Mutations in TMEM30A were exceedingly rare and significantly depleted 

in rrDLBCL (mutated in 1.9% of cases), which is supported by its status as a good 

prognostic marker following R-CHOP therapy328. Mutations in the DNA demethylation 
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initiator TET2 (1.3% of cases) were equally rare, suggesting broad methylome changes 

in rrDLBCL. 

While only a handful of genes were differentially perturbed between diagnostic 

and rrDLBCL, we observed a plethora of recurrent CNVs in rrDLBCL enriched at relapse 

(Figure 3-7). Many of these enriched events perturbed genes involved in B-cell 

proliferation (MIR17HG), cell cycle regulation (PTEN, CDK11B), apoptosis (BCL2, TP53) 

and JAK/STAT signaling (STAT6). The enrichment of gains involving the STAT6 locus 

and deletions of TP53 support the enrichment of SSMs observed perturbing these 

genes. Through this analysis, we also discovered novel events which have not 

previously been associated DLBCL. The novel deletions of the RNA regulators HNRNPD 

and HNRNPU, in conjunction with the depletion of TET2 mutations and enrichment of 

KMT2D and CREBBP mutations at relapse, further suggests that epigenetic 

dysregulation notably contribute to relapse biology. Recurrent deletions of IRF2 have 

been shown to downregulate MHC Class I-mediated antigen presentation, thus 

contributing towards immune evasion335. IKZF3 and TCF3 have been shown to promote 

B-cell proliferation344,352,353, and thus gains on these genes may enhance their oncogenic 

potential. Knockdowns of IKZF3 and TCF3 or downstream components have been 

associated with increased apoptosis in Burkitt Lymphoma (BL)352 and DLBCL337,  and 

thus represent candidate therapeutic targets. However, these genes are only gained in 

~20% of rrDLBCL tumours, and thus cases harbouring such events would need to be 

identified prior to therapy. 

4.2. Implications of research 

4.2.1. The genetics of rrDLBCL are generally similar to diagnostic 
DLBCL 

Through an exome-wide analysis of 155 rrDLBCL cases, we have cataloged the 

repertoire of SSMs and CNVs in rrDLBCL and discovered that the landscape of events 

in rrDLBCL is generally comparable to that of diagnostic DLBCL with mutations 

perturbing common DLBCL drivers retained and persisting following treatment. While we 

uncovered several novel rrDLBCL specific events (namely mutations in MS4A1, 

deletions of HNRNPD, HNRNPU, IRF2, and gains involving IKZF3 and TCF3), these 

events tended to occur intermittently across our rrDLBCL cohort. Thus, a relapsed 
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DLBCL tumour is not genetically distinct from its pre-treatment treatment tumour, but 

instead reflects and extends the original tumours genetics and biology. This is 

specifically relevant in the context of genetic DLBCL subgroups, which may selectively 

constrain the repertoire of mutations a tumour could acquire. 

4.2.2. rrDLBCL is genetically heterogeneous, and there is no single 
mechanism of R-CHOP resistance 

DLBCL tumours are characterized by their genetic heterogeneity226, and rrDLBCL 

tumours reflect and share this heterogeneity. Through an exome-wide analysis of 

rrDLBCL tissue and liquid biopsies, we did not observe novel, prevalent SSMs exclusive 

to rrDLBCL. If a single set of genes or pathway were responsible for R-CHOP 

resistance, one would expect mutations or events within this pathway to be highly 

prevalent in relapse tumours. Given the heterogeneity of rrDLBCL, and the differing 

mutational constraints and repertoires of different molecular and genetic subgroups, the 

spectrum of mutations a given tumour can acquire is exceptionally diverse. Further 

mutational processes, such as aSHM354, can generate passenger mutations which are 

initially rare but convey a selective advantage following therapy. Indeed, mutations in 

MS4A1 (although not associated with aSHM) appeared to act as passenger mutations 

prior to therapy, given the low prevalence of such events. Mutations perturbing MS4A1 

were also more frequently observed in samples collected following multiple types of 

salvage therapy. Given the genetic constraints of each molecular and genetic subgroup 

in DLBCL, and the wide repertoire of possible mutations, it is possible that resistance-

associated mutations will be unique for different subgroups. It is also likely that the 

dysregulation of epigenetic (KMT2D, CREBBP, TET2), and transcriptomic (HNRNPD 

and HNRNPU) factors contribute to treatment resistance through epigenetic and/or 

transcriptomic disregulation, and thus further research exploring these avenues is 

needed. 

4.2.3. Candidate therapeutic targets 

While the genetic landscape of rrDLBCL is generally similar to that of diagnostic 

DLBCL, we did observe several events enriched at relapse which are possible 

therapeutic targets. For instance, we observed a high prevalence and enrichment of 

gains perturbing BCL2 (42% of rrDLBCL), especially in ABC-rrDLBCL. While BCL2 
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inhibitors such as venetoclax have shown promising efficacy in relapsed-refractory 

chronic lymphocytic leukemia355 and MCL356, venetoclax has generally performed poorly 

in patients with FL or DLBCL356 (with a ORR of 18% in rrDLBCL), despite high BCL2 

expression in these malignancies. We also observed novel recurrent gains perturbing 

IKZF3 and TCF3 in rrDLBCL. IKZF3, encoding Aiolos, is a key lymphoid maturation 

factor353 which transcriptionally represses interferon-stimulated genes (ISGs)336 which 

normally induce apoptosis upon interferon stimulation. Lenalidomide and avadomide 

promote degradation of Aiolos, and have been shown to induce apoptosis in DLBCL cell 

lines357. Aiolos has also been shown to interact with histone deacetylases and 

transcriptionally repress target genes357, compounding the loss-of-function mutations 

observed in CREBBP and enriched in rrDLBCL. While histone deacetylase inhibitors 

(HDACIs) alone have shown poor efficacy in treating rrDLBCL, with an ORR of 

10%358,359, combinatorial therapies combining lenalidomide and HDACIs have shown 

improved responses in cell lines resistant to lenalidomide monotherapy357. Furthermore, 

TCF3, encoding the transcription factor E2A, and the JAK/STAT signaling regulator 

STAT6 also represent candidate targets of therapeutic potential.  

4.2.4. Mechanisms of treatment resistance 

Although mutated in a minority of rrDLBCL cases, we discovered that mutations 

perturbing MS4A1 were enriched at relapse, and these mutations impaired CD20 from 

being presented on the surface of lymphoma cells (Figure 2-9B). Thus, these mutations, 

both truncating and missense (Figure 2-9A) act as a direct mechanism of resistance 

against rituximab and other anti-CD20 mAbs. Given that many rrDLBCL salvage 

therapies include anti-CD20 monoclonal antibodies, cases harbouring MS4A1 mutations 

should have CD20 expression re-evaluated prior to salvage therapy, although treatment 

options for CD20- DLBCL cases are generally limited. We would also expect MS4A1 

mutations to act as a predictive biomarker in the context of therapy; however, due to the 

limited number of cases with MS4A1 mutations, this could not be robustly evaluated. 
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4.3. Ongoing work and future directions 

4.3.1. Serial sampling of rrDLBCL cases 

In Chapter 2 and Chapter 3, we sequenced liquid biopsies collected from the 

routine patient population in Montreal, Quebec. While preliminary CAPP-Seq data was 

incorporated in Chapter 2, and a sizable number of cases with lpWGS data (77) were 

incorporated in Chapter 3, we have subsequently collected a total of 588 liquid biopsies 

from 252 patients with rrDLBCL. These liquid biopsies are collected at diagnosis, during 

and following frontline and salvage therapies, and also includes patients treated with 

both standard salvage therapy (R-GDP) and experimental salvage therapies such as 

tazemetostat, anti-CD19-CD3 BITE, and CAR-T cell therapy. We have performed 

lpWGS on all 588 samples and detected ctDNA in 157 cases (26.7%) despite the limited 

sensitivity of lpWGS (>=7% ctDNA required). To improve on this sensitivity and to 

identify SSMs, we are currently performing CAPP-Seq on all samples with an expanded 

gene panel incorporating both described lymphoma drivers, candidate genes associated 

with treatment resistance (for instance, CD19), and regions frequently affected by 

aSHM, with a theoretical sensitivity of 1% ctDNA. As of October 2022, CAPP-Seq using 

this panel has been completed on 403/588 samples. This cohort is extremely 

heterogeneous in terms of time points, treatments performed, and patient 

characteristics. As such, we are planning to compare the overall repertoire of mutations 

across rrDLBCL samples, compare mutations between time points to look for examples 

of clonal evolution, and group cases and samples with similar treatment regimens (i.e., 

before and following R-CHOP, before and following R-GDP) to identify recurring events 

selected by these treatments. For candidate cases where the tumour is initially response 

to therapy but the patient later relapses, we are planning to sequence interim time points 

extremely deeply (>10,000x coverage) with the aim of MRD detection. We will also 

evaluate ctDNA levels from samples collected before and immediately following salvage 

therapy to evaluate ctDNA as a predictor of treatment outcomes. Samples are also being 

collected and sequenced from DLBCL and NHL cases treated with CAR-T therapy in 

British Columbia, and these samples will be analyzed in a similar manner. 
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4.3.2. The epigenetic and transcriptomic landscape of rrDLBCL 

Through an exploration of the genomic features of rrDLBCL, we observed an 

enrichment of events perturbing genes involved in histone methylation (KMT2D) and 

acetylation (CREBBP), as well as RNA regulation (TET2). Due to the rapid acquisition of 

treatment resistance observed in some rrDLBCL cases (for instance, PT255, Section 

2.5.6) and the prevalence of these events, epigenetic and transcriptomic regulation may 

contribute significantly to therapeutic resistance. Our group has recently performed RNA 

sequencing on 79 relapse tissue biopsies from 72 rrDLBCL patients. Through a 

preliminary analysis of expression patterns and a differential expression analysis to 

identify genes dysregulated in rrDLBCL, we discovered that transcriptomic differences 

between the diagnostic and relapse tissue biopsy are generally minor and 

heterogeneous between cases, further supporting the similarities in the mutational 

landscape observed following DNA sequencing. Indeed, when incorporating diagnostic-

relapse pairs the transcriptome of a rrDLBCL tumour appears to be most similar to the 

corresponding diagnostic tumour, and not other relapse tumour biopsies, further 

suggesting that features associated with treatment failure are either intrinsic to the 

tumour itself or are minor additions to the biology of the disease. Due to the genetic and 

molecular diversity of rrDLBCL, a larger transcriptomic cohort of samples is needed. 

Given the high prevalence of KMT2D, CREBBP, and TET2 mutations in 

rrDLBCL, the resulting epigenetic effects of these events must be examined. A previous 

study exploring DNA methylation patterns in 13 diagnostic-relapse rrDLBCL pairs found 

that, while methylation of rrDLBCL tumours generally reflected their diagnostic 

counterparts, there are patterns of convergent evolution of rrDLBCL tumours following 

R-CHOP, and increased hypomethylation of promoters involved in TGF-β signaling360. 

Further large-scale studies investigating methylation patterns across rrDLBCL pairs are 

needed, both to identify other patterns of DNA methylation, and find patterns specific to 

molecular and genetic subgroups. These would necessitate diagnostic-relapse-normal 

“trios”, and such events could be determined using long read sequencing technologies 

(nanopore sequencing)361,362 and modified Illumina sequencing approaches such as 

bisulfite sequencing363 . While bisulfite sequencing has been performed on liquid 

biopsies364, alternative cfDNA-specific sequencing approaches such as cfMeDIP-seq365, 

and techniques correlating cfDNA fragmentation patterns with actively transcribed 

genes215 can infer methylomic and transcriptomic patterns in liquid biopsies. Patterns of 
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histone post-translational modification (H3K27Me3 etc.), and the DNA associated with 

such events could be devised using CHIP-Seq366. These epigenetic marks could then be 

compared between diagnostic and relapse samples to identify relapse-specific 

epigenetic patterns. These patterns could further be stratified by the presence or 

absence of mutations in key epigenetic modifiers such as KMT2D, CREBBP, and TET2 

to evaluate the downstream effect of these mutations.  

4.3.3. Mechanism and impact of MS4A1 mutations in DLBCL 

In Chapter 2.5.3, we observed that mutations in MS4A1 attenuate the binding of 

both rituximab and other anti-CD20 monoclonal antibodies. Curiously, frameshift events 

were generally restricted to the large loop of CD20, while missense mutations were 

restricted to the small loop and transmembrane domains (Figure 2-9A). We also did not 

observe focal deletions or other CNVs perturbing the MS4A1 in our rrDLBCL cohort. As 

deletion of the MS4A1 locus would prevent antibody binding, the retention of the CD20 

locus and pattern of mutations observed in rrDLBCL is curious and suggests retention of 

the MS4A1 locus is selectively advantageous in DLBCL. Further work comparing the 

phenotypes of DLBCL cells harbouring wild-type MS4A1, MS4A1 with missense 

mutations withing the small loop region, and those lacking MS4A1 locus entirely could 

provide further insight into the effect of MS4A1 mutations and the selective pressures on 

the MS4A1 locus. 

4.3.4. Contribution of non-coding events 

While the vast majority of DLBCL and rrDLBCL studies have focused on 

evaluating the repertoire of coding mutations across DLBCL (including those outlined 

here), the role and contribution of non-coding drivers has been largely underexplored. 

Non-coding drivers have been observed in DLBCL, including aSHM disrupting 

superenhancers367 and non-coding regions of specific genes (such as the NF-ΚB 

signaling component NFKBIZ15). Our group has performed WGS of diagnostic-relapse-

normal “trios” for rrDLBCL cases, and we will investigate the contribution of such events. 
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4.4. Closing perspective 

Through the two large-scale genomic studies of rrDLBCL described in Chapter 2 

and Chapter 3, we have sought to explore and characterize the landscape of genomic 

features in rrDLBCL, and how such events compare to diagnostic DLBCL. Through this 

approach, we have discovered a direct mechanism of treatment resistance (mutations in 

MS4A1), biomarkers of treatment failure (mutations in KMT2D and TP53), and candidate 

therapeutic targets (IKZF3 and TCF3). This project also highlights the utility of liquid 

biopsies in cancer genomics research, enabling serial samples to be easily collected 

from patients undergoing treatment, and the application of low-cost sequencing 

approaches (lpWGS and CAPP-Seq) to identify genetic features of rrDLBCL. These 

techniques can further be implemented to screen for candidate therapeutic targets prior 

to treatment, monitoring treatment response, and monitoring for the emergence of 

resistance mutations following therapy. Through additional genomic, epigenomic, and 

transcriptomic studies of rrDLBCL, it is hoped that additional mechanisms of treatment 

resistance and biomarkers of treatment failure can be uncovered. 
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Appendix A.  
Supplementary Data File associated with Chapter 2 

Description 

The accompanying Excel spreadsheet hosts several sets of additional results 

corresponding to Chapter 2, with each table corresponding to a separate tab in the 

spreadsheet. 

List of supplemental tables 

Table S1. Overview of relapsed-refractory DLBCL cohort and patient 
information. A sample with at least one detectable somatic mutation is considered 

having detectable tumour DNA.  

Table S2. Patient-specific metadata and breakdown of rrDLBCL samples. 
This includes cell-of-origin classification, LymphGen classification, and if a constitutional 

sample was available for that patient.  

Table S3. Summary of samples with a source of tumor DNA at diagnosis 
and upon relapse.  

Table S4. Gene panel capture space of 63 lymphoma-associated genes. All 

coordinates are relative to GRCh38. Note that additional probes were included for non-

coding regions and specific exons of additional genes not included in this analysis due to 

variable coverage in exome data.  

Table S5. rrDLBCL somatic variant calls, in MAF format. Note that this 

includes variant calls outside the capture space specified in Table S4.  

Table S6. List of mutation hotspots/regions within the capture space 
examined for mutation enrichment. All coordinates are relative to GRCh38.  

Table S7. Differentially mutated genes between the rrDLBCL cohort and 
untreated cohorts. Comparison was performed using a fisher’s exact test and 
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Benjamin-Hochberg false discovery rate threshold, with all genes harbouring a Q value 

below 0.1 considered significant. Odds ratios were scaled using loge. See 2.3.1 and 

2.3.2 for a description of the untreated and relapse cohorts. This is summarized in 

Figure 2-3.  

Table S8. Differentially mutated genes between the rrDLBCL cohort and 
diagnostic DLBCL cases listed by Lacy et al. Comparison was performed using a 

fisher’s exact test and Benjamin-Hochberg false discovery rate threshold, with all genes 

harbouring a Q value below 0.1 considered significant. Odds ratios were scaled using 

loge. See methods for a description of the relapse cohort.  

Table S9: Summary of genetic subgroups within the rrDLBCL cohort using 
the Wright classifier, and their prevalence compared to the untreated cohort. 

Table S10. Cox proportional hazard models for KM2D and TP53 mutations, 
in the context of other prognostic covariates. Feature importance for patient OS 

(A,C) and PFS (B,D) within our untreated DLBCL cohort, examining TP53 mutation 

status, KMT2D mutation status (A,B) or KMT2D truncating mutation status (C,D) along 

with the International Prognostic Index (IPI) stage and COO subgroup. Cases lacking IPI 

and COO information, or with insufficient coverage in KMT2D or TP53 were excluded 

from analysis. Cohort was included as a feature to ensure cases from a given cohort did 

not display inferior outcomes. PFS information was not provided for samples from the 

Reddy cohort. 

Table S11. Primer sequences used to introduce mutations within MS4A1. 

Table S12. Primers used for Access Array amplicon sequencing of PT255. 
Forward (F) and reverse (R) primers for each gene used in amplicon sequencing 

experiments. Primers were tailed with Illumina sequence adapters.  

Table S13. Variants used for PT255 analysis from amplicon sequencing 
results.

Filename:
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Appendix B.  
Supplementary Data File Associated with Chapter 3 

Description 

The accompanying Excel spreadsheet hosts several sets of additional results 

corresponding to Chapter 3, with each table corresponding to a separate tab in the 

spreadsheet. 

List of supplemental tables 

Table S1. Overview of rrDLBCL cohort, including patient characteristics 
and sequencing type. Molecular and genetic subgroup labels are also included. 

Table S2. Exome-wide somatic variant calls of rrDLBCL samples with WES 
or WGS data, in MAF format. For WGS samples, this will include non-coding variants 

outside the traditional “exome” capture space. Coordinates are relative to the hg38 

reference genome 

Table S3. Somatic copy number segments from all rrDLBCL samples (WES, 
WGS, lpWGS). Copy number state is specified as log(2) rations. Segments are relative 

to the hg38 reference genome. Note some samples have somatic variant calls but lack 

CNV calls due to low sample quality. 

Table S4. Regions significantly recurrently perturbed by CNVs within the 
rrDLBCL cohort, as identified using GISTIC2. 

Table S5. Genes whose mutations show evidence of positive selection 
across the rrDLBCL SNV cohort and diagnostic cohorts, as determined via 
OncoDriveFML.  

Table S6. Genes significantly definitely perturbed for mutations between 
diagnostic and rrDLBCL cohorts. Only genes with evidence of positive selection were 

considered for analysis. 
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