
March 13, 2022

Dr. Michael Hegedus
School of Engineering
Simon Fraser University
8888 University Drive
British Columbia, V5A 1S6

RE: ENSC 405/440 Design Specification for Snack Bot O7

Dear Dr. Hegedus,

This design specifications document for SnackBot O7 was prepared by Robo Snacks Company
7 for our Capstone courses.

Our goal is to autonomously deliver snacks to conference rooms, networking events and
presentations happening on university campuses and offices before an event begins. Snack Bot
O7 is targeted towards catering services that deliver to such events and locations.

The attached Design Specifications document will describe the various subsystems of the
Snack Bot O7. These include schematics, rough diagrams, block diagrams and background
theory for the hardware and software for movement of the robot, its perception system, and the
associated user interface. The document will also describe how these subsystems are
integrated and interact with each other.

We would like to thank you in advance for taking your time to review this document. If you have
any questions, please email us at skd24@sfu.ca.

Sincerely,

Sirpreet Kaur Dhillon
CEO
Robo Snacks Company 7 (RSC-7)

1

mailto:skd24@sfu.ca

Design Specifications
Snack Bot O7

Presented by:

Robo Snacks Company 7

Company No. 7
Date: March 13th, 2022

Authors (Team Members)
Roles / Affiliations

Full Name Email

Favour Amah-Nnachi famahnna@sfu.ca Firmware Lead

Sirpreet Kaur Dhillon skd24@sfu.ca Automation Team, and
Structure Team

Emmanuel Komolafe ikomolaf@sfu.ca Systems Lead, and
Automation Team

Veronica Lund vlund@sfu.ca Automation Team

Robert Smyczynski rsmyczyn@sfu.ca Electronics, and Structure
Lead

Eddie Zheng eza7@sfu.ca Automation Lead

2

Abstract
Presentation rooms, board rooms and Conference halls are pre-stocked with snacks during an
event by the catering services. This process can be automated to save time and resources of
several catering companies that operate in offices and university campuses. The Snack Bot O7
uses indoor localization and navigation to deliver snacks to conference and presentation rooms
during off hours.

This document aims to outline all hardware and software design specifications and will serve as
a reference for the design team and when assessing the project’s success and whether the
project’s goals have been met.

3

Table of Contents

Abstract 3

Introduction 4

Structure & Mechanics 6
Weight Design Requirements 9

System Design 11
Design Overview 11
Communication between Systems 13
Perception System 14
Robot Movement System 15
Power Management System 18
Locking System 20

User Interface Design 22
Graphical Presentation 22

Alpha UI 22
Beta Software UI 23

Autonomous Movement Software Design 25

Conclusion 28

References (for everything above) 28

APPENDIX: Design Alternatives 30
Motor Alternatives 30
Microcontroller Alternatives 30
Structure Alternatives 30
ROS Alternatives 30
References 30

APPENDIX B: Test Plan 32
Introduction 32
References 36

4

List of Figures
Figure 1: Schematic of Snack Bot O7’s structure
Figure 2: Snack Bot O7’s underside to show wheel positioning
Figure 3: Snack Bot O7’s top view
Figure 4: Weight calculations
Figure 5: System Block Diagram for Snack Bot O7
Figure 6: Flowchart
Figure 7: Serial Communication between [1]
Figure 8: (a) RP LIDAR M8A1 and, (b) LIDAR USB Serial Port Adapter Board [3]
Figure 9: LiDar connected to adapter board [4]
Figure 10: RP LiDar A1M8’s structural schematic [3]
Figure 11: (a) Brushless DC in-wheel hub motor (b) Internal setup showing the 3 out of phase
inputs needed to run the motor
Figure 12: Exploded Diagram of the BRushless DC In-wheel hub motor
Figure 13: Brushless Hall Motor Controller Speed Controller 5V‑36V 350W
Figure: 15: Electromagnet and Armature plate used for the locking mechanism [7]
Figure 16: Layout for the remote controller
Figure 17: User Interface for the proposed Android App
Figure 18: Diagram of data flow using ROS Navigation [2]

List of Tables
Table 1: Structure and Mechanical Design Specifications
Table 2: Communication Design Specifications
Table 3: Perception System Design Specifications
Table 4: Movement System Design Specifications
Table 5: Power Management System Design Specifications
Table 6: Locking Mechanism Design Specifications
Table 7: Locking Mechanism Design Specifications

5

Introduction

This document highlights the design specifications and design decisions for the Snack Bot O7
robot. Snack Bot O7 is a self-driving robot that is pre-stocked with snacks and drinks for delivery
to the requested locations by the customers, such as conference rooms or a study hall. The
robot operates during off hours to mitigate the risk of running into people and having difficulty
maneuvering through crowds. These situations can hinder the robot from navigating to the
correct location or increasing the amount of time it takes to reach the customers.

The objective for this robot is to autonomously deliver snacks to a user in a meeting room in a
safe and efficient way, thereby providing a convenient catering service for the customers. To
achieve this goal, the Snack Bot robot would need to scan its environment for objects, then
navigate through these objects in the environment to a predefined destination. The Snack Bot
O7 would utilize the integration of LIDAR (Light Detection and Radiation) technology, ROS NAV
and a Raspberry PI 4 which would be discussed in the following sections in greater detail.

Taking into consideration the feedback received, we have made the following changes to our
initial project,

● Redefined targeted customers to catering service companies.
● Renamed the robot from RSC-07 A1 to Snack Bot O7 for readability.
● Chassis design structure changed from a 3 omni wheeled to a design with 2 castors

and 2 driving wheels for better stability.

These changes have been incorporated into these design specifications.

6

Structure & Mechanics

Figure 1: Schematic of Snack Bot O7’s structure

Structure is taken in careful consideration of our design, as it has to meet the
requirements for safety and protection of the internal components while also maintaining full
functionality. Snack Bot O7's objective is to provide a product that will be able to last years of
wear and tear for moderate to heavy usage. Catering companies should be able to open up the
product and use the robot while not having to worry about maintenance.

In the figure 1 above, the schematic of the overall structure is provided. The structure will
be constructed from two main components: a chassis and a body. The chassis will be built from
two rectangular plywood pieces of ¾” thickness that are 50 centimeters in length and 35
centimeters in width. They will be placed on top of each other using wooden beams as support,
with about 3” of air gap. In between the two pieces, the essential components of the robot will
be placed. This includes the electronics, microcontrollers, battery, motors and other smaller
parts. In the provided drawings, this is seen as two rectangular holes in the bottom of the
structure. During the initial phases, this will be left uncovered to provide easy access for

7

troubleshooting the electrical components. However, in later stages, there will be a thin cover
screwed onto the sides to protect both the robot from the outside environment and the user from
any harm.

Figure 2: Snack Bot O7’s underside to show wheel positioning

In the figure 2 above, the bottom side of the robot is shown to indicate positioning of the
wheels. The configuration includes two driving wheels, placed on the top and bottom of the
structure that will be powered by motors and provide the torque necessary to move the robot.
On the left and right of the chassis, casters will be screwed underneath. The main purpose is to
keep the structure stable during movement. A configuration of four casters were considered as
well, for optimal balance and may be reconsidered after further testing. The hub motor wheels
need to be attached to a fixed end onto the chassis, therefore it will be coupled onto another
piece of wood. It may be viewed in the previous figures as the structural piece separating the
storage for electrical components.

8

Figure 3: Snack Bot O7’s top view

The top portion of the structure (Figure 3) will hold the catering company’s food items.
The shape will follow that of the chassis, however it will need to be enclosed with a lid to protect
from outside elements. The lid will include an electromagnetic lock. As seen in the figure above,
the inner hold is divided into four sections. From a practical standpoint, each section could hold
a different variety of snacks/drinks and prevent the softer food items from being crushed by the
heavier drinks.

9

Weight Design Requirements

Figure 4: Weight calculations

For Phase 1, the material used will be plywood as it provides a sturdy structure while still
being able to make changes to prototype rapidly. However, for further phases of design, the
material will be readjusted to a form of plastic. As seen from the calculations above (Figure 4),
the rough estimate of the weight of the structure will be around 18 pounds.

10

Design ID Design Specification
Requirements

Corresponding
Requirements ID

Des 1.1 A Structure will be made of
dense materials, such as
wood or plastic, that will be

Req. 7.1:
Chassis must be able to
support up to 50 lbs of weight

Des 1.2 B Wooden structure can
withstand impact, further
testing can be implemented

Req. 7.2:
Initial structure must be rigid
enough to survive impact with
hard objects

Des 1.3 B, C For future stages of
development, the wooden
structure will be converted to
plastic.

Req. 7.4:
Final design must include a
combination of plastic and
metal for the outer structure

Des 1.4 B, C Structure was sized to weigh
about 18 pounds. Motors and
electrical components weight
is minimal, should be less
than 20 lbs.

Req. 7.5:
Device should not exceed
100 lbs in weight

Des 1.5 C The food storage structure
will be separated from the
chassis to avoid possible
leaks/spillage.

Req. 7.10:
For waterproofing the final
product, a box type of
lockable structure will be
secured onto the final chassis

Table 1: Structure and Mechanical Design Specifications

11

System Design

Design Overview
The Snackbot System can be divided into four main system:

1. Perception System,
2. Robot Movement System,
3. Locking System (or mechanism), and
4. Power Management System

The below figure 5 shows the system block diagram of Snack Bot O7. All the different systems
are labeled and the connections and feedback shown with arrows. These systems are
discussed in detail in the following sections.

Figure 5: System Block Diagram for Snack Bot O7

12

https://app.diagrams.net/?page-id=OOF0Wo-Ix9tosn1eqT_T&scale=auto#G1thDwWxZp4czAiEQz9yG6uV8bt9zmrTNe

The flowchart shown in figure 6 describes the different states the SnackBot O7 will be in and the
signals responsible to change states. There is a basic error state defined in the below diagram.
This state will be improved on and will be active in case the robot runs into any unusual
situations.

Figure 6: Flowchart

13

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1HBaVDr25jTWiH783xbNkNY51nwh0OL5z

Communication between Systems
The SnackBot O7’s entire system is controlled by two microcontrollers. The perception system
which includes LIDAR and Uart-USB adapter boards is controlled by Raspberry Pi 4 while all
other systems are controlled by the Arduino. Arduino controls the robot’s movement system
(motors and wheels), Locking mechanism and the power system.

It is essential that each system communicates with the other systems and maintains proper
functionality.

Communication between the perception system’s brain (Raspberry Pi 4) and Arduino UNO is
set up using a USB wire connection as shown in Figure [1].

Figure 7: Serial Communication between [1]

Communication between Arduino UNO and the Power management system is set up through a
relay shield. Relay is in a Normally Closed state until a sleep signal is sent to the relay which
disconnects the power supply from the 36 V battery to the Motor Driver for the Brushless DC
wheel hub motors.

The Arduino also sends signals to the Electromagnetic locking mechanism for the snacks
container. It locks and unlocks based on the signal sent to the Arduino Pin.

Design ID Design Specification Requirements Corresponding
Requirements ID

Des 2.1 A Serial Communication Set up between Raspberry Pi
and Arduino through a wired USB connection

Req: 5.1 A
Raspberry Pi and
Arduino should be
able to send and
receive signals
between each other

Table 2: Communication Design Specifications

14

Perception System
Once the robot goes into ‘Go State’, the Lidar and Raspberry Pi start mapping out the
environment and making decisions to start moving to reach the destination. The software design
will go over the process in more detail.

In this section, the electronic components used and the communication between these
components will be described. The design specifications that pertain to the electronic setup will
be defined here. For perception, Snackbot O7 uses a 360 degree 8m range LIDAR (Figure 8
(a)) with a USB serial port adapter board (Figure 8 (b)) taken from RP Lidar A1M8’s data sheet
[3].

(a) (b)
Figure 8: (a) RP LIDAR M8A1 and, (b) LIDAR USB Serial Port Adapter Board [3]

The following image (Figure 9) shows the two parts connected together and the UART port
connected to a Uart-USB wire. This wire is connected to one of the four USB ports on the
Raspberry Pi [4]. The structural schematic of the LiDar is also included in Figure 10 [3] which
will be referenced for the structure design.

Figure 9: LiDar connected to adapter board [4]

15

Figure 10: RP LiDar A1M8’s structural schematic [3]

Design ID Design Specification Requirements Corresponding
Requirements ID

Des 3.1 B, C RP Lidar A1 M8 is connected to the USB to Uart
Board. The board is connected to Raspberry Pi’s
USB Port.

Req 5.4
LIDAR signals should
be received by
Raspberry pi and
processed in real
time

Des 3.2 B, C Signals are sent and received between Lidar and
Raspberry Pi based on the algorithm designed by
RSC-7 and Adafruit’s Rplidar library

Req 5.4
LIDAR signals should
be received by
Raspberry pi and
processed in real
time

Table 3: Perception System Design Specifications

Robot Movement System
This system includes a microcontroller (Arduino Uno), two 3-phase brushless DC wheel hub
motors (as seen in Figure 11) and a 3-phase motor controller board (Figure 13).

16

In ‘Go State’, the arduino will receive signals from Raspberry pi to move forward, turn left, turn
right or stop. These signals will be translated into signals for the Motor Driver and the wheel hub
motor will be controlled.

Figure 11 (b) shows the brushless DC in-wheel hub motor and how it is set up internally [5]. The
next image (Figure 12) shows a diagram of the internal components of a brushless DC motor
[5].

(a) (b)
Figure 11: (a) Brushless DC in-wheel hub motor (b) Internal setup showing the 3 out of phase

inputs needed to run the motor

Figure 12: Exploded Diagram of the BRushless DC In-wheel hub motor

17

Figure 13: Brushless Hall Motor Controller Speed Controller 5V‑36V 350W

Design ID Design Specification Requirements Corresponding
Requirements ID

Des 4.1 A, B,
C

Brushless DC motor connected to Brushless Hall
Motor controller which is connected to arduino via
wires

Req 3.1
Robot should be able
to move forward,
backward, left, right
and make turns when
necessary

Req 7.3
Must travel faster
than a metre per
minute

Des 4.2 B, C Arduino receives signals from Raspberry Pi and sends
the corresponding signals to the motor driver to move
at a certain speed forward or stopping (braking) and
turning left or right.

Req 3.5
Robot should be able
to start its journey
and navigate to the
destination address
effectively (avoid
getting stuck or
bumping into things
and avoiding
obstacles like stairs,
pillars, etc)

Req 5.2
Arduino should be
able send signals
and switch the
motors on and off
and pick the direction
of rotation

Req 7.3
Must travel faster
than a meter per
minute

18

Des 4.3 C A Real Time Clock is running on Arduino. After a set
number of clock cycles, the arduino sends signals for
Stand-by-mode. These signals include a stop to
Raspberry Pi, a stop to the Power Management
System to switch off the 36 V battery connected to
motors and a signal to the lock based on the
destination.

Req 3.8.2
After reaching the
delivery location, the
robot will initiate
stand-by-mode

Req 3.9
Robots will have an
automatic locking
and unlocking
system connected to
the stand-by and
power management
system

Table 4: Movement System Design Specifications

Power Management System
The Power Management System will contain a 36 V battery that will be used to power the two
wheel hub motors used to move the robot and a 9 V battery connected to Arduino UNO,
Raspberry Pi and the electromagnet of the locking mechanism.

The 36 V battery will be connected to a relay module in the Arduino Relay shield mounted onto
the Arduino UNO. The relay will be in a normally closed state until a signal is sent by the
arduino to open the circuit and disconnect it from the Motor Driver [6]. This is done to preserve
and extend the battery life in sleep and home states.

The 9 Volt battery will be connected directly to the required components and the entire system
will be connected to a power on/off button. Once the power button is pressed, the entire system
will turn on or off.

Design ID Design Specification Requirements Corresponding
Requirements ID

Des 5.1 A Power On/Off button is included and attached to the
power management system

Req 6.1
Power supply must
provide enough
power for a full day of
operation

Des 5.2 B 36 V power supply for motors Req 6.5
Power supply must
be over 12V and 6
Ah to provide
sufficient voltage to
the motors

Des 5.3 A 9 V power supply for Raspberry Pi and Arduino Req 6.2

19

Raspberry Pi needs
between 3.3V to 5V
to operate

Req 6.1
Power supply must
provide enough
power for a full day of
operation

Des 5.4 B Relay controls the 36 V DC voltage supply to the
motor driver and the motors

Req 6.6
Overvoltage and
current limiters must
be present in the final
design for safety
measures

Des 5.5 B The two batteries are completely separate Req 6.6
Overvoltage and
current limiters must
be present in the final
design for safety
measures

Des 5.6 A, B,
C

Appropriate connectors will used to connect the wires
together

Req 6.1.1
Power supply must
be properly shielded
from external
conditions

Req 6.4
Connector wires
cannot come loose
during operation

Des 5.7 B,C Structure will include separate enclosed housing for
this entire system

Req 6.1.1
Power supply must
be properly shielded
from external
conditions

Req 6.3
Circuitry must be
separated from food
storage area

Req 6.7
Electrical system will
be waterproofed by
encasing in a plastic
box with only the
required parts
exposed

20

Req 7.7
Sensors on the
external body of the
robot will have proper
protection in case of
sudden impact

Req 7.9
For waterproofing the
prototype, the snacks
will be put in a plastic
basket which will be
secured to the
structure

Table 5: Power Management System Design Specifications

Locking System
A simple locking mechanism which is controlled by an arduino is proposed for the Snacks
container of the Snack Bot O7. When Snack Bot O7 is in Restocking and Reached states, refer
to the flow chart in figure 6 for different states, the snacks container will get locked and stay
locked.

The following image (Figure 14) is taken from the official Arduino website and will be used as a
reference to develop the locking mechanism [7].

When the Robot changes states, a signal of High or Low will be sent through arduino to the
Electromagnet subsystem and it will lock or unlock the snacks container.

The Locking mechanism makes it possible for the user to open the snacks container. It does not
open the snacks container for the user. The users would need to lift the lid and take out the
snack themselves.

The following images show the locking mechanism setup and the electromagnet used for this
system (Figure 14 and 15 respectively) [7].

21

Figure: 14: Arduino Powered Electromagnetic Locking mechanism [7]

Figure: 15: Electromagnet and Armature plate used for the locking mechanism [7]

Design ID Design Specification Requirements Corresponding
Requirements ID

Des 6.1 C An electromagnet will be attached to the snack
container that receives signals from arduino and locks
or unlocks the container

Req 3.9
Robots will have an
automatic locking
and unlocking
system connected to
the stand-by and
power management
system

Req 7.8
Locking mechanism
to ensure protection
of cargo

Des 6.2 C A High signal sent to the pin connected to the
electromagnet locks the snacks container

Des 6.3 C A Low signal sent to the pin connected to the
electromagnet locks the snacks container

Table 6: Locking Mechanism Design Specifications

22

User Interface Design
Note: For a full UI appendix please refer to the previously submitted User Interface and
Appearance Design Appendix. Below is a brief summary and recap for completeness and for
the convenience of the reader.

UI Summary
Due to the substantial work-load and associated timeline of the mechanical, electrical, and
autonomous navigation software components of Snack Bot 07, two separate user interfaces
have been designed. The first being a simple remote, using basic forward, left, right, and
start/end trip controls, either wirelessly via IR remote or through a wired device or a keyboard.
This interface will be primarily utilized in the proof-of-concept phase and through the final
prototype phase. This rudimentary interface has been selected for the sake of simplicity and
easier debugging during development.

The second interface is a smartphone application, the goal of which will be to offer a fully
functional user interface to the university campus and catering staff that are the target market of
Snack Bot 07, and who will be responsible for using the application to manage Snack Bots so
they can serve their customers, the end users. This user interface is currently slated as a “future
feature” that is planned to be implemented after the final physical prototype is finished at the
end of ENSC 440. This places it outside of the scope of both ENSC 405 and 440, however, it is
important to recognize and plan for the eventuality of this feature being implemented, as it would
be a necessary prerequisite to Snack Bot 07 going to market.

Having planned for and undertaken the design and prototyping of a functional smartphone
application user interface, certain functions of this feature can then be potentially implemented
at an earlier phase, potentially during ENSC 440, as a “nice-to-have” feature in the event of the
structural, electrical, and autonomous navigation portions of the project finishing ahead of
schedule.

Graphical Presentation

Alpha UI
Figure 16 shows the layout of a typical IR remote that will provide the testing team with the
ability to perform basic movements for the proof-of-concept demo, as well as basic start and
cancel operations for later prototype demos when the Snack Bot 07 is expected to be able to
perform autonomous navigation and user control is limited to a simple start or cancellation of
delivery.

23

Figure 16: Layout for the remote controller

Beta Software UI
Figure 17 shows a prototype design illustrating a typical start of delivery procedure, from initial
log in to creating a delivery, selecting a delivery bot, managing inventory, selecting a destination,
and finishing the delivery creation, at which point the delivery begins. It should be noted that this
is merely a prototype design, and even in the event that the Beta Software UI is implemented,
most of the secondary logic such as inventory and robot management will be non-functioning
stubs. The planned function of the beta software UI for potential ENSC 440 final prototype
demonstration would be solely to initiate and cancel a delivery through a smartphone application
in a manner similar to how the end product would function.

24

Figure 17: User Interface for the proposed Android App

25

Autonomous Movement Software Design

Due to the amount of online resources, Raspberry Pi 4 will be used as Snack Bot’s
microprocessor. In addition, ROS Moledic will be installed in an Ubuntu 18.04 environment. The
decision for choosing ROS Moledic rather than ROS2 Moledic is due to the reason that it comes
with long term support. In terms of language, Python 3 was chosen as it provides many
predefined functions and libraries to be used.

Note, Snack Bot will be using ROS 1 instead of ROS 2 specified in requirement specification
now due to ROS 1 having more learning resources.

For PoC, the software will primarily focus on controlling Snack Bot in different directions. It will
be written in C++ on the arduino to control each wheel. In the script, each wheel’s speed,
direction whether it should stop can be configured via GPIO mappings to the controller.

For the final product, Snack Bot will utilize the ROS NavStack in order to navigate to the drop off
point. The gmapping package will be used to map out the building floor plan from starting to end
location. Then, using the NavFN global planner, a shortest cost path will be generated for the
Snack Bot to take. The odometry of the robot will be calculated by using data from LiDar and
wheel encoders that is processed by the arduino.[8]

Figure 18: Diagram of data flow using ROS Navigation [2]

Figure 18 shows a map of how our system will work using the NavStack. Using GMapping, the
robot will create a mapping for our robot. This map will be fed into our global_costmap node.
From information coming from Snack Bot’s sensor sources (LiDar), data will be fed into
local_costmap which is an input for local_planner. In local_planner, Snackbot will send inputs to
our base controller (arduino) to control the motors.

26

Design ID Design Specification
Requirements

Corresponding
Requirements ID

Des 7.1 A Python program will be able
to move Robot in all
directions

Req 3.1
Robot should be able to move
forward, backward, left, right and
make turns when necessary

Req 4.1
The robot must be able to run
ROS2 NAV stack on raspberry
pi and will be connected via
Wi-Fi for programming

Req 4.2
The robot must be able to move
in all directions on the ROS2
NAV stack tested using
keyboard keys to navigate left,
right, forwards and backwards.

Des 7.2 B Raspberry Pi 4 will receive
data from Arduino sent from
encoders to calculate robots
odometry

Req 4.4
Using ROS2 NAV stack, we
should be able to communicate
to all parts wirelessly

Des 7.3 B Raspberry Pi 4 will receive
data from LiDar to be read
into local_costmap.

Note: No wireless
communication between any
parts.

Req 4.4
Using ROS2 NAV stack, we
should be able to communicate
to all parts wirelessly

Req 5.4
LIDAR signals should be
received by raspberry pi and
processed in real time

Des 7.4 B Odometry is setup,
Raspberry Pi 4 program can
make robot move and knows
where robot is moving

Req 4.4
Using ROS2 NAV stack, we
should be able to communicate
to all parts wirelessly

Req 4.6
​​Using ROS2 NAV stack the
robot should be aware of the
map

Des 7.5 B Localization is setup, and
robot will be viewable on map

Req 3.4
Robot should be able to
approximate its general location

27

at any given time
Req 4.6
Using ROS2 NAV stack the
robot should be aware of the
map

Des 7.6 B Python program is able to
detect objects in environment

Req 3.5
Robot should be able to start its
journey and navigate to the
destination address effectively
(avoid getting stuck or bumping
into things and avoiding
obstacles like stairs, pillars, etc)

Req 4.6
Using ROS2 NAV stack the
robot should be aware of the
map

Des 7.7 B Python program can move
robot through waypoints A to
B on map using NAVFN

Req 3.3
Robot should be able to select
the best path from preloaded
map

Req 4.5
The algorithm to navigate from
A to B and back to A will be
programmed

Des 7.8 C Raspberry Pi 4 will
deactivates Robot

Req 3.8.1,
After reaching the delivery
location, the robot will initiate
stand-by-mode

Req 4.8.1
The robot will go into stand-by
mode once it reaches the
destination location

Req 4.8.2
The robot will come out of the
stand-by mode (see requirement
ID: 4.3) “at the end of the day”
(after a set number of clock
cycles)

Table 7: Locking Mechanism Design Specifications

28

Conclusion

In summary, Snack Bot O7 is an indoor mobile autonomous robot that provides catering
services to its customers by delivering non-perishable snacks and drinks to a predetermined
location. Based on feedback from the progress review meeting, the team went ahead to make
changes to the target customers, structure design and product name and these were outlined in
the document.

The general system design specifications of Snack Bot were discussed with reference to the
requirement specification document and reasoning behind the selected specification. Block
diagrams as well as schematics were provided to help clarify how the system will be assembled.
Then, a detailed test plan was provided to catalog the test strategy and necessary resources for
performing tests on Snack Bot O7 to ensure that it is working properly.

At Robo Snacks Company, our intention is to provide our customers with an authentic, safe and
eco-friendly product that is centered on innovative and efficient design requirements and
features.

References (for everything above)
[1] "The Robotics Back-End - Raspberry Pi Arduino Serial Communication," [Online].

Available: https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
[Accessed 11 March 2022].

[2] “Setup and Configuration of the Navigation Stack on a Robot”, [Online].
Available: http://wiki.ros.org/navigation/Tutorials/RobotSetup
[Accessed 11 March 2022].

[3] slamtec, “RPLIDAR A1 Low Cost 360 Degree Laser Range Scanner Introduction and
Datasheet Model: A1M8,”, 2016-07-04 rev.1.0. Available:
https://www.generationrobots.com/media/rplidar-a1m8-360-degree-laser-scanner-develo
pment-kit-datasheet-1.pdf [Accessed 13 March 2022].

[4] D. Astels, "adafruit - Using the Slamtec RPLIDAR on a Raspberry Pi," 10 March 2022.
[Online]. Available: https://learn.adafruit.com/slamtec-rplidar-on-pi?view=all. [Accessed
13 March 2022].

[5] "avdweb.nl - Permanent magnet DC electric motor tuning," [Online]. Available:
https://www.avdweb.nl/solar-bike/hub-motor/permanent-magnet-dc-hub-motor-tuning.
[Accessed 11 March 2022].

29

https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
http://wiki.ros.org/navigation/Tutorials/RobotSetup
https://www.generationrobots.com/media/rplidar-a1m8-360-degree-laser-scanner-development-kit-datasheet-1.pdf
https://www.generationrobots.com/media/rplidar-a1m8-360-degree-laser-scanner-development-kit-datasheet-1.pdf
https://learn.adafruit.com/slamtec-rplidar-on-pi?view=all
https://www.avdweb.nl/solar-bike/hub-motor/permanent-magnet-dc-hub-motor-tuning

[6] "Control Global - Understanding switch configurations," [Online]. Available:
https://www.controlglobal.com/articles/2019/understanding-switch-configurations/#:~:text
=NC%20means%20normally%2Dclosed%20contact,open%2C%20and%20NO%20cont
act%20closes. . [Accessed 13 March 2022].

[7] "arduino.getstarted - Arduino Electromagnetic Lock," [Online]. Available:
https://arduinogetstarted.com/tutorials/arduino-electromagnetic-lock . [Accessed 11
March 2022].

[8] “Set Up the Odometry for a Simulated Mobile Robot in ROS 2” [Online]. Available:
https://automaticaddison.com/set-up-the-odometry-for-a-simulated-mobile-robot-in-ros-2/
. [Accessed 11 March 2022]

30

https://www.controlglobal.com/articles/2019/understanding-switch-configurations/#:~:text=NC%20means%20normally%2Dclosed%20contact,open%2C%20and%20NO%20contact%20closes
https://www.controlglobal.com/articles/2019/understanding-switch-configurations/#:~:text=NC%20means%20normally%2Dclosed%20contact,open%2C%20and%20NO%20contact%20closes
https://www.controlglobal.com/articles/2019/understanding-switch-configurations/#:~:text=NC%20means%20normally%2Dclosed%20contact,open%2C%20and%20NO%20contact%20closes
https://arduinogetstarted.com/tutorials/arduino-electromagnetic-lock
https://automaticaddison.com/set-up-the-odometry-for-a-simulated-mobile-robot-in-ros-2/

APPENDIX: Design Alternatives

Motor Alternatives
Two brushed 350 W DC motors connected to the two driving wheels could be used as the
movement mechanism. The main concern with these motors was the maintenance in the long
run [1]. RSC-7 wanted the robot to be a long functioning robot with minimum maintenance.
The second concern with this design was the total weight of the two motors, two wheels and any
attachments connected to it would come out to be about 1 kg in total but would only be able to
drive about 50 - 70 lbs. On the other hand the in-wheel hub motors come to about the same
weight and can drive close to 240 lbs [2].

Microcontroller Alternatives
According to Robocademy, while there are several microcontroller alternatives for using ROS
and Lidar navigation, Raspberry Pi and Arduino are highly recommended due to the amount of
documentation and support that exist for these platforms[4]. Alternatives such as Nvidia Jetson
and Intel NUC were investigated and are available as alternatives, but at time of writing no
Jetson units in stock could be found, and the price of NUC is many times greater than what
using a Pi and Arduino would cost.

Structure Alternatives
The alternative structure that was considered was an isometric triangle chassis that would be
driven by omni wheels [3]. It would have 2 wheels driving and one wheel dragged along as it
would go in one direction. However, the main feedback received was that our weight would
exceed the frictional force required for dragging. The concept itself is used in many thesis
papers but is not a common design in other applications. It would have taken more hours to
prove the concept before integrating autonomy into the robot.

ROS Alternatives
ROS 2 was an seeked as an alternative which would operate similar to ROS 1 but there’s
generally more well written documentation and tutorials around ROS 1 and NavStack online.

References
[1] "Association for Advanced Automation," [Online]. Available:

https://www.automate.org/blogs/brushed-dc-motors-vs-brushless-dc-motors. [Accessed
3 March 2022].

31

[2] "aliexpress," [Online]. Available: https://www.aliexpress.com/item/32850540959.html.
[Accessed 11 March 2022].

[3] "Research Gate," [Online]. Available:
https://www.researchgate.net/figure/Three-wheel-Omnidirectional-robot_fig10_25608978
1. [Accessed 1 March 2022].

[4] L. Joseph, “How to choose a brain for your robot?,” Robocademy, 22-Aug-2020. [Online].
Available: https://robocademy.com/2020/04/18/how-to-choose-a-brain-for-your-robot/2/.
[Accessed: 13-Mar-2022].

32

https://robocademy.com/2020/04/18/how-to-choose-a-brain-for-your-robot/2/

APPENDIX B: Test Plan

Introduction
This section highlights the details and steps involved in testing the robot Snack Bot O7.
It entails a comprehensive understanding of the workflow and capabilities of the robot by testing
each sub-system and ensuring that the requirements listed in the requirements documents are
met. It is important that a test plan is written and implemented to find out if a product meets
quality standards before it is released.

Tests are conducted to verify that the system works in accordance with its design, to know the
limitations, restrictions and restraints of the system and to detect glitches or bugs in general and
fix them before the official release of the product.

Purpose and Scope
The goal of this document is to explain in detail the process involved in testing the Snack Bot
O7 robot by providing all the necessary information about each component that makes up the
entire system and the steps needed to verify and validate their functionality. The tests include:

● Software testing
● Electrical testing
● System testing
● Structural testing

Software Testing

Step Requirement Description Test Step Expected Result Pass/Fail

1 The robot must be able to
run ROS1 NAV stack on
raspberry pi and will be
connected via Wi-Fi for
programming

Connect the
raspberry pi to a
monitor and
verify that ROS1
is installed and
able to run on it

The raspberry pi
is able to run
ROS1 NAV
stack on it.

2 The robot must be able to
move in all directions on the
ROS1 NAV stack tested
using keyboard keys to
navigate left, right, forwards
and backwards

Depending on
the keyboard
key pressed, the
robot should
respond
accordingly. For
example if the
left key is
pressed, robot
should turn left

The robot is able
to move in all
directions on the
ROS1 NAV
stack tested
using keyboard
keys to navigate
left, right,
forwards and
backwards

3 The robot must go into Use a voltmeter The robot goes

33

stand-by mode once it
reaches the destination
location

to verify that the
input supplied to
the motor drivers
is 0

into stand-by
mode once it
reaches the
destination
location

4 Using ROS1 NAV stack the
robot should be aware of the
map

Manually verify
the map has
been loaded to
memory and can
be accessed

Map is there

5 Using ROS1 NAV stack, the
robot should have a fail and
fall back plan to return to
base when dealing with
unfamiliar situation

Trap the robot in
a cardboard box
and wait for the
destination to
change to home
base after 5
minutes of being
stuck

Robot changes
destination and
signals state
change

6 The robot will come out of
the stand-by mode (see
requirement ID: 4.3) “at the
end of the day” (after a set
number of clock cycles)

Check power
restored to
Motor driver
using Voltmeter

Voltage is
observed on the
voltmeter

System Testing

Step Requirement Description Test Step Expected Result Pass/Fail

1 Raspberry Pi and Arduino
should be able to send and
receive signals between
each other

Connect the
Raspberry Pi
and Arduino with
a usb and verify
that they are
able to send and
receive signals
to each other

Raspberry Pi
and Arduino are
able to send
signals between
themselves

2 Arduino should be able to
send signals and switch the
motors on and off and pick
the direction of rotation

Connect the
Arduino to the
motor drivers
and motor
drivers to the
motors, power
each of them

Arduino is able
to send signals,
switch motors on
and off and pick
the direction of
rotation

34

and verify that
the arduino sent
signals to the
motors

3 The motors connected to
the wheels should function
simultaneously

Check to see
that the two
motors are
supplied with the
same voltage.

Check the
arduino code for
any time lag
between the
motors

Motors
connected to the
wheels function
at the same time

4 LIDAR signals should be
received by the raspberry pi
and processed in real time

Connect the
LIDAR to
raspberry pi with
a usb and verify
that the pi
received and
processed the
signals

LIDAR signals
are received by
the raspberry pi
and processed
in real time

Electrical Testing

Ste
p

Requirement Description Test Step Expected Result Pass
/Fail

1 Power supply must be
properly shielded from
external conditions

By visually
inspecting,
verify that the
power supply
has an
enclosure for
protection

Power supply has an
enclosure to shield it from
external conditions

2 Raspberry Pi needs between
3.3V to 5V to operate

Check to see if
the red and
green LEDs on
the raspberry pi
blinks. If they do,
3.3 to 5.5 volts
was supplied to
it

The voltage supplied to the
raspberry pi is between 3.3
to 5 volts

35

3 Circuitry must be separated
from food storage area

By visually
inspecting, verify
that the circuitry
is in Chassis
and is a different
component from
the the
component from
the food storage
component

The Circuitry and food
storage area are different
compartments

4 Power supply must be over
12V and 6 Ah to provide
sufficient voltage to the
motors

By visually
inspecting, verify
that the power
supply/ batteries
used have a
voltage rating
above 12V and
current rating
above 6Ah

Power supply of the device
has a voltage and current
rating of 12V and 6Ah
respectively

5 Overvoltage and current
limiters must be present in
the final design for safety
measures

By visually
inspecting, verify
that overvoltage
and current
limiters are
present in the
circuit

Overvoltage and current
limiters are present in the
final design of the robot

6 Electrical system will be
waterproofed by encasing in
a plastic box with only the
required parts exposed

By visually
inspecting, verify
that the
electrical system
is encased in a
plastic box with
only required
parts exposed.

Electrical system is encased
in a plastic box with only the
required parts exposed

Structural Testing

Step Requirement Description Test Step Expected result Pass/
Fail

1 Chassis must be able to
support up to 50 lbs of

Weigh snacks of up
to 50 lbs on a scale,

Chassis supports up to 50
lbs of weight

36

weight put inside the robot
and see that it is able
to move and perform
all its basic

2 Structure must be rigid
enough to survive impact
with hard objects

At the maximum
speed of 1 meter per
second, the bare
chassis will be run
into a wall to check
for structural
integrity. Electronic
components will be
protected with extra
insulation to absorb
the impact.

Structure remains intact
and motors stay put after
applying a force

3 Final design must
include a combination of
plastic and metal for the
outer structure

By visually
inspecting, verify that
the outer structure of
the final prototype is
a combination of
metal and plastic

The outer structure of the
final design is a
combination of plastic and
metal for the outer
structure

4 Device structure should
not exceed 100 lbs in
weight

Weigh the structure
on a scale and check
to see that its weight
is less than 100 lbs

The weight of the
structure of the device is
less than 100lbs

5 Sensors on the external
body of the robot will
have
proper protection in case
of sudden impact

By visually
inspecting, verify that
the sensors on the
structure have a
shield to protect
them from damage

Sensors on the external
body of the robot have
proper protection to
protect them from sudden
impact

6 Locking mechanism to
ensure protection of
cargo

By visually
inspecting, verify that
the robot has a
locking mechanism

Robot has a locking
mechanism

References

[1] "Techopedia - Test Plan," [Online]. Available:
https://www.techopedia.com/definition/30546/test-plan. [Accessed 12 March 2022].

37

https://www.techopedia.com/definition/30546/test-plan

