

Ember Trailer

Company 3

Jake Mix, Rachel Djauhari, Kevin Lo, Richesh Patel, Alfred Rodillo, Xixuan Song

Meet the Nature Coolers Team

CEO - Systems Engineer Jake Mix

CCO - Computer Engineer Rachel Djauhari

Systems Engineer Richesh Patel

Computer Engineer Xixuan Song

Computer Engineer Kevin Lo

Computer Engineer Alfred Rodillo

Average of **1,600** wildfires in BC per year [1]

Contribute to the efforts to prevent and mitigate the growing rate of wildfires each year.

Increasing the <u>efficiency</u> of the *mopping up process* using a handheld device that rolls on the ground

"Mop Up" (v.)

Extinguishing or removing burning material near control lines, felling snags, and trenching logs to prevent rolling after an area has burned to make a fire safe, or to reduce residual smoke [2].

The act of extinguishing a fire after it has been brought under control [3].

Rescoped Work

- Original design used a UGV to carry the module
 - Many complications found with this method
 - Battery life
 - We could not work directly with UGV as we couldn't physically acquire it
 - Traversing terrain
- New design created and modules simplified
 - Handheld rolling device
 - Solved all problems stated above
 - Achieved original goal in a more efficient manner
 - Less modules
 - Reduced to 3 simpler, main modules

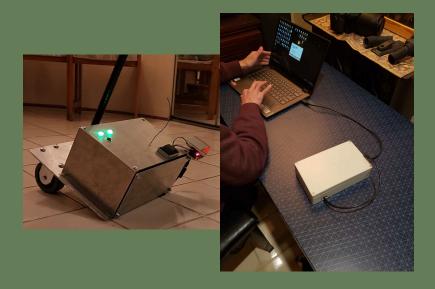


Fig. 1. Rescoped Ember Trailer Module

System Overview

 Primary function is to detect and alert responders to hotspots on and under the ground

- Main components:
 - Detection + Visual feedback alert system
 - Communication system

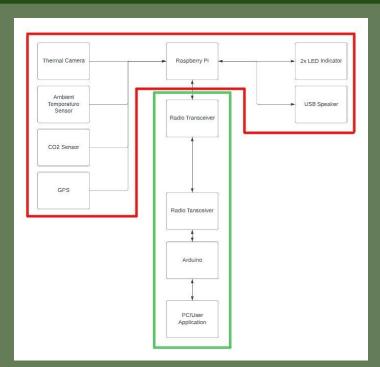


Fig. 2. System Diagram of Module

Design of Systems

- Detection system
 - Uses thermal camera for visual spotting
 - Gas sensor to detect smoke particles
- Feedback Alert System
 - Uses 1 LED to show status of module
 - Another LED to show hotspot detection (changes color depending on severity)
 - Buzzer to provide extra layer of alerting the responder for hotspot detection
- Communication System
 - Transmits GPS coordinates to HQ computer
 - Displays a map of the area to show current location of module and detected hotspots

Design of Systems cont.

Fig. 3. Portable Battery Pack used as PSU

Power Supply

- Using a rechargeable 5V 3A power pack to run the systems (150W Capacity)
- Displays the battery level for user
- Easy charging
- 9-10 hour battery life
- Processing
 - Raspberry Pi 4 to process data from sensors and drive feedback systems
 - Also drives the transceiver for communication
 - Arduino Uno used has a receiver for HQ communication

System Overview

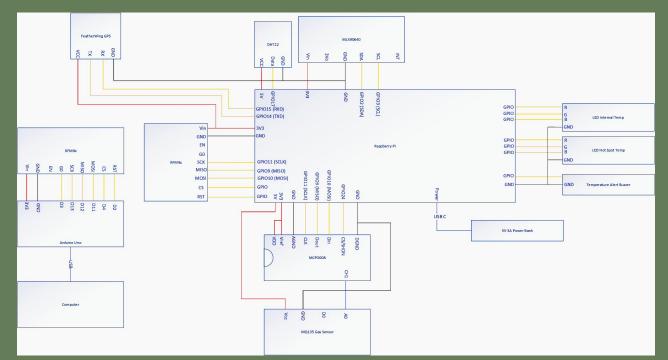


Fig. 4. System Wiring Diagram of Module

Materials

- Sensors/Electronics
 - DHT22 Temp Sensor
 - MLX90640 IR Camera
 - RFM9x Transceiver
 - Featherwing GPS
 - MQ135 Gas Sensor
 - Can all be repurposed if whole device fails and they are not damaged
 - 5V 3A Power Bank (150W Capacity = about 10 hours of battery life)
- Raspberry Pi / Arduino Uno
 - Were excellent for testing and producing a prototype
 - Both can be easily reused for other projects if an Ember Trailer unit is unusable

Materials

• Aluminum Frame

- Aluminum is sturdy and lightweight enough to survive usage in wildfires
- Melting point is 660C
- Frame can be recycled if internal components fail
- Caster Wheels
 - Originally used for oven racks
 - Operating temperature of upto 250 degrees celsius
- Silicon Grip and Insulation
 - Operating temperature of upto 260 degrees celsius

Demonstration

14

Demonstration

- Temperature readings found:
 - Exposed ember is at least 350 degrees
 - Embers just below the surface is 100 degrees
 - Embers deeper underground is 50 degrees
 - Embers when cooling down and deep underground is 30-50 degrees
- LED Indicators
 - Changes colour depending on severity
 - 0 degrees is pure green and 50 degrees is pure red. Orange and yellow colours are used to indicate the temperatures between the green and red severities.

Estimated Schedule Timeline

- September 2022
- Initial product design from the proof-of-concept

g 20		Sep 2022				Oc	2022				Nov 2022				Dec 20	2	
													48				52
	-		Today														
Build a	casing for t	he wires and	eectronic	componen	ts to protect	t it from the	external er	nvironment									
										_	_						
	Optim	ize the weigh	it of the mo	dule		_											
					Clean-up	the UI desi	gn of the ap	oplication to i	ncrease lea	mability of	the interface						
		1															
			Opti	mize the o	ommunicatio	on between	the transce	eivers and lim	it the mess	ages dropp	ed				_		
	Create	a login syste	m for the a	pplication													
		a water leve															
	Add in	a water leve	I SEISOI LU	uie system		_											
	Encryp	t the data lo	g tiles														
	Analyz	e the sensor	data to dis	olav severi	v level on th	ne UI		-									
		-			_	_	_	_									
	Impler	nent a strong	ger drill syst	em to drill	into the gro	und					_						
									Con	nect the UI	commands v	rith the dril	and suppre	ssion system	n to control	it remotely	
						_	-										
			Create a	better sup	pressant tan	k -											
		🕞 Crea	ate a solidw	orks mode	l for encasin	g material	quote/cost	estimation (v	ithin week	end)							
			11	C Durate	ase antenna		C dul-										
				e Purch	ase antenna	s for the Gr	's module										
								Add a loc	ation and m	ap to the U	lser Interface						
				Update t	he code on t	the repo											

Fig. 5. Estimated GANTT Chart

Actual Schedule Timeline

- Narrowed down the scope
- Simplified the project to focus mainly on detection and communication
- Changes made in the last month before demonstration
- Testing postponed multiple times due to poor weather conditions

Jul 202					Aug 2022				Sep 2022				2022				Nov 2022		
								_	_	_	_	_	_	_	_		_		-
							🔊		wires and electro										
							Build a				nts to prote	ct it from the e	xternal env	ronment					
								Optimize th	e weight of the i	nodule		_		_					
								Clean-up th	e UI design of th	e application	to increase	learnability of	the interfac	ie -					
									6 39	Optimize the	communica	ation between	the transce	ivers and lim	it the mess	ages dropp	ied		
								Create a	login system to	the applicat	on								
										1	-								
									ter level sensor t			_							
								🗴 Use UI t	o log the data fro	om the electro	onics	_							
								😰 Analyze	the sensor data	to display sev	erity level o	n the UI							
								Implement	a stronger drill s	stem to drill	into the gro	ound							
Conn	ect the UI	ommands	with the dri	ill and suppr	ession system	n to control i	t remotely		_										
														_					
									Create	a better sup	pressant tan	k	2						
									😰 Create a soli	iworks mode	l for encasir	ng material quo	ote/cost est	imation (with	hin weeken	d)			
															1 0	Purchase a	ntennas for t	he GPS modu	le
															1	Add a loc	ation and m	p to the User	Interfac
															1	Create a cu			
																9 Update t	he code on t	he repo	
												💷 Come u	p with som	e ideas to in	plement a	flagging sy	stem to repla	ice the drill sy	stem
													1	Make a die	ital modeli	image of th	ie new modif	ind docion	
														-make a dig	nar model/	inage of th	e new moul	icu ucsign	

Fig. 6. Actual GANTT Chart

Breakeven Point Calculation

Mass Production (25 Units)

Item	Total Cost
Raspberry Pi 4	\$1886.25
Arduino Uno	\$690
Ultimate GPS Featherwing*	\$561.5
IR Camera MLX90640*	\$1686.5
Gas Sensor MQ-135*	\$175.75
MCP3008 ADC*	\$101.25
RFM96W LoRa Radio Transceiver*	\$449
DHT22 Temperature Sensor*	\$213.75
Aluminum Case*	\$3900

Wheel x2*	\$1264
Handle (Flange and Pole)	\$314.75
Portable Charging Power Supply	\$1174.75
Custom PCB* (need to order 30 pcs)	\$162
LED x2*	\$34
Buzzer*	\$40
Total Cost of Parts	\$12653.5

*Materials can be bought at discount in bulk

\$508.57 per unit

Breakeven Point Calculation

Payroll and Utilities

- 5000 square feet warehouse is \$5500
- BC Hydro utilities \$97.53 for a year

Position	Average Salary*	# of Employees	Total Cost (bi-weekly)
Shipping/Receiving	\$21.32/hr	2	\$3411
Production Worker	\$18.73/hr	3	\$4495
Sales Representative	\$24.28/hr	2	\$4364
Systems Engineer	\$42/hr	1	\$3360
Computer Engineer	\$41.18/hr	1	\$3294

Total Payroll Costs: Biweekly: \$18924 Monthly: \$37848

\$508.57_{/unit}

- Expenses for a month with 25 units built: \$56009.63
- Product selling price to breakeven: \$2240.39 per unit
- If the work is done on our own, the breakeven point becomes: \$508.57

Cost Plus Pricing Strategy

— Add percentage to cost for profit margin to determine final selling price —

- 50% profit margin from the breakeven point price per month...
- \$508.57 => breakeven point per unit, assuming 25 build per month
- \$508.57 * 1.50 = \$761.99 per unit selling price

Since we sell less units to a niche market, 50% profit margin increases the profit more due to the lower volume of expected sales.

Budget and Financing

- Willing budget: \$100 per team member
- Financing received from ESSEF (\$1000)
- Due to large changes in the project, resulted in a lot of sunk costs
 - Costs exceeded \$1000 fund amount

The Market

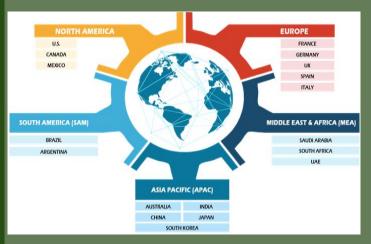


Fig. 7. Countries analyzed by market report [4]

- The current market for wildfire detection services is expected to grow at a rate of 6.5% from 2022 to 2030 [5]
- With a total market value of USD 60.51 billion [5]
- Market is worldwide as wildfires are a global threat and only getting more common

- Currently few IR technology used for cold trailing and mop-up
- Our product will fit into this market area and is an interesting prospect to BCWS

Customer Base

- Primary target market:
 - Wildfire responders
 - Licensees of forested land
 - Private owners of forested land
- Risks:
 - Already formed partnerships by responders with other tech companies/organizations
 - Threshold needs to be adjusted depending on location and season
 - Potential job loss

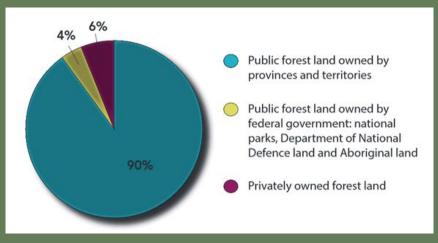


Fig. 8. Pie Chart of Forested Land Ownership in Canada [6]

Competitors



- FLIR Thermal Imaging Cameras
 - Provides a handheld model recommended for mop-ups
- Cold Trailing Solutions
 - Conduction-based heat sensing probe
 - Release physical strain during mop-up process
- DJI UAVs (Unmanned Aerial Vehicles)
 - Provide bird's eye view of large areas when equipped with thermal cameras

Risk Analysis

- Risk of functional failure in the field
 - Could miss hotspots if internal components fail
 - Mitigated by status LED to warn user if there's an issue
 - General casing design helps to prevent physical damage
- Electrical safety risk
 - With all electronics, there's risk of electrocution
 - Casing is grounded, so user not at risk
 - Max voltage used is 5VDC from PSU
- Aluminum Heat Risk
 - After a sweep, metal casing could be hot from being near embers
 - Warning in product manual
 - Handle is insulated

If commercialization fails...

- Reconnect with BC Wildfire Services and determine what they would like to see with the product
- Reach out to other wildfire services that may be interested in the product
 Likely reaching out to the U.S. NFPA (National Fire Protection Association)
- <u>Can rescope project for a different detection task</u>
 - Our hardware is based around detection

Engineering Standards

 Table. 1. Relevant Standards for Electrical Components

CSA C22.2 NO. 0.23:15, General requirements for battery-powered appliances [7]

CSA C22.2 NO 61508-1:17, Functional safety of electrical/electronic/programmable electronic safety related systems - Part 1: General requirements [8]

CAN/CSA-C22.2 No. 60529:05, Degrees of protection provided by enclosures [9]

CAN/CSA-C22.2 No. 94.2-07, Enclosures for Electrical Equipment, Environmental Considerations [10]

Table. 2. Relevant Standards for Hardware Components

Canadian Table of Frequency Allocations [11]

Engineering Standards

Table. 3. Relevant Standards for the User Application and Interface

ISO 9241-125:2017, Ergonomics of human-system interaction - Part 125: Guidance on visual presentation of information [12]

ISO/IEC/IEEE 26514:2022, Systems and software engineering — Design and development of information for users [13]

ISO/IEC 29138-1:2018, Information technology - User interface accessibility - Part 1: User accessibility needs [14]

Table. 4. Relevant Environmental Standards and Guidelines

ISO TS 19677, Guidelines for assessing the adverse impact of wildland fires on the environment and to people through environmental exposure [15]

IEC TR 62824:2016, Guidance on material efficiency considerations in environmentally conscious design of electrical and electronic products [16]

IEC 62430:2019, Environmentally conscious design (ECD) - Principles, requirements, and guidance [17]

Engineering Standards

- How they influenced the design process
 - Enclosures for Electrical Equipment [9]
 - We ensured our casing was grounded
 - For final design, casing would be fully sealed
 - Environmentally conscious design [17]
 - Originally we were going to use spray paint and other marking products
 - In the simplification of design, we eliminated the need to use these
 - Product now leaves nothing behind to damage environment
 - User interface accessibility
 - Labels are clear and readable, with units included
 - Using license-free radio frequency for communication

- Feedback incorporated from presentations and meetings
 - Rescoping of the initial project to what it currently is
- What changes did we make
 - Removed the suppression and drilling subsystems
 - Discarded the flagging system idea and opted for a simpler module focusing on efficient detection
- What did we learn
 - Don't try to tackle too many components of a targeted process (narrow down the scope)

Conclusion

- Ember Trailer device to increase efficiency and mitigate strain on wildfire responders during mop up.
 - Uses IR technology to detect hotspots
 - Physical feedback to operator about status of area

- Learnt the importance of keeping a design simple rather than complex and understanding the target customer's needs
 - Feature management
 - Communication with customers

Acknowledgements

ENSC 405W

Dr. Craig Scratchley Mohammad Soltanshah

> ENSC 440 Dr. Andrew Rawicz Eric Brace

BC Wildfire Services Justin Nicholas Kara Froese Michael McCulley

References

[1] B. C. W. Service, "About the BC Wildfire Service," Province of British Columbia, 12-May-2022. [Online]. Available:

- https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws. [Accessed: 05-Aug-2022].
- [2] "Mop up," NWCG. [Online]. Available: https://www.nwcg.gov/term/glossary/mop-up. [Accessed: 05-Aug-2022].
- [3] B. C. W. Service, "Wildfire Glossary," Province of British Columbia, 15-Mar-2021. [Online]. Available:
 - https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/glossary#M. [Accessed: 05-Aug-2022].
- [4] The Insight Partners, "Forest wildfire detection system market 2028 by offering, applications and geography," *The Insight Partners*. [Online]. Available: https://www.theinsightpartners.com/reports/forest-wildfire-detection-system-market. [Accessed: 02-Nov-2022].
- [5] Subish, "market analysis by Absolute Markets Insights," *TechPlanet*, 02-Nov-2022. [Online]. Available: https://techplanet.today/post/forest-wildfire-detection-system-market-to-grow-at-500-cagr-market-analysis-by-absolute-markets-insights. [Accessed: 02-Nov-2022].
- [6] Government of Canada, "Forest land ownership," 29 June 2020. [Online]. Available:
 - https://www.nrcan.gc.ca/our-natural-resources/forests/sustainable-forest-management/forest-land-ownership/17495. [Accessed October 2022].
- [7] SCC (Standards Council of Canada), "CSA C22.2 No. 0.23-15 (R2020) General Requirements for battery-powered appliances," CSA (Canadian Standards Association), Ottawa, 2020.
- [8] SCC (Standards Council of Canada), "CAN/CSA-C22.2 No. 61508-1:17 Functional safety of electrical/electronic/programmable electronics safety related systems - Part 1: General requirements," Canadian Standards Association, Ottawa, 2017.
- [9] SCC (Standards Council of Canada), "CAN/CSA-C22.2 No. 60529:05 (R2010) Degrees of protection provided by enclosures (IP Code)," Canadian Standards Association, Ottawa, 2010.
- [10] SCC (Standards Council of Canada), "CAN/CSA-C22.2 No. 94.2-07 (R2012) Enclosures for Electrical Equipment, Environmental Considerations," CSA (Canadian Standards Association), Ottawa, 2012.
- [11] Government of Canada, "Canadian Table of Frequency Allocations," 19 04 2018. [Online]. Available: https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf10759.html. [Accessed October 2022].

References

- [12] SCC (Standards Council of Canada), "ISO 9241-125:2017 Ergonomics of human-system interaction Part 125: Guidance on visual presentation of information," Ottawa, 2017.
- [13] CSA (Canadian Standards Association), "ISO/IEC/IEEE 26514 Systems and software engineering Design and development of information for users," SCC (Standards Council of Canada), 2022.
- [14] ISO (International Standardization Organization), "ISO/IEC 29138-1:2018(en) Information technology User interface accessibility Part 1: User accessibility needs," 2018.
- [15] SCC (Standards Council of Canada), "ISO/TS 19677:2019 Guidelines for assessing the adverse impact of wildland fires on the environment and to people through environmental exposure," Ottawa, 2019.
- [16] IEC (International Electrotechnical Commission), "IEC TR 62824:2016 Guidance on material efficiency considerations in environmentally conscious design of electrical and electronic products," 2016.
- [17] IEC (International Electrotechnical Commission), "IEC 62430:2019 Environmentally conscious design (ECD) Principles, requirements and guidance," 2019.