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Abstract

Modern remote keyless entry systems do not account for the intent of their user when automatically

unlocking or locking the vehicle as the user approaches, leading to false starts. Furthermore, an unlock

mechanism works until the user sits down, after which they may need to wait a period of time before they

can start driving their vehicle. For premium electric motorcycles, users expect a premium experience -

they want to sit down and immediately start moving. To resolve these issues, the Proximity Entrance

System™ (PES) analyzes an approaching user’s intent to determine whether they are looking to start or

lock their vehicle, then issues correct messages in advance to the motorcycle to prepare its systems for

an instant start. This document fully specifies the implementation of the PES™, its communication

protocols, hardware, software, security practices, and how the system facilitates a premium user

experience for the rider.
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Glossary

AES: Advanced Encryption Standard; A block cipher encryption method

Asymmetric encryption: A cryptographic system that uses two separated (but algorithmically related)

public and private key to encrypt and decrypt data

CAN: Controller Area Network; a physical-layer communication standard used for priority communications

in automotive systems

CLI: Command-line Interface; a text-based interface used to run programs, manage computer files and

interact with the computer

ECU: Electronic Control Unit; an embedded system in an automotive electrical system that is used to

control a single component of the vehicle

EUID: Extended Unique Identifier; a unique 64-bit identifier associated with MAC IEEE 802.15.4

GCM: Galois/Counter Mode; an encryption algorithm associated with the AES encryption method

GPIO: General-Purpose Input/Output; a standard interface used to connect microcontrollers to any

peripheral devices

IC: Integrated Circuit; an electronic circuit implemented on a single silicon chip

IT: Information Technology; A support team at a company to aide in the user of computers, storage,

networking, and all other forms of electronic data

MAC: Medium Access Control; the transmission layer that interfaces with physical transmission media

MCU: Microcontroller Unit; a miniature computer implemented on a single semiconductor chip

OEM: Original Equipment Manufacturer; a company that supplies manufactured parts that are used in

another company’s larger product system

PAN: Personal Area Network; a local computer network used to interconnect a user’s devices

PCB: Printed Circuit Board; a laminated structure used for condensed wiring in electrical circuits

PDM: Proximity Detection Module; the bike-mounted embedded system component of the Proximity

Entrance System™

PII: Personally Identifiable Information; any data that could potentially identify a specific individual

PES: Proximity Entrance System™; an automotive system that predicts user intent to reduce the time

waiting for an electric motorcycle to start

PLA: Polylactic Acid; material used in 3D printing

Replay Attack: A type of network attack where an attacker detects a data transmission and fraudulently

has it delayed or repeated

RID: Remote Identifier; the user-held wearable component of the Proximity Entrance System™

RSSI: Received Signal Strength Indicator; a part of Bluetooth that may be used to implement RTLS using

signal strength measurements

8



RTLS: Real-Time Locating System; a system used to track the position of people or objects in real time

SPI: Serial Peripheral Interface; a communication bus that facilitates data transfer often between

microcontrollers and their attached peripherals

UWB: Ultra-Wideband; a wireless technology used to communication position data to a high accuracy in a

local area
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1. Introduction

1.1 Background
Echo is developing the Proximity Entrance System™ (PES) to provide the ultimate user-friendly experience

for motorcyclists who want to sit down and start riding. This means as little interaction as possible - the

PES™ aims to anticipate the rider's intent and to be ready to go at any given moment. By utilizing a

bike-mounted embedded device, paired with a small and user-friendly portable component, the PES™ will

use proximity and intent detection to notify the bike of an impending boot.

As the PES™ is a single module, Echo aims to license this device to motorcycle manufacturers looking to

maximize their user experience by minimizing wait times. By viewing the bike as a black box, the PES™

will come with a simple interface to be integrated into an electric motorcycle. By focusing on the rapidly

growing market of electric motorcycle manufacturing [1], the user experience afforded by the PES™ is

positioned to become the new standard for vehicle entry and exit.

1.2 Overview
The PES™ is built to challenge the problem of waiting for vehicle boot times by reducing them to zero

while minimizing the number of accidental starts. The system is split into two components: the Proximity

Detection Module (PDM), which is mounted on the bike, and a Remote Identifier (RID), which is held by the

user.

As a user approaches their bike while holding their RID, the PDM and RID communicate to determine the

RID location. When the RID approaches the bike with intent to ride, the PDM sends a "wake-up" signal to

the system - not necessarily to perform a full boot, but to give the system an advanced warning that a

user is approaching. This provides the system with a chance to run through any lengthy boot-up

processes so the user can get on and go.

In addition to a “start” and “lock” signals triggered based on user input combined with positioning and

trajectory information, the PES™ allows for a seamless and secure user interaction, even when walking

away from the motorcycle.

A general view of this architecture is shown in Figure 1.2.1.
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Fig. 1.2.1: PES™ Architecture

1.3 Design Challenges
The main challenge in designing the PES™ will be implementing intent detection through wireless

communications between the PDM and potentially multiple RIDs. The PDM will need to have two

antennas to perform triangulation with each RID, and these antennas will need to be spaced as far apart

as possible to maximize accuracy. This also means that a wireless protocol will have to be created that

can securely identify each RID. Because there are multiple antennas in close proximity, extra effort will

have to go into tuning the algorithm to deal with interference effects and to maximize intent detection

reliability.

Another challenge will come in the physical and embedded design of the RID. It needs to consume as little

power as possible to maximize its battery life while also enabling communications with its registered

PDM. Furthermore, it must be physically small enough to fit inside of a user’s pocket or to be secured as a

wearable device while including all of the necessary hardware.

One final challenge will be to perform all communications and actions securely. As a keyless entry

system, it is extremely important that potential attackers cannot gain entry to the vehicle by listening to or

manipulating communications between the PDM and RID, or between the PDM and the bike itself. As a

result, encryption schemes will need to be designed for all communications to ensure that only a

registered user may start the vehicle.
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1.4 Scope
This document aims to completely specify the design specifications of the PES™ through its alpha, beta,

and planned release product development stages. Individual design specifications along with appropriate

justifications will be provided for the hardware, software, communications, security, and physical

components of the system. Alternative solutions to the design options chosen will be provided in

Appendix B.

1.5 Design Classification Format
All design specifications in this document will be specified as follows:

[D-W.X.Y.Z.V]

This format can be interpreted as follows:

- W is the design class;

- X is the design subclass;

- Y is the design device, where ‘0’ is for the entire product, ‘1’ is for the RID, ‘2’ is for the PDM, and 3

is for the simulated ECU;

- Z is the design number; and

- V is the product development version, where ‘a’ is for alpha phase, ‘b’ is for beta phase, and ‘c’ is

for the planned release phase.
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2. High Level Overview

2.1 Remote Identifier (RID)
The Remote Identifier (RID) is the user-held component of the Proximity Entrance System™ (PES) used for

two purposes: uniquely identifying each rider, and communicating position information with the Proximity

Detection Module (PDM). Each RID has an ultra-wideband (UWB) transceiver that it uses to communicate

with the PDM installed on the motorcycle and a low-power microcontroller used to coordinate secure,

encrypted communication with the PDM. It also includes a backup activation button in case of software

intent detection failure.

In the planned product release stage, the RID will have a low-profile casing used to mount it to various

surfaces. For example, a user could potentially mount their RID to their helmet or leave it in their purse or

wallet to reduce the number of items they need to carry.

2.2 Proximity Detection Module (PDM)
The Proximity Detection Module (PDM) of the PES™ is the main embedded system installed into the

motorcycle’s ECU network. It consists of a microcontroller, a CAN bus, and a pair of UWB transceivers.

The microcontroller handles all proximity detection logic, encrypted communication, security logic, and

database communication; the CAN bus is used to interface with the motorcycle’s central control unit; and

the UWB transceivers are used to triangulate the position of any number of registered RIDs in the local

area of the PDM.

In the planned product release stage, the PDM will be contained in a low-profile casing to simplify

installation into a motorcycle by its manufacturer. The antennas may be contained within this housing or

wired to be installed elsewhere on the motorcycle to maximize connectivity and data accuracy.

Specifications for the casing will be provided to any manufacturer licensing the product in the likely event

that they wish to customize its physical design.
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3. Hardware

The PES™ is primarily an embedded device. The majority of its important functionality comes from its

ability to communicate between the different components that make up its system, and from the

antennas used for position sensing on those components. Because of the form factor, these hardware

components must be chosen to minimize power consumption while maximizing performance.

3.1 Remote Identifier (RID)
The RID must be capable of secure, encrypted communication through its ultra-wideband (USB)

transceiver. To coordinate this, a low-power microcontroller is included in its design.

The STM32 NUCLEO-L432KC is a 32-bit ARM-based microcontroller development board that prioritizes

ultra low-powered performance while maintaining a broad range of functionality for prototyping. This unit

has been selected to implement the RID due to this balance of performance and functionality, combined

with its low cost. This development board supports SPI communication through its GPIO pins, so it can be

connected to the RID’s UWB transceiver to implement wireless communication with the PDM. Figure 3.1.1

shows the pinout and product specifications of the NUCLEO-L432KC, and Table 3.1.1 outlines the exact

specifications required for the RID microcontroller.

Fig. 3.1.1: STM32 NUCLEO-L432KC Pinout [2]

In the planned product release, the RID will be a wireless device, which means it must be battery-powered.

Due to the difficulty of developing a power supply for the STM32 NUCLEO-L432KC itself, and because said

power supply would be extremely different from the battery power solution in the final product, the alpha

prototype of the RID will be powered using the built-in USB power for the NUCLEO-L432KC.
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Design ID Specification Description Referenced
Requirement

D-3.1.1.1.a The RID microcontroller will be able to communicate with a single
UWB transceiver.

R-4.1.1.1a

D-3.1.1.2.b The RID microcontroller will be able to communicate with LEDs to
signal a successful motorcycle start.

R-4.1.1.5.b

D-3.1.1.3.b The RID microcontroller will be able to communicate with a small
speaker to signal a successful motorcycle start.

R-4.1.1.5.b

D-3.1.1.4.a The RID microcontroller will have a button to notify the PDM to lock
the motorcycle.

Not done

D-3.1.1.5.a The RID microcontroller will have non-volatile storage to hold one
preprogrammed encryption key.

R-4.1.1.2.a,
R-4.1.1.3.a

Table 3.1.1: RID Microcontroller Design Specifications

In the final release, it is expected that the RID will be working on a custom PCB. In this scenario, it must

have a competitive [3] battery life of at least 12 months using batteries that are common and easy to

replace. For a premium user experience, the RID should also signal when its batteries should be changed

using its onboard LEDs. Table 3.1.2 has the design specifications for the RID’s battery power.

Design ID Specification Description Referenced
Requirement

D-3.1.1.6.c The RID hardware will use standard 3V button-cell batteries. R-3.4.1.1.a

D-3.1.1.7.c The RID hardware will run for at least 12 months on its included
batteries.

R-3.4.1.2.b,
R-7.4.1.1.b

Table 3.1.2: RID Battery Power Design Specifications

3.2 Proximity Detection Module (PDM)
Like the RID, the PDM must be able to perform secure, encrypted communication - however, it must do

this over both UWB and CAN. In addition, the PDM must also coordinate intent detection logic, security

logic, and database communication. For this reason, a more powerful microcontroller has been selected

for the PDM.

The STM32 NUCLEO-F303RE is a 32-bit ARM-based microcontroller development board that provides

more performance at the cost of a higher power consumption. This unit was selected to implement the
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PDM as it is powerful enough to implement all of the central control logic that is needed to drive the PES™

system, and because it has a built-in CAN controller and SPI support. This means the board can facilitate

connection to a CAN bus and also connect to UWB transceivers to communicate with nearby RID units.

Figure 3.2.1 shows the pinout and product specifications of the NUCLEO-F303RE, and Table 3.2.1

contains the design specifications required for the PDM microcontroller.

Fig. 3.2.1: STM32 NUCLEO-F303RE Product Specifications [4]

Design ID Specification Description Referenced
Requirement

D-3.2.2.1.a The PDM microcontroller will be able to communicate with two UWB
transceivers.

R-4.2.2.1.a

D-3.2.2.2.a The PDM microcontroller will be able to send and receive
communications over a CAN bus.

R-4.2.2.3.a

D-3.2.2.3.a The PDM microcontroller will have non-volatile storage to hold two
preprogrammed encryption keys.

R-4.2.2.2.a

Table 3.2.1: PDM Microcontroller Design Specifications

Similar to the microcontroller used for the prototype RID, designing and building a power supply for the

NUCLEO-F303RE is out of scope. The final device will be powered by a motorcycle; designing and porting

a custom USB power system to an analog power supply would be wasted effort. As a result, the prototype

of the PDM will be built using the microcontroller development board’s onboard USB power. Table 3.2.2

specifies how the PDM will be powered in the final product development phase.
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Design ID Specification Description Referenced
Requirement

D-3.2.2.4.a The PDM will be powered through a standard 12V input. R-3.4.2.1.a

Table 3.2.2: PDM Power Design Specifications

3.3 Ultra-Wideband (UWB)
In the PES™, both the PDM and RID require access to at least one ultra-wideband (UWB) transceiver to

implement high-precision device location. In the case of the PDM, a connection to two UWB transceivers

is needed to facilitate triangulation. For this purpose, the DecaWave DWM1000 RF transceiver was

chosen for the final product phase. The DWM1000 can work on an SPI bus, meaning that multiple

transceivers can work as slave devices. It is also a low-power chip, meaning it will work well towards the

RID’s battery life requirements, and it includes hardware MAC addresses for each module. Figure 3.3.2

shows the pinout and specifications for the DWM1000.

Fig. 3.3.1: DecaWave DWM1000 UWB Transceiver Specifications [5]

For prototyping, the DWS1000 will be used, which is the development board provided by DecaWave for the

DWM1000. This board simplifies the process of prototyping with the DWM1000, since developers can

rearrange connections without needing to re-solder connections and potentially break their development

hardware. An example board with its pinout is shown in Figure 3.3.2, and an example of wiring the

DWM1000 with the RID’s NUCLEO-L432KC development board is shown in Figure 3.3.3. The design

specifications for the PES™’s UWB transceiver are listed in Table 3.3.1.
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Fig. 3.3.2: DecaWave DWS1000 UWB Development Board Pinout [6]

Fig. 3.3.3: Example Wiring for DWM1000 with RID NUCLEO-L432KC Prototype

18



Design ID Specification Description Referenced
Requirement

D-3.3.0.1.a The UWB module will be able to have bidirectional communication
with another identical UWB module.

R-4.1.1.1.a,
R-4.2.2.1.a

D-3.3.0.2.a The UWB module will be able to communicate time-of-flight
information with another identical UWB module.

R-4.1.1.1.a,
R-4.2.2.1.a

D-3.3.0.3.a The UWB module will contain a unique identifier. R-5.3.1.1.a,
R-5.3.1.3.a,
R-5.3.2.4.a

Table 3.3.1: PES™ UWB Module Design Specifications

3.4 Controller Access Network (CAN) Bus
In automotive products, a Controller Area Network (CAN) bus is the standard communication bus for

onboard ECUs, which are used to manage each individual system on the vehicle. A node on a CAN bus

needs two components: a CAN controller, and a CAN transceiver. The CAN bus itself is composed of two

wires labeled CANL (CAN low) and CANH (CAN high).

CAN uses a differential signal to communicate information over the bus. Specifically, a ‘1’ is encoded by a

“dominant” state where CANH > CANL, and a ‘0’ is encoded by a “recessive” state where CANL < CANH

[7]. To achieve the required voltage differences, a 120Ω resistor is placed between CANL and CANH at

terminating nodes. A simple example is shown in Figure 3.4.1.

Fig. 3.4.1: Example CAN Bus Topology
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3.4.1 Simulated ECU
On the simulated ECU side, a CAN-USB interface is needed to translate the real physical-layer CAN

messages to serial data so that the simulation software can interpret it. The Seeed Studio USB to CAN

Analyzer was chosen for this due to its low price and having the benefit of not needing any additional

hardware, since both the CAN controller and the CAN transceiver are included. It also comes with simple

drivers to have the bus appear as a serial device in both Linux and Windows machines. The module is

pictured in Figure 3.4.2 with a labeled pinout, and the required specifications for the CAN connection used

by the simulated ECU are listed in Table 3.4.1.

Fig. 3.4.2: Seeed Studio USB to CAN Analyzer [8]

Design ID Specification Description Referenced
Requirement

D-3.4.3.1.a The simulated ECU CAN interface will provide bidirectional software
communications with the CAN bus.

R-4.2.2.3.a,
R-4.2.2.5.a

D-3.4.3.2.a The simulated ECU CAN interface will work with Linux machines. R-4.2.2.3.a,
R-4.2.2.5.a

Table 3.4.1: Simulated ECU CAN Interface Design Specifications

3.4.2 Proximity Detection Module
The PDM will be connected to a simulated ECU in software by a CAN bus. This way, connection to a

manufacturer’s motorcycle network will be as simple as possible. As mentioned in Section 3.2, the

microcontroller used for the PDM contains a CAN controller, so a CAN transceiver is needed to facilitate

connection. For development, the Waveshare SN65HVD230 development board was chosen for its low

cost and ease of use - an example with pinout is shown in Figure 3.4.3.
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Fig. 3.4.3: Waveshare SN65HVD230 Development Board Pinout [9]

For the planned product release stage, the Microchip MCP2551 has been selected as the CAN transceiver

for the PDM as it is a standard part for this role, is inexpensive, and has a large amount of support. Its

pinout and specifications are pictured in Figure 3.4.4.

Fig. 3.4.4: Microchip MCP2551 Product Specifications [10]

A circuit for the CAN bus with the PDM and simulated ECU is shown in Figure 3.4.5 using the MCP2551.

Note that VREF is left open and RS is tied to ground across a load resistor that controls rise/fall times. Table

3.4.2 shows the specifications needed by the PDM’s CAN hardware to implement required functionality.
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Fig. 3.4.5: PDM-ECU CAN Bus Circuit

Design ID Specification Description Referenced
Requirement

D-3.4.2.1.a The PDM CAN transceiver will implement CAN message transfer and
receival with the simulated ECU over the CAN bus.

R-4.2.2.3.a,
R-4.2.2.5.a

D-3.4.2.2.a The PDM CAN transceiver will be powered by a standard 3.3V or 5V
microcontroller source voltage.

R-4.2.2.3.a,
R-4.2.2.5.a

D-3.4.2.3.c The PDM CAN controller and transceiver pair will fully implement
CAN communications with a motorcycle ECU over the CAN bus.

R-4.2.2.4.c

Table 3.4.2: PDM CAN Hardware Design Specifications
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4. Communication

4.1 Ultra-Wideband (UWB) Communication
Because UWB is simply a radio communication technology, a communication protocol must be

implemented to facilitate data transfer. A full overview of the UWB communication protocol used between

the PDM and RID is shown in Figure 4.1.9. This protocol and the following frame standards are based off

of the APS013 application note provided by DecaWave [11]. As indicated in the application note, these

frame encodings follow the IEEE 802.15.4-2011 standard [12].

4.1.1 Preamble
Each frame below contains a Frame Control (FC) field as defined by the IEEE 802.15.4-2011 standard [12].

This field is defined as shown in Figure 4.1.1.

- Frame type is used to indicate what type of frame is being sent

- Security enabled (SEC) indicates whether MAC sublayer security is used, so this is ‘0’

- Frame Pending (PEND) indicates whether more data will be sent

- Acknowledgement Request (AR) indicates whether an acknowledgement is necessary

- PAN ID Compression (PIC) controls whether a source and destination Personal Area Network

(PAN) ID are needed; set to ‘1’ to require only a destination PAN ID

- Destination Address Mode (DestAdrMd) specifies if a 16-bit or 64-bit destination address is used

- Version indicates the frame version, which is “00” for this case

- Source Address Mode (SrcAdrMd) specifies whether a 16-bit or 64-bit source address is used

Fig. 4.1.1: UWB Frame Control Field Format

4.1.2 Listening Phase
The initial listening phase occurs while the RID is out of range of the PDM. During this phase, the RID

sends blink messages that follow the format in Figure 4.1.2. During this time, when a blink message is not

received, the RID enters a sleeping state for a predefined time period, then sends another blink message.
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- Frame control is 0x0200, since the frame type is “000” for a beacon message, PEND is ‘0’ for no

pending data, AR is ‘0’ for no ACK required, destination address is “11” for a full 64-bit EUID, and

source address is “00” as it is not needed

- Sequence number corresponds to the increment counter for beacon frames

- PDM MAC EUID is the identifier used by the receiving PDM to filter out irrelevant RID frames

- FCS is the Frame Check Sequence, used similarly to a CRC to verify received frame integrity, which

is set and checked automatically by the DWM1000 UWB transceivers

Fig. 4.1.2: UWB Blink Message Format

Once a PDM has identified an RID with which it was previously paired, it replies with a ranging init

message. The format of this frame is shown in Figure 4.1.3.

- Frame control is 0x2232, since the frame type is “001” for a data message, PEND is ‘0’ for no

pending data, AR is ‘0’ for no ACK required, destination address is “11” for a full 64-bit EUID, and

source address is “10” for a short 16-bit address

- Sequence number corresponds to the increment counter for data frames

- PAN ID is the proposed identifier for the PAN being set up

- RID MAC EUID is the identifier of the registered RID

- PDM short address is the new short address the PDM will use for ranging

- Function code is 0x20 to indicate a data section format for the init range frame

- RID short address is the proposed short address for the RID to use for ranging

- Response delay is the time to wait between successive ranging requests

- FCS is the CRC check, identical to the previous frame type

Fig. 4.1.3: UWB Ranging Init Message Format
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4.1.3 Positioning Phase
Once the PDM has sent its ranging init message, the positioning phase begins. During this phase, there

are three frame types: the poll frame, response frame, and final frame. Each of these frames has an

identical message format with a different data section. The general frame format is shown in Figure 4.1.4,

where explanations are left out for fields whose purposes are unchanged from the previous frame.

- Frame control is identical to the ranging init, except the destination address is now “10” to use a

short 16-bit address

- PDM short address is the first address generated by the PDM at the end of the listening phase and

was signaled to the RID during the ranging init message

- RID short address is the second address generated by the PDM that was signaled to the RID in the

data section of the ranging init message

Fig. 4.1.4: General Positioning Message Format

The data sections for the three frames are pictured in Figure 4.1.5.

- Poll is indicated by a 0x61 function code, and is used by the RID to determine its PollTX timestamp

and by the PDM to determine its PollRX timestamp

- Resp is indicated by a 0x50 function code, and is used by the PDM to determine its ResponseTX

timestamp and by the RID to determine its RespRX timestamp

- Final is used to transmit the timestamp results from the RID to the PDM, and also by the PDM to

determine the last FinalRX timestamp needed to determine the two-way ranging time of flight

Fig. 4.1.5: Poll, Response, and Final Positioning Message Data Formats
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4.1.4 Authentication Phase
Once the PDM has determined that the user intends to start the bike, the authentication phase begins. In

this phase, there are three message types: an auth request message, an auth reply message, and an auth

ACK message. The initial authentication request format is shown in Figure 4.1.6. The fields in this frame

are identical in function to previous frames, with a new 0x80 function code to uniquely identify it.

Fig. 4.1.6: Authentication Request Message Format

Once the RID has received an authentication request, it stops sending poll messages and enters the

authentication phase. To reply, it takes its rolling code used to combat replay attacks (Section 6.1) and

encrypts it with its symmetric AES-128 key, which is used to sign the authentication reply message shown

in Figure 4.1.7.

- Note: the ACK request bit in the frame control field is not set although an ACK is required. This is

because the UWB transceiver will send the ACK automatically, whereas the next ACK must be

sent manually by the PDM once it has issued the “wake-up” action to the central ECU.

Fig. 4.1.7: Authentication Reply Message Format

The final authentication ACK message is sent by the PDM once it has issued the “wake-up” signal to the

central motorcycle ECU. The PDM encodes the action performed (eg. whether the command succeeded)

with its symmetric key and uses it to sign the message shown in Figure 4.1.8. This frame format is

identical to the authentication request except for the swapped addresses and different data content.

Fig. 4.1.8: Authentication ACK Message Format
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4.1.5 Summary
The frames and the data being sent are summarized in Figure 4.1.9. The positioning phase cycle of poll,

response, and final messages continues indefinitely until one of two things happen: either the PDM

successfully reads the intent of the user to which the RID belongs, or the RID goes out of range and the

positioning phase times out. This behavior is specified in Sections 5.1 and 5.2.

Fig. 4.1.9: PDM-RID UWB Communication Protocol
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Specifications for the behavior implemented during this section are shown in Table 4.1.1.

Design ID Specification Description Referenced
Requirement

D-4.1.0.1.a The PES™ UWB communication protocol will follow the IEEE
802.15.4-2011 standard.

R-5.2.1.1.a,
R-5.2.2.1.a

D-4.1.0.2.a The PES™ UWB communication protocol will implement time-of-
flight calculations to perform positioning within 10cm of accuracy.

R-5.2.1.1.a,
R-5.2.2.1.a,
R-5.3.1.1.a

D-4.1.0.3.a The PES™ UWB communication protocol will implement secure RID
authentication.

R-5.3.1.2.a,
R-5.3.1.3.a,
R-5.3.2.2.a,
R-5.3.2.4.a

D-4.1.0.4.a The PES™ UWB communication protocol will use low-power polling
to begin location-based communications.

R-5.2.1.1.a,
R-5.2.2.1.a,
R-5.3.1.1.a,
R-5.3.2.4.a

D-4.1.0.5.a The PES™ UWB communication protocol will use a CRC to detect
transmission errors at the receiver

R-5.2.1.1.a,
R-5.2.2.1.a

D-4.1.0.6.a The PES™ UWB communication protocol will be resilient to lost
packets.

R-5.2.1.1.a,
R-5.2.2.1.a

D-4.1.0.7.a The PES™ UWB communication protocol will safely time out once
out of range.

R-5.2.1.1.a,
R-5.2.2.1.a,
R-5.3.1.1.a,
R-5.3.2.1.a

Table 4.1.1: UWB Communication Design Specifications

4.2 Controller Access Network (CAN) Bus Communication
Similar to UWB, a communication protocol for the CAN bus must be developed. In general, CAN bus

communications can be divided into two groups: control messages, which can be done in a single packet

like bike state changes, and data messages, which need to be done in an ordered packet stream to ensure

data integrity on the receiving end. Figure 4.2.1 shows the format of a standard CAN frame as specified

by CAN 2.0A [13]. Note that, in the event that five sequential bits are transmitted of the same polarity, the

CAN protocol inserts a stuff bit of the opposite polarity to maintain data synchronization.

- The Arbitration field is the identifier of the CAN message. If two messages are transmitted

simultaneously, arbitration will occur and the message with the ID closer to zero is transmitted.

- The RTR bit indicates whether the sender is requesting data with a Remote Transmission Request.
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- The IDE bit indicates whether the message is a standard or extended CAN frame.

- The R0 bit is reserved to be zero.

- The DLC field encodes the length of the data field in bytes.

- The Data field includes the data to be transmitted - in Figure 4.1.1, this is just one byte.

- The CRC field is the Cyclic Redundancy Check, which is used to verify received frame integrity.

- The ACK bit indicates whether the frame is an ACKnowledgement message.

Fig. 4.2.1: Standard CAN Frame Format [14]

4.2.1 CAN Control Messages
CAN control messages are the simpler of the two logical CAN message types to implement. To do so, the

sender prepares a message with the following fields:

- Arbitration ID: an identifier corresponding to the resource to control. For example, if the PDM is

updating the motorcycle’s state to ‘running’, this field would be set to some identifier that

corresponds to a MOTORCYCLE_STATE_RUNNING action.

- DLC: set to “1111” since the encrypted data will be 64 bits.

- Data: includes the sender’s ID and a rolling code, both encrypted with the shared symmetric key.

When the frame is received, the receiver decrypts the data field with its own symmetric key, then validates

the ID of the sender against its internal expected value. Once this is done, provided there were no errors in

transit, the receiver issues the action that was requested. If the CAN controller detected an error in transit

(eg. CRC mismatch), it sends a predefined CAN error frame that interrupts the CAN bus after which the

sender automatically attempts to retransmit their message.
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4.2.2 CAN Data Messages
Data messages are used to transfer data larger than 64 bits over the CAN bus. In this case, a

transmission scheme is needed that can reliably transmit data in order. For this, a simple initialization

handshake occurs in which the sender transmits the number of 64-bit data frames it is expecting to send.

The receiver can then allocate the memory needed to store the incoming data prior to its arrival.

A communication scheme for CAN data transfer is shown in Figure 4.2.2. Note that, due to the fault

tolerance implemented by the CAN controller, ACKs are automatically handled and that bit-level CRC

errors will also lead to an automatic retransmit.

Fig. 4.2.2: PDM-ECU CAN Data Transfer Protocol

The specifications for CAN behavior between the PDM and ECU for the PES™ are shown in Table 4.2.1.
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Design ID Specification Description Referenced
Requirement

D-4.2.2.1.a The PES™ CAN communication protocol will follow the Bosch
CAN2.0a standard.

R-4.2.2.3.a

D-4.2.2.2.a The PES™ CAN communication protocol will implement fixed-length
control messages.

R-4.2.2.3.a,
R-4.2.2.4.c,
R-5.2.2.2.a

D-4.2.2.3.a The PES™ CAN communication protocol will implement
variable-length data messages.

R-4.2.2.5.a

Table 4.2.1: CAN Communication Design Specifications
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5. Software

Software for the PES™ can be split into three types: the Remote Identifier (RID) MCU logic, the Proximity

Detection Module MCU logic, and the simulated ECU effectively used as a testbench for the system.

A mechanism based on retries and timeouts was preferred for the RID and PDM software architecture

since the number of packets needed for each phase is minimal and both retransmission time and

turnaround times (time to go from transmitting to receiving and the other way around) for the DW1000

module are in the order of microseconds [15].

5.1 Remote Identifier (RID)
The software for the RID is focused around implementation of the UWB communication protocol

described in Section 4.1. As a remote device, it primarily cycles between PDM discovery, positioning, and

authentication with the PDM to perform unlocks. The RID software prioritizes authentication over its

positioning processes. This enhances the responsiveness of the RID to authentication requests triggered

by the PDM when an action is to be performed based on the detected intent, which is specified in Section

5.2. This process is defined in detail in Figure 5.2.1.

Fig. 5.1.1: RID State Diagram
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The UWB transceiver affords the RID’s software the ability to do simple MAC operations. As a result, CRC

calculation and checking are performed automatically, a 64-bit MAC address can be created and stored in

the transceiver, and automatic message filtering based off of the incoming destination MAC address can

be switched on. The RID software uses these features to reduce power consumption on all devices.

Table 5.1.1 contains the specifications necessary for the RID software to implement all required

functionality.

Design ID Specification Description Referenced
Requirement

D-5.1.1.1.a The RID software will regularly transmit blink messages to perform
local PDM discovery.

R-5.2.1.1.a,
R-5.3.1.1.a

D-5.1.1.2.b The RID software will sleep for a predefined time between blink
messages to preserve power.

R-3.4.1.2.b

D-5.1.1.3.a The RID software will enable hardware MAC address filtering to
reduce incoming message noise.

R-5.2.1.1.a,
R-5.3.1.1.a

D-5.1.1.4.a The RID software will include its full MAC address with each blink
message to assist PDM MAC address filtering.

R-5.3.1.3.a

D-5.1.1.5.a The RID software will use scheduled messaging to implement
message timestamps for time-of-flight determination.

R-5.2.1.1.a,
R-5.3.1.1.a

D-5.1.1.6.a The RID software will use timeouts and limited retry messaging to
fall back to discovery when moving out of range.

R-5.1.1.4.b

D-5.1.1.7.a The RID software will authenticate with the PDM when user intent is
successfully detected.

R-5.2.1.1.a,
R-5.3.1.1.a

Table 5.1.1: RID Software Design Specifications

5.2 Proximity Detection Module (PDM)
The software for the PDM can be generally viewed as a state machine, shown below in Section 5.2.2. This

state machine is primarily based around the UWB protocol defined in Section 4.1 with simple callbacks to

interface over the CAN bus with the simulated ECU. Before the state diagram is defined, it’s important to

understand how the PDM will perform RID positioning over UWB.
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5.2.1 UWB Positioning
Ultra-wideband (UWB) communication can be used to accurately determine the location of a sensor in

reference to a second sensor to high precision. This is implemented by using the time of flight of packets

sent between the two sensors. This is implemented as described in the rest of this section, which is

based off of the APS103 application note for two-way ranging provided by DecaWave [5].

Figure 5.2.1 shows the implementation of symmetric two-way ranging, which uses two messages with

four timestamps , , , and , that correspond to the transmission time and received time

for the two messages, respectively. Then, by using the initiator’s time difference and the responder’s

time difference , the time of flight can be found as

Fig. 5.2.1: Symmetric Two-Way Ranging [5]

An issue with symmetric two-way ranging is that error accumulates due to clock drift and frequency drift

[5]. For this reason, asymmetric two-way ranging is used to improve performance at the cost of an extra

message per transaction. This scheme is shown in Figure 5.2.2. Here, the time of flight for poll/response

and for response/final are combined to reduce the effect of measurement error, which gives the total time

of flight to be
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Fig. 5.2.2: Asymmetric Two-Way Ranging

This value for the time of flight will be in seconds. Because UWB is based on RF, the time of flight  can be

converted to a distance measurement using the speed of light as

Three antennas can be used to triangulate the position of a device, where two antennas are anchored (the

PDM) and one antenna is free to move (the RID). A derivation for the RID position in terms of the

distances determined by two antennas attached to the PDM is shown in Figure 5.2.3.

- Equation (1) follows from basic trigonometry

- Equation (2) is the physical definition of θ in radians

- Equation (3) is the Cosine Law solved for the angle φ

- The upper option for (x,y) is found by plugging each equation in, then noting sin(φ-𝜋/2)=-cos(φ)

and that cos(φ-𝜋/2)=sin(φ)

- The lower option for (x,y) is found by noting that sin(arccos(x))=sqrt(1-x2)

Figure 5.2.3 shows that there are two options to implement (x,y) positioning of the RID. One of these will

be chosen depending on which implementation is faster, noting that sin and arccos can be implemented

quickly using lookup tables.
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Fig. 5.2.3: UWB Position Triangulation Derivation

To determine the user’s intent, the PDM will regularly calculate the position of the RID using its two

antennas once it has come into range. These successive position points will be used to compute motion

vectors to extrapolate the movement of the user. If enough points fall along a vector that coincides with

the PDM, it issues a command to the motorcycle’s central ECU to wake up the systems necessary to start

the bike. Otherwise, if the user passes a threshold distance after the RID and PDM have begun UWB

communication, the PDM will issue a signal to lock the motorcycle.

Table 5.2.1 contains the design specifications needed to implement UWB positioning with the PDM.

Design ID Specification Description Referenced
Requirement

D-5.2.1.1.a The PDM software will track the position of any registered RID within
a predefined threshold distance.

R-5.2.2.1.a,
R-5.3.2.1.a

D-5.2.1.2.a The PDM software will issue a “wake-up” signal to the simulated
ECU if any registered RID follows a path towards the PDM in range.

R-5.2.2.2.a,
R-5.2.2.3.a,
R-5.2.2.5.b

D-5.2.1.3.a The PDM will issue a “lock” signal to the simulated ECU if any
registered RID exits a predefined threshold distance.

R-5.2.2.10.a

Table 5.2.1: PDM UWB Positioning Design Specifications

5.2.2 PDM Software Model
The software model for the PDM can be separated into two parts: one for UWB processing, and the

second for CAN bus interaction. On top of this, a mechanism that transitions from the Listening and

Positioning Phase to the Authentication Phase is required for the PDM that performs as efficiently as

possible.
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Since the PDM triggers bike actions based on positioning data sent by the RID during the Positioning

Phase, it must securely authenticate the same RID before performing the triggered action, then notify the

RID of the successful authentication. The following actions can be triggered by the PDM and notified to

the Simulated ECU through CAN:

- Wake-up: disable the alarm and start the booting process for the bike

- Start: enable drive mode when the user presses the start button on the simulated ECU after a

Wake-up signal

- Lock: lock the bike and arm the alarm as the user walks away

Figure 5.2.4 shows a finite state machine that defines the implementation of the PDM software model.

Fig. 5.2.4: PDM UWB State Diagram
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Similar to the RID, the UWB transceivers used by the PDM perform basic MAC operations, like CRC

calculation and validation, as well as incoming destination MAC address filtering. The PDM software will

enable these features to reduce incoming message noise and power consumption.

Table 5.2.2 contains the design specifications needed for the PDM software model to implement ranging

with any of its registered RIDs and to implement state communication with the motorcycle ECU.

Design ID Specification Description Referenced
Requirement

D-5.2.1.4.a The PDM software will initiate position tracking with any registered
RID from which it receives a blink message.

R-5.2.2.1.a,
R-5.3.2.1.a

D-5.2.1.5.a The PDM software will enable hardware MAC address filtering to
reduce message noise and avoid responding to unregistered RIDs.

R-5.2.2.1.a,
R-5.3.2.1.a

D-5.2.1.6.a The PDM software will include its full MAC address with responses
to blink messages to assist RID MAC address filtering.

R-5.2.2.1.a,
R-5.3.2.1.a

D-5.2.1.7.a The PDM software will use timeouts and limited retry messaging to
fall back to discovery when all registered RIDs move out of range.

R-5.2.2.10.a

D-5.2.1.8.a The PDM software will not issue any bike actions without first
authenticating the RID with which it is communicating.

R-5.2.2.3.a,
R-5.2.2.4.a

D-5.2.1.9.a The PDM software will be able to communicate single state changes
over the CAN bus.

R-4.2.2.3.a,
R-5.2.2.2.a

D-5.2.1.10.b The PDM software will be able to communicate arbitrary data over
the CAN bus.

R-4.2.2.5.a,
R-4.2.2.4.c

Table 5.2.2: PDM Software Design Specifications

5.3 Simulated ECU
Acting as the vehicle’s central ECU, the simulated ECU emulates the local network by sending and

receiving CAN messages to and from the PDM. Using a Python library to support CAN, events will be

issued through the command-line interface (CLI) to mimic signals sent from the bike. To provide

feedback, the simulated ECU will also provide a graphical interface to represent states of the bike.

Additionally, the database will be hosted on the simulated ECU device where database entries can be

manipulated through the terminal.

Table 5.3.1 designates the required specifications for all functionally needed for the simulated ECU.

38



Design ID Specification Description Referenced
Requirement

D-5.4.3.1.b The simulated ECU will display the results using a coloured GUI R-7.1.2.1.b

D-5.4.3.2.b The simulated ECU will poll for events issued by the PDM and send
acknowledgements if successfully received

R-4.2.2.3.a,
R-4.2.2.4.c,
R-5.2.2.2.a,
R-5.2.2.8.b,
R-5.2.2.9.a

D-5.4.3.3.b The simulated ECU will update the PDM enrollment table and poll for
acknowledgements until successfully sent

R-4.2.2.5.a

D-5.4.3.4.b The simulated ECU will issue a “low power” event to the PDM to
shutdown the PDM process.

R-5.1.2.5.b

D-5.4.3.5.b The simulated ECU will create/update/delete entries in the Sqlite
database via a suite of Python scripts

R-4.2.2.4.c,
R-4.2.2.5.a

Table 5.3.1: Simulated ECU Software Design Specifications

5.4 Database
The PES™ system will require a database to store user information, and public and private keys for both

the RID and PDM. The chosen database for this project was a Sqlite database due to its cost, ease of use,

and portability (allowing database entries to be passed via CAN). Sqlite is a C-language library that

implements a fully featured SQL database in a self-contained database file. This allows team Echo to use

the functionality and structure of a SQL database without needing to pay for a fully hosted SQL server.

Sqlite is the most widely deployed database engine, used by several web browsers, operation systems,

and mobile phones [16]. Sqlite is also natively supported in Python, allowing for easy creation and

maintenance of our database on the simulated ECU.

Figure 5.4.1 below shows the Entity-Relationship diagram that will be deployed for the PES™ system. As

shown in Figure 5.5.2, the Entity-Relationship diagram will be translated into 3 sqlite tables, “User”, “PDM”,

and “RID”.

39



Fig. 5.4.1: Sqlite Database Entity-Relationship Diagram

Fig. 5.4.2: Sqlite Database Schema

Design ID Specification Description Referenced
Requirement

D-5.5.0.1.a The PES™ will use a sqlite database R-5.1.1.1.a,
R-5.1.2.1.a,
R-7.1.0.1.b

D-5.5.0.2.a The PES™ database will follow the entity relationship diagram shown
in Fig. 4.5.1

N/A

Table 5.4.1: Database ECU Software Design Specifications
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6. Security

Due to its role as a remote keyless entry system, the PES™ has a large focus on security. It needs to be

able to uniquely identify its users to grant them access while denying access to malicious actors. For this

reason, any common attacks must be considered, as well as potential behavioral considerations. For

example, automatically locking and shutting down the bike as the user walks away. Additionally, because

the PES™ database will store Personally Identifiable Information (PII), it is important that all database

entries be encrypted and plain text storage be avoided.

6.1 Ultra-Wideband (UWB) Communication
Because UWB is still a relatively new form of radio communicatication, it does not have much in the way

of community support. As shown in Section 4.1, there is no sort of framework or library to lean on to

implement a communication protocol - the transceiver only does simple CRC checking and address

filtering. As a result, communication security must be carefully considered to prevent bad agents from

gaining access to the vehicle. Some of the most common attacks on a remote keyless system are the

man-in-the-middle attack, scan attack, replay attack, relay attack, challenge forward prediction attack, and

the dictionary attack [17]. The following attack definitions are based on this source.

A man-in-the-middle attack occurs when an attacker intercepts packets being sent over a channel,

modifies them, and potentially modifies the packets between the two devices. This attack will not work

against the PES™, since it uses symmetric encryption for any sensitive packets for CAN and UWB.

A replay attack is implemented by an attacker recording the raw data of packets sent, then re-sending

these packets in an attempt to repeat that action. For example, an attacker could try to replay the packet

that says “start the motorcycle”. To deal with this, during the UWB authentication phase, the RID sends a

rolling code that is incremented on each authentication packet. The PDM then subtracts its own rolling

code value from the decrypted value - if it’s negative or larger than a predefined range, then this is likely a

replay attack and it drops the packet. If it’s within the expected range, the packet came from a real

registered RID and it proceeds with starting or locking the bike.

A scan attack works by rapidly sending successive packets over a network to try to determine identifiers,

counters, or other packet fields used for secure transfer. In the proposed UWB communication protocol

(Section 4.1), the relevant field to scan for would be the rolling code, which is used to ensure that each

secure packet is different from one another. However, the rolling code is encrypted by the RID private key

found both in the RID and in the PDM.
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A relay attack is when an attacker uses an external device to bridge a connection between the vehicle and

keyfob. For example, on a typical remote keyless entry system, this would mean tricking the keyfob into

thinking that the vehicle is nearby with an external device, then relaying the valid “unlock” packet to the

vehicle, despite the owner not being nearby. This does not work with UWB, because the unlock

mechanism depends on the time-of-flight information, so the PDM will accurately recognize that the RID is

too far away for a successful unlock since the time of flight of the relayed message will still be accurate

to perform the distance calculations.

A challenge forward prediction attack is when an attacker observes consecutive valid and successful

packets sent over a communication channel, then tries to predict the format of the next successful packet

and send it to the destination. This doesn’t work, since the rolling code is encrypted by an AES-128

symmetric key by the RID,  each successive authentication packet will look like random noise.

Finally, a dictionary attack is when an attacker takes a well-known set of challenge-response pairs and

tries each one in an attempt to gain access to the secured device. This won’t work with the system since,

similar to the challenge forward prediction attack, each authentication packet will look sufficiently

random. Since it’s using a constantly-increasing rolling code, there will be no pattern of responses to the

authentication request, so no dictionary of responses will work.

The specifications that the PES™ will use to secure its UWB communications are shown in Table 6.1.1.

Design ID Specification Description Referenced
Requirement

D-6.1.0.1.a All PES™ UWB authentication will use symmetric AES-128 encryption. R-4.1.1.2.a,
R-4.1.1.3.a,
R-4.2.2.2.a,
R-5.3.1.2.a,
R-5.3.2.2.a,
R-7.2.2.1.a,
R-7.2.2.3.a,

D-6.1.0.2.a All PES™ UWB encrypted messaging will use rolling codes to
eliminate the risk of replay attacks.

R-5.2.2.3.a,
R-5.2.2.4.a

D-6.1.0.3.a No PES™ UWB communications will ever transmit any secret keys. R-7.2.2.3.a

D-6.1.0.4.b The PES™ will provide an interface for manufacturers to set and lock
down their own UWB encryption keys at manufacturing time.

R-4.1.1.2.a,
R-4.1.2.2.a,
R-7.2.2.3.a

Table 6.1.1: UWB Communication Security Design Specifications
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6.2 Controller Access Network (CAN) Communication
Like UWB, CAN is essentially a manually-organized transfer of single bits over a physical medium. As a

result, careful security considerations must be taken into account to limit the impact of potential

attackers. Because of this, CAN communication is also implemented using symmetric AES-128

encryption of data using rolling codes. Because of its similarity to the encryption scheme used for UWB,

any common attacks are handled in the same way as described in Section 6.1.

The specifications that the PES™ will use to secure its CAN communications are shown in Table 6.1.2.

Design ID Specification Description Referenced
Requirement

D-6.2.0.1.a All PES™ CAN messaging will use symmetric AES-128 encryption. R-4.2.2.2.a,
R-5.3.2.3.a,
R-7.2.2.3.a

D-6.2.0.2.a All PES™ CAN encrypted messaging will use rolling codes to
eliminate the risk of replay attacks.

R-5.2.2.3.a,
R-5.2.2.4.a

D-6.2.0.3.a No PES™ CAN communications will ever transmit any secret keys. R-7.2.2.3.a

D-6.1.0.4.b The PES™ will provide an interface for manufacturers to set and lock
down their own CAN encryption keys at manufacturing time.

R-4.1.2.2.a,
R-7.2.2.3.a

Table 6.2.1: CAN Communication Security Design Specifications

6.3 Database
A database will be used in conjunction with the simulated ECU to insert, update, and delete user data

within the PES™ system. Because the database will store PII as well as user access keys (used to unlock

the motorcycle), it is pivotal that the entries stored in the database are encrypted via an industry standard

encryption algorithm. The entries stored within the PES™ database will be encrypted using the Advanced

Encryption Standard (AES) 256 bit block cipher encryption method. The particular encryption mode used

for encryption will be Galois/Counter Mode (GCM) as this allows a user to verify that a decrypted payload

has not been tampered with. The GCM algorithm was also selected as it is patent-free.

The AES-256 GCM encryption algorithm uses a single password, which will be stored on the simulated

ECU, in conjunction with a randomly generated salt (used to hash the data) to generate a private

encryption key to encrypt the entries in the database. The AES-256 GCM encryption algorithm also

produces a nonce and tag byte sequence used for decrypting and verifying the decrypted payload,
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respectively. The following figures display the workflow associated with encrypting and decrypting

payloads with this algorithm. The boxes in the large yellow rectangle (Salt, Nonce, Encrypted data, and

Tag) are the binary output that will be stored in each entry of the database table.

Fig. 6.3.1: AES-256 GCM Encryption Workflow [18]

Fig. 6.3.2: AES-256 GCM Decryption Workflow [18]
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Design ID Specification Description Referenced
Requirement

D-6.1.0.1.a The PES™ database will have encrypted entries using an AES-256
GCM encryption algorithm

R-7.2.2.3.a

D-6.1.0.2.a The simulated ECU will contain a suite of python scripts to encrypt
and decrypt database entries

N/A

D-6.1.0.3.a The private key for encryption will be stored in a secure location N/A

D-6.1.0.4.a Decrypted entries will be inspected for tampering R-7.2.2.1.a

Table 6.3.1: Database Security Design Specifications

45



7. Physical Design

To protect the internal components of the PES™, a casing is designed to keep the system operational

while under the stress of outdoor environment and everyday use. This includes its standards of weight,

sizing, mechanical durability, waterproofing, and windproofing.

7.1 Casing
The casings will safely secure the PES™ while protecting the hardware from outdoor elements. The design

of the PDM and RID will consider portability to remain unobtrusive to the user’s experience. PLA filament

will be used as 3D printing material for its strength and accuracy for forming a durable case. Figure 7.1.1

and Figure 7.1.2 show mock-ups for the design of the cases.

Design ID Specification Description Referenced
Requirement

D-7.1.1.1.b The RID casing will be 3D printed using PLA filament R-3.1.1.1.b
R-3.2.1.1.b
R-3.2.1.2.b
R-9.2.1.1.b

D-7.1.2.2.b The PDM unit casing will be 3D printed using PLA filament R-3.1.2.1.b
R-3.2.2.1.b
R-3.2.2.1.b
R-9.2.2.1.b
R-9.2.2.2.b
R-9.2.2.3.b

D-7.1.0.3.b The RID and PDM will be resistant to rain, dust, and wind R-3.3.1.1.b
R-3.3.1.2.b
R-3.3.1.2.b
R-3.3.1.4.b
R-3.3.1.5.b

D-7.1.2.4.b The PDM casing will contain steel mounting brackets that can
adhere to irregular surfaces

R-3.5.2.1.b
R-3.5.2.2.b
R-3.5.2.3.b

Table 7.1.1: Casing Design Specifications
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Fig. 7.1.1: RID Casing AutoCAD Model

Fig. 7.1.2: PDM Casing AutoCAD Model

7.2 Packaging
For the PES™ to find success on the market, it is important that it remains affordable for our target

demographic as well as financially attainable to manufacture. It is also paramount that the PES™

maintains the respect of our clientele; by delivering a long-lasting and secure product to the end-user.

The packaging specifications are outlined below.

Design ID Specification Description Referenced
Requirement

D-7.2.0.1.c Individual PEM™ packages will be enclosed in a styrofoam lined box R-6.3.0.1.c

D-7.2.0.2.c Individual PED™ packages will contain the Echo logo and branding R-6.3.0.2.c

Table 7.2.1: Packaging Design Specifications
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Conclusion

The Proximity Entrance System™ is built upon a complex combination of hardware, software, and

communication protocols that come together to become as transparent as possible to the user. For the

proof of concept, the two discrete components of the PES™ - the PDM and RID - will be built on USB-

powered microcontroller development boards connected with the necessary ICs to demonstrate the full

functionality of the end-to-end intent detection system.

For the RID component, an STM32 NUCLEO-L432KC development board will supply a 3.3V connection to

the DecaWave DWS1000 development board, which powers a DWM1000 UWB chip. They will be

connected together over an SPI bus to facilitate raw binary data transfer over the UWB connection. This

UWB transmission is what connects the RID to the PDM, and the two communicate securely over a

custom-designed communication protocol with symmetric encryption.

On the PDM side, an identical 3.3V connection is used to supply a pair of DWS1000 development boards,

which comes from an STM32 NUCLEO-F303RE development board used to implement the PDM. The PDM

uses timestamps measured by a synchronized packet exchange between the PDM and RID to calculate

the time-of-flight of the packets. This time of flight is used to accurately determine the position of the RID.

Once it has determined the user is intending to start the bike, it issues a request to the simulated ECU

over its CAN bus, which is implemented by its MCP2551 CAN transceiver. This component is powered by

a 5V connection from the microcontroller. The CAN bus also uses its own custom communication

protocol that, like the UWB transmission, is protected by a separate set of symmetric encryption keys.

As the “wake-up” request passes through the CAN bus, it is received on the ECU side by the Seeed Studio

CAN to USB adapter that contains both a CAN transceiver and controller, which translates the differential

voltage signal into a serial message that the simulated ECU can understand. This simulated ECU then

displays the change in its user interface, which is matched by the LEDs and speaker reflecting the

successful unlock on the RID, which has been notified by the PDM of the successful action. The simulated

ECU also facilitates connection to a database that stores user profiles for motorcycle manufacturers to

create a unique per-user experience.
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Appendix A: Test Plan

A.1 Introduction

A.1.1 Test Purpose
The PES™ test plan provides detailed steps for acceptance testing for the proof-of-concept demo,

ensuring that all design specifications and requirements for the prototype are met.

A.1.2 Test Coverage
The test plan presented is associated solely with the proof-of-concept prototype. The tests outlined cover

various hardware and software tests belonging to the RID, PDM, Simulated ECU, as well as overall PES™

security. The tests cover a priority range from Low to Medium to High, this allows Echo to classify which

tests are critical to the overall success of the product, and which carry a lower importance.

A.1.3 Test Methods
The testing will take place in Lab 1 at Simon Fraser University. The members of team Echo will bring all

sub components of the PES™ system and verify the tests outlined below.

A.1.4 Test Responsibilities
The testing will be performed by all members of Echo following the test outlines presented below.

A.2 Remote Identifier (RID) Testing

Test Name: RID Approaches PDM Test Priority (Low/Medium/High): High

Test Description: RID follows a motion trajectory that describes the intent of the user to ride the
motorcycle

Acceptance Criteria: System is issued a “wake-up” signal

Outcome (Pass/Fail): Date:

Notes:
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Test Name: User Starts Motorcycle Priority (Low/Medium/High): High

Test Description: RID is detected within a close range and the user presses the start button

Acceptance Criteria: System is issued a “start” signal

Outcome (Pass/Fail): Date:

Notes:

Test Name: Backup Button Test Priority (Low/Medium/High): Low

Test Description: Simulated a software intent detection failure, RID backup activation button allows the
user to unlock/lock the system

Acceptance Criteria: System unlocks

Outcome (Pass/Fail): Date:

Notes:

Test Name: Registered RID Test Priority (Low/Medium/High): High

Test Description: Bring registered RID to PDM with expected user intent

Acceptance Criteria: System unlocks

Outcome (Pass/Fail): Date:

Notes:

Test Name: Unregistered RID Test Priority (Low/Medium/High): High

Test Description: RID registered with a different system enters range

Acceptance Criteria: System remains locked

Outcome (Pass/Fail): Date:

Notes:
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Test Name: RID Out of Range Test Priority (Low/Medium/High): High

Test Description: RID goes out of range and comes back in range and it is still able to communicate
with PDM

Acceptance Criteria: Positioning phase is being performed between RID and PDM

Outcome (Pass/Fail): Date:

Notes:

A.3 Proximity Detection Module (PDM) Testing

Test Name: PDM Range Test Priority (Low/Medium/High): High

Test Description: Remove registered RID from PDM range after system was unlocked

Acceptance Criteria: System locks

Outcome (Pass/Fail): Date:

Notes:

Test Name: PDM Intent Test Priority (Low/Medium/High): High

Test Description: Bring RID to PDM with no user intent (e.g. passing by)

Acceptance Criteria: System remains locked

Outcome (Pass/Fail): Date:

Notes:

Test Name: Multiple Registered RIDs Test Priority (Low/Medium/High): High

Test Description: Two unique registered RIDs (A, B) approach the PDM; RID A meets intent
requirements and RID B does not

Acceptance Criteria: System unlocks and recognizes user attached to RID A

Outcome (Pass/Fail): Date:

Notes:
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Test Name: Multiple Registered RIDs Test 2 Priority (Low/Medium/High): Medium

Test Description: Two unique registered RIDs (A, B) approach the PDM; RID A passes intent
requirements, then RID B passes intent requirements

Acceptance Criteria: System unlocks and recognizes user attached to RID A (the first RID to pass intent
requirements)

Outcome (Pass/Fail): Date:

Notes:

A.4 Simulated ECU Testing

Test Name: ECU Wake Up Display Test Priority (Low/Medium/High): High

Test Description: Simulated ECU receives wakeup signal from PDM

Acceptance Criteria: Simulated ECU displays that a wakeup signal was received

Outcome (Pass/Fail): Date:

Notes:

Test Name: ECU Start Signal Display Test Priority (Low/Medium/High): High

Test Description: Simulated ECU receives start signal from PDM

Acceptance Criteria: Simulated ECU displays that a start signal was received

Outcome (Pass/Fail): Date:

Notes:

Test Name: ECU Lock Signal Display Test Priority (Low/Medium/High): High

Test Description: Simulated ECU receives lock signal from PDM

Acceptance Criteria: Simulated ECU displays that a lock signal was received

Outcome (Pass/Fail): Date:

Notes:
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Test Name: ECU Query Test Priority (Low/Medium/High): High

Test Description: Simulated ECU receives a query from PDM for motorcycle state information

Acceptance Criteria: Simulated ECU sends motorcycle state information to PDM

Outcome (Pass/Fail): Date:

Notes:

Test Name: ECU Update User Test Priority (Low/Medium/High): Medium

Test Description: Simulated ECU receives a request to update a User in the database

Acceptance Criteria: Simulated ECU updates a User’s information in the database

Outcome (Pass/Fail): Date:

Notes:

Test Name: ECU Update Registered RID Test Priority (Low/Medium/High): Medium

Test Description: Simulated ECU receives a request to add/remove an RID from the registered RID list

Acceptance Criteria: Simulated ECU queries DB, receives new registered RID list and sends it through
CAN

Outcome (Pass/Fail): Date:

Notes:

Test Name: ECU Delete Entries Test Priority (Low/Medium/High): Medium

Test Description: Simulated ECU receives a request to delete entries in any of the tables

Acceptance Criteria: Simulated ECU deletes the request entries from the requested tables

Outcome (Pass/Fail): Date:

Notes:
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A.5 Security Testing

Test Name: Database Encryption Test Priority (Low/Medium/High): High

Test Description: External actor tries to read encryption keys and database on PDM

Acceptance Criteria: Data is encrypted and unreadable

Outcome (Pass/Fail): Date:

Notes:

Test Name: UWB/CAN Man-in-the-middle Attack Test Priority (Low/Medium/High): High

Test Description: A malicious actor attempts a man-in-the-middle attack as outlined in section 6.1

Acceptance Criteria: Sensitive packets are symmetrically encrypted

Outcome (Pass/Fail): Date:

Notes:

Test Name: UWB/CAN Replay Attack Test Priority (Low/Medium/High): High

Test Description: A malicious actor attempts a replay attack as outlined in section 6.1

Acceptance Criteria: The RID sends a rolling code, incremented on each packet. The PDM subtracts it’s
own rolling code value from the decrypted value - if it is negative or larger than a predefined range, the
packet is dropped

Outcome (Pass/Fail): Date:

Notes:

Test Name: UWB/CAN Scan Attack Test Priority (Low/Medium/High): High

Test Description: A malicious actor attempts a scan attack as outlined in section 6.1

Acceptance Criteria: The rolling code (the field likely to be attacked) is encrypted by the RID private key
and therefor unreadable

Outcome (Pass/Fail): Date:

Notes:
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Test Name: UWB/CAN Relay Attack Test Priority (Low/Medium/High): High

Test Description: A malicious actor attempts a relay attack as outlined in section 6.1

Acceptance Criteria: The unlock mechanism will depend on time-of-flight information, therefore the
PDM will accurately determine that the RID is too far away and will not unlock

Outcome (Pass/Fail): Date:

Notes:

Test Name: UWB/CAN Challenge Forward Prediction Attack Test Priority (Low/Medium/High): High

Test Description: A malicious actor attempts a challenge forward prediction attack as outlined in
section 6.1

Acceptance Criteria: The packet is encrypted and therefor unreadable

Outcome (Pass/Fail): Date:

Notes:

Test Name: UWB/CAN Dictionary Attack Test Priority (Low/Medium/High): High

Test Description: A malicious actor attempts a dictionary attack as outlined in section 6.1

Acceptance Criteria: The packet is encrypted and therefor unreadable, there are no pattern of
responses to each packet

Outcome (Pass/Fail): Date:

Notes:

59



Appendix B: Supporting Design Options

B.1 Introduction
When considering systems and hardware to implement the PES™, team Echo put careful consideration

into what components would best fit the requirements specified in the ongoing requirements document.

This appendix explores some of these alternatives and why the specific design selections outlined in this

document were made.

B.2 Wireless Communications

B.2.1 Technology
In the requirements document, [R-4.1.1.1.a] and [R-4.2.2.1.a] state that the RID and PDM must use

transceivers capable of communicating accurate position information with their respective paired

devices. This is typically implemented using a real-time locating system (RTLS), of which there seem to be

three common implementations: Bluetooth with RSSI, Wi-Fi RTLS, and ultra-wideband (UWB). These

options are summarized in Table B.2.1.

Option Pros Cons

Bluetooth - Lots of support
- Inexpensive

- Inaccurate
- Unstable

Wi-Fi RTLS - Stable
- Precise

- Requires multiple access points
- Expensive

UWB - Accurate within 10cm
- Inexpensive

- Little support
- Unstable if not implemented correctly

Table B.2.1: Wireless Communication Alternative Design Options

While Bluetooth is typically what comes to mind in local data communications for its compatibility and

support, Bluetooth with RSSI implements distance measurements using signal strength, not using

time-of-flight. As a result, it does not provide the accuracy that is necessary to perform the motion vector

calculations outlined in Section 5.2.1. Wi-Fi RTLS, on the other hand, does use time-of-flight, and could be

sufficiently accurate for the PES™. However, because it is still based on Wi-Fi, it requires multiple access

points and is too expensive for a small embedded system like the RID.

For these reasons, Bluetooth and Wi-Fi RTLS were eliminated as options for wireless communications by

the PES™, and UWB was chosen despite its lack of community support. It’s worth noting that Bluetooth
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5.1 includes angle of arrival measurements and could potentially work in tandem with UWB to provide

even more accurate data, or to replace one of the UWB transceivers. However, due to time constraints and

with how new Bluetooth 5.1 is, team Echo decided to stick with one wireless communication protocol for

now.

B.2.2 Hardware
In the PES™ requirements document, the most relevant requirements to UWB hardware are those cited in

the previous section. To meet these requirements, the Microchip ATA8350, NXP NCJ29D5, DecaWave

DW1000, and DecaWave DW3110 were selected as candidates. The relevant design parameters for each

chip are listed in Table B.2.2.

Option Parameter Value

Microchip
ATA8350 [19]

Price $12.64

Supply Voltage 2V - 3.5V

Operating
Temperature

-40 oC to 105 oC

NXP NCJ29D5
[20]

Price $17.36

Supply Voltage Not found

Operating
Temperature

Not found

DecaWave
DW1000 [21]

Price $10.76

Supply Voltage 2.8V - 3.6V

Operating
Temperature

-40 oC -to 85 oC

DecaWave
DW3110 [22]

Price $11.41

Supply Voltage 2.4V - 3.6V

Operating
Temperature

-40 oC to 85 oC

Table B.2.2: UWB Transceiver Hardware Design Options
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The Microchip ATA8350 was not selected because it is quite hard to find, since it’s sold out on many

websites. Like the NCJ29D5 and DW3110, it’s also a newer chip, so the OEM and community support is

lacking. While the NCJ29D5 is purchasable, it’s quite expensive at $17.36 per chip, and it seems difficult

to find any information on its hardware specifications, so it was avoided as well.

The DW1000 transceiver is by far the most popular of the four options, and was the chosen one thanks to

its long production run and the variety of suppliers it is available from. In addition to the widely available

supply of it, there is a set of examples and a complete user guide including application notes and

recommendations. For a technology as new as UWB, this is something that is exceptionally important for

mass production and development ease. It is for this reason that the DW3110 was not chosen, as most of

the OEM support appears to still be in the beta phase.

B.3 Interface Technology
In the PES™ requirements document, [R-4.2.2.3.a] states that there must be a bus available for the PDM to

interface with that will be used to connect with a manufacturer’s motorcycle ECU network. The technology

chosen for this purpose was the Controller Area Network (CAN) bus standard. We considered no other

options, as CAN is standardized to the point of being ubiquitous in the automotive industry for connecting

the on-board ECU systems. To be a viable option for an automotive manufacturer, the PES™ must support

CAN.

B.4 Remote Identifier (RID)
In the PES™ requirements document, [R-4.1.1.3.a] states that the RID must be able to encrypt and decrypt

data exchanged over UWB, and [R-4.1.1.1.a] states effectively that the RID must be able to interface with

the UWB transceiver. In addition, [R-7.4.1.1.b] states that the battery life of the RID must be at least 12

months. The four microcontroller development boards that were considered to best represent these

requirements during prototyping were the STM STM32F103C8T8, STM NUCLEO-L432, STM

NUCLEO-F0303, and the Arduino Uno ATmega328P. Detailed information about each of these choices is

shown in Table B.4.1.
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Option Parameter Value

STM
STM32F103C8T8
development board
[23]

Operating
Temperature

-40 oC to 85/105/125 oC

Communication UART, CAN, SPI, I2C, USB

Programming Serial Wire (SWD) and JTAG programmer

Flash Memory 64 Kbytes

STM NUCLEO-L432
[24]

Operating
Temperature

-40 oC - 85/105/125 oC

Communication UART, CAN, SPI, I2C, USB, SAI

Programming On-board ST-LINK programmer

Flash Memory 256 Kbytes

STM NUCLEO-F303
[25]

Operating
Temperature

-40 oC to 85/105/125 oC

Communication UART, CAN, SPI, I2C, USB

programming On-board ST-LINK programmer

Flash Memory 512 Kbytes

Arduino® Uno R3
ATmega328P
processor
[26]

Operating
Temperature

-40 oC to 125 oC

Communication USART, SPI, I2C

Programming On-chip debugWire interface

Table B.4.1: Microcontroller Design Options

The Arduino option was kept in mind as a backup. However, knowing that the PDM will be moved to a

custom PCB, the STM32 boards have been prioritized as they work at a lower level, meaning that moving

from a development board to a single microcontroller IC will be an easier task. Since the STM32 boards

can be paired with the STM32CubeIDE the range of parameters and tools available to developers increase

the flexibility in terms of microprocessor usage.

In addition, the DW1000 library for Arduino® cannot take advantage of all the available features from the

DWM1000 transceiver, contrary to the C drivers and examples provided by DecaWave specifically for
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STM32 microcontrollers, reason why the Arduino® Uno R3 was discarded as an option to implement the

PDM.

Along these lines, the STM32F103C8 was eliminated due to the worry it may not meet the processing

requirements necessary to perform symmetric encryption and decryption for both CAN and UWB

messages. Also, the lack of a built-in ST-LINK meant that one had to be bought separately, increasing the

overall costs.

This left the NUCLEO-L432 and NUCLEO-F303. Because the cost of the L432 is significantly lower than

the F303 while still meeting the SPI requirements to connect to the UWB transceiver, it was ultimately

chosen as the microcontroller for the RID.

B.5 Proximity Detection Module (PDM)

B.5.1 Microcontroller
In the PES™ requirements document, [R-4.2.2.1.a] states that the PDM microcontroller must be able to

interface with its UWB transceivers and [R-4.2.2.3.a] states that it must be able to interface with its CAN

bus. The research for this microcontroller was done at the same time as for the RID’s microcontroller, so

the detailed information for each option is also listed in Table B.4.1.

The Arduino and the STM32F103C8 were eliminated for the same reasons as listed in the previous

section. Between the F303 and L432, the F303 was chosen due to its superior processing power. This

decision was made so it could meet the requirements of doing symmetric encryption and decryption for

both the CAN and UWB side and also meet the memory requirements to implement the triangulation

algorithm for positioning described in Figure 5.2.3.

B.5.2 CAN Interface
In the PES™ requirements document, [R-4.2.2.3.a] effectively states that the PDM must be designed with

hardware that enables its access to a CAN bus. As its microcontroller provides it with access to a CAN

controller, a CAN transceiver had to be selected. For this purpose, the Microchip MCP2551, NXP TJA1050,

Infineon TLT9251VLE, and Texas Instruments TCAN1051 were selected as potential candidates. The

relevant information for these is summarized in Table B.5.1.
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Option Parameter Value

Microchip
MCP2551
[27]

Cost $1.89

Supply Voltage 4.5V - 5.5V

Operating Temperature -40 oC - 85 oC

NXP
TJA1050
[28]

Cost $2.73

Supply Voltage 4.75 V - 5.25 V

Operating Temperature -40 oC - 150 oC

Infineon
TLT9251VLE
[29]

Cost $2.01

Supply Voltage 3V - 5.5V

Operating Temperature -40 oC - 150 oC

Texas
Instruments
TCAN1051
[30]

Cost $2.15

Supply Voltage 4.5 V - 5.5 V

Operating Temperature -55 oC - 125 oC

Table B.5.1: PDM CAN Transceiver Design Options

From the microcontroller selected for the PDM, each of the potential options meet an easy-to-supply 5V

voltage. They all also work within the temperature ranges that are required for use on a vehicle. For this, it

came down to cost and support - the MCP2551 has excellent support while the other options are less

commonly used, so getting it working with the CAN bus is the simplest that it could be. Furthermore, the

cost for the MCP2551 is the lowest of the options - although it is a small difference, this is the CAN

transceiver that will be used during the final production phase. Saving pennies per part could correspond

to large savings if the PES™ is manufactured at a larger scale.

B.6 Simulated ECU
For communication between the simulated ECU and PDM, the Seeed Studio USB to CAN Analyzer Adapter

[31] was chosen for its low cost and support provided for development, including drivers for both

Windows and Linux and a GUI for Windows to monitor traffic on a CAN bus. Many other CAN-ECU

connectors were considered[32] [33] [34] but were not chosen due to their exorbitant (often $200-$800)
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cost. Other low-cost CAN-ECU hobbyist adapters also exist, like the Canable [35], but are out of stock

everywhere or otherwise are no longer being sold.

B.6.2 Database
There are many database alternatives that could have been used to meet team Echos requirements. The

database is required to store various data types (integers, strings, datetimes) and contain unique entries.

Most modern database solutions will meet these requirements. However, it is important that team Echo

research databases prioritized by popularity. The more popular a database engine, the more likely there is

documentation/support available online, as well as a higher likelihood of compatibility with the other

technologies used by Echo. Being a small start up company, with no external funding, it is important that

team Echo finds a cheap but reliable database engine that fully meets all requirements. Database entries

must also be easily transferable between all three subsystems, RID, PDM, and Simulated ECU.

Team Echo chose to use a sqlite database for a few reasons. Firstly, Sqlite is a free database solution

with no hosting costs. Although Microsoft SQL Server or MySQL are more “fleshed out”, the cost to hose

these databases is too much to justify for the needs of team Echo. A solution like MongoDB would be

much more affordable, however, the lack of structure present in a NoSQL database would not be ideal for

the future of team Echo data storage. Secondly, Sqlite is one of the most popular modern databases used

today [36], allowing for easy documentation and support that will be sourced as needed. Finally, sqlite

being stored in a physical file is appealing to team Echo, this will allow for sections of the database to be

easily passed over CAN. Potential database options are summarized below in Table B.6.2.

Database Specifications

Microsoft SQL Server Database Structure SQL

Price $14000 [37]

Popularity High

Licensing Proprietary

MySQL Database Structure SQL

Price $5000 [38]

Popularity Very High

Licensing Open Source
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MongoDB Database Structure NoSQL

Price $57/month [39]

Popularity Medium/High

Licensing Open Source

SQLite Database Structure SQL

Price Free

Popularity High

Licensing Open Source

Table B.6.2: Database Design Options
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Appendix C: User Interface and Appearance Design

C.1 Introduction
The purpose of the PES™ is to provide a fast and accurate keyless system on a motorcycle. Because this

product aims to improve a rider’s user experience, it is imperative that the PES™ presents an intuitive user

interface. Team Echo wants to ensure the PES™ is easy to understand and use for new users.

Within this appendix, the overall user interface design of the PES™ will be discussed. A user analysis,

technical analysis and a list of engineering standards applicable to the PES™ product will be examined.

The analytical usability testing undertaken by team Echo as well as empirical usability testing to take

place with end users will be detailed. Additionally, a graphical representation of the PES™ will be provided

to illustrate the user interface design proposed in this section.

C.2 User Analysis
The user analysis outlines the previous experience of PES™ users and the knowledge/restrictions they are

expected to have. The target market for PES™ is electronic motorcycle manufacturers, who would then

provide the PES™ system to an experienced and prestigious end user. Being marketed towards both a

high-end manufacturing service, and a high-end end user, it is expected that they are both familiar with

motorcycles and potentially keyless entry systems.

From the manufacturer’s perspective, we want the installation of the PDM system to be seamless. From a

design perspective, this involves ensuring the industry standard CAN message protocol will be deployed

with our system, allowing for a quick and orderly installation into an existing motorcycle system. The PDM

outer casing will contain mounting brackets and installation tools that will be simple to install for anyone

with a basic proficiency in motorcycle manufacturing and maintenance. Adding users and RID’s to the

PES™ database should also be simple for any manufacturing IT team, by using a popular database

language (Sqlite) with multi-language support, adding/updating entries will be trivial.

From the end user’s perspective, the PES™ system will be no more difficult to use than a standard keyfob

already being used by the standard high-end motorcycle driver. Team Echo’s keyless entry system will

provide a passive entrance system that requires minimal user effort or skill. The back-up button will be

large and clearly defined, ensuring no complications to an otherwise keyless system.
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C.3 Technical Analysis
The following section applies the “Seven Elements of UI Interaction” defined by Don Norman to the PES™.

These seven elements are: discoverability, feedback, conceptual models, affordances, signifiers,

mappings and constraints [40].

C.3.1 Discoverability
Discoverability provides the user with knowledge of the current state of the system and possible actions.

Through the simulated ECU’s GUI, the current state of the bike will always be displayed when powered on.

The GUI will include three colors to represent the three states of the bike. The brightest color will indicate

the current state of the bike. When the system is in the wake-up state, the “Press to start” button will

become brighter, indicating that the button can be pressed. Once “Press to start” is selected, the system

will move to the start state and the button will become unclickable. Figures C.3.1.1, C.3.1.2, and C.3.1.3

provide mock-up snapshots of the GUI at various states of the system.

Fig. C.3.1.1: Mock-up of simulated ECU GUI in wake-up state
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Fig. C.3.1.2: Mock-up of simulated ECU GUI in start state

Fig. C.3.1.3: Mock-up of simulated ECU GUI in lock state
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C.3.2 Feedback
Feedback allows a user to receive confirmation that their action has been recognized by the system. As a

user interacts with the motorcycle (e.g. walking up to/away from the bike, pressing “start” button), the

user will be able to receive immediate feedback from the system by observing the change in bike states.

Since the simulated ECU will be used to represent the main ECU of the motorcycle, changes in the bike

state will be clearly displayed within the simulated ECU GUI.

C.3.3 Conceptual models
A conceptual model refers to the user’s mental image of how to interact with a system. An ideal design

should provide an interface which aligns with the user’s expectations. Users of the PES™ will already be

familiar with how to ride a motorcycle, so the design of the PES™ will maintain this conceptual model. The

driver will not need to change how they approach their motorcycle; they need only to walk up to the bike

and drive.

C.3.4 Affordances
Affordances are the expected action and properties of an object that help determine the operations of the

system. The RID is designed with a flat surface to fit comfortably in the pocket of the user. Figure A.3.4.1

illustrates the shape of the device.

Fig. A.3.4.1: RID Casing mock-up
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C.3.5 Signifiers
Signifiers communicate to the user the behavior of individual components within the system. The RID will

emit a chirping sound that is triggered after a successful lock/unlock of the bike. Absence of this chirping

sound signifies that the PES™ did not recognize a valid signal.

The simulated ECU GUI will also have a signifier for the user. States of the bike (wakeup, start, lock) will be

represented by colors orange, green, and red respectively. This will give a visual representation of the

current status of the bike and change as the bike state changes.

C.3.6 Mappings
Mappings refer to the correlation between the user’s movement and the associated action within the

system. Due to the design of the PES™, the user goes through a hands-free experience where user

controls are not necessary. The PES™ provides signifiers to indicate system feedback to the user.

C.3.7 Constraints
Constraints provide limitations to the types of actions a user may perform on the system. The user must

approach the motorcycle with the proper intent - i.e. the system will not wake up if the user is walking past

the bike. The user must press a “start” button located on the handlebars of the motorcycle to start the

vehicle. This start button will be included within the simulated ECU’s GUI.

C.4 Engineering Standards
Team Echo will design the PES™ in accordance with the design standards as outlined by IEEE and ISO.

The design standards followed are listed in this section.

ISO 21956:2019 [41]

Road vehicles — Ergonomics aspects of transport information and control systems — Human

machine interface specifications for keyless ignition systems

Provides human machine interface design specifications for keyless ignition systems that use

key code carrying devices.

ISO 9241-161:2016 [42]

Ergonomics of human-system interaction — Part 161: Guidance on visual user-interface elements

Describes visual user-interface elements, requirements, and recommendations on when and how

to use them.
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SO/IEC/IEEE 12207:2017 [43]

Systems and software engineering - Software life cycle processes

Establishes a common framework for the software life cycle process. Providing terminologies,

processes, and activities that are applicable during the development, operation, and maintenance

of software systems.

ISO 11898-1:2015 [44]

Road vehicles — Controller area network (CAN) — Part 1: Data link layer and physical signalling

Specifies the characteristics of setting up an interchange of digital information between modules

implementing the CAN data link layer.

ISO/IEC 26907:2009 [45]

Information technology — Telecommunications and information exchange between systems —

High-rate ultra-wideband PHY and MAC standard

Specifies a distributed medium access control sublayer and a physical layer for wireless

networks.

IEEE 802.15.4-2011 [46]

IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal

Area Networks (LR-WPANs)

Specifies protocol and interconnection for Low-Rate Wireless Personal Area Networks where

Ultra-Wideband (UWB) falls.

C.5 Usability Testing

C.5.1 Analytical Usability Testing
Team Echo will employ the following usability tests during the development of the PES™. These tests will

ensure that end users will be provided with a functional and intuitive system. The goal of analytical

usability testing is to find any inaccuracies and errors that may hinder a user’s experience, performance,

or safety. Therefore, team Echo will base these tests on the following 5 indicators: learnability, efficiency,

memorability, errors, and satisfaction as recommended by Michael Sjoerdsma [47].
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By following the testing procedure outlined in Figure C.5.1.1 Team Echo will be able to analyze which of

the 5 indicators require further enhancements to improve the overall usability of the PES™ system. The

analytical usability testing will be performed prior to the empirical usability testing for a couple reasons.

Firstly, these tests require no users and can therefore be performed solely by team Echo members.

Secondly, these tests will be much easier and faster to perform than the empirical usability tests.

However, the downside to the efficiency of these tests is that they are typically less effective at improving

the usability of a product.

Test Indicator(s) Acceptance criteria Result

User approaches system

the same way they would

normally approach their

motorcycle

Learnability

Efficiency

Memorability

Simulated ECU GUI displays bike

state changing from lock to

wake-up

User selects “start” button

located in the simulated

ECU GUI after approaching

system

Leanability

Efficiency

Simulated ECU GUI displays bike

state changing from wakeup to

start

User walks away from

system

Satisfaction Simulated ECU GUI displays bike

state changing from start to lock

Backup button on RID is

pressed upon intent

detection failure

Errors

Satisfaction

Simulated ECU GUI displays bike

state changing from lock to

wake-up

User enters command

through the CLI to modify

the database

Efficiency

Memorability

Database information is easily

modified and results are clearly

displayed

Table C.5.1: Analytical Usability Testing Procedure

C.5.2 Empirical Usability Testing
The following section will outline the empirical usability testing that Team Echo will conduct with end

users of the PES product. These tests will allow Echo to make any necessary improvements to the PES™
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design.The PES™ will be tested by individuals that fit Echo’s targeted demographic. These users will have

no prior knowledge of the PES™.

A testing session will begin with a meet and greet by a team Echo test monitor, to ensure the user

understands their responsibilities and is comfortable. The safety of the user is an important concern for

team Echo, as such, the user will then be provided info sheets and instructions on how to interact with the

PES™ system safely and correctly. A written consent form will be required before any testing may begin.

Before the user begins to interact with the PES™ system they will be given an entry survey as shown in

Table C.5.2.1. Once the user has had time to interact with the system, they will be given an exit survey as

shown in Table C.5.2.2. While the user is interacting with the system, the test monitor will measure and

record the empirical testing metrics outlined in Table C.5.2.3.

Question Y/N Additional notes

How do you currently start your motorcycle?

Do you have any experience with other keyless

entry systems?

Where would you prefer to store the RID module?

Table C.5.2.1: Empirical Usability Testing Entry Survey

Question Y/N Additional notes

Did the PES™ correctly recognize when you were

approaching the system for a ride?

Is there a specific way you approached the bike

(intending to ride) where the system did not

unlock?

Is the RID a convenient and portable size?
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Does the color/label of the back-up button on the

RID clearly communicate what its function is?

Do you prefer the PES™ over other motorcycle

entry/exit systems you are familiar with?

Did the PES™ safely start when the handlebar kill

switch is triggered?

Table C.5.2.2: Empirical Usability Testing Exit Survey

Variable Result Additional Notes

Total Time Performing Testing

Accuracy

Errors

Number of Tasks Completed

Table C.5.2.3: Empirical Usability Testing Test Monitor Record Sheet

C.7 Conclusion
The goal of the PES™ system is to be as accessible to the Echo target demographic as possible. Because

of this, the User Interface and Appearance Design is an integral part of Echo’s success. It is important that

all user-facing portions of the PES™ system are easy to use for a typical user. Performing a User Analysis

from the perspective of the manufacturer and end user while interacting with the PES™ system allowed

for a better understanding of the previous experience and knowledge of the intended user base. Following

that, a Technical Analysis was employed following Don Norman’s “Seven Elements of UI Interaction”.

Covering topics ranging from, Discoverability and Feedback to Mappings and Constraints ensures that the

PES™ UI will be designed intelligently.

By following engineering standards outlined by ISO and IEEE, team Echo is ensuring the PES™ system will

remain compliant with industry standards. As the PES™ system is developed, usability testing will be

performed both internally (using Analytical Usability testing) as well as externally with potential clients
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(using Empirical Usability Testing). Team Echo intends to have implemented and tested all UI standards

outlined in this document for the proof-of-concept alpha phase prototype. Any future features added in

the beta or planned release phase will be tested dynamically during development, following any feedback

received from empirical usability testing.
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