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Abstract

Traditional transistor memory has saturated all areas of the computer memory market, but
leaves much to be desired in certain applications, opening opportunities for new and exciting
technologies. In this thesis I expand the existing capabilities of the Physics of Nanomag-
netic Materials and Devices lab by informing experimental decisions with the results from
micromagnetic simulations, assisting with the ongoing goal of developing novel designs of
STT-MRAM. In particular, I investigate and optimize the impact and interplay of each of
the known magnetic phenomena and properties on the behaviour of magnetoresistive mem-
ory: saturation magnetization, anisotropy, exchange stiffness, interlayer exchange coupling,
and thermal stability. Performance is judged quantitatively, considering switching current,
switching fields, structure size, and homogeneity of states. This work uses magnum.pi, a
proprietary Python library for solving micromagnetic problems using finite-element meth-
ods, developed by the Physics of Functional Materials lab of the University of Vienna.
Simulated results show that reasonably sized structures undergo magnetic reversal non-
coherently and that it is possible to reliably achieve and control a wide range of interlayer
angles in synthetic antiferromagnets with careful choices of realistic anisotropy and other
material parameters. Finally, simulations show that particular ranges of interlayer coupling
strengths lead to substantially decreased switching currents.

Keywords: undergraduate thesis; micromagnetics; simulations; magnum.pi; STT-MRAM;
optimization
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Chapter 1

Introduction

While magnetic computer memory dominated the nascent stages of the computing industry,
it was quickly supplanted by solid-state, transistor-based, dynamic random-access memory
(DRAM) in the mid 1970s [1], relegating magnetic architectures to mass storage media.
Now, cheap flash storage drives are again reducing magnetic memory’s relevance in consumer
electronics. However, recent discoveries allowing the reading and writing of magnetic bits
not with magnetic fields, but with currents, have led to a renewed academic and commercial
interest in memory of this type. One such design, spin-transfer torque magnetic random-
access memory (STT-MRAM), is especially exciting, promising to combine the density and
low-cost of DRAM, the performance of static RAM (SRAM), and the non-volatility of hard
disk drives [2].

In its simplest implementation, magnetoresistive memory is composed of two layers of
ferromagnetic (FM) material separated by a layer of non-magnetic (NM) material. Infor-
mation (a “one” or a “zero”) is stored in the relative orientation of the bulk magnetization
of the FM layers, either parallel or antiparallel. The difference in orientation is measured by
passing a current through the layers, which will encounter a large resistance (when antipar-
allel) or a small resistance (when parallel), Fig 1.1. If the NM spacer layer is conducting,
this effect is known as giant magnetoresistance (GMR) - if it is insulating, this is known
as tunneling magnetoresistance (TMR). The use of GMR and TMR is already ubiquitous
in spinning disk magnetic hard drives, magnetic sensors, and medical imaging [3]. The two
layers are engineered such that the magnetization of one layer is difficult to change (the
“Fixed Layer”) and the other is easy (the “Free Layer”). Write operations only affect the
Free Layer.

The most prevalent recent application of magnetic memory is in hard disk drives, where
cells are distributed across the surface of a thin, multi-layered magnetic film on a spinning
platter. Write operations are carried out by applying an external magnetic field to saturate
the magnetic layer in either direction within minuscule regions. This field is emitted by a
mechanical read-and-write head positioned above the disk [4]. The mechanical nature of
hard disk drives reduces their serviceable lifetimes, increases auditory noise, and decreases
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Figure 1.1: A magnetoresistive memory cell. Resistance is high when the ferromagnetic
layers are antiparallel (a.) and low when they are parallel (b.), corresponding to the binary
memory states “one” and “zero”. Resistance is read by either inducing a current through
the stack from a field emitter or directly through electrical contacts on the top and bottom.

their read-write speeds—the head must physically move to a given location on the disk
while the disk rotates beneath it to read from or write to a bit. However, disk drives are
inherently non-volatile (retain information without power), have very high write endurance,
and have achieved superb areal densities [4].

There are two types of semiconductor computer memory used in most modern applica-
tions: dynamic and static random-access memory (DRAM, SRAM). DRAM is valued for
its areal density (consumers can cheaply buy 32GB modules), and low cost, but is volatile:
it must be refreshed as often as 31 times per second [5]. This dramatically reduces its power
efficiency [6]. Meanwhile, SRAM has superb read/write performance, but is still volatile,
has poor areal densities, and is prohibitively expensive in large amounts [7]. Today, DRAM
is primarily used for main-memory (storing the operating system and running programs)
while SRAM is used for high-speed applications like the central processing unit (CPU)
cache, of which there is usually less than 32MB [7, 8].

Combining the physics of memory storage in magnetic moments of spinning disk mem-
ory and the reading/writing transistor of DRAM, a single STT-MRAM cell comprises a
∼ 50nm diameter nanopillar [9, 10, 11, 12] of layered magnetic material connected to a
transistor, Fig 1.2. The primary operational difference (and largest benefit) of STT-MRAM
from traditional magnetic drives is in its method of writing. Rather than relying on an ex-
ternal field to reverse the magnetization of a magnetic grain in a thin film, a current is used
to both read from and write to a bit. All input/output (I/O) is controlled by the transistor.
During write operations, a large current is developed from the Bit to the Source Line. This
current passes through the MRAM cell and interacts with the magnetization of the Free
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Figure 1.2: A typical control circuit for an STT-MRAM cell embedded in a block of memory.
The individual cell is selected and driven by two voltage rails: a Word Line and a Bit Line.
To write, a large voltage difference is applied across the Source and Bit Lines, with a voltage
on the Word Line large enough to operate the FET in the linear region. This combination
drives a large current through the cell, flipping the FL. The direction of the applied current
selects the direction of magnetization of the FL and thus the memory state. To read, the
FET is still operated in the linear region, but a current only just large enough to measure
GMR or TMR (produced by the relative orientation of FM2 and FM3) is developed across
the Source and Bit Lines [13]

Layer through an effect known as spin-transfer torque (STT): a spin-polarized current can
induce magnetic reversal by exerting a torque on the local magnetic moment [14]. Thus,
the direction of the applied current determines the direction of magnetization in the Free
Layer. In practice, STT-MRAM devices are often composed of three layers: the free layer
(FM3), the fixed layer (FM2), and a coupling layer (FM1). FM1 and FM2 are strongly
antiferromagnetically exchange coupled, i.e. their moments are antiparallel. This coupling
improves the stability of FM2 and helps to eliminate unwanted stray fields on FM3.

While there is widespread industry and academic interest in STT-MRAM [15, 16, 17, 18],
all extant commercial offerings fail to realize most of the theorized benefits of the technology:
switching currents are unacceptably large and capacities remain small [19]. Reducing the
switching current and increasing the writing speed while maintaining short- and long-term
thermal stability is of critical importance. It is believed that the introduction of non-collinear
coupling (an interlayer angle between 90◦ and 180◦) between the magnetic moments of
FM1 and FM2 will substantially improve the performance of STT-MRAM devices in this
regard [20, 11], a strategy which is of central focus in the Physics of Nanomagnetic Materials
and Devices (PNMD) lab of SFU [21].
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The PNMD lab has the experience, knowledge, and equipment for the creation and
characterization of thin-film magnetic structures. However, it is difficult to impossible to
fully understand or predict the behaviour of certain magnetic structures. Thus, this work
informs the ongoing process of optimizing the design parameters of STT-MRAM by simulat-
ing existing and planned structures in a specialized micromagnetic simulation environment.
Optimization parameters include all relevant magnetic and physical properties: saturation
magnetization, interlayer exchange coupling strength, exchange coupling, crystallographic
anisotropy, layer dimensions, and externally applied currents and fields. The figures of merit
for the optimization of MRAM are switching speed, switching current, structure size, and
cost of materials.
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Chapter 2

Theory

2.1 Magnetic hysteresis

Ferromagnets are distinguished from other materials in that they generate a field that acts
to align internal atomic dipole moments parallel to one another in the absence of an external
magnetic field [22]. This is in contrast to materials that exhibit paramagnetic (attractive)
or diamagnetic (repulsive) properties only while under the effect of an external field. Like-
wise, ferromagnetic materials are marked in their non-linear response to an external field,
referred to as “hysteresis”. This is best shown in a plot of total magnetization in a mate-
rial, M , against external field, H, Fig 2.1. Clearly, the ferromagnetic material retains some

Figure 2.1: A magnetic hysteresis loop for a ferromagnetic material in an external field, with
the total magnetic moment, M , plotted as a function of applied external magnetic field,
H. Points of interest are labeled, showing the saturation magnetization, Ms, the remanent
magnetization, Mr, and the coercivity, Hc.

magnetization even when the external field is removed: the magnetic remanence, Mr. The
field required to “coerce” the material into magnetic alignment in either direction is the
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coercivity, Hc, while the maximum total magnetic moment achieved at the strongest field is
the saturation magnetization, Ms. Ms is an innate property of a given elemental lattice or
alloy, while Hc and Mr also depend heavily on the microstructure of a material. The source
of the magnetic dipole moment of each atom is thought to be produced by the orbit and
quantum mechanical spin of each atom’s constituent electrons [23].

2.2 Magnetic free energy

There are many distinct energies present in a magnetic material and the total energy of a
given magnetic state is the sum of each. In general, a material will “prefer” to relax into a
magnetic state that minimizes these energies. Generally, the total magnetic energy is defined
as,

ET ot = EEx + EIex + EZee + EK + ED, (2.1)

where: EEx = Exchange interaction energy,
EIex = Interlayer exchange coupling energy,
EZee = Zeeman energy,
EK = Anisotropy energy,
ED = Demagnetization energy.

For brevity, only short descriptions and mathematical definitions of each term will be in-
cluded here. More complete definitions and derivations can be found in the citations.

2.2.1 Exchange energy

Exchange energy arises completely from the quantum mechanical interactions of the spins
of neighbouring atoms (i.e. magnetic dipoles) in a crystal lattice. It is a combination of both
the Pauli exclusion principle and the principle of indistinguishable particles [24].

For select FCC and BCC lattice directions, the energy of the exchange interaction is
given by [24, 25]:

EEx = −2AEx

d

N∑
i=1

cos (θi − θi+1) , (2.2)

where: AEx = Exchange stiffness,
d = spacing between between atomic planes in the lattice,
N = number of lattice planes,
θi = angle of the atomic spin in plane i.

Although its value is most often taken from empirical measurements, the exchange stiffness,
AEx, is defined as follows [25],

AEx = nJS2

a
, (2.3)
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where: n = number of atoms in the unit cell,
J = exchange interaction integral,
S = magnitude of spin.

The value of AEx captures much of the underlying physics. Its magnitude depends on the
lattice constant, the type of unit cell, the number of nearest neighbours, and the strength
of interaction between two neighbouring magnetic atoms.

2.2.2 Interlayer exchange energy

Where the exchange energy represents the strength of coupling between individual atomic
planes in a ferromagnet, the interlayer exchange energy represents the strength of coupling
between layers of magnetic material separated by a non-magnetic spacer layer.

Interlayer exchange coupling is most commonly modeled phenomenologically, where the
coupling is thought to arise from multiple sources. It can be expressed as [21],

EIex = J1 cos (θ) + J2 cos2 (θ) , (2.4)

where: J1 = bilinear coupling constant,
J2 = biquadratic coupling constant,
θ = angle between the magnetic moments of the coupled layers.

As this energy term is of particular interest in this work, a plot of its behaviour is shown
in Fig 2.2. Interlayer exchange coupling is best understood in two parts. The bilinear term
has energy minima at either 0◦ or 180◦ depending on the sign of J1, where these two angles
correspond to the magnetic moments of the layers being either parallel or antiparallel. The
antiparallel case is sometimes referred to as a synthetic antiferromagnet (SAF)—“synthetic”
because it is not individual neighbouring spins that are antiparallel, but rather neighbouring
layers. This is shown in Fig 1.1(a.). Meanwhile, the biquadratic term has minima at 90◦

and 270◦. These two minima are symmetric: they correspond to the layer’s moments being
perpendicular to each other. When J2 is zero or very small relative to J1, the moments of
the layers lie along the same line and are referred to as “collinear”. However, for,

J1
2J2

< 1, (2.5)

the biquadratic term begins to dominate and energy minima somewhere between 180◦ and
90◦ appear. This is referred to as “non-collinearity”. It has been shown experimentally
that the strength and sign of the bilinear term (determined by J1) oscillates depending
on the thickness and composition of the spacer as well as the crystallographic structure of
the FM layers near the interface [26, 27]. The contribution of the biquadratic term (J2)
is believed to be determined by spatial variations in J1, the atomic surface roughness of
the coupled layers, pin-holes, and loose spins [28]. Additionally, it was recently discovered
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Figure 2.2: Each term of the interlayer exchange energy plotted against coupling angle, along
with their sum. Note: the bilinear term (dependent on J1) has a minimum at 180◦ (collinear)
and the biquadratic term (dependent on J2) has minima at 90◦ and 270◦ (perpendicular).
The sum of the bilinear and biquadratic terms has minima between these two extremes, at
107◦ and 253◦. These two minima are symmetric.

that a new class of magnetic spacer layers containing a non-magnetic material (Ru) alloyed
with a ferromagnetic material (Fe) can be used to precisely control non-collinear alignment
between the magnetic moments of ferromagnetic layers [21].

2.2.3 Zeeman energy

Zeeman energy arises from the interaction of a magnetic material with an externally applied
magnetic field. It is a product of the torque exerted on each dipole acting to align them
along the field. For the case of homogeneous reversal of a layer, the Zeeman energy per unit
area can be defined as [25],

EZee = −MsHExtd
N∑

i=1
cos (θi − θHExt

) , (2.6)

where: HExt = magnitude of the external field,
θi = angle of magnetization of an atomic layer,
θHExt

= angle of the external field.

Zeeman energy is minimized when the magnetic moment is aligned in the same direction
as the field.
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2.2.4 Anisotropy energy

Magnetic anisotropy is the tendency of magnetic materials to “prefer” to magnetize along
certain directions. Anisotropy can arise from the crystal structure, the quality of the thin
film, the local environment in the lattice, and the shape of the magnetic material. Directions
(angles of magnetization) where the anisotropy energy is minimized are called “easy”, while
directions where it’s maximized are “hard”.

Uniaxial anisotropy

When the easy axis of the material is along a single axis, e.g. the crystallographic direction
[0001] for hexagonal close-packed (HCP) Cobalt [13], it is referred to as uniaxial anisotropy,
EKu . This is typically an empirically measured value, but its origin in the structures studied
in this thesis can be understood to come from three sources: magnetoelastic (ME), magne-
tocrystalline (MC), and surface anisotropy (SA) [29]. The films grown in the PNMD lab are
all textured (grown along a single crystallographic direction) out-of-plane (±z). These films
consist of magnetic grains that are randomly oriented within the film plane. Thus, there is
no preferential crystallographic direction in the film plane: the magnetic anisotropy in the
x- and y-directions cancel out. For polycrystalline samples, the phenomenological uniaxial
anisotropy energy is given by [24],

EKu = − Ku

M2
s

M2
⊥, (2.7)

where: Ku = uniaxial anisotropy constant,
M⊥ = component of magnetization perpendicular to the plane.

ME anisotropy arises at the interface between layers of elements with different lattice con-
stants. This difference induces mechanical stress on the unit cells of both layers, changing
the shape, distances, and therefore interaction energies of the constituent particles. So-called
because the preferred directions are along crystallographic directions, the magnitude and
type of MC anisotropy depends on the crystal lattice in the magnetic material [29]. SA
arises due to the asymmetry in the local environment of particles at the edge of a thin film:
such a particle does not have a complete set of nearest neighbours [30]. Ku is defined by [13],

Ku = KME + KMC + KSA. (2.8)

Shape anisotropy

The aspect ratio of a sample can impose a strongly preferred direction of magnetization.
Shape anisotropy arises because unpaired magnetic dipoles at the surfaces of materials
create a magnetic field against the direction of overall magnetization, giving rise to an
internal “demagnetizing field”. Unpaired dipoles are maximized when pointing out of the
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plane of a thin film rather than parallel to the surface, so the easy axis of a thin film is
typically in-plane. The shape anisotropy energy is defined as [13],

EKs = N
µ0
2 M2

s cos2 (θ) , (2.9)

where: N = demagnetizing factor, a function of the sample aspect ratio,
θ = angle between the magnetization and the sample surface normal.

For a thin film magnetized out-of-plane, which is a good approximation of the structures
discussed in this thesis, this becomes,

EKs = µ0
2 M2

s . (2.10)

The length scale of the exchange interaction (defined above) is limited by its competition
with shape anisotropy. This defines the exchange length, which is the shortest scale over
which neighbouring spins are homogeneous, given by [29],

δEx =
√

AEx

µ0M2
s

, (2.11)

where: µ0 = permeability of free space.

δEx is directly related to the exchange stiffness and inversely related to the demagnetization,
M2

s .

Effective anisotropy

In practice, the combined effect of EKu and EKs is considered most relevant—whichever is
larger will dominate and determine the relaxed state. This gives rise to a quantity known
as the “effective anisotropy” energy, defined as,

EKEff
= EKu − EKs . (2.12)

Thermal stability

An energy input is required to overcome the energy barrier between easy directions of
magnetization and induce magnetic reversal. Thermal energy is present in magnetic systems
at all temperatures above 0 Kelvin, which acts to increase the probability of stochastically
“jumping” over this barrier in a given timescale. While an increase in thermal fluctuations
has been shown to reduce switching currents in STT-MRAM, it also increases the bits’
susceptibility to unintentional switching. The probability of random thermal switching in a
given time is given by [31],

p (t) = f exp
(

− Eb

kBT

)
< 1, (2.13)
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where: p (t) = probability of switching in t time,
f = gyro-magnetic spin precession frequency,
Eb = energy barrier of switching,
kB = Boltzmann constant,
T = absolute temperature.

This probability increases with increasing temperature and decreases with increasing mag-
netic energy. The expression can be rearranged to give the thermal stability factor, ∆, which
is a key design parameter for STT-MRAM. It is given by [32],

∆ = Eb

kBT
= Keff V

kBT
, (2.14)

where: ∆ = thermal stability factor,
V = volume of material.

To prevent a single bit from flipping over ten years (a standard figure for hard disks), we
require ∆ ≥ 45 at room temperature [32]. For a 128Mb memory chip to maintain data
integrity of each bit over this same period, we require at least ∆ ≥ 59 [31]. This work will
exclusively treat with structures well above this critical value.

2.3 Dynamics

2.3.1 Landau-Lifshitz-Gilbert equation

The interplay between the above energy terms defines the preferred static direction of
magnetization at each point of a magnetic material, but it makes no statement about the
dynamic process of reaching that state. The physical process of changing the orientation
of a magnetic moment is described by the Landau-Lifshitz-Gilbert equation (LLG), given
by [33],

dM⃗

dt
= − γ

1 + α2 M⃗ × H⃗Eff − αγ

1 + α2 M⃗ ×
(
M⃗ × H⃗Eff

)
, (2.15)

where: M⃗ = magnetization,
γ = reduced gyromagnetic ratio,
α = damping,
H⃗Eff = effective field.

This relates the change in magnetization to both the current magnetization and a quantity
called the “effective field”. This effective field is in fact the combination of all of the effects of
minimizing the energy terms defined above, modeled as a field acting to align the magnetic
moment in a single direction. It is defined as [33],

HEff = − 1
µ0Ms

δE

δM
, (2.16)
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where this is a variational derivative of energy in magnetization. Importantly, the LLG
shows that magnetic moments do not simply “snap” along the direction of HEff . Instead,
in a combination of precessional and dissipative motion, they spiral in towards an energetic
minimum [33]. The speed of precessional decay is controlled by the damping, α. As well,
thermal energy causes some degree of perpetual precession about the direction of HEff .

2.3.2 Spin-dependent scattering

Each energy state of a system is degeneratively filled by one spin-up and one spin-down
electron. In the ground state, every state is occupied by a pair of electrons up to a certain
level, the Fermi energy, Ef . The number of electrons in each energy interval is often repre-
sented by a function, the density of states, D(E). For a non-magnetic material, the density
of states function is symmetric for both spin-up and spin-down electrons, i.e. there are equal
populations of occupied states for both spins, Fig 2.3(a.). However, magnetic materials are
“spin-polarized”—there is a preponderance of one electron spin, lending to a net overall
polarization of atoms, Fig 2.3(b.). Importantly, the shape of D(E) at EF , and thus the
population of locally unfilled states, is different for spin-up and spin-down electrons [34].

Figure 2.3: A schematic representation of the density of states, D(E) (here referred to as
N(E)), of a non-magnetic d-transition metal (a.) and of a ferromagnetic d-transition metal
(b.). The thin blue and orange arrows indicate the directions of electron spin, the large blue
arrow indicates the direction of magnetization in (b.). Note that in (a.), the density of states
and occupied states at EF is symmetric for spin-up and spin-down electrons, where in (b.),
D(E) is skewed. There are more occupied states of spin-up electrons. Adapted from [34].

The d-transition metals have both 3d and 4s valence electrons that contribute to con-
duction. However, it is only the behaviour of the 3d electrons that contributes to the unique
ferromagnetic properties of Fe, Co, and Ni [34]. Mott theorized that while the s-electrons
have high mobility, they are heavily scattered into the many available d-states at EF , in-
creasing their felt resistance [34]. Similarly, depending on spin, the d-electrons have differing
numbers of available states at EF to which they can scatter. Thus, spin-up and spin-down
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electrons experience a difference in resistance in magnetized materials. This imbalance in
resistance has a filtering effect on applied currents, where a majority of the non-scattered
conduction electrons have spin along the direction of local magnetization [13]. Sometimes,
in a parallel to semiconductor devices, the more and less common spins in a spin-polarized
current are called “majority” and “minority” carriers, respectively.

Giant magnetoresistance

Two ferromagnetic layers (FM1 and FM2) coupled across a non-magnetic spacer can relax
to one of two homogeneous states: parallel and antiparallel. As above, a current applied to
FM1 will pick up a degree of spin-polarization, i.e. conduction electrons with spin not in
the direction of magnetization of FM1 will be preferentially scattered, leaving a majority
of aligned electrons. In the parallel case, as this current passes through the spacer and into
FM2, it encounters the same electronic band structure as in FM1 and the majority spins do
not scatter further. In contrast, the minority spin electrons are scattered strongly within both
layers. This situation mirrors a parallel circuit with a low-resistance and a high-resistance
path: the measured resistance in this case is low. In the antiparallel configuration, both
spin-up and spin-down electrons are scattered strongly in one of the layers, because they
are antiparallel to the direction of magnetization in at least one magnetic layer. This mirrors
a parallel circuit with two paths of equal, moderate resistance [34]. Measured resistance in
this case is high. The dependence of resistance on magnetization, giant magnetoresistance
(GMR), is most often quantified as the ratio of the resistance of the antiparallel state to
the parallel state. GMR is not used in the results of this work, but is an important aspect
of the function of STT-MRAM.

Spin-transfer torque

Consider again the arrangement in Fig 1.1(a.), being cognizant that FM1 is “hard” (high
anisotropy - difficult to reverse) and FM2 is “soft” (low anisotropy - easy to reverse). In
the case where a current is passed through FM1 to FM2, the current is spin-polarized with
the majority carriers being in the direction of FM1’s magnetization. This current passes
into FM2, where many of the majority carriers interact with the local magnetic moment by
exerting a torque on the spins in FM2. This causes them to precess. If the magnitude of the
applied current is sufficient, this torque can cause the spins in FM2 to switch direction en
masse to a parallel state, Fig 1.1(b.) [33, 29]. Note that as the spin-polarized current passes
through the spacer, minority carriers from FM2 are reflected back into FM1. However,
for the antiparallel configuration, the minority carriers of FM2 are parallel to FM1. These
reflected carriers only act to stabilize FM1 [33].

The inverse operation is slightly different: it relies on the interaction of minority carriers
reflected back at FM2. When parallel, current is instead passed from FM2 to FM1. As before,
the current is spin-polarized with majority carriers along FM2’s direction of magnetization.
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As this current passes through the spacer and into FM1, it again exerts a torque on FM1
and causes a stream of carriers antiparallel to FM1 (and thus FM2) to reflect back at
FM2 [33]. These reflected carriers exert a torque on FM2 in the opposite direction to its
magnetization. FM2 is softer than FM1, so it succumbs to the applied spin-transfer torque
(STT) at lower currents than FM1 and returns to an antiparallel state [13, 33].

STT is considered to contribute a “fieldlike” torque that causes precession and a “damp-
inglike” torque that causes alignment of the layer with the polarized current [33],

T⃗field = ηfield (θ) jeℏ
2eµ0Ms

M⃗ × P⃗ , T⃗damp = ηdamp (θ) jeℏ
2eµ0Ms

M⃗ ×
(
M⃗ × P⃗

)
, (2.17)

where: ηdamp = angular dependence of the damping-like torque,
ηfield = angular dependence of the field-like torque,
je = current density,
ℏ = reduced Plank constant,
e = electron charge,
M⃗ = magnetization of FM2,
P⃗ = spin-polarized current due to the magnetization of FM1.

These two components can be expressed as an effective field, similar to the static magnetic
energies, and are incorporated into the LLG as follows [33, 35]:

dM⃗

dt
= − γ

1 + α2 M⃗ ×
[
H⃗Eff + jeℏ

2eµ0Ms
(αηdamp − ηfield) P⃗

]
− αγ

1 + α2 M⃗ ×
(

M⃗ ×
[
H⃗Eff + jeℏ

2eµ0Ms
×
(

− 1
α

ηdamp − ηfield

)
P⃗

])
. (2.18)

Importantly, the magnitude of the dampinglike torque exerted on a magnetic moment by
a spin-polarized current is proportional to the cross-product between M⃗ and P⃗ (Eq. 2.17),
which represents the angle between the spins in the current and the local magnetic moment,
and is “0” when M⃗ and P⃗ are parallel. If the biquadratic coupling constant, J2, were zero,
the only source of non-collinearity between FM1 and FM2 would be the random thermal
motion of the magnetic moments of the ferromagnetic layers. Thus, thermal instability and
non-collinearity induced by J2 tend to decrease the switching current [20]. In summary, one
can read and write both memory states of a magnetic bit just through the actions of GMR
and STT by simply varying the direction and magnitude of current through the cell.
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Chapter 3

Methods

3.1 Simulations

3.1.1 magnum.pi

For large-scale and comprehensive micromagnetic simulations, there are a number of open-
source and proprietary options available. For this work, I have been generously granted
access to a proprietary Python package called “magnum.pi” [36, 37], developed by the
Physics of Functional Materials (PFM) lab at the University of Vienna [38]. The PNMD
lab and this group have a close working connection.

In short, magnum.pi is an accurate and fast tool where one can simulate all of the
dynamic and static effects discussed above and more. It includes accurate numerical imple-
mentations of each energy term and material parameter. Its inputs are a meshed 3D model
of the structure-in-question and a Python script to customize, run, and log the parame-
ters of a given simulation. Its output is a series of files containing the vector and scalar
results at each of a finite number of points in the structure. Exactly which and how many
results are sampled from the parameter space is completely up to the user. Output from
the simulation can be viewed pictorially in ParaView (see Section 3.1.2) or quantitatively
in a plotting environment of the user’s choice. As an example, I have provided the results
of simulating an interlayer exchange coupled SAF with positive J1 in magnum.pi, shown
in Fig 3.1. For the given material parameters, the structure relaxed (fell into an energy
minimum) corresponding to a collinear SAF.

magnum.pi is in the minority of existing micromagnetic simulation software in that
it employs finite element (FEM), rather than finite difference (FDM), numerical meth-
ods [33, 39]. This is important, as a numerical derivative (as in FDM) has inherent loss
of granularity and introduces instability at certain boundary conditions. magnum.pi’s ap-
proach to micromagnetic modeling is similar to the mechanical stress/strain/deformation
modeling that one might perform in SolidWorks or Ansys. FEM introduces another step
before simulation, meshing, where one employs additional software to construct a tetrahe-
dral mesh of a custom-made 3D model of one’s structure. Tetrahedral meshes (as in FEM)
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Figure 3.1: Sample simulation results from magnum.pi displayed in Paraview. This is a
simple SAF, with the direction of overall magnetization of a layer indicated by the colour
(red for +z and blue for -z) and the direction of each node’s spin shown with an arrow. The
spacer is white (no overall magnetization). Note: this is a still from a set of results spanning
about 5ns of simulation time. The complete behaviour of this simulation is visible either in
Paraview or as a GIF.

achieve substantially higher resolution than cuboids (as in FDM), even for fewer meshing
vertices [33]. In this case, the meshing model is an accurate to-scale recreation of the struc-
tures we are interested in simulating, including the layer thicknesses, shapes, and volumes.
Magnetic states are calculated at each corner of each tetrahedron, called a vertex. To most
accurately model the behaviour of an individual spin, it is important that the side lengths
of these tetrahedra (called the mesh length) do not exceed the exchange length, Eq. 2.11. In
this work I use Gmsh, a free and open-source command-line or graphical meshing tool [40].
Gmsh’s input is a “.geo” file, which contains all of the physical information about the struc-
ture. An example Gmsh meshing file is provided in Appendix A.

Competing micromagnetic simulation environments include the Object-Oriented Mi-
cromagnetic Framework (OOMMF) [41] and mumax3 [42]. Both are free and open-source,
however, neither framework has any native support for simulations involving the biquadratic
coupling constant. Both OOMMF and mumax3 are GPU-capable, while magnum.pi is bound
to the CPU.

3.1.2 ParaView

Paraview is an open-source software platform for data visualization. It is not required to
use magnum.pi, but it does allow users to create especially intuitive and attractive output
files, as in Fig 3.1. The user has complete control over which logged results are displayed,
and these can include any of the magnetic properties that magnum.pi simulates, including
anisotropy, magnetization, and demagnetization in any specific direction. As illustrated by
Fig 3.1, the user can choose to map either a colour gradient or a “glyph” (the arrows) to
the magnetization measured at each vertex of the simulation mesh.
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3.1.3 HPC

Unfortunately, while OOMMF and mumax3 can be run on any Windows desktop computer
with a consumer-grade GPU and CPU, magnum.pi can only be run on Linux environments.
As well, the simulations that are required of this work require substantially more computing
power than is supplied by typical computers. Accordingly, I have been granted access to the
Compute Canada High Performance Computing (HPC) network [43]. This allows me the use
of multiple supercomputing clusters across Canada, in particular Cedar, which is located on
the Simon Fraser University (SFU) campus. This HPC cluster has an overwhelming amount
of computing power (a theoretic peak double-precision performance of 14 PFlop/s [44]), but
its effective use is locked behind a fairly substantial learning curve. This includes the devel-
opment of batch scripts, the submission and optimization of SLURM Workload Manager
jobs (see Appendix B for an example) [45], management of the SLURM queue, efficient
storage and archival of massive amounts of research data on a Lustre filesystem [46], and
the use of Gentoo Linux [47].

3.2 Experiment

3.2.1 Sample fabrication

The fabrication techniques of the PNMD lab are currently limited to sputter deposition,
though there is ongoing work to apply electron-beam lithography and directional etching
techniques to manufacture STT-MRAM nanopillars in-house. Sputtering is one of many
processes by which one can deposit films of a material from a source (the target) onto a
sample (the substrate). In this case, sputtered materials are a range of magnetic and non-
magnetic elements, including Fe, Ni, Co, Cu, Ru, Ta, and Pt, which together contribute the
range of magnetic material properties required for the PNMD lab’s structures. Sputtering
is an ablative process, where positively charged ions of an non-reactive plasma (usually Ar)
are accelerated toward a negatively charged target, knocking off neutral atoms on impact.
These uncharged target atoms fly away in a largely random direction, some of which happen
to land on and cover the substrate. Sputtering is typically performed at high vacuum (less
than 1.33×10−6Pa) to minimize any chance of scattering the substrate atoms and impurities
in the sputtered film.

Our samples are predominantly prepared using radio-frequency (RF) magnetron sput-
tering. The details of the mechanism by which this method works are unimportant for this
thesis, but it is sufficient to know that by employing an alternation field one can sputter
non-conducting materials and that magnets beneath the target increase film purity and
sputter rates.
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3.2.2 VSM

Vibrating-Sample Magnetometry (VSM) is the primary method by which our lab obtains
empirical material classifications. Combined with appropriate analysis, VSM data will report
values for Ms, Mr, Hc, Ku, J1, J2, and AEx for individual layers of magnetic material and
some types of coupled structures.

Internally, the VSM applies a strong magnetic field to the sample. The sample is then
mechanically vibrated, producing an oscillatory magnetic field around the sample. This field
is picked up by a pair of coils as an induced voltage, the magnitude of which is proportional to
the magnetic moment of the sample multiplied by its volume [25]. The external field is swept
from positive to negative Hc, ensuring that the magnetic moment is fully saturated in both
field directions. One must normalize the results by the volume of the deposited magnetic
layers to isolate the magnetic moment. All material parameters given to magnum.pi as
inputs in this work are taken from measurements of PNMD samples from the VSM.

3.2.3 MOKE

Where the VSM is a quantitative approach, the Magneto-Optical Kerr Effect (MOKE) can
provide a holistic picture of the magnetic hysteresis (and therefore switching behaviour) of a
complex magnetic sample, very similar to Fig 2.1. However, its results are entirely relative—
they contain no absolute values for Ms and Mr. Combined with the VSM, however, one can
obtain a complete picture of the behaviour of sample. As well, because MOKE is an optical
method, its results are very sensitive to the conditions at the surface of the film.

The Kerr effect describes the phenomenon that light interacting with a magnetic material
can change its polarization. The MOKE experimental setup involves placing a magnetic
sample in a large external field, where polarized laser light is reflected off of it. The reflected
beam is then passed through a second polarizer, polarized perpendicularly to the first. For
a non-magnetic material, this would completely filter all the light. For magnetic materials,
however, any measured residual light is then the result of a change in polarization caused by
the interaction with the material itself. The intensity of the measured light is thus positively
related to the magnetization at that particular external field. To obtain a full hysteresis loop,
the field is swept forward and back past the saturation field of the sample in both directions.

3.2.4 Van der Pauw method

The Van der Pauw method is the most common method by which one measures sheet
resistance (which gives the GMR/TMR ratio). It is a four-point probe method, wherein
current is produced between two probes and voltage is measured across the others. Ohm’s
law then gives total resistance, which is related to sheet resistance, Rs, by [13],

Rs = πRav

ln 2 f, (3.1)
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where: Rav = average of the resistance between each pair of probes,
f = correction factor for asymmetries in the sample resistance.

To summarize, magnum.pi can be used to predict structure behaviour, sputtering is used
to fabricate samples, and VSM, MOKE, and GMR are used to obtain empirical values to
act as inputs to magnum.pi.

3.3 Optimization of STT-MRAM

Commercial MRAM devices were first made available on the consumer market in 2006, by
Freescale Semiconductor [16] and later by Everspin Technologies [15]. Neither product line
has achieved large-scale success, primarily due to their low areal densities and high power
draw. These issues, in addition to cost, scalability, and speed are of fundamental concern in
the PNMD lab’s research.

As mentioned briefly above, it is vital that FM3 does not feel any stray field from FM2. If
it does, it would introduce anisotropy in the switching current, i.e. it would require different
current densities to write a “1” or a “0” because of the bias in internal field. By coupling
FM2 to a very hard third layer, FM3, we can improve the stability of FM2 during write
operations and, if Ms is tuned to match, completely eliminate any stray fields felt by FM3.
This tuning is accomplished by adjusting Ms/V (the saturation magnetization normalized
by volume) for FM1 and FM2 so that when FM1 and FM2 are antiparallel, their stray
fields cancel out. As well, because FM1 is slightly farther from FM3 than FM2, Ms3 must
be slightly larger to completely cancel the stray fields.

There is a very real material cost to magnetic devices. Where semiconductor devices
are primarily bulk silicon, precious rare-earth metals like Pt and Ru are commonplace in
MRAM structures. Therefore, the overall diameter and thickness of the design must be
kept at minimum. This is limited by manufacturing techniques, thermal stability, and film
homogeneity.

Switching current, device scalability, and size are all interdependent: the primary lim-
itation on the density of STT-MRAM chips is the size of the driving transistor [48], as
shown in Fig 1.2. Existing devices require large currents to write to bits, which in turn
requires a large transistor. This increases power draw, increases heat production, and de-
creases density [49]. To address this shortcoming, it is a common strategy to deliberately
worsen (decrease) the thermal stability of the memory cells, causing the constituent dipoles
to develop a very large random precession [19]. This is in an effort to create non-zero spin-
transfer torque at the beginning of the switching process—decreasing switching current and
increasing switching speed. While necessary to increase density, this has disastrous effects
on the memory’s long-term stability: Everspin’s 1Gb device is only rated for three months
of data retention [50]. This is no-longer considered non-volatile by industry standards.
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The key design element of PNMD’s memory is the development of a large STT moment
arm not through random thermal motion, but through careful optimization of material
parameters to produce a naturally non-collinear and thermally stable FM2. In simulations,
this has already been shown to cause a two times reduction in switching current and a three
times reduction in switching speed [19]. This is of course paired with a decrease in transistor
size, which in turn improves areal density and heat management.

Given that the PNMD lab is at the forefront of knowledge and capability to fabricate
biquadratically coupled structures at particular angles, understanding the optimization of
these structures in nanopillars is of central importance to us. Thus, a focal question of
my work is, “how does one design an STT-MRAM structure to maximize the benefits of
non-collinearity between FM2 and FM3?”
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Chapter 4

Results

4.1 Static simulations

4.1.1 Verification of magnum.pi and exploration of design parameters

In this first set of simulations, my objectives were to verify the behaviour of each energy
term as implemented in magnum.pi, demonstrate my own ability and understanding of the
physics involved, and determine a few key design parameters of STT-MRAM. All aspects of
magnum.pi behaved correctly, as expected, with the exception of the biquadratic coupling
term, a bug in which was discovered and subsequently fixed through personal communica-
tions with Dr. Abert of the PFM lab.

Selection of structure dimensions: single domain radius

It is necessary that all layers of the MRAM cell have homogeneous relaxation states for the
stability and uniformity of the devices, i.e. each layer must be a single magnetic domain.
This condition is determined by the single-domain radius, given by [29],

Rsd = 36
√

AExKu

µ0M2
s

, (4.1)

which gives an upper bound on structure size. Experimental values for the dependencies of
this equation are well known for the elements and alloys used in PNMD’s structures, so the
maximum radius of the nanopillar is trivial to calculate.

Table 4.1 contains the maximum layer radius under this condition for select values of
Ku. Aex = 1.3 × 10−11J/m here and for all subsequent simulations, unless stated otherwise,
which is appropriate for bulk Cobalt [25]. Ms is chosen to be 900 × 103A/m and FM1
and FM2 thickness are chosen to be 3nm to produce results most applicable to existing
PNMD measurements. The thickness of the FM1/FM2 spacer is chosen to be 0.5nm for the
same reason, though this does not affect coupling strength in magnum.pi as implemented:
J1 and J2 and inputs to the model, rather than arising physically from properties of the
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lattice/interface. By the results from Eq. 4.1, the smallest upper bound radius is ∼ 70nm,
for Ku = 3.0 × 105J/m3.

Table 4.1: Single domain radius, Rsd, for various values of Ku, selected to cover a range of
appropriate values for FM1 and FM2, calculated by Eq. 4.1.

Aex (J/m) Ms (A/m) Ku (J/m3) Rsd (nm)

1.3 × 10−11 900 × 103 3.0 × 105 69.85
1.3 × 10−11 900 × 103 5.0 × 105 90.17
1.3 × 10−11 900 × 103 7.5 × 105 110.4
1.3 × 10−11 900 × 103 1.0 × 106 127.5

Selection of structure dimensions: thermal stability

Eq. 2.14 gives a lower bound on the layer radius to maintain long-term stability of a memory
bit. Table 4.2 contains values for ∆ for a range of potentially appropriate values of Ku, layer
radius, and layer thickness at room temperature. To improve areal density, it is desired
to design for the smallest radius that maintains the ∆ > 60 condition, while also being
manufacturable: nanopillars as small as 10nm are considered achievable on a large scale [51].
Likewise, it has been shown that out-of-plane structures are preferable for magnetic media,
as they have lower switching currents and higher thermal stability than in-plane [52]. To
maintain this condition, the perpendicular anisotropy constant, Ku, must always be larger
than the shape anisotropy constant, Ks. By the results from Eq. 2.14, values of Ku from
5.0 × 105J/m3 to 1.0 × 106J/m3 produce thermal stabilities far in excess of the minimum
with realistically minimized layer radii, while Ku = 3.0 × 105J/m3 only produces in-plane
(albeit stable) magnetizations.

Biquadratic interlayer exchange coupling

Where the many individual magnetic spins of a ferromagnetic layer are treated as one,
this is referred to as a “macrospin” model. Such a simple model does not account for non-
homogeneity within a material. Where FM1 and FM2 are treated as macrospins with some
separation angle θ interacting only through interlayer exchange coupling i.e., in the absence
of any kind of crystalline anisotropy or demagnetization field, the relaxation angle is trivial
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Table 4.2: Thermal stability figure of merit (∆) for a range of potentially appropriate values
of Ku, r (layer radius), d (layer thickness) at room temperature, calculated by Eq. 2.14.
Note that a negative effective anisotropy (Keff ) indicates that the layer is magnetized in-
plane. A ∆ > 60 in this case means that the layer is stable from pointing out-of-plane, but
will magnetize along a random direction in-plane, as the layer is isotropic in x-y, which is
inapplicable for GMR measurements in STT-MRAM.

Ku (J/m3) Ks (J/m3) Keff (J/m3) r (nm) d (nm) T (K) ∆

3.0 × 105 3.7 × 105 −6.7 × 104 15 3 300 34.4
3.0 × 105 4.0 × 105 −1.0 × 105 20 3 300 90.6
3.0 × 105 4.2 × 105 −1.2 × 105 25 3 300 170

5.0 × 105 3.7 × 105 1.3 × 105 15 3 300 68.0
5.0 × 105 4.0 × 105 1.0 × 105 20 3 300 91.4
5.0 × 105 4.2 × 105 8.0 × 104 25 3 300 114

7.5 × 105 3.7 × 105 3.8 × 105 15 3 300 196
7.5 × 105 4.0 × 105 3.5 × 105 20 3 300 319
7.5 × 105 4.2 × 105 3.3 × 105 25 3 300 470

1.0 × 106 3.7 × 105 6.3 × 105 15 3 300 324
1.0 × 106 4.0 × 105 6.0 × 105 20 3 300 547
1.0 × 106 4.2 × 105 5.8 × 105 25 3 300 825

to calculate through energy minimization:

EIex = J1 cos (θ) + J2 cos2 (θ) ,

d

dθ
EIex = d

dθ

[
J1 cos (θ) + J2 cos2 (θ)

]
= 0,

0 = −J1����sin (θ) − 2J2����sin (θ) cos (θ) ,

cos (θ) = −J1
2J2

,

θmin = arccos
(−J1

2J2

)
.

(4.2)

It is clear to see that for all values of J2 < J1/2, θmin = 180◦ i.e., perfectly collinear, while
for J2 > J1/2, the minimum is somewhere between 90◦ and 180◦ i.e., non-collinear. This
formula can be readily used to verify relaxation angles given coupling constants, as shown
in Table 4.3.

I created a magnum.pi simulation that, by agreeing with these values, would validate
the model: two 25nm radius, 3nm thick magnetic layers separated by a 0.5nm nonmagnetic
spacer, with large anisotropy (1 × 106J/m3) in the bottom layer, a constant J2 of 1.5 ×
10−3J/m2, a varying J1, and no demagnetization. The layers were relaxed from an initial,
randomized state for 5ns. These results are shown in Fig. 4.1(a, b, c).
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Figure 4.1: Left: initial validation of the interlayer exchange coupling term in magnum.pi,
using version 3.8.1, for various values of J1: 0 × 10−3J/m2 (a.), 1.5 × 10−3J/m2 (b.), 2.5 ×
10−3J/m2 (c.), and J2 = 1.5×10−3J/m2. Demagnetization was not included, and only FM1
had non-zero anisotropy. One would expect the layers to be homogeneous and relax to 90◦

(a.), 120◦ (b.), and 146◦ (c.), respectively. Instead, the layers are non-homogeneous and
have ill-defined coupling angles. Each arrow represents a single magnetic moment, while
the colour represents the local average direction of the moment: red for the positive ‘z’
direction, blue for negative. Right: validation of the interlayer exchange coupling term in
magnum.pi, using version 3.9.5, for various values of J1: 0 × 10−3J/m2 (d.), 1.5 × 10−3J/m2

(e.), 2.5 × 10−3J/m2 (f.), and J2 = 1.5 × 10−3J/m2. Demagnetization was not included, and
only FM1 had non-zero anisotropy. One expects the layers to be homogeneously antiparallel
and relax to 90◦ (d.), 120◦ (e.), and 146◦ (f.), respectively, which is the case (to within the
numerical precision of magnum.pi).
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Table 4.3: Interlayer angle, θmin, for a few pairs of values of interlayer exchange coupling
constants, J1 and J2.

J1 (J/m2) J2 (J/m2) θmin

0 1.5 × 10−3 90◦

1.5 × 10−3 1.5 × 10−3 120◦

2.5 × 10−3 1.5 × 10−3 146◦

When there is no demagnetization field and the total anisotropy is perfectly out-of-plane,
FM1 is forced to magnetize perfectly perpendicular to the film plane. Meanwhile, if the total
anisotropy of FM2 is chosen to be zero, the magnetic moment of FM2 is free to point in
any direction in the absence of coupling between the layers. Therefore, any interlayer angle
will be entirely due to coupling and will be formed between FM1 and the easy axis of
FM2, the z-axis. The magnitude of this angle should, to within the numerical accuracy of
Python/magnum.pi, exactly match the values in Table 4.3. Instead, Fig. 4.1(a, b, c) shows
pronounced non-homogeneity within the layers (rendering any discussion of interlayer angle
meaningless) and, where a positive J1 should force an anti-parallel state, Fig. 4.1(c.) was
instead approximately parallel. Note that the two antiparallel configurations (tail-to-tail or
tip-to-tip) are energetically equivalent.

This behaviour was brought to the attention of the PFM lab, who realized that there
was a software bug in magnum.pi’s caching of the biquadratic coupling term that prevented
the proper function of the BiquadraticInterlayerExchangeField class. This was quickly
remedied by Dr. Claas Abert, resulting in a new release of magnum.pi: version 3.9.5 from
3.8.1. The above simulations were rerun using the new release, the results of which are
shown in Fig. 4.1(d, e, f) and are exactly as predicted. The measured interlayer angles for
these simulated structures are as follows: 90.000◦, 119.996◦, and 146.433◦.

Uniaxial anisotropy

Commercially available STT-MRAM consists of a free and a hard layer magnetized out-of-
plane to minimize writing current [52]. The easy directions of magnetization in the structures
studied in this work are uniaxial and are due to magnetocrystalline anisotropy. The total
magnetocrystalline anisotropy energy within a layer (and thus the magnitude of its effect on
the relaxation angle) is directly proportional to the volume of the layer and the anisotropy
constant, Ku. The simple model for the energy density of macrospin interlayer exchange
coupling in Section 4.1.1 can be extended to include uniaxial anisotropy in both layers as
follows, with context provided by Fig. 4.2:

E = −Ku1d1 cos2 (θ1) − Ku2d2 cos2 (θ2) + J1 cos (θ1 − θ2) + J2 cos2 (θ1 − θ2) . (4.3)

25



Note that this is now a single equation with two unknowns: the two angles of the macrospins
with respect to the positive z-axis, θ1 and θ2. This makes finding an analytical solution
difficult, but energy minimization is still possible through numerical methods.

Figure 4.2: Labeled diagram for a macrospin model including uniaxial anisotropies Ku1 and
Ku2. d1 and d2 are layer thicknesses, while θ1 and θ2 are the angles formed by the macrospins
with respect to the positive z-axis. J1 and J2 are the interlayer coupling coefficients for the
interaction between FM1 and FM2, here labeled within a nonmagnetic spacer layer.

To visualize and verify the effect of uniaxial anisotropy on the relaxation of a SAF
in magnum.pi, one can compare the simulated relaxation angle across multiple SAFs with
varying Ku and thickness (volume), but with unchanging coupling strength. As per Eq. 4.3,
Ku and J1 favour alignment either parallel or antiparallel. The only source of non-collinearity
is J2. For a given set of interlayer coupling constants that favour a non-collinear antiparallel
state (positive J1), one expects the introduction of uniaxial anisotropy in both layers to
pull the magnetic moments apart, widening the interlayer angle, when magnetic energy is
completely minimized. Thus, increasing either Ku or the volume of a layer should further
increase the angle.

The results of a simulation which tests the direct dependence of angle on Ku (with-
out the effects of demagnetization) in magnum.pi are shown in Fig. 4.3(a, b), while the
dependence on layer volume is shown in Fig. 4.3(c, d). Layer radii are 25nm, while the
spacer is 0.5nm thick. The relaxation angles provided by numerical minimization of Eq. 4.3
are compared with the results from magnum.pi in Table 4.4, for independently varying the
anisotropy in FM2, Ku2, (Simulations 1 and 2) and the thickness of FM2, d2, (Simulations 3
and 4). All simulations demonstrate that the magnum.pi UniaxialAnisotropyField class
implementation behaves very similarly to the macrospin model without demagnetization,
with a maximum deviation of 4.1◦.
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Table 4.4: Interlayer angle from a macrospin model with uniaxial anisotropies compared
with those from magnum.pi for varying Ku2 (Simulations 1 and 2) and d2 (Simulations 3
and 4).

Simulation 1 Simulation 2 Simulation 3 Simulation 4

Ku1 (J/m3) 1.0 × 106 1.0 × 106 1.0 × 106 1.0 × 106

Ku2 (J/m3) 0.5 × 105 3.0 × 105 2.0 × 105 2.0 × 105

d1 (nm) 3.0 3.0 3.0 3.0
d2 (nm) 3.0 3.0 1.5 6.0

J1 (J/m2) 1.5 × 10−3 1.5 × 10−3 1.5 × 10−3 1.5 × 10−3

J2 (J/m2) 1.5 × 10−3 1.5 × 10−3 1.5 × 10−3 1.5 × 10−3

θmin (Macrospin) 123.8◦ 162.8◦ 128.9◦ 180.0◦

θmin (magnum.pi) 124.3◦ 158.7◦ 129.6◦ 179.4◦

Figure 4.3: (a.) and (b.): validation of the Ku dependence of the anisotropy energy term in
magnum.pi, comparing two SAFs with identical dimensions but differing Ku in the upper
layer: Ku2 = 0.5 × 105J/m3 (a.) and Ku2 = 3.0 × 105J/m3 (b.). Ku1 is held constant at 1 ×
106J/m3. Both simulations have identical interlayer coupling of J1 = J2 = 1.5 × 10−3J/m2:
they differ from Fig. 4.1(b.) only in that both layers now have non-zero anisotropy. Note
that (a.) shows only a small increase in angle, to 124◦, while the angle in (b.) is much larger:
approximately 159◦. This dependence on Ku is as expected: the increased anisotropy energy
density will pull the energy minima toward the easy axis, widening the relaxation angle with
increasing Ku. The layers that appear to deviate farther from the z-axis are those with a
smaller anisotropy - the upper layer in both (a.) and (b.). (c.) and (d.): validation of the
volume dependence of the anisotropy energy term in magnum.pi, comparing two SAFs with
identical Ku but differing thicknesses in the upper layer: d2 = 1.5nm (c.) and d2 = 6.0nm
(d.). Ku is held constant at 1 × 106J/m3 in the bottom layer, with 2 × 105J/m3 in the top.
Both simulations have identical interlayer coupling of J1 = J2 = 1.5 × 10−3J/m2, which
would cause a relaxation angle of 120◦ in the absence of anisotropy. Where the thin and soft
upper layer in (c.) develops almost all of the interlayer angle (129◦), (d.) relaxes to 179◦,
nearly collinear. This dependence on volume is as expected: the increased total anisotropy
energy will pull the energy minima toward the easy axis, widening the relaxation angle with
increasing volume.
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Stray field

Each magnetic layer in a structure generates an internal and an external magnetic field.
The external field (the stray field) can act on other layers, in much the same way as the
Zeeman effect: the magnetic moment of a layer will prefer to align with the local stray field.
This can have deleterious effects on the consistency of writing to an MRAM bit [10]. Owing
to the shape of the magnetic field emitted by a magnetic dipole, the stray field emitted by
an in-plane sample will prefer an antiparallel state, while an out-of-plane sample will prefer
a parallel state.

To test for this behaviour in magnum.pi, I relaxed a range of SAFs from a random initial
state without interlayer coupling, but with demagnetization (Ms = 900 × 103A/m) and a
varying anisotropy. Layer radii are uniformly 20nm, magnetic layers have 3nm thickness,
while the spacer is 0.5nm thick. For small anisotropies, one expects the layers to relax to an
antiparallel in-plane state, while for large anisotropies, one expects the layers the anisotropy
energy density to exceed that of the stray field and the layers to relax to a parallel out-of-
plane state. The results of this simulation are shown in Fig. 4.4, which shows the transition
from antiparallel in-plane to parallel out-of-plane occurring at Ku = 3.65 × 105J/m3.

Figure 4.4: Test of the effect of stray field on two non-coupled magnetic layers. For low
values of Ku, the stray and internal demagnetization fields dominate: the layers relax to an
in-plane, antiparallel configuration. For large values of Ku, the anisotropy dominates: the
layers relax to an out-of-plane, parallel configuration. Critically, this result is consistent with
that of two simple magnetic dipoles arranged beside each other and on top of one another -
the magnetic field lines favour either an antiparallel or parallel configuration, respectively.
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Demagnetization field

The internal demagnetization energy in a thin sample is minimized when it is magnetized
in-plane and maximized when out-of-plane. If we approximate our sample to be a uniformly
magnetized, 20nm radius, 3nm thick, oblate spheroid, we can calculate the contribution of
demagnetization (Ks) to the total anisotropy by [53], as follows:

Ks = N
µ0
2 M2

s = (Nz − Nx − Ny) µ0
2 M2

s ,

Nz = m2

m2 − 1

[
1 − 1√

m2 − 1
arcsin

(√
m2 − 1

m

)]
, m = r

d/2 ,

Nx = Ny = 1 − Nz

2 ,

(4.4)

which gives Ks = 3.995 × 105J/m3 for Ms = 900 × 103A/m. This result can be compared
with a simple magnum.pi simulation of a single ferromagnetic layer relaxed from a random
state, with demagnetization and a varying Ku. One expects that the sample will relax to an
in-plane state where Ku < Ks and an out-of-plane state when Ku > Ks. The results of this
simulation are shown in Fig. 4.5, which indicates that the sample relaxes to within a tenth of
a degree of perfectly out-of-plane at approximately Ku = Ks = 3.953×105J/m3. While this
value agrees well with the approach above, the distinction is important: the non-collinear
region between ∼ 3.71 × 105J/m3 and 3.88 × 105J/m3 in Fig 4.5(b.) indicates that these
structures relaxed to a non-uniform state. This value of Ks is a critical design constraint:
all samples with Ms = 900 × 103A/m, r = 20nm radius, d = 3nm must have anisotropies
larger than 3.995 × 105J/m3 in order to relax out-of-plane. Note that the introduction of
bilinear coupling in a SAF will introduce an additional compensatory factor, lowering the
required value of Ku somewhat.

4.1.2 SAF interlayer coupling angle

J1 vs J2 for various values of Ku1 and Ku2

Existing fabrication and measurement capabilities of the PNMD lab are limited to thin films,
many orders of magnitude larger in area than the nanopillars required by STT-MRAM. Such
a change in aspect ratio and size affects most of the discussed magnetic effects, especially
demagnetization: to my knowledge, the range of possible FM1/FM2 coupling angles as a
function of J1 and J2 in nanopillars was previously unknown. This necessitates a compre-
hensive exploration of the parameter space, varying J1, J2, individual layer anisotropies
(Ku1 and Ku2), and relaxation conditions.

The following simulations all have the same physical structure and mesh: r1/2 = 20nm,
d1/2 = 3.0nm, and a mesh length of ml = 3nm (in accordance with a minimum exchange
length of δEx = 3.61nm). All spacers have rs = 20nm and ds = 0.5nm. Note: the mesh length
is deliberately equal to d, making this an “ordered mesh”, which vastly decreases simulation
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Figure 4.5: Effect of demagnetization on relaxation as a function of the anisotropy in a
single layer, plotted as the angle of magnetization of the relaxed spins with respect to the
sample surface normal (the z-axis), for a large range of Ku(a.) and an expanded view of
the transitional non-uniform region (b.). The sample switches from in-plane to out-of-plane
where the strength of the uniaxial anisotropy, Ku, outweighs that of the demagnetization
shape anisotropy, Ks, which occurs at approximately 3.81 × 105J/m3. As per Eq. 2.10,
demagnetization energy is largest when cos2 (θ) = 1, i.e. when the sample is magnetized
out-of-plane: θ = 0. Overlaid is the value of Ks give by an approximation of these results
for an oblate spheroid, rather than a disk.

time for minimal loss of accuracy. This is justified, as non-homogeneity in the magnetization
in the z-axis of these structures is unlikely. Unless otherwise stated, Aex = 1.3 × 10−11J/m
and α = 1, minimizing precessional motion to speed up the simulation without impacting
accuracy. The anisotropy axis is always (0, 0, 1) (the z-axis) and Ms = 900 × 103A/m,
which is an average of the current measured values for FM1 and FM2. J1 and J2 are varied
from 0 J/m2 to 5.00 × 10−3 J/m2 and 0 J/m2 to 4.00 × 10−3 J/m2, respectively, which is a
larger range than is currently considered reasonably achievable in samples that have been
annealed [54], but provides additional context for future experimental work. Values of Ku1

and Ku2 (5.0 × 105J/m3, 7.5 × 105J/m3, 1.0 × 106J/m3) were chosen to include very low
values (approaching the strength of demagnetization) and very high (likely to saturate any
non-collinear angle). All simulations were relaxed for 100ns, with scalar sampling every
1 × 10−11s and field sampling every 1 × 10−8s. Each simulation produces 3600 relaxations,
one for each pair of J1 and J2. This totals 11GB of data per figure. The magnum.pi script
for this simulation is given in Appendix C.1.

For each pair of values of Ku1 and Ku2 , the simulation is first run with a parallel (PP) ini-
tial condition, i.e. the magnetizations of both layers uniformly in the +z-direction, and then
with an antiparallel (AP) initial condition, i.e. with the magnetization of FM1 uniformly in
-z and FM2 in +z. It should be noted that the PP configuration is most representative of
what is reproducible in laboratory conditions: samples relax from saturation in one direc-
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tion from an external field. It is difficult to reproduce an AP relaxation in physical samples,
but the simulated results provide context for the energy landscape of the structures. All
PP relaxations were run with Aex = 1.3 × 10−10J/m to avoid metastable non-homogeneous
magnetization configurations. Represented as a phase plot of relaxed interlayer angle, these
data provide a “cookbook” for later experimental work, allowing a researcher to reliably
choose a given coupling angle for a pair of J1 and J2, which are in turn determined by
appropriate choices of sputtered materials. As well, these results emphasise the importance
of particular values and relative magnitudes of Ku in FM1 and FM2.

Fig. 4.6 shows a phase plot of J1 vs J2, for Ku1 = 5.0 × 105J/m3, Ku2 = 5.0 × 105J/m3

and a PP initial condition. The plot shows four distinct regions, where:

1. the layers relax to an approximately parallel state (i.e. the z-component of both layers
has the same sign) with an interlayer separation angle of < 90◦ (coloured light grey),

2. the layers relax to an approximately parallel state with an interlayer separation angle
of > 90◦ (coloured according to the separation angle),

3. the layers relax to an approximately antiparallel state with a separation angle of > 90◦

and < 179◦ (coloured according to the separation angle),
4. the layers relax to an approximately antiparallel state with a separation angle of

> 179◦ (coloured dark grey).

The division between the parallel and antiparallel relaxed states is demarcated by a green
contour. For use in the FM1 and FM2 of a non-collinear STT-MRAM structure, all values
of J1 and J2 that produce approximately parallel or perfectly antiparallel layers are to be
ignored: parallel layers produce a strong stray field on FM3 and collinear antiparallel states
do not benefit from biquadratic coupling. The regions of interest in this and following plots
occur where the creation of antiparallel layers with separation angles between 140◦ and 150◦

is possible for J1 and J2 less than 2.0 × 10−3J/m2, 1.4 × 10−3J/m2, respectively, as these
are approximately the maximum attainable values in annealed samples [24].

Fig. 4.7 shows a phase plot of J1 vs J2, for Ku1 = 5.0 × 105J/m3, Ku2 = 5.0 × 105J/m3,
and an AP initial condition. The difference between Fig. 4.7 and Fig. 4.6 is marked: non-
collinear antiparallel structures now appear at much lower values of J1 and J2. Where
structures relax into two different configurations depending entirely on initial conditions,
this is indicative of the presence of a local and a global minimum in the energy landscape.
The red portion of the inset in Fig. 4.7 indicates where the relaxing structures fall into
different minima between the PP and AP initial conditions. The magnitude of the energy
barrier between the two relaxation states for this region is unclear, as is which state is
truly the global minimum; this will be explored in later work through a string method
approach to barrier estimation [55]. The presence of local minima at certain values of J1

and J2 is important—depending on barrier height, states may be “kicked” into undesirable
configurations with sufficient thermal energy.
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Figure 4.6: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as J1 vs
J2. Ku1 = 5.0 × 105J/m3, Ku2 = 5.0 × 105J/m3, with parallel initial conditions. Interlayer
angles below 90◦ are coloured light grey, while interlayer angles above 179◦ are coloured
dark grey. Explanatory insets provide examples of the two relaxation minima: structures
to the left of the green contour relaxed to an approximately parallel configuration, with
the z-component of magnetization in both layers having the same sign, while structures to
the right relaxed to an approximately antiparallel configuration, with the z-component of
magnetization in each layer having the opposite sign. Values of J1 and J2 for which the
structure relaxed to an antiparallel, non-collinear arrangement are of interest for use in
STT-MRAM. See Appendix D.1 for this image without insets.
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Figure 4.7: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 5.0 × 105J/m3, Ku2 = 5.0 × 105J/m3, with antiparallel initial conditions.
The interpretation of the colouring and the green contour is as indicated for Fig. 4.6. On
the bottom right, an inset compares the regions of antiparallel and parallel relaxed states
in this and Fig. D.1, where red indicates that the structures are in different minima.
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Fig. 4.8 shows a phase plot of J1 vs J2, for Ku1 = 7.5×105J/m3, Ku2 = 7.5×105J/m3 and
a PP initial condition. While Fig. 4.6 displays few AP non-collinear states for reasonable J1

and J2, Fig. 4.8 shows a substantially decreased region of acceptable states, for even larger
values of J1 and J2. This is in stark contrast with Fig. 4.9, which shows a massive region
of AP non-collinear states. However, as before, this difference only indicates the presence
of a (potentially problematic) local minimum. Similar results for Ku1 = 1.0 × 106J/m3,
Ku2 = 1.0 × 106J/m3 are included in Appendix D.1.

Figure 4.8: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 7.5 × 105J/m3, Ku2 = 7.5 × 105J/m3, with parallel initial conditions. The
interpretation of the colouring and the green contour is as indicated for Fig. 4.6.

Fig 4.10 is a departure from those previously in that Ku1 ̸= Ku2 . Here, we see substantial
broadening of the AP non-collinear region: stable structures are possible for as low as
J1 = 0.51 × 10−3J/m2 and J2 = 0.54 × 10−3J/m2, which creates 147◦. Likewise, the AP
relaxation in Fig. 4.11 indicates that there is only one energy minimum for all of the region
of interest.
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Figure 4.9: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as J1
vs J2. Ku1 = 7.5 × 105J/m3, Ku2 = 7.5 × 105J/m3, with antiparallel initial conditions. The
interpretation of the colouring and the green contour is as indicated for Fig. 4.6.
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Figure 4.10: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 7.5 × 105J/m3, Ku2 = 5.0 × 105J/m3, with parallel initial conditions. The
interpretation of the colouring and the green contour is as indicated for Fig. 4.6.
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Figure 4.11: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 7.5 × 105J/m3, Ku2 = 5.0 × 105J/m3, with antiparallel initial conditions.
The interpretation of the colouring and the green contour is as indicated for Fig. 4.6. On
the bottom right, an inset compares the regions of antiparallel and parallel relaxed states
in this and Fig. 4.10, where red indicates that the structures are in different minima.
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Further increasing the disparity in Ku between the layers leads to an even larger AP non-
collinear region, as shown in Fig. 4.12, with smallest allowable values of J1 = 0.42×10−3J/m2

and J2 = 0.48 × 10−3J/m2, creating 152◦. Again, the AP relaxation in Fig. 4.13 indicates
that local minima only exist where the structure relaxes into either parallel or collinear
configurations. As this result is especially promising, a third simulation focusing only on the
easily attainable values of J1 and J2 in annealed samples [54] is provided in Appendix D.1.

Figure 4.12: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted
as J1 vs J2. Ku1 = 1.0 × 106J/m3, Ku2 = 5.0 × 105J/m3, with parallel initial conditions.
The interpretation of the colouring and the green contour is as indicated for Fig. 4.6. See
Appendix D.1 for this simulation limited to ranges of J1 and J2 that are currently considered
reasonable to reproduce.

Finally, Fig. 4.14 shows that an increase of Ku2 leads to a decrease of attainable values
of J1 and J2 that produce desirable relaxations and a broadening of the region where the
relaxations get caught in a local minimum (shown in Fig. 4.15). As well, we see a complete
disappearance of the PP region with angles > 90◦ in both the AP and PP relaxations.
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Figure 4.13: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 1.0 × 106J/m3, Ku2 = 5.0 × 105J/m3, with antiparallel initial conditions.
The interpretation of the colouring and the green contour is as indicated for Fig. 4.6. On
the bottom right, an inset compares the regions of antiparallel and parallel relaxed states
in this and Fig. 4.12, where red indicates that the structures are in different minima.
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Figure 4.14: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 1.0 × 106J/m3, Ku2 = 7.5 × 105J/m3, with parallel initial conditions. The
interpretation of the colouring and the green contour is as indicated for Fig. 4.6.
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Figure 4.15: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 1.0 × 106J/m3, Ku2 = 7.5 × 105J/m3, with antiparallel initial conditions.
The interpretation of the colouring and the green contour is as indicated for Fig. 4.6. On
the bottom right, an inset compares the regions of antiparallel and parallel relaxed states
in this and Fig. 4.14, where red indicates that the structures are in different minima.
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Ku1 vs Ku2 for a given value of J1 and J2

Fig. 4.16 shows what is effectively the inverse of the figures in Section 4.1.2, where, instead
of J1 plotted against J2 for a given pair of values of Ku1 and Ku2 , Ku1 is plotted against
Ku2 for a given value of J1 and J2: J1 = 2.0 × 10−3J/m2, J2 = 1.4 × 10−3J/m2. This result
confirms the previous conclusion: symmetric values of Ku1 and Ku2 most commonly lead to
either parallel or collinear antiparallel configurations, while asymmetric Ku1 and Ku2 allow
for a broad range of controllable non-collinear states. For these values of J1 and J2, one
layer must have Ku between 5.0 × 105J/m3 and 5.5 × 105J/m3, while the other is free to
vary between 5.0 × 105J/m3 and 1.0 × 106J/m3.

Figure 4.16: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
Ku1 vs Ku2 . J1 = 2.0×10−3J/m2, J2 = 1.4×10−3J/m2, with parallel initial conditions. The
interpretation of the colouring and the green contour is as indicated for Fig. 4.6. The range
of values of J1 and J2 that produce AP non-collinear states is smallest where Ku1 = Ku2 .
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4.2 Dynamic simulations

4.2.1 Field-induced switching coherency

The simple calculations in Section 4.1.1 demonstrate that all relaxed states in the studied
structures will be homogeneous. However, it is an open question whether layers with these
dimensions and magnetic properties will switch homogeneously or through domain-wall
propagation. The maximum coercive field of a single homogeneous layer is often modeled
through the Stoner–Wohlfarth model [29], which gives,

Hc = µ0Hmc − µ0Hd = µ0
2Kmc

µ0Ms
− µ0Ks = 2Kmc

Ms
− (Nz − Nx − Ny) µ2

0
2 M2

s , (4.5)

where Hc is in Tesla and Ks is calculated exactly as in Section 4.1.1 [53]. By this model,
one expects Hc to decrease with increasing layer radius as Nz approaches its maximum
value of “1” and demagnetization is strengthened. magnum.pi can be compared against the
Stoner-Wohlfarth model in a simulation of a single layer of varying radius, subject to a
linearly increasing external magnetic field opposite to the direction of magnetization. At a
certain field strength, the layer will switch, either coherently or otherwise. It is expected
that, where the layers switch coherently (i.e. for small radii), the simulated coercive field
should follow the Stoner-Wohlfarth model.

The z-component of magnetization for a field-induced switching process for disks of radii
from 5nm to 50nm is shown Fig. 4.17, which covers the range of radii commonly used in out-
of-plane STT-MRAM devices [9, 56]. Initially, the magnetization in each layer is aligned 0.5◦

off the z-axis to produce a non-zero torque from the Zeeman effect at the beginning of the
switching process. For each radius, Ku = 7.0 × 105J/m3, Ms = 900 × 103A/m, and α = 0.1
to capture the dynamics of the switching process. The external field is varied linearly from
0T to 2.0T over 200ns. The coercive fields of Fig. 4.17 are compared with values calculated
by Eq. 4.5 in Fig. 4.18, which shows that magnum.pi consistently underestimates the value
of Hc for a given radius, but converges for small radii. This is consistent with the prediction:
domain-wall propagation and non-homogeneity in large layers decreases Hc.

If FM3 (the free layer) switches decoherently, i.e. through domain wall-propagation, this
will introduce some level of stochasticity in the switching characteristics. One can measure
the coherency of a layer in magnum.pi as follows: record the angle with respect to the
z-axis of each spin in the mesh and calculate the standard deviation of this ensemble of
angles for each timestep of a switching process. Timesteps where the standard deviation is
high correspond to stages of a reversal where portions of the layer are magnetized opposite
the rest (decoherent), while a low standard deviation corresponds to homogeneous states
(coherent). This is shown in Fig. 4.19, which demonstrates that all simulated layers have
a non-zero standard deviation of angle during a reversal. However, this method is very
sensitive to sampling rate and the size of the field step during the switch—the measurement
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Figure 4.17: Switching characteristics of a single layer with varying radius (r) in an external
field, initially magnetized in the positive z-direction. Coercive field (the field at which the
layer switches polarity), Hc, increases with decreasing radius.

Figure 4.18: Hc for various layer radii as measured in magnum.pi and calculated through
the Stoner-Wohlfarth model. magnum.pi consistently underestimated Hc for larger radii,
but converges to Stoner-Wohlfarth for small samples. Where the layers switch completely
coherently, it is expected that magnum.pi follows Stoner-Wohlfarth.
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must capture an event spanning only a few timesteps. As such, this simulation was repeated
for layers with radii 10nm to 15nm, which is shown in Fig. 4.20, and only confirms the
previous result: all layers with dimensions that satisfy the thermal stability condition (and
are magnetized out-of-plane—see Table 4.2) will switch decoherently. Indeed, if FM3 has
r = 10nm, Ms = 7.4A/m, Ku = 4.3 × 105J/m3, and d = 3.0nm (similar to existing PNMD
FM3 thin-film samples), then ∆ = 50, which is thermally unstable.

Figure 4.19: Coherency of switching of layers with radii from 5nm to 50nm in an external
field. Coherency is measured as the standard deviation of the angle with respect to the
z-axis of each spin in the magnum.pi mesh, for each timestep. All layers exhibited some
decoherency during reversal, though all layers with r < 20nm, have less than 10◦ of standard
deviation. Explanatory insets for the instances of maximum decoherency are included for
r = 15nm (bottom), r = 30nm, and r = 50nm (top).

45



Figure 4.20: Coherency of switching of layers with radii from 10nm to 15nm in an external
field. Coherency is measured as the standard deviation of the angle with respect to the
z-axis of each spin in the magnum.pi mesh, for each timestep. Even stable layers at the
lower end of what is considered easy to fabricate [9, 56], switch decoherently.
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4.2.2 Dependence of switching current on FM1/FM2 coupling angle

This section examines a three layer STT-MRAM structure, where FM1 is a fixed coupling
layer, FM2 is a fixed reference layer, and FM3 is a free writing layer. ∆ in FM1, FM2,
and FM3 must be large enough to ensure long-term resilience to thermal fluctuations, but
∆F M3 must also always be lower than that of FM2 to maintain write-ability at reasonable
current densities [9]. I chose the following material and physical parameters for this analysis:
r = 20nm, d3 = 2.0nm, Ku3 = 4.3 × 105J/m3, and Ms3 = 740 × 103A/m, which gives a
thermal stability in FM3 of ∆ = 83. In accordance with the conclusions of Section 4.1.2,
I chose Ku1 = 1.0 × 106J/m3, Ku2 = 5.0 × 105J/m3, Ms1 = Ms2 = 900 × 103A/m, and
d1 = d2 = 3.0nm to maximize the range of values of J1 and J2 that produce AP non-
collinear structures, also giving ∆F M2 = 91. The thickness of the second spacer is chosen to
be 2.5nm to eliminate any interlayer exchange coupling between FM2 and FM3 [57]. The
magnum.pi script for this simulation is given in Appendix C.2.

As described in Section 2.3.2, one can write both MRAM states (where FM2 and FM3
are antiparallel or parallel) by reversing the direction of the writing current. The results of
simulating this structure with a linearly increasing current density in the negative z-direction
and an initially AP FM2 and FM3 are shown in Fig. 4.21. One can compare this plot
against Fig. 4.12 to determine the angles formed by FM1 and FM2 in each regions, though
it should be noted that there is a stray field interaction between FM2 and FM3 which will
affect the coupling angles. It is clear that the magnitude of the switching current is smallest
where FM1 and FM2 are non-collinear, and it is minimized where ∼ 125◦ < θ < 179◦.
The discontinuities in the switching current landscape are unexpected, one would predict
a monotonic increase in current as angle rises above 160◦ − 170◦. As well, all structures
that are collinear switch at random current densities, where FM3 does not switch until a
torque is created by the random variation in the magnetic moment caused by the numerical
inaccuracy in Python/magnum.pi. This mimics the stochastic switching of STT-MRAM
that leverages thermal fluctuations to induce switching. Finally, GMR ratio is maximized
when the change in the angle of FM3 with respect to FM2 between states approaches 180◦,
which occurs as FM1/FM2 coupling angle increases. This necessitates a balance between
minimizing switching current through non-collinearity and maximizing the GMR/TMR
ratio.
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Figure 4.21: Switching current of STT-MRAM initially in an antiparallel state, for varying
biquadratic coupling strengths between FM1 and FM2. Structures for which FM1 and FM2
relaxed to an antiparallel state with an interlayer angle 90◦ < θ < 179◦ lie between the arms
of the green contour. The current is applied in the negative z-direction, which interacts with
the moment of FM2, exerting a torque on the comparatively easy FM3 through reflection of
minority carriers. The FM3 switching current is minimized for interlayer angles ∼ 125◦ <
θ < 179◦. Included are two explanatory insets, which correspond to the pre- and post-switch
state of the bit for J1 = 2.0 × 10−3J/m2 and J2 = 1.4 × 10−3J/m2. The region below and
to the right of the green contour corresponds to perfectly collinear structures, where the
switching torque is created by random variation in the magnetic moment caused by the
numerical inaccuracy in Python/magnum.pi. The numerical labels within the plot are given
in 1012A/m2. This figure is provided without insets in Appendix D.2.
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The case where FM2 and FM3 are initially parallel and the current is applied in the
positive z-direction is shown in Fig. 4.22. Again, the magnitude of the switching current is
smallest where FM1 and FM2 are non-collinear and is minimized where ∼ 122◦ < θ < 179◦.

Both Fig. 4.21 and Fig. 4.22 are produced using a simulation that relaxes all three FM
layers using the LLG, but only solves the LLG and the STT term in FM3 when applying
a current. This is a significant simplification of the magnetization dynamics of the system,
as FM2 is prevented from evolving through the torque applied by reflected carriers, which
are indeed what causes reversal of FM3 when initially PP. As well, the varying stray field
on FM2 from FM3 does not change as FM3 flips. Though this is non-physical, this is
considered valid [33]; these results are only intended to demonstrate the relative effect
that certain choices of anisotropy in FM1 and FM2 create a large range of minimized
switching currents for small J1 and J2, rather than obtain an accurate numerical value of
the switching current density. Such a restriction in the LLG may explain the discontinuities
in the switching current landscape and why the simulations did not show a marked difference
in the switching currents for non-collinear AP and PP initial conditions.
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Figure 4.22: Switching current of STT-MRAM initially in a parallel state, for varying bi-
quadratic coupling strengths between FM1 and FM2. Structures for which FM1 and FM2
relaxed to an antiparallel state with an interlayer angle 90◦ < θ < 179◦ lie between the arms
of the green contour. The current is applied in the positive z-direction, which is polarized
by FM2 and exerts a torque on the comparatively easy FM3. The FM3 switching current
is minimized for interlayer angles ∼ 122◦ < θ < 179◦. Included are two explanatory insets,
which correspond to the pre- and post-switch state of the bit for J1 = 2.0 × 10−3J/m2 and
J2 = 1.4 × 10−3J/m2. The region below and to the right of the green contour corresponds
to perfectly collinear structures, where the switching torque is created by random variation
in the magnetic moment caused by the numerical inaccuracy in Python/magnum.pi. The
numerical labels within the plot are given in 1012A/m2. This figure is provided without
insets in Appendix D.2.
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Chapter 5

Discussion

The existing market availability of computer memory is dominated by semiconductor mem-
ory, each type of which introduces its own problems [6, 7]. DRAM is cheap and dense, but
devours power, SRAM is fast and efficient, but is unacceptably expensive and low density.
However, STT-MRAM with a non-collinear angle between FM1 and FM2 has already been
shown to substantially improve on both of these architectures and on other existing im-
plementations of MRAM [20], which are limited by a few key design choices which reduce
the potential for improvements over traditional memory. Sources predict as much as a 60%
reduction in main-memory energy draw for STT-MRAM over DRAM [18].

STT-MRAM has two primary components: a driving transistor for both reading with
giant or tunneling magnetoresistance and writing with spin-transfer torque, and a magnetic
nanopillar. The nanopillar stores a single bit and is composed of a stable reference layer
against which GMR/TMR is measured and a free layer that reverses by STT according to
memory state. With the design proposed by previous experimental research at the PNMD
lab in collaboration with the PFM lab, the reference layer itself comprises two ferromagnetic
layers arranged as a synthetic antiferromagnet around a nonmagnetic spacer: a lower layer,
FM1, to pin the middle (reference) layer, FM2. These layers provide the stable foundations of
the memory bit, compensating for each other’s external magnetic moments when properly
oriented and spin-filtering switching currents to produce a writing torque on FM3. It is
critical that FM1 and FM2 are thermally stable, non-collinearly arranged, and compatible
with various materials. The fabrication and control of coupling angle in these layers is
already well studied in thin films by the PNMD lab [21], but key questions remain when
these design goals are applied to nanostructures.

5.1 Summary and impact of results

The research presented here has shown that r ≈ 70nm is a good upper bound on the radius
of the FM layers of non-collinear STT-MRAM, based on the condition of homogeneity of
relaxed states. Likewise, there is a lower bound on the radius of r ≈ 15nm imposed by the
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thermal stability condition of ∆ ≥ 60 and the requirement for out-of-plane samples that
Ks < Ku, though this depends strongly on the layer thickness. This is comparable to existing
designs with ∼ 20nm junction sizes [10, 9, 51], including devices that have been scaled
for 4Gb modules [17]. Section 4.1.1 provides a minimum strength of magnetocrystalline
anisotropy to ensure an out-of-plane magnetization, which is known to improve thermal
stability [52], and Sections 4.1.1, 4.1.1, and 4.1.1 provide a verification of the behaviour of
the most important energy terms as implemented in magnum.pi, including the discovery of
a critical software bug in the simulation of J2. A set of simulations of SAFs with varying
coupling strength and anisotropies show a critical design constraint to maximize the range
of attainable J1 and J2 [54, 21] that produce desirable non-collinear antiparallel coupling
angles: Ku1 and Ku2 must be asymmetric and not both larger than 5 × 105J/m3. As well,
these simulations reveal a complex and varied energy landscape, where local magnetic energy
minima appear for certain choices of Ku1 , Ku2 , J1, and J2. These minima are of great
interest, and may create difficulties when manufacturing these layers or reduce the thermal
stability of the memory.

I compared the dynamics of layer reversal in magnum.pi against an accepted theory of
magnetodynamics, the Stoner-Wohlfarth criterion, which shows that magnum.pi does indeed
converge to the theoretical values of coercivity as layer coherency increases. These results
also show that all layers will switch decoherently (through domain-wall propagation) at the
radii in question. Lastly, by combining the above results in a full three-layer STT-MRAM
structure, I showed that switching current is consistently minimized in structures with non-
collinear FM1 and FM2, with the lowest current for layers with interlayer angle 122◦ <

θ < 179◦, created by experimentally attainable values of J1 and J2. While the numerical
values for the critical current are not to be treated as accurate due to simplifications in
the model, these simulated switching currents are consistent with results for this metric in
other work [9, 11, 12].

5.2 Use of magnum.pi

With the exception of very early testing of the biquadratic coupling term, magnum.pi met
and exceeded all expectations of performance and capabilities. However, it is important to
be cognizant of the limitations of such models. Most magnetic properties are exogenous to
the simulations, rather than arising physically from quantum effects or properties of the
lattice. Where J1 is known to vary in sign and magnitude with spacer thickness according
to the theory of RKKY coupling [57], it is instead a constant depending on user input,
and couples independently of the thickness of the spacer. All values of J1 and J2 that are
considered “attainable” in this work are taken from the PNMD lab’s sputtered thin films and
experimental measurements on the VSM [54, 21]. Likewise, where the spin-filtering of STT
arises through electronic interactions with the lattice, the polarization is instead a variable
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set by the user in the SpinTorqueSlonczewski class of magnum.pi. This can be addressed by
instead using the SpinDiffusionSolver in future work, though this comes with a dramatic
increase in computational workload. The effects of thermal fluctuations were not included in
any of the simulations in this work, though magnum.pi does support it. While magnum.pi
does not strictly require a high-performance computing cluster, it is certainly beneficial for
the many simulations required for each phase plot in this work. For context, if each of the
3600 simulations for the figures of Section 4.2.2 took an average of 21 minutes, each would
take 52.5 days to produce on a single-threaded personal computer. Unfortunately, learning
to properly employ the vast resources of Cedar takes some time. Accurate simulation of J2

was required for this work, which makes magnum.pi the best choice out of the available
options for commercial and open source micromagnetic simulation environments [39]. I feel
that I am now able to practically employ magnum.pi for most uses as a daily tool in what
is primarily an experimental, rather than computational, lab.

5.3 Future work

The PNMD lab does not currently have the infrastructure to produce or measure nanopillars
and it is regrettable that I was unable to verify the results of this thesis with experimental
measurements. Further work in magnum.pi will include an investigation of the effect of non-
collinear coupling on the GMR/TMR ratio and on switching speed, as well as a thorough
study of the presence of local minima in SAF relaxation states through a string method
approach to barrier estimation.
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Appendix A

Example Gmsh meshing script

The following is an example of a Gmsh meshing “.geo” input script. First, radial points
are defined, which are connected into a line loop. This line loop is filled in to form a
surface, which is extruded into each of the desired layers using previously-defined physical
dimensions. Lastly, each surface is labeled for later referencing and filled in to create volumes.

1 ml = 2.0; // mesh length, determined by smaller of two exchange lengths
2 radius = 20; // all dimensions in nanometers
3

4 // Layer Thicknesses
5 tFM1 = 3.00; // thickness of the first layer, all nm
6 tS1 = 0.50; // thickness of spacer layer
7 tFM2 = 3.00; // thicknesss of the second layer
8 tS2 = 2.50; // thickness of second spacer layer
9 tFM3 = 2.00; // thicknesss of the free layer

10

11 // Number of discretization layers per layer
12 nzFM1 = 1; // FM1
13 nzS1 = 1; // Spacer 1 (coupling)
14 nzFM2 = 1; // FM2
15 nzS2 = 1; // Spacer layer (GMR/TMR)
16 nzFM3 = 1; // FM3, Free layer
17

18 // Define perimeter points for initial surface
19 Point(1) = {0, 0, 0, ml}; // Geometrical Entity: Point/Line/Surface/Volume (# of ent.) {x

coord, y coord, z coord, mesh length};↪→

20 Point(2) = {radius, 0, 0, ml};
21 Point(3) = { 0, radius, 0, ml};
22 Point(4) = {-radius, 0, 0, ml};
23 Point(5) = { 0,-radius, 0, ml};
24

25 // Define straight connecting lines for rhombus surface
26 // Line(1) = {2,3};
27 // Line(2) = {3,4};
28 // Line(3) = {4,5};
29 // Line(4) = {5,2};
30

31 // Define arcing connecting lines for circular surface
32 Circle(1) = {2,1,3}; // {start, middle, end};
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33 Circle(2) = {3,1,4}; // {start, middle, end};
34 Circle(3) = {4,1,5}; // {start, middle, end};
35 Circle(4) = {5,1,2}; // {start, middle, end};
36

37 // Create line loop from separate lines
38 Line Loop(5) = {1,2,3,4}; // Order matters -> head to tail
39

40 // Create 2D surface from line loop
41 Surface(1) = {5};
42

43 // Extrude 2D surface into 3D volumes for each layer
44 s0[] = Extrude{0, 0, tFM1} {Surface{1}; Layers{nzFM1};}; // use initial surface created

manually to extrude to a volume↪→

45 s1[] = Extrude{0, 0, tS1} {Surface{s0[0]}; Layers{nzS1};}; //use the upper surface of the
newly extruded volume↪→

46 s2[] = Extrude{0, 0, tFM2} {Surface{s1[0]}; Layers{nzFM2};};
47 s3[] = Extrude{0, 0, tS2} {Surface{s2[0]}; Layers{nzS2};};
48 s4[] = Extrude{0, 0, tFM3} {Surface{s3[0]}; Layers{nzFM3};};
49

50 // Create physicalized surfaces of volumes for each edge of surfaces
51 Physical Surface('1') = {1}; // give ID of the surface that you want to assign the ID in

(ID). Bottom of bottom layer↪→

52 Physical Surface('2') = {s0[0]}; // top of FM1
53 Physical Surface('3') = {s1[0]}; // top of S1
54 Physical Surface('4') = {s2[0]}; // top of FM2
55 Physical Surface('5') = {s3[0]}; // top of S2
56 Physical Surface('6') = {s4[0]}; // top of FM3
57 // Can assign readable IDs, ie. Physical Surface('interface4')
58

59 // Create volumes for each layer of MRAM
60 Physical Volume(1) = {s0[1]}; // FM1
61 Physical Volume(2) = {s1[1]}; // S1
62 Physical Volume(3) = {s2[1]}; // FM2
63 Physical Volume(4) = {s3[1]}; // S2
64 Physical Volume(5) = {s4[1]}; // FM3
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Appendix B

Example SLURM submission
script

The following is an example of a SLURM “.slrm” HPC job script. This script requests 75
separate jobs to run on 75 nodes on the Cedar supercomputer, where all 48 cores and 187GB
of RAM on each node is reserved. Each simulation on each core on each node is allowed to
run for a maximum of one hour, and the output directory is named according to the pair
of Ku1 and Ku2 for that simulation. In total, this script requests 3600 simulations, which
corresponds to the 3600 pairwise combinations of J1 and J2 required for the phase plots in
Section 4.1.2. The job is restricted to run on Intel Skylake and Intel Cascade Lake CPUs
because of incompatibilities of certain CPU instruction sets used by compiled code.

1 #!/bin/bash
2 #
3 #SBATCH -J J1J2Phase # short description, max 14 chars
4 #SBATCH --mail-type=ALL #
5 #SBATCH --mail-user=<user@email.ca> # to notify you of completion/failure
6 #SBATCH --constraint=[skylake|cascade] # restrict jobs to run on nodes w/ certain CPU

architectures↪→

7 #
8 #SBATCH --nodes=1 # number of nodes
9 #SBATCH --ntasks-per-node=48 # number of cores per node

10 #SBATCH --time=01:00:00 # time you want sims to run (hh:mm:ss)
11 #SBATCH --mem=0 # memory per node, set to 0 b/c requesting whole node
12 #SBATCH --array=0-74 # job array, will request n-m separate jobs
13

14 : ${SLURM_ARRAY_TASK_ID:=0} # for testing
15

16 ############### Sim 1, Ku1 = 5e5 J/m3, Ku2 = 5e5 J/m3 ################
17 simName=s1_5 # Run 5: Large J1J2 Range, PP Ordered Start, 40ns
18 # simName=s1_9 # Run 9: Large J1J2 Range, AP Ordered Start, 100ns, No Precession, high

exch↪→

19

20 ############### Sim 2, Ku1 = 7.5e5 J/m3, Ku2 = 7.5e5 J/m3 ################
21 # simName=s2_5 # Run 5: Large J1J2 Range, PP Ordered Start, 40ns
22 # simName=s2_9 # Run 9: Large J1J2 Range, AP Ordered Start, 100ns, No Precession, high

exch↪→
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23

24 ############### Sim 3, Ku1 = 7.5e5 J/m3, Ku2 = 5e5 J/m3 ################
25 # simName=s3_5 # Run 5: Large J1J2 Range, PP Ordered Start, 40ns
26 # simName=s3_8 # Run 8: Large J1J2 Range, AP Ordered Start, 50ns, No Precession
27

28 ############### Sim 4, Ku1 = 1e6 J/m3, Ku2 = 5e5 J/m3 ################
29 # simName=s4_4 # Run 4: Small J1J2 Range, PP Ordered Start, 40ns
30 # simName=s4_5 # Run 5: Large J1J2 Range, PP Ordered Start, 40ns
31 # simName=s4_8 # Run 8: Large J1J2 Range, AP Ordered Start, 50ns, No Precession
32

33 ############### Sim 5, Ku1 = 1e6 J/m3, Ku2 = 7.5e5 J/m3 ################
34 # simName=s5_4 # Run 4: Small J1J2 Range, PP Ordered Start, 40ns
35 # simName=s5_5 # Run 5: Large J1J2 Range, PP Ordered Start, 40ns
36 # simName=s5_8 # Run 8: Large J1J2 Range, AP Ordered Start, 50ns, No Precession
37

38 ############### Sim 6, Ku1 = 1e6 J/m3, Ku2 = 1e6 J/m3 ################
39 # simName=s6_5 # Run 5: Large J1J2 Range, PP Ordered Start, 40ns
40 # simName=s6_8 # Run 8: Large J1J2 Range, AP Ordered Start, 50ns, No Precession
41 # simName=s6_9 # Run 9: Large J1J2 Range, AP Ordered Start, 100ns, No Precession, high

exch↪→

42

43 ####################################
44

45 FDDIR=/scratch/gmlertzm
46 MAGNUMPI_IMG=/home/gmlertzm/.magnumpi/magnum.pi_v3.9.5c.sif
47 FIREDRAKE_CACHE=$FDDIR/.firedrake_cache
48 module load singularity/3.8
49

50 jobDir=$SLURM_SUBMIT_DIR
51 projectName=$(basename ${jobDir})
52 scriptName=run_$projectName
53 outDir=output_job_${projectName}_${simName}
54 logs=$outDir/${projectName}_${simName}_logs
55 mkdir -p $outDir $logs $FIREDRAKE_CACHE
56

57 TASKS_PER_NODE=$SLURM_NTASKS_PER_NODE
58 RANKs=()
59 PIDs=()
60

61 echo projectName: $projectName
62 echo simName: $simName
63 echo SLURM_SUBMIT_DIR: $SLURM_SUBMIT_DIR
64 echo SLURM_JOB_NODELIST: $SLURM_JOB_NODELIST
65 echo SLURM_JOB_CPUS_PER_NODE: $SLURM_JOB_CPUS_PER_NODE
66 echo SLURM_MEM_PER_NODE: $SLURM_MEM_PER_NODE
67

68 # Run run_script.py with given rank, direct to outdir
69 for i in `seq $TASKS_PER_NODE`
70 do
71 RANKs[$i]=$(printf "%04d" $(($SLURM_ARRAY_TASK_ID * $TASKS_PER_NODE + $i - 1)))
72 singularity exec -H $PWD:/home/ -B $FIREDRAKE_CACHE:/firedrake/.cache $MAGNUMPI_IMG

bash -c "source /firedrake/bin/activate && OMP_NUM_THREADS=1 python
${scriptName}.py --rank=${RANKs[$i]} --output
${outDir}/${projectName}_output_${RANKs[$i]}" > ${logs}/run_${RANKs[$i]}.out 2>
${logs}/run_${RANKs[$i]}.err &

↪→

↪→

↪→

↪→

73 PIDs[$i]=$!
74 echo "Starting Rank ${RANKs[$i]} (PID: ${PIDs[$i]})"
75 done
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76

77 # Wait for background jobs
78 for i in `seq $TASKS_PER_NODE`
79 do
80 wait ${PIDs[$i]}
81 echo "Rank ${RANKs[$i]} (PID: ${PIDs[$i]}): finished with return value $?"
82 done

63



Appendix C

Example magnum.pi simulation
scripts

C.1 SAF phase plot

The following is an example of a “static” magnum.pi running script. This code is set up
to vary two inputs across predefined ranges: the bilinear coupling constant (J1) and the
biquadratic coupling constant (J2) for two identical layers of a synthetic antiferromagnet
(SAF) for one pair of values of Ku1 and Ku2 . The value of each parameter for a particular
run of the simulation is chosen by the ‘-r’ flag at runtime, which is ultimately enumerated
by a batch script. The code produces a simulation that relaxes from either a parallel or
antiparallel initial state. The time and the magnetization of each layer are saved to a log file,
while the total magnetization, anisotropy energy, exchange energy, and interlayer exchange
energy are saved to “.vtk” files for viewing in Paraview. Scalars are saved every 10 timesteps
and fields are saved every 10000 timesteps of a 100ns relaxation. This script produced the
data for the figures of Section 4.1.2.

1 from magnumpi import *
2 import numpy as np
3 import argparse
4 from pathlib import Path
5 import os
6 import itertools as iter
7

8 # Define parameter and parameter values to vary with rank
9 paramDescription = 'J1, J2' # description of program

10 defaultParam = 0 # default argument
11

12 # Read in rank arguments from batch script and set up arg list
13 parser = argparse.ArgumentParser(description = paramDescription) # sets a description for

arguments↪→

14 parser.add_argument('-o', '--output', default = 'output', type = str) # sets arguments to
the rank from incoming batch script↪→

15 parser.add_argument('-r', '--rank', default = defaultParam, type = int) # sets arguments
to the rank from incoming batch script↪→
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16 args = parser.parse_args() # sets args to rank from batch script
17

18 # Large Sim:
19 J1List = np.linspace(0.00, 5.00, 60)*1e-3 # for J/m^2
20 J2List = np.linspace(0.00, 4.00, 60)*1e-3 # for J/m^2
21

22 # Small Sim:
23 # J1List = np.linspace(0.00, 2.00, 60)*1e-3 # for J/m^2
24 # J2List = np.linspace(1.00, 1.50, 60)*1e-3 # for J/m^2
25

26 # PP Sim:
27 initFM1ZComp = 1.0 # positive z dir
28 initFM2ZComp = 1.0 # positive z dir
29 A = 1.3e-11 #J/m, exchange interaction
30

31 # AP Sim:
32 # initFM1ZComp = -1.0 # negative z dir
33 # initFM2ZComp = 1.0 # positive z dir
34 # A = 1.3e-10 #J/m, exchange interaction
35

36 params = list(iter.product(J1List, J2List))
37 paramValues = params[args.rank] # set paramValues to proper value according to rank
38 J1 = -1*paramValues[0] # set J1 to a particular value according to rank
39 J2 = -1*paramValues[1] # set J2 to a particular value according to rank
40

41 ############### Sim 1, Ku1 = 5e5 J/m3, Ku2 = 5e5 J/m3 ################
42 Ku1 = 5e5 # J/m3
43 Ku2 = 5e5 # J/m3
44

45 ############### Sim 2, Ku1 = 7.5e5 J/m3, Ku2 = 7.5e5 J/m3 ################
46 # Ku1 = 7.5e5 # J/m3
47 # Ku2 = 7.5e5 # J/m3
48

49 ############### Sim 3, Ku1 = 7.5e5 J/m3, Ku2 = 5e5 J/m3 ################
50 # Ku1 = 7.5e5 # J/m3
51 # Ku2 = 5e5 # J/m3
52

53 ############### Sim 4, Ku1 = 1e6 J/m3, Ku2 = 5e5 J/m3 ################
54 # Ku1 = 1e6 # J/m3
55 # Ku2 = 5e5 # J/m3
56

57 ############### Sim 5, Ku1 = 1e6 J/m3, Ku2 = 7.5e5 J/m3 ################
58 # Ku1 = 1e6 # J/m3
59 # Ku2 = 7.5e5 # J/m3
60

61 ############### Sim 6, Ku1 = 1e6 J/m3, Ku2 = 1e6 J/m3 ################
62 # Ku1 = 1e6 # J/m3
63 # Ku2 = 1e6 # J/m3
64

65 # Create saving directories
66 fileName = Path(__file__).stem # retrieve name of running script
67 outDir = args.output
68 projectName = fileName.split('_')[-1] # retrieve name of project from running script
69 relaxDir = f'{outDir}/relax_{projectName}_r={args.rank}' # creates a directory for each

rank↪→

70

71 print(f'Relaxing {projectName} with {paramDescription} = {J1:0.1e}, {J2:0.1e}, Ku1 =
{Ku1:0.1e}, Ku2 = {Ku2:0.1e}, rank = {args.rank}')↪→
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72

73 # Read mesh
74 mesh = Mesh(f'mesh_{projectName}/mesh_{projectName}.msh')
75

76 # Initialize state and group properties for each layer
77 state = State(
78 mesh, # define which mesh should be used for simulations
79 cell_domains = {
80 'magnetic': (1, 3), # taking volume labels from mesh, assign own names
81 'conducting': (1, 2, 3), # define volumes to be used in sim, name and categorize

them.↪→

82 'FM1': 1,
83 'FM2': 3,
84 'spacer': 2
85 },
86 facet_domains = {
87 'interface1': 2, # all physical surfaces that you need, top of FM1
88 'interface2': 3 # top of spacer
89 },
90 scale = 1e-9 # all mesh dimensions in nm, thus: scale must be set to 1e-9
91 )
92

93 # Define material parameters for all magnetic layers
94 state.material = Material(
95 alpha = 1.0, # damping 0 -> 1
96 Ms = 900e3, # sat mag, A/m
97 A = A # exchange interaction, J/m (bulk Cobalt)
98 )
99

100 # Define material parameters for FM1
101 state.material['FM1'] = Material(
102 Ku = Ku1, # uniaxial anisotropy, J/m3
103 Ku_axis = (0, 0, 1) # anisotropy axis
104 )
105

106 # Define material parameters for FM2
107 state.material['FM2'] = Material(
108 Ku = Ku2, # uniaxial anisotropy, J/m3
109 Ku_axis = (0, 0, 1) # anisotropy axis
110 )
111

112 # Initialize Energy Terms
113 exchange = ExchangeField()
114 aniso = UniaxialAnisotropyField()
115 iexchange = BiquadraticInterlayerExchangeField(J1, J2) # if J2 = 0 -> it becomes

equivalent to InterlayerExchange↪→

116 demag = DemagField()
117

118 # Define state.h as the effective field which includes all the desired energy terms
119 state.h = exchange + aniso + iexchange + demag
120 state.exch = exchange.h
121 state.aniso = aniso.h
122 state.iexch = iexchange.h
123 state.demag = demag.h
124

125 #########################################################################
126 # Relax the structure from random init
127 #########################################################################
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128

129 # Initialize magnetizations of magnetic layers
130 state['FM1'].m = Constant(( 0.0, 0.0, initFM1ZComp)) # initial magnetization of FM1
131 state['FM2'].m = Constant(( 0.0, 0.0, initFM2ZComp)) # initial magnetization of FM1
132

133 # Initialize LLG
134 llg = LLGSolver(no_precession = True) # solve LLG to relax initial state
135

136 # Set up logging
137 Timer.enable(skip = 1)
138 logger = Logger(
139 relaxDir, # Logger('name of dir')
140 ['t', 'm[FM1]', 'm[FM2]'], # First list is scalars: m[FM1] is avg mag in FM1,

log.dat↪→

141 ['m', 'aniso', 'exch', 'iexch'], # Second list is fields, VTKs
142 scalars_every = 10, # output scalars every 50 entries,
143 fields_every = 10000 # fields every 10000
144 )
145

146 # Run simulation
147 while state.t < 100e-9: # time to relax
148 logger << state
149 llg.step(state, 1e-12) # step by picosecond
150 Timer.print_report()
151

152 print(f'Finished relaxing {projectName} with {paramDescription} = {J1:0.1e}, {J2:0.1e},
Ku1 = {Ku1:0.1e}, Ku2 = {Ku2:0.1e}, rank = {args.rank}')↪→

C.2 Switching current of an STT-MRAM structure

The following is an example of a “dynamic” magnum.pi running script. This code is set up
to vary inputs across a predefined range: the bilinear and biquadratic interlayer exchange
coupling constant (J1 and J2) for the coupling between the bottom two layers of a three-
layer STT-MRAM stack. The values of J1 and J2 for a particular run of the simulation
are chosen by the ‘-r’ flag at runtime, which is ultimately enumerated by a batch script.
The code produces a simulation that initially relaxes from a randomized magnetization,
and then uses the relaxed state as the input to simulate a spin-transfer torque (STT) write
operation, which is performed by a linearly increasing current density in a direction opposite
to that of FM3 z-direction. The time, the current density, and the magnetization of each
layer are saved to a log file, while the total magnetization, anisotropy energy, exchange
energy, and interlayer exchange energy are saved to “.vtk” files for viewing in Paraview. For
the simulation of STT, scalars are saved every 10 timesteps and fields are saved every 4000
timesteps of a 20ns relaxation. This script produced the data for the figures of Section 4.2.2.

1 from magnumpi import *
2 import numpy as np
3 import scipy as sp
4 import argparse
5 from pathlib import Path
6 import itertools as iter
7
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8 # Define parameter and parameter values to vary with rank
9 paramDescription = 'J1J2' # description of parameter

10 defaultParam = 0 # default argument
11

12 # Read in rank arguments from batch script and set up arg list
13 parser = argparse.ArgumentParser(description = paramDescription) # sets a description for

arguments↪→

14 parser.add_argument('-o', '--output', default = 'output', type = str) # sets arguments to
the rank from incoming batch script↪→

15 parser.add_argument('-r', '--rank', default = defaultParam, type = int) # sets arguments
to the rank from incoming batch script↪→

16 args = parser.parse_args() # sets args to rank from batch script
17

18 # J1/J2 Lists:
19 J1S1List = np.linspace(0.00, 5.00, 60)*1e-3 # for J/m^2
20 J2S1List = np.linspace(0.00, 4.00, 60)*1e-3 # for J/m^2
21 params = list(iter.product(J1S1List, J2S1List))
22 paramValues = params[args.rank] # set paramValues to proper value according to rank
23 J1S1 = -1*paramValues[0] # set J1 to a particular value according to rank
24 J2S1 = -1*paramValues[1] # set J2 to a particular value according to rank
25

26 # simName=s1 # 20ns, phase, crit current, j0_0 = -5e10, j0_1 = -1e13, LLG in FM3, no
STTS1, AP FM2/FM3↪→

27 j0_0 = -5e10 # A/m2, initial applied spin torque current
28 j0_1 = -1e13 # A/m2, final applied spin torque current
29 relaxTime = 50e-9 # ns
30 simTime = 20e-9 # ns
31

32 # simName=s1 # 20ns, phase, crit current, j0_0 = -5e10, j0_1 = -1e13, LLG in FM3, no
STTS1, PP FM2/FM3↪→

33 # j0_0 = 5e10 # A/m2, initial applied spin torque current
34 # j0_1 = 1e13 # A/m2, final applied spin torque current
35 # relaxTime = 50e-9 # ns
36 # simTime = 20e-9 # ns
37

38 # Create saving directories
39 fileName = Path(__file__).stem # retrieve name of running script
40 slrmOutDir = args.output
41 projectName = fileName.split('_')[-1] # retrieve name of project from running script
42 relaxDir = f'{slrmOutDir}/relax_{projectName}_J2S1={J2S1:0.1e}' # creates a directory for

each value of J2↪→

43 simDir = f'{slrmOutDir}/data_{projectName}_J2S1={J2S1:0.1e}' # creates a directory for
each value of J2↪→

44

45 print(f'Relaxing {projectName} with J1S1 = {J1S1:0.1e}, J2S1 = {J2S1:0.1e}, rank =
{args.rank}')↪→

46

47 # Read mesh
48 mesh = Mesh(f'mesh_{projectName}/mesh_{projectName}.msh')
49

50 # Initialize state and group properties for each layer
51 state = State(
52 mesh, # define which mesh should be used for simulations
53 cell_domains = {
54 'magnetic': (1, 3, 5), # taking volume labels from mesh, assign own names
55 'conducting': (1, 2, 3, 4, 5), # define volumes to be used in sim, name and

categorize them.↪→

56 'FM1': 1, # bottom of SAF
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57 'spacer1': 2, # first spacer
58 'FM2': 3, # top of SAF
59 'spacer2': 4, # second spacer
60 'FM3': 5, # free layer
61 },
62 facet_domains = {
63 'bottomContact': 1, # all physical surfaces that you need, bottom of FM1
64 'interface1': 2, # top of FM1
65 'interface2': 3, # top of spacer 1
66 'interface3': 4, # top of FM2
67 'interface4': 5, # top of spacer 2
68 'topContact': 6 # all physical surfaces that you need, bottom of FM1
69 },
70 scale = 1e-9 # all mesh dimensions in nm, thus: scale must be set to 1e-9
71 )
72

73 # Define material parameters for each magnetic layer individually
74 # FM1 is based on RAM4-64
75 state.material['FM1'] = Material(
76 Ms = 900e3, # sat mag, A/m
77 # Ms = 1.150e6, # sat mag, A/m
78 A = 1.3e-11, # exchange interaction, J/m3 (bulk Cobalt)
79 Ku = 1.0e6, # uniaxial anisotropy, J/m3
80 # Ku = 1.11e6, # uniaxial anisotropy, J/m3
81 Ku_axis = (0, 0, 1) # anisotropy direction
82 )
83

84 # FM2 is based on RAM4-61
85 state.material['FM2'] = Material(
86 Ms = 900e3, # sat mag, A/m
87 # Ms = 1.08e6, # sat mag, A/m
88 A = 1.3e-11, # exch interaction, J/m3 (bulk Cobalt)
89 Ku = 5.0e5, # uniaxial anisotropy, J/m3
90 # Ku = 9.18e5, # uniaxial anisotropy, J/m3
91 Ku_axis = (0, 0, 1) # anisotropy dir
92 )
93

94 # FM3 (FL) is based on RAM4-38
95 state.material['FM3'] = Material(
96 Ms = 7.4e5, # sat mag, A/m
97 A = 1.3e-11, # exch interaction, J/m3 (bulk Cobalt)
98 Ku = 4.3e5, # uniaxial anisotropy, J/m3
99 Ku_axis = (0, 0, 1) # anisotropy dir

100 )
101

102 # Initialize Energy Terms
103 exchange = ExchangeField()
104 aniso = UniaxialAnisotropyField()
105 demag = DemagField()
106 iexchangeS1 = BiquadraticInterlayerExchangeField(
107 A1 = J1S1,
108 A2 = J2S1, # if J2 = 0 this becomes equivalent to InterlayerExchange
109 interface1 = 'interface1',
110 interface2 = 'interface2',
111 spacer_region = 'spacer1'
112 )
113

114 # Define state.h as the effective field which includes all the desired energy terms
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115 state.h = exchange + aniso + iexchangeS1 + demag
116 state.exch = exchange.h
117 state.aniso = aniso.h
118 state.iexch = iexchangeS1.h
119 state.demag = demag.h
120

121 #########################################################################
122 # Relax the structure from random init
123 #########################################################################
124

125 # Initialize magnetizations of magnetic layers
126 state['FM1'].m = Constant(( 0.0, 0.0, 1.0)) # initial magnetization of FM1, positive z

dir↪→

127 state['FM2'].m = Constant(( 0.0, 0.0, 1.0)) # initial magnetization of FM2, positive z
dir↪→

128 state['FM3'].m = Constant(( 0.0, 0.0, -1.0)) # initial magnetization of FM3, negative z
dir↪→

129

130 # High damping for relaxation
131 state.material['magnetic'].alpha = Constant(1.0) # damping 0 -> 1
132

133 # Initialize LLG
134 llg = LLGSolver() # solve LLG to relax initial state
135

136 # Set up logging of relaxation
137 Timer.enable(skip = 1)
138 logger = Logger(
139 relaxDir, # Logger('name of dir')
140 ['t', 'm[FM1]', 'm[FM2]', 'm[FM3]'], # First list is scalars: m[FM1] is avg mag in

FM1, .dat↪→

141 ['m', 'aniso', 'exch', 'iexch'], # Second list is fields, VTKs
142 scalars_every = 100, # output scalars every 100 entries
143 fields_every = 25000 # fields every 25000
144 )
145

146 # Run relaxation
147 while state.t < relaxTime: # time to relax
148 logger << state
149 llg.step(state, 1e-12) # step by picosecond
150 Timer.print_report()
151

152 print(f'Finished relaxing {projectName} with J1S1 = {J1S1:0.1e}, J2S1 = {J2S1:0.1e}, rank
= {args.rank}')↪→

153

154 #########################################################################
155 # Apply Current
156 #########################################################################
157

158 llg.reset() # clear state from relaxation
159 state.t = 0.0 # reset time of sim
160

161 print(f'Simulating {projectName} with J1S1 = {J1S1:0.1e}, J2S1 = {J2S1:0.1e}, rank =
{args.rank}')↪→

162

163 # Initialize Spin Torque Transfer term for Spacer 2
164 sttS2 = SpinTorqueSlonczewski(
165 P = 0.7, # polarization degree of current (X% of current is polarized to a given

spin), 0.7 is reasonable↪→
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166 Gamma = 0.8, # spin torque param
167 interface1 = 'interface3', # top of FM2
168 interface2 = 'interface4', # top of S2
169 spacer_region = 'spacer2'
170 )
171

172 # Define time-dependent current
173 interpCurrent = ExprTimeInterpolator({
174 0: (0.0, 0.0, j0_0),
175 simTime: (0.0, 0.0, j0_1)} # xyz Components of the applied current
176 )
177

178 # Define state.h as the effective field which includes all the desired energy terms
179 state.h = exchange + aniso + iexchangeS1 + sttS2 + demag
180 state.j = interpCurrent
181

182 # Low damping for simulation
183 state.material['magnetic'].alpha = Constant(0.1)
184

185 # Re-initialize LLG
186 llg = LLGSolver(region = 'FM3', rtol = 1e-7, atol = 1e-7)
187

188 # Set up logging for simulation
189 Timer.enable(skip = 1)
190 logger = Logger(
191 simDir, # Logger('name of dir')
192 ['t', 'j', 'm[FM1]', 'm[FM2]', 'm[FM3]'], # First list is scalars: m[FM1] is avg mag

in FM1, VTKs↪→

193 ['m', 'aniso', 'exch', 'iexch'], # Second list is fields
194 scalars_every = 10, # output scalars every 10 entries,
195 fields_every = 4000 # fields every 1000
196 )
197

198 # Run simulation
199 while state.t < simTime: # time to simulate
200 logger << state
201 llg.step(state, 1e-12) # step by picosecond
202 Timer.print_report()
203

204 print(f'Finished simulating {projectName} with J1S1 = {J1S1:0.1e}, J2S1 = {J2S1:0.1e},
rank = {args.rank}')↪→
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Appendix D

Supplemental Figures

D.1 SAF interlayer coupling angle

72



Figure D.1: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as J1
vs J2. Ku1 = 5.0×105J/m3, Ku2 = 5.0×105J/m3, with parallel initial conditions. Interlayer
angles below 90◦ are coloured light grey, while interlayer angles above 179◦ are coloured dark
grey to enhance the detail of the colourmap over the range of angles of interest. Structures
to the left of the green contour relaxed to an approximately parallel configuration, with
the z-component of magnetization in both layers having the same sign, while structures to
the right relaxed to an approximately antiparallel configuration, with the z-component of
magnetization in each layer having the opposite sign. Values of J1 and J2 for which the
structure relaxed to an antiparallel, non-collinear arrangement are of interest for use in
STT-MRAM.
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Figure D.2: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 1.0 × 106J/m3, Ku2 = 1.0 × 106J/m3, with parallel initial conditions.
Interlayer angles below 90◦ are coloured light grey, while interlayer angles above 179◦ are
coloured dark grey. Structures to the left of the green contour relaxed to an approximately
parallel configuration, with the z-component of magnetization in both layers having the same
sign, while structures to the right relaxed to an approximately antiparallel configuration,
with the z-component of magnetization in each layer having the opposite sign. Values of J1
and J2 for which the structure relaxed to an antiparallel, non-collinear arrangement are of
interest for use in STT-MRAM.
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Figure D.3: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 1.0 × 106J/m3, Ku2 = 1.0 × 106J/m3, with antiparallel initial conditions.
Interlayer angles below 90◦ are coloured light grey, while interlayer angles above 179◦ are
coloured dark grey. Structures to the left of the green contour relaxed to an approximately
parallel configuration, with the z-component of magnetization in both layers having the same
sign, while structures to the right relaxed to an approximately antiparallel configuration,
with the z-component of magnetization in each layer having the opposite sign. Values of
J1 and J2 for which the structure relaxed to an antiparallel, non-collinear arrangement are
of interest for use in STT-MRAM. On the bottom right, an inset compares the regions of
antiparallel and parallel relaxed states in this and Fig. D.2, where red indicates that the
structures are in different minima.
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Figure D.4: SAF interlayer angle phase plot for a 20nm radius FM1 and FM2, plotted as
J1 vs J2. Ku1 = 1.0 × 106J/m3, Ku2 = 5.0 × 105J/m3, with parallel initial conditions.
Interlayer angles below 90◦ are coloured light grey, while interlayer angles above 179◦ are
coloured dark grey. Structures to the left of the green contour relaxed to an approximately
parallel configuration, with the z-component of magnetization in both layers having the same
sign, while structures to the right relaxed to an approximately antiparallel configuration,
with the z-component of magnetization in each layer having the opposite sign. Values of
J1 and J2 for which the structure relaxed to an antiparallel, non-collinear arrangement are
of interest for use in STT-MRAM. Equivalent to Fig. 4.12, but only simulated and plotted
over ranges of J1 and J2 that are currently considered reasonable to reproduce.
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D.2 Dependence of switching current on J2

Figure D.5: Switching current of STT-MRAM initially in an antiparallel state, for varying
biquadratic coupling strengths between FM1 and FM2. Structures for which FM1 and FM2
relaxed to an antiparallel state with an interlayer angle 90◦ < θ < 179◦ lie between the arms
of the green contour. The current is applied in the negative z-direction, which interacts with
the moment of FM2, exerting a torque on the comparatively easy FM3 through reflection of
minority carriers. The FM3 switching current is minimized for interlayer angles ∼ 125◦ <
θ < 179◦. The numerical labels within the plot are given in 1012A/m2. The region below
and to the right of the green contour corresponds to perfectly collinear structures, where
the switching torque is created by random variation in the magnetic moment caused by the
numerical inaccuracy in Python/magnum.pi.
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Figure D.6: Switching current of STT-MRAM initially in a parallel state, for varying bi-
quadratic coupling strengths between FM1 and FM2. Structures for which FM1 and FM2
relaxed to an antiparallel state with an interlayer angle 90◦ < θ < 179◦ lie between the arms
of the green contour. The current is applied in the positive z-direction, which is polarized
by FM2 and exerts a torque on the comparatively easy FM3. The FM3 switching current
is minimized for interlayer angles ∼ 122◦ < θ < 179◦. The numerical labels within the plot
are given in 1012A/m2. The region below and to the right of the green contour corresponds
to perfectly collinear structures, where the switching torque is created by random variation
in the magnetic moment caused by the numerical inaccuracy in Python/magnum.pi.

78


	Declaration of Committee
	Approval Form
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Theory
	Magnetic hysteresis
	Magnetic free energy
	Exchange energy
	Interlayer exchange energy
	Zeeman energy
	Anisotropy energy

	Dynamics
	Landau-Lifshitz-Gilbert equation
	Spin-dependent scattering


	Methods
	Simulations
	magnum.pi
	ParaView
	HPC

	Experiment
	Sample fabrication
	VSM
	MOKE
	Van der Pauw method

	Optimization of STT-MRAM

	Results
	Static simulations
	Verification of magnum.pi and exploration of design parameters
	SAF interlayer coupling angle

	Dynamic simulations
	Field-induced switching coherency
	Dependence of switching current on FM1/FM2 coupling angle


	Discussion
	Summary and impact of results
	Use of magnum.pi
	Future work

	Bibliography
	Appendix Example Gmsh meshing script
	Appendix Example SLURM submission script
	Appendix Example magnum.pi simulation scripts
	SAF phase plot
	Switching current of an STT-MRAM structure

	Appendix Supplemental Figures
	SAF interlayer coupling angle
	Dependence of switching current on J2


