

Putt from the Sky

Company 4

CEO:Ryan Stolys

CTO-Software: Jayden Cole

CTO-Hardware: Matthew Nesdoly

CFO: Jiyeong Jeong CCO: Oh Chang Kwon

Presentation Agenda

- Project Introduction
- System Description
- Product Analysis
- Project Scheduling
- Finances
- Risk Management
- Reflection
- Conclusion

The Team

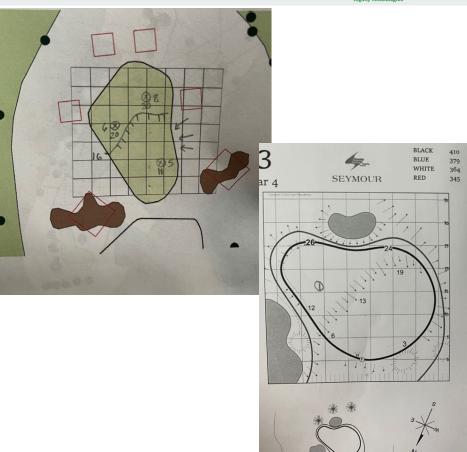
CEO Ryan Stolys

CTO-Software Jayden Cole

CTO-Hardware Matthew Nesdoly

CCO
Oh Chang (Samuel)
Kwon

CFO Jiyeong (Sophie) Jeong

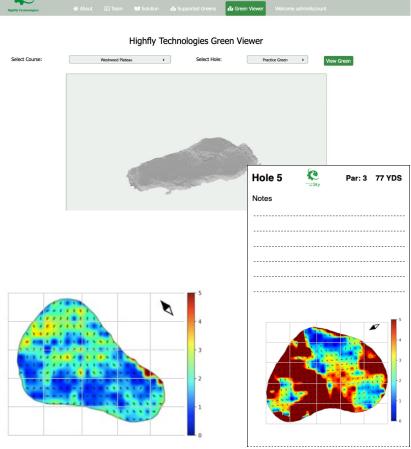


The Problem

Yardage books hold information

Books lack detail to scale

 Personal interest and technical challenge

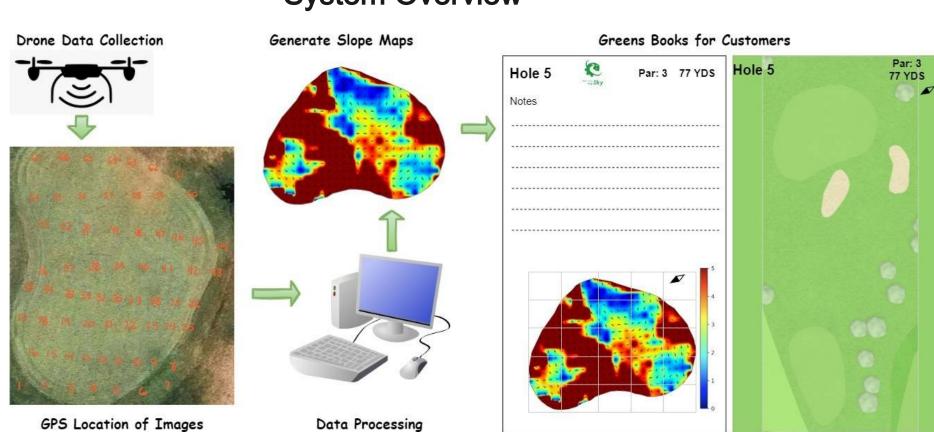

Our Solution

What?

 Provide accurate yardage books & online 3D viewer

How?

- Drone takes images
- Images create 3D Digital Model
- Convert model to slopes

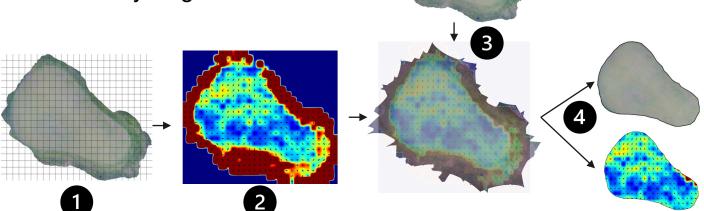


System Overview





Generating Green Models

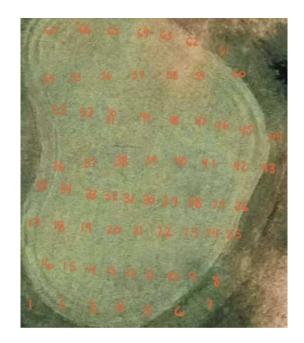

3D Point Cloud & Mesh

Orthomosaic

Slope Map Generation

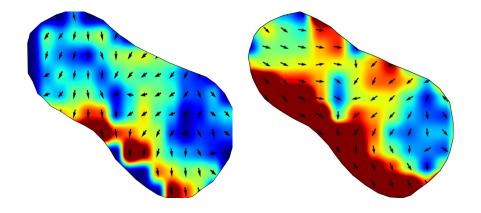
- 1. Divide 3D Mesh
- 2. Calculate Gradients
- 3. Overlay with orthomosaic a. Uses GPS
- 4. Manually Segment Green





Hardware System

- Data collection with drone
- GPS coordinates acquired manually
- Transitioned from custom drone to commercial drone
- Unable to use Navio
- Estimation is far more accurate



Product Accuracy

GPS Correctness

- Ensure proper scaling of model
- 1.05x bigger
- Slight rotation & translation error

Slope Map Accuracy

- Average slope direction error: 67°
- Average Magnitude error: 2.7%

- Keep for long term use
- Recycle battery
- Donate parts to schools

Long Life Span

 Low CO2 servers to reduce environmental impact

Project Scheduling

	MAY	JUN	JUL
Releases			
▶ PFS-16 Hardware PoC Complete		€ 🛕	
> FFS-25 Ideal Image Collection Path Mapping Defined			
▶ PFS-27 Accuracy Improvement from Sensor Refinement		8	
PFS-26 Automated Path Mapping for Generic green			8
> PFS-36 Hardware Prototype Refinement			
> PFS-28 Image Processing Pipeline Improvment		8	
> PFS-29 [PT] Green Map Generation Module Complete		₽]	
▶ PFS-30 Improve Data Sensor Integration		4	8
PFS-31 UI Implemented			0
PFS-32 Full Scale Software QA			0
PFS-33 System Integration			0
PFS-34 User Manual First Draft			8
PFS-35 User Manual Complete			

Scheduling/Project Adjustments

Adjustments

Data Collection Plan B:

- Commercial Drone
- More time collecting data

Software Pipeline

Development time added through July

On Time!

UI Implementation:

- Began as scheduled in late June and completed on time
- Shifted to User Manual

System Integration

Completed on time

Market

TAM:

50 Million Golfers Worldwide

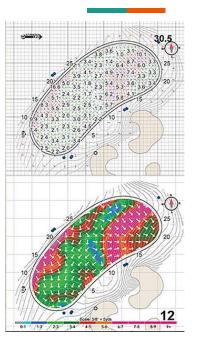
SAM:

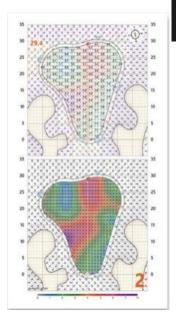
10 Million Avid / Competitive Golfers

SOM:

1 Million golfers using automated green yardage books

TAM, SAM and SOM for Highly Technologies


Golfer Persona	Avid Golfer	Competitive/Professional Golfer
Golf Frequency	Plays 20+ rounds per season	Plays 60+ rounds per season
Details	Golf is actively improved throughout their life	Golf is a competitive sport
Customer Likelihood	Likely	Highly Likely



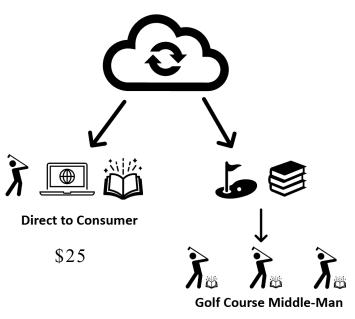
Competition

- Database of over 13000 courses
- Costs \$35 / book, Best Green Book since 2007.
- Has interactive app with 3D green models

- Database of over 30000 courses
- Costs \$50/ book
- Greens books are not primary product

Budget

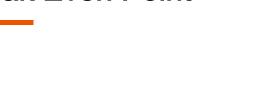
Cost (Fixed or Variable)	Amount
Drone (Fixed)	\$2,500
Travel (Fixed)	\$15,000/ year
Marketing (Fixed)	\$15,000/ year
Software Pipeline (Fixed)	\$3,500/year
Business Equipment (Fixed)	\$3,000
Printing (Fixed and Variable)	\$2,500 + \$3/package
Website Hosting (Fixed and Variable)	\$60 + \$10/ 1k customers
Shipping (Variable)	\$3/ package
Online Payment Provider (Variable)	\$0.3 + \$0.90/package

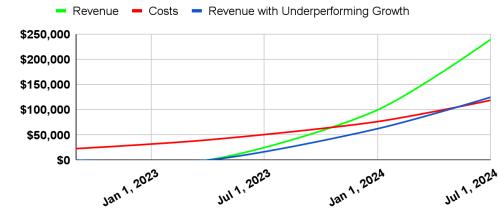


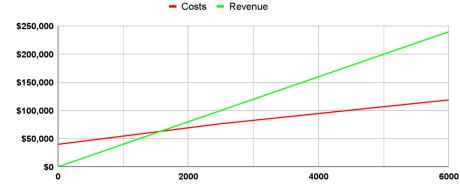
Price & Financing

2 Pronged Sales Strategy + Pricing

Sales Expectations


- 800,000 golfers in BC for 2023
- 160,000 avid and competitive golfers with 10% adopting yardage and greens books.
- 16000 potential customers
- 57 courses within 20 miles of Vancouver
- If 50 are mapped we expect to sell 2500 Units in 2023
- 1 Unit = Physical Green Book and Website Access




Break Even Point

Revenue and Cost Over Time

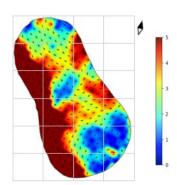
Break Even Point

Date

Units Sold

Risk Analysis / Risk Management

Risk	Priority	Solution
Course access denied due to potential drone damage	Low	Use trained operators and provide flight demonstration
Lack of Resources During Growth	Med	Create efficient and automated processes, allocate available resources strategically
Low customer adoption	High	Apply our technology to new market (Land Surveying)



Standard Compliance

- Standard 921 Small Remotely Piloted Aircraft in Visual Line-Of-Sight (VLOS) Canadian Aviation Regulations (CARs)
- IEEE Std 1936.1TM-2021, IEEE Standard for Drone Applications Framework 7.2.3 General requirements of the flight platform

The general requirements listed in 7.2.3 introduce key characteristics of a drone. These include:

- <u>High Reliability</u>: The drone is able to fly the desired path accurately and consistently,
- <u>Low Demand for Takeoff</u>: The drone is easily started and able to land and takeoff within five seconds, and,
- <u>Transmission Quality Stability</u>: The signal to the drone is uninterrupted and protected from various sources of interference including cables on the drone.
- Topographic Maps Natural Resources Canada
 - UTM Projections
 - Map Components

Reflection	Feedback		Do Differently	Learnings	
MetaShape image processing		Quai	ntify Accuracy		
	Importance of proving your work and quantifying the results			Resource allocation to achieve desired goals	
Start with a commercial drone, focus on automated flight		_	e TA resources er in our project		
.	Commercial Drone			Various Image Techniques (GF	PS, GCP)

http://www.realclear.com/comics/dilbert/20 17/02/11/

