
1

Design specification
LocalHost

Partners:

Angus Kan

Irene Leung

Kevin Cao

Patrick Cong

Rico Chao

Yoel Yonata

Contact:

Kevin Cao

hca119@sfu.ca

Submitted To:

Dr. Mike Hegedus, ENSC 405W

School of Engineering Science

Simon Fraser University

Issue Date:

March 13, 2022

2

List of Figures

Figure 2.1 3D model of hockey puck shaped device 6

Figure 2.2 Flowchart of LocalHost’s system 7

Figure 3.1.1 Diagram of the ESP32 Chip 9

Figure 3.1.2 ESP32 Cam Module Pinout 10

Figure 3.2.1 OV2640 Camera Module 11

Figure 3.3.1 FTDI Breakout Board 5V 11

Figure 3.4.1 5V Power Adapter 12

Figure 3.4.2 Cable for Daisy Chain 12

Figure 4.2.1: SSIM score of two same images and two different images 14

Figure 4.3.1: Measuring the size of the object using openCV 16

Figure 4.4.1: Screenshot of the “Home” page of the management application 17

Figure 4.4.2: Screenshot of the sidebar of the management application 17

Figure 4.4.3: Screenshot of the notification pop-up of the management application 18

List of Tables

Table 1.3: Development challenges 4

Table 1.4: Design Classification Encoding 5

Table 2.1: Design Specification Requirement 8

Table 3.1: Microcontroller Design Requirements 10

Table 3.2: Camera Module Design Requirements 10

Table 3.3: FTDI Design Requirements 12

Table 3.4.1 Power Supply Design Requirements 12

Table 4.1.1 - Design Requirements for Hardware Control 13

Table 4.2.1 - Design requirements of Image comparison 14

Table 4.3.1 Design requirement of water level recognition 15

3

Table of Content

Introduction 4

1.1 Background 4

1.2 Solution 4

1.3 Challenges 4

1.4 Design Classification 5

System Overview 6

Electrical Design 9

3.1 Microcontroller 9

3.2 Camera Module 10

3.3 FTDI USB To Serial 11

3.4 Power Supply 12

Software Design 12

4.1.1 Hardware Control 13

4.2 Image Compression 13

4.3 Water Level Recognition 14

4.4 Management Software 16

4.4.1 Front-End 16

4.4.2 Back-End 18

Conclusion 18

References 19

Appendix: Test Plan 20

7.1 Introduction 20

7.2 User Testing 20

7.3 Software Testing 22

7.4 Mechanical Testing 24

4

1. Introduction

1.1 Background

Restaurants require a large number of staff to provide a quality dining experience for

customers. However, it is hard for them to maintain this great level of quality and efficiency

during peak dining hours. With an influx of customers during those hours, waiters and

waitresses may have their attention split between many tables, resulting in missed details

and unfulfilled requests. This puts extra stress on the waiters and waitresses, as well as an

extra long wait for the customers.

1.2 Solution

The purpose of this project is to provide a solution to efficiently manage each table by using

both hardware and software components to track the table statuses and respond to

customers’ inquiries. For the hardware component, we will use a camera module to capture

live video of each table and transfer data to the software system. The software system will

process the data to identify the table statuses, then notify the waiters and waitresses. More

details about the design of both hardware and software components will be discussed in

this document.

1.3 Challenges

There are few challenges we encountered or may encounter during the development of our

project. These challenges are shown in Table 1.3 below.

Challenges Solutions

Image processing result is not accurate. Try to use different threshold numbers to
see different results or use different models
to do image detection.

Image quality from the camera is not clear. Try to test it in different light conditions
and find the optimal brightness for image
quality. Try to test the camera at different
distances to find an optimal distance for
image detection

Camera WIFI connection is not stable for
data transmission.

Use wired or bluetooth connection.

5

Table 1.3: Development challenges

1.4 Design Classification

This document will encode different stages of the development using the labelling in Table

1.4 below.

Encoding Development Stages

C Conceptual Stage of Proof of Concept

P Prototype

Table 1.4: Design Classification Encoding

6

2. System Overview

LocalHost Services is a restaurant management system that provides restaurant waiting

staff with real-time information of the current table statuses in the restaurant. LocalHost

has two major components: a hockey-puck shaped device that will be mounted by each

table and a restaurant management software to help monitor the table statuses in the

restaurant.

Figure 2.1 3D model of hockey puck shaped device.

The hockey-puck shaped device will contain a camera module attached to a microcontroller

that will capture a video stream of each table. This video will then be processed to

determine each table’s status (whether the table is available, occupied, needs to be cleaned,

etc.). The device will also have a button in the middle in case the customers need to buzz

and notify the waiter. Inside the device there will also be a microcontroller connected to

the camera, for the microcontroller, we will be using the ESP-32 CAM module. There will

also be a ring of LED lights inside the device to show the table status on the device. This

LED ring can also provide visual feedback to the customer by turning into flashing red

colour if the buzzer is pressed in order to indicate that the table needs attention from the

waiter. For power, the device will contain a barrel jack. This serves as an easy way to

connect a power adapter that will supply the 5 volts needed to power this device. There

will also be a switch showing on the outside and connected to the plug in case the device

needs to be switched off, but still plugged in.

7

Figure 2.2 Flowchart of LocalHost’s system

The other main component to our system is the restaurant management software. Our

software will be a desktop application. The software will receive a video data stream

coming from the mounted device and perform image and video processing. The software

will take the data extracted from the video stream and display table statuses on the

interface to provide information for the waiters. The software will also contain a layout

editor feature that allows restaurant staff to create and modify the layout of the tables at

the restaurant.

Design ID Design Specification Requirement

[Des 2.1-C] The image processing software must be able to differentiate different

table states.

[Des 2.2-C] The device must be able to communicate with the software
management system and vice versa via Wi-Fi.

[Des 2.3-P] The device must have an ON/OFF switch for power.

[Des 2.4-P] The device will contain LEDs to provide visual feedback based on table
statuses.

8

[Des 2.5-P] The device will contain a button to buzz the waiter.

[Des 2.6-P] The management software will be able to replicate the restaurant

layout.

[Des 2.7-P] Each device will cost under $100.

Table 2.1: Design Specification Requirement

9

3. Electrical Design

3.1 Microcontroller

At the center of LocalHost is the ESP32 Cam module by AI-Thinker with 520KB of SRAM

and external 4M PSRAM. This microcontroller utilizes the Espressif ESP32 controller chip,

which features bluetooth, Wi-Fi, and BLE (Bluetooth Low Energy) capabilities. The ESP32

chip is commonly used for IoT applications, ranging from smart devices for households to

industrial wireless control. For wireless applications via Wi-Fi or Bluetooth, the ESP32 is

the cheap and ideal solution.

Figure 3.1.1 Diagram of the ESP32 Chip

The ESP32 Cam module is one of the smallest ESP32 boards on the market, with only 10

GPIO pins, as well as a built-in slot on the top of the board for the camera to connect. With

the Wi-Fi capabilities of this board, LocalHost will stream video from the camera to the IP

address of the local Wi-Fi. We will utilize our GPIO pins to connect our tactile button, as

well as using 4 GPIO pins to output the desired colours to our LED strips[1].

10

Figure 3.1.2 ESP32 Cam Module Pinout[1]

Design ID Design Specification Requirement

[Des 3.1.1-C] Includes a Camera Module interface

[Des 3.1.2-C] Processor includes a Wi-Fi Module

[Des 3.1.3-C] Contains enough GPIO pins for buttons and a LED indicator

[Des 3.1.4-P] Must fit inside the LocalHost case

Table 3.1: Microcontroller Design Requirements

3.2 Camera Module

The camera module that is included with the ESP32 Cam module is the OV2640. Although

this camera does not provide the clearest image or have the largest megapixels, the

OV2640 will be sufficient as a camera sensor for image processing. Combining its cheap

price point with its tiny form factor, this is the ideal camera module for LocalHost.

Design ID Design Specification Requirement

[Des 3.2.1-C] Interface with ESP32

Table 3.2: Camera Module Design Requirements

11

Figure 3.2.1 OV2640 Camera Module

3.3 FTDI USB To Serial

Due to the small form factor of the ESP32 Cam module, there is no built-in micro USB jack,

so an FTDI rl232 is required in order to program the microcontroller. The FTDI is used to

convert USB to serial UART so the Arduino IDE is able to upload the program to the ESP32.

Figure 3.3.1 FTDI Breakout Board 5V

Design ID Design Specification Requirement

[Des 3.3.1-P] Converts USB to serial UART

[Des 3.3.2-P] Outputs to 6 pins

[Des 3.3.3-P] Outputs 5V

Table 3.3: FTDI Design Requirements

12

3.4 Power Supply

The power supply chosen for LocalHost will be a 5V power adapter, with amount of

amperes based on how many camera modules the user would like to power at a time. The

power consumption of just the camera with no flash is 180mA at 5V, while the power

consumption of the ESP32 module with Wi-Fi turned on is 90mA at 5V. The current draw is

around 270mA-300mA, so having our power adapter supply 500mA per module will be

sufficient. With multiple modules, we will provide a larger power adapter.

Design ID Design Specification Requirement

[Des 3.4.1-P] Regulated DC voltage output

[Des 3.4.2-P] Daisy Chained to multiple modules

[Des 3.4.3-P] Can disconnect from module

Table 3.4.1 Power Supply Design Requirements

 Figure 3.4.1 5V Power Adapter Figure 3.4.2 Cable for Daisy Chain

4. Software Design

The components of LocalHost’s management software includes:

1. Controlling the hardware devices

13

2. Performing image comparison by comparing the captured photos to the photos of

clean tables using openCV

3. Performing image processing to measure the current water levels in the cups using

openCV

4.1.1 Hardware Control

Design ID Design specification requirements

[Des 4.1.1-C] The software will be able to connect to the hardwares using Wi-Fi.

[Des 4.1.2-C] The software will be able to calibrate the device.

[Des 4.1.3-C] The software will be able to wake up, turn off and reset hardware
devices.

[Des 4.1.4-C] The software will be able to change the colors of the LEDs on the
hardware devices.

[Des 4.1.5-C] The software will be able to display the live stream from a certain
device upon request.

[Des 4.1.6-C] The software will be able to change the mode of hardware devices.
(performance/ normal/ energy saving)

Table 4.1.1 - Design Requirements for Hardware Control

In order to connect the hardware devices to the management software, the product will use

Wi-Fi connection as default setting; if Wi-Fi is unstable or unavailable, the product will use

Bluetooth connection. When the hardware devices are turned on for the first time or after

being reset, the management software will have a pop up window to recalibrate the device

with the corresponding table number, as well as the camera settings. In case of incorrect

table status detection, the software can overwrite the current status of the table manually

and change the color of the LEDs.

4.2 Image Compression

Design ID Design specification requirements

14

[Des 4.2.1-C] The software shall use the Structural Similarity Index to determine
how similar the two photos are

[Des 4.2.2-C] The software will use grayscale to convert images to black and
white, to reduce image size

Table 4.2.1 - Design requirements of Image comparison

The SSIM from scikit-image is is a method for predicting the perceived quality of digital

television and cinematic pictures, it is a perception-based model that considers image

degradation as perceived change in structural information, while also incorporating

important perceptual phenomena, including both luminance masking and contrast masking

terms[2]. can give us a feedback score based on the similarity which ranges from -1 to 1,

with -1 meaning the table is completely dirty and 1 meaning the table is perfectly clean.

Figure 4.2.1: SSIM score of two same images and two different images[3]

The SSIM score is calculated with the formula below[2]:

Grayscale reduces the image sizes by assigning the same number to all three colors in a

pixel instead of three different numbers,the value of each pixel only represents the

intensity information of the light, thus theoretically reducing the image size by 66.66%,

and leads to faster processing time.

4.3 Water Level Recognition

Design ID Design specification requirements

15

[Des 4.3.1-C] The software will use grayscale to convert images to black and
white, to reduce image size

[Des 4.3.2-C] The software shall be able to recognize all the cups in the photo
using openCV

[Des 4.3.3-C] The software shall be able to measure the percentage of the
remaining water in the cup

[Des 4.3.4-C] The software shall send notifications to the user if the water level of
any cup on the table is below 20%

Table 4.3.1 Design requirement of water level recognition

The object detection will be done by using openCV and machine learning. The software

shall first detect all the cups within its view, and then calculate the height difference

between the bottom of the cup and the current water level.

For object detection, the software shall have a well trained AI model which will be fed with

a large number of labeled photos of cups as positive images, and photos of objects with

similar shapes as negative images. For measuring height difference, the software shall see

the part of the cup which is filled with water as an object, and measure its height using

openCV’s imutiles library to measure the height of this object based on the pre-calibrated

pixels per metric ratio.

Figure 4.3.1: Measuring the size of the object using OpenCV[4]

16

4.4 Management Software

For our management software, it will be implemented as a Windows desktop application,

with Electron.js. The management software will act as the application to receive feedback

from the microcontroller and camera data, analyze it, and change the status of the tables, as

well as update the LED lights on the device.

4.4.1 Front-End

The application will feature a login screen for users to log in, and once the user logs in, the

user will be brought to the “Home” page, where an overview layout of the restaurant will

be displayed, as shown in Figure 4.4.1, with the tables displaying different colours to

indicate their corresponding statuses. There will be a sidebar, as shown in Figure 4.4.2,

displaying all the different pages of the application such as “Home”, “Reservation”, “Layout

Editor”, and “Settings”. The “Reservation” page gives the user an overview of the

reservation details for the restaurant, and allows the user to make changes to reservations.

The “Layout Editor” page lets the user change the overview layout of the restaurant such as

adding another table or changing the position of a table. Updates from the system will be

reflected on the application, either in the form of a notification pop up, as shown in Figure

4.4.3, or colour change of the table in the “Home” page.

17

Figure 4.4.1: Screenshot of the “Home” page of the management application

Figure 4.4.2: Screenshot of the sidebar of the management application

18

Figure 4.4.3: Screenshot of the notification pop-up of the management application

4.4.2 Back-End

Back-end design of our application is split into two sections, with one section managing the

general communication with the front-end of the application, as well as login system

communication, and the other section responsible for data processing of the feedback

collected by the microcontroller and the camera.

Data received from the microcontroller and camera will be sent to the back-end for analysis

and processing. After processing the data, the back-end will provide the corresponding

responses to the front-end of the application and the devices, updating the colour of the

table in the layout view and the LED lights of the hockey-puck device respectively.

5. Conclusion

LocalHost is a user-friendly system which aims to help restaurants to improve their

customer’s dining experience, increase profit by improving the table turnover rate and

reduce the stress of their workers. The device is both small and easy to install, all while

providing real time table status using AI image processing from the software, which is

based on the ESP32-CAM.

The Electronic Design

1. Microcontroller: An ESP32 will stream video via Wi-Fi as well as provide GPIO pins

for buttons and LEDs

2. Camera Module: Captures video of the dining table

3. FTDI USB to Serial: Converts USB to UART so the user can upload code to the

microcontroller

4. Power Supply: Provides power for the module

The Software system:

1. Image comparison: Reduce the size of the images, then use the Structural Similarity

Index to determine the level of similarity

2. Object Recognition: Reduce the size of the images, and using openCV to identify the

objects on the table, primarily targeting the cups

19

3. Water level recognition: Reduce the size of the images, using openCV to measure the

percentage of the remaining water in the cups

4. Management Software: Application that will communicate with the microcontroller

and process the data received by it

This Design Specification document will work as a guideline for LocalHost to develop the

product. However, it may change as we encounter problems and try to find other solutions

to fix them during development.

6. References

[1] Fedecastellaro, “Fedecastellaro/ESP32-S3-symbol-footprint: ESP32-S3 symbol and

footprint for Altium designer. data taken from

https://www.espressif.com/sites/default/files/documentation/esp32-

s3_datasheet_en.pdf,” GitHub. [Online]. Available:

https://github.com/fedecastellaro/ESP32-S3-SYMBOL-FOOTPRINT. [Accessed: 13-Mar-

2022].

[2] “Structural similarity,” Wikipedia, 24-Feb-2022. [Online]. Available:

https://en.wikipedia.org/wiki/Structural_similarity. [Accessed: 13-Mar-2022].

[3]I. Mamun, “Image classification using SSIM,” Medium, 12-Feb-2019. [Online]. Available:

https://towardsdatascience.com/image-classification-using-ssim-34e549ec6e12.

[Accessed: 13-Mar-2022].

[4] Linus, A. Rosebrock Javier, “Image difference with opencv and python,” PyImageSearch,

07-Jul-2021. [Online]. Available: https://pyimagesearch.com/2017/06/19/image-

difference-with-opencv-and-python/. [Accessed: 13-Mar-2022].

20

7. Appendix: Test Plan

7.1 Introduction

This section will outline the specific test plan for the whole system of LocalHost.

7.2 User Testing

Test Name System turns on Date

Test purpose Plug in the cord to the device

Expected

Behavior

 Device should be automatically turned on; LEDs should light up to

indicated device is online

Actual Behavior

21

Test Name System pairing Date

Test Procedure Turn on all devices and connect to the application on the user

computer.

Expected

Behavior

All devices should automatically be available to connect with the

application through WiFi.The following tests will be performed on

LocalHost device and user interface for testing device’s

functionality and user interface of the application

Actual Behavior

Test Name Generate a virtual floor plan for the

restaurant

Date

Test Procedure The first-time device is paired to the application, application

should prompt user to create a virtual floor plan for the new

device

Expected

Behavior

After devices connected to the application, user should be able to

create a virtual floor plan for the restaurant

Actual Behavior

Test Name Buzzer detection Date

Test Procedure Press the button to buzz the waiters

22

Expected

Behavior

The device will communicate with the application to trigger

notification to the waiters

Actual Behavior

7.3 Software Testing

The following tests will be performed on the software of the LocalHost device. These tests

will test all the device’s software features and its subsystems.

Test Name Buzzer LEDs detection Date

Test Procedure Press the buzzer button on the device

Expected

Behavior

The device should light up the LEDs

Actual Behavior

23

Test Name Water level detection Date

Test Procedure Detect the changes of water level.

Expected

Behavior

The software should be able to detect the water level and send

notification if the water level is too low.

Actual Behavior

Test Name Notification test Date

Test Procedure Press the button to buzz the waiters

Expected

Behavior

The application sends notifications with sound and pop up

messages at the corresponding GUI.

Actual Behavior

Test Name Clearing status Date

Test Procedure Detecting the difference between plates is finished or not.

Expected

Behavior

The software should be able to detect the plate has been empty

and send a notification for table cleaning.

Actual Behavior

24

7.4 Mechanical Testing

The following tests will be performed on the device as a whole, each test will verify a part

of device for specific mechanical purpose

Test Name Device Installation Date

Test Procedure Install devices on the wall beside the table.

Expected

Behavior

Device should be easy to install and will secure on the wall mount

Actual Behavior

Test Name Device drop test Date

Test Procedure Drop the device from 1.5 meters above the ground

Expected

Behavior

Devices should not be damaged on its enclosure, electronic and

camera should remain intact and functional.

Actual Behavior

Test Name Device water resistant test Date

Test Procedure Expose the device to humid environment, and spill small amount

of water on it while it is mounted to the wall

25

Expected

Behavior

Device should not be damaged from the small exposure to water,

its electronic should remain functional, and will not create short

circuit and/or electrical leakage

Actual Behavior

