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Abstract 

Variable selection causes the distributions of parameter estimators to be unknown and 

difficult to determine. To do inference after selection, conditional distributions for 

parameter estimators given the selected model are needed. Taylor and Tibshirani (2018) 

call this post-selection inference and describe an estimator of regression parameters 

along with the corresponding conditional distribution, making post-selection inference 

possible. The Polyhedral Lemma (Lee et al., 2016) is used to determine the conditional 

distribution of this estimator given the model selected - a truncated normal distribution. 

We implement Taylor and Tibshirani’s (2018) method in the Cox Proportional Hazards 

Regression setting and do a Monte Carlo study. The results are analyzed. The method 

controls the level of tests and coverage of confidence intervals well – much better than 

unadjusted Cox Proportional Hazards techniques. Numerical difficulties in the Cox 

Proportional Hazards software are identified and addressed in the post-selection 

inference context. 

 

Keywords:  Variable Selection; LASSO; Penalized Likelihood; Model Selection; 

Selective Inference. 
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Introduction: 

In a world where data collection is the most efficient it has ever been, we find 

ourselves with the challenge of not only determining which measured characteristics are 

actually important, but also finding valid methods for inference after the process of 

selecting important characteristics has been done. When certain measured 

characteristics, or variables, are selected as predictors for a model, there are necessarily 

other variables that are dropped. This process of keeping some variables and dropping 

others forces the variables kept to account for any effect that would have been 

accounted for by a dropped variable, which can have major impacts on models chosen 

and estimates within those models.  

Various model selection methods have been developed over time, such as the 

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). While 

these two methods are very similar, differing only by the penalty utilized in the equations, 

the AIC will have a tendency to select larger models in an effort to ensure that the 

correct variables are included at the risk of overfitting and the BIC will have a tendency 

toward smaller models due to a stricter penalty term. While AIC and BIC both use 

Maximum Likelihood Estimates (MLEs), an alternative method known as the LASSO 

method considers the Residual Sum of Squares (RSS) with an L1 norm penalty term. 

The LASSO method attempts to balance model size and goodness of fit by selecting a 

small enough model to avoid overfitting but large enough to still achieve good fit.  

Even though there are a number of model selection methods to choose from, it is 

difficult to find inference methods with credible coverage probabilities in a post-selection 

setting. This is due to the changes that occur in the distributions of parameter estimators 

when selection is done, and the fact that it is very difficult to compute these post-

selection distributions accurately. Taylor and Tibshirani (2018) suggest a method for use 

in regression models with general likelihoods that utilizes the results of applying a 

LASSO penalty to the negative log-likelihood and using this to select important 

predictors. These results are then used in the approach to post-selection inference 

developed in Lee et al. (2016) to determine confidence intervals and test hypotheses 

with the selected model. 
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In this study, we present the details of Taylor and Tibshirani’s (2018) method 

applied to the Cox partial likelihood function in proportional hazards modelling and 

implement the method on a real data set. We then create simulations that mimic the real 

data set to explore how well the method developed by Taylor and Tibshirani (2018) 

behaves in various scenarios; we then try to analyze the behaviour of the method with 

the results of the simulated samples. While Taylor and Tibshirani (2018) focused mainly 

on the application of the method in a general likelihood setting, this study will focus on 

extending the application of the method to a Cox Proportional Hazards Regression 

setting in which the likelihood becomes a partial likelihood. 

In Chapter 1, we provide an overview of the fundamental concepts needed to 

understand Taylor and Tibshirani’s (2018) new method. This is followed in Chapter 2 by 

a detailed explanation of our implementation of Taylor and Tibshirani’s (2018) approach 

to the Cox Proportional Hazards Regression setting. In Chapter 3 we provide details 

about our Monte Carlo study design and our plan for analyzing the results. We detail 

results being tracked and methods for solving challenges that we faced in this study. 

Then, we visualize the results of the Monte Carlo study and make observations in 

Chapter 4. Final thoughts and our key findings are summarized at the end of Chapter 4. 

Complete sets of graphical visuals for each experimental setting are provided in an 

appendix.  
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Chapter 1.  

Before a new method can be explored, it is important that the prerequisite 

techniques utilized in the method are understood. This chapter provides a basic 

overview of key methods and concepts underlying the proposal of Taylor and Tibshirani 

(2018) for post-selection inference in models with a general likelihood. 

First, the standard linear regression model is defined and the traditional Ordinary 

Least Squares method for parameter estimation is briefly described. Then the LASSO 

method for variable selection is addressed, as this plays a vital role in the new method. 

We will be assessing the proposal in the context of the Cox Proportional Hazards 

Regression model; therefore, we outline the nature of survival data and a few basic 

concepts in survival analysis. These are then put together to describe the application of 

LASSO to the Cox Proportional Hazards Regression model. 

 

1.1. Linear Regression Model 

Consider the data (𝑦𝑖 , 𝒙𝑖) where 𝑖 = 1…𝑁. For the 𝑖-th observation, 𝑦𝑖 is the 

dependent variable of interest and 𝒙𝑖 = [𝑥𝑖1 ⋯ 𝑥𝑖𝑝] contains the independent 

variables. The 𝒙𝑖 vectors come together to form the design matrix 𝑿 and the 𝑦𝑖 combine 

to form 𝒚 as follows 

𝑿 = [
1
⋮
1

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑁1 ⋯ 𝑥𝑁𝑝

] ;  𝒚 =  [

𝑦1

⋮
𝑦𝑁

] 

( 1) 

In the linear regression model, the random variable 𝑦𝑖 is related to fixed values for 𝒙𝑖 

with coefficients 𝛽𝑗 through the following equation (Devore, 2016) 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1
+ 𝜀𝑖 

( 2) 
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where 𝜷 = [𝛽0 … 𝛽𝑝]′ and we assume the random error 𝜀𝑖~𝑁(0, 𝜎2) combines to form  

𝜺 = [𝜀1 … 𝜀𝑁]′. Equation ( 2) can be written in matrix form as 𝒚 = 𝑿𝜷 + 𝜺. The 

coefficients, 𝜷, are estimated using Ordinary Least Squares (OLS). In OLS, the goal is to 

minimize the residual sum of squares (RSS), which is defined as 

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2

𝑁

𝑖=1
= ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1
)

2𝑁

𝑖=1
= (𝒚 − 𝑿𝜷)′(𝒚 − 𝑿𝜷). 

( 3) 

If 𝑿′𝑿 is invertible, then RSS is minimized by the OLS estimator. In the multivariate case, 

the OLS result is 

𝜷̂𝑂𝐿𝑆 = (𝑿′𝑿)−1𝑿′𝒚. 

( 4) 

1.2. The Lasso Method 

When the sample size 𝑁 is smaller than the number of parameters 𝑝, the OLS 

estimate given above is not meaningful, because the (𝑝 + 1) by (𝑝 + 1) matrix 𝑿′𝑿 is not 

invertible. The rank of 𝑿′𝑿 cannot exceed the minimum of (𝑝 + 1) and 𝑁. Furthermore, if 

(𝑝 + 1) > 𝑁 then the rank of 𝑿′𝑿 is less than the dimension and the model is not 

identifiable. Nevertheless, problems with 𝑝 > 𝑁 are now commonly addressed by doing 

variable selection, that is, by finding a set of fewer than 𝑁 variables which are hoped to 

predict 𝒚 well. Even if 𝑁 > 𝑝, not all 𝑝 variables may be truly significant and including 

them increases the risk of overfitting the data. In both cases, it would be beneficial to 

select the important variables from those measured and include only those selected in 

the model. A variety of methods exist; we focus on the Least Absolute Shrinkage and 

Selection Operator proposed by Tibshirani (1996).  

The Least Absolute Shrinkage and Selection Operator (LASSO) utilizes the L1 

norm as a penalty in convex optimization to fit a regression model that balances the 

“goodness of fit to the data… with the complexity of the model” (Taylor & Tibshirani, 

2015). The penalty is implemented with a parameter λ which is “usually chosen by cross-
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validation” (Taylor & Tibshirani, 2015). As stated by Taylor and Tibshirani (2015), in the 

general linear regression case, the estimates are given by 

𝑎𝑟𝑔𝑚𝑖𝑛𝛽0,𝛽 {
1

2
∑(𝑦𝑖 − 𝛽0 − ∑𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2

+ λ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

}. 

( 5) 

The objective function, in braces above, balances the desire to have the RSS small 

while keeping the size of the parameter estimates small as well. The benefit of using the 

L1 norm (∑ |𝛽𝑗|
𝑝
𝑗=1 ) is that, at the minimizer, some of the 𝛽𝑗 are set exactly to 0, 

depending on how the penalty parameter λ is set (Tibshirani, 1997). If λ is set to a large 

value, then many of the 𝛽𝑗 will be estimated as 0. Furthermore, if λ is set to a smaller, 

and thus less restrictive value, then fewer of the 𝛽𝑗 will be estimated as 0.  

1.3. Polyhedral Lemma and Post-Selection Inference 

When the errors, 𝜀𝑖, in equation ( 2) are normally distributed, then the OLS 

estimator 𝜷̂𝑂𝐿𝑆~𝑀𝑉𝑁𝑝(𝝁𝜷̂𝑂𝐿𝑆
, 𝚺) where 𝝁𝜷̂𝑂𝐿𝑆

= 𝜷 and 𝚺 = 𝜎2(𝑿′𝑿 )−1. The coefficient 𝜎2 

is estimated using the RSS evaluated at 𝜷̂𝑂𝐿𝑆 divided by the degrees of freedom for 

error, (𝑁 − 𝑝 − 1). These estimates can be used to form confidence intervals or test 

hypotheses about the true parameter vector 𝜷 (Devore, 2016). However, model 

selection and penalization produce estimators of 𝜷 which have complex distributions 

compared to those of OLS. When model selection is carried out using LASSO, it is much 

more difficult to use the resulting estimates as the basis for inference, as the 

distributions no longer follow the multivariate normal as described. Thus, an alternative 

approach to inference after selection is evidently needed. In Lockhart et al. (2014), 

significance testing of variables selected by LASSO in a linear regression setting is 

approached using, what they call, the covariance test statistic. This method considers 

the sequence of models selected along the path of the LASSO algorithm. Then in 

Tibshirani et al. (2016), this idea of post-selection inference after variables are selected 

through sequential procedures is expanded to include other variable selection tactics, 

such as forward stepwise regression, and methods of computing exact distributions for 

inference are discussed. In Tibshirani et al. (2016), the Polyhedral Lemma discussed by 
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Lee et al. (2016) is vital in these exact computations. Lee et al. (2016) refers to this as 

“Post-Selection Inference” and discusses how the Polyhedral Lemma can be utilized to 

achieve post-selection inference.   

For a pre-specified value of λ, the estimator 𝜷̂ which minimizes the LASSO 

objective function, equation ( 5), is found. The set of indices j for which the estimate of 𝛽𝑗 

is not 0 is called the (estimated) ‘active’ set, denoted 𝑀̂. Lee et al. (2016) propose to 

give confidence intervals and test hypotheses about the vector 𝜷𝑀̂
∗ , which minimizes the 

mean squared error in approximating the mean vector 𝝁 = 𝐸(𝒚) over all 𝜷 whose non-

zero entries are a subset of the estimated ‘active’ set. They achieve this by considering 

the least squares estimate of 𝛽𝑗 if 𝒚 were regressed only on the selected variables, 

which are contained in the 𝑀̂ columns of the design matrix 𝑿. The least squares 

estimate of 𝛽𝑗 takes the form 𝜸𝑇𝒚 where the vector 𝜸𝑇 gives the row of (𝑿𝑀̂
𝑇 𝑿𝑀̂)

−1
𝑿𝑀̂

𝑇  

corresponding to variable 𝑗. Lee et al. (2016) then show that the conditional distribution 

of this estimator, 𝜸𝑇𝒚, given a certain event, is normal, truncated to an interval which can 

be computed from the design matrix and the conditioning information. To be specific, 

they condition on the event that LASSO, with the given λ, selects the particular model 

chosen and also on the orthogonal complement (𝐼 −
𝜸𝜸𝑇

𝜸𝑇𝜸
)𝒚. A normal distribution with 

mean 𝜇 and standard deviation 𝜎, truncated to an interval [𝑎, 𝑏], has cumulative 

distribution function (CDF)  

𝐹
𝜇,𝜎2
𝑎,𝑏 (𝑥) =

Φ(
𝑥 − 𝜇

𝜎
) − Φ(

𝑎 − 𝜇
𝜎

)

Φ(
𝑏 − 𝜇

𝜎 ) − Φ(
𝑎 − 𝜇

𝜎 )
 

( 6) 

where Φ is the CDF of a 𝑁(0,1) random variable (Lee et al., 2016). Taylor and Tibshirani 

(2018) suggest an extension of this method to more general regression models. One 

such model is the Cox Proportional Hazards model which we describe next.  

1.4. Cox Proportional Hazards Regression Model 

In this study, we will be focusing specifically on implementing these post-

selection inference procedures in the survival analysis setting. Survival analysis focuses 
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on creating, fitting, and examining models of the time it takes for an event to occur. As 

the name suggests, a common event in these types of analyses is death, though the 

theory can be applied to other types of timed events as well. The event of interest is 

sometimes labelled as either a hard endpoint or a soft endpoint. An example of a hard 

endpoint is death; an event that has a specific time stamp of occurrence, measured with 

little or no error. A soft endpoint has an approximate time stamp of event occurrence, 

such as the time noted for the recurrence of a disease; by the time the disease is 

detected, the time of recurrence is now approximate due to the delay.  

Regardless of the type of endpoint, the reality is that these studies rely on waiting 

an extended period of time to observe the occurrences of these events. In addition to the 

challenges that are typically present in studies, there is the challenge of unexpected 

events interfering with results. Remaining in the healthcare setting with the event of 

interest being death, it is possible for patients to die from other causes, known as 

competing risks. For example, if the patient is killed in a car accident, then even though 

they have died, it was not the disease being studied that caused the death. Another 

possible, and relatively common, challenge is known as censoring. Censoring, usually 

known more specifically as right-censoring, occurs when patients leave the study or the 

timeline of the study comes to an end before the event of interest has an opportunity to 

occur. A patient may leave a study simply due to moving to a new home, which is 

considered to be independent of the event of death; but they could also leave the study 

due to negative side effects of a treatment, which may or may not be considered as 

independent of the event.  

While it is possible to apply general linear methods on this data, these methods 

do not use the key portion of information gained from the aspect of time. Sir David Cox 

(1972) created the Cox Proportional Hazards Regression model as a way of modeling 

the data while utilizing as much of the relevant data as possible. Let T represent the 

random variable of time that has the cumulative distribution function (CDF) 

 

𝐹(𝑡) = 𝑃𝑟(𝑇 ≤ 𝑡) 

( 7) 
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and probability density function (PDF)  

 

𝑓(𝑡) =
𝑑(𝐹(𝑡))

𝑑𝑡
. 

( 8) 

Using the CDF, the corresponding survival function, which is the complement of the 

above CDF, is defined as  

𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡) = 1 − 𝐹(𝑡). 

( 9) 

This survival function is used as the denominator in the hazard function. The hazard 

function assesses the instantaneous rate of the event (in this case death) at time t, given 

that the patient has survived until at least that time, as shown below 

ℎ(𝑡) = lim
∆𝑡→0

𝑃𝑟((𝑡 ≤ 𝑇 ≤ 𝑡 + ∆𝑡)|𝑇 ≥ 𝑡)

∆𝑡
=

𝑓(𝑡)

𝑆(𝑡)
 

( 10) 

Various hazard functions are possible in order to correspond with various survival 

functions that may be present in data sets. 

Now consider the survival data (𝒙𝑖, 𝑦𝑖 , 𝛿𝑖) where 𝑖 = 1,… ,𝑁. The vector 𝒙𝑖 =

[𝑥𝑖1 ⋯ 𝑥𝑖𝑝] contains the features (also known as the covariates) for the i-th individual. 

This leads to the design matrix  

𝑿 = [

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑁1 ⋯ 𝑥𝑁𝑝

] 

To accommodate right censoring we let 𝛿𝑖 be 1 to denote that subject 𝑖’s time of 

death was observed and 0 if subject 𝑖 was censored (Tibshirani, 1997). Note that it is 

assumed that the censoring time is independent of death time. The corresponding 𝑦𝑖 

denotes the end time for each individual, whether that be time of death or time of 
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censoring. Allow D to denote the indices of the failure times (when 𝛿𝑖 = 1) and 𝑅𝑖 to 

denote the risk set at death time 𝑡𝑖. This risk set is composed of the indices of individuals 

who have the potential for death at time 𝑡𝑖, which includes the individual who died at that 

specified time and all other individuals who have neither died nor been censored prior to 

time 𝑡𝑖. 

A key assumption for the Cox Proportional Hazards Regression model is that the 

hazard function for subject 𝑖 at time t takes the form 

ℎ𝑖(𝑡|𝒙) = ℎ0(𝑡)𝑒
∑ 𝑥𝑖𝑗𝛽𝑗𝑗 = ℎ0(𝑡)𝑒

𝒙𝒊𝜷 

( 11) 

where ℎ0(𝑡) is an arbitrary baseline hazard function and 𝜷 = [𝛽1 ⋯ 𝛽𝑝]′ (Tibshirani, 

1997). These hazard functions across individuals are used to create the partial likelihood 

function. A partial likelihood function is similar to a likelihood function, but it does not 

depend on all the parameters which are typically needed to fully describe a distribution; 

in particular it omits the model for censoring and the part of the likelihood which includes 

the baseline hazard ℎ0(𝑡). The relevant partial likelihood function (see Tibshirani, 1997) 

is 

𝐿(𝜷) = ∏
ℎ0(𝑡)𝑒

𝒙𝒊𝜷

∑ ℎ0(𝑡)𝑒
𝒙𝒍𝜷𝑙∈𝑅𝑖𝑖∈𝐷

= ∏
𝑒𝒙𝒊𝜷

∑ 𝑒𝒙𝒍𝜷𝑙∈𝑅𝑖𝑖∈𝐷

 

( 12) 

which leads to the log partial likelihood function  

𝑙(𝜷) = ∑ln(
𝑒𝒙𝒊𝜷

∑ 𝑒𝒙𝒍𝜷𝑙∈𝑅𝑖

) = ∑{𝒙𝒊𝜷 − ln (∑ 𝑒𝒙𝒍𝜷

𝑙∈𝑅𝑖

)}

𝑖∈𝐷𝑖∈𝐷

 

( 13) 

As shown, though the parameter of a base hazard function, ℎ0(𝑡), is technically needed 

to describe the hazard function ℎ𝑖(𝑡|𝒙), it ends up factoring out of the likelihood function 

for every individual and therefore is removed to achieve the partial likelihood function. 
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1.5. Applying the LASSO to Cox Proportional Hazard 
Regression Model 

When applying the LASSO procedure to a Cox Proportional Hazards Regression 

Model (CoxPH model), the 𝑥𝑖𝑗 must be standardized, according to Tibshirani (1997). The 

standardization results in the following equations being satisfied for each feature (𝑗) in 𝑿  

∑ 𝑥𝑖𝑗
𝑁
𝑖=1

𝑁
= 0 ; 

∑ 𝑥𝑖𝑗
2𝑁

𝑖=1

𝑁 − 1
= 1 

( 14) 

To achieve this standardization, each column is independently recentered by subtracting 

the mean of the column from all observations, and then scaled by dividing by the 

standard deviation of the column, as shown below  

𝑥𝑖𝑗(𝑆𝑡𝑑) =
𝑥𝑖𝑗 − 𝑥̅.𝑗

𝑠.𝑗
 

( 15) 

where 𝑥̅.𝑗 =
∑ 𝑥𝑖𝑗

𝑁
𝑖=1

𝑁
  and 𝑠.𝑗

2 =
∑ (𝑥𝑖𝑗− 𝑥̅.𝑗)

2𝑁
𝑖=1

𝑁−1
 . 

This process allows β from various types of variables to be comparable in the 

penalty term. More precisely, by standardizing, the varying units across different 

variables are consolidated, thus making it possible to add β from variables with differing 

units together in a comprehensible manner. Once the selection procedure is complete 

and estimations are found, the 𝛃̂ are converted back to the appropriate units by dividing 

the 𝛃̂ by the corresponding standard deviation originally used on the column. 

As discussed above, in the general linear case the objective function minimizes 

the sum of squared residuals; however, in the CoxPH model, the objective function aims 

to minimize the log partial likelihood with respect to 𝛃; in order to do model selection we 

also impose a penalty (Taylor & Tibshirani, 2015). Taylor and Tibshirani (2018) describe 

a process of combining the Newton-Raphson update step with an iterative reweighted 

least squares (IRLS) procedure to create a constrained weighted least squares 

procedure that minimizes 𝑙(𝜷) with a constraint to compute estimates for 𝛃. 
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To simplify further algebraic computations, define 𝛈 = 𝐗𝛃 = [η1 ⋯ η𝑁]′ to 

obtain the log partial likelihood function for the CoxPH model with respect to 𝛈 

𝑙(𝛈) = ∑{η
𝑖
− ln(∑ 𝑒η𝑙

𝑙∈𝑅𝑖

)}

𝑖∈𝐷

 

( 16) 

All the components necessary to form the Newton Raphson step for minimizing 𝑙(𝛈) are 

derived from this log partial likelihood. Taking the first derivative with respect to η𝑘 leads 

to the Score function, as shown below. 

𝑈𝑘(𝛈) =
𝜕𝑙(𝛈)

𝜕η𝑘

= ∑{1(𝑖 = 𝑘) −
1

(∑ 𝑒η𝑙𝑙𝜖𝑅𝑖
)
𝑒η𝑘1(𝑘 ∈ 𝑅𝑖)}

𝑖∈𝐷

; 𝑘 = 1…𝑁 

( 17) 

𝑼(𝛈) = [
𝑈1(𝛈)

⋮
𝑈𝑁(𝛈)

] 

( 18) 

In addition to the Score function, the Hessian will be needed for future calculations. By 

taking the derivative again, the negative Hessian matrix can be computed as follows. 

𝐻𝑘𝑚(𝛈) = −
𝜕𝑈𝑘(𝛈)

𝜕η𝑚

= −
𝜕2𝑙(𝛈)

𝜕η𝑘𝜕η𝑚

= ∑{
𝑒η𝑚1(𝑘 ∈ 𝑅𝑖)1(𝑘 = 𝑚)

∑ 𝑒η𝑙𝑙𝜖𝑅𝑖

−
𝑒η𝑚1(𝑚 ∈ 𝑅𝑖)𝑒

η𝑘1(𝑘 ∈ 𝑅𝑖)

(∑ 𝑒η𝑙𝑙𝜖𝑅𝑖
)
2

}

𝑖∈𝐷

 

( 19) 

𝑯 = [
𝐻11(𝛈) ⋯ 𝐻1𝑁(𝛈)

⋮ ⋱ ⋮
𝐻𝑁1(𝛈) ⋯ 𝐻𝑁𝑁(𝛈)

] 

( 20) 
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As explained by Tibshirani (1997) and further described by Taylor and Tibshirani (2018), 

these formulas are then combined to form the objective function, derived from a Newton 

Raphson step for minimizing 𝑙(𝛈) (subject to the constraint that 𝛈 is in the column space 

of the design matrix 𝐗) as 

1

2
(𝒛 −  𝛈)𝑇𝑾(𝒛 −  𝛈) =

1

2
(𝒛 −  𝐗𝛃)𝑇𝑾(𝒛 −  𝐗𝛃) 

( 21) 

where  

𝑾 = 𝑯 = −
𝜕2𝑙(𝛈)

𝜕η𝑘𝜕η𝑚

 

( 22) 

and 

𝒛 =  𝛈 + 𝑾−1𝑼(𝛈) 

( 23) 

In a Newton Raphson step, to compute a new value of 𝛃̂ from a current value of 𝛃̂, we 

compute the first and second derivatives of the log likelihood at the current value of 𝛃̂. 

Then we approximate the log likelihood by a quadratic function whose maximum will be 

at the new value of 𝛃̂. This maximum is found, in our case, by minimizing the right-hand 

side of ( 21).  

In our problem, we are seeking to minimize a penalized version of the log 

likelihood, so at each step we minimize a penalized version of our quadratic 

approximation; see ( 24) below. Taylor and Tibshirani (2018) start the algorithm with a 

pre-specified λ and an initially specified 𝛃̂ = 𝟎. The next step is to compute 𝑾 and 𝒛 

using  𝛃̂ and apply them to a penalized version of ( 21). That is, solve the constrained 

weighted least squares problem  
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𝑎𝑟𝑔𝑚𝑖𝑛𝜷𝐺(𝛃) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜷

1

2
(𝒛 −  𝐗𝛃)𝑇𝑾(𝒛 −  𝐗𝛃) + λ∑|𝛽𝑗|

𝑝

𝑗=1

 

( 24) 

to find the next 𝛃̂ value. 

The minimizer is found as follows. Choose an initial 𝛃 and compute 𝑾 and 𝒛 

using ( 22) and ( 23). Then minimize ( 21) with respect to 𝛃, holding 𝑾 and 𝒛 fixed. Now 

iterate between updating 𝑾 and 𝒛 using the 𝛃̂ just found and minimizing the objective 

function to find an improved estimate of 𝛃̂ until the change in estimation is less than a 

pre-specified threshold (Taylor & Tibshirani, 2018). The resulting 𝛃̂ from the final 

iteration will be the desired LASSO estimate, denoted 𝜷̂𝑀̂. This process will be referred 

to as the Iterative Reweighted Least Squares (IRLS) approach for solving the LASSO 

problem.  
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Chapter 2.  

With foundational concepts understood, the post-selection inference method from 

Taylor and Tibshirani (2018) can be explored. In this chapter, the details of implementing 

Taylor and Tibshirani’s (2018) method are explained for the context of the Cox 

Proportional Hazards Regression model setting.  

 

2.1 Taylor and Tibshirani’s Process for Obtaining the 
Adjusted Estimate for 𝛃 

A second estimator for 𝛃 will be needed in order to adapt the selective inference 

ideas described above to the proportional hazards problem. The process for obtaining 

this new adjusted estimate for 𝛃, as described by Taylor and Tibshirani (2018), 

begins by applying the LASSO procedure to a CoxPH model as explained above. 

The LASSO procedure, with a pre-specified λ, will select a set of ‘active’ variables, 

denoted by 𝑀̂, and a set of ‘inactive’ variables, denoted by −𝑀̂; a variable is active if its 

estimated coefficient in 𝛃̂ is not zero. Taylor and Tibshirani (2018) define the adjusted 

estimator 𝜷̅𝑀̂ as 

𝜷̅𝑀̂ = 𝜷̂𝑀̂ + 𝑰𝑀̂(𝜷̂𝑀̂)
−1

λ𝒔𝑀̂ = 𝜷̂𝑀̂ + 𝑰𝑀̂(𝜷̂𝑀̂)
−1 𝜕

𝜕𝜷𝑀̂
𝑙𝑀̂(𝜷̂𝑀̂). 

( 25) 

where the inverse Fisher Information matrix, evaluated at 𝜷̂𝑀̂, is  

𝑰𝑀̂(𝜷̂𝑀̂)
−1

= (𝑿𝑀̂
𝑇 𝑾𝑿𝑀̂)

−1
 

( 26) 

and 𝒔𝑀̂ = 𝑠𝑖𝑔𝑛(𝛃̂
𝑀̂

). Here, 𝑠𝑖𝑔𝑛(𝑥) is 1 if 𝑥 is positive and -1 if 𝑥 is negative. The 

function is applied to each component of 𝛃̂𝑀̂. 
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In the case of general linear regression, 𝑾 is the identity matrix, but in the CoxPH 

setting, 𝑾 is a much more complex matrix. In this case, as well, the estimator 

corresponding to 𝜷̅𝑀̂ is the OLS estimator when the response is regressed on 𝑿𝑀̂. This 

formula for 𝜷̅𝑀̂ can be rewritten as 

𝜷̅𝑀̂ = (𝑿𝑀̂
𝑇 𝑾𝑿𝑀̂)

−1
𝑿𝑀̂

𝑇 𝑾𝒛 = 𝜸𝑇𝒛 

( 27) 

In general, 𝒛 will take on values as specified in equation ( 23), but in the general linear 

regression case, these values simplify to 𝒛 = 𝒚. Taylor and Tibshirani (2018) explain that 

𝜷̅𝑀̂ will be asymptotically normally distributed; 𝜷̅𝑀̂ ≈ 𝑁 (𝜷𝑀̂
∗ , (𝑿𝑀̂

𝑇 𝑾𝑿𝑀̂)
−1

). Now that the 

estimator 𝜷̅𝑀̂ is obtained, as well as the corresponding 𝜸𝑇, Taylor and Tibshirani (2018) 

use the Polyhedral Lemma, as discussed in Chapter 1, and this normal approximation to 

establish a basis for inference which is intended to allow for the effects of model 

selection.  

2.2 Polyhedral Lemma and Truncation Limits for Post-
Selection Cox Proportional Hazard Inference 

In Chapter 1 we described Lee et al.’s (2016) approach to post-selection 

inference. The goal is to get confidence intervals and hypothesis tests for a coefficient 𝛽̅𝑗 

of a variable in the estimated ‘active’ set 𝑀̂, which combine to form the vector 𝜷̅𝑀̂ = 𝜸𝑇𝒛 

where 𝜸𝑇 = (𝑿𝑀̂
𝑇 𝑾𝑿𝑀̂)

−1
𝑿𝑀̂

𝑇 𝑾. The least squares estimator of 𝛽̅𝑗 takes the form 𝜸𝑗
𝑇𝒛 

where the vector 𝜸𝑗
𝑇 gives the row of (𝑿𝑀̂

𝑇 𝑾𝑿𝑀̂)
−1

𝑿𝑀̂
𝑇 𝑾 corresponding to variable 𝑗. To 

do so, Lee et al. (2016) find the conditional distribution of the 𝜸𝑇𝒛 given the selected 

model, the signs of the estimates of the ‘active’ variables and the vector (𝐼 −
𝜸𝜸𝑇

𝜸𝑇𝜸
) 𝒛. The 

Polyhedral Lemma, in Lee et al. (2016), describes, in a simple way, the event that 𝜸𝑇𝒛 is 

in a certain range and all the conditions mentioned occur. Taylor and Tibshirani (2018) 

adapt these ideas to the IRLS method for LASSO for more general likelihoods. 

Utilizing the results from the LASSO method on the CoxPH model, as described 

above, Taylor and Tibshirani propose treating the “final iteration [of the Newton Raphson 
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algorithm described in Chapter 1] as a weighted least squares regression”, and 

approximating the distribution of 𝒛 by  

 

𝒛~𝑁(𝜇,𝑾−1) 

( 28) 

and then following the Polyhedral Lemma ideas. They argue somewhat heuristically that 

this should lead to asymptotically correct inferences (Taylor & Tibshirani, 2018), at least 

if the estimated ‘active’ set, 𝑀̂, contains the true active set, 𝑀, with probability close to 1. 

We now describe the results of this strategy. Using the Karush-Kuhn Tucker 

(KKT) conditions described by Taylor and Tibshirani (2018), the ‘active’ variables will 

satisfy  

𝑿𝑀̂
𝑇 𝑾(𝒛 − 𝑿𝑀̂𝜷̂𝑀̂) = λ𝒔𝑀̂ 

( 29) 

where, as in ( 25),   

𝒔𝑀̂ = 𝑠𝑖𝑔𝑛(𝛃̂
𝑀̂

). 

( 30) 

The ‘inactive’ variables also satisfy the KKT conditions, but through the following 

equation instead.  

𝑿−𝑀̂
𝑇 𝑾(𝒛 − 𝑿𝑀̂𝜷̂𝑀̂) = λ𝒔−𝑀̂ 

( 31) 

In this case, the vector 𝒔−𝑀̂ must contain entries between -1 and 1; this is equivalent to 

saying that every entry on the left-hand side of ( 31) has absolute value less than or 

equal to the penalty parameter λ. These equations are then used below in the 

Polyhedral Lemma. Taylor and Tibshirani (2018) describe the application of the 
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Polyhedral Lemma in the Gaussian Inference case, which can be expanded to 

determine the corresponding application for the Cox Proportional Hazards case.  

To present the results of Taylor and Tibshirani’s (2018) method, we need to 

define two matrices and two vectors to describe the event that the KKT conditions are 

satisfied with the observed ‘active’ set 𝑀̂ and the observed signs. We define the ‘active’ 

components, 𝐴1 and 𝑏1, in the Cox Proportional Hazards setting, as shown below, to 

describe the event that the variables in 𝑀̂ are ‘active’ and their estimates have the 

observed signs we need. 

𝐴1 = −𝑑𝑖𝑎𝑔(𝒔𝑀̂)(𝑿𝑀̂
𝑇 𝑾𝑿𝑀̂)

−1
𝑿𝑀̂

𝑇 𝑾 

( 32) 

 

𝑏1 = −𝑑𝑖𝑎𝑔(𝒔𝑀̂) (𝑿𝑀̂
𝑇 𝑾𝑿𝑀̂)

−1
λ𝒔𝑀̂ 

( 33) 

To describe the event that the variables not in 𝑀̂ are ‘inactive’ we will need the 

components  

𝐴0 =
1

λ
[

𝑿−𝑀̂
𝑇 𝑾

−𝑿−𝑀̂
𝑇 𝑾

] 

( 34) 

𝑏0 =

[
 
 
 1 + 𝑿−𝑀̂

𝑇 𝑾𝑿𝑀̂

𝜷̂𝑀̂

λ

1 − 𝑿−𝑀̂
𝑇 𝑾𝑿𝑀̂

𝜷̂𝑀̂

λ ]
 
 
 

 

( 35) 

These four components are then combined to form 
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𝑨 = [
𝐴1

𝐴0
] 

( 36) 

and 

𝒃 = [
𝑏1

𝑏0
] 

( 37) 

as described by Taylor and Tibshirani (2018). Following Lee et al. (2016), Taylor and 

Tibshirani (2018) define  

𝒱−(𝑟) = max
𝑗: (𝑨𝒄)𝑗<0

𝒃𝑗 − (𝑨𝒓)𝑗

(𝑨𝒄)𝑗
 

( 38) 

𝒱+(𝑟) = max
𝑗: (𝑨𝒄)𝑗>0

𝒃𝑗 − (𝑨𝒓)𝑗

(𝑨𝒄)𝑗
 

( 39) 

𝒱0(𝑟) = max
𝑗: (𝑨𝒄)𝑗=0

𝒃𝑗 − (𝑨𝒓)𝑗 

( 40) 

where 

𝑐 ≡ 𝑾−1𝜸(𝜸𝑇𝑾−1𝜸)−𝟏 

( 41) 

and  

𝑟 ≡ (𝐼𝑁 − 𝑐𝜸𝑇)𝒛 

( 42) 
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These are the key components in the identity 

{𝑨𝒛 ≤ 𝒃} = {𝒱−(𝑟) ≤ 𝜸𝑇𝒛 ≤ 𝒱+(𝑟), 𝒱0(𝑟) ≥ 0} 

( 43) 

which is the main result of the Polyhedral Lemma; it expresses the event that the KKT 

conditions hold with the given ‘active’ set, the given signs, and that the orthogonal 

complement 𝑟 in ( 42) is as observed. Taylor and Tibshirani (2018) clarify the 

interpretation that the event that a certain range, dependent on 𝑨 and 𝒃, contains 𝜸𝑇𝒛 is 

equivalent to the event of selecting {𝑨𝒛 ≤ 𝒃}, and thus this is equivalent to the event that 

𝜷̅𝑀̂ is within this certain range as well. A more detailed explanation is found by Lee et al. 

(2016) explaining that the three versions of 𝒱, specifically 𝒱−(𝑟), 𝒱+(𝑟), 𝒱0(𝑟), are 

independent of 𝜸𝑇𝒛, and therefore 𝜸𝑇𝒛 “is conditionally like a random normal variable, 

truncated to be between 𝒱−(𝑟) and 𝒱+(𝑟)”. More accurately, by conditioning on the 

selection event and 𝑟, the conditional law 𝜸𝑇𝒛|{𝑨𝒛 ≤ 𝒃, 𝑟 =  𝑟0} follows a truncated 

normal distribution (Lee et al., 2016). Performing a probability integral transform using 

this distribution will give 𝐹
𝜷𝑀̂

∗ ,(𝑿𝑀̂
𝑇 𝑾𝑿𝑀̂)

−1
𝒱−(𝑟),𝒱+(𝑟)

(𝜷̅𝑀̂)|{𝑨𝒛 ≤ 𝒃}, a statistic which can be used to 

make conditional inferences on 𝜷̅𝑀̂ (Taylor & Tibshirani, 2018). Lee et al. (2016) 

describes how to obtain this statistic through the following formula, 

𝐹
𝝁,𝜎2
𝑎,𝑏 (𝑥) = 𝐹

𝜸𝑇𝝁,𝜸𝑇𝜎2𝜸𝑇
𝒱−(𝑟),𝒱+(𝑟)

(𝜸𝑇𝒛)|{𝑨𝒛 ≤ 𝒃} = 𝐹
𝜷𝑀̂

∗ ,(𝑿𝑀̂
𝑇 𝑾𝑿𝑀̂)

−1
𝒱−(𝑟),𝒱+(𝑟)

(𝜷̅𝑀̂)|{𝑨𝒛 ≤ 𝒃}~𝑈𝑛𝑖𝑓(0,1) 

( 44) 

Using this pivot makes it possible to obtain conditional inferences such as hypothesis 

tests and in principal post-selection confidence intervals. 
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Chapter 3.  

With the new theory clearly laid out and equations defined, we designed a Monte 

Carlo study to explore the behaviour of Taylor and Tibshirani’s (2018) new method. In 

this chapter, we start by highlighting details of the original data set and explaining steps 

taken to ensure proper formatting of the data for further analysis. This is followed with 

details of the Monte Carlo study design, including simulation specifics, formula 

decisions, and methods for tracking results.  

 

3.1 Understanding the Dataset 

Taylor and Tibshirani (2018) use a data set provided by D. Harrington and T. 

Fleming (2013) to illustrate examples. In order to explore and analyze the behaviour of 

the adjusted estimator and inference methods, the same data set will be used in this 

Monte Carlo study. The data set contains 424 individuals originally, however, only 312 

individuals were truly part of the clinical trial while 112 simply provided additional 

measurements for some of the covariates. For this Monte Carlo study, only the 312 

individuals truly involved in the clinical trial are kept; any missing values in their 

covariates were imputed through mean values (Mean Imputation). The data was 

originally collected to study the effect of D-penicillamine (DPCA) on a rare disease 

known as Primary Biliary Cirrhosis (PBC), a fatal and chronic liver disease (Taylor & 

Tibshirani, 2018).  

The variables in this data set include a follow-up time (futime), measured in days; 

this variable is the time between registration and either death, transplant, or end of study 

(whichever occurred first); status at the end of a study (status), which is either death (2), 

transplant (1), or survival (0); and the following predictor variables:  

𝑋1 (drug.Y): Treatment code , 1 = D-penicillamine, 2 = placebo  

𝑋2 (age): Age of patient measured in days  

𝑋3 (sex.M): Sex of patient , 0 = male, 1 = female 

𝑋4 (ascites.Y): Presence of ascites , 0 = no, 1 = yes 
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𝑋5 (hepato.Y): Presence of Hepatomegaly , 0 = no, 1 = yes 

𝑋6 (spiders.Y): Presence of Spiders , 0 = no, 1 = yes 

𝑋7 (edema.S, edema.Y): Presence of Edema, 0 = no, 0.5 = yes but 
respond to diuretic therapy, 1 = yes, not responsive to diuretic therapy 

𝑋8 (bili): Serum Bilirubin in mg/dl 

𝑋9 (chol): Serum Cholesterol in mg/dl 

𝑋10 (albumin): Albumin in gm/dl 

𝑋11 (copper): Urine Copper in ug/day 

𝑋12 (alk_phos): Alkaline Phosphatase in U/liter 

𝑋13 (sgot): SGOT in U/ml 

𝑋14 (trig): Triglicerides in mg/dl 

𝑋15 (platelet): Platelets per cubic ml/1000 

𝑋16 (protime): Prothrombin time in seconds 

𝑋17 (stage.2, stage.3, stage.4): Histologic stage of disease, 1 = stage 1, 2 
= stage 2, 3 = stage 3, and 4 = stage 4 

The categorical variables (𝑋1, 𝑋3, 𝑋4, 𝑋5, 𝑋6, 𝑋7, and 𝑋17) were recoded into indicator 

variables to ensure compatibility with LASSO coding packages in the RStudio 

environment. In particular, 𝑋7 became two binary variables and 𝑋17 became 3 binary 

variables. All the variables in 𝑿 are then standardized to mean 0 and standard deviation 

1, as in Tibshirani (1997). Following the example by Taylor and Tibshirani (2018), the 

status variable was recoded to be 1 if the patient died, and 0 if the patient is still alive 

(whether they had a transplant or not). Once the dataset was correctly formatted, ‘true’ 

parameter values for the simulations were obtained by fitting a proportional hazards 

model with variable selection as described below. 

3.2 A Monte Carlo Study 

In order to explore and analyze the behaviour of the method suggested by Taylor 

and Tibshirani (2018), a Monte Carlo study will be performed. A Monte Carlo study is 

composed of creating many simulations, applying the method of interest, collecting 

results, and then analyzing these results before a conclusion is drawn. 



22 

Before any simulations can be created, a known ‘true’ set of data must be 

established. In preparation for the Monte Carlo simulations, the liver data (Fleming & 

Harrington, 1991) is correctly formatted as described above and will serve as a basis of 

known data. The LASSO method with cross validation is applied to the liver data. The fit 

gives an estimated active set of chosen variables (𝑀̂), estimates of the corresponding 

parameters 𝜷̂𝑀̂, and a value λ̂ for the penalty parameter. This value of λ̂ is one standard 

deviation (as measured by cross validation) above the minimum λ̂𝑚𝑖𝑛, which minimizes 

the cross validated LASSO objective function ( 21). The estimates 𝑀̂ and  𝜷̂𝑀̂ are then 

taken to be the ‘truth’ when generating new data sets. Thus, for this study, 𝜷̂𝑀̂ = 𝜷,  𝑀̂ =

𝑀, λ̂ = λ, and 𝝁𝒀 = 𝑿𝜷. While these values are not likely to be the exact true values of 

the original liver data set, they will be used as the established known truth in the 

simulations. They should be credible parameter values for a real setting, therefore 

should give simulated data sets with known parameters that are of an appropriate form 

for a CoxPH model. To explore the effect of 𝜷 values and λ values on the behaviour of 

the suggested method (Taylor & Tibshirani, 2018), lower and higher values of each were 

also used to create separate simulations. The complete set of ‘true’ values is 

summarized in the tables below (Table 3.1, Table 3.2, Table 3.3, and Table 3.4). 

Table 3.1: True β Setting Used to Create Simulations 

Alteration Age bili chol albumin copper alk_phos sgot 

Small 
(𝟎. 𝟏𝜷) 

0 0.037639 0 -0.019172 0.015844 0 0 

Regular 
(𝟏𝜷) 

0 0.37639 0 -0.19172 0.15844 0 0 

Large(10𝜷) 0 3.7639 0 -1.9172 1.54844 0 0 

 

Table 3.2: True β Setting Used to Create Simulations 

Alteration trig platelet protime drug.Y sex.M ascites.Y hepato.Y 

Small 
(𝟎. 𝟏𝜷) 

0 0 0.009720 0 0 0.006740 0 

Regular 
(𝟏𝜷) 

0 0 0.09720 0 0 0.067401 0 

Large(10𝜷) 0 0 0.9720 0 0 0.67401 0 
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Table 3.3: True β Setting Used to Create Simulations 

Alteration spiders.Y edema.S edema.Y stage.2 stage.3 stage.4 

Small(𝟎. 𝟏𝜷) 0 0 0.008671 0 0 0.006770 

Regular(𝟏𝜷) 0 0 0.086714 0 0 0.067704 

Large(10𝜷) 0 0 0.86714 0 0 0.67704 

Notice that the pre-determined λ below are all created by inflating the original λ 

by a factor. The original λ, valued at approximately 0.136, is close to 0 and therefore 

inflicts very little penalty in the LASSO portion of the method. When the penalty is too 

small, more variables than necessary are typically selected. To ensure that adequate 

variable selection is performed, the original λ is inflated to three levels. These values 

provide enough variation in the penalties for different selection scenarios to be observed 

in the Monte Carlo study results. 

Table 3.4: Pre-Determined λ Used During Simulations 

Name Symbol Value 

Low Lambda (10 𝛌 ) λ𝐿𝑜𝑤 1.361389 

Mid Lambda (50 𝛌 ) λ𝑀𝑖𝑑 6.806945 

High Lambda (100 𝛌 ) λ𝐻𝑖𝑔ℎ 13.61389 

Using the estimates of the original data set (𝜷, 𝑀, λ) to create pre-determined 

‘truths’, simulations can be created. To preserve the correlation structure of the 

covariates, the original 𝑿 from the liver data will be used with new follow-up times and 

death/censoring occurrences. The new follow-up times are randomly generated from an 

exponential distribution with the rate specified as 𝑒𝝁𝒀, ensuring that the hazard rate 

behaviour for the CoxPH model is appropriate. This allows the correlation structures 

already present in the liver data to be preserved while still generating new and 

reasonable follow-up times for the simulations. Notice that the base hazard rate for the 

model does not affect the partial likelihood so it does not impact the behaviour of the 

model. Following the example set by Taylor and Tibshirani (2018), censoring is applied 

randomly from a binomial distribution with probability of (right-)censoring set to 50%. The 

reasonableness of this censoring rate is supported by the original data, which had a 

censored proportion of 60%. There are technically three variations of simulations in 

terms of censoring setting which could be created at this point: the scenario with no 

censoring, the scenario with censoring, and the scenario with all censoring. It is 
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important to note that the scenario with all censoring provides no results because there 

is no likelihood in that case, regardless of the follow-up time generation. In both the no 

censoring and censoring scenarios, the data set is sorted from smallest follow-up time to 

largest follow-up time in order to simplify the organization of our mathematics and our 

computing. A table summarizing the number of simulations created for each 𝜷 and λ 

setting is shown below (Table 3.5).  

Table 3.5: Number of Simulations to be Done at Each Setting 
 

Predetermined 𝛌 Values for Use in Methods 

𝛌𝑳𝒐𝒘 = 1.361389 𝛌𝑴𝒊𝒅  = 6.806945 𝛌𝑯𝒊𝒈𝒉= 13.61389 

Censor No 
Censor 

Censor No 
Censor 

Censor No 
Censor 

𝜷 Values 
Used to 
Create 

Small 
(𝟎. 𝟏𝜷) 

NA NA 10000 10000 NA NA 

Regular 

(1𝜷) 

10000 10000 10000 10000 10000 10000 

Large 

(𝟏𝟎𝜷) 

NA NA 10000 10000 NA NA 

These settings allowed the behaviour of 𝜷 and λ to be explored by holding one 

fixed while the other is varied. The extremes of both 𝜷 and λ, shown as the corners of 

the table containing ‘NA’, were not tested due to the numerical difficulties that become 

present in these circumstances in addition to time constraints. When both 𝜷 and λ are 

low (top left corner of Table 3.5), little to no variable selection is performed due to the 

lack of penalty weight and hard to detect effects. While this setting is possible, the 

anticipated results are not likely to provide any additional understanding to that already 

gained from the other settings. In the cases were 𝜷 is large (bottom left and bottom right 

of the Table 3.5), troublesome numerical difficulties cause the algorithm to run much 

longer than in the other settings, and occasionally fail altogether due to the complexity of 

the numerical work. These numerical difficulties are mainly caused by overflow. Since 

the equations being optimized contain exponential functions as the main components, 

numerical difficulties are encountered even at moderate values for 𝜷. To mitigate this 

challenge, we used the log sum exponential trick, which is discussed in further detail in 

the next paragraph. Unfortunately, even with this effort to handle overflow, 𝜷 is still 

originally large enough for this to be a time-consuming process. Therefore, we only 
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varied the size of 𝜷 in the scenario with λ𝑀𝑖𝑑, allowing the results with a large 𝜷 to be 

available compared to those with moderate or small 𝜷. We also chose to examine the 

impact of changing the prespecified λ in the case of the moderate (original) 𝜷. In 

general, the four extreme corners of the grid seemed unlikely to increase our 

understanding very much and we omitted them.  

For each simulated dataset we implemented the method described by Taylor and 

Tibshirani (2018), as well as some traditional methods, collecting resulting details. The 

first step is to implement the LASSO variable selection on the simulated dataset and 

retrieve the corresponding penalized estimates for those variables (𝜷̂𝑀̂). We wrote our 

own code to do this task. Our overall algorithm has an outer loop (implemented in an R 

function called IRLS()) and an inner loop (implemented in an R function called 

Algorithm() which in turn calls a special purpose co-ordinate descent function, CD()). 

The outer loop was described above in Chapter 1; in it we do a sequence of penalized 

reweighted least squares problems, recomputing the objects 𝒛 and 𝑾 at each step. This 

IRLS() function also contains the log sum exponential trick to handle overflow. The 

specifics of this trick are as follows. Keeping in mind that the data have been sorted 

chronologically by follow-up time, for each 𝑖 ∈ 𝐷, find the maximum value of 𝜂 from the 

list of values from 𝜂𝑖 to 𝜂𝑁 and denote it as 𝜂𝑚𝑎𝑥,𝑖. The resulting list contains the 

maximum 𝜂 corresponding with each term in the log partial likelihood. In each term of the 

log partial likelihood we then subtract 𝜂𝑚𝑎𝑥,𝑖 from every 𝜂, as shown below in equation ( 

45), effectively resulting in all 𝜂 ≤ 0 without changing the ratio. 

𝑙(𝜼) = ∑ln(
𝑒𝜂𝑖−𝜂𝑚𝑎𝑥,𝑖

∑ 𝑒𝜂𝑙−𝜂𝑚𝑎𝑥,𝑖
𝑙∈𝑅𝑖

) =

𝑖∈𝐷

∑ln(

1
𝑒𝜂𝑚𝑎𝑥,𝑖

𝑒𝜂𝑖

1
𝑒𝜂𝑚𝑎𝑥,𝑖

∑ 𝑒𝜂𝑙𝑙∈𝑅𝑖

)

𝑖∈𝐷

 

( 45) 

This simplifies to ( 46), where the argument in the logarithm is a sum of numbers, one of 

which is 1, and the rest of which are ≤ 1. Thus, by computing 𝜂𝑖 − 𝜂𝑚𝑎𝑥,𝑖 in the first half 

directly, we avoid underflow from the logarithm and exponential functions, and the 

second half with the log sum exponential prevents overflow. 
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𝑙(𝜼) = ∑(𝜂𝑖 − 𝜂𝑚𝑎𝑥,𝑖 − ln(∑ 𝑒𝜂𝑙−𝜂𝑚𝑎𝑥,𝑖

𝑙∈𝑅𝑖

))

𝑖∈𝐷

 

( 46) 

In the inner loop we use an iterative procedure to solve the penalized reweighted least 

squares step; we now describe the algorithm we settled on for this step. 

In the RStudio environment, it is possible to utilize the optim() function from base 

R to optimize a custom user-defined function. Initially, this seemed to be an ideal way of 

manually implementing the LASSO procedure with the custom goal equation ( 24). The 

problem is that optim() never produces an estimated 𝜷, denoted 𝜷̂, with any coefficients 

which are exactly 0; without exact zeros it is hard to decide what the fitted active set is. 

We therefore replaced optim() with a custom built co-ordinate descent function, CD(), 

which is embedded in Algorithm() and in turn IRLS(), which we now describe.  

In the custom IRLS() function, the steps outlined in Chapter 1 for performing the 

Iterated Reweighted Least Squares approach to solving the LASSO method are 

managed. When the process calls for minimization, IRLS() calls upon Algorithm() and 

passes the relevant 𝒛,𝑾, 𝜷̂ values and the constant 𝑿 and λ values which are then 

passed on to the CD() function. When Algorithm() completes a run, the resulting vector 𝜷̂ 

is passed back to IRLS() which proceeds to update 𝒛 and 𝑾, and checks if the value of 

 𝜷̂ before Algorithm() was called and the 𝜷̂ resulting from Algorithm() are similar enough 

to declare convergence or not. If the difference between the values is below a pre-

determined threshold, then the IRLS() process is considered complete and the final 

vector 𝜷̂ is to give the LASSO estimate, 𝜷̂𝑀̂. If the convergence criterion is not met, then 

IRLS() calls Algorithm() again with the updated 𝒛 and 𝑾. The result from IRLS(), the 

vector 𝜷̂𝑀̂, serves as the starting point for Taylor and Tibshirani’s (2018) new method, as 

the process is described in Chapter 2. 

Algorithm(), manages the tracking of the convergence during the minimization 

process of the goal formula ( 24). Algorithm() calls CD() repeatedly, making note each 

time of the 𝜷̂ being passed into CD() and the new 𝜷̂ being returned by it. Before calling 

CD() again, Algorithm() calculates the absolute differences between the old and new 𝜷̂ 

values, and only calls CD() again if the values have a greater difference than a pre-
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determined threshold. When the difference for all the 𝜷̂ is below the threshold, the 

function is considered converged and the final 𝜷̂ are passed on to the IRLS() function. 

The custom coordinate descent function (CD()) is given the current 𝒛,𝑾, 𝜷̂ values 

(and the unchanging 𝑿 and λ values). The value of the LASSO objective function ( 24) 

with these values is computed and saved for future comparisons. The function then 

updates each of the 𝛽𝑗 values one at a time. The goal function of the LASSO ( 24) is 

non-negative and strictly convex. It is possible to find the value of 𝛽𝑗 which minimizes      

( 24) with all the other co-ordinates of 𝛃 fixed. To do so we compute the derivative with 

respect to 𝛽𝑗 of ( 24). At any non-zero value of 𝛽𝑗 this derivative exists and is given by  

𝜕𝐺(𝛽𝑗)

𝜕𝛽𝑗
=

𝜕 (
1
2

(𝒛 −  𝐗𝛃)𝑇𝑾(𝒛 −  𝐗𝛃) + λ∑ |𝛽𝑗|
𝑝
𝑗=1 )

𝜕𝛽𝑗
= {

𝑿𝑗′𝑾𝑿𝑗𝛽𝑗  −  𝒛′𝑾𝑿𝑗 − λ  if 𝛽𝑗 < 0  

𝑿𝑗
′𝑾𝑿𝑗𝛽𝑗  −  𝒛′𝑾𝑿𝑗 + λ  if 𝛽𝑗 > 0 

 

( 47) 

where 𝑿𝑗 is the 𝑗-th column of the 𝑿. When 𝛽𝑗 = 0, this strictly convex function 𝐺(𝛽𝑗) is 

not differentiable, but it does have left and right derivatives at 0 given by  

𝜕𝐺(0−)

𝜕𝛽𝑗
= −𝒛′𝑾𝑿𝒋 − λ 

( 48) 

and 

𝜕𝐺(0+)

𝜕𝛽𝑗
= −𝒛′𝑾𝑿𝒋 + λ 

( 49) 

For a strictly convex function, any place where the function is differentiable and the 

derivative is 0 must be the global minimum. If the global minimum is at a place where the 

function is not differentiable but has left and right derivatives, then the left derivative at 

that point must be non-positive and the right derivative must be non-negative. Thus, to 

minimize 𝐺(𝛽𝑗) our algorithm first computes the left and right derivatives at 0. If they are 

opposite in sign, as shown in Figure 3.1, then the function sets  𝛽𝑗 to 0 and moves on. 



28 

 

Figure 3.1: Visual of Coordinate Descent Logic for Minimization Achieved at 0 

If both derivatives are positive, then the minimum occurs at a negative 𝛽𝑗, as shown in 

Figure 3.2. 

 

Figure 3.2: Visual of Coordinate Descent Logic for Minimum to the Left of 0 

We find this estimate by setting the top formula on the right-hand side of ( 47) equal to 0 

and solving for 𝛽𝑗, resulting in equation ( 50). 

𝛽̂𝑗 = (𝑿𝑗
′𝑾𝑿𝑗)′(𝒛

′𝑾𝑿𝑗 + λ). 

( 50) 

If both derivatives are negative, then the minimum occurs at a positive 𝛽𝑗, as shown in 

Figure 3.3.  
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Figure 3.3: Visual of Coordinate Descent Logic for Minimum to the Right of 0 

This is found by setting the bottom formula on the right-hand side of ( 47) equal to 0 and 

solving for 𝛽𝑗, resulting in equation ( 51).  

𝛽̂𝑗 = (𝑿𝑗
′𝑾𝑿𝑗)′(𝒛

′𝑾𝑿𝑗 − λ). 

( 51) 

After updating an individual  𝛽̂𝑗, CD() updates the value of the objective function and 

then proceeds to update the rest of the  𝛽̂𝑗. A single call of CD() will update each 𝛽̂𝑗 once 

in a single pass and finish by returning the final values of the updated 𝜷̂ to Algorithm().  

In addition to implementing Taylor and Tibshirani’s method (2018), we fitted the 

corresponding unpenalized CoxPH model fit for the specific simulated data set and 

chosen variables. By using only the variables selected by the LASSO procedure in the 

CoxPH model, the estimates (𝛽̂𝐶𝑜𝑥𝑃𝐻𝑀̂
) are made comparable to those found in the new 

method (𝜷̅𝑀̂), since the datasets are standardized. Tracking these values over numerous 

simulations in various settings will provide a way of visualizing the differences, and 

potential improvements, of one method over the other.  

In Chapter 1, in our discussion of linear regression and model selection, we 

introduced the notation 𝜷𝑀̂
∗ , which minimizes (𝝁𝒀 − 𝑿𝑀̂𝜷)′(𝝁𝒀 − 𝑿𝑀̂𝜷) over 𝜷, in linear 

models. When a potential ‘active’ set 𝑀̂ does not contain every active variable, the 

quantity 𝜷𝑀̂
∗  is not equal to the subvector 𝜷𝑀̂ of the true 𝜷 vector. Instead, 𝜷𝑀̂

∗  is the 
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expected value of the ordinary least squares estimate 𝜷̂𝑀̂ = (𝑿𝑀̂′𝑿𝑀̂)−1𝑿𝑀̂′𝒚 (analogous 

to equation ( 4)). That is, 𝜷𝑀̂
∗ = (𝑿𝑀̂′𝑿𝑀̂)−1𝑿𝑀̂′𝝁𝒀. Here, 𝝁𝒀 = 𝐸(𝒚) and it is not generally 

true that 𝝁𝒀 = 𝑿𝑀̂𝜷𝑀̂
∗ . The estimates from these models (𝜷𝑀̂

∗ ) represent the 

corresponding true 𝜷 values for the model containing the specified variables 𝑀̂. If all the 

truly active variables are selected in 𝑀̂, then 𝜷𝑀̂
∗  should be the same as 𝜷, since any 

additional variables would be set to their true value of 0. However, if at least one truly 

active variable is not selected, then there will be differences between 𝜷𝑀̂
∗  and 𝜷, since 

other variables now need to account for the effect of the dropped active variable. 

Tracking these values will help provide insight on how various estimation methods 

compare to each other and which methods maintain the most accuracy over various 

scenarios. 

To quantify coverage probability in a meaningful and time-efficient manner, 

hypothesis tests were done to determine whether or not the true values of the model, 

𝜷𝑀̂
∗ , would be captured by 95% confidence intervals. Using 𝜷𝑀̂

∗  in equation ( 44) and 

then determining the p-value for a two-sided hypothesis test makes this possible with the 

following hypotheses. 

𝐻0: 𝜷̅𝑀̂ = 𝜷𝑀̂
∗  

𝐻1: 𝜷̅𝑀̂ ≠ 𝜷𝑀̂
∗  

If the resulting p-value is greater than 0.05, then the corresponding new 95% confidence 

interval is successful in capturing the true model values 𝜷𝑀̂
∗ . It is theoretically possible to 

create confidence intervals with the cumulative distribution function 

𝐹
𝜷𝑀

∗ ,(𝑿𝑀
𝑇 𝑾𝑿𝑀)

−1
𝒱−(𝑟),𝒱+(𝑟)

(𝜷̅𝑀)|{𝑨𝒛 ≤ 𝒃}, however, since this distribution does not have easy 

algorithms for quantiles such as are available in the Normal distribution case, this would 

involve heavy computation and careful numerical work in determining limits on these 

intervals. By using a direct hypothesis test, we are able to obtain a measure of the 

coverage probability without going through the additional mathematical challenges in 

creating the actual confidence intervals for every simulation performed.  

In summary, for each simulation the following details are collected and saved to 

be used in further analysis: 
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• ‘True’ 𝜷 used to create simulation 

• Pre-determined λ used 

• Which variables are chosen 𝑀̂ 

• The observed P-Values from the adjusted method  

• The lower limit of the polyhedral lemma 𝒱−(𝑟) 

• The upper limit of the polyhedral lemma 𝒱+(𝑟) 

• The 𝜷̂𝑀̂ from the LASSO procedure 

• The 𝒛 =  η + 𝑾−1𝑼(η) 

• The 𝜷̅𝑀̂ resulting from the adjusted method 

• The test statistic using 𝐹
𝜷𝑀̂

∗ ,(𝑿𝑀̂
𝑇 𝑾𝑿𝑀̂)

−1
𝒱−(𝑟),𝒱+(𝑟)

(𝜷̅𝑀̂)|{𝑨𝒛 ≤ 𝒃} for null hypothesis 

𝐻0: 𝜷̅𝑀 = 𝜷𝑀̂
∗ = 0 

• The observed traditional 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂
 from the CoxPH model after LASSO 

selection 

• The observed traditional P-Values from the CoxPH model after LASSO 
selection 

• The observed traditional Z-statistics from the CoxPH model after LASSO 
selection 

• The corresponding ‘true’ 𝜷𝑀̂
∗ , which results from linear regression of the known 

𝝁𝒀 on the covariates selected (𝑀̂) 

• The observed traditional P-Values associated with 𝜷𝑀̂
∗  

• The observed traditional t-statistic associated with 𝜷𝑀̂
∗  

• The test statistic using 𝐹
𝜷𝑀̂

∗ ,(𝑿𝑀̂
𝑇 𝑾𝑿𝑀̂)

−1
𝒱−(𝑟),𝒱+(𝑟)

(𝜷̅𝑀̂)|{𝑨𝒛 ≤ 𝒃} for null hypothesis 

𝐻0: 𝜷̅𝑀 = 𝜷𝑀̂
∗   

• How many variables are chosen 

• How many of the chosen variables are from the ‘true’ active variables 𝑀 

• How many of the chosen variables are from the ‘true’ inactive variables −𝑀 

• Whether the simulation was successful or not (convergence and boundary 
problems will cause a simulation to terminate with error)  
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Chapter 4.  

Once all the simulations are complete and the results collected, we are ready to 

summarize and analyze these results. In this chapter, we go through the results of the 

simulations in detail. Interesting results are summarized in visuals and problems 

encountered are noted. We finish this chapter with a conclusion to highlight key 

takeaways from the study and a discussion on possible further work and additional 

exploration for future studies. 

4.1. Results 

In this Monte Carlo study, 10000 simulations were run at each of the pre-

determined settings (Table 3.5). However, some simulated datasets came to no 

conclusion due to errors encountered with numerical difficulties. The speculated causes 

of these errors, principally overflow, were discussed earlier in Chapter 3. These errors 

were tracked in two main groups: solutions occurring at boundaries of the goal function 

and no solutions because of no convergence. The table below (Table 4.1)  summarizes 

the counts of these failed simulations in each setting. It is clearly shown in the table that 

some settings have more failed simulations than others. In particular, the setting with the 

large 𝜷 values (10𝜷) contains the most, having only 8032 successfully completed 

simulations. Although this may appear as alarming initially, it is important to notice that 

these inflated 𝜷 are exaggerating the effect of the active covariates to an unrealistic 

extent but are being utilized to enforce the base assumptions for the theory. In the 

settings were 𝜷 are closer to the coefficients in original data set, the rate of simulation 

failure is typically less than 1%, and therefore these are not terribly concerning for this 

study. 
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Table 4.1: Counts of Failed Simulations at Each Setting 
 

Pre-Determined 𝛌 Values for Use in Methods 

𝛌 = 1.361389 𝛌  = 6.806945 𝛌  = 13.61389 

Censor No 
Censor 

Censor No 
Censor 

Censor No 
Censor 

𝜷 Values 
Used to 
Create 

Small 
(𝟎. 𝟏𝜷) 

NA NA B – 0 

C – 0 

BC – 0 

NV – 0 

B – 0 

C – 0 

BC – 0 

NV – 0 

NA NA 

Regular 

(1𝜷) 

B – 87 

C – 75 

BC – 311 

NV – 1 

* 

B – 24 

C – 19 

BC – 51 

NV – 0 

B – 15 

C – 17 

BC – 22 

NV – 0 

B – 3 

C – 2 

BC – 6 

NV – 0 

B – 0 

C – 1 

BC – 0 

NV – 0 

B – 1 

C – 0 

BC – 0 

NV – 0 

Large 

(𝟏𝟎𝜷) 

NA NA B – 635 

C – 854 

BC – 468 

NV – 2 

** 

B – 69 

C – 94 

BC –47 

NV – 1 

NA NA 

Legend: 
B – solutions on boundary (cause overflow) 
C – failure to converge 
BC – failure to converge and last result at boundary 
NV – no variable selected for model, thus no theory can be applied 
* 5 additional failures occurred within the CD() function, likely due to overflow 
** 9 additional failures occurred within the CD() function, likely due to overflow 

The key assumption in Taylor and Tibshirani (2018) is that the active set of 

variables is chosen correctly, more commonly referred to as being ‘correctly screened’. If 

at least all the active variables are selected, then the theory claims to create confidence 

intervals with appropriate coverage probability. However, if even one active variable is 

missed, then the assumption is not met, regardless of how many other variables are 

selected in its place. There are three ways that this selection process can be affected:  

the size of the penalty used, the pre-determined λ; and the intensity of the variable 

effects, either in terms of the size of 𝜷; or in terms of the amount of censoring. Shown 

below are two tables (Table 4.2, Table 4.3) displaying the proportion of models which 

contained at least all the active variables, thus satisfying the above assumption, at each 

setting. The first table (Table 4.2) displays the proportion of total correctly screened out 

of the total number of simulations attempted. The second table (Table 4.3) displays the 
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total correctly screened out of the total number of successfully completed simulations, 

thus removing any simulations considered as failures. 

Table 4.2: Proportion of Correctly Screened Models Out of All 10000 Simulations 
 

Pre-Determined 𝛌 Values for Use in Methods 

𝛌 = 1.361389 𝛌  = 6.806945 𝛌  = 13.61389 

Censor No 
Censor 

Censor No 
Censor 

Censor No 
Censor 

𝜷 Values 
Used to 
Create 

Small 
(𝟎. 𝟏𝜷) 

NA NA 0.0045 0.0262 NA NA 

Regular 

(1𝜷) 

0.5510 0.7478 0.1401 0.3847 0.0614 0.2997 

Large 

(𝟏𝟎𝜷) 

NA NA 0.8011 0.9789 NA NA 

The most noticeable difference occurs in the last row, where the large 𝜷 vector is used. 

This difference is due to the large number of failed simulations being removed from the 

total simulations considered. Thus, for large 𝜷, when the simulation is successfully 

completed, the assumption of correct screening is essentially guaranteed to be met. 

However, for the other settings, it is evident from the above table that the probability of 

meeting the assumption of variables being correctly screened ranges from low to high. 

Correct screening is therefore not necessarily a credible assumption to make. Keeping 

this in mind, we continue to evaluate and analyze the results from the study. 

Table 4.3: Proportion of Correctly Screened Models Out of Successfully 
Completed Simulations 

 

Pre-Determined 𝛌 Values for Use in Methods 

𝛌 = 1.361389 𝛌  = 6.806945 𝛌  = 13.61389 

Censor No 
Censor 

Censor No 
Censor 

Censor No 
Censor 

𝜷 Values 
Used to 
Create 

Small 
(𝟎. 𝟏𝜷) 

NA NA 0.0045 0.0262 NA NA 

Regular 

(1𝜷) 

0.5787 0.7549 0.1409 0.3851 0.0614 0.2997 

Large 

(𝟏𝟎𝜷) 

NA NA 0.9974 1.0000 NA NA 
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It is known that there are seven variables in the active set 𝑀 from the established 

truth, though it is also seen that these seven active variables are not always chosen 

together for most models. Most models include more than seven variables in the model 

by including non-active variables. The sizes of the models typically selected at each 

setting is displayed in the histogram grid below (Figure 4.1). These histograms only 

consider the cases where simulations were successfully completed, allowing the total 

areas under the curves to sum to one. As is the nature of LASSO, the selection process 

attempts to keep enough variables to adequately model results without including too 

many. As the LASSO penalty increases (towards the right side of the grid), the size of 

the models selected decreases compared to the setting with a lower LASSO penalty (on 

the left side of the grid). A moderate LASSO penalty (in the center columns of the grid) 

appears to typically select models of roughly the same size regardless of the 𝜷 size with 

some slight variation along the 𝜷 values. Overall, the models tend to contain more than 

seven variables, though not necessarily all the active variables. This is shown clearly in 

the next histogram grid below (Figure 4.2). 

 

Figure 4.1: Histogram Grid of Number of Variables Selected in Models 
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Figure 4.2: Histogram Grid of Number of Active Variables Selected in Models 

Most notably, the scenario aimed at guaranteeing the correct screening assumption 

(bottom row with large 𝜷) does indeed select all the active variables, 𝑀, in every model 

where the simulation was successfully completed. In the scenario with the moderate, 

and realistic, 𝜷, some of the active variables tend to be missed in the model selection. 

This tendency gets worse as the LASSO penalty increases; larger penalties produce 

fewer correctly screened models in Table 4.3. Understanding that the assumption of 

correct variable screening is usually not credible, and in the case where it is credible 

there are other numerical problems that arise, we proceed to investigate the behaviours 

of the various methods and the coverage probability of the confidence intervals. 

Taylor and Tibshirani (2018) apply their new method to the original liver data. 

Though there are some minor differences in set up, such as dropping cases with missing 

data instead of mean imputation, the theory applied in their paper behaves in the same 

manner as the theory applied in this study. This is most notably seen in the visual 

representations comparing the distribution of p-values between the new method and the 

traditional CoxPH method. The graphs obtained using our own results are shown below 

(Figure 4.3). The graph on the left corresponds with the graph for the liver data shown in 
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Taylor and Tibshirani (2018), but with the axes flipped. The p-values displayed in these 

graphs (Figure 4.3) are concerned with testing for significance of the variable of interest 

at a 95% confidence level, therefore the hypotheses are  

𝐻0: 𝛽𝑗 = 0 

𝐻1: 𝛽𝑗 ≠ 0. 

If the null hypothesis (𝐻0) is true, then the resulting p-values are expected to have a 

uniform distribution, which is marked as a red line on the graphs. For the truly inactive 

variables (the variables for which the null hypothesis is true), if p-values are below the 

red line then this indicates Type 1 error rates going above the allowable Type 1 error 

rate, also known as an anti-conservative test (Taylor & Tibshirani, 2018). In contrast, 

when the p-value is below the red line for the truly active variables, this indicates power 

of the test (Taylor & Tibshirani, 2018). Keeping these explanations in mind, an ideal test 

would have p-values along the red line for truly inactive variables while still having p-

values below the red line for truly active variables, creating a balance for Type 1 error 

and power. This behaviour is observed for the adjusted p-values in the graphs below 

(Figure 4.3). The traditional p-values from the CoxPH model, however, tend to have 

lower observed values than expected in both graphs, an indication that the p-values are 

not performing as they should. 

 

Figure 4.3: Expected VS Observed P-Values for All Inactive and All Active 
Variables Across All Simulations, Moderate λ and Moderate β 
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Even though the setting of censored data with a moderate λ and moderate 𝜷 only 

correctly screens the variables 14.09% of the time, the p-value distributions of the new 

method appear to outperform those of the traditional method, according to the graphs 

above (Figure 4.3). The new method continues to outperform the traditional method in 

terms of coverage probability, as shown in Figure 4.4. In these graphs we utilize the 

probability that 𝜷𝑀̂
∗ , the true 𝜷 corresponding with the selected model, is included in the 

95% confidence intervals (the method for calculating these probabilities for the new 

method was discussed in Chapter 3). Manipulating the Z-statistic with 𝛽̂𝐶𝑜𝑥𝑃𝐻𝑀̂
 from the 

traditional CoxPH model, we are able to obtain the corresponding standard errors for 

these estimates. These are taken and used to determine traditional p-values for the 

following hypotheses 

𝐻0: 𝜷𝐶𝑜𝑥𝑃𝐻𝑀
= 𝜷𝑀̂

∗  

𝐻1: 𝜷𝐶𝑜𝑥𝑃𝐻𝑀
≠ 𝜷𝑀̂

∗  

If the resulting p-value is greater than 0.05, this indicates that 𝜷𝑀̂
∗  is included in the 

traditional 95% confidence interval. 

For each variable, the number of confidence intervals which successfully 

captured 𝜷𝑀̂
∗  over the total number of confidence intervals created for that variable (how 

often it was chosen) provides the estimate of the coverage probability. In the left graph, 

all the models are considered for these calculations, while the right graph considers only 

models which met the correct screening assumption. Since the nature of these coverage 

probabilities is binomial, the corresponding 95% Wald Confidence Intervals for the 

Binomial random variable are displayed for each variable as well. 
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Figure 4.4: Comparison of Coverage Probabilities for All Models (left) and Models 
Correctly Screened (right), Moderate λ and Moderate β 

An interesting observation from the left graph in Figure 4.4 is that even with most 

models failing to be correctly screened, Taylor and Tibshirani’s (2018) method appears 

to be more stable across the variables and has better coverage probability than the 

traditional CoxPH model. This characteristic of the coverage probability for Taylor and 

Tibshirani’s (2018) method is present in all the settings explored (for those who are 

curious, graphs for each setting can be found in the Appendix). A surprising result, 

however, was found in the setting for censored data with moderate λ and high 𝜷, as 

shown in Figure 4.5. While Taylor and Tibshirani’s (2018) method still outperforms the 

traditional method, it is surprising to see that in the setting where the assumption is 

guaranteed to be met, the methods perform worse than those in the other settings. This 

is most noticeable for the variables bili and albumin, two variables known to be most 

significantly active. This particular setting also has surprising results when examining 

and comparing estimations from various methods in Figure 4.6. 
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Figure 4.5: Comparison of Coverage Probabilities for All Models (left) and Models 
Correctly Screened (right), Moderate λ and High β 

Values in Figure 4.6 are calculated as mean estimates for each type of 

estimation method. More specifically, for each variable and each estimation method, the 

sum of all estimates is divided by the number of estimates made; each variable has a 

different denominator. Labels in the legend correspond to the tracked estimates as 

follows: TrueB = 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; and B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

. In the 

graphs below (Figure 4.6), we expect to see the 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂
 to be closer to 𝜷 than 𝜷̂𝑀̂ since 

𝜷̂𝑀̂ includes penalties. However, the relationship of these is completely opposite in this 

setting. We explored this strange result slightly by testing our own version of the 

methods with λ = 0. This effectively makes our code run the same equations as the 

theoretical CoxPH model and should result in 𝜷̂𝑀̂ = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂
, which was indeed the 

result. Thus, the post-selection inference techniques being used here appear to work 

well in terms of coverage probability and level of hypothesis tests, but our results 

highlight a potential problem with how CoxPH models fitted using coxph() in R handle 

large 𝜷 values. Since this phenomenon is not the primary focus of the study, no further 

exploration was carried out on this particular issue. 
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Figure 4.6: Comparison of Estimations from Various Methods, Censored Data with 
Moderate λ and High β 

 

Figure 4.7: Comparison of Estimations from Various Methods, Censored Data with 
Moderate λ and Moderate β 

The graphs above (Figure 4.7), provide an example of the estimation behaviours in the 

other settings where, as a general rule, the estimates from all the methods are relatively 

close to the true 𝜷. In all the settings, except for the previously mentioned high 𝜷, the 

estimate from the new method, 𝜷̅𝑀̂, and the traditional CoxPH model estimates, 
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𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂
, are almost identical. This is reassuring as it indicates that the new method is 

establishing values that are appropriate for the survival analysis setting and are in 

agreement with the traditional CoxPH values. However, the new method has the 

advantage of more stable and credible coverage probability compared to the traditional 

CoxPH method, as noted in the discussion about Figure 4.4. 

4.2. Conclusion 

Overall, Taylor and Tibshirani’s (2018) new method appears to be a better 

method for achieving relatively reliable estimators with post-selection inference 

capabilities. In all the settings tested in this study, the new method certainly appears to 

outperform other methods in terms of coverage probability. Even in extreme 

circumstances, such as when the assumption of correct screening of the variables is 

usually not met, this method still produces coverage probabilities that outperform those 

of other traditional methods. The estimates of the 𝜷, however, appear to be slightly 

further from the true values than those in the cases where the assumption is met more 

regularly, though they are not further than any of the other methods considered. Though 

it is beneficial to gain post-selection inference capabilities without sacrificing reliability of 

the estimators too much, this method can present very difficult numerical challenges. In 

this study, some of these problems, such as overflow, could be handled by careful 

numerical work, but other problems arising from arithmetic difficulties, such as solutions 

occurring on boundaries, are still in need of a solution. In our case, since the solutions to 

these were not the focus of the study, we noted the problems and reported them (in 

Table 4.1). After considering and evaluating the results from all the various simulations 

in this study, we can conclude that Taylor and Tibshirani’s (2018) new method is 

definitely worth consideration as a way of finding relatively reliable estimators with post-

selection inferences capable of achieving credible coverage probabilities. 

4.3. Discussion 

There are evidently benefits to Taylor and Tibshirani’s (2018) new method, 

though there are still some additional challenges and alternative situations to be 

explored. In this study we saw how most of the settings tested, even with a decent size 

data set, resulted in the assumption of correct variable screening not being met, and in 
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the one setting where it was met there were numerous other arithmetic problems that 

arose. Further study could perhaps explore if the problem of meeting the assumption 

can be solved with larger datasets. In addition, it would be interesting to see how this 

theory behaves on different datasets, such as a dataset containing more variables than 

observations. This may even yield a preferred method for estimation and inference on 

these types of datasets where traditional methods, such as CoxPH models, are not 

possible. However, before this method could truly be accessible, solutions are needed 

for the numerical difficulties that are present in the equations. This would be another 

area that could be explored further; if better methods for optimization of the goal function 

can be determined, then potentially the problems of solutions occurring at boundaries or 

lack of convergence could be solved. 
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Appendix A. 
 

Visualize Results for Censored Data, Moderate 𝛌, Low 𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). Note that in this particular 
graph, the Bonferroni Simultaneous Corrected level is lower than anticipated, but this is due to 
the Bonferroni missing the value 3 times out of the 45 models where the assumption was met. 
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Visualize Results for Non-Censored Data, Moderate 𝛌, Low 

𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). 
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Visualize Results for Censored Data, Moderate 𝛌, Moderate 

𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). 
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Visualize Results for Non-Censored Data, Moderate 𝛌, 

Moderate 𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). 
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Visualize Results for Censored Data, Moderate 𝛌, High 𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). 
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Visualize Results for Non-Censored Data, Moderate 𝛌, High 

𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). 
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Visualize Results for Censored Low 𝛌, Moderate 𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). 
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Visualize Results for Non-Censored Data, Low 𝛌, Moderate 

𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). 
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Visualize Results for Censored Data, High 𝛌, Moderate 𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). 

  



72 

Visualize Results for Non-Censored Data, High 𝛌, Moderate 

𝜷: 

 
Top Left: Histogram to visualize the probability each variable is chosen in the current setting; the 
proportion is calculated as number of times chosen/number of successful simulations. Note that 
LASSO struggles to correctly screen variables with smaller true parameter values (they appear 
insignificant) 
Top Right: Visual of various estimates from different methods on each variable. Values are 
calculated as sum of all estimates (of one type)/number of estimates made (of same type). TrueB 

= 𝜷; B_Bar = 𝜷̅𝑀̂; B_hat = 𝜷̂𝑀̂; B_lm = 𝜷𝑀̂
∗ ; B_Cox = 𝜷̂𝐶𝑜𝑥𝑃𝐻𝑀̂

 

Bottom Left: Similar to Top Right, all simulations 
Bottom Right: Similar to Top Right, but only correctly screened simulations 
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Top Left: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; all models were considered for the calculations. 
Top Right: Average p-value for each variable, calculated as the sum of the p-values/number of p-
values calculated; only models with correct variable screening were considered for the 
calculations. 
Bottom Left: Expected VS Observed P-Values for all truly inactive 𝜷 across all models; values 
along red line indicates proper Type 1 Error rate control, while values below red line indicate 
higher Type 1 Error rate than allowable 
Bottom Right: Expected VS Observed P-Values for all truly active 𝜷 across all models; values 
below red line indicates power of test while values along or above red line indicate no sensitivity 
and thus poor power 
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Left: Display of coverage probability for each variable across all simulations. Coverage probability 
estimate is determined using methods discussed in Chapter 4. Note that these coverage 
probability estimates are binomial (either cover truth or do not), and thus the Confidence Interval 
included on the graph is a 95% Wald Confidence Interval based on a Binomial Random Variable. 
Right: Same calculations as the left graph, but only simulations where models were correctly 
screened are included (assumption must be met to be considered). 

 

 


