

NaviBot

DAM³ Technologies

Presentation Overview

- Introduction
- Technical Case
- Business Case
- Risk Analysis/Management
- Adherence to Standards
- Self-Reflection
- Conclusion
- References

Introduction - Team Members

CEO - Davis Hogg Systems Eng. - Systems/UI

CIO - Mark Lavin

Systems Eng. - Navigation/Back-End

CHO - Alek Srdić

Systems Eng. - Mechanical

COO - Michael Kim Electronics Eng. - Electronics/Power

CCO/CFO - Martin Yang Electronics Eng. - Communications

CTO - Roy Zhong Electronics Eng. - Electronics/Power

Introduction - Background

- Over 86,000 workplace injuries caused by heavy lifting
- Increasing package intake requires more manpower
- Distractions arise from delivering packages in-house
- Waiting times increase as the package handler gets overwhelmed

Introduction - Purpose

- Ease the burden of mundane tasks in the workplace
- Eliminate human hours needed to travel between points
- Reduce workplace injury from transporting heavy goods

Introduction - Motivation

- To reduce the workplace injury
- Ease burden of mundane tasks
- Expensive delivery robots in current market
 - Enter market with lower prices
 - More warehouses can afford it

Technical Case - System Design

- System control: RPi4B -> Jetson Nano
 - 32-core -> 128-core Maxwell GPU
 - Micro HDMI -> HDMI 2.0
- Navigation: Python & C++
- User Interface: Python -> KivyMD
 - \circ Enable ROS

Technical Case - Mechanical Design

- Frame
 - Mild Steel Tubing
 - Space frame design

Material (Grade)	Cost [7] [8]	Strength [9] [10] [11] [12]	Ease of As- sembly	Weight	TOTAL
Mild Steel (1018)	3 (6.94/ft)	3 (65 ksi)	3	2	11
Stainless Steel (304)	2 (18.21/ft)	4 (99 ksi)	2	3	11
Aluminum (6061)	1 (14.40/ft)	2 (45 ksi)	1	4	8
Wood (Pine)	4 (1.12/ft)	1 (11.3 ksi)	4	1	10

Technical Case - Mechanical Design

- Load Platform
 - Aluminum Plate
- Side Cover
 - Rubber Garden Edging
- Cradle-to-Cradle
 - Mostly Recyclable Materials

Materials (Grade)	Cost	Strength	Weight	Ease of Work	Appearance
Aluminum Sheet (5052)	(15.71/ft)	33 KSI	2.68 g/cc	2	1
Steel Sheet (Cold rolled mild)	(14.15/ft)	40 KSI	7.87 g/cc	3	2
Veneer	(2.45/ft)	Low	Light	1	3

Technical Case - Mechanical Design

- 24V DC Motor x2
- Drive wheels x2
- Gearbox x2
- Belt tensioning system

Goal: Design and fabrication as close to final product as possible

Technical Case - Hardware Design

- 360 degree detection Lidar
 - Mapping
- Ultrasonic sensors
 - \circ 2 at front, 1 at all other sides
- Motor Driver x2
 - Drive 24V DC Motors
- ADC
 - Battery Monitoring

Technical Case - Hardware Design

- 7 inch Touch screen
 - User Interface
- Battery & Charger
 - 12V Lead acid -> 24V LiFePO4
 - 24V LiFePO4 5A charger
- Speaker & Emergency stop button
 - Warning, Emergency

• UI

- User screen
- Edit/Delete/Send locations

← Edit Location	5 0%
Enter Room Name Here (Required)	<u>*</u>
Enter Room Number Here	123
Enter Room Email Here	
Enter Room Phone Number Here	t _a
✓ Confirm	

• UI

- Initialization protocol
- Battery monitoring
- Interactive sounds

- Navigation Stage 2
 - Trajectory Planning
 - AMCL
 - Cost Map
 - Collision Detection
 - ∎ Lidar
 - Ultrasonic

Technical Case - Estimated Schedule

Technical Case - Actual Schedule

Business Case - Market

- Market Share
- Market Barriers
 - Financial worth
 - Lack of clarity
 - Potential disruption

Business Case - Ideal Customer

- Companies requiring additional
 internal logistics capabilities
- Target companies with established logistics budget
- Market NaviBot as an addition to existing logistical infrastructure

Average Logistics Cost as a Percentage of Sales		
Transportation	3.68%	
Inventory Carrying	1.94%	
Warehousing	2.05%	8.39%
Supplies	0.33%	
Administration	0.38%	

Average Company Logistics Costs 2016 - 2020

Business Case - Competitors

- OTTO Motors (\$15,000 \$25,000)
- Locus Robotics (\$35,000)
- Relay Robotics(\$2000 per month)
- NaviBot is easy to set up by the user

Business Case - Sales Strategy

- Self-distribution
 - Promote through online and

exhibition avenues

- Direct contact to clientele
- Acquire early adopters
- Associated advertisement cost

Business Case - Budget

	Annual Expens	ses		Total
Salarics	CEO	\$85,000		\$563,000
	Design Engineer x2	\$160,000		
	Accountant	\$60,000	\$495 000	
	Marketing Manager	\$70,000	\$405,000	
	Programmer	\$60,000		
	Machinist	\$50,000		
Building Lease	2,500 sq.ft. \$48,000		3,000	1
Marketing	\$30,000		1	

Business Case - Price

Retail price: \$12,500

Unit manufacturing costs: \$1240

Labour and shipping: ~\$600

Profit: ~\$10,660

Break-even point = \$563000 / \$10660 = 53 units/year

Business Case - Company Growth

- Require ~5 months before production
- First few years will be to gain traction in the market
- Aim to be profitable within 5 years

Risk Analysis/Management

Failure Mode	Likelihood	Severity	Corrective Action
Belt slip/break	3	6	No
Under-powered motors	3	4	No
Robot lost/stuck during navigation	6	5	Yes
Robot tipping over	3	6	No
System overheating	5	5	Yes
Battery overcharging	1	10	No
Battery permanently dies	2	7	No
Confusing/cumbersome UI	4	4	No
Exposed charging outlet	3	7	Yes
Low battery life	5	4	No
Robot loses control	4	6	Yes
Failed obstacle detection	6	6	Yes
Linux desktop accessible to user	8	5	Yes

Risk Analysis/Management

- Robot Lost / Stuck During Navigation
 - Auto recalibration, Homebase return
- System Overheating
 - Heatsink, Ventilation, Cooling fan
- Exposed Charging Outlet
 - Removable, Lockable, Mechanical covers

Risk Analysis/Management

- Robot Loses Control
 - Emergency stop button switch
 - 0.5s Motor timeout
- Failed Obstacle Detection
 - More sensors, Optimal placement
- Linux Desktop Accessible to User
 - Remove admin permission and lock settings

Risk Analysis/Management - Plan B

- Power consumption monitor
 - INA3221 voltage monitor burned while testing
 - Plan B(used) -> ADS1115 ADC converter
- Navigation mapping
 - G-mapping detection
 - Plan B(unused) -> Hector slam (need wheel encoder)

Risk Analysis/Management - Commercial Plan B

- Lower retail price
 - Coupons, Promotion code
- Cooperation with other companies
 - Bundle sales
- Change target customer
 - Nurse Assistance Carry food, pills, etc.

Adherence to Standards

- Battery and charging system General Requirements for battery-power appliances battery chargers
- Drive Mechanism Adjustable Speed Electrical Drive System
- Robot Navigation IEEE Standard for Robot Map Data Representation for Navigation
- User Interface Design and development of information for users

Adherence to Standards

- Battery and Charger
 - Warning labels, secure connections, overvoltage and current protection
 - Protection from abnormal use, proper insulation, chassis ground, SAE charging connector
- Drive Mechanism
 - No direct contact during operation
 - Properly secured components

Adherence to Standards

- Robot Map Data Representation for Navigation
 - Standards for a 2D map in autonomous delivery
 - Global map with coordinate references implemented
- Design of information for users
 - Process of building an API
 - Formatting, layout, and interface

Self Reflection

- Feedback from the course
 - Collision-safe robot siding
 - Fuses for overcurrent protection
- What would we do differently?
 - Improve project management
 - More in depth battery research, selection and testing

Self Reflection

- What our team learned
 - Action rather than discussion
 - Led to delays in testing
 - Don't take shortcuts
 - Fast +Easy = Headache

Conclusion

- What team members learned
 - Time management
 - Communication and documentation
 - Relative hardware & software skills

Conclusion

- Future Plan for NaviBot
 - Nice looking cover
 - Better battery
 - Sensitive overcurrent, low battery life(30mins)
 - More ultrasonic sensors
 - Increase detection accuracy

References

- PetroCohen. (2022, April 27). Lifting injuries leading to workers' comp claims. Retrieved from https://petrocohen.com/blog/common-lifting-injuries-at-work-petro-cohen/#:~:text=Not%20surprisin gly%2C%20lifting%20heavy%20objects,cases%20of%20lifting%2Drelated%20injuries
- Engelking, Carl. (2019, Dec 19). Meet YuMi: A Robot Nurse Built to Make the Rounds. Discover. Retrieved from

https://www.discovermagazine.com/technology/meet-yumi-a-robot-nurse-built-to-make-the-rounds

 Whitwam, Ryan. (2019, Jan 23). Welcome to the Dystopia: Amazon Unveils Scout Delivery Robot. ExtremeTech. Retrieved from

https://www.extremetech.com/extreme/284323-amazon-unveils-scout-delivery-robots

Questions?

Thank you

