
Efficient Algorithms for Selected
Constrained Center Location Problems

by

Amirhossein Mozafari Khameneh

M.Sc., Sharif University of Technology, 2012
B.Sc., Sharif University of Technology, 2009

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

© Amirhossein Mozafari Khameneh 2022
SIMON FRASER UNIVERSITY

Fall 2022

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Amirhossein Mozafari Khameneh

Degree: Doctor of Philosophy

Thesis title: Efficient Algorithms for Selected Constrained
Center Location Problems

Committee: Chair: Mohammad Tayebi
Research Associate, Computing Science

Thomas C. Shermer
Co-supervisor
Professor, Computing Science

Binay Bhattacharya
Co-supervisor
Professor Emeritus, Computing Science

Pavol Hell
Committee Member
Professor Emeritus, Computing Science

Igor Shinkar
Examiner
Assistant Professor, Computing Science

Sandip Das
External Examiner
Professor
Advanced Computing and Microelectronic Unit
Indian Statistical Institute

ii



Abstract

Facility location problems are an essential family of problems in combinatorial optimization
and computational geometry which has many applications in other fields of computer science
like computer networks, robotics, etc. In this thesis, we study two classes of facility location
problems. In the first part, we study the effect of a beacon/repulsor in a polygonal region
and in the second part, we study the proximity connected k-center problem (PCkCP).

Beacons and repulsors are two types of actuators that appear in many applications such
as sensor networks and robot motion planning. A beacon (resp. repulsor) in a polygonal
region P is an object that can attract (resp. repel) point particles in P . We say a beacon
b ∈ P attracts a point p ∈ P if the particle initially located at p finally gets to b under
its attraction influence. b is called a beacon kernel point of P if it attracts any point in P .
Similarly, for three points r, p, t ∈ P , we say a repulsor at r sends p to t if the particle
initially located at p finally gets to t under the repulsion influence.

In our first result, we consider the discrete beacon kernel problem (DBKP) in simple polygons
and provide a sub-quadratic time algorithm to solve it. In the DBKP, we are given a set
of points X ⊆ P and the objective is specifying the beacon kernel points in X . Also, we
show how our method can be extended to the case where we replace X by a set of line
segments inside P . In our second result, we consider the particle transmitting problem. In
this problem, the objective is determining the points in the given polygonal domain that
can be sent to a given target point by activating only one repulsor. We propose an efficient
polynomial time algorithm for this problem.

Next, we define the proximity connectedness condition (PCC) for a set C of centers in a
metric space. We say C satisfies the PCC if each pair of centers can communicate with
each other via the other centers assuming any two centers sufficiently close to each other
can directly communicate. In the PCkCP, we are given a set of demand points in a metric
space and a positive integer k. The objective is locating k centers as close as possible to the
demand points while satisfying the PCC. As our third result, we study the PCkCP when
the underlying space is a path and provide a sub-quadratic time algorithm for the problem.
Finally, we consider the proximity connected 2-center problem in the plane and propose an
efficient polynomial time algorithm for it.

iii



Keywords: computational geometry; combinatorial optimization; polynomial time algo-
rithm; beacon kernel problem; k-center problem

iv



Acknowledgements

I would like to thank Dr. Binay Bhattacharya and Dr. Thomas Shermer for supervising
me to write this thesis. It was a great honour for me to have a chance to work with such
knowledgeable professors. I am grateful for their time and efforts during the last several
years to help me develop my ideas for solving the problems discussed in this thesis.

I would like to thank Dr. Tsunehiko Kameda for his collaboration in the fourth chapter
and his constructive suggestions. I would also like to express my gratitude to Dr. Pavol Hell,
Dr. Sandip Das and Dr. Igor Shinkar for their useful comments on the thesis.

v



Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements v

Table of Contents vi

List of Figures viii

1 Introduction 1

I Beacons and Repulsors in Polygonal Regions 6

2 A Sub-quadratic Time Algorithm for the Discrete and Semi-Discrete
Beacon Kernel Problem in Simple Polygons 7
2.1 Background and Previous Works . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Discrete Beacon Kernel Problem . . . . . . . . . . . . . . . . . . . . . . 17
2.4 The Semi-Discrete Beacon Kernel Problem . . . . . . . . . . . . . . . . . . 21

2.4.1 The Split Decomposition Tree of P . . . . . . . . . . . . . . . . . . . 21
2.4.2 The Chord Elimination Problem (CEP) . . . . . . . . . . . . . . . . 24
2.4.3 Solving the Semi-Discrete Beacon Kernel Problem . . . . . . . . . . 25
2.4.4 Computing the Beacon Kernel Points on the Segments . . . . . . . . 27

3 Transmitting Particles in Polygonal Domains by Repulsion 31
3.1 Background and Previous Works . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Preliminaries and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Computing T0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 The Expand Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Building Ai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vi



3.4 Complexity of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II The Proximity Connected k-center problem 45

4 A Sub-quadratic Time Algorithm for the Proximity Connected k-Center
Problem on Paths 46
4.1 Background and Previous Works . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 PCkCP for Unweighted Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Computing an Element of M̄ . . . . . . . . . . . . . . . . . . . . . . 53
4.3 PCkCP for Weighted Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Matrix Search for Weighted Paths . . . . . . . . . . . . . . . . . . . 57
4.4 Computing an Element of M̄ for Weighted Paths . . . . . . . . . . . . . . . 60

4.4.1 Proving the Sub-sequence Property . . . . . . . . . . . . . . . . . . . 64

5 An Efficient Algorithm for the Proximity Connected 2-Center Problem 68
5.1 Background and Previous Works . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Preliminaries and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 A Review on Farthest-point Voronoi Diagrams and their Properties. . . . . 72
5.4 Computing a BOS for a Partition . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Obtaining a BOS for the PCTCP . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Computing a BOS in the Nearby Case . . . . . . . . . . . . . . . . . . . . . 77

5.6.1 Computing rm,l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6.2 Searching the Doubly-Marked Elements . . . . . . . . . . . . . . . . 84
5.6.3 Obtaining (Dm,l

− , Dm,l
+ ) having rm,l . . . . . . . . . . . . . . . . . . . 86

5.7 Computing a BOS in the Far Distant Case . . . . . . . . . . . . . . . . . . . 86
5.8 Computing a BOS for the Distant Case. . . . . . . . . . . . . . . . . . . . . 87
5.9 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusion and Future Works 103

Bibliography 105

vii



List of Figures

Figure 1.1 (a) Beacon b attracts a while not c. (b) Repulsor r sends a to t. . . 2
Figure 1.2 A set of points satisfying the PCC in the plane. . . . . . . . . . . . 4
Figure 1.3 An example of the proximity connected 3-center problem in the

plane. The green dashed lines classifies the points closest to each
center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1 The attraction path of p under the influence of b is depicted by green
dashed path. The green regions are the beacon kernel of P . As we
can see, this region may not be connected. The (perpendicular) ex-
tensions of each reflex vertex is specified by blue dashed lines and
finally, the chord C from v to w is determined by gray dashed seg-
ment. The sub-polygon on the right side of it is P1(C) and the one
on its left is P2(C). . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.2 p1 and p2 are the two dead points of P with respect to b. p1 lies
on the interior of an edge and p2 is a convex vertex. Also, the dead
regions of p1 and p2 with respect to b are specified. . . . . . . . . . 14

Figure 2.3 b is in the sub-polygon in front of r and lies in DW (r). . . . . . . . 16
Figure 2.4 Construction of the QPT. . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 2.5 For any half-plane H, one of the Rij regions should interact with H. 19
Figure 2.6 Marking the nodes of the QPT. . . . . . . . . . . . . . . . . . . . . 20
Figure 2.7 An example of T∆, a subtree of it and its corresponding region. . . 21
Figure 2.8 H1(r) is the eliminating half-plane for P left

2 (C) because any beacon
in this half-plane can not attract t. . . . . . . . . . . . . . . . . . . 25

Figure 3.1 The behavior of two particles p1 and p2 when we activate a repulsor
at r in a polygonal domain P . In this example p1 can get to the
target point t while p2 resides at the vertex v2. . . . . . . . . . . . . 32

Figure 3.2 Partitioning the plane by the set of cones according to L . . . . . . 34
Figure 3.3 [vi, x], ue(y) and the pushing region of y. . . . . . . . . . . . . . . . 35
Figure 3.4 When we activate a repulsor on J(x), x jumps immediately into the

interior of P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

viii



Figure 3.5 Consistency of directions to vi in ek−1 and ek according to the Propo-
sition 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.6 Visible triangle decomposition of P according to v. . . . . . . . . . 40
Figure 3.7 Obtaining ṽaba and ṽabb. . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 3.8 An example of Region(r). . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.1 An example of the PCkCP on a path with 8 vertices. . . . . . . . . 48
Figure 4.2 The geometric view of the candidate values generates by (vi, vj1) and

the effective candidate value generated by (vi, vj2). . . . . . . . . . 50
Figure 4.3 Proof of Proposition 4.3. . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 4.4 An example for Proposition 4.3. . . . . . . . . . . . . . . . . . . . . 52
Figure 4.5 Construction of T on top of P . . . . . . . . . . . . . . . . . . . . . 54
Figure 4.6 A weighted path (v1, v2, v3, v4), the width of (v2, v4) and three costs

generated by the pair. Note that only one of them lies inside I∗. . . 57
Figure 4.7 Proof of Proposition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 4.8 Three points eij1 , eij2 and eij3 located at distances Eij1 , Eij2 and Eij3

respectively and their generating points. In this example, (vi, vj1)
generates the maximum of {M [i, j1], M [i, j2], M [i, j3]}. . . . . . . . 61

Figure 4.9 Proof of case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 4.10 Proof of case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.1 The farthest-point Voronoi diagram of a set of points and its inter-
section hull at some radius r. . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.2 A mini-arc for two intersection hulls . . . . . . . . . . . . . . . . . . 75
Figure 5.3 A connecting line segment of two points from two arcs that do not

make a mini-arc intersects an arm. . . . . . . . . . . . . . . . . . . 76
Figure 5.4 Enlarging the non-determining disk D∗

1 to cover one of the dominat-
ing points of D∗

2 and get a better solution. . . . . . . . . . . . . . . 78
Figure 5.5 If d1 and d2 are on a same side of line(ci,j

+ , ci,j
− ), (Di,j

− , Di,j
+ ) can’t be

best optimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 5.6 An example (i, j)-partition of a set of points and a BOS for the

partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 5.7 Finding a separating line in the far distant case . . . . . . . . . . . 87
Figure 5.8 Separating ĉ1 and v1 by a vertical line . . . . . . . . . . . . . . . . 88
Figure 5.9 The circles of A(r) and its induced partition π(r) on ∂H−(r) . . . 89
Figure 5.10 d1, d2 and x make a triangle for ci,j

+ . . . . . . . . . . . . . . . . . . 93
Figure 5.11 Proof of Sub-case 2 in Case 1. . . . . . . . . . . . . . . . . . . . . . 95
Figure 5.12 Proof of Proposition 5.8. . . . . . . . . . . . . . . . . . . . . . . . . 96

ix



Figure 5.13 Proof of Proposition 5.9. The positions of h′
1 and h′

2 with respect to
c′

− (note that we relaxed the condition that y should be covered by
D′

− to make the figure clear) . . . . . . . . . . . . . . . . . . . . . . 97
Figure 5.14 (a) h′

1 is on the right side of line(c′
+, c′

−). (b) when t is inside D̄−,
d(c′

−, c′
+) is greater than δ. . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.15 An example of configuration of points for Proposition 5.10. Note that
in this figure, we relaxed the condition that x should be covered by
D′

+ in order to illustrate situations where h′
1 lies inside R(z1) and

R(z2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 5.16 A negative cone. z1, z2 make a cut for z3. . . . . . . . . . . . . . . . 100
Figure 5.17 In order to add h′

1 to the positive side, we first need to add y to the
positive side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Figure 5.18 h′
1 is on the right side of the m-line. (a) h′

1 is on the right side of
line(c′

+, c′
−). (b) h′

1 is on the left side of line(c′
+, c′

−). . . . . . . . . 102

x



Chapter 1

Introduction

Facility location is one of the most important class of problems in combinatorial optimization
that has many applications in computer science and industry. In a facility location problem
(FLP), we are given a set of demand points P and a set L of possible locations for establishing
facilities in an underlying space. We also have a validness condition on the subsets of L and
any subset of L that passes the validness condition is called a solution for the FLP. Let us
denote the set of all solutions for the FLP by S. The objective is to find a solution that
satisfies desired properties with respect to the demand points. A Center location problem
(CLP) is a FLP for which each solution S ∈ S induces a cost to every demand point p ∈ P.
We denote the cost that a solution S induces on a demand point p by costS(p). The cost of
S is defined by a non-negative real function on {costS(p) : p ∈ P} and is denoted by cost(S).
The objective is obtaining a solution S ∈ S such that cost(S) = min{cost(S′) : S′ ∈ S}. We
call such a solution, an optimal solution for the CLP.

Many problems in computer science can be formulated as a CLP. For example, consider
the median finding problem. In this problem, we are given a set A of numbers and the
objective is to find an element m ∈ A that minimizes the difference between the number of
elements greater (or equal) than m and the number of elements smaller than m. In the CLP
formulation, the underlying space, demand points P and locations L are all equal to the
set A. The validness condition for a subset U ⊆ A is |U | = 1 and for a solution U = {m}
and a point a ∈ A, costU (a) is defined −1 if a < m and +1 if a ≥ m. Now, the cost of U

can be defined as cost(U) = |
∑

a∈A costU (a)|. A solution m with minimum cost is in fact
the median of A that can be found in linear time [63].

Center location problems have been extensively studied within the past decades [1,
26, 61]. The k-center and the k-median problems are among the most well-known such
problems. In these problems, the underlying space is either considered as Rd (where d

is the dimension) or a metric graph (a graph for which each edge has a length and the
lengths satisfy the triangle inequality) with P as its vertices. L is defined as the entire space
(continuous version) or a subset of points in the space (discrete version) and S is the set
of all k-subsets (a subset of size k) of L. For a solution C ∈ S and p ∈ P, costC(p) is

1



defined as d(p, C) = min{d(p, c) : c ∈ C} where d(p, c) is the distance between the two
points c and p. The difference between these two problems is that for the k-center problem,
cost(C) = max{costC(p) : p ∈ P} while for the k-median, cost(C) = sum{costC(p) : p ∈
P}. In many real world applications we need to impose additional conditions on C to fulfill
the requirements arise from real world circumstances. The capacitated k-center problem can
be considered as an example of such problems [8, 50]. In this problem, each center c has a
capacity cap(c) and when we establish a center c, the number of demand points assigned to
c should not exceed cap(c). In the majority of these problems, the problem does not consider
the structural properties of the established facilities (centers) or the underlying space. In
this thesis, we study two classes of CLPs for which we need to consider the structural
properties of the established facilities or the underlying space.

In Part 1, we study the behaviour of points in polygonal regions (regions that can be
represented by a set of polygons) in the plane under the attraction/repulsion force of an
actuator. Consider the following situation: suppose that our target area can be represented
by a polygonal region and we are interested to use a speaker to invite people to hand out
some flyers. Therefore, when an individual hears the invitation voice, he or she greedily
moves toward the source of the sound (he/she moves in a direction that maximize the
reduction of his/her distance from the source). The question here is where we should reside
such that anyone in the target area can get to us. This problem is called the beacon kernel
problem. Figure 1.1 (a) shows an example of such situation. If we reside at point b, a person
at point a can finally get to b while a person at point c will get stuck at d and can never reach
b (because if he/she moves in any direction from d, his/her distance from b is increased).

Figure 1.1: (a) Beacon b attracts a while not c. (b) Repulsor r sends a to t.

Such problems are modeled by beacon/particle terminology proposed by Biro [11, 12].
In this model, we assume that there is a particle at each point of the underlying polygonal
region. Beacons are point objects (a beacon can reside in only one point) that can exert
magnetic pull on the particles. For two points b and p in the region, we say b attracts p if
the particle at p finally gets to b by activating a beacon at b. b is called a beacon kernel
point if it can attract all the points in the region (for example in Figure 1.1 (a), b is not

2



a beacon kernel point because it can not attract c). Repulsors can be considered as the
reverse of beacons. When we activate a repulsor, each particle greedily gets away from it.
Figure 1.1 (b) shows the traversal path of the particle at a when we activate a repulsor at
r (this particle finally resides at d). If t is a point for which the particle at a gets to t by
activating a repulsor at r, we say r sends a to t (see Figure 1.1 (b)).

We can formulate the problem of finding a beacon kernel point as a CLP as follows:
let P be a set of points in the given polygonal region and consider L as the entire region.
The validness condition of a subset U ⊆ L can be assumed as |U | = 1 (U contains only a
single point). For a center b ∈ L and p ∈ P, costb(p) = +1 if b can not attract p and zero
otherwise. By defining cost(b) = max{costb(p) : p ∈ P}, the CLP turns to finding a point
b that attracts all the points in P. So, if we assume that P has infinite size and uniformly
distributed on the region, b has zero cost if and only if it is a beacon kernel point.

The beacon kernel of a polygonal region is defined as the set of its beacon kernel points.
In 2013, Biro proposed an O(n2) time algorithm to compute the beacon kernel of polygonal
regions and showed that this bound is tight [11]. In Chapter 2, we study a variant of this
problem called the discrete beacon kernel problem (DBKP) and provide a sub-quadratic
time algorithm for the problem when the underlying polygon is simple. In this problem,
we are given a simple polygon and a set of points in it. The goal is determining beacon
kernel points among the given points. In addition, we extend our algorithm to solve the
semi-discrete beacon kernel problem (SDBKP). In this problem, instead of points, we are
given a set of line segments inside the polygon and the objective is determining the beacon
kernel points on the segments. We propose sub-quadratic time algorithm for this problem
and show that the SDBKP can determine the beacon kernel points on the boundary of the
polygon. In Chapter 3, we consider the problem of sending a particle to a target point in
polygonal regions. We call this problem the particle transmitting problem. In this problem,
we are given a polygonal domain (polygonal region with polygonal holes in it) and a target
point inside it. The problem is specifying the points in the domain that can be sent to the
given target point by activating only one repulsor. We show that this problem can be solved
in polynomial time and propose an efficient polynomial time algorithm for it.

In the second part of the thesis, we investigate the k-center problem when we have the
proximity connectedness condition (PCC) on the centers. Consider the following scenario:
let P be the locations of a set of buildings in a neighborhood and we are going establish
k retail stores. Each store has a wireless device that enables it to communicate with any
other store in the range δ of itself. We are interested to establish the stores such that:

1. If a customer asks for an item from a store that is unavailable, the store should be
able to request that item from any of the other k − 1 stores.

2. The maximum distance of a building to its closest store is minimum.

3



We can see that in order to have the first condition, any pair of stores should be able to
communicate with each other via the other stores. We call this condition, the proximity
connectedness condition (PCC) with respect to the parameter δ. Generally, let C be a set
of points in a metric space. The δ-distance graph of C is defined as an undirected graph for
which there is a node νc corresponding to each point c ∈ C and for two points c1, c2 ∈ C,
there is an edge between νc1 and νc2 if d(c1, c2) ≤ δ (d(c1, c2) is the distance between c1

and c2). We say C satisfies the PCC with respect to δ if its δ-distance graph is connected.
Figure 1.2 shows an example of a set of points satisfying PCC.

Figure 1.2: A set of points satisfying the PCC in the plane.

In the proximity connected k-center problem (PCkCP), we are given a set P of demand
points in a metric space, a positive integer k and a positive number δ. The objective is to
find k centers C∗ in the space such that the maximum distance of a demand point from its
closest center is minimum and C∗ satisfies the PCC. Figure 1.3 shows an example of the
proximity connected 3-center problem and its optimal solution.

Figure 1.3: An example of the proximity connected 3-center problem in the plane. The green
dashed lines classifies the points closest to each center.

Note that when δ goes to infinity, the problem turns to the (unconstrained) k-center
problem. Because the k-center problem is NP-hard in metric graphs and Euclidean space [32,

4



53], the PCkCP is also NP-hard in these spaces. In Part 2, we study two spacial cases for
the PCkCP. In Chapter 3, we study the PCkCP when the underlying space is a path and
provide a sub-quadratic time algorithm for the problem and finally, in Chapter 4, we study
the proximity connected 2-center problem in the plane and provide an efficient polynomial
time algorithm for it which improves the running time of the previous algorithms for this
problem.

Note: In order to simplify the notations we use in this thesis, we assume that the scope of
each notation that we define is within its corresponding chapter and we may redefine and
use them differently in other chapters.

5



Part I

Beacons and Repulsors in
Polygonal Regions

6



Chapter 2

A Sub-quadratic Time Algorithm
for the Discrete and Semi-Discrete
Beacon Kernel Problem in Simple
Polygons

In 2011, Biro et al. [12] initiated the concept of beacon attraction trajectory motivated by
routing messages in sensor network systems. Computing the beacon kernel points of simple
polygons in sub-quadratic time is a long standing open problem since it was initially pro-
posed by Biro in 2013 [11]. In this chapter, we consider this problem by studying the discrete
beacon kernel problem (DBKP) and the semi-discrete beacon kernel problem (SDBKP) for
simple polygons. In the first problem, we are given a simple polygon P with n vertices and
a set X of m points in it. We provide an O(m log m + nmlog4 3) time algorithm to determine
the beacon kernel points in X . For the second problem, instead of X , we are given a set
S of m line segments in P . We propose an O((n + m)1+log4 3 log2(n + m)) time algorithm
to determine the beacon kernel points of P that lie on the segments in S. Finally, we show
that by spending O(n1+log4 3 log2 n) time, we can determine the beacon kernel points on the
boundary of P .

7



2.1 Background and Previous Works

Studying the behaviour of point particles in a polygonal region under the influence of an
attraction actuator called beacon is an active area in computational geometry due to its
application in various branches in computer science such as robot motion planning and
network systems [5, 42, 46]. The problem first appeared in the context of sensor network
systems in the early 2000s [42]. Consider a network of sensors in a polygonal region P that
gathers information and sends it to a destination point b in the region. Each sensor has a
range and only can pass a message to the sensors within its range (we call these sensors
neighbor sensors). Greedy routing protocol is widely used in such circumstances as each
sensor only needs to know the location of itself, the destination point and its neighbor
sensors. Specifically, each sensor passes its message to the neighbor sensor that is closest
to b (if all the neighbor sensors are farther from b than itself the sensor does not pass its
message). Two main problems can arise here. The first problem is determining the sensors
that can successfully send their messages to the destination using the above greedy protocol.
The other is determining the locations for b such that all sensors can successfully send their
information to the destination. If we assume that P is uniformly filled with sensors and the
range of each sensor is infinitely small, for each pair (p, b) of points in P , we can assign a
path inside P that indicates the trajectory of a message that the sensor at p tries to send to
b. Note that, p can successfully send its message to b if and only if this path ends up at b.

In the context of robot motion planning, the polygonal region P can be interpreted as
the underlying area of interest. The location of a robot is represented by a point inside P

and a beacon in P is a device that when activated at a point b, it guides any robot in the
area toward itself by sending signals. When a robot receives the signals, it can detect the
direction for which they are coming. Then, the robot continuously moves in a direction that
satisfies the following conditions:

1. It remains inside the polygon.

2. It maximizes the reduction of its distance from the beacon (greedy moving).

The robot continues its movement until either it reaches b or gets stuck in a point in P

for which moving in any direction (while remaining in P ) increases it’s distance from b. In
the later case, the robot can never reach b. In this framework, the two main questions is as
follows: first, given a beacon at b, determine the locations for which a robot can get to b by
activating the beacon and second, find a location b such that by activating a beacon at b,
any robot in P can get to the beacon.

In general, we use beacon/particle terminology to model such problems. In this termi-
nology, beacons and particles are point objects which means at each time they can reside
in only one point of P . A beacon is an attraction actuator that exerts magnetic pull on
the particles. We assume that initially there is a particle at each point in P . Without any

8



confusion, when we say a point p in P , based on the context, we either refer to the location
p in the polygon or the particle initially lies on p. When we activate a beacon at a point
b ∈ P , the particles inside P greedily move toward b with unit speed. In this model, we
assume that the particles do not interact with each other. Specifically, consider the particle
that initially resides at a point p ∈ P . Let pt be the location of the particle at time t and
x⃗t be the unit vector from pt toward the beacon. At each time t, the particle moves along
a unit vector z⃗t such that:

1. z⃗t (located at pt) points to the inside of P (including its boundary).

2. z⃗t · x⃗t > 0 (z⃗t · x⃗t is the inner product of z⃗t and x⃗t).

3. z⃗t · x⃗t is maximum over all unit vectors satisfying the first two conditions.

We call above conditions the greedy movement conditions with respect to b. If at any time t,
there is no direction satisfying the first two conditions, the particle will be stranded and can
not reach b. An immediate observation here is that p can visit each point of P at most once
during its traversal. This is because based on the greedy movement conditions, the distance
of p from the beacon should be a decreasing function of time. For a pair (b, p) of points in
P , we say b attracts p if by activating a beacon at b, p can finally get to b. Otherwise, we
say b does not attract p. A path π ⊆ P is called an attraction path of p under the influence
of b if:

1. π starts at p.

2. At each point of π, the direction (unit vector) of the particle’s movement satisfies the
greedy movement conditions with respect to b.

Note that such an attraction path may not be unique. This situation happens when the
particle at p hits a reflex vertex with incident edges e1 and e2 such that d(b, sup(e1)) =
d(b, sup(e2)) (sup(e) is the supporting line of an edge e). We denote the set of attraction
paths of p under the influence of b by πb(p). Based on this definition, b attracts p if and
only if there is a path in πb(p) that ends at b. Given a point b, the attraction region of b

denoted by A(b) is defined as the set of points in P that can get attracted by b. Conversely,
the inverse attraction region of a point p ∈ P denoted by IA(p) is defined as:

IA(p) = {b ∈ P : p ∈ A(b)} (2.1)

We can see that for any point x ∈ P , both A(x) and IA(x) contains the visible region of x

in P (for two points x, y ∈ P , y is in the visible region of x if the connecting line segment
between x and y completely lies in P ). A beacon kernel point of P is a point b ∈ P such
that A(b) = P (b attracts any point in P ) and the beacon kernel of P denoted by Ker(P ) is
defined as the set of all beacon kernel points in P . We call a point d ∈ P a dead point with

9



respect to b if d ̸= b and πb(d) only contains the single point d. Based on this definition, it
is easy to see that for any pair (p, b) of points in P , if a path π ∈ πb(p) does not end at b

then the endpoint of π is a dead point. Another observation here is that if d is a dead point
of P with respect to a beacon b, then d ∈ ∂P (the boundary of P ) otherwise, the particle at
d can move in the direction toward b. The dead region of a dead point d ∈ P with respect
to b is defined as,

DRb(d) = {p ∈ P : ∃ π ∈ πb(p), d is the endpoint of π

and ¬∃ π ∈ πb(p) that ends at b}

We can see that a point p can be attracted by b if and only if for any dead point d with
respect to b, p /∈ DRb(d). For a pair (p, s) of points in P , we say p can be routed to s by
a sequence B = (b1 . . . , bm) of beacons if b1 attracts p, bm = s and for any 1 ≤ i < m,
bi+1 attracts bi. Let us denote the line segment between two points a and b in the plane
by seg(ab). If we need a direction for the segment we assume that this direction is from
a to b. A chord C for a simple polygon P is defined as a line segment C = seg(ab) such
that C ⊆ P , {a, b} ⊆ ∂P and int(C) ∩ ∂P = ∅ (int(C) is the interior of C). Note that C

divides P into two simple polygons which we call them the sub-polygons of P induced by C.
If we consider the direction of C from a to b, we denote the sub-polygon on the right side
of seg(ab) by P1(C) and the other one by P2(C). We say a chord C separates two points x

and y in P if x ∈ P1(C) and y ∈ P2(C) or vise versa (note that if one of the two points lies
on C, then it will be on both sub-polygons and based on our definition, C still separates
them). Figure 2.1 shows an example of an attraction path, beacon kernel, a chord and its
sub-polygons in a simple polygon.

10



Figure 2.1: The attraction path of p under the influence of b is depicted by green dashed
path. The green regions are the beacon kernel of P . As we can see, this region may not be
connected. The (perpendicular) extensions of each reflex vertex is specified by blue dashed
lines and finally, the chord C from v to w is determined by gray dashed segment. The
sub-polygon on the right side of it is P1(C) and the one on its left is P2(C).

2.1.1 Previous Works

The concept of beacon attraction trajectory was first introduced by Biro et al. in 2011 [11,
12, 13] as a framework to address problems involving greedy routing toward a destination
point. They showed that the attraction region of a point b ∈ P can be computed in O(n)
(resp. O(nh)) time when P is a simple polygon (resp. polygonal domain) with n vertices
(resp. n vertices and h holes). They also proposed an O(n2) time algorithm for computing the
inverse attraction region of a given point p in polygonal domains. In addition, they proposed
a naive O(n2) time algorithm for computing the beacon kernel of polygonal domains and
showed that this bound is tight [11]. But, obtaining a sub-quadratic time algorithm for
computing the bacon kernel of simple polygons remained open. As another study, in 2014
Biro et al. [14] showed that if P is a simple polygon (resp. polygonal domain) with n vertices
(resp. n vertices and h holes) and (p, s) is a given pair of points in P , a sequence of ⌊n

2 ⌋ − 1
(resp. ⌊n

2 ⌋ + h − 1) beacons are always sufficient and sometimes necessary for routing p to
s. Later, Shermer [60] improved this bound to ⌊n−4

3 ⌋ for rectilinear simple polygons. In [47]
Kouhestani et al. studied a related problem called shortest beacon watchtower problem.
In this problem, a polygonal terrain T with respect to the x-axis is given. A watchtower
W is defined as a vertical line segment with lower endpoint on T . We say W is a beacon
watchtower if by activating a beacon at the upper endpoint b of W , any two points x and y in
T can be routed to each other via b. Now, the question is finding a beacon watchtower with
minimum possible length. They gave an O(n log n) time algorithm for solving the shortest
watchtower problem where n is the number of vertices of T . In 2015, the authors presented
an O(n log n) (resp. O(n)) time algorithm for computing the inverse attraction region of

11



a point in monotone polygons (resp. polygonal terrains) [48]. In 2018, Kostitsyna et al.
obtained an O(n log n) time algorithm for computing the inverse attraction region of a point
in simple polygons and showed that this bound is optimal [49]. In 2019, Bae et al. [7] studied
rectilinear polygons and showed that ⌊n

6 ⌋ (resp. ⌊n+4
8 ⌋) beacons are always sufficient and

sometimes necessary to attract any point in simple (resp. monotone) rectilinear polygons.
They also showed that the beacon kernel of rectilinear polygons can be computed in linear
time. In [15] Bose and Shermer introduced the concept of attraction-convex polygons. A
polygon P is called attraction-convex if any point b ∈ P can attract any point p ∈ P

(P = Ker(P )). They provided a linear time algorithm to detect whether a simple polygon
is attractive-convex. As another question in this context, it is interesting to know which
points can be attracted to the beacon if instead of one static location, we allow the beacon
to be at any point in a given region R ⊆ P . Biro [11] addressed this problem by introducing
weak attraction region of R defined as,

WA(R) = ∪b∈RA(b)

In [11], Biro gave an O(n4(m + n2)4) time algorithm to compute WA(R) in P where P is
a polygonal domain and m is the number of vertices in R.

Despite recent studies on various problems regarding the beacon base trajectory of points
in polygonal regions, providing a sub-quadratic time algorithm for computing beacon kernel
points of simple polygons is still an open problem. In this chapter, we consider two variants
of this problem: discrete and semi-discrete beacon kernel problem and present sub-quadratic
time algorithms to solve these problems.

2.2 Preliminaries

In this chapter, we assume that P is the given simple polygon with n vertices. First, we
provide a proposition that helps us to simplify the concept of an attraction path between a
beacon and a point.

Proposition 2.1. For two points b, p ∈ P , if b attracts p, the path in πb(p) that ends at b

is unique.

Proof. Suppose we have two paths π1 and π2 in πb(p) ending at b. Let t1 and t2 be the
first points that the paths split and intersect again respectively. Note that t1 should be a
reflex vertex such that π1 and π2 follow different edges at t1. Otherwise, there is only one
way to move greedily (if t1 ∈ int(P ), p directly moves toward b and if t1 lies on int(e) for
some e ∈ ∂P , p moves toward the perpendicular projection of b on sup(e). Also, if t1 is a
convex vertex, one of the paths should get farther from b at t1 which is not possible). Now,
the portions of π1 and π2 between t1 and t2 create a closed non-intersecting curve which
contradicts the simplicity of P . □

12



In order to simplify our terminology, if b attracts p, we only consider the path in πb(p)
that ends at b as the attraction path of p (with respect to b). Otherwise, we consider an
arbitrary path in πb(p) as the attraction path of p. Based on this assumption, henceforth
we use the notation πb(p) only for the unique attraction path of p with respect to b. As
another notation, for an edge e ∈ ∂P , we denote the perpendicular projection of b on sup(e)
by hb(e).

Observation 2.1. The attraction path of p with respect to b is a polygonal chain (p =
a1, . . . , am) and satisfies the following conditions:

1. For any i > 0, ai lies on ∂P .

2. For any 1 ≤ i < m, if ai and ai+1 lie on an edge e (resp. different edges) of ∂P ,
seg(aiai+1) is a sub-segment of seg(aihb(e)) (resp. seg(aib)).

3. am is either b or a dead point of P with respect to b.

This is because if p lies in the interior of P , it’s greedy movement is directly toward b

and if it is in the interior of an edge e, it reduces its distance to b by moving toward hb(e).
Note that when a particle reaches an endpoint of e, it either jumps off from ∂P or again
slides on the neighbor edge of e from the endpoint. Because πb(p) is a polygonal chain and
has a start point p, we can assign an order to its points based on their distance to p along
the path. So, for two points x1, x2 ∈ πb(p) (x1 ̸= x2), we say x1 < x2 if x1 is closer to p

than x2 along πb(p).

Observation 2.2. If x1 and x2 are two points in πb(p) such that x1 < x2 then d(x1, b) >

d(x2, b).

The above observation is a direct consequence of the greedy movement conditions. We
call any path from p to b satisfying Observation 2.2, a distance decreasing path from p to
b. Therefore, if there is no distance decreasing path from p to b, then b can not attract p.

Observation 2.3. A point d ∈ ∂P is a dead point with respect to b if an only if it satisfies
one of the following two conditions:

1. d = hb(e) ∈ int(e) for some edge e in ∂P .

2. d is a convex vertex v with incident edges e1 and e2 such that b lies in the cone obtained
by two half-lines l1 and l2 perpendicular to e1 and e2 respectively where l1 (resp. l2)
lies in the half-plane induced by sup(e1) (resp. sup(e2)) not containing e2 (resp. e1)
(figure 2.2 shows an example of such situation).

13



Note that when we have the second condition, hb(e1) (resp. hb(e2)) lies on the side v on
sup(e1) (resp. sup(e2)) that does not contain e1 (resp. e2). So, any direction satisfying the
second condition of the greedy movement, will violate its first condition (see Figure 2.2).

Figure 2.2: p1 and p2 are the two dead points of P with respect to b. p1 lies on the interior
of an edge and p2 is a convex vertex. Also, the dead regions of p1 and p2 with respect to b

are specified.

We call a subset P ′ ⊆ P convex with respect to P if for any two points p1 and p2 in P ′,
either seg(p1p2) ⊆ P ′ or seg(p1p2) � P . In [11], Biro proved that if P is a simple polygon,
for any p ∈ P , IA(p) is convex with respect to P .

Corollary 2.1. If P is a simple polygon, Ker(P ) is convex with respect to P .

This is due to the fact that Ker(P ) = ∩p∈P IA(p). Therefore, if x1 and x2 are two points
in Ker(P ), they should lie on IA(p) for any p ∈ P . Now, if seg(x1x2) ⊆ P , because IA(p) is
convex with respect to P , it should also lie in IA(p) for all p ∈ P and so seg(x1x2) ⊆ Ker(P )
which means the kernel is convex with respect to P .

Observation 2.4. A point b is in Ker(P ) if it attracts all points in ∂P .

The reason is that if b attracts all points in ∂P and p ∈ int(P ), then when we activate
a beacon at b, p will either directly gets to b or it hits ∂P at some point t. Now, because b

attracts t, p will eventually gets to b.
Let us denote the set of all reflex vertices of P by R. For a reflex vertex r ∈ R and its

incident edges e1 and e2, consider the two half-planes H1(r) and H2(r) induced by the lines
perpendicular to sup(e1) and sup(e2) containing e1 and e2 respectively. The dead wedge of
r is defined as the interior of the cone corresponding to H1(r) ∩ H2(r). We denote the dead
wedge of r by DW (r). Also, we define the perpendicular extensions (for short extensions)
of r with respect to e1 and e2 as the two half-lines from r perpendicular to e1 and e2

respectively enclosing DW (r) (see Figure 2.1). Based on Observation 2.1, if a beacon lies
on DW (r), it can not attract the points on at least one of the edges incident to r.

14



Proposition 2.2. If d is a dead point of P with respect to b, then ∂DRb(d) (the boundary
of DRb(d)) is a polygonal region such that each of its edges is either an edge of ∂P or a
chord from a reflex vertex.

Proof. Suppose that x ∈ ∂DRb(d) in int(P ). Let x0 be the point where x hits ∂P

by the first time on its attraction path to d. Also, let C be the chord containing x along
sup(bx). Because x0 is also the first hitting point of all points in C, each point in C is a
boundary point of DRb(d) (because b sends all the points in C to x0 and the points slightly
on the left and the right sides of C get to different sides of x0). This implies that DRb(d) is
a polygonal region. If x0 is an interior point of an edge e, either x0 = hb(e) or x0 ̸= hb(e).
For the first case, x0 is a dead point and so all points of int(e) in its neighborhood will get
to x0. This means that x can not be a boundary point of DRb(d) which is a contradiction.
For the second case, all the points of int(e) in the neighborhood of x0 either get to hb(e) (if
it is in e) or an endpoint of e and again x can not be a boundary point. Now, suppose that
x0 is a convex vertex with incident edges e1 and e2. The case x0 is a dead point is similar
but if not, both hb(e1) and hb(e2) should lie on the same side of x0 in sup(e1) and sup(e2)
respectively. This again implies that there is a neighborhood of x0 such that all of its points
reaches the same point which is a contradiction. Therefore, x0 should be a reflex vertex. □

Proposition 2.3. [11] A point b ∈ P is a beacon kernel point if it is not contained in the
dead wedge of any reflex vertex r ∈ R.

Proof. Suppose that b ∈ P is not contained in any dead wedge of the reflex vertices R
but it is not a beacon kernel point. So, there is a dead point d ∈ P with respect to b. Based
on the previous Proposition, DRb(d) should have a boundary on a reflex vertex r (to find
such an r, we can traverse along ∂P from d until we reach a point in A(b)) and a chord
C from it such that all the points on C hit r when we activate the beacon. Therefore, the
points on one of the incident edges of r can not get attracted to b but this only happens
when b is inside the dead wedge of r. □

If a point b lies in DW (r), we say r eliminates b otherwise, we say b survives from r.
Suppose that e1 and e2 are the incident edges of a reflex vertex r. Also, let Ce1 and Ce2 be
the two chords from r along sup(e1) and sub(e2). These chords divides P into three sub-
polygons. Let us denote the sub-polygon containing e1 (resp. e2) by P (e1) (resp. P (e2)).
Also, we call the sub-polygon containing neither of e1 and e2, the sub-polygon in front of r

(see Figure 2.3).

15



Figure 2.3: b is in the sub-polygon in front of r and lies in DW (r).

Proposition 2.4. For any reflex vertex r ∈ R with incident edges e1 and e2, we have:

1. No point in H1(r) ∩ P (e2) (similarly H2(r) ∩ P (e1)), can be a beacon kernel point.

2. For a point b in the sub-polygon in front of r, if b ∈ DW (r), there is a reflex vertex
r′ ∈ ∂P closer to b such that b ∈ DW (r′).

Proof. 1) If b ∈ H1(r) ∩ P (e2), it either lies in DW (r) or H1(r) \ DW (r). In the former
case, based on Proposition 2.3, b can not be a beacon kernel point and in the later case, any
path from a point t ∈ int(e1) passing sup(e1) can not be distance decreasing with respect
to b. Thus, based on Observation 2.2, b can not be a beacon kernel point. 2) suppose that
b ∈ DW (r). Here, any path from t to b needs to pass sup(e2) (see Figure 2.3. The case
t ∈ e2 is similar). In this situation, no path in P from t to b can be distance decreasing.
Now, consider the portion of ∂P from r starting from e1 up to the first visible point from
b. For at least one reflex vertex r′ in this portion and a chord C ′ emanating from r′, the
points on ∂P around r′ goes into different sub-polygons with respect to C ′ (otherwise, b

could attract t). But this case happens only if b ∈ DW (r′). �

In order to simplify our algorithm, we assume that the points are in general position by
which we mean no three points are collinear and no two points have the same x-coordinate
(these assumptions can be applied by slightly perturbing the points). First, we consider the
discrete beacon kernel problem (DBKP) and introduce a data structure called quaternary
partition tree (QPT). We show how we can use this data structure to get a sub-quadratic
time algorithm to solve the DBKP. Next, we show how we can use our algorithm for solving
the DBKP to solve the semi-discrete beacon kernel problem (SDBKP) in a sub-quadratic
time.

16



2.3 The Discrete Beacon Kernel Problem

Let P be the given simple polygon with n vertices and X be the given set on m points in
P . In the DBKP, we are going to determine which points in X are beacon kernel points.
The idea to solve the problem is applying Proposition 2.3 to the points in X and see which
points of X survive from all reflex vertices in R.

In order to solve the DBKP, we provide a data structure called quaternary partition tree
(for short QPT) in the preprocessing phase. Using this data structure, given a half-plane
H, we can determine the points of X that lie in int(H) in sub-linear time. Indeed, the
QPT is a quaternary tree Q (each of its internal nodes has four children) in addition with
useful information about the points in X . Specifically, for each node ν ∈ Q, we assign a
region R(ν) ⊆ R2 and a set of points X (ν) ⊆ X such that if L is the set of nodes in a level
(we say two nodes in Q have the same level if they have equal distances to the root) of
Q, ∪ν∈LX (ν) = X and for two nodes ν1, ν2 ∈ L, X (ν1) and X (ν2) have almost the same
number of points (the difference between |X (ν1)| and |X (ν2)| is at most one). We call X (ν)
and R(ν) the pointset and the region of ν respectively.

In order to build Q, we first sort the points in X based on their x-coordinates. This
step takes O(m log m) time. Next, we create a root node νr and assign the entire plane
and X as its corresponding region and pointset respectively. Because we assumed that the
points of X are in general position and sorted based on their x-coordinates, we can get
a vertical line l1(νr) that divides the points in X into two sets of almost equal sizes in a
constant time. Let us denote these sets by X1(νr) and X2(νr). Also, we denote the half-plane
induced by l1(νr) containing X1(νr) (resp. X2(νr)) by R1(νr) (resp. R2(νr)). Let l2(νr) be
the ham-sandwich cut line [57] of X1(νr) and X2(νr). Therefore, l2(νr) divides X1(νr) (resp.
X2(νr)) into two sets of almost equal sizes namely X11(νr) and X12(νr) (resp. X21(νr) and
X22(νr)). Similarly, we have four regions R11(νr), R12(νr), R21(νr) and R22(νr) induced by
l1(νr) and l2(νr) such that Rij(νr) contains Xij(νr) (1 ≤ i, j ≤ 2). We create four children
nodes νij (1 ≤ i, j ≤ 2) for νr and assign Xij(νr) and Rij(νr) as their corresponding regions
and pointsets respectively. We also store the pointset of each νij in the sorted order based
on their x-coordinates. We recursively continue this process until all leaf-nodes of Q has at
most one point in their pointset. Note that for each internal node ν ∈ Q, ∪1≤i,j≤2Rij(ν) is
the entire plane. See Figure 2.4.

17



Figure 2.4: Construction of the QPT.

Proposition 2.5. The QPT, the regions and the pointsets of its nodes can be computed in
O(m log m) time.

Proof. We show that the cost of computing the regions and pointsets of the children of
the nodes in each level of the tree is O(m). Let {ν1, . . . , νk} be the set of nodes at a level of
Q. First note that for each 1 ≤ i ̸= j ≤ k, X (νi)∩X (νj) = ∅. The first step is computing the
vertical lines l1(νi) (1 ≤ i ≤ k). Because each vertical line can be computed in a constant
time, the total time complexity of finding l1(νi) lines is O(k). On the other hand, the time
complexity of computing the ham-sandwich cut line of X1(νi) and X2(νi) is O(|X (νi)|) [54]
and because

∑k
i=1 |X (νi)| = O(m), the total cost of computing {l2(νi) : 1 ≤ i ≤ k} is

O(m). Next, the intersection of l1(νi) and l2(νi), the regions and pointsets of the children
of νi (1 ≤ i ≤ k) can be computed in O(|X (νi)|) time (by checking each point of it against
l1(νi) and l2(νi)). This implies that the total time complexity for obtaining the regions and
pointsets of the children of all nodes {νi : 1 ≤ i ≤ k} is O(m). Because we already have
the pointset of each X (νi) (1 ≤ i ≤ k) in sorted order, we can traverse the points in X (νi)
according to the order and store each point in its corresponding child of νi to have the
pointsets of the children of νi in order. This traversal takes O(|X (νi)|) time and so, storing
the pointsets of all children of the nodes in {νi : 1 ≤ i ≤ k} takes O(m) time. Because the
height of Q is O(log m), the total time complexity of building Q, the pointsets and regions
of all nodes in Q is O(m log m). �

Observation 2.5. For any internal node ν ∈ Q, and any half-plane H, one of the Rij(ν)
regions (1 ≤ i, j ≤ 2) lies completely either inside or outside of int(H).

Given a half-plane H, we say an internal node ν ∈ Q is survived from (resp. eliminated
by) H if R(ν) completely lies outside (resp. inside) int(H) (we assume that the degenerate
case when ∂H passes the intersection point of l1(ν) and l2(ν) or ∂H is parallel to l1(ν) or
l2(ν) is not happening). Similarly, we say a leaf-node ν is survived from (resp. eliminated

18



by) H if X (ν) completely lies outside (resp. inside) int(H) (if X (ν) is empty, we count it
as survived). If ν is survived or eliminated by H, we say H interacts with ν otherwise, we
say H does not interact with ν. Note that checking whether ν interacts with H can be
done in a constant time. Because each single point of X can be either inside or outside of
int(H), for each root-leaf path in T , one of the nodes on the path should interact with H.
In Figure 2.5, R(ν13) is eliminated by H.

Figure 2.5: For any half-plane H, one of the Rij regions should interact with H.

Indeed, we are interested to find the lowest level node (the closest node to the root)
in each root-leaf path of Q that interacts with H. Suppose that x ∈ X and νx be the
leaf-node of Q containing x. Also, let πx is the root-leaf path from νr (the root of Q) to
νx. If an internal node ν ∈ πx is eliminated (resp. survived) by H then x is also eliminated
(resp. survived) by H. So, we start from the children of νr and for each child, if it interacts
with H, we mark it accordingly. Otherwise, we recursively look at its children and continue
this process until in each root-leaf path, we find a node that interacts with H. Procedure
EXPLORE(νr,H) in Algorithm 1 demonstrates this process and computes the lowest level
node on each root-leaf path in Q that interacts with H.

Algorithm 1 EXPLORE(ν,H)
1: for i, j ∈ {1, 2} do
2: if νij is eliminated by H then
3: Mark νij as eliminated.
4: else if νij is survived from H then
5: Do nothing.
6: else
7: EXPLORE(νij ,H) if νij is an internal node of Q.
8: end if
9: end for

19



Proposition 2.6. Given a half-plane H, we can identify the lowest level nodes of each
root-leaf path that is eliminated by H in O(mlog4 3) time.

Proof. Because for each internal node ν ∈ Q, we need to check three children, the
number of nodes for which we need to check at level i is 3i and because we have O(log4 m)
levels, the total complexity of running EXPLORE(νr,H) is 4 × 3log4 m = O(mlog4 3). �

Solving the DBKP: We first build the QPT in O(m log m) time. Next, we consider
each reflex vertex r ∈ R and its two corresponding half-planes H1(r) and H2(r). We know
a point x ∈ X is eliminated by r if and only if x ∈ H1(r) ∩ H2(r) = DW (r). Therefore,
we first consider the QPT against H1(r) and mark each node with pointset in int(H1(r)),
semi-eliminated by r (see Figure 2.6). Next, we consider each subtree of Q rooted at a
semi-eliminated node (with respect to r) against H2(r). If any node of these subtrees lies
in int(H2(r)), we mark it eliminated (independent of r).

Figure 2.6: Marking the nodes of the QPT.

Corollary 2.2. Given a reflex vertex r ∈ R, we can identify the lowest level nodes of each
root-leaf path that is eliminated by r in O(mlog4 3) time.

The reason is that at the ith-level of Q, we have 3i−1 subtrees to explore each with
pointset of size m/4i and cost (m/4i)log4 3 (based on Proposition 2.6). Now, summing up
over the O(log4 m) levels of Q gives us the desired O(mlog4 3) time complexity.

Because we have O(n) reflex vertices, we consider Q against each reflex vertex in R
and mark its nodes accordingly. Because of Corollary 2.2, this step takes O(nmlog4 3) time.
Finally, for each node x ∈ X with corresponding node νx ∈ Q, we examine the root-leaf
path from νr to νx in Q. If any node is marked eliminated, we report x as an eliminated
point otherwise, we report it as a beacon kernel point. We have m points in X and for
each, we need to check a path with length O(log m). Therefore, the reporting step takes
O(m log m) time and we would have the following theorem:

Theorem 2.1. The discrete beacon kernel problem can be solved in O(m log m + nmlog4 3)
time.

20



2.4 The Semi-Discrete Beacon Kernel Problem

Suppose that S is the given set of line segments such that each S ∈ S completely lies in P . In
the SDBKP, the objective is determining the beacon kernel points on each segment in S. In
order to solve the SDBKP, we first introduce a data structure for P called split decomposition
tree (SDT) which enables us to eliminate the points in P by half-planes instead of dead
wedges. The reason is that when an interior point of a segment S is eliminated by a dead
wedge, that dead wedge might not eliminate an endpoint of S. We show that the SDT can
be built in O(n log n) time which leads to a sub-quadratic time algorithm for the SDBKP.

2.4.1 The Split Decomposition Tree of P

We start by computing a triangulation ∆ of P and its dual graph T∆. The triangulation of
P can be done in linear time using Chazelle’s polygon triangulation algorithm [18]. T∆ is a
graph for which there is a node corresponding to each triangle in ∆ and two nodes in T∆

are connected by an edge if their corresponding triangles share an edge. Note that because
P is simple, T∆ is a tree (this is because we can always embed T∆ in P such that each
node of T∆ lies in its corresponding triangle in ∆). We can see that each subtree T ⊆ T∆

corresponds to a connected region in P which is obtained by the union of the triangles
corresponding to the nodes in T . We denote this region by P (T ) (see Figure 2.7).

Figure 2.7: An example of T∆, a subtree of it and its corresponding region.

The centroid of T∆ is defined as a node for which by removing it (and its incident edges)
from T∆, the maximum size of each connected component is minimum. Therefore, the size
of each connected component of the remaining graph is at most |T∆|/2. Note that because
the degree of each node of T∆ is at most three, by removing a node, we would have at
most three connected components. In order to avoid confusion in our algorithm, we always
assume that the trees are rooted and if there are multiple choices for selecting a centroid, we

21



choose the one closest to the root. Based on this assumption, the centroid of T∆ (and each
of its subtrees) is unique and can be computed in linear time [51]. Suppose that |T∆| > 2
(|T∆| is the number of nodes in T∆) and c is the centroid of T∆. Also, suppose that c has
degree three (resp. two) and {T1, T2, T3} (resp. {T1, T2}) are the subtrees of T∆ emanating
from removing c from T∆ such that T1 has the greatest size. We say two subtrees {S1, S2}
is obtained from splitting T∆ over c if S1 = T1 and S2 is the joint of T2 and T3 by c (resp.
S2 = T2). Based on the definition of centroid, we have |S1| ≥ |T∆|/3 and |S2| ≤ 2|T∆|/3.

Next, we build a data structure called split decomposition tree for T∆ denoted by
SDT (T∆) which is a binary tree such that each of its nodes corresponds to a subtree
of T∆. We build SDT (T∆) recursively by splitting the subtrees of T∆ over their centroids
starting from T∆. In order to build SDT (T∆), we first create a root node ωr and assign
T∆ to it. We also store the centroid of T∆ in ωr. Next, we use the recursive procedure
BSDT (ωr) in Algorithm 2 to complete the construction of SDT (T∆).

Algorithm 2 BSDT(ω) // Building SDT
1: Let Tω be the subtree of T∆ assigned to ω.
2: if |Tω| > 2 then
3: Compute the centroid c of Tω and store it in ω.
4: Let S1 and S2 be the subtrees obtained by splitting Tω over c.
5: Create two children ω1 and ω2 for ω.
6: Assign S1 and S2 to ω1 and ω2 respectively.
7: BSDT(ω1)
8: BSDT(ω2)
9: end if

Theorem 2.2. SDT (T∆) can be constructed in O(n log n) time.

This is because the height of SDT (T∆) is O(log n) and the subtrees in each level of
SDT (T∆) are disjoint. Consider an internal node ω ∈ SDT (T∆) and let S and c be the
subtree and its centroid stored in ω. Also, let S1 and S2 be the subtrees obtained by splitting
S over c and e be the connecting edge of S1 and S2. Note that c corresponds to a triangle
in ∆ and e corresponds to a chord C separating P (S1) and P (S2). We call C the chord
corresponding to ω. Let us define C as the set of all chords corresponding to the internal
nodes in SDT (T∆). Because SDT (T∆) has linear number of nodes, the number of chords
in C is also linear. Let Γ = {ω1, . . . , ωk} be the set of nodes in a level of SDT (T∆) (they all
have the same distance from the root). If we denote the subtree of T∆ stored in ω by Tω,
we would have the following observation:

Observation 2.6. For any two nodes ωi, ωj ∈ Γ, int(P (Tω1)) ∩ int(P (Tω2)) = ∅. Also,

P = ∪ω∈ΓP (Tω) (2.2)

22



If ω is a leaf-node of T∆, we call P (Tω), the leaf-node region of P corresponding to ω.
If a point p lies in P (Tω) for some ω ∈ SDT (T∆), we say ω contains p and p belongs to ω.
According to the above observation, if v is a vertex of ∂P and L(v) is the set of leaf-nodes
of SDT (T∆) that contain p, we have

∑
v is a vertex of ∂P

L(v) = O(n) (2.3)

This is because we have O(n) leaf-node regions in P and each leaf-node region can contain
a constant number of vertices.

Corollary 2.3. For each point p ∈ P and any vertex r (except possibly a constant number
of vertices), a chord in C separates p from r.

The reason is that when a point p ∈ P belongs to a leaf-node ω of SDT (T∆), the
chords induced by the nodes in the root-leaf path in SDT (T∆) to ω separate (based on our
definition, if p lies on a chord, the chord separates it from all points in the polygon) p from
any vertex in ∂P except possibly a constant number of vertices (the vertices lie in P (Tω)).

Let us consider X as the set of all endpoints of the segments in S. Thus, X has 2m

points. Again, we assume that points are in general position which means no tree points
(segment endpoints or polygon vertices) are collinear. Having SDT (T∆), for each node
ω ∈ SDT (T∆) with assigned subtree Tω, we denote the points of X lying in P (Tω) by X (ω)
and store them in ω. In order to identify the set of points lying in each triangle, we use
Kirkpatrick’s data structure [45] on ∆ which by spending O(n log n) time for preprocessing,
it enables us to determine the triangle(s) containing a query point in O(log n + q) time
where q is the number of triangles containing the point. Because X has O(m) points, this
step takes in O(n + m log n) time (the additional linear factor is because a vertex may lie
on multiple triangles). Note that if ω has two children ω1 and ω2, we would have

X (ω) = X (ω1) ∪ X (ω2) (2.4)

Also, the total number of points stored in the nodes of each level of SDT (T∆) is O(n + m).
Because the height of SDT (T∆) is O(log n), in O((n + m) log n) time we can obtain and
store X (ω) for each node ω ∈ SDT (T∆). In order to solve the SDBKP, we need to address
the following two sub-problems:

1. Given a chord C, provide an algorithm to determine which points on X ∩ P2(C)
(resp. X ∩ P1(C)) survive from the reflex vertices in P1(C) (resp. P2(C)). We call this
problem the chord elimination problem (for short CEP).

2. How we can apply the algorithm for solving CEP to the chords in C in order to solve
the SDBKP in sub-quadratic time.

In the next sections, we see how we can answer to these sub-problems.

23



2.4.2 The Chord Elimination Problem (CEP)

Let C = seg(v1v2) be the given chord connecting two vertices in P . For the sake of simplicity,
we assume that C is horizontal having P1(C) in its below and v1 is on the left side of v2. C

divides P into two sub-polygons P1(C) and P2(C). Also, let Y be the given set of M points
in P2(C) and R1 be the set of reflex vertices in P1(C). We first compute the intersection
points of sup(C) with P2(C) and add all the chords induced by sup(C) on P2(C). Next, we
update the triangulation of P2(C) such that these chords are edges of the triangulation. This
modification can be done in O(n′) time [62] where n′ is the number of vertices in P2(C). Let
T2(C) be the subtree of T∆ covering P2(C) rooted at node τ corresponding to the triangle
incident to C. Considering the embedding of T2(C) in P2(C), we divide T2(C) into three
parts: T up

2 (C) is the nodes of T2(C) reachable from τ without crossing sup(C). Similarly,
T left

2 (C) (resp. T right
2 (C)) is the set of nodes ω ∈ T2(C) such that the path πω from τ to ω

goes (by the first time) below sup(C) by crossing half -line(v2, v1) (resp. half -line(v1, v2))
where half -line(v2, v1) is the half-line from v2 passing v1. Let us denote the portion of
P2(C) corresponding to T up

2 (C), T left
2 (C) and T right

2 (C) by P up
2 (C), P left

2 (C) and P right
2 (C)

respectively. So, in O(n′ +M) time, we can identify the points of Y in each of these regions.
Next, suppose that we are given a reflex vertex r ∈ P1(C) with incident edges e1 and

e2. In the following, we define the eliminating half-plane generated by r for each of P up
2 (C),

P left
2 (C) and P right

2 (C) such that no beacon point can lie in the half-plane. Based on Propo-
sition 2.4, if C completely lies in P (e1) (resp. P(e2)), H2(r) (resp. H1(r)) is the eliminating
half-plane of r on P2(C). Similarly, if C completely lies in the sub-polygon in front of r, r

does not need to generate any eliminating half-plane on P2(C). Otherwise, at least one of ce1

or ce2 intersects C. If v1 (similarly v2) lies in P (e1) (resp. P (e2)), H2(r) (resp. H1(r)) would
be the eliminating half-plane on P left

2 (C). Also, if the extension of e2 (resp. e1) intersects
P up

2 (C), we assign its corresponding half-plane as the eliminating half-plane of r on P up
2 (C).

Note that if the both extensions of e1 and e2 intersect C, then C can not intersect both
Ce1 and Ce2 . So in each situation, we assign at most one eliminating half-plane to each of
P up

2 (C), P left
2 (C) and P right

2 (C) which can be obtained in O(log n′) time (see Figure 2.8 as
an example).

24



Figure 2.8: H1(r) is the eliminating half-plane for P left
2 (C) because any beacon in this

half-plane can not attract t.

We say a point y ∈ Y is eliminated by a reflex vertex r ∈ R1 if it lies in the eliminating
half-plane generated by r in its region. In the CEP, the objective is determining the point
of Y survived from any reflex vertex r in R1. In order to solve this problem, we first build
a QPT on the points of P up

2 (C), P left
2 (C) and P right

2 (C) and consider them against the
eliminating half-planes generated by the reflex vertices in R1. We also create a list LS(ν)
of half-planes for each node ν in the QPTs and when a half-plane eliminates ν, we store it
in LS(ν). Assuming n′′ is the number of vertice in R1, we have:

Proposition 2.7. The CEP can be solved in O((n′ + M) log(n′ + M) + n′′(n′ + M)log43)
time.

The proof is similar to the proof of Theorem 2.1.

2.4.3 Solving the Semi-Discrete Beacon Kernel Problem

Let ω be an internal node in SDT (T∆) with two children ω1 and ω2 and induced chord
cω. Let us denote the procedure of determining the points in X (ω1) (resp. X (ω2)) surviving
from the reflex vertices in P (Tω2) (resp. P (Tω1)) by CEP(X (ω1), P (Tω2)) (resp. CEP(X (ω2),
P (Tω1))). Procedure REFINE(ωr) specifies the points in X which are eliminated by the
reflex vertices in R.

25



Algorithm 3 REFINE(ω)
1: if ω is a leaf-node of SDT (T∆) then
2: for each point x ∈ X (ω) do
3: for each reflex vertex v in P (Tω) do
4: Eliminate the portion of the segment with endpoint x lying in DW (v).
5: end for
6: end for
7: else
8: Let ω1 and ω2 be the children of ω.
9: CEP(X (ω1),P (Tω2)).

10: CEP(X (ω2),P (Tω1)).
11: REFINE(ω1).
12: REFINE(ω2).
13: end if

After running REFINE(ωr), the points of X that are not marked eliminated are the
beacon kernel points in X . This is because if x ∈ X and v ∈ R, if they are in the same
region corresponding to a leaf-node of SDT (T∆), we directly check whether v eliminates x.
Otherwise, consider the lowest level node ω ∈ SDT (T∆) with children ω1 and ω2 for which
x ∈ P (Tω1) and v ∈ P (Tω2). Now, CEP(X (ω1),P (Tω2)) eliminates x if it is eliminated by v.

Complexity analysis: In order to analyse the time complexity of running REFINE(ωr),
first note that because we assumed that the points are in general position, for each leaf-node
ω ∈ SDT (T∆), P (Tω) contains only a constant number of vertices in ∂P (because P (Tω) is
a triangle or two triangles sharing an edge). We have O(m) points in X and the number of
edges in the entire triangulation ∆ is linear which implies that the first part of the algorithm
(lines 2 to 8) takes O(n + m) time.

Next, note that SDT (T∆) has O(log n) levels and for two nodes ω′ and ω′′ in a same
level of SDT (T∆), P (Tω′) and P (Tω′) have disjoint interiors. This implies that for each
level i of SDT (T∆) with the set of nodes Li, we have:

∑
ν∈Li

|X (ν)| = O(m + n) (2.5)

Similarly,
∑

ω∈Li
|P (Tω)| = O(n) where |P (Tω)| is the number of vertices in ∂P (Tω). There-

fore, the time complexity of running the two CEP procedures (lines 11 and 12 of the algo-
rithm) for all nodes ω ∈ Li is:

O
(
(n + m) log(n + m) + n(n + m)log4 3)

(2.6)

26



Because SDT (T∆) has O(log n) levels, the total time complexity of running REFINE(ωr)
is

O

((
(n + m) log(n + m) + n(n + m)log4 3)

log n

)
(2.7)

where ωr is the root of SDT (T∆).

2.4.4 Computing the Beacon Kernel Points on the Segments

First, note that because the beacon kernel of P is convex with respect to P [11], for each
segment S ∈ S, S ∩Ker(P ) is a connected region. We call this region, the kernel segment of
S and denote it by KS(S). In the SDBKP, the objective is determining the kernel segments
of the segments in S.

Observation 2.7. If x ∈ int(S) gets eliminated by a reflex vertex r, then r eliminates a

or b (or both).

This is because S ⊆ P and the boundary of the eliminating half-plane of r on x can
intersect S in at most one point. Suppose that Ha (resp. Hb) is the set of eliminating
half-planes of the reflex vertices in R on a (resp. b) that eliminate a (resp. b) after running
REFINE(ωr). We denote the union of the half-planes in Ha and Hb by Ua and Ub respectively.
Suppose a′ (resp. b′) is the intersection point of half -line(a, b) (resp. half -line(b, a)) with
∂Ua (resp. ∂Ub). If such an intersection does not exist, we consider an imaginary intersection
at infinity. According to Observation 2.7 we have:

KS(S) = S \
(
seg(aa′) ∪ seg(bb′)

)
(2.8)

In order to obtain a′ and b′, first let us denote the union of the half-planes in LS(ν) by
W(ν) where ν is a node of a QPT. Note that W(ν) may not be convex.

Proposition 2.8. If a point p lies in the intersection of the half-planes in LS(ν), then any
half-line from p can intersect W(ν) in at most one point.

Proof: Suppose not and there is a half-line ℓ from p that intersects ∂W(ν) in at least
two points. Because ℓ intersects the boundary of each half-plane on the union in at most
one point, there is two different half-planes H1 and H2 such that the intersection points of ℓ

with ∂H1 and ∂H2 lie on ∂W(ν). Because p ∈ H1 ∩ H2, ℓ should first intersect ∂(H1 ∩ H2).
But then it can not intersect ∂H1 and ∂H2 in two different points. □

Based on the above proposition, we can have an angular order (clockwise or counter-
clockwise) on the vertices in ∂W(ν) from any point in the intersection of the half-planes
in LS(ν). Our next step is computing W(ν) for all nodes ν in the QPTs. Let Q be a QPT
covering a subset of points of size n1 for which we are going to consider it against a set of n2

half-planes H. For a node ν ∈ Q, the half-lines in LS(ν) should have non-empty intersection

27



because they all covers the pointset of ν. Also, at the ith-level of Q, each half-plane H ∈ H
can appear at most 3i times in the lists. For each node ν, we use the divide-and-conquer
approach (we can use this approach because of Proposition 2.8) to compute W(ν) and an
angular order on its vertices (from a points in the intersection of the half-planes in LS(ν)).
Now, the total time complexity of computing W(ν) for all nodes ν in the ith-level of Q is
O(n23i log(n23i)). Summing over all i ∈ {1, . . . , log4 n1}, the total time complexity is:

O
(
n2(nlog4 3

1 log n2 + n
log4 3
1 log n1)

)
(2.9)

Here, SDT (T∆) is a balanced binary tree and if {ω1, . . . , ωk} is the set of nodes at a level
of SDT (T∆), we have:

k∑
j=1

|X (ωj)| = O(n + m) and
k∑

j=1
|P (Tωj )| = O(n) (2.10)

Therefore, the total time complexity of computing W(ν) and the angular order of its vertices
for all nodes ν in all QPTs is O((n+m)1+log4 3 log2(n+m)). Here, we have enough information
for computing the kernel segment of each segment S = seg(ab) ∈ S. In order to compute
the kernel segment, we consider half -line(a, b) (similarly half -line(b, a)) and each root-
leaf path in SDT (T∆) that ends at a leaf whose region contains a. Let λ be one of these
leaf nodes in SDT (T∆) and µλ its corresponding root-leaf path. For each node ω ∈ µλ,
we have a ∈ X (ω). Let νa be the leaf-node containing a in its QTP for X (ω) and πa

its corresponding root-leaf path. For each node ν ∈ πa, because a ∈ ∩H∈LS(ν)H, we can
do binary search to find the intersection point of half -line(a, b) and ∂W(ν) and keep the
furthest such intersection on half -line(a, b). Let af (similarly bf ) be the farthest (from a)
intersection point of half -line(a, b) with ∂W(ν) where ν is a node of a QTP that contains
a in its pointset. Based on Equation 2.8, we have:

KS(S) = S \ seg(aaf ) ∪ seg(bbf )

Procedure COMPUTE-KS(S) in Algorithm 4 demonstrates this process.

28



Algorithm 4 COMPUTE-KS(S)
1: Let S = seg(ab).
2: Let La (resp. Lb) be the set of leaf-nodes in SDT (T∆) whose regions contains a (resp.

b).
3: for each λ ∈ La do (and similarly for Lb)
4: Let µλ be the root-leaf path to λ in SDT (T∆).
5: for each node ω ∈ µλ do
6: Let Qω be the QPT for X (ω) containing a.
7: Let νa be the leaf-node in Qω corresponding to the point a.
8: Let πa be the root-leaf path to νa in Qω.
9: for each node ν ∈ πa do

10: Find the intersection point of half -line(a, b) with ∂W(ν).
11: Keep track of the farthest intersection point af on half -line(a, b) from a.
12: end for
13: end for
14: end for
15: Set KS(S) = S \ {seg(aaf ) ∪ seg(bbf )}.

Note that in Algorithm 4, KS(S) might be the empty set. In order to analyse COMPUTE-
KS(S), first note that ∑

seg(ab)∈S
|La| = O(n + m)

This is because of our general assumption that no three points are collinear and the fact
that ∆ has linear number of triangles and each triangles has three vertices. So, if a is an
endpoint of a segment that is not a vertex of ∂P , it can lie in at most two leaf-nodes of
SDT (T∆). Now, for each leaf-node λ ∈ La, we have O(log n) nodes on µλ and for each node
of µλ, we have O(log m) nodes on πa. Finally, for each node ν of πa, we need to do a binary
search on the vertices of the ∂W(ν). This step is also costs O(log n) time. So, the total time
complexity of COMPUTE-KS(S) is O(log3(n + m)). By running this procedure on each
segment in S, we can find the kernel segments of the segments in S in O(m log3(n + m))
time. Therefore, we can have the following theorem:

Theorem 2.3. The semi-discrete beacon kernel problem can be solved in

O((n + m)1+log4 3 log2(n + m))

time.

We can immediately see that if we consider S as the edges of ∂P , by solving the SDBKP
on S, we can find the beacon kernel points of P on its boundary.

29



Corollary 2.4. In O(n1+log4 3 log2 n) time, we can compute the beacon kernel points of P

on its boundary.

30



Chapter 3

Transmitting Particles in
Polygonal Domains by Repulsion

In this chapter1, we introduce the problem of transmitting particles to a target point by the
effect of a repulsion actuator (repulsor). In this problem, we are given a polygonal domain
(a polygon with polygonal holes inside it) P and a target point t inside it. We also assume
that initially there is a particle at each point of P . The question is which particles can get to
the target point t by activating only one repulsor in P . We present an efficient polynomial
time algorithm to solve this problem.

1A preliminary version of this chapter appeared in the proceedings of the International Conference on
Combinatorial Optimization and Applications, COCOA 2018. [55]

31



Figure 3.1: The behavior of two particles p1 and p2 when we activate a repulsor at r in a
polygonal domain P . In this example p1 can get to the target point t while p2 resides at
the vertex v2.

3.1 Background and Previous Works

In contrast to the problems raising from interaction of objects by attraction, problems raising
from interaction of objects under the repulsion force have been rarely investigated. In [16],
Bose and Shermer studied the effect of putting a repulsor in a convex polygon full of point
particles. They gave an O(n2) time algorithm to compute all locations for putting a repulsor
such that all particles gather into a single point. They also gave a linear time algorithm
to determine whether such a location exists for a given convex polygon. As another work,
in 2020, van Goethem et al. [64] introduced the repulsion region of a point s in polygonal
domains. The repulsion region of s is defined as the set of points p in the region for which
there exists a repulsor r such that the particle placed at s will eventually reach p under the
influence of a repulsor at r. They showed that if P is a simple polygon with n vertices, the
repulsion region of a point inside it can be computed in O(n2 log n) time. In this chapter,
we consider another problem regarding the behaviour of point particles under the repulsion
force called the particle transmitting problem. In this problem, we have a polygonal domain
P and a target point t in its interior. When we activate a repulsor at a point r inside P , all
particles move away from it until either stop at a corner of P or they hit the target point
t. Specifically, each particle traverses a path such that at each time it goes in a direction
that takes itself farthest from r while it remains inside the polygon. Figure 3.1 shows the
behaviour of two particles when we activate a repulsor at the point r in P .

A natural question here asks which particles can get to t by activating only one repulsor
in P . We say a point x ∈ P is valid if there exists a point rx ∈ P such that by putting
a repulsor at rx, the particle at x gets to the target point t. According to this definition
the problem turns to computing all valid points in P with respect to a given target point
t. In Section 3.2, we give some basic definitions and essential properties. In Section 3.3, we

32



present a polynomial time algorithm for the problem. Finally, in Section 3.4 we discuss the
time complexity of the algorithm.

3.2 Preliminaries and Definitions

Let x, y and r be three points inside the given polygonal domain P . We say r can send x

to y if by activating a repulsor at r the particle at x gets to y. Note that the path that
the particle traverses to take itself farthest from r at each time, may not be unique: when
the particle hits ∂P (boundary of P ), it might get farther from r by moving clockwise or
counter-clockwise around the component (a connected part of ∂P ) that it has hit. So, r can
send x to y if there exist such a path that ends up at y. Henceforth, instead of saying the
particle at x traverses a path we simply say x traverses a path. Also, we say r is a repulsion
point for x if r sends x to the target point t. We denote the set of all repulsion points for x

by R(x). By this notation, the set A of all valid points of P can be written as follows:

A = {x ∈ P | R(x) ̸= ∅} (3.1)

Let V = {v1, . . . , vn} be the set of vertices in ∂P . In order to compute A, we first compute
the set of all points in P that can be sent to t by a direct path (a line segment) and denote
it by A′. For example, in Figure 3.1, the vertex v3 can get to t by a direct path. Then, we
compute subsets A1, . . . , An of A in which, Ai is the set of all points x ∈ P for which there
exist a point rx ∈ P such that rx can send x to t by a path having vit as its last segment.
For example, in Figure 3.1, p1 belongs A3 because v3 is the last bend point of the path that
p1 traverses to move away from the repulsor in r before getting to t. It is clear that:

A = A′ ∪ A1 ∪ · · · ∪ An (3.2)

An immediate observation is that if vi is not visible from t then Ai = ∅. For a boundary
points x and y we say a path p from x to y has j jumps if p \ ∂P has j components.

3.3 The Algorithm

Let L = {l1, . . . , ln} where li (1 ≤ i ≤ n) is the half-line that starts from t and passes
through vi. We assume that the vertices are in general position and so, there is no line
that passes t and two other vertices (we can have this condition by slightly perturbing the
vertices). In order to compute A′, we first partition the plane into a set of cones having t

as their common vertex that obtained by radially adjacent half-lines of L. Figure 3.2 shows
an example of such cones:

33



Figure 3.2: Partitioning the plane by the set of cones according to L

Let C be the set of all these cones. Each C ∈ C consists of a tip at the point t, two half-lines
as its boundaries and a set of line segments each of which has an endpoint on each of the
boundary half-lines of C. Within a cone, these segments are internally disjoint so we can
have an order on them according to their closeness to t. Similarly, they partition the cone
into a sequence of regions starting with a triangle having t as its vertex and the first segment
as its base. We call this triangle, the first triangle of the cone. It can be easily seen that A′

is the union of all first triangles of the cones in C that have more than one segment. So, in
order to compute A′, we only need to compute the subdivision of the plane induced by ∂P

and the half-lines in L and consider the cones with more than one segment. This step can
be done using the plane-sweep algorithm in O(n2) time [24, 63].

It remains to compute those valid points that follow a path that bends in order to get
t. Let x ∈ Ai and so there must be a point rx ∈ R(x) such that vi is the last bend point of
a path that rx sends x to t along. Note that t lies on the interior of P and hence, rx should
lie on li otherwise, x can never reach t after leaving vi. Also, note that we can compute each
Ai individually and then consider their union to specify A\A′. Henceforth, we fix the index
i and assume that vi is visible from t (otherwise Ai = ∅) and discuss how to compute Ai.

Let l̂i = li ∩ P . To compute Ai, we first consider a sequence of functions T 0, . . . , T n on
V such that for a vertex v ∈ V , T j(v) (1 ≤ j ≤ n) is defined as the set of all points r on l̂i

that can send v to vi (and therefore from vi to t) by at most j jumps.

Proposition 3.1. For a boundary point x and a point r ∈ P , by activating a repulsor at
r, x can have at most n jumps before it stops.

This is because if x jumps from an edge of ∂P , it can never back to that edge again
(because it always moves in a direction that gets father from the repulsor). According to
the above proposition, T n(v) returns all of the points on l̂i that can send v to vi. In order
to build this sequence of functions, we use a procedure called expand. This procedure gets

34



Figure 3.3: [vi, x], ue(y) and the pushing region of y.

T j−1 as its input and builds T j . Running this procedure n times starting from T 0 gives us
T n. In the next sections, we discuss how to compute T0 and the procedure expand.

3.3.1 Computing T0

Lets e1 and e2 be the two incident edges of vi. We can consider that e1 and e2 lie on a same
side of li otherwise it is impossible for vi to be the last bend point for a vertex v ̸= vi when
we have a repulsion on li. Thus, if e1 and e2 are on different sides of li, we have Ai = {vi}.
Let e1 be the closer edge to t (closer in the sense that if we consider a half-line from t that
passes both e1 and e2, its intersection point with e1 is closer to t than its intersection point
with e2). For a point x on the component of vi in ∂P (∂P may not be connected because
P is a polygonal domain), we denote the part of the component between vi and x starting
from e2 by [vi, x]. We chose this direction because it is impossible for a repulsion point on l̂i

to send a point to t along e1. Figure 3.3 shows an example of [vi, x]. Let e be an edge of ∂P ,
then the interior of P should lie on one side of e. We call this side as the P -side of e. Also,
the supporting line of e divides the plane into two half-planes. Denote the half-plane not in
the P -side of e by He. For a point x ∈ ∂P , we define J(x) ⊆ l̂i as the set of points r ∈ l̂i

such that when we activate a repulsor at r, x immediately jumps off from the boundary.
Figure 3.3 shows an example of J(y) for a point y on the interior of an edge of ∂P . The
following proposition shows the connection between J(x) and the edge(s) containing it:

Proposition 3.2. For any point x ∈ ∂P , we have:

1. If x lies on the interior of an edge e we have J(x) = He ∩ l̂i.

2. If x is a reflex vertex with incident edges e′ and e′′, we have J(x) = (He′ ∪ He′′) ∩ l̂i.

3. If x is a convex vertex with incident edges e′ and e′′, we have J(x) = He′ ∩ He′′ ∩ l̂i.

35



Proposition 3.2 says that if x is a reflex vertex, putting a repulsor at a point in l̂i makes
x jump if and only if the repulsor makes it jump from one of the supporting lines of e′ and
e′′. Similarly, if x is a convex vertex, x jumps if and only if a repulsor make it jump from
both the supporting lines of e′ and e′′. Figure 3.4 shows an example:

Figure 3.4: When we activate a repulsor on J(x), x jumps immediately into the interior of
P .

Let us denote the supporting line of li by sup(li). For a point x on an edge e of ∂P ,
consider the half-line from x perpendicular to e toward the P -side of e. If this half-line
intersects sup(li), we denote this intersection point by ue(x) otherwise ue(x) is undefined.
Note that if e does not intersect sup(li), then ue is defined for either all or none of the
points of e. In the first case, we simply say that ue is defined and in the second case we
say ue is undefined. For a point x on the component of vi, we say a point r ∈ l̂i pushes x

into [vi, x] if by activating a repulsor at r, x moves along the component toward the inside
of [vi, x] (x does not jump off from the boundary and enters to the interior of [vi, x]). We
define the pushing region of x as the set of points in l̂i that push x into [vi, x] and denote
it by Push(x). For vi, we define Push(vi) = l̂i \ tvi. Figure 3.3 shows the pushing region of
the point y.

Let (f0, f1, f2, . . . ) be the sequence of intersection points of the component of vi and
sup(li) when we traverse it from vi starting along e2 (so, f0 = vi). These fi points break
each edge of the component of vi passing through sup(li) into two parts. We consider each
of these parts as a separate edge. By this modification, we have the sequence (e2, e3, . . . , e1)
of edges of the component of vi and the order on this sequence is the order as we traverse
the component starting from e2. Also, each edge lies in one side of sup(li). We assume
e(fk) as the incident edge of fk on [vi, fk] (consider e(f0) as e1). So, (e2, e3, . . . , e(f1)) is
the sequence of edges in [vi, f1]. Orient P so that −→

vit is directing leftward. For any edge
ek ∈ (e2, . . . , e(f1)), we denote its right vertex by a(ek) and its left vertex by b(ek). Then
we have:

Proposition 3.3. uek
is defined if and only if traversing the boundary starting from any

point in ek in the direction
−−−−−−−→
a(ek)b(ek) goes to vi via e2.

36



Proof. We proceed by induction on k. Trivially the proposition is true for e2 (this is
because e2 is the farther incident edge of vi to t). Suppose that the above statements is
true up to the edge ek−1. Now, for the connection of ek−1 and ek four cases may occur:
a(ek) = a(ek−1), a(ek) = b(ek−1), b(ek) = a(ek−1) and b(ek) = b(ek−1). Also, each of uek−1

and ue may be defined or undefined which gives us 16 cases. But, because ek−1 and ek

are neighbour edges, it is impossible that a(ek) = a(ek−1) or b(ek) = b(ek−1) and both
uek−1 and ue are defined or undefined. Similarly, it is impossible that a(ek) = b(ek−1) or
b(ek) = a(ek−1) and one of ek or ek−1 is defined and another isn’t. So, eight cases left. Note
that in these eight cases, four of them are exactly the mirror of others which exchanges left
and right vertices. So, four cases left which is shown in Figure 3.5:

Figure 3.5: Consistency of directions to vi in ek−1 and ek according to the Proposition 3.3.

In (a) of Figure 3.5, both uek−1 and uek
are defined and in (d) they are undefined. Also,

in (b) and (c) uek
(resp. uek−1) is defined (resp. undefined). As we can see, for all of these

cases, the direction that the proposition gives for ek is consistent with the direction the
proposition gives for ek−1 and so this direction should go toward vi along e2 which proves
the proposition. �

Corollary 3.1. We can extend the above proposition for each part [fm, fm+1] of the com-
ponent of vi as follows:

1. If m is even, for ek ∈ (e(fm)+1, . . . , e(fm+1)), uek
is defined if and only if the direction

−−−−−−−→
a(ek)b(ek) goes to vi via e2.

2. If m is odd, for ek ∈ (e(fm)+1, . . . , e(fm+1)), uek
is defined if and only if the direction

−−−−−−−→
b(ek)a(ek) goes to vi via e2.

The proof of the above corollary is obtained from the proof of Proposition 3.3 by simply
replacing e2 by e(fm)+1. For a given point z ∈ li, we introduce notations ż and z̈ as follows:
z divides li into two parts each in one side of z. We denote the intersection of tz with P by
ż, and the intersection of the side that does not contain t with P by z̈.

Corollary 3.2. Let x be a point of an edge e ∈ [fm, fm+1] (if x is a vertex, consider the
edge in [vi, x]) such that ue is defined. Then :

37



1. If m is even:

(a) If ue(x) ∈ sup(li) \ li then Push(x) = l̂i \ J(x).

(b) If ue(x) ∈ li, we have Push(x) = ¨ue(x) \ J(x).

2. If m is odd:

(a) If ue(x) ∈ sup(li) \ li then Push(x) = ∅.

(b) If ue(x) ∈ li, we have Push(x) = ˙ue(x) \ J(x).

Proof. Suppose that r is a point of l̂i. Note that if r ∈ J(x), then it can not push x

into the interior of [vi, x] so suppose that r /∈ J(x). According to Corollary 3.1, if e lies on
the same side of e2 with respect to sup(li), in order that x goes to the interior of [vi, x], r

should push x to the left. This can happen if and only if r lies on the right side of ue(x).
Similarly, if e lies on the opposite side of e2 with respect to sup(li), r should push x to the
right side to sent it into the interior of [vi, x] and this happens only if r lies on the left side
ue(x). Note that if m is even (resp. odd), e must lie on the same side (resp. opposite side)
of e2 with respect to sup(li) which proves the corollary. □

If an edge e is not defined, its pushing region (all of its points) is determined by the
intersection point of sup(e) and sup(li) (the points on the P -side of sup(e) on l̂i always
pushes any point x ∈ e into [vi, x]). For a vertex v on the component of vi, we define T 0(v)
as the intersection of all pushing regions of points in [vi, v].

Observation 3.1. T 0(v) is exactly the set of repulsion points of v that sends the particle
at v along [vi, v] to the vertex vi and then, make it jump from vi to t.

Note that T 0(v) is a set of intervals because it is an intersection of regions each of which
consists of a set of disjoint intervals on li. Therefore, in order to obtain T 0(v) for a given
vertex v, we need to have the pushing region of infinitely many points but if we consider
the inclusion relation on these pushing regions as a partial order on them, it is enough to
only consider the minimal pushing regions.

Observation 3.2. For a given vertex v, the minimal pushing regions of points in [vi, v] are
among the following candidate regions:

Candidate regions for v = {Push(v′) | v′ is a vertex in [vi, v]} (3.3)

To see why, first note that for any edge e, J(x) is the same for all x ∈ e. So, for any
point x on the interior of e, by slightly moving x on e we can get a pushing region not

38



greater than the pushing region of x. Thus, in order to compute T 0(v) for a given vertex
v, we first compute these candidate regions according to Corollary 3.2. Then, we intersect
them to obtain T 0(v). Because T 0(v) is a set of disjoint intervals, we can represent it with a
sequence of points with even length according to their closeness to t. In this representation,
the first and the second elements of the sequence represent the first interval and so on. Also,
because all points are on li, we can represent each point by its distance to t.

3.3.2 The Expand Procedure

To explain the expand procedure, we assume that we have computed T j−1(v) for all vertices
in V and discuss how to compute T j(v) for a given vertex v ∈ V . Because each point can
have at most n jumps when we put a repulsor in P , we can say v ∈ Ai if and only if
T n(v) ̸= ∅. For a fixed vertex v ∈ V , we have:

T j(v) =
(

T j(v) ∩ J(v)
)

∪
(

T j(v) ∩ J(v)
)

(3.4)

where J(v) is the complement of J(v) with respect to l̂i. In the above equation, let us call
the first intersection by N1(v) and the second intersection by N2(v). We first compute N1(v)
for all vertices and then compute N2(v) for each vertex in V using our information about
N1(v) for the vertices of P . By computing the union of N1(v) and N2(v) for each vertex,
we can obtain T j(v).

Computing N1(v).

In order to compute N1(v), we need a map of J(v) denoted by M1
v . For each vertex v′ ∈ V ,

there is a corresponding region in M1
v denoted by M1

v (v′) such that for all z ∈ M1
v (v′), z

makes v jump off from the boundary and then sends it to v′ as its first visiting vertex (v′

is the first vertex that v reaches after jumping). Note that some regions of M1
v might be

empty. To construct this partition, we build the visible triangle decomposition of P with
respect to v denoted by V TD(v). This decomposition partitions the region of P visible from
v by the set of line segments from v passing all vertices visible from v. Figure 3.6 shows an
example of V TD(v).

39



Figure 3.6: Visible triangle decomposition of P according to v.

Let vab be a triangle in V TD(v) with base edge e = ab and sides va and vb. Note that
a and b may not be vertices of P . Also, let cvab be the opposite cone of the triangle (the
cone with vertex v and half-line sides along va and vb from v in the directions of −→av and

−→
bv

respectively). Also, let ṽab be the intersection of cvab with l̂i. ṽab becomes empty if there is
no such intersection. In this case, no point on l̂i that can make v jump into the triangle and
thus, we don’t consider this triangle in computation of N1(v). So, we assume that ṽab ̸= ∅.
The property of ṽab is that any point in this region makes v jump into triangle vab. If we
denote the vertices of P next to a and b by a′ and b′ respectively, we can find the partition
of ṽab into subsets ṽaba and ṽabb such that the points in ṽaba send v to a′ and the points
in ṽabb sends v to b′ (it is possible that one of these part becomes empty). Figure 3.7 shows
this configuration:

Figure 3.7: Obtaining ṽaba and ṽabb.

In order to compute ṽaba and ṽabb, consider the line h perpendicular to the supporting
line of e passing through v. The intersection point h0 of h and sup(li), divides sup(li) into
two parts. The intersection of these parts with ṽab becomes ṽaba and ṽabb. In fact, points
in the b-side (resp. a-side) of h in ṽab, sends v to a′ (resp. b′). We apply the above method
to all triangles in V TD(v) and put all regions on J(v) that send v to v′ in M1

v (v′). Having

40



the map M1
v , we have:

N1(v) =
⋃

v′∈V

(
M1

v (v′) ∩ T j−1(v′)
)

(3.5)

This is because if for a vertex v′, a point r is in M1
v (v′) ∩ T j−1(v′), r sends v to v′ and

because r is also in T j−1(v′), r can send it from v′ to vi using at most j − 1 jumps. So, in
total r can send v to vi by at most j jumps.

Computing N2(v).

In order to obtain N2(v), again we need a map on J(v) denoted by M2
v . In this map, for

each vertex v′ ∈ V , there is a corresponding region in M2
v denoted by M2

v (v′) which is the
subset of J(v) such that each z ∈ M2

v (v′) sends v to v′ without jumping (v′ is not necessarily
the first vertex that v reaches). According to this definition, the regions of M2

v may overlap
each other and some regions may become a subset of another. Instead of directly computing
M2

v , we compute two maps M21
v and M22

v separately such that each z ∈ M21
v (v′) (resp.

z ∈ M22
v (v′)) sends v to v′ without jumping on the clockwise (resp. counter-clockwise) path

on the component of v. It is clear that:

M2
v (v′) = M21

v (v′) ∪ M22
v (v′) (3.6)

We describe how to compute M21
v and computing M22

v is similar. We assume that M21
v (v) =

J(v). It is trivial that if v′ is not in the component of v we have M21
v (v′) = ∅. Let e = ab be

an edge of the component of v. The perpendicular line on the supporting line of e passing
from a divides the plane into two half-planes. Denote the half-plane doesn’t include b by
Ha

e . Note that any r ∈ Ha
e ∩ J(a) sends a to b without jumping. So, we have:

Proposition 3.4. If M21
v (v′) ̸= ∅ and v′′ is the neighbour of v′ not in the clockwise path

vv′ on the component. Then we have:

M21
v (v′′) = M21

v (v′) ∩ Hv′
v′v′′ ∩ J(v′) (3.7)

According to the above proposition, we can start from v and traverse the component
of v clockwise and build the regions of M21

v (note that there must be a vertex v′ on the
component with M21

v (v′) = ∅). After computing M2
v , we can construct N2(v) as follows:

N2(v) =
⋃

v′∈V

(
M2

v (v′) ∩ N1(v′)
)

(3.8)

Note that if r ∈ M2
v (v′) ∩ N1(v′) for a vertex v′ ∈ V , r can send v to v′ without jumping

and because r ∈ N1(v′), r can send it from v′ to vi using at most j jumps. This means that
r can send v to vi with at most j jumps.

41



3.3.3 Building Ai

After computing N2(v), we have T j(v) = N1(v) ∪ N2(v) and we go for the next iteration
until computing T n(v) for all vertices v ∈ V . We include all vertices with T n(v) ̸= ∅ in Ai.
Now, a point x ∈ P is in Ai if there exist r ∈ l̂i that sends x to a vertex v as its first visiting
vertex and r ∈ T n(v). To obtain all points in Ai, we consider each pair (v, e) individually
where v is a vertex in V and e is an incident edge of v and compute a set A

(v,e)
i which is

the subset of Ai that can be sent to vi by reaching v as their first vertex via e. So, we have:

Ai =
⋃

All pairs (v,e)
A

(v,e)
i (3.9)

Here, suppose that a pair (v, e) is given and we discuss how to compute A
(v,e)
i . Let I1, . . . , Iq

be the set of intervals of T n(v). We denote by Av
i (k) as the set of all points of P that can

be sent to v as their first visiting vertex via e by some point in Ik (1 ≤ k ≤ q). So,

A
(v,e)
i =

⋃
k∈{1,...,q}

A
(v,e)
i (k) (3.10)

Again we just need to compute each A
(v,e)
i (k) independently. Let Ik = [rk

1 , rk
2 ] where rk

1 and
rk

2 are two endpoints of Ik. For two points r ∈ [rk
1 , rk

2 ] and y on e, the segment ry might
have some intersections with ∂P and so, these intersection points divide ry into a set of
segments. We call the segment incident to e as the first segment of ry and denote it by
FS(ry). Note that it is impossible for the points on ry \ FS(ry) to reach v as their first
visiting vertex. Also, let p(r) be the intersection point of sup(e) and the line perpendicular
to sup(e) passing from r. Now, FS(ry) ⊆ A

(v,e)
i (k) if and only if y ∈ e ∩ vp(r). So, for

a given point r ∈ Ik, we can compute the set of all such FS(ry) as follows: we consider
the set of lines passing through r and every vertex inside the triangle obtained by r and
the endpoints of e ∩ vp(r). These lines and ∂P partition the triangle. The union of parts
incident with e are exactly the set of all FS(ry) with y ∈ e ∩ vp(r). Figure 3.8 shows such
configuration:

Figure 3.8: An example of Region(r).

42



Lets denote this union by Region(r). So, we have:

A
(v,e)
i (k) =

⋃
r∈Ik

Region(r) (3.11)

In order to compute the union of infinitely many regions, let (α0, α1, α2, . . . , αdk
) be the

sequence of points on Ik such that α0 = rk
1 , αdk

= rk
2 and for each 0 < w < dk, αwp(αw)

or αwv passes a vertex of ∂P as we traverse Ik from rk
1 to rk

2 . Now, as r moves from αw to
αw+1, the segments of the boundary of Region(r) changes uniformly. So, to see that which
points are covered by Region(r) when r ranges in [αw, αw+1], it is enough to check these
segments at r = αw and r = αw+1. So, A

(v,e)
i (k) is computed by considering all intervals

[αw, αw+1].

3.4 Complexity of the Algorithm

The first part of the algorithm is computing A′. It costs O(n2) to obtain the subdivision
(induced by ∂P and the half-lines in L) and build the cones. Because the total number of
segments in each cone is linear, we can check in linear time if a cone has more than one
segment and store its first triangle. Since there are a linear number of cones, computing A′

costs O(n2). We can also compute the fms sequence for each vertex vi using this subdivision.
Computing Ai takes three independent steps: computing T 0, computing T n using the

expand procedure and building Ai having T n. In computing T 0, first we use linear time
(using the map we obtained to build cones) to check which vertices are visible from t and
find the neighbor edges of the vertices that lie on the same side of the line connecting them
to t. Computing the J(v) for a vertex v ∈ V takes linear time. Also, the intersection and
union operations can be done linearly. In order to compute T 0(v) for a given vertex v, we
should compute u̇e(v′) \ J(v′) or üe(v′) \ J(v′) (e is incident to v′) for O(n) vertices which
again costs O(n2). So, building T 0 costs O(n3).

In the procedure expand, we need to compute T j(v) for all v ∈ V having T j−1. For a
given v ∈ V , the maps M1

v and M2
v are independent of j and so, we can build them once

and use them whenever they are needed in the expand procedure. In order to compute these
maps, we spend O(n log n) time to build V TD(v). Next, we have O(n) triangles and it take
constant time for each triangle to obtain ṽaba and ṽabb. So, building M1

v costs O(n log n).
Computing each of M21

v and M22
v costs O(n2) because we need to traverse the component

of v and in each step, we should compute an intersection. So, M2
v can be computed in O(n2)

and thus, building these maps for all vertices costs O(n3).
Note that each T 0(v) has at most O(n) endpoints and thus we have at most O(n2)

endpoints in the intervals of T 0(v) for all v ∈ V . On the other hand, the regions of both
M1

v and M2
v have at most O(n) endpoints and so, we have at most O(n2) endpoints for all

maps. Now, because we don’t introduce any new endpoint in the expand procedure, T n(v)

43



should have at most O(n2) endpoints. For a fixed vertex v, T j−1(v) ⊆ T j(v). So, in the
expand procedure, we can compute the equations (4) and (7) for T j−1(v′)\T j−2(v′) instead
of T j−1(v′) and add the results to the N1(v) and N2(v) in the previous iteration to obtain
new N1(v) and N2(v). So, by this modification in obtaining N1(v) and N2(v), computing
T 1(v), . . . , T n(v) costs O(n2) and because we have n vertices, computing T n takes O(n3).

In order to build Ai, for each pair (v, e), we have at most O(n) αw points in total (for all
Ik). We need to spend O(n log n) time to have these points sorted on each Ik. Now, for each
interval [αw, αw+1], in a constant time we can obtain which points are covered by Region(r)
for some r in this interval. Because we have at most O(n) pairs (v, e), Building Ai having
T n costs O(n2 log n). So, in total building Ai costs O(n3 + n3 + n2 log n) = O(n3). Finally,
because i varies between 1 and n, the total complexity of the algorithm is O(n4).

44



Part II

The Proximity Connected k-center
problem

45



Chapter 4

A Sub-quadratic Time Algorithm
for the Proximity Connected
k-Center Problem on Paths

In this chapter1, we study the proximity connected k-center (PCkCP) on paths. In this
problem, we are given a set of demand points in a path and a parameter δ > 0. We are
going to locate k center points on the path (centers can lie in the interior of the edges) such
that the maximum distance of a demand point to its nearest center is minimized while the
centers satisfy the proximity connectedness condition (PCC) with respect to δ. We present
a sub-quadratic time algorithm for the problem for both unweighted and weighted demand
points cases.

1A preliminary version of this chapter appeared in the proceedings of the 34rd Canadian Conference on
Computational Geometry, CCCG 2022. [10]

46



4.1 Background and Previous Works

The k-center problem is one of the most important facility location problems which has been
extensively studied in the past [28, 32, 40, 41, 66]. In the weighted k-center problem, we are
given a set of n demand points P = {v1 . . . , vn} in a metric space such that each demand
point vi ∈ P has a non-negative weight wi. The objective is to find a k-center (a set of k

points in the space) C such that cost(C) defined as maxvi∈P{wid(vi, C)} is minimized, where
d(vi, C) = minc∈Cd(vi, c). We call this minimum cost the optimal cost for the problem. If
we have unit weights on all demand points, the problem is called unweighted. We recall
that a k-center C satisfies the proximity connectedness condition (PCC) with respect to a
parameter δ > 0 if its δ-distance graph is connected. In the proximity connected k-center
problem (PCkCP), in addition to P, we are also given a parameter δ > 0 and we are going
to find a k-center with minimum cost that satisfies the PCC.

In practice, if we consider the centers as facility locations, the parameter δ can represent
the range for which, each facility can directly communicate with any other facility within
the range δ of itself. For example, suppose that we need to locate k communication/control
equipment to observe n sensors while the equipment need to send/receive messages between
themselves (directly or via other equipment). Also, each equipment can safely send/receive
data with any other equipment within the range δ of itself. The problem of locating the
equipment as close as possible to the sensors can be modeled as PCkCP.

If we consider δ sufficiently large, the problem reduces to the k-center problem, the
PCkCP becomes NP-hard in metric graphs [32, 53]. In [32], Kariv and Hakimi showed
that the k-center problem can be solved in polynomial time when the underlying space is
a tree and gave an O(n2 log n) time algorithm for the problem. In 1991, Frederickson [28,
29] showed that the unweighted k-center problem can be solved in linear time in trees.
Finally, in 2018, Wang and Zhang [66] provided an O(n log n) time algorithm for the k-center
problem in trees. The PCC condition first appeared in the context of wireless networks in
1992 [36]. Later, Huang and Tsai studied the 2-center problem in the plane, considering the
proximity condition between the centers [37, 38]. As another work, in 2022, Bhattacharya
et al. [9] presented an O(n2 log n) time algorithm (next chapter) to solve the proximity
connected 2-center problem in the plane improving the previous algorithm for the problem
with O(n5) time complexity [36]. Although there are some related works in the context
of theory of wireless sensor networks [4, 58], the k-center problem has not been studied
when we have the proximity condition between the centers. In this chapter, we address this
problem by providing a sub-quadratic time algorithm for the k-center problem on paths
having the PCC.

47



v1 v2 v3 v4 v5 v6c
∗

1 c
∗

2 c
∗

3 c
∗

5c
∗

4
v7 v8

δδ r
∗

r
∗

Figure 4.1: An example of the PCkCP on a path with 8 vertices.

4.2 PCkCP for Unweighted Paths

Let P = (v1, . . . , vn) be the given unweighted path (consisting of both the vertices and the
edges between them) such that the vertices lie on the x-axis from left to right and v1 lies
on the origin. Without loss of generality, we assume that n is a power of 2. Also, we use the
notation vi (1 ≤ i ≤ n) for both the vertex itself and the x-coordinate of the vertex. Thus,
we have an order on the vertices based on their x-coordinates. Also, if vi < vj , we denote
the interval between vi and vj on the x-axis by [vi, vj ]. In this section, we are going to find
a k-center C∗ for P such that C∗ satisfies PCC and,

cost(C∗) = min{cost(C) :

C is a k-center for P and satisfies PCC}

We call C∗ an optimal solution and its cost the optimal cost. We denote the optimal cost
by r∗ and the centers in C∗ by (c∗

1, . . . , c∗
k) from left to right on the x-axis. Figure 4.1 shows

an example of the PCkCP on a path and its corresponding optimal solution.
The idea of obtaining an optimal solution for the problem is first computing r∗ and

then, using it to build an optimal solution. In order to do that, we first design a feasibility
test for the problem which gets a value r ≥ 0 and determines whether it is feasible (r ≥ r∗)
or infeasible (r < r∗). Procedure UPATH-FT in Algorithm 5, presents such a feasibility test
for the unweighted PCkCP on paths. Note that if r ≥ r∗, UPATH-FT(P ,r) also gives us a
k-center with a cost at most r. Using the feasibility test, we can check whether r∗ = 0. In
this case the trivial solution is putting a center at each vertex. So henceforth, we assume
that r∗ > 0.

48



Algorithm 5 UPATH-FT(P, r)
1: Set Counter = 1 and V = (v2, . . . , vn).
2: Put a center at xc = r.
3: while there is an element in V do
4: Eliminate all vertices v ∈ V with d(xc, v) ≤ r.
5: Put a center at xc = min{xc + δ, V [1] + r}.
6: Counter = Counter + 1.
7: if Counter > k then
8: return infeasible.
9: end if

10: end while
11: return feasible.

Note that in Algorithm 5, the vertices in V are eliminated in order and so the time
complexity of UPATH-FT is O(n + k). It is important to mention that we might have more
than one optimal solution for a given problem instance but, having r∗ (which is unique),
the algorithm UPATH-FT gives us a unique optimal solution. In order to avoid confusion,
henceforth we exclusively use the notation C∗ for this optimal solution. We say that a vertex
v is covered by a center c∗

i ∈ C∗ if d(v, c∗
i ) = d(v, C∗). Also, d(v, c∗

i ) is called the cost that
c∗

i induces on v. We say that a sequence of t points (c1, . . . , ct) (the order is left to right on
the x-axis) is a t-train if ∀ 1 ≤ i < t, d(ci, ci+1) = δ.

Proposition 4.1. There exists a pair of vertices (vi, vj) such that the subset C ′ ⊆ C∗ of
centers in [vi, vj ] is a t-train (for some t) and d(vi, C ′) = d(vj , C ′) = r∗.

The reason for the above proposition is that if such a pair does not exist, for any vertex
v with d(v, C∗) = r∗, we can move the covering center of v (and possibly other centers to
ensure the PCC) toward v to get a solution with a cost smaller than r∗, which contradicts
the optimality of r∗. We call any pair (vi, vj) satisfying the condition of Proposition 4.1, a
determining pair for the problem.

Proposition 4.2. If d(v1, vn) ≥ kδ, then (v1, vn) is a determining pair for the problem.

Proof. For any vertex v in [c∗
1, c∗

k], d(v, C∗) is at most δ/2 because of the PCC. So, if
d(v1, vn) ≥ kδ, the cost of C∗ should be greater than or equal to δ/2 which means that
(v1, vn) is a determining pair. □

Based on the above proposition, if d(v1, vn) ≥ kδ, we have d(c∗
1, c∗

k) = (k − 1)δ and
d(v1, c∗

1) = d(c∗
k, vn). Therefore, r∗ = (d(v1, vn) − (k − 1)δ)/2. Now, UPATH-FT(P, r∗) will

give us C∗. Henceforth in this section, we assume that d(v1, vn) < kδ and so 0 < r∗ < δ/2
(because of the PCC). In order to find r∗, we build a set of candidate values C and itera-
tively use the feasibility test to discard its values until r∗ becomes clear. Consider a pair

49



x

y (cost)

vi vj1 vj2

RiLj1 Lj2

δ

2δ
δ/2

δ

3δ/2

IC1(v1, vj1)

IC2(vi, vj1)

IC3(vi, vj1)

IC3(vi, vj1 )

IC4(vi, vj2 )

Figure 4.2: The geometric view of the candidate values generates by (vi, vj1) and the effective
candidate value generated by (vi, vj2).

of vertices (vi, vj) and a t-train T such that d(vi, vj) > (t − 1)δ. We say that T is fitted in
[vi, vj ] if d(vi, T ) = d(vj , T ). Note that if T is fitted in [vi, vj ], the induced cost of T on vi

and vj is (d(vi, vj) − (t − 1)δ)/2 and is denoted by ICt(vi, vj). If d(vi, vj) ≤ (t − 1)δ, we say
that (vi, vj) does not accept a t-train. Note that any pair of vertices accepts 1-train which
is indeed the mid-point of the connecting segment of vi and vj . Based on Proposition 4.1,
the set of candidate values C can be considered as follows:

C = {ICt(vi, vj) : (vi, vj) accepts a t-train} (4.1)

Because each pair of vertices can generate up to O(k) candidate values, the size of C is
O(n2k). A naive algorithm to find r∗ is computing the entire C, then sort it and perform
binary search using the feasibility test to find r∗. It is easy to see that the time complexity
of this approach is O(n2k log(n + k)). In the rest, we show that how we can reduce this
bound and get a sub-quadratic time algorithm but before, it is useful to discuss about the
geometric interpretation of the candidate values.

Geometric View: Let Li and Ri be two half-lines from vi with angles π/4 and 3π/4
with the positive direction of the x-axis respectively. Note that the y-coordinate of the
intersection of a vertical line at point x with Li ∪ Ri is the cost that a center at x will
induce on vi (this is because we assumed that the vertices are unweighted). Based on this
observation, for a pair (vi, vj), IC1(vi, vj) is the y-coordinate of the intersection point of Ri

and Lj . Furthermore, if (vi, vj) accepts a t-train, ICt(vi, vj) would be the y-coordinate of
the horizontal segment with length (t − 1)δ with sides on Ri and Lj (see Figure 4.2). Based
on this geometric view, the following observation can be concluded:

Observation 4.1. If (vi, vj) accepts a t-train (t > 1) then ICt(vi, vj) = ICt−1(vi, vj)−δ/2.

50



Consider a pair (vi, vj) and the non-zero candidate value ICk′(vi, vj) such that either
k′ = k or (vi, vj) does not accept a (k′ + 1)-train (equivalently, k′-train is the longest train
that can be fitted in (vi, vj)). According to Observation 4.1, ICk′(vi, vj) is the only candidate
value that (vi, vj) can generate in (0, δ/2). If (vi, vj) generates a candidate value in (0, δ/2),
we call this candidate value an effective candidate value. Because r∗ ∈ (0, δ/2), we only need
to search the effective candidates generated by the pairs in P in order to find r∗. Let us
gather all the effective candidates into an n × n matrix M such that M [i, j] is the effective
candidate value generated by (vi, vj) if i < j and zero otherwise. We can see that M is not a
sorted matrix because for a fixed i, by increasing j, the number of centers in the train that
induces M [i, j] might change. Indeed, this is the main obstacle to get a linear time algorithm
like [28, 29] for the unweighted PCkCP. Specifically, the k-center problem is equivalent to
the PCkCP when δ = ∞. In this case, all the effective candidates are generated by 1-trains.
The key point here is that the effective cost generated by a 1-train on a pair (vi, vi) is an
increasing function of d(vi, vj). This monotonicity makes the matrix M sorted which plays
a pivotal role in obtaining a linear time algorithm.

In order to search M in a sub-quadratic time, we define an auxiliary matrix M̄ such
that applying the feasibility test on its elements enables us to discard the elements of M in
an efficient way. We define M̄ as an n × n matrix such that:

M̄ [i, j] = max{M [i, j′] : i < j′ ≤ j} (4.2)

Note that M̄ is a row sorted (increasing) matrix but may not be sorted column-wise. We
define the remainder function remδ(x) as follows:

remδ(x) = x −
⌊

x

δ

⌋
× δ (4.3)

Observation 4.2. If i < j, then we would have M [i, j] = remδ(d(vi, vj))/2.

This is from the fact that the size of the portion of [vi, vj ] not covered by the longest
train in the interval is remδ(d(vi, vj)).

Proposition 4.3. If M [i, j] = r∗ then for all i < j′ < j, M [i, j′] ≤ r∗.

Proof: We proceed by contradiction. Suppose that M [i, j] = r∗ and ∃j′ : i < j′ < j

such that M [i, j′] > r∗. Let C ′ = (c∗
h1

, . . . , c∗
h2

) ⊆ C∗ be the train in [vi, vj ] that induces
r∗ on vi and vj . Also, let C = (c1, . . . , cq) be the longest train that can be fitted in [vi, vj′ ]
that induces the cost M [i, j′]. Note that |C| < |C ′|, otherwise because v′

j < vj , M [i, j′]
could not be greater than M [i, j]. Also, c∗

h1
< c1 because we assumed M [i, j′] > r∗. Now, if

c∗
h1+q < vj′ , we can fit a (q + 1)-train in [vi, vj′ ], which contradicts the way we chose C. So,

let us assume that c∗
h1+q > vj′ (see Figure 4.3).

51



vi vj0 vjc
∗

h1
c
∗

h2

c1 c
∗

h1+1 c2 c
∗

h1+q−1 cq c
∗

h1+q

: : : : : :

r∗ r∗

M [i; j0] M [i; j0]

δ

δ

δ

Figure 4.3: Proof of Proposition 4.3.

Here, c∗
h1+q is the center that covers vj′ in C∗. If d(vj′ , c∗

h1+q) = r∗, d(vi, vj′) would be a
multiple of δ and so M [i, j′] = 0 which is against our assumption that M [i, j′] > r∗. Thus,
we have d(vj′ , c∗

h1+q) < r∗ but in this case we can fit a (q + 1)-train in [vi, vj′ ] which is a
contradiction. □

Example: In Figure 4.4, the fitted 4-train (c∗
1, . . . , c∗

4) between v1 and vj induces the opti-
mal cost r∗ for the problem. In order to have M [i, j′] > r∗ for some 1 < j′ < j, vj′ should
lie on a forbidden region, which are the set of points with distances greater than r∗ to their
closest center (these regions are specified in red in Figure 4.4).

v1 vjc∗1 c∗2 c∗3 c∗4

2M[1,x]

2r∗

Forbidden region

δ 2δ 3δvj′

2M [1, j′]

y = remδ(x)

r∗ r∗

Figure 4.4: An example for Proposition 4.3.

Observation 4.3. By applying the feasibility test on M̄ [i, j], one of the following cases will
happen:

1. M̄ [i, j] is feasible. In this case, we can discard all M [i, j′] with j′ > j (based on
Proposition 4.3).

2. M̄ [i, j] is infeasible. In this case, we can discard all M [i, j′] with j′ ≤ j (based on the
definition of M̄).

Note that in the part 1 of the above observation, when M̄ [i, j] is feasible, then either
M̄ [i, j] > r∗ or M̄ [i, j] = r∗. For the former case, if M [i, j′] = r∗ for some j′ > j, it
contradicts Proposition 4.3 and for the later case we still have r∗ in our undiscarded values.
According to the above observation, we can find r∗ by iteratively applying the feasibility
test on the elements of M̄ and discard the elements of M until r∗ becomes clear. Algorithm
DISC-ROUND(M) shows how we can discard 1/4th of the undiscarded elements in M at

52



each iteration. We can see that at the beginning of each iteration the undiscarded elements
of each row make a connected region. We call this region the undiscarded region. Because
M̄ is row sorted, if d1 and d2 are the first and the last indices of the undiscarded region
of an ith-row in M , if we know whether M̄ [i, d1 + ⌊(d1 + d2)/2⌋] is feasible, we can discard
half of the elements in the region. Note that in Algorithm 6, the variables d1, d2 and wi

Algorithm 6 DISC-ROUND(M)
1: for i from 1 to n do
2: Set d1, d2 and ni as the first index, the last index and the number of elements in

the undiscarded region of the ith-row of M respectively.
3: Set mi as M̄ [i, d1 + ⌊(d1 + d2)/2⌋].
4: end for
5: Compute the weighted median m of {mi : 1 ≤ i ≤ n} where mi has weight ni.
6: Run UPATH-FT(P ,m).
7: if m is feasible then
8: For each i with mi ≥ m, discard M [i, j′] : j′ > mi.
9: else

10: For each i with mi ≤ m, discard M [i, j′] : j′ ≤ mi.
11: end if

can be updated after the discarding phase of the previous iteration (so we don’t need to
search the entire matrix to compute them at the beginning of the current iteration). Also,
we compute the weighted median of the mid-indexes of the undiscarded region of the rows
because at the beginning of an iteration, the undiscarded region of the rows in M may not
have the same size. We can see that in each iteration, we need to compute the median of
O(n) values in M̄ . The bottleneck of the time complexity of DISC-ROUND is the cost of
obtaining an element of M̄ . Specifically, if the time complexity of computing an element
of M̄ is O(g(n)), then the total time complexity of DISC-ROUND would be O(ng(n) + k)
and so the overall time complexity of our algorithm for the unweighted PCkCP on paths
is O((ng(n) + k) log n) (because we have O(log n) iterations). In the next subsection, we
discuss how we can compute an element of M̄ efficiently.

4.2.1 Computing an Element of M̄

In this subsection, we provide a preprocessing phase that enables us to compute M̄ [i, j]
in sub-linear time. Let Mi,j = {M [i, i + 1], . . . , M [i, j]} and so, M̄ [i, j] = max Mi,j . We
first build a balanced binary tree T on top of the vertices in P (we assumed that n is
a power of 2). Thus, each leave of T corresponds to a single vertex. For a node ν ∈ T ,
span(ν) is defined as the set of vertices that have ν as a common ancestor. Note that the
root of T spans the entire P . Also, we denote the first and the last indexes of the vertices
in span(ν) by left(ν) and right(ν) respectively. In each node ν ∈ T , we store the sequence
σ(ν) obtained from sorting {2M [v1, v] : v ∈ span(ν)} increasingly. It is easy to see that the
time complexity of building T and the sequences in its nodes is O(n log n) (see Figure 4.5).

53



Figure 4.5: Construction of T on top of P .

Observation 4.4. For any two numbers a and b, we have:

remδ(a + b) = remδ(remδ(a) + remδ(b)) (4.4)

Based on the above observation and Observation 4.2, for any j′ ≥ i we can write M [i, j′]
as:

M [i, j′] = remδ(d(vi, vj′))/2 =

remδ(d(v1, vj′) − d(v1, vi))/2 =

remδ(remδ(d(v1, vj′)) − remδ(d(v1, vi)))/2 =

remδ(2M [v1, vj′ ] − 2M [v1, vi])/2

Now, for each vertex ν with σ(ν) = (s1, . . . , st) and i ≤ left(ν), we define σi(ν) as:

σi(ν) =
(
remδ(s1 − 2M [v1, vi]), . . . , remδ(st − 2M [v1, vi])

)
(4.5)

Let µi(ν) be the maximum of σi(ν). Based on the above argument, we can see

max{M [left(ν), left(ν) + 1], . . . , M [left(ν), right(ν)]}

is indeed µi(ν)/2. An important observation here is that because the elements of M are at
most δ/2, σi(ν) is a concatenation of two sorted sequences namely σ1

i (ν) and σ2
i (ν) (note

that one of these sequences might be empty). So, in order to find µi(ν), we need to compare
the last elements of σ1

i (ν) and σ2
i (ν) (if they exist) and pick the greater value. Specifically,

if sj′ − 2M [v1, vi] is negative (resp. positive) for some sj′ ∈ σ(ν), remδ(sj′ − 2M [v1, vi])
belongs to σ1

i (ν) (resp. σ2
i (ν)). Thus, we can do binary search to obtain the index of the

last element of σ1
i (ν) and so µi(ν) in O(log |span(ν)|) time.

54



We can use the above data structure to find M̄ [i, j] as follows: we first obtain two paths
πi and πj and their split vertex νsplit from the root of T to vi and vj respectively. Let Vi,j

be the set of right (resp. left) children of πi (resp. πj) from νsplit to its leaf (including vj).
Now, Mi,j = 1/2 ∪ν∈Vi,j σi(ν) where the multiplication is done element-wise. Therefore,

M̄ [i, j] = max Mi,j = max{µi(ν) : ν ∈ Vi,j} (4.6)

because |Vi,j | = O(log n) and computing each µi(ν) in (4.6) also costs O(log n), the total
time complexity of computing M̄ [i, j] is O(log2 n) which leads to an overall O

(
(n log2 n +

k) log n
)

time complexity for the PCkCP in unweighted paths.

Further improvements: First, we observe that if for two nodes ν, ν ′ ∈ T , ν ′ is a par-
ent of ν then σ(ν) is a sub-sequence of σ(ν ′). This property enables us to use a technique
called fractional cascading [24] to avoid doing binary search on each of the nodes in Vi,j to
find their maximum. Specifically, we equip each element s of σ(ν ′) with a pointer that points
to the smallest element in ν larger than or equal to s. This structure can be constructed
in O(n log n) time [24]. So, in order to obtain all {µi(ν) : ν ∈ Vi,j}, we only perform one
binary search on σi(root(T )) with cost O(log n) and follow the pointers along the paths to
obtain each µi(ν) : ν ∈ Vi,j in a constant time. So, the total time complexity of computing
M̄ [i, j] is O(log n) and so, the total running time is O

(
(n log n + k) log n

)
.

As another improvement, note that we only need to do binary search on σi(root(T )) once
for each row i in the entire algorithm. Also, by spending O(n log n) time, for each root-leaf
path πi and each ν ′ ∈ πi, we can store max{µi(ν) : ν is right child of a node in πi[ν ′, vi]} in
ν ′ (πi[ν ′, vi] is the portion of πi from ν ′ to vi) by walking along πi twice (once for computing
µis and once for storing the maxes). So, having νsplit, we only need to take care about
computing max{µi(ν) : ν ∈ Vi,j and hanging from πj}. To address this problem, consider
a fixed ith-row. Based on Algorithm 6, at each iteration r, the undiscarded region of the
ith-row corresponds to span(νr) for some νr ∈ T . Let νr

m be the left child of νr (if we are
not at the last iteration) with mr = right(νr

m). We can see that mr is the median of the
undiscarded region. Now, νr+1

m is either the left child of νr
m or the left child of the right

neighbor of νr
m. Let r0 be the last iteration for which νr0

m is on πi. For iterations r ≤ r0, we
only need to consider the maximum of the values in σi(ν ′) where ν ′ the first right child on πi

after νr
m. Also, for iterations r > r0, we only need to have the set of maximum values in the

left hanging nodes of πmr [νsplit, νr
m] and νr

m itself. Now, it is easy to see that as r increases
to r + 1, these set of values can be updated in a constant time. Thus, we can conclude that
computing M̄ [i, mr] for all iterations r only takes O(log n) time and because we have linear
number of rows, we would have the following theorem:

Theorem 4.1. The unweighted PCkCP can be solved in O((n + k) log n) time.

55



4.3 PCkCP for Weighted Paths

Let P = (v1, . . . , vn) be the given weighted path such that wi is the weight of vi. For a point
x on P , we define wd(vi, x) = wid(vi, x). Again each pair of vertices (vi, vj) generates O(k)
candidate values which corresponds to the trains that can be fitted in [vi, vj ]. Here, because
the weights of vi and vj might be different, a train may not be required to have the same
distance from vi and vj in order to induce the same cost on them. Again, we denote the cost
that a fitted t-train in [vi, vj ] induces on vi and vj by ICt(vi, vj). Suppose that d(vi, vj) > tδ

for some t > 1. We define the width of (vi, vj) as ICt−1(vi, vj) − ICt(vi, vj) and denote it
by W (vi, vj). Note that this value is independent of t and only depends on wi and wj and
so, we can compute it in a constant time (in the unweighted case, the width of all pairs in
P are δ/2). Because here the widths of the pairs in P might not be equal, we first need to
find an interval I∗ such that each pair of vertices can generate at most one cost in I∗. But
before going into that, we need to update our feasibility test to support weighted vertices.
Algorithm 7 presents the feasibility test procedure WPATH-FT(P ,r) which gets a weighted
path P and a test value r and determines whether r ≥ r∗ or r < r∗.

Algorithm 7 WPATH-FT(P, r)
1: Set Counter = 1
2: for j=1 to n do
3: Let Ij = [αj , βj ] be the interval on the x-axis for which wd(αj , vj) = wd(vj , βj)=r.
4: end for
5: Set NextInterval = (−∞, +∞).
6: Set j = 1.
7: if NextInterval ∩ Ij = ∅ then
8: Put a center c at the rightmost point of NextInterval.
9: Counter = Counter+1

10: if Counter > k then
11: return Infeasible.
12: end if
13: NextInterval = (c, c + δ].
14: else
15: NextInterval = NextInterval ∩ Ij .
16: j = j + 1.
17: end if
18: goto Line 7 if j ≤ n.
19: return feasible.

Note that in the while loop of Algorithm 7, each Ij (1 ≤ j ≤ n) can be computed
in constant time and we visit each vertex once. Therefore, the running time of the above

56



feasibility test is O(n + k). The geometric view for the weighted case is similar to the
unweighted case but here, for each vertex vi, the magnitude of the slopes of Ri and Li is
wi. For each pair (vi, vj), the y-coordinate of the intersection point of Ri and Lj is the
cost that a fitted 1-train (single point) in [vi, vj ] induces on vi and vj which is denoted by
IC1(vi, vj). Similarly, if d(vi, vj) > (t − 1)δ, ICt(vi, vj) would be the y-coordinate of the
horizontal segment with length (t − 1)δ and endpoints on Ri and Lj (see Figure 4.6).

v2 v3 v4

δ

2δ

cost

x
v1

IC1(v2; v4)

IC2(v2; v4)

IC3(v2; v4)

W (v2; v4)

I
∗

y = y0

y = y1

R1R2L3L4

r2 r1 l3 l4

Figure 4.6: A weighted path (v1, v2, v3, v4), the width of (v2, v4) and three costs generated
by the pair. Note that only one of them lies inside I∗.

4.3.1 Matrix Search for Weighted Paths

First, we need to build an interval I1 = [a, b] such that r∗ ∈ I1 and it’s interior does not
contain any IC1(vi, vj) for any i < j (note that IC1(vi, vj) is indeed the y-coordinate of the
intersection point of Ri and Lj). If we use Lemma 2.5 [66] on all Ri and Lj (1 ≤ i, j ≤ n),
we can get I1 in O((n + k) log n) time. Let us define W ∗ as follows:

W ∗ = min{W (vi, vj) : i < j and IC1(vi, vj) ≥ b} (4.7)

We can see that r∗ ∈ I2 := [b − kW ∗, b] ∩ I1. This is because r∗ can’t be smaller than the
cost that a fitted k-train induces on the generating pair of W ∗.

Proposition 4.4. W ∗ can be computed in O(n log n) time.

Proof. We first compute the intersection points of all Li and Rj for 1 ≤ i, j ≤ n with
the horizontal line y = b. Then, we sort these intersections on the line from left to right
in O(n log n) time. So, each of these intersections corresponds to a line with a positive or
a negative slope. We traverse these intersections from left to right and store the minimum
positive slope and the minimum width we have seen in variables min_slope and min_width

respectively. Finally, we set min_width as W ∗. Specifically, when we visit an intersection
point, if it came from a line with a positive slope, we update min_slope if necessary and
if it came from a line with a negative slope, we compute the width it creates with the line
that generated min_slope and update min_width if necessary. □

57



We can see that the length of I2 is at most kW ∗. This implies that by applying the feasi-
bility test O(log k) times at the costs b − iW ∗ (0 ≤ i ≤ k) we get an interval I3 ⊆ I2 with
length at most W ∗ containing r∗. Because W ∗ is the minimum width, each pair (vi, vj) with
IC1(vi, vj) ≥ b can generate at most one candidate value in I3.

Consider the set of half-lines {R1, . . . , Rn−1} (all with positive slopes) and their upper-
envelope polygonal chain as a function fUE(x). We can see that fUE is a piece-wise linear
and an increasing function. Also, fUE(x) is the cost of covering all the vertices on the left
side of x if we put a center at x. We can compute fUE in linear time as follows: suppose
that we have already computed the upper-envelope of {R1, . . . , Rj−1} consisting of it’s lines
and break points. Now, when we add Rj and update our envelope, if Rj is below the last
break point, we consider Rj and the last line of the envelope for a possible new break point.
Otherwise, we find the first break point below the line (be checking the break points one
by one from the last) and consider the line next to it (on its left) for a break point. Note
that when we check a break point and it turns out it is below Rj , the line next to it (on
its right) can never be a part of the envelope. Because we have linear number of lines, the
time complexity of computing fUE is linear.

Let (x1, . . . , xs) be the x-coordinates of the break points of fUE where s is the number of
break points. Then, we can use our feasibility test to do binary search on {fUE(xi) : 1 ≤ i ≤
s} to find an interval [xq, xq+1] such that r∗ ∈ [fUE(xq), fUE(xq+1)]. Let Rq (generated by
vq) be the line corresponding to the portion of fUE in [xq, xq+1]. Then we have the following
observation:

Observation 4.5. If c∗
1 induces r∗, then vq is the first vertex of a determining pair.

Based on the above observation, we can consider all pairs {(vq, vq+1), . . . , (vq, vn)}, ob-
tain the candidate value that each generates, sort them and do binary search (using our
feasibility test) to get an interval I(1). Now, c∗

1 can’t generate any candidate value in the
interior of I(1). Similarly, we can do the above process on {L2, . . . , Ln} to get an interval I(2)

such that c∗
k can’t generate any candidate value in the interior of I(2). Let I∗ = I3∩I(1)∩I(2).

So, it is only left to resolve the candidates in the interior of I∗.

Observation 4.6. If (vi, vj) is a determining pair and a train (c∗
h1

, . . . , c∗
h2

) in [vi, vj ]
induces r∗ on the interior of I∗, then

1. 0 < d(vi, c∗
h1

), d(vj , c∗
h2

) < δ/2.

2. (c∗
h1

, . . . , c∗
h2

) is the longest train that can be fitted in [vi, vj ].

The first part of the above observation comes from the fact that if r∗ lies on the interior
of I∗, then h1 ̸= 1 and h2 ̸= k. So, if for example d(vi, c∗

h1
) ≥ δ/2 then because of the PCC,

58



c∗
h1−1 can cover vi in the optimal solution. For the second part, note that if we are able

to fit a longer train in [vi, vj ] then either d(vi, c∗
h1

) or d(vj , c∗
h2

) is greater than δ/2 which
contradicts the first part.

Based on Observation 4.6, for any pair of vertices (vi, vj), we define our matrix M for
the weighted case such that M [i, j] is the cost r induced by the longest train (c1, . . . , cq)
that can be fitted in [vi, vj ] if r ∈ I∗ and 0 < d(vi, c1), d(vj , cq) < δ/2. If we didn’t have
either of these two conditions, we assign M [i, j] = 0. It is clear that r∗ is an element of M .
Similar to the unweighted case, we define M̄ [i, j] as max{M [i, i+1], . . . , M [i, j]}. Again, we
can see that M̄ is a row sorted matrix but may not be sorted column-wise. Next, we show
Proposition 4.3 is still valid for our new definition of M and M̄ in the weighted case.

Proposition 4.5. If M [i, j] = r∗, then for all i < j′ < j, M [i, j′] ≤ r∗.

Proof. We proceed by contradiction. Suppose that (vi, vj) induces r∗ and ∃i < j′ < j

such that M [i, j′] > r∗. Let C = (c1, . . . , cq) be the longest train that can be fitted in [vi, vj′ ]
and induces the cost M [i, j′] on vi and vj′ . Also, let C ′ = (c∗

h1
, . . . , c∗

h2
) ⊆ C∗ be the train

that induces r∗ in [vi, vj ]. Now, c∗
h1+q−1 < cq (because we assumed that M [i, j′] > r∗) and

|C| < |C ′| (because vj > vj′). We consider two cases:

case 1: c∗
h1+q ≤ vj′ : In this case, we could fit a (q + 1)-train namely C ′′ = (c′

1, . . . , c′
q+1)

in [vi, v′
j ] which contradicts the fact that C was the longest train in [vi, vj′ ].

case 2: c∗
h1+q > vj′ : In this case, vj′ should be covered from its right in C∗ (because

c∗
h1+q−1 < cq and we assumed M [i, j′] > r∗). Also, the cost of covering vj′ in C∗ is no more

than r∗. So, if wi ≤ wj′ , d(vi, c∗
h1

) ≥ d(vj′ , c∗
h1+q) and thus, we can fit a (q + 1)-train in

[vi, vj′ ] which is a contradiction.
Now, assume that wi > wj′ . Let t1 and t2 be the points on the right side of vj′ such that

wd(vj′ , t1) = r∗ and wd(vj′ , t2) = M [i, j′]. Note that t2 > t1 and t2 is the mirror image of cq

with respect to vj′ . Now, d(c∗
h1

, c1) < d(t1, t2) (because wi > wj′ and the cost that vi induces
on c∗

h1
and c1 are r∗ and M [i, j′] respectively). Also, because M [i, j′] ̸= 0, d(cq, vj′) < δ/2

(based on the definition of M), cq + δ > vj′ + δ/2 which implies that [t1, t2] ⊆ [c∗
h1+q, cq + δ].

This contradicts the fact that d(c∗
h1+q, cq + δ) = d(c∗

h1
, c1) < d(t1, t2) (see Figure 4.7). □

Figure 4.7: Proof of Proposition 4.5

59



The above proposition implies that Observation 4.3 is valid for M and M̄ in the weighted
case and so we can use Algorithm 6 to find r∗ and get C∗. Based on Algorithm 6, the
time complexity of finding r∗ is O((ng(n) + k) log n) where g(n) is the time complexity
for computing an element of M̄ . In the last section of this chapter, we show how we can
compute an element of M̄ in O(log3 n) time by spending O(n log3 n) time for preprocessing.
This gives us the following theorem:

Theorem 4.2. The PCkCP can be solved in O((n log3 n + k) log n) time.

4.4 Computing an Element of M̄ for Weighted Paths

In this section, we build a data structure such that for any query pair (i, j) (i < j), it enables
us to compute M̄ [i, j] = max{M [i, j′] : i < j′ ≤ j} in a sub-linear time. Suppose that
I∗ = [y0, y1]. We denote the x-coordinates of the intersection points of Li and Ri (1 < i < n)
with line y = y1 by li and ri, respectively (see Figure 4.6). Note that if for a pair (vi, vj′),
lj′ < ri, it can not generate any candidate value in I∗ (because of the way we built I∗) and
so, M [i, j′] = 0. Thus, we only consider the pairs (vi, vj′) for which lj′ ≥ ri. Let us define
the complement function with respect to δ as:

compδ(x) =
⌈

x

δ

⌉
× δ − x (4.8)

We also denote compδ(li) and compδ(ri) by l̂i and r̂i respectively where 1 < i < n. For
any pair (i, j′) with j′ > i and lj′ > ri, let Eij′ = compδ(lj′ − ri) = remδ(l̂j′ − r̂i) and
Dij′ = Eij′/(w−1

i + w−1
j′ ) (wi and wj′ are the magnitudes of the slopes of Ri and Lj′

respectively). Based on the geometric view, it is easy to see that M [i, j′] = y1 − Dij′ if
Dij′ ≤ |I∗| and zero otherwise. So, the problem of finding M̄ [i, j] is equivalent to find
Dmin = min{Dij′ : i < j′ ≤ j}. It is convenient to visualize this set as follows: for each
i < j′ ≤ j, we consider eij′ as the point located at (Eij′ , 0) on the x-axis. There are two
half-lines corresponding to eij′ :

1. L+
ij′ attached to eij with slope wi.

2. L−
ij′ from the origin with slope −wj′ .

Figure 4.8 depicts an example of such half-lines. We can see that the distance between the
intersection point of L+

ij and L−
ij from the x-axis is indeed Dij . We call this distance the D-

coordinate of the intersection (when a point moves downward, its D-coordinate increases).
So, each value Eij′ generates exactly one intersection D-coordinate call it the D-value of
Eij′ . Like the unweighted case, we build a balanced binary tree T on top of the vertices and
in each node ν ∈ T we store {l̂h : vh ∈ span(ν)} as an increasingly sorted sequence σ(ν).

60



eij1 eij2 eij3

L+
ij1

L+
ij3

L+
ij2 L−

ij2

L−
ij1

L−
ij3

D

Dij3

Dij1

Dij2

Eij1

Eij3

Eij2

x

Figure 4.8: Three points eij1 , eij2 and eij3 located at distances Eij1 , Eij2 and Eij3 respec-
tively and their generating points. In this example, (vi, vj1) generates the maximum of
{M [i, j1], M [i, j2], M [i, j3]}.

So, if we preprocess each ν ∈ T such that for a given vertex vi, we can quickly compute

µi(ν) = min{D − value of Eih : vh ∈ span(ν)} (4.9)

we can decompose the set {vj : i < j′ ≤ j} into ∪ν∈Vi,j span(ν) (as we did in Section 2.1)
and set Dmin = min{µi(ν) : ν ∈ Vi,j}

Let ν ∈ T be a fixed node. In the rest, we show how we can preprocess ν such that given
a query vertex vi, we can efficiently compute µi(ν). First, note that the set of half-lines
{L−

ih : vh ∈ span(ν)} is independent of i. Also, for each i, {Eih : vh ∈ span(ν)} is the union
of two sorted sequences σ1

i (ν) and σ2
i (ν), where σ1

i (ν) (resp. σ2
i (ν)) is obtained by a shift

(adding a constant value) of the elements in σ(ν) smaller than (resp. greater than or equal
to) r̂i. Therefore, if µ1

i (ν) (resp. µ2
i (ν)) is the minimum D-value generated by σ1

i (ν) (resp.
σ2

i (ν)), we have:
µi(ν) = min{µ1

i (ν), µ2
i (ν)} (4.10)

Consider the lines L+
ij′ : y = wi(x−Eij′) and L−

ij′ : y = −wj′x, where Eij′ is a variable (see
Figure 4.8). When Eij′ increases, the D-value of Eij′ (the intersection of L+

ij′ and L−
ij′)

increases linearly. Specifically, if we set Eij′(t) = l̂j′ + t, the D-value generated by Eij′ is
the following linear function denoted by Lij′ :

Lij′(t) = wiwj′

wi + wj′

(
l̂j′ + t

)
(4.11)

Let us define:
f(t) = min{Lij′(t) : vj′ ∈ span(ν)} (4.12)

We can see that f(t) is the lower-envelope of a set of lines which can be computed in
O(|ν| log |ν|) time (|ν| is the number of vertices in span(ν)) using the divide-and-conquer

61



algorithm (we use the order in σ(ν) for breaking the lines). Because we need to work with
the sub-sequences of σ(ν), we store the entire recursion tree [63] (with the solutions of its
sub-problems) of the divide-and-conquer algorithm and denote this tree by Ri. So, each
node ω of Ri contains a set of lines each corresponds to a vertex νj′ ∈ span(ν) and their
lower-envelope. We denote the indices of these vertices by J (ω). Note that the indices stored
in each node of Ri is independent of i (although the lines and the resulting lover-envelope
depends on i). Also, we denote the lower-envelope stored in ω ∈ Ri by LEω

i and the indices
corresponds to the lines appeared in LEω

i from left to right by Eω
i .

Based on the above discussion, one way to preprocess ν is that for each 1 < i < n, we
compute and store Ri. Now, when we are given a vertex vi, we first use binary search to find
the last element st0 in σ(ν) = (s1, . . . , st) smaller than r̂i. So, we have two sub-sequences
σ̂1

i (ν) = (s1, . . . , st0) and σ̂2
i (ν) = (st0+1, . . . , st). Note that each Ri is a binary tree on top

of span(ν). So, we can decompose σ̂1
i (ν) (similarly σ̂2

i (ν)) into the union

σ̂1
i (ν) = ∪l̂j : j ∈ J (ω) and ω ∈ W1 (4.13)

for a set of nodes W1 ⊆ Ri. Indeed, the nodes in W1 can be specified by considering two
root-leaf paths in Ri in O(log |σ(ν)|) time. Now, σ1

i (ν) is a shifted sequence of σ̂1
i (ν). Let

us denote the amount of this shift by x0. In order to find µ1
i (ν), for each node ω ∈ W1 we

look at the value of its lower-envelope at x0. The minimum of these values is indeed µ1
i (ν).

Similarly, we can obtain µ2
i (ν) and set the minimum of these two values µi(ν). Because the

height of T is O(log n), the total time complexity of computing M̄ [i, j] is O(log2 n).
The problem here is that if we build Ri for all 1 < i < n and all ν ∈ T , the time

complexity of the preprocessing phase is O(n2 log2 n). In order to make the preprocessing
cost sub-quadratic, we use the following sub-sequence property for each node ω (independent
of i) in the recursion trees:

Proposition 4.6 (The sub-sequence property). For any ω ∈ Ri and two indices j1 and j2

such that wj1 < wj2, Eω
j2 is a sub-sequence of Eω

j1 where wj1 and wj2 are the weights of vj1

and vj2 respectively.

We prove the above proposition at the end of this section and here, we discuss how
we use it to reduce the time complexity of the preprocessing phase and adjust the query
time accordingly. First, we sort all the weights increasingly into a sequence (wi1 , . . . , win).
Next, we build a balanced binary tree TW on top of this sequence as follows: the root rW of
TW corresponds to win/2 . Its left child corresponds to win/4 and its right child corresponds
to wi3n/4 . We recursively continue building the nodes of the tree until each weight in the
sequence has a node in TW . In the root of TW , we build and store Rin/2 . Let X1 = Ein/2

(the result of building Rin/2) and X2 = {j : vj ∈ span(ν)} \ X1. In the right child of rW , we
build and store Ri3n/4(X1) and in the left child of rW , we build and store Rin/4(X2) that
is defined as follows: Ri3n/4(X1) (similarly Rin/4(X2)) is the tree identical to Ri (all the

62



recursion trees when we process ν ∈ T are identical but the information we store in each
node is different) and a line in {Li3n/4j′ : j′ ∈ X1} is in ω ∈ Ri3n/4(X1) if and only if it is in
ω ∈ Rin/2 . We can easily see that the height of Ri3n/4(X1) is O(log |ν|) and computes the
lower-envelope of the lines in X1 denoted by LE i3n/4(X1) in O(|X1| log |ν|) time. Similarly,
Rin/4(X2) and LE in/4(X2) can be computed in O(|X2| log |ν|) time. We recursively build
and store the recursion trees and lower-envelopes of the nodes in TW based on the above
partitioning of the lines (the lines that appear in the envelope and the lines that do not
appear in the envelope) in each node.

We can see that in each level of TW , the set of lines in the recursion trees are disjoint
and their sum is |ν|. Because the height of TW is O(log n), the total time complexity for
building the recursion trees for all nodes in TW is O(|ν| log |ν| log n). Because the vertices in
the span of the nodes in each level of T are disjoint, the total time complexity for building
the recursion trees for all nodes in T becomes O(n log3 n).

Here, we discuss given a query vertex vi, how we can compute µ1
i (v) in sub-quadratic

time. First, we compute σ̂1
i (ν) and decompose it into its corresponding set of nodes W1 as

in Equation 4.13. Next, we find a path τi from rW to wi in TW . Let tL and tR be the left and
right child of rW respectively. We recall that we have stored Rin/4(X2) in tL and Ri3n/4(X1)
in tR. If τi goes to tR, we do nothing in rW and go to tR (because Eω

i is a sub-sequence of
Eω

in/2
according to Proposition 4.6). Otherwise, we process rW as follows: for each ω ∈ W1,

consider an intersection point Lin/2j′
1

and Lin/2j′
2

in LEω
in/2

. Because Eω
in/2

is a sub-sequence
of Eω

i (Proposition 4.6), by examining the x-coordinate of the intersection point of Lij′
1

and
Lij′

2
against x0, either {Lij′ : j ∈ Eω

in/2
and j′ ≤ j1} or {Lij′ : j ∈ Eω

in/2
and j′ ≥ j2} can

not be the line in LEω
i at point x0. So, by doing binary search on the intersection points

of LEω
in/2

, we can get the line that might be the line in LEω
i at x0. We store this line after

processing rW .
We continue processing the nodes of τi based on when each internal node in the path

has a right or a left child and keep O(log |ν|) (the size of W1) lines after processing each
internal node in τi. Finally, we pick the minimum value of these lines at x0 and compare
it with the values of the lower-envelope stored in {LEω

i : ω ∈ W1} at x0 and pick the
minimum one which is µ1

i (ν).
According to the above discussion, given a query vertex vi, first, we need to decompose

the vertices {vj′ : i < j′ ≤ j} into the union the spans of the vertices in Vi,j ⊆ T . Vi,j

has O(log n) vertices and can be computed in O(log n) time. Next, for each ν ∈ Vi,j , we
need to compute and store its W1 which costs O(log |ν|). Also, for each ω ∈ W1, we have
TW which has O(log n) height and in each node of it we do binary search on the vertices
of its lower-envelope. So, the query time complexity is O(log4 n). If we look closely at this
process, an improvement can be applied as follows: for a fixed ν, consider three nodes ωp

and its children ωL and ωR in its recursion trees. Now, TW is the same for all these nodes.
Thus, for a node τ ∈ TW with corresponding weight wt, LEωp

t is obtained by merging LEωL
t

63



and LEωR
t . Note that because all the lines in the envelopes has positive slopes, LEωL

t and
LEωR

t are increasing functions and intersect each other in at most one point. So, if we do
binary search on the vertices of LEωL

t and LEωR
t , when processing ωp in τ , we only need to

test the intersection of LEωL
t and LEωR

t against x0. This removes an O(log n) factor from
the query time complexity. So, we can have the following theorem:

Theorem 4.3. By spending O(n log3 n) time for preprocessing, we can build a data structure
that enables us to compute M̄ [i, j] for any given pair (i, j) in O(log3 n) time.

4.4.1 Proving the Sub-sequence Property

Let S be a sequence of points on the x-axis with x-coordinates (x̂1, . . . , x̂g) sorted increas-
ingly such that ∀j : 0 < x̂j < δ and 0 < β < π/2 be a fixed given angle. Also, let
L−

S = (ℓ−
1 , . . . , ℓ−

g ) be the sequence of half-lines from the origin with negative slopes such
that ℓ−

j corresponds to x̂j (1 ≤ j ≤ g). So, there is a correspondence between the points in
S and the half-lines in L−

S (see Figure 4.8). Similarly, let L+
S = (ℓ+

1 , . . . , ℓ+
g ) be the sequence

of half-lines where ℓ+
j starts from x̂j and makes angle β with the negative direction of the

x-axis. Again, there is a correspondence between the half-lines in L+
S and the points in S.

Let us denote the intersection point of ℓ+
j and ℓ−

j by ρβ
j . We call x̂j , the generating point

of ρβ
j . Finally, we consider Iβ

S = {ρβ
1 , . . . , ρβ

g } and denote the point in Iβ
S with minimum

D-coordinate by mβ
S . In Figure 4.8, S = (eij1 , eij2 , eij3) and mβ

S is generated by eij1 .
Consider the points in S as a set of objects initially located at (x̂1, . . . , x̂g) such that

each object can move forward and backward on the x-axis. Without any confusion we refer
both the locations and moving objects by points based on the context. We can see that if
we slide the points in S to the left (resp. right), the points in Iβ

S moves downward (resp.
upward). So, if we consider the x-axis as the time-axis, we can talk about the location
of S at time t by which we mean the set of points obtained by shifting S such that the
x-coordinate of x̂1 becomes t. Let us denote the set of points in S, the intersection points
in Iβ

S and the point in Iβ
S with minimum D-coordinate at time t by S(t), Iβ

S (t) and mβ
S(t)

respectively. When t varies from zero to δ, the generating point of mβ
S(t) might change. We

call the times for which the generating point of mβ
S(t) changes the event times and denote

the sequence of generating points of mβ
S(t) (in order of time) by ϵβ(S). We can see that if

we consider the D-coordinate of ρβ
j (t) 1 ≤ j ≤ g as a function of t, this function is linear (as

in Equation 4.11) and so computing ϵβ(S) is equivalent to computing the lower-envelope of
a set of lines which can be done in O(g log g) time using the divide-and-conquer schema [63]
(as we discussed in the previous subsection).

Let (ℓ−
i1

, . . . , ℓ−
ig

) be L−
S sorted decreasingly according to their slopes magnitudes. Also,

let Πβ
S = (pβ

1 , . . . , pβ
g ) be the sequence of points generated by S such that pj lies on ℓ−

ij
(and

so, Πβ
S(t) = (pβ

1 (t), . . . , pβ
g (t)) is the location of these points at time t with respect to β).

Let us denote the D-coordinate of pβ
j (t) by D(pβ

j (t)). Then,

64



Observation 4.7. If for two indices 1 ≤ j1 < j2 ≤ g, D(pβ
j1

(0)) > D(pβ
j2

(0)) then x̂ij1
can

never appear on ϵβ(S).

Therefore, if we repeatedly apply Observation 4.7 to remove the points in S not appear-
ing in ϵβ(S), we would end up having a sequence S(1) ⊆ S such that ϵβ(S) = ϵβ(S(1)). We
call this process the first round of pruning of the points in S. Note that the D-coordinates
of the points in Πβ

S(1)(0) are sorted increasingly. Suppose that for two indices j1 < j2,
D(pβ

j1
(0)) < D(pβ

j2
(0)), we define tβ

j1j2
as the time for which,

D(pβ
j1

(tβ
j1j2

)) = D(pβ
j2

(tβ
j1j2

)) (4.14)

Note that because ℓ−
ij1

has a greater slope magnitude than ℓ−
ij2

, tβ
j1j2

exists.

Observation 4.8. If for three indices j1 < j2 < j3,

D(pβ
j1

(0)) < D(pβ
j2

(0)) < D(pβ
j2

(0)) (4.15)

and D(pβ
j1

(tβ
j2j3

)) < D(pβ
j2

(tβ
j2j3

)) then x̂ij2
can never appear in ϵβ(S).

Again if we repeatedly apply Observation 4.8 to the points in S(1) until no such triple
found, we get a sequence S(2) ⊆ S(1) such that ϵβ(S) = ϵβ(S(2)). Indeed, any point in S(2)

should appear in ϵβ(S) and the order is according to their corresponding points in ΠS . We
call this process the second round of pruning of S. Based on the above discussion, obtaining
ϵβ(S) is equivalent to perform two rounds of pruning.

The sub-sequence property. For any two angles 0 < β1 < β2 < π/2, ϵβ2(S) is a sub-
sequence of ϵβ1(S).

Proof. We show that if a point x̂jj′ ∈ S is eliminated with respect to β1, then it has
to be eliminated with respect to β2. We have two cases:

Case 1: x̂ij′ is eliminated in round one with respect to β1. In this case, there is an in-
dex j1 > j′ such that D(pβ1

j1
(0)) < D(pβ1

j′ (0)). Now, because the magnitude of the slope of
ℓ−

ij′ is bigger than ℓ−
ij1

, D(pβ2
j1

(0)) < D(pβ2
j′ (0)) and so, x̂ij′ should be eliminated in the round

one pruning with respect to β2 (see Figure 4.9 as an example of such situation).

65



time

D

β1β1

β2β2

x̂ij′ (0)

pβ1
j′ (0)

pβ1j1 (0)

pβ2
j′ (0)

pβ2j1 (0)

D(pβ1j1 (0))

D(pβ2j1 (0))

D(pβ1
j′ (0))

D(pβ2
j′ (0))

Lj′

Lj1

x̂ij1
(0)

Figure 4.9: Proof of case 1.

Case 2: x̂ij′ is eliminated in round two with respect to β1. So, there are two indices
j2 < j′ < j1 such that:

D(pβ1
j2

(0)) < D(pβ1
j′ (0)) < D(pβ1

j1
(0)) (4.16)

And,
D(pβ1

j2
(tβ1

j′j1
)) < D(pβ1

j′ (tβ1
j′j1

)) = D(pβ1
j1

(tβ1
j′j1

)) (4.17)

If x̂ij′ is eliminated in round one with respect to β2 we are done. Otherwise, we have:

D(pβ2
j′ (0)) < D(pβ2

j1
(0)) (4.18)

It is easy to see tβ2
j′j1

< tβ1
j′j1

and,

D(pβ2
j′ (tβ2

j′j1
)) = D(pβ2

j1
(tβ2

j′j1
)) = D(pβ1

j′ (tβ1
j′j1

)) (4.19)

time

D

x̂ij′ (t
β1

j′j1)

Lj′

Lj1

Lj2

β1β2

pβ1

j′ (t
β1

j′j1) = pβ2

j′ (t
β2

j′j1)

β1β2

pβ1

j1
(tβ1

j′j1) = pβ2

j1
(tβ2

j′j1)

t
β1
j′j1

− tβ2
j′j1

x̂ij′ (t
β2

j′j1)

t
β1
j′j1

− tβ2
j′j1

< t
β1
j′j1

− tβ2
j′j1

x̂ij1 (t
β1

j′j1)

x̂ij1 (t
β2

j′j1)

x̂ij2 (t
β1

j′j1)

Figure 4.10: Proof of case 2.

66



This implies that D(pβ2
j2

(tβ2
j′j1

)) < D(pβ1
j2

(tβ1
j′j1

)) which means that x̂ij′ should be elimi-
nated with respect to β2 (see Figure 4.10). □

67



Chapter 5

An Efficient Algorithm for the
Proximity Connected 2-Center
Problem

Given a set P of n points in the plane, the k-center problem is to find k congruent disks
of minimum possible radius such that their union covers all the points in P . The 2-center
problem is a special case of the k-center problem that has been extensively studied in the
recent past [22, 59, 65]. In this chapter1 , we consider a generalized version of the 2-center
problem called proximity connected 2-center problem (PCTCP). In this problem, we are also
given a parameter δ ≥ 0 and we have the additional constraint that the distance between
the centers of the disks should be at most δ. Note that when δ = 0, the PCTCP is reduced
to the 1-center (minimum enclosing disk) problem and when δ tends to infinity, it is reduced
to the 2-center problem. The PCTCP first appeared in the context of wireless networks in
1992 [36], but obtaining a nontrivial deterministic algorithm for the problem remained open.
In this chapter, we resolve this open problem by providing a deterministic O(n2 log n) time
algorithm for the problem.

1A preliminary version of this chapter appeared in the proceedings of the 33rd International Workshop
on Combinatorial Algorithms, IWOCA 2022. [9]

68



5.1 Background and Previous Works

The k-center problem in the plane is a fundamental facility-location problem in which we
are given a set of n demand points P and we are going to find a set S of k center points such
that cost(S) defined as maxp∈P mins∈S d(p, s) is minimized (d(p, s) is the Euclidean distance
between p and s). The k-center problem is known to be NP-hard [3]. However, there is a
simple greedy 2-approximation algorithm for the problem which can not be improved unless
P = NP [3]. So, the studies on the problem went in the direction of obtaining polynomial
time algorithms where k is not considered as a part of the problem input. As an example,
in 2002, Agarwal and Procopiuc [1] gave a nO(

√
k) time algorithm to solve the k-center

problem. Solving the problem for specific values of k like k = 1 and k = 2 received attention
due to the geometric properties that can be applied to solve these problems efficiently.
The 1-center problem is indeed equivalent to the problem of covering P with a disk with
minimum area. This problem is also called the minimum enclosing disk (MED) problem.
In 1983, Megiddo [51] used the prune and search technique to give an optimal linear time
algorithm to solve the MED problem.

For k = 2, Drenzer [25] gave the first nontrivial algorithm for the problem with O(n3)
time complexity. Later in 1994, Agarwal and Sharir [2] improved the time complexity for the
problem to O(n2 log3 n). In 1996, Eppstein [27] gave a randomized algorithm for the problem
with O(n log2 n) expected running time. In 1997, Katz and Sharir [43] proposed the novel
expander-based parametric search technique and showed that applying it to the 2-center
problem using the O(n2) time feasibility test of Hershberger [33], gives an O(n2 log3 n)
time algorithm for the problem. Later in the year, Sharir [59] designed an O(n log3 n)
time algorithm for the decision version of the 2-center problem using the breakthrough
observation of breaking the problem into three separate cases (far distant, distant and nearby
cases). Next, he parallelized the decision algorithm and put it into the Megiddo’s parametric
search schema [52] to obtain an O(n log9 n) time algorithm. Soon, it turned out that solving
the problem in the nearby case is the bottleneck to reduce the time complexity. Later,
Sharir’s running time was improved by Chan [17] and Wang [65] to O(n log2 n log2 log n)
and O(n log2 n) respectively. Very recently, Choi and Ahn [22] (independently Cho and
Oh [21]) obtained an O(n log n) time algorithm for the nearby case which led to an optimal
O(n log n) time algorithm for the 2-center problem.

Note that in the PCkCP in the plane, when δ tends to zero (resp. infinity), the problem
reduces to the 1-center (resp. k-center) problem. Also, when δ tends to zero and k tends to
infinity the problem becomes the Euclidean Steiner tree problem (connecting the points of
P by lines of minimum total length in such a way that any two points can be connected
by the lines). This is because in this configuration, the centers should be placed along the
lines of the minimum Steiner tree in order to minimize the cost. The Euclidean Steiner tree
problem is also NP-hard but it has a PTAS approximation algorithm [6].

69



In practice, the parameter δ usually specifies the range for which one center can commu-
nicate with other centers. So, when S satisfies the PCC, any pair of centers can communicate
with each other via the other centers. The proximity connected 2-center (PCTC) problem
first emerged in the works of Huang [36] in 1992 while he was studying packet radio networks.
In the network terminology, the PCTCP is the problem of locating two wireless devices as
close as possible to the demand points P such that they can send/receive messages between
each other. He originally gave an O(n5) time algorithm for the 2-center problem having
proximity constraints between their centers. Later in 2003, Huang et al. [38] studied a very
close problem to the PCTCP called α-connected 2-center problem. In this problem, instead
of δ, a parameter 0 ≤ α ≤ 1 is given and the distance between the center of the disks
should be at most 2(1 − α)r where r is the radius of the disks. They gave an O(n2 log2 n)
time algorithm for the decision version (given an r whether it is possible to cover the points
with two disks of radius r satisfying the desired conditions) of the problem. Note that this
problem is a special case of the PCTC decision problem where δ = 2(1−α)r. Later in 2006,
they gave a randomized algorithm with the same O(n2 log2 n) expected running time to
solve the α-connected 2-center problem [37]. In this chapter, we consider the PCTCP and
propose a deterministic O(n2 log n) time algorithm for it.

Here, we need to mention that although we use Sharir’s observation [59] of breaking the
problem into three different cases (far distant, distant and nearby), the reason we can’t get
a sub-quadratic algorithm like [59, 17, 65, 22] is that the PCTCP is structurally different
from the 2-center problem. In the 2-center problem, the optimal cost is determined by at
most three points of P [59] while in the PCTCP the cost may need to be determined by
more than three points (because of the PCC). This means that our search space has a higher
dimension than the search space of the 2-center problem. Also, all the sub-quadratic algo-
rithms for the 2-center problem use Megiddo’s [52] or Cole’s [23] parametric search schema
to reduce the time complexity which makes the resulting algorithm impractical [2] while our
algorithm exploits the geometric properties of the problem which make it straightforward
to be implemented using standard data structures in computational geometry.

A solution for a given PCTCP instance is defined as a pair of disks whose centers satisfy
the PCC and their union covers P . We call a disk with the larger (or equal) radius the
determining disk of the solution and its radius the cost of the solution. An optimal solution
is a solution with minimum cost among the set of all solutions for the problem. Note that
there might be an infinite number of optimal solutions with different pairs of radii because
we have freedom on the smaller disk. So, we try to find an optimal solution such that the
radius of its smaller disk is minimum among all optimal solutions. We call such a solution
a best optimal solution (BOS) for the problem. Therefore, if the problem has more than
one BOS, they would have the same pair of radii. We can also compare two solutions S1

and S2 as follows: we say that S1 is a better solution than S2 if cost(S1) < cost(S2) and
if cost(S1) = cost(S2), the radius of the non-determining disk of S1 is smaller than the

70



radius of the non-determining disk of S2. In this chapter, our algorithm not only gives us
an optimal solution but it computes a BOS for the problem.

5.2 Preliminaries and Definitions

Let (P, δ) be the given PCTCP instance where P is a set of n demand points in the plane
and δ is a given non-negative number. We assume that the points are in general position, by
which we mean no four points of P lie on a circle. Let (P1, P2) be a partition of P obtained
by dividing the plane by a line or two half-lines from a point (henceforth, when we use the
term partition of the plane, we mean a partition that satisfies this condition). We say that
a pair of disks (D1, D2) with centers (c1, c2) respectively is a solution for the partition if D1

covers P1, D2 covers P2 and d(c1, c2) ≤ δ. Optimal and best optimal solutions (BOSs) for the
partition are defined similarly. Let (D∗

1, D∗
2) be a BOS for the partition with centers (c∗

1, c∗
2)

respectively. We say that a point p ∈ P1 is a dominating point of D∗
1 if (D∗

1, D∗
2) is not a

BOS for the partition (P1 \ p, P2). The dominating points of D∗
2 are defined similarly. Note

that the dominating points of D∗
1 and D∗

2 are on their boundaries. By assuming that the
points are in general position, if D∗

1 (resp. D∗
2) is the MED of P1 (resp. P2), its dominating

points are either three points on the boundary such that their induced triangle contains c∗
1

(resp. c∗
2) or two points on the boundary such that their connecting segment passes through

c∗
1 (resp. c∗

2). In order to simplify the presentation of our algorithm, in the latter case, we
consider one of the dominating points as two infinitely close points and so, if D∗

1 or D∗
2 is

the MED of their corresponding points, we assume that it has exactly three dominating
points. Similarly, if D∗

1 (resp. D∗
2) is not the MED of P1 (resp. P2), in the case that it only

has one dominating point, we can consider it as two infinitely close points. But, if it has
three points on its boundary such that their induced triangle does not contain c∗

1, we might
have no dominating point for D∗

1. We can assume that such a situation never happens by
slightly perturbing the points. So, henceforth, if D∗

1 (resp. D∗
2) is not a MED, we assume

that it has exactly two dominating points.
We call the problem of computing a BOS for a given partition (P1, P2) the restricted

PCTCP. In the next section, we show that how we can solve the restricted PCTC using the
intersection hulls and the farthest-point Voronoi diagrams of P1 and P2 (the intersection
hull of a set of points with respect to some radius r is defined as the intersection of all
disks of radius r around the points of the set). Before explaining our algorithm, we review
farthest-point Voronoi diagrams, intersection hulls and their properties.

71



5.3 A Review on Farthest-point Voronoi Diagrams and their
Properties.

For a given set of points A = {ai : 1 ≤ i ≤ m}, the farthest-point Voronoi diagram
of A denoted by F(A) is the partition of the plane into a set of disjoint-interior cells
{C(ai) : ai ∈ A} such that C(ai) is the set of points in the plane for which no point of A

is farther from them than ai. We say ai is the farthest point of C(ai) and call it the site
of the cell C(ai). For each point x ∈ C(ai), the weight of x is defined as its distance to ai

and we denote it by w(x). Note that disk(x, w(x)) (the disk with center x and radius w(x))
covers all the points in A. It is easy to see that ∂F(A) (the set of boundaries between cells
of F(A)) consists of a set of line segments, half-lines, or it is just a line which we call the
edges of ∂F(A). For each e ∈ ∂F(A), there exists a unique pair (ai, aj) of points in A such
that for any point x on the interior of e, we have d(x, ai) = d(x, aj) and no point of A is
farther than these points from x. We call ai and aj the generators of e. Note that e lies on
the perpendicular bisector of the seg(aiaj) (the line segment connecting ai and aj). If v is
an endpoint of e (in this case we call v a vertex), v has three points in A all farthest from
v (and no more because of our assumption that no four points are on a circle). We also call
these points the generators of v. Given a start and an endpoint on ∂F(A), its corresponding
path on ∂F(A) is the portion of ∂F(A) between two points directed from the start point
toward the endpoint. Note that such a path is unique otherwise a cell of the F(A) would
be bounded which is not possible [63].

Observation 5.1. The center of the minimum enclosing disk of A is the minimum weight
point on ∂F(A).

We call the center of the minimum enclosing disk of A the root of ∂F(A) and it is
unique.

Proposition 5.1. Let p = [r, b] be a path on ∂F(A) where r is its root. Then, the weight
of the points on p change monotonically increasing from r to b.

Proof. First, note that the root is unique. So, for each edge e in the path with genera-
tors ai and aj , the midpoint of seg(aiaj) can not lie on the interior of e. On the other hand,
e is a subset of the perpendicular bisector of seg(aiaj) and the weight of each point on e

is its distance to ai (which is the same as its distance to aj). So, the weight on e should
change monotonically as we move from one of its endpoints to another. Now, suppose that
the proposition is not true. Then, there must be a first edge ht (direction is along p) on the
path such that as we move from h to t, the weight decreases. This means that the vertex h

should have local maximum weight on the path which is contradiction because if we slightly
move from h, the distance with one of its generators is increased. □

72



The intersection hull of A at radius r is defined as ∩a∈Adisk(a, r). Let us denote the inter-
section hull of A at radius r by HA(r). We can easily see that HA(r) is composed of a set
of circle arcs with radius r with endpoints at the edges of ∂F(A). So, if we start from the
leftmost endpoint of H(r) and traverse its arcs clockwise, we obtain a unique sequence of
arcs. We refer to this sequence as the arc-sequence of HA(r) and denote it by Seq(H(r)).
Let x be a vertex of HA(r). Suppose that x lies on an edge e of F(A). We call the half-line
from x along e that does not intersect the interior of HA(r) the arm of HA(r) from x. See
Firgure 5.1.

Figure 5.1: The farthest-point Voronoi diagram of a set of points and its intersection hull
at some radius r.

5.4 Computing a BOS for a Partition

Let (P1, P2) be a given partition. First, we compute the minimum enclosing disks D∗∗
1 and

D∗∗
2 for P1 and P2 respectively. This can be done in linear time due to Megiddo’s algorithm

[51]. Also let c∗∗
1 and c∗∗

2 be the centers of D∗∗
1 and D∗∗

2 respectively. Now, if d(c∗∗
1 , c∗∗

2 ) (the
distance between c∗∗

1 and c∗∗
2 ) is at most D, then we are done and (D∗∗

1 , D∗∗
2 ) is a BOS for

the partition. Otherwise, we have the following proposition:

Proposition 5.2. If d(c∗∗
1 , c∗∗

2 ) > δ then for any BOS (D∗
1, D∗

2) for the partition, we have
d(c∗

1, c∗
2) = δ.

Proof. We proceed by contradiction. Suppose that for an optimal solution (D∗
1, D∗

2),
d(c∗

1, c∗
2) < δ. So, at least one of the centers for example c∗

1 is different from c∗∗
1 and lies

inside the region between the two perpendicular lines from c∗∗
1 and c∗∗

2 on line(c∗∗
1 , c∗∗

2 ) (the
line passing c∗∗

1 and c∗∗
2 ). This is because if both c∗

1 and c∗
2 are outside this region, the

distance between them can’t be less than δ. If c∗
1 is not on ∂F(P1), then we can slightly

move c∗
1 toward its farthest point, reducing the radius of D∗

1 while not violating the PCC
which contradicts best optimality. If c∗

1 is on ∂F(P1), by Proposition 5.1, any point on the

73



interior of the path from c∗∗
1 to c∗

1 on ∂F(P1), covers P1 with radius smaller than r(D∗
1).

Since d(c∗
1, c∗

2) < δ, any point on this path sufficiently close to c∗
1 will not violate the PCC.

This contradicts the fact that (D∗
1, D∗

2) is a BOS. □

Let H1(r) and H2(r) be the intersection hulls of P1 and P2 with radius r. Note that the small-
est radii for which the intersection hulls of P1 and P2 are nonempty are r(D∗∗

1 ) and r(D∗∗
2 )

respectively. Let us denote them by r0
1 and r0

2 (in fact H1(r0
1) = c∗∗

1 and H2(r0
2) = c∗∗

2 ).
If r ≥ r0

1, for any point q ∈ H1(r), disk(q, r) (the disk with center q and radius r) covers
P1 (we have a similar statement for P2 and r0

2). Based on this property, the problem turns
to find a best optimal pair of radii (r∗

1, r∗
2) (the bigger radius is minimum and the smaller

radius is minimum among all such pairs) such that the distance between H1(r∗
1) and H2(r∗

2)
is exactly δ. Also, we call the maximum radius of optimal pair(s) the optimal cost and
denote it by r∗. The idea to find a best optimal pair is first try to find the optimal cost r∗

and then, fix one of the intersection hulls at radius r∗ and find minimum possible radius for
the other hull. So here, we focus on finding the optimal cost.

In order to find the optimal cost, we impose the constraint that the disks are congruent
(radii of both hulls is equal). Imposing this constraint makes the problem easier while it
does not change the optimal cost. In order to solve the problem for congruent disks, we
can grow the intersection hulls of the points at each part of the partition to see when the
distance between them becomes δ. We first build F(P1) and F(P2) which can be done in
O(n log n) time. In order to prevent structural changes when we grow the intersection hulls,
we apply a binary search (repeatedly find the median and discard half of the values) on
the set of weights of the farthest-point Voronoi diagrams of both sides to obtain an interval
I∗ = (i0, i1) such that r∗ ∈ I∗ and for each vertex v of the diagrams, w(v) /∈ I∗ (the weight
of a point x in a cell of farthest-point Voronoi diagram denoted by w(x) is the distance
between x and the site of the cell containing it). At each step of the binary search, when
we test a weight w, we use the algorithm of [20] to compute the distance between the two
intersection hulls at radius w to see whether their distance is smaller, equal or greater than
δ. Note that because the intersection hulls are convex, this step can be done in O(log n)
time according to [20] (we don’t need to explicitely build the intersection hulls because their
vertices are along the edges of the farthest-point Voronoi diagrams).

Observation 5.2. For any index i and any r ∈ I∗, the endpoints of the ith-element of
Seq(H1(r)) and Seq(H1(i0)) (resp. Seq(H2(r)) and Seq(H2(i0))) lie on same arms of H1(i0)
(resp. H2(i0)).

In other words, when r varies from i0 to i1, no arc in intersection hulls will be emerged
or vanished. Let us denote the arms of H1(i0) by A1 and call the partition induced by
H1(i0) ∪ A1 the A1-partition of the plane. Now, we discuss how to find the optimal cost for
the partition. Suppose that we have not found r∗ during the binary search (otherwise we are

74



Figure 5.2: A mini-arc for two intersection hulls

done). So, d(H1(i0), H2(i0)) > δ and d(H1(i1), H2(i1)) < δ. Let Seq(H1(i0)) = (X1, . . . , Xu)
and Seq(H2(i0)) = (Y1, . . . , Yu′). We also label each region of the A1-partition bounded by
two neighbour arms by the name of the arc it contains. Each arm in A1 can intersect ∂H2(i0)
in at most two points. Consider an arm in A1 with endpoint a and an intersection point x

with ∂H2(i0). We call this intersection point a first intersection point if ax does not intersect
the interior of H2(i0).

Let B be the set of all first intersection points of the arms in A1 and ∂H2(i0). Note that
H2(i0) is convex and the arms around H1(i0) diverges from each other. Also, we already have
the order of the arms around H1(i0) induced by F(P1). In order to compute B, consider the
counter-clockwise order on the arms of A1 starting from the arm with the lowest slope (can
be negative) and compute their first intersection points with H2(i0) in order. An important
point here is that if a vertex of H2(i0) lies on the right side of an arm a⃗ (the direction is
from its endpoint), it will be on the right side of any arm after a⃗. This property implies
that the cost of computing B is linear (see Figure 5.2).

Now, consider the partition induced by B and the vertices of ∂H2(i0) on ∂H2(i0). We
call each region of this partition a mini-arc on ∂H2(i0) (see Figure 5.2). We assign a label
(Xi, Yj) to each mini-arc of ∂H2(i0) where Xi is the label of the mini-arc in the A1-partition
and Yj is the label the arc of H2(i0) containing the mini-arc. Note that the number of such
(Xi, Yj) labels are linear (because we have a linear number of mini-arcs).

Proposition 5.3. The labels of the two arcs containing two closest points between H1(r∗)
and H2(r∗) corresponds to the label of one of the mini-arcs.

Proof. Let p1 and p2 be two points on H1(r∗) and H2(r∗) respectively with distance
δ. First, we observe that the perpendicular lines on line(p1, p2) from p1 and p2 should not
intersect the interior of H1(r∗) and H2(r∗) (otherwise it contradicts the optimallity of r∗).
Suppose that p1 and p2 are lie on two arcs Xi and Yj respectively (we consider the names
of the arcs in H1(r∗) and H2(r∗) the same as the label of their corresponding regions in

75



Figure 5.3: A connecting line segment of two points from two arcs that do not make a
mini-arc intersects an arm.

H1(i0) and H2(i0) respectively). If (Xi, Yj) is not a label of a mini-arc, p1p2 should intersect
an arm of Xi. But in this situation, the perpendicular line on line(p1, p2) from p1 should
intersect the interior of H1(r∗) (because of convexity of H1(r∗)) which is contradiction. See
Figure 5.3. □

According to Proposition 5.3, we can compute r∗ as follows: we consider each label (Xi, Yj)
of the mini-arcs and compute the value ri,j for which the distance between the two arcs Xi

and Yj becomes δ as they propagate between their bounding arms. Note that computing
each ri,j can be done in a constant time. Now, r∗ is the minimum value among all ri,js.

The next step is obtaining a BOS for the partition after computing r∗. As we said
earlier, in order to do this, we first assume that the determining disk covers P1 and obtain
the minimum possible radius r′

1 for H2 which makes the distance between H1(r∗) and H2(r′
1)

exactly δ. This can be done in a similar way to how we obtained r∗. Then we obtain r′
2

similarly by assuming that the determining disk covers P2. By comparing the results, we
pick the one with smaller non-determining disk which is in fact a BOS for the partition. So,
the total time we need to compute a BOS is O(n log n).

5.5 Obtaining a BOS for the PCTCP

We denote the optimal cost for the PCTCP by r∗ and a BOS for the problem by (D∗
1, D∗

2)
with centers (c∗

1, c∗
2) respectively. We can assume that c∗

1 and c∗
2 lie on the x-axis and c∗

1 is
on the left side of c∗

2. In [59], Sharir broke the 2-center decision problem (given a parameter
r determine whether it is possible to cover the points with two disks of radius r) into three
cases -far distant, distant and nearby- with respect to the given parameter r. He showed
that providing separate algorithms for these cases will reduce the overall time complexity
to solve the decision problem. Although our problem is an optimization problem and the
parameter r∗ is unknown, we will show that breaking the PCTCP into the same cases will

76



simplify our algorithm and reduce the overall time complexity. So, our algorithm separately
considers each of the following three assumptions about (D∗

1, D∗
2).

1. Nearby: d(c∗
1, c∗

2) ≤ r∗.

2. Distant: r∗ < d(c∗
1, c∗

2) ≤ 3r∗.

3. Far distant: d(c∗
1, c∗

2) > 3r∗.

Denote the smallest cost we can get having the nearby, distant and far distant assumptions
by rNA, rDA and rF A respectively. We also use the same notation for a BOS and their
corresponding centers having each assumption. So, we can obtain (D∗

1, D∗
2) by comparing

(DNA
1 , DNA

2 ), (DDA
1 , DDA

2 ) and (DF A
1 , DF A

2 ) (note that these solutions may not exist or
satisfy their corresponding case conditions. For example, d(cNA

1 , cNA
2 ) might be greater than

rNA but if (D∗
1, D∗

2) satisfies the nearby case, then rNA = r∗ and (DNA
1 , DNA

2 ) would be a
BOS for the problem and we have d(cNA

1 , cNA
2 ) ≤ rNA = r∗). Henceforth, while studing each

of the cases, when we say BOS, we mean a best solution we can get having the corresponding
case assumption. Given two points x and y in the plane, we denote the line passing from x

and y by line(x, y). The direction of this line is considered from x to y. Also, we denote the
half-line from x passing y by half -line(x, y) and the line segment with endpoints x and y

by seg(xy).

5.6 Computing a BOS in the Nearby Case

First, we can see that if (D∗
1, D∗

2) ≤ r∗, then there is an optimal partition R∗ (may not be
unique) such that (D∗

1, D∗
2) is a BOS of R∗. In fact, such a partition can be obtained by

considering a point in D∗
1 ∩ D∗

2 and two half-lines from it passing the intersection points
of ∂D∗

1 (boundary of D∗
1) and ∂D∗

2. In this section, when we say the dominating points of
(D∗

1, D∗
2), we mean its dominating points with respect to R∗. Without loss of generality,

we can assume that D∗
2 is the determining disk. We first compute the convex-hull(P ) and

scale the problem such that it fits in a unit square (multiple both x and y coordinates of the
points by the greatest constant such that the convex hull remains inside the square). This
step can be done in O(n log n) time. Note that the scaling will not change the solutions.

Proposition 5.4. If (D∗
1, D∗

2) ≤ r∗, then the area of D∗
1 ∩ D∗

2 must be greater than a
constant factor of the area of D∗

2 (the determining disk).

Proof. We proceed by contradiction. Suppose that such a factor does not exist. This
means that we can build a problem instance such that it has a BOS (D∗

1, D∗
2) in which

the radius of the non-determinig disk (D∗
1) becomes infinitely small (because of the nearby

assumption and scaling). So, D∗
1 should have at least one dominating point that is not

covered by D∗
2. Because the radius of D∗

1 is infinitely small, δ should tend to radius(D∗
2)

77



Figure 5.4: Enlarging the non-determining disk D∗
1 to cover one of the dominating points

of D∗
2 and get a better solution.

(which tends to the radius of the MED of P ). Now, D∗
2 should have at least one dominating

point (point c in Figure 5.4) with the x-coordinate less than or equal to c∗
2 (otherwise, we

can move both c∗
1 and c∗

2 to the right and reduce the radius of D∗
2 which determines the

cost). In this configuration, we can enlarge D∗
1 by moving c∗

1 toward this dominating point
of D∗

2 while satisfying the PCC in order to cover it and release it from D∗
2 (D∗

1 does not
lose any of its own points and its radius still remains less than the radius of D∗

2). Now, we
can reduce the radius of D∗

2 which contradicts the optimallity of (D∗
1, D∗

2) (see Figure 5.4).�

Proposition 5.5. D∗
1 (similarly D∗

2) should have a pair of dominating points such that:

1. They lie on different sides of line(c∗
1, c∗

2).

2. Their connecting segment does not intersect seg(c∗
1c∗

2).

Proof. First, we prove that D∗
1 should have a pair of dominating points each on the

different sides of line(c∗
1, c∗

2). Note that if D∗
1 has three dominating points on one side of

line(c∗
1, c∗

2), their induced triangle can’t cover c∗
1 and based on our general assumption such

situation can’t happen. Now, suppose that D∗
1 has two dominating points d1 and d2 both on

a same side of line(c∗
1, c∗

2). Because D∗
1 is not MED (it has only two dominating points), the

distance between c∗
1 and c∗

2 is exactly δ (otherwise, move c∗
1 toward the dominating points

to get better solution). Because d1 and d2 are on a same side of line(c∗
1, c∗

2), the region
R := disk(d1, r∗) ∩ disk(d2, r∗) ∩ disk(c∗

2, δ) is not empty. So, if we slightly move c∗
1 into R,

we would get a better solution which is contradiction (See Figure 5.5).

78



Figure 5.5: If d1 and d2 are on a same side of line(ci,j
+ , ci,j

− ), (Di,j
− , Di,j

+ ) can’t be best optimal

For the second statement, again if D∗
1 has three dominating points such that no pair of

them intersect seg(c∗
1c∗

2), their induced triangle can not contain c∗
1 which is contradiction.

Now, suppose that D∗
1 has two dominating points d1 and d2 such that their connecting

segment intersect seg(c∗
1c∗

2). Because seg(d1d2) has non-empty intersection with the interior
of disk(c∗

2, δ) and this disk is tangent to c∗
1, we can slightly move c∗

1 toward the mid-point
of seg(d1d2) while we are still inside disk(c∗

2, δ) to get a better solution. □

Considering the four dominating points in the above proposition, we can say that D∗
1∩D∗

2
should cover at least a constant factor of the area of convex-hull(P ). Furthermore, D∗

1 ∩D∗
2 ∩

convex-hull(P ) is convex because it is the intersection of convex objects. So, we can build a
constant size set of points M uniformly distributed on convex-hull(P ) such that (assuming
d(c∗

1, c∗
2) ≤ r∗) for at least one point m̂ ∈ M, m̂ ∈ D∗

1 ∩ D∗
2 ∩ convex-hull(P ). Because m̂ is

unknown, for each m ∈ M, we build a BOS (Dm
1 , Dm

2 ) assuming m ∈ D∗
1 ∩ D∗

2 and finally
pick a best solution in {(Dm

1 , Dm
2 ) : m ∈ M} and set it as (DNA

1 , DNA
2 ). Based on this

idea, we present our algorithm to find (Dm
1 , Dm

2 ) for a given point m ∈ convex-hull(P ).
Let X be a set of 360 directed lines (each line has a positive direction) passing through

m such that the angle between each directed line and its neighbour lines is 1◦. Now, there
is a directed line in X such that its angel with line(c∗

1, c∗
2) is at most 1◦ and c∗

1 lies on
the negative side of c∗

2 on the line (note that D∗
2 is the determining disk according to our

assumption). We call this directed line the correct directed line which is unknown. So, we
assume each line l ∈ X as the correct directed line and compute a BOS (Dm,l

1 , Dm,l
2 ) having

this assumption and finally pick the best one as (Dm
1 , Dm

2 ).
So, assume that a directed line l ∈ X called the m-line is given. Here we explain how to

compute (Dm,l
1 , Dm,l

2 ). The m-line divides the points of P into two disjoint sets one on the

79



right side and the other on the left side of the m-line. We sort these sets according to the
polar angles of their points (from m) with respect to the positive direction of the m-line.
These angles should lie between −180◦ and 180◦ and we sort them by increasing magnitude
(see Figure 5.6 for an illustration). Based on these orders, we denote the two sequences of
points on the left and right side of the m-line by (p1, . . . , pn′) and (q1, . . . , qn′′) respectively.
We call a point p-type (resp. q-type) if it is in the first (resp. second) sequence. We also call
a half-line from m that separates {p1, . . . , pi} from {pi+1, . . . , pn′} an ith-separator of the
p-type points. A jth-separator of q-type points is defined similarly (we assume that the 0th

and n′th (resp. n′′th) separators have the entire p-type (resp. q-type) points in one side). The
ith and jth separators of the p-type and q-type points partition the plane into two parts.
We call this partition the (i, j)-partition of the plane. One part of this partition contains
the positive direction of the m-line which we call it the positive side of the partition and we
call the other part the negative side of the partition.

Observation 5.3. If d(c∗
1, c∗

2) ≤ r∗, m = m̂ and the m-line is correct, then an (i, j)-partition
can be considered as R∗ and (D∗

1, D∗
2) is its BOS.

Note that in the above observation, the two separators from m passing the intersection
points of D∗

1 and D∗
2 give us the desired (i, j)-partition. We denote the set of points in

the positive and negative sides of the partition by P i,j
+ and P i,j

− respectively. Based on our
algorithm for restricted PCTCP, a BOS for an (i, j)-partition can be computed in O(n log n)
time. Let (Di,j

− , Di,j
+ ) (with centers (ci,j

− , ci,j
+ ) respectively) be the output of this algorithm for

the (i, j)-partition (see Figure 5.6 for an example). We refer to the first (resp. second) disk
the negative disk (resp. positive disk) of the partition. A naive approach to obtain (D∗

1, D∗
2)

is to apply our restricted PCTCP algorithm to each of the (i, j)-partitions and pick the best
one. This will give us an O(n3 log n) time complexity as there are quadratic partitions. In
the following we show how we can get (Dm,l

1 , Dm,l
2 ) by evaluating a sub-quadratic number

of partitions. The idea is first computing rm,l which is the best cost we can get assuming
m and l are correct. Then, we use it to compute (Dm,l

1 , Dm,l
2 ).

5.6.1 Computing rm,l

Let us define M+ as a (n′ + 1) × (n′′ + 1) matrix whose [i, j]-element (0 ≤ i ≤ n′ and
0 ≤ j ≤ n′′) is radius(Di,j

+ ). We call M+[i, j] non-critical if Di,j
+ is the MED of P i,j

+ .
Otherwise, we call it critical. We call M+[i, j] a valid element if M+[i, j] ≥ radius(Di,j

− )
and we call it non-valid otherwise. Because we assumed that l is correct, we can assume that
positive disks determine rm,l. This means that rm,l is indeed the minimum valid element of
M+.

Proposition 5.6. For any 0 ≤ i ≤ n′ and 0 ≤ j ≤ n′′, we have:

1. If M+[i, j] is non-critical, then M+[i′, j′] ≥ M+[i, j] for all i′ ≥ i and j′ ≥ j.

80



Figure 5.6: An example (i, j)-partition of a set of points and a BOS for the partition.

2. If M+[i, j] > radius(Di,j
− ), M+[i, j] is non-critical.

3. If M+[i, j] is valid and critical, then M+[i, j] = radius(Di,j
− ) and d(ci,j

− , ci,j
+ ) = δ.

Proof. 1,2) We prove the first statement and the second statement is similar. Because
M+[i, j] is non-critical, its dominating points make a triangle for ci,j

+ (their induced triangle
covers ci,j

+ ). On the other hand, P i,j
+ ⊂ P i′,j′

+ . So, Di′,j′

+ contains the dominating points of
Di,j

+ and its radius is greater or equal than Di,j
+ which gives the Proposition. 3) Suppose

M+[i, j] is critical and M+[i, j] > radius(Di,j
− ). Then, we can slightly move both centers

toward the dominating points of Di,j
+ and get a solution with reduced cost which contra-

dicts best optimality of (Di,j
+ , Di,j

− ) 4) If M+[i, j] > radius(Di,j
− ), based on case 3, M+[i, j]

is non-critical while we assumed it is critical. 5) If d(ci,j
− , ci,j

+ ) < δ, we can slightly move ci,j
+

toward the dominating points of Di,j
+ without violating the PCC and reduce the radius of

Di,j
+ which again contradicts best optimality. □

We search M+ to find rm,l as follows: we maintain a set of candidate values. During the
search, when we evaluate an element M+[i, j](computing (Di,j

− , Di,j
+ ) and its dominating

points), if M+[i, j] is valid, we add it to the candidate values and finally we set rm,l as the
minimum candidate value.

In order to search M+, we maintain two variables I and J where I stores the index of the
current row that we are searching and J stores the column index for which we can discard
any column with index greater than that. Initially, we set I = 0, J = n′′ (n′′ is the number of
columns of M+). We search the Ith-row by evaluating its elements backward starting from
its J th-element (if J = −1, the matrix search is done) toward its first element. Because
we are looking for a minimum valid element of the matrix, we can use Proposition 5.6 to
improve our search as follows: during the traversal of the row, if M+[I, j] is valid and non-
critical, we set J = j −1 (because DI,j

+ is the MED of P I,j
+ , when we add more points to the

81



positive side we can’t get a smaller positive disk). We finish traversing the row and increase
I by one if either the row is exhausted or we reach an index j such that M+[I, j] becomes
non-valid. Note that in this case, DI,j

− is the MED of P I,j
− (similar to Proposition 5.6 part

3). Here we might have a valid element on some index j′ < j but, the cost of this solution
can not be less than radius(DI,j

− ) (we add points to the negative side as we move left wise
on a row). In order to make sure that we will count such costs in our algorithm, we can add
radius(DI,j

− ) to the candidate set of the directed line in X with the opposite direction of
the current m-line.

We continue this procedure until no element is left. Note that when none of Di,j
− and

Di,j
+ are a MED, we can’t discard any element from the matrix because it is possible that

when we move a point from one side to the other, the radii of both disks become greater
or smaller while they remain equal (this situation can happen because of the PCC). So the
number of evaluations in the above schema might be still quadratic. Next, we explain how
to fix this problem.

Proposition 5.7. If M+[i, j] is valid-critical and qj is not a dominating point of Di,j
+ , then

M+[i, j − 1] ≥ M+[i, j].

Proof. Because Di,j
+ is not a MED, its center can’t get closer to its farthest points in

P i,j
+ (dominating points of Di,j

+ ) namely d1 and d2 because of the PCC. Now, by adding qj

to P i,j
− , Di,j−1

− needs to cover more points. If its radius gets bigger, the proposition follows.
Otherwise, according to the fact that qj is not a dominating point of Di,j

+ , it is not possible
to put ci,j−1

− on a place such that allow ci,j−1
+ to get closer to d1 and d2 due to best opti-

mality of (Di,j
− , Di,j

+ ). □

Note that in this proposition, if qj does not become a dominating point of Di,j−1
− , then

M+[i, j −1] = M+[i, j]. A similar statement is also correct for two consecutive valid-critical
elements in a column. Based on the above proposition, we can improve our matrix search
as follows: while traversing a row(left wise), when we hit a valid-critical element M+[i, j],
if both dominating points of Di,j

+ are p-type, we discard the rest of the row (because by
traversing a row, only q-type points will move to the other part of the partition) and con-
tinue the search on the next row. Similarly, if both dominating points of Di,j

− are q-type, we
can discard the rest of its column. Otherwise, we jump to the first (largest index) element of
the row for which a q-type dominating point of Di,j

+ moves to the negative side and discard
all the elements in between (because of Proposition 5.7). Similarly, we discard the portion
of the rest of the column of M+[i, j] with row index smaller than the index of the p-type
dominating point(s) of Di,j

− (applying the column version of Proposition 5.7).
When we evaluate a valid-critical element M+[i, j], if we didn’t discard the entire rest

of its row or column, we mark the portion of its column that is not discarded after the
evaluation of M+[i, j]. Now, when we traverse the rows, we ignore and jump discarded and

82



marked elements. Specially, if after evaluating an element M+[i, j], the largest index of the
q-type dominating point of Di,j

+ is j′ and M+[i, j′] is marked, we continue searching from
the first(biggest index) unmarked or undiscarded element of the ith-row after M+[i, j′].
Applying this marking schema in the matrix search will guarantee that the number of
evaluations is linear. The problem of our matrix search with marking schema is that we
may mark the minimum valid element of M+ and so get an incorrect rm,l. In the rest, we
will show how to overcome this problem.

We call the above matrix search initial search of M+ from top-right. Another way of
searching M+ is starting the search from M+[n′, 0] (the first element of the last row). But
this time, instead of traversing the rows from right to left, we traverse the columns from
bottom to top. The way we search the matrix is exactly symmetrical to the top-right search
but here we mark sub-rows instead of sub-columns. We call this matrix search the initial
search of M+ from bottom-left. After performing two initial searches on M+ one from the
top-right and one from the bottom-left, still there might be some elements that are marked
in both initial searches. We call these elements as doubly-marked elements. The next theorem
enables us to search the doubly-marked elements in an efficient way which leads us to find
rm,l. Let us denote the doubly-marked elements of M+ by Doubly-Marked(M+).

Theorem 5.1. By evaluating a doubly-marked element M+[i, j], we can discard one of the
following sub-rows or sub-columns of M+:

1. Elements above [i, j] (M+[i′, j] with i′ ≤ i).

2. Elements below [i, j] (M+[i′, j] with i′ ≥ i).

3. Elements in front of [i, j] (M+[i, j′] where j′ ≥ j).

Suppose that M+ [̂i, j̄] is a given doubly-marked element which is marked when we
evaluate M+ [̄i, j̄] and M+ [̂i, ĵ] in the initial top-right and bottom-left search respectively.
When we evaluate M+ [̂i, j̄], we get Dî,j̄

+ and Dî,j̄
− and their dominating points. For the sake

of simplicity, let us denote the first disk by D′
+ and the second disk by D′

−. If D′
− is MED,

then either radius(D′
−) ≥ radius(D′

+) or radius(D′
−) < radius(D′

+). In the former, case
1 in Theorem 5.1 happens and in the latter, D′

+ is MED (otherwise we can reduce its cost
and the solution can’t be optimal) and so cases 2 and 3 of the theorem happen. We have
a similar argument when D′

+ is a MED. So, the only left case is when none of the disks is
MED. Note that in this case each of D′

+ and D′
− has exactly two dominating points. Let

h1, h2 be the dominating points of D′
+ and h′

1, h′
2 be the dominating points of D′

−. If both
h′

1 and h′
2 are p-type, case 3 happens (when we traverse the îth-row from left to right, we

only add q-type points to the positive side). Also, if they are both q-type, case 2 happens.
The bottleneck of proving Theorem 5.1 is when h′

1 and h′
2 have different types. In order to

prove Theorem 5.1 in this special case, we use two key properties. First M+ [̂i, j̄] should be

83



doubly-marked and second, m should be inside the convex hull of the points. We leave this
proof to the end of this chapter and in the rest, we focus on how to use Theorem 5.1 to
search Doubly-Marked(M+) efficiently.

5.6.2 Searching the Doubly-Marked Elements

For simplicity, we assume that n′ = 2g − 1 for some integer value g > 1 (so the number of
rows is a power of 2). We define the kth-division of M+ as the sub-matrix consisting of the
rows from n′/2k to n′/2k−1 −1 (we search the first row independently by evaluating all of its
doubly-marked elements). We search the divisions of M+ in order from its first division. Let
us denote the kth-division sub-matrix by DIVk. Here, we explain how to search DIVk. Let
I and J be the row and column indices (with respect to DIVk) of the element that we are
processing at each time. Initially, we have I = J = 1 (the first row and column of DIVk).
We evaluate the non-discarded elements of the Ith-row from left to right starting from the
column index J . If the result of an evaluation is case 1 or 2 in Theorem 5.1, we discard the
corresponding portion of M+ (in all divisions) and increase J by one. But if case 3 happens,
we go to the next row and increase I (we always move rightwise). After we proceed with all
divisions, some elements might left unevaluated and undiscarded in each division due to the
occurrence of case 1. We recursively perform the entire above process on these unevaluated
elements in each division until all elements are either discarded or evaluated. So, if only
doubly-marked elements remained in M+ (we have discarded all other elements in the
two initial searches), then the procedure SEARCH-DM(M+) in Algorithm 8 will give us a
minimum valid element of M+.

Algorithm 8 SEARCH-DM(M)
1: Let M be a n × m matrix.
2: Split M into log n divisions {DIV1, . . . , DIVlog n} .
3: for k = 1, . . . , log n do // We search the divisions in order.
4: Set I = J = 1.
5: repeat
6: Evaluate DIVk[I, J ] and discard the portion of M according to Theorem 5.1.
7: if (case 1 or 2 happens) and J < m then J = J + 1.
8: else
9: I = I + 1.

10: end if
11: until I > n/2k // number of rows in DIVk.
12: SEARCH-DM(DIVk) if DIVk has unevaluated/undiscarded element.
13: end for
14: Evaluate all non-discarded elements of the first row of M . // Until the case 3 happens.

Theorem 5.2. SEARCH-DM(M+) evaluates O(n log n) elements of M+.

84



Proof. First, if only cases 2 and 3 happen in the algorithm, then we don’t need the
recursion part and so the total number of evaluations becomes O(n log n) (in each iteration
of searching DIVk either I or J would be increased). Now, suppose that any of the cases
1, 2, or 3 can happen. Note that the number of case 3s in all divisions of a same recursion
level (the original log n divisions has recursion level zero and the level of the divisions in the
recursion part of the algorithm is defined based on their appearance in the recursion tree) is
at most n because two divisions of a same level has disjoint rows. Because we have O(log n)
levels, the total number of case 3 evaluations is O(n log n). Now, if after the evaluation
of some DIVk[i, j], case 1 happens, we can’t discard any new element from DIVk but all
the elements above DIVk[i, j] in M should be discarded. This means that while searching
each of the divisions DIVk+1, . . . , DIVlog n and the first row, we don’t need to evaluate the
jth-column. On the other hand, DIVk has log(n/2k) = log n − k divisions and a row. Each
of these divisions can have at most one cases 1 or 2 in the jth-column. So, we can have a
correspondence between the extra cases 1 and 2 evaluations in searching the divisions and
the first row of DIVk (not its recursion part) and the matrix elements that we didn’t eval-
uate in DIVk+1, . . . , DIVlog n. So, the total number of evaluations would remain O(n log n).□

Note that in a constant time, we can check whether an element is discarded or not. Be-
cause in each recursion level, the divisions are disjoint, at each level we check each element
of M at most once and because we have O(log n) levels, the total cost of matrix element
checking is O(n2 log n). On the other hand, our algorithm to solve the restricted PCTCP
costs O(n log n), if we directly use it to evaluate matrix elements, the total time complexity
of SEARCH-DM(M+) becomes O(n2 log2 n). As we mentioned in Section 2, the bottleneck
of solving the restricted PCTCP is computing the farthest-point Voronoi diagram of each
part of the partition which costs O(n log n). So, if we can reduce this cost by performing
a preprocessing step, we can reduce the overall time complexity of SEARCH-DM(M+). In
order to speed up matrix element evaluation, we use the following lemma from [30]:

Lemma: [30] If X and Y are arbitrary sets of points in the plane, then F(X ∪ Y ) can be
constructed from F(X) and F(Y ) in O(|X| + |Y |) time (F(X) represents the farthest-point
Voronoi diagram of X).

The preprocessing step: Let (X+
i , X−

i ) (resp. (Y +
j , Y −

j )) be the partition of the p-type
(resp. q-type) points induced by the ith-separator (resp. jth-separator). In the preprocess-
ing phase, we compute the farthest-point Voronoi diagram of all X+

i , X−
i , Y +

j and Y −
j for

0 ≤ i ≤ n′ and 0 ≤ j ≤ n′′. This step can be done in O(n2) time using the above lemma
because as i or j increases or decreases by one, a point from one side would be added to
the other side.

85



Now, we can reduce the cost of matrix element evaluation as follows: In order to evalu-
ate M+[i, j], we construct F(P i,j

+ ) (resp. F(P i,j
− )) in O(n) time by applying the lemma to

F(X+
i ) and F(Y +

j ) (resp. F(X−
i ) and F(Y −

j )). So, the total complexity of matrix evalu-
ation is O(n). This reduces the time complexity of SEARCH-DM(M+) and so the cost of
finding rm,l to O(n2 log n).

5.6.3 Obtaining (Dm,l
− , Dm,l

+ ) having rm,l

Note that we already have an initial solution that is optimal and its cost is rm,l (from our
search for rm,l). But, there might be another optimal solution with the same cost and a
smaller non-determining disk that we discarded during the search. If this initial solution is
not best optimal, then the non-determining disk of a BOS must be strictly smaller than
its determining disk. So, we can assume that the positive disk of the BOS is the MED of
the points in the positive side. Consider a matrix M̄ for which its (i, j)th-element is the
radius of the MED of the points on the positive side of the (i, j)-partition. We search M̄

from the last element of its first row and traverse the rows backwards (similar to the initial
top-right search). After evaluating an element (i, j) of the matrix (which can be done in
linear time according to [51]), if it is bigger than rm,l, we discard all elements (i, j′) of the
matrix with j′ ≥ j because they are all greater than rm,l and if it is less than rm,l, we
discard the elements with i′ ≤ i because they are all less than rm,l. But, when it is exactly
rm,l, we compute its non-determining disk using the restricted PCTCP algorithm (costs
O(n log n)) and store its radius. Here, we can also discard all elements (i′, j) of the matrix
with i′ ≤ i. This is because as we advance more left into the row, we would have more
points on the negative side and so if there is any optimal solution on the left of (i, j) in
the row, its non-determining disk should cover more points and thus can’t give us a better
solution. So, by each evaluation, we discard a row or a column of the matrix which means
that the total number of evaluations is linear. Therefore, the total complexity of finding a
BOS given rm,l is O(n2 log n). Combining it with the complexity of computing rm,l gives us
the total time complexity O(n2 log n) to obtain (DNA

1 , DNA
2 ).

5.7 Computing a BOS in the Far Distant Case

For the far distant case, we assume that d(c∗
1, c∗

2) > 3r∗. In this situation, the approach of
Sharir’s far distant case [59] for the decision 2-center problem still works as follows: set an
arbitrary point in the plane as the origin and build 360 directed lines X passing from the
origin such that the degree between each line and its neighbours is 1◦. Then, for one unknown
correct line x⃗c ∈ X , the angle between line(c∗

1, c∗
2) and x⃗c is at most 1◦. Suppose that we

set x⃗c is the x-axis and sort the x-coordinates of the points in P as a sequence (x1, . . . , xn)
(see Figure 5.7). Now, if we consider the set of lines Lx⃗c

F = {xi⊥xi+1 : 1 ≤ i < n} (xi⊥xi+1

is the vertical line on x⃗c at the mid-point of [xi, xi+1]), at least one l ∈ Lx⃗c
F will separate

86



D∗
1 from D∗

2. Because x⃗c is unknown, we build Lx⃗
F for all x⃗ ∈ X and set LF =

⋃
x⃗∈X Lx⃗

F .
Note that the number of lines in LF is linear. Here, each line l ∈ LF induces a partition on
P . We apply our algorithm for the restricted PCTCP to each of such partitions and set the
best one as (DF A

1 , DF A
2 ). So, the time complexity of the far distant case is O(n2 log n).

Figure 5.7: Finding a separating line in the far distant case

5.8 Computing a BOS for the Distant Case.

In the distant case, we assume that r∗ < d(c∗
1, c∗

2) ≤ 3r∗. The idea is to first compute
rDA by imposing the condition that the disks are congruent and then using rDA to build
(DDA

1 , DDA
2 ). So, let (D̂1, D̂2) with centers (ĉ1, ĉ2) be a BOS having the distant assumption

such that the radii of the disks are equal (disks are congruent). So, the cost of this solution
is rDA. Here, the objective is to compute (D̂1, D̂2). We first apply the algorithm of [43] to
obtain an optimal solution for the 2-center problem on P with minimum distance between
their centers. In order to have this additional proximity property in the solution, we replace
Hershberger’s feasibility test [33] in [43] with Sharir’s unparallelized feasibility test in [59]
(note that we can’t use Sharir’s algorithm in [59] because it uses simulating parallel feasi-
bility test which makes the algorithm impractical). If the distance between the centers of
this solution is equal or less than δ, we set rDA as the cost of this solution and try to build
(DDA

1 , DDA
2 ) (will be discussed later in the chapter) based on this cost (if we couldn’t build

a solution with this cost satisfying the distant assumption, we would know that a BOS with
this cost exists in the far distant or the nearby cases and thus, we won’t miss the BOS for
the problem). Otherwise, we can assume that d(ĉ1, ĉ2) = δ .

Similar to the Section 3, we build a set of constant size directed lines X such that
for at least one directed line x⃗ ∈ X , ĉ1 is on the negative side of ĉ2 and the angle between
line(ĉ1, ĉ2) and x⃗ is at most 1◦. Without loss of generality we can assume that x⃗ is horizontal
and its positive direction is right wise. Let v1 be the leftmost point of D̂2 not in the interior
of D̂1 and v2 be the rightmost point of D̂1 not in the interior of D̂2. If v1 lies to the right of
v2, we already catch the BOS in the far distant case and we are done. So, assume that v1

is on the left side of v2. The objective here is to find a vertical line l such that it separates
ĉ1 from v1. First, note that the difference between the x-coordinates of v1 and v2 is at least

87



Figure 5.8: Separating ĉ1 and v1 by a vertical line

0.9r∗/2 and r∗ > ∆x/4 where ∆x is the difference between the x-coordinates of the leftmost
and rightmost points. Having ∆x, one of the vertical lines at the distance k∆x/9 (for some
1 ≤ k ≤ 9) from the leftmost point will separate ĉ1 from v1. So, we can build a set LD of
lines such that for at least one line l ∈ LD, there exist an x-axis in X such that with respect
to that, l is vertical and separates ĉ1 and v1.

Note that all points of P on the left-side of l are covered by D̂1 and so, we can assume
that ĉ1 is on the boundary of the intersection hull of these points at radius r∗. According
to the assumption d(ĉ1, ĉ2) = δ, we can say that at radius r∗, the distance between the
intersection hull of the points covered by D̂1 and the intersection hull of the points not
covered by D̂1 is exactly δ (the distance between two intersection hulls is the minimum
possible distance between their points). In the rest of this section, we discuss how we can
use this property to compute rDA and (D̂1, D̂2).

Suppose that l is a given vertical line in LD. Denote the set of points in P on the left
side (resp. right side) of l by P − (resp. P +). Also, denote the intersection hull of P − with
respect to a radius r > 0 by H−(r). Define rl as the minimum radius for which there exist a
point x ∈ ∂H−(rl) such that the distance between x and the intersection hull of the points
in P not covered by Disk(x, rl) (the disk with center x and radius rl) is exactly δ. So, in
order to find rDA it is enough to compute rl for all l ∈ LD and set rDA = min{rl : l ∈ LD}.

In order to find rl, we need a feasibility test to answer the following question: given
an r, determine whether r is greater, equal or smaller than rl. Consider the set of circles
A(r) = {circle(p, r) : p ∈ P +} (circle(p, r) is the circle with center p and radius r) and
compute the intersection points of each circle of A(r) with ∂H−(r). These intersection
points and the vertices of ∂H−(r) induce a partition on ∂H−(r). We denote this partition
by π(r) which can be considered as an alternating sequence of arc interiors and endpoints.
We assume that the order is clockwise starting from its leftmost endpoint. We call each of
these arc interiors and endpoints a field of π(r) (so, if π(r) has k arcs, it would have 2k

fields). See Figure 5.9. We observe that for each field f of π(r), disk(x, r) covers a same set
of points for any x ∈ f . For simplicity, we call the set of points in P covered by disk(x, r),

88



Figure 5.9: The circles of A(r) and its induced partition π(r) on ∂H−(r)

the points covered by f at radius r. So, π(r) is a sequence of fields each covers a specific set
of points. For each field f ∈ π(r), denote the intersection hull of the points not covered by
f with respect to r by H+

f (r). Note that the difference between the set of points covered
by two neighbour fields in π(r) is at most two(based on our assumption that the points are
in general position). Also, we can compute the sequence of disks that enter or leave H+

f (r)
when f varies in π(r) in the clockwise order. Having this sequence allows us to use the data
structure of [35] to compute H+

f ′(r) having H+
f (r) in O(log n) amortized time where f ′ is

a neighbour field of f in π(r). So, to do the feasibility test, we first compute H+
f0

(r) where
f0 is the first field of π(r) and then traverse π(r) in the clockwise order and at each field
f , update the intersection hull of the points not covered by f and compute d(f, H+

f (r)).
Because both f and H+

f (r) are convex, we can compute the distance between them in
O(log n) time [20]. During the traversal, we stop and return greater as soon as for a field
f , d(f, H+

f (r)) < δ. If we reach the end of the traversal, return equal if we’ve seen a field
f for which d(f, H+

f (r)) = δ and we couldn’t find any other field f ′ with d(f ′, H+
f ′(r)) < δ.

Otherwise, we return smaller. So, the feasibility test can be done in O(n log n) time. The
Procedure RL-FTEST(r) in Algorithm 9 represent the pseudocode of our feasibility test.

89



Algorithm 9 RL-FTEST(r)
1: Compute H−(r) and the sequence π(r) = (f0, . . . , fm) on it.
2: Let f = f0.
3: Compute H+

f (r) and the set of points covered by f at radius r.
4: Let dmin = d(f, H+

f (r)).
5: Traverse π(r) and at each field store the point(s) (at most two) that leave/enter the

coverance.
6: for f = f1, . . . , fm do
7: Compute H+

f (r) by updating from H+
f−1(r).

8: dmin = min{d(f, H+
f (r)), dmin}.

9: if dmin < δ then
10: Return Greater.
11: end if
12: end for
13: if dmin = δ then Return Equal
14: else
15: Return Smaller
16: end if

Now, we discuss our algorithm to compute rl. We first build F(P −) (farthest-point
Voronoi diagram of P −) and do a binary search on the weights (see Appendix A) of the
vertices of F(P −) using the above feasibility test to obtain an interval I∗ = (i0, i1) such
that rl ∈ I∗ and for each vertex v of the diagram, I∗ does not contain the weight of v.
Because we use O(log n) feasibility tests, the cost of obtaining I∗ is O(n log2 n). As soon as
we found I∗, we can build H−(i0) and the set of its arms A−.

The idea here is simulating the propagation of π(r) and the circles in A(r) when r varies
from i0 to i1. To do this, we assume that at time t ∈ I∗, the radius of π and the circles in A
is t (if a field is an endpoint, its radius is the radius of an arc containing it). The minimum
time t such that d(f, H+

f (t)) ≤ δ for a field f in π(t) is actually our rl. Consider t1, t2 ∈ I∗

and let π(t1) = (f1, . . . , fj) and π(t2) = (f ′
1, . . . , f ′

j′). We say that π(t1) and π(t2) have a
same structure if j = j′ and for each 1 ≤ i ≤ j, fi and f ′

i cover exactly a same set of points.
In this case, we consider fi and f ′

i as a same field in different times. Note that if π(t1) and
π(t2) have different structures, for any t ≥ t2, π(t1) has a different structure from π(t). So,
we can consider a sequence of times T = (t0 = i0, t1, . . . , tk = i1) for some integer k such
that π has a same structure between any two consecutive times in the sequence. We call
this sequence the event-sequence and each time in this sequence an event-time. We can see
that a time t is an event-time if one of the following events happens at t:

1. Circle in A(t) collides with H−(t).

90



2. Two endpoints of π(t−ϵ) collide at π(t) where π(t−ϵ) has the structure exactly before
the event for a sufficiently small ϵ > 0.

At a first type event, new fields emerge and at a second type event a field disappears (new
fields may appear). Note that the number of such events is O(n2) and we can obtain T by
considering the intersection of each pair of circles (or disks) on π and finally sort the times.
So, we can compute T (increasingly sorted) in O(n2 log n) time. Here, we are going to find
an interval T ∗ = (t′, t′′) ⊆ I∗ such that rl ∈ T ∗ and it contains no event-time. To do this,
we apply our feasibility test O(log n) times to perform a binary search on T to get T ∗. So,
computing T ∗ again costs O(n log2 n) time.

Next, for each field f ∈ π(t ∈ T ∗), we store the set of points not covered by it denoted
by f+ and compute the farthest-point Voronoi diagram F(f+) of these points. In order to
find rl, we need to compute tδ

f for each field f ∈ π(t ∈ T ∗) where tδ
f is the earliest time for

which d(f ∈ π(tδ
f ), H+

f (tδ
f )) = δ. Finally, we have rl = min{tδ

f : f ∈ π(t ∈ T ∗)}.
Here, we discuss how to compute tδ

f for a field f ∈ π(t ∈ T ∗). First, we build F(f+)
in O(n log n) time. Note that having F(f+), for a given t ∈ T ∗, we can compute H+

f (t)
with ordered arcs in linear time. Next, we apply binary search on the weights(times) of
the vertices of F(f+) using the algorithm of [20](which costs O(log n) for computing the
distance between two convex objects) as the feasibility test to check whether the distance
between f and H+

f is smaller, equal or larger than δ. Let T ∗
f ⊆ T ∗ be the resulting interval.

So, when t varies in T ∗
f , no arc appears or vanishes in H+

f (t). So, T ∗
f can be computed in

O(n log n) time. Having T ∗
f , because we have no structural change in H+

f , we can compute
tδ
f in linear time (by considering the arms of H+

f ). So, the total cost of computing tδ
f is

O(n log n) and thus, rl can be computed in O(n2 log n) time. The procedure FIND-RL(l) in
Algorithm 10 will return rl given a line l.

91



Algorithm 10 FIND-RL(l)
1: Build F(P −) and its weights.
2: Perform a binary search on the weights using RL-FTEST to get an interval I∗ = [i0, i1].
3: Compute the event-times sequence T when π(t) and A(t) expands as t ∈ I∗.
4: Perform a binary search on T using RL-FTEST to get an interval T ∗.
5: Let f1, . . . , f ′

m be the fields of π(t) when t ∈ T ∗. // The fields are same as t varies in
T ∗.

6: for i from 1 to m′ do
7: Let f+ be the set of points not covered by fi.
8: Compute F(f+) and perform a binary search on its weights with the following test:
9: Test(w):

10: Compute H+
fi

(w) and let d = d(fi, H+
fi

(w)).
11: if d > δ then Return Smaller.
12: else if d = δ then Return Equal else Return Greater.
13: Let T ∗

fi
be the final interval. // When t varies in T ∗

fi
the structure of H+

fi
doesn’t

change.
14: Compute the time tδ

i for which d(fi, H+
fi

) = δ.
15: end for
16: Return rl as min{tδ

i : 1 ≤ i ≤ m′}.

Having rDA, we can obtain a BOS for it as follows: for each l ∈ L2, we consider two
assumptions: first, the determining disk is on the left side of l and second it is on the right
side of l. For the first case, we consider H−(rDA) and circles in A as fixed objects (not
propagating) and for each field f , we propagate H+

f up to radius RDA based on the method
we explained above and compute the minimum radius(time) for which d(H−(rDA), H+

f ) = δ.
Let r′

l be the minimum such radius and infinite if it doesn’t exist. For the second case, we
propagate both circles in A and fields of H−(i0) to obtain event-times but we build all
H+

f s according to the fixed radius rDA and follow the above algorithm to obtain a radius
r′′

l . Comparing r′
l, r′′

l and their solutions, we obtain a BOS assuming l is a correct line.
Comparing the results for all l ∈ L2 will give us a BOS (DDA

1 , DDA
2 ) having the distant

assumption with total time complexity of O(n2 log n).

5.9 Proof of Theorem 5.1

Lets x and y be two points in the plane. We recall that the directed line passing from x

and y directed from x to y is denoted by line(x, y). Also, we denote the half-line from x

passing y by half -line(x, y). In this section, when we say first, second, third and fourth
quarter of a point t with respect to some directed line l we mean the first, second, third and
fourth quarter of the plane when we consider t as the origin and the directed line parallel

92



to l passing t as the x-axis. We prove the theorem by providing several propositions. For
simplicity, when we assign a letter to a geometric object inside a proof, the scope of that
notation is only inside that proof and we may assign that letter to another object later.
In addition, when we state a proposition or observation, we mean if the proposition or
observation is false, the statement is either impossible or the theorem follows. So, we can
assume that after a proposition or observation, its statement is always true. Also, when we
say one disk is smaller than another disk, we mean smaller or equal. Let c be the center
of some disk D. We say that a set of three points T make a triangle for c if their induced
triangle covers c and any disk that covers T has a radius greater than radius(D).

Observation 5.4. Let d1 and d2 be the dominating points of Di,j
+ . Then for any point t /∈

Di,j
+ inside the cone induced by two half-lines from ci,j

+ along line(d1, ci,j
+ ) and line(d2, ci,j

+ )
containing ci,j

− , the points d1d2t makes a triangle for ci,j
+ .

A similar statement is also true for Di,j
− and their dominating points. Figure 5.10 shows

an example for Observation 5.4.

Figure 5.10: d1, d2 and x make a triangle for ci,j
+

Let M+ [̂i, j̄] be a given doubly-marked element. Also, let M+ [̄i, j̄] and M+ [̂i, ĵ] be the
elements for which we marked M+ [̂i, j̄] when we evaluated them in the top-right and bottom-
left initial searches respectively. For simplicity of notation, henceforth we denote Dî,j̄

+ , Dî,j̄
− ,

cî,j̄
+ and cî,j̄

− by D′
+, D′

−, c′
+ and c′

− respectively. Similarly, we denote Dī,j̄
+ , Dī,j̄

− , cī,j̄
+ , cī,j̄

− by
D̄+, D̄−, c̄+, c̄− and Dî,ĵ

+ , Dî,ĵ
− , cî,ĵ

+ , cî,ĵ
− by D̂+, D̂−, ĉ+, ĉ− respectively. Note that based

on our assumptions all of these disks has exactly two dominating points.
We denote the dominating points of D̄+ by a and b, D̄− by x and y, D̂+ by c and d,

D̂− by w and u, D′
+ by h1 and h2 and finally D′

− by h′
1 and h′

2. Let a and c be the two
dominating points of D̄+ and D̂+ who lie on the opposite side of x and w with respect to
line(c̄−, c̄+) and line(ĉ−, ĉ+) respectively. Note that h′

1 and h′
2 should be in both P ī,j̄

− and
P î,ĵ

− (because if they are in the positive side, they can’t be dominating points of D′
−). a, b, c

and d are in P î,j̄
+ and so covered by D′

+ (because we only add points to the positive side

93



when we walk on M+ from left to right or top to bottom). Also, suppose that x and w are
the dominating points of D̄− and D̂− respectively who are moved to the positive side in
the (̂i, j̄)-partition. So, we can assume that y and u are not in P î,j̄

+ . This is because if for
example y ∈ P î,j̄

+ , D′
+ should cover a, b, x and y which are the all dominating points in the

pair (D̄−, D̄+). This means that the radius of D′
+ and any positive disk of (i′, j′)-partition

with i′ ≥ î and j′ ≥ j̄ is greater than the radius of D̄− and so, we can discard them and
the theorem follows (cases 2 and 3 in the theorem). Note that x is p-type and w is q-type
(because x (resp. w) is moved to the positive side when we walk on a column (resp. row) of
M+) also y, u should be covered by D′

−. Furthermore, x ∈ P î,ĵ
+ because x is p-type and if

x ∈ P î,ĵ
− , we can not bring it into the positive side in the (̂i, j̄)-partition by walking on the

îth-row. Similarly, w ∈ P ī,j̄
+ . We assume that u is covered by D̄− because if u ∈ P ī,j̄

+ , then
u should also be in P î,j̄

+ which means D′
+ would cover c, d, w, u and the theorem follows.

Similarly, y should be covered by D̂−. Note that the intersection of the disks are non-empty
because we are in the nearby case. So, we can consider a point inside the intersection of the
disks and have an angular clockwise and counter-clockwise order for all the dominating and
intersection points of the disks. We consider two cases for M+ [̂i, j̄] and prove the theorem
for each case separately.

Case 1: M+ [̂i, j̄] > max{M+ [̄i, j̄], M+ [̂i, ĵ]}

According to Proposition 5.5 part 2, both h′
1 and h′

2 can’t be on D′
+. Let h′

1 be the one
outside D′

+ (the case h′
2 is outside D′

+ is similar). We show that h′
1h1h2 makes a triangle

for c′
+. Suppose not. Based on Observation 5.4, for one of h1 or h2 namely h2, h′

1 should be
on the opposite side of h2 with respect to line(c′

−, c′
+) (see Figure 5.11). Also, h′

1 and c′
−

should lie on opposite sides of line(h2, c′
+). Note that h2 should lie outside of D′

− otherwise,
we can’t place h′

1 having these conditions.
Without loss of generality, we assume that h1 is p-type (the case h1 is q-type is similar).

Because h1 is p-type, h1 ∈ D̂+ (if h1 was q-type, we would have h1 ∈ D̄+). This is because
when we traverse on a row, we only move q-type points to the positive side. On the other
hand, both h′

1 and h′
2 should be covered by D̂−. Based on this situation, we have two sub-

cases:

sub-case 1: h2 ∈ D̂+. In this sub-case, because {h′
1, h′

2} ∈ D̂− and {h1, h2} ∈ D̂+, M+ [̂i, j̄]
can’t be greater than M+ [̂i, ĵ] which is contradiction.

sub-case 2: h2 ∈ D̂−. Let t be the intersection point of half -line(h2, c′
+) and D′

+ (see
Figure 5.11). Note that D̂− covers h′

1 and it can not cover t (because it is smaller). So, ĉ−

should lie on the side of line(h2, c′
+) that has h′

1. Also, D̂− covers all points of P î,j̄
− . Now,

h′
1 should be on the third quarter of c′

+ with respect to line(h2, c′
+). This is because h′

1 is
outside D′

+ (the way we chose h′
1) and h2 is on the opposite side of line(c′

−, c′
+) with respect

94



to h′
1. Also, h′

1 and h′
2 are on opposite sides of line(h2, c′

+) (because of Proposition 5.5).
Now, for any point z inside D̂−, if h′

1z intersects the half -line(c′
−, c′

+), it can’t be h′
2 (again

Proposition 5.5 second part) and if it doesn’t, |zc′
−| < |h′

1c′
−| = M+ [̂i, j̄] which again means

that z can’t be h′
2. So, we don’t have any place for h′

2 which is contradiction (see Figure
5.11).

Figure 5.11: Proof of Sub-case 2 in Case 1.

Case 2: M+ [̂i, j̄] ≤ max{M+ [̄i, j̄], M+ [̂i, ĵ]}

In this section, we assume that M+ [̂i, j̄] ≤ M+ [̄i, j̄] and the case M+ [̂i, j̄] ≤ M+ [̂i, ĵ] is
similar. Henceforth, we consider line(c̄−, c̄+) as the x-axis unless we say otherwise. We
consider two sub-cases based on the position of x with respect to D̄+. For simplicity, when
we provide a proposition within each case or sub-case, we include the assumptions of the
case or sub-case in the proposition.

Sub-case 1: x /∈ D̄+.

In this sub-case, we assume that x is below line(c̄−, c̄+) and the case x is above the line is
similar.

Proposition 5.8. c′
+ should be on the lower-right of c̄+.

Proof. D′
+ should cover a, b and x. Based on Proposition 5.5, a and b should be on

different sides of line(c̄−, c̄+) and a should be on the first quarter with respect to c̄+ and
thus, outside of D̄− (otherwise, because of Proposition 5.5 part 2, b should be on the right
side of c̄+. Now, x /∈ D̄+ and D′

+ should contain the triangle △abx which contradicts D′
+

is smaller than D̄+). If c′
+ is on the lower-left of c̄+, D′

+ can’t cover a while it is smaller
than D̄+. If c′

+ is on the top-left of c̄+, it should be above line(a, c̄+) and b should be below
this line on ∂D̄+. This implies that D′

+ can’t cover a, b and x while being smaller than D̄+

(see Figure 5.12 for such situation). If c′
+ is on top-right c̄+, its distance from x would be

95



greater than the radius of D̄+ which is again not possible. □

Figure 5.12: Proof of Proposition 5.8.

An immediate corollary of the above proposition is that c′
− can’t be on the lower-left of c′

+

otherwise, given the fact that y is above line(c̄−, c̄+) and y /∈ D′
+ (otherwise D′

+ would have
a, b, x, y which are all dominating points of D̄− and D̄+ and so can’t be the smaller disk)
D′

− can’t cover y.

Observation 5.5. x and c̄− should lie on different sides of line(a, c̄+).

The reason for the above observation is that because a /∈ D̄− and x is below line(c̄+, c̄−),
if x lies on the right side of line(a, c̄+), axb would be a triangle for c̄+ which contradicts the
assumption that D′

+ is smaller than D̄+. Also, xa can’t intersect half -line(c̄+, c̄−) otherwise,
abx is a triangle for c̄+ and again contradicts that D̄+ is the smaller disk. Henceforth, we
denote the upper and lower intersection points of ∂D̄− and ∂D̄+ by I1 and I2 respectively.
Also, let o be the mid-point of c̄−c̄+ and I3 be the intersection of half -line(c̄−, c̄+) and
∂D̄+.

Proposition 5.9. c′
− can’t be on the right side of c′

+.

Proof. Suppose not and c′
− is on the right side of c′

+. First note that c′
− can’t be on

the lower-right of c′
+ otherwise D′

+ ∪ D′
− can’t cover both y and x while they are smaller

(because of Proposition 5.5 part 2 between x and y). So, suppose that c′
− lies on the top-

right of c′
+. First note that h′

2 can’t be above line(c̄+, c̄−). To see why, let ϵ be the difference
of the x-coordinates of c′

+ and c′
−. Also let h be minimum difference of the y-coordinates

of c′
− and c′

+ in order to have h′
2 above line(c̄+, c̄−). In order to keep the PCC, we need to

have h <
√

δ2 − ϵ2 but h ≥
√

r2 − (r − δ − ϵ)2 (just assume that c′
+ lies on line(c̄+, c̄−) and

use the fact that D′
+ should cover I3 to get the bound) which is not possible. On the other

hand, h′
1 should come after y in the counter-clockwise order because D′

− needs to cover y.
So, by adding h′

1 to the positive side, any disk covering x, a, h′
1 should also cover h′

2 which

96



means its radius is bigger than M+ [̂i, j̄] and so we can discard based on Theorem 5.1 (see
Figure 5.13). □

Figure 5.13: Proof of Proposition 5.9. The positions of h′
1 and h′

2 with respect to c′
− (note

that we relaxed the condition that y should be covered by D′
− to make the figure clear)

We know that y /∈ D′
+. This is because if y ∈ D′

+, D′
+ would have a, b, x, y which are

the all dominating points of the solution of M+ [̄i, j̄] and so can’t be the smaller disk. On
the other hand, both h′

1 and h′
2 should be in D̄−. Let h′

1 be the first dominating point after
y in the counter-clockwise order. We recall that h′

1 should be outside D′
+ (otherwise, it

contradicts Proposition 5.5). From Proposition 5.9, we know that c′
− is on the left side of

c′
+. Also, note that c′

− can’t be below c′
+ otherwise D′

− can’t cover y (consider Proposition
5.5 between x and y). So, the intersection point of half -line(c′

−, c′
+) and ∂D′

+ should lie on
the forth quarter with respect to o. This implies that one dominating point of D′

+ namely
h1 lies after a in the angular counter-clockwise order and the other h2 before x.

We consider two cases. First, assume that h′
1 is on the right side of line(c′

+, c′
−). In this

configuration, because c′
+ is on the lower-right of c̄+ and Proposition 5.5 for x and y, after

adding h′
1 to the positive side, we always have △h1h2h′

1 around c′
+ and so we can discard

(see Figure 5.14 (a)). Now, assume that h′
1 is on the left side of line(c′

+, c′
−). In this case,

because a is above c̄+ and h1 is after a in the order, the intersection of half -line(h1, c′
+)

and D′
− should be below c′

+. Now, if h′
1 is above c′

+, we again have triangle △h′
1h1h2 for

c′
+ and thus we can discard. Otherwise, half -line(h′

1, c′
−) should intersect ∂D′

− inside D̄−

(otherwise there is no place for h′
2). Now, let t be the point on ∂D′

− with same y-coordinate
as c′

− on the left side of it (see Figure 5.14 (b)). Because h′
1 is below c′

−, t should lie inside
D′

− but in order to have this condition d(c′
+, c′

−) should be greater than δ which is not
possible.

97



Figure 5.14: (a) h′
1 is on the right side of line(c′

+, c′
−). (b) when t is inside D̄−, d(c′

−, c′
+) is

greater than δ.

Sub-case 2: x ∈ D̄+.

In this sub-case, because x ∈ D̄+, y is outside of D̄+ and left side of c̄− and indeed on
∂convex-hull(P ). Similar to the previous sub-section, let h′

1 be the first dominating point
of D′

− that appear after y in the counter-clockwise order which is outside D′
+.

Observation 5.6. c′
+ lies on the right side of c̄+.

This is because if c′
+ is on the left side of c̄+, there would be no place for a and b such

that ab does not intersect the half -line(c̄+, c̄−) while keeping D′
+ the smaller disk. Similar

to Proposition 5.9 we can assume that c′
− is on the left side of c′

+ otherwise h′
2 is covered by

any disk covering a, b and x. Now, let z1 and z2 be the two intersection points of ∂D′
− and

∂D′
+ where z1 appears first in the counter-clockwise order from y. Also, let R(z1) and R(z2)

be the portions of ∂D′
− between two perpendicular lines from c′

− and c′
+ on line(c′

−, c′
+)

around z1 and z2 respectively (see Figure 5.15).

Proposition 5.10. h′
1 does not intersect R(z1) and R(z2).

Proof. We first show that h′
1 does not intersect R(z2). We proceed by contradiction

and suppose that h′
1 ∈ R(z2). Let t1 be the intersection point of ∂D̄− and D̄′

− which comes
first after y. In this situation, t1 should also be in R(z2). Also, let t2 be the first intersection
point of the half-line passing from t1 parallel to line(c′

−, c′
+) and ∂D′

+ (see Fig 5.15 (a)).
Now, t2 is outside D̄− because t2 ∈ R(z1) and the positive slope of line(c′

−, c′
+) (in order to

have have t1 inside R(z2)). On the other hand, D′
+ has both t2 and x. If t2x intersect the

half -line(c̄−, c̄+), |t2x| should be greater than M+ [̄i, j̄] which is contradiction. Otherwise,
D′

+ should have a, b, x, t2 which again make it bigger than M+ [̄i, j̄] (consider a pair of disks
with centers c̄+ and c̄− and dominating points {a, b} and {x, t2} respectively).

98



Now, we prove that h′
1 can’t intersect R(z1). Let q be the last point of R(z2) in the

counter-clockwise order (see Figure 5.15 (b)).

Figure 5.15: An example of configuration of points for Proposition 5.10. Note that in this
figure, we relaxed the condition that x should be covered by D′

+ in order to illustrate
situations where h′

1 lies inside R(z1) and R(z2).

If h′
1 lies on R(z1), h′

2 needs to lie between q and D̄− on ∂D′
− in order to not intersect

half -line(c′
−, c′

+). But, q is outside D̄− because the right intersection point t of D̄− and D′
−

is below c′
− (this is because the PCC. Specifically, if ζ is the difference between the radii of

D′
− and D̄−, c′

+ should lie at least ζ to the right of c̄+ to cover a and b. This implies that
c′

− should also lie at least ζ to the right of c′
− to keep the PCC which make t below c′

−)
there is no place for h′

2 inside D̄− which is contradiction. □

Consider an (i, j)-partition. Let us call the (convex) cone obtained by m as its vertex and
the separator half-lines from m as its sides the (i, j)-cone. If the positive direction of the
m-line is in the cone, we say the cone is positive otherwise we say it is negative. We say two
points z1, z2 in P i,j

− (resp. P i,j
+ ) make a cut for z3 ∈ P i,j

+ (resp. z3 ∈ P i,j
− ) in a positive (resp.

negative) (i, j)-cone, if z1z2 intersects both the sides of the cone and does not separate z3

from m in the cone. See Figure 5.16 for an example of a cone and a cut for it.

Observation 5.7. If two point z1 and z2 in P i,j
+ (resp. P i,j

− ) make a cut for a point z3

in P i,j
− (resp. P i,j

+ ) in a negative (resp. positive) (i, j)-cone, then if z3 is not covered by
convex-hull(P i,j

+ ) (resp. convex-hull(P i,j
− )), then m can not be covered by convex-hull(P ).

The reason of the above observation is that if z3 is not covered by convex-hull(P i,j
− ),

there is a line that separates this convex hull and m. Now, by adding the points inside the
cone to the convex hull, we just move this separating line closer to m but this line can never

99



Figure 5.16: A negative cone. z1, z2 make a cut for z3.

reach m.

In order to discard a sub-row or a sub-column of M+ [̂i, j̄] according to Theorem 5.1, we
need to consider different configurations of the points in the (̂i, j̄)-partition. Because x can
be above or below line(c̄−, c̄+), in order to cover these cases, we can assume that x is below
line(c̄−, c̄+) but the m-line can take the both possible directions. Let h1 be the dominating
point of D′

+ on the right side of line(c′
+, c′

−) and h2 be the other one. We proceed the
following cases based on the position of the m-line with respect to y and h′

1:

1) Both h′
1 and y are on the left side of the m-line: Based on Proposition 5.10,

h′
1 is on the boundary of convex-hull(D′

− ∪ D′
+) and because x ∈ D̄+, y is also on the

boundary of convex-hull(D̄− ∪ D̄+). Now, because all points in P are covered by the two
convex hulls, both y and h′

1 are on the boundary of convex-hull(P ). So, if y and h′
1 are on

the left side of the m-line, because m ∈ convex-hull(P ) and h′
1, h′

2 has different types (and
so the m-line should pass between h′

1 and h′
2), when we add h′

1 to the positive side, we first
need to add y to the positive side and then h′

1 (see Figure 5.17). Which means that after
adding h′

1, the positive side has a, b, x, y which are the all dominating points of D̄− and D̄+.
This implies that any covering disk of them should have a radius greater than M+ [̄i, j̄] and
so, we can discard the rest of the row or column of M+ [̂i, j̄] based on the type of h′

1.

2) h′
1 and y are on the left and right sides of the m-line respectively: Based

on Proposition 5.10 both h′
1 and y are on the convex hull of the points. Now, one of a or

b should also be on convex-hull(P ) which means it is not possible to add both of them to
the positive side before either adding y or h′

1 to the positive side which is not possible.

3) h′
1 is on the right side of the m-line: we consider two cases: first, suppose that

h′
1 lies on the right side of line(c′

+, c′
−). Now, if h2 also lies on the right side of line(h′

1, c′
+),

then adding h′
1 makes a triangle △h′

1h1h2 and we are done. Otherwise, h2 should be on
∂convex-hull(D′

− ∪ D′
+) (because of Proposition 5.10) and so the points h′

1, y and h2 is on

100



Figure 5.17: In order to add h′
1 to the positive side, we first need to add y to the positive

side.

∂convex-hull(P ). Now, if h2 and h′
2 has different types, h2 and h′

1 should have a same type
(because h′

1 and h′
2 had different types based on our assumption) and so on a same side

of the m-line. In this case, because y lies on the right side of line(h2, h′
1) and both h′

1 and
h2 lie on the right side of the m-line, and also because h′

2 should lie on the left side of the
m-line, y should also lie on the right side of the m-line. In this situation in order to add h2

to the positive side, we need to add h′
1 and y to the positive side first which is not possible.

This argument implies that h′
2 and h2 have a same type. Because h2 needs to be added to

the positive side before h′
2, m should be on the left side of line(h2, h′

2) but in this situation,
after adding h′

1 to the positive side, we would have negative cone h′
1mh2 and h′

1h2 makes a
cut for h′

2 (h′
2 lies on the right side of line(h′

1, c′
−) to satisfy Proposition 5.5) which implies

that any disk covering h′
1 and h2 should also cover h′

2 and we can discard (see Figure 5.18
(a)).

101



Figure 5.18: h′
1 is on the right side of the m-line. (a) h′

1 is on the right side of line(c′
+, c′

−).
(b) h′

1 is on the left side of line(c′
+, c′

−).

Now, suppose that h′
1 is on the left side of line(c′

+, c′
−). Again, if h1 is on the left side

of line(h′
1, c′

+), adding h′
1 makes triangle △h′

1h1h2 and we can discard. So, we assume that
h1 is on the right side of line(h′

1, c′
+). Note that here h′

2 can’t lie above c′
− because of PCC

(similar to the argument of point t in the proof of Proposition 5.10) which implies c′
− is

above c′
+ (otherwise, there is no place for h′

2). Now, if a ∈ D̄−, by adding h′
1 to the positive

side, any disk smaller than D̄+ covering h1, a and h′
1 should also cover h′

2. This is because
h′

2 is on the left side of line(h′
1, c′

−) and the portion of the disk in the first quarter of o is
outside of D̄+ (in order to cover a) and so we can discard. Let us assume that a /∈ D̄− and
so it lies on ∂convex-hull(P ). On the other hand, because h1 is inside D̄+, b should also
lie on convex-hull(P ) (see Figure 5.18 (b)). Now, if b is on the left side of line(y, c̄−), x

and y make triangle for c̄− with both a, b (because x ∈ D̄+) and so, we could discard in
the initial search. But if b lies on the right side of line(y, c̄−), because h′

1 is after y in the
counter-clockwise order, it is not possible to cover three points h′

1, a, b with a radius smaller
than M+ [̂i, j̄] and so again we can discard.

102



Chapter 6

Conclusion and Future Works

In this thesis, we studied several center location problems for which we have extra con-
ditions on the location of the centers. In the first part, we studied two problems: finding
beacon kernel points in simple polygons and the particle transmitting problem in polygonal
domains. In both of these problems, we need to consider the structures of the underlying
space (the given polygonal region) for establishing a beacon/repulsor. We provided the first
sub-quadratic time algorithm for the discrete beacon kernel problem and used this algo-
rithm to obtain the beacon kernel points on the boundary of simple polygons. Also, we
showed that the particle transmitting problem can be solved in polynomial time. Regarding
the beacon kernel problem, a natural generalization of the discrete beacon kernel problem
is when we replace the given set of point X by a given set of arbitrary line segments or
half-lines S (they may not completely lie inside the given polygon). In this generalization,
the objective is computing the kernel segments of each segment or half-line S ∈ S that is
the maximal segments in S ∩ Ker(P ). Here, we show if we can solve this generalization
in sub-quadratic time, we also can solve the beacon kernel problem in sub-quadratic time.
First, note that each edge of ∂Ker(P ) is a subset of either an edge of ∂P or an extension
of a reflex vertex in R (see Proposition 2.3). Therefore, if we consider S1 as the set of ex-
tensions of R and compute the set S ′

1 of its kernel segments, each edge of ∂Ker(P ) would
be a segment in S ′. A key point here is that two segments s1, s2 ∈ S1 can not intersect
themselves on their interior. This is because for s1 (resp. s2), the portion of the segment in
one side of the intersection lies in the dead wedge of the vertex that generated s2 (resp. s1).
So, the intersection points of the segments in S ′

1 are those vertices of ∂Ker(P ) not incident
to an edge in ∂P . In addition, consider S2 as the set of edges in ∂P and compute its kernel
segments S ′

2 (note that each edge has at most one kernel segment). In [11], Biro proved
that the complexity of the beacon kernel of a simple polygon is linear. So, by computing
the intersection points of the segments in S ′

1 ∪ S ′
2 (by using the sweep-plane algorithm [63])

we can get the vertices of ∂Ker(P ) and thus Ker(P ) itself.
In the transmitting particle problem, we were interested in transmitting particles to the

target point by using only one repulsor. Similar to the concept of routing by a sequence of

103



beacons, we can define routing by a sequence of repulsors as follows: for a pair of points
(p, t) in a polygonal region, we say p can be routed by sequence (r1, r2, . . . , rk) of k repulsors
to t via targets (p = t1, . . . , tk+1 = t) if for each 1 ≤ i ≤ k, ri sends ti to ti+1. Thus, a
generalization of the particle transmitting problem is determining the points in the given
polygonal domain that can be send to a target point by a sequence of k repulsors.

In the second part, we first studied the PCkCP on paths in both weighted and un-
weighted case. A direct generalization of this problem is considering the PCkCP on trees.
Its is straightforward to see that the greedy approach for the feasibility test is still works for
trees. The potential strategy to get a sub-quadratic time algorithm for the PCkCP on trees
(in both weighted and unweighted case) is first considering the problem for stems [66]. Each
stem is a path called the backbone of the stem and a set of edges hanging from it. Next
follow the approach of [28] to get the stem decomposition of the given tree and recursively
process the stems from the leafs of the tree and replace each processed stem by an edge to
form new stems to get a sub-quadratic time algorithm to solve the PCkCP on trees.

Lastly, we studied the proximity constrained 2-center as an special case of the PCkCP in
the plane. One direct generalization is considering the weighted case problem of PCTCP as
we defined the weighted distance in Chapter 4. In this problem, each of the demand points
have a positive weight and the problem is computing two centers satisfying PCC that
minimize the maximum of the weighted distance of a demand point to its closest center. If
we consider the general PCkCP in the plane, we see that if δ tends to zero, the problem
turns to the minimum enclosing disk problem which can be solved in linear time [51]. If δ

tends to infinity, the problem turns to the unconstrained k-center problem which we know it
is NP-hard and can not be approximated by a ratio better than two. Also, if both k goes to
infinity and δ goes to zero, the problem turns to the Euclidean Steiner tree problem which
has a PTAS approximation algorithm. Therefore, an interesting future work is determining
the hardness of approximation algorithm for the PCkCP in the plane when k and δ are not
such extreme values.

104



Bibliography

[1] Agarwal PK, Procopiuc CM. Exact and approximation algorithms for clustering. Algo-
rithmica. 2002 Jun 1;33(2):201-26

[2] Agarwal PK, Sharir M. Planar geometric location problems. Algorithmica. 1994
Feb;11(2):185-95.

[3] Agarwal PK, Sharir M. Efficient algorithms for geometric optimization. ACM Computing
Surveys (CSUR). 1998 Dec 1;30(4):412-58.

[4] Ahlberg M, Vlassov V, Yasui T. Router placement in wireless sensor networks. In 2006
IEEE International Conference on Mobile Ad Hoc and Sensor Systems 2006 Oct 9 (pp.
538-541). IEEE.

[5] Al-Karaki JN, Kamal AE. Routing techniques in wireless sensor networks: a survey.
IEEE wireless communications. 2004 Dec 20;11(6):6-28.

[6] Arora S. Nearly linear time approximation schemes for Euclidean TSP and other geo-
metric problems. In Proceedings 38th Annual Symposium on Foundations of Computer
Science 1997 Oct 20 (pp. 554-563). IEEE.

[7] Bae SW, Shin CS, Vigneron A. Tight bounds for beacon-based coverage in simple rec-
tilinear polygons. Computational Geometry. 2019 Jul 1;80:40-52.

[8] Barilan J, Kortsarz G, Peleg D. How to allocate network centers. Journal of Algorithms.
1993 Nov 1;15(3):385-415.

[9] Bhattacharya B, Mozafari A, Shermer TC. An efficient algorithm for the proximity
connected two center problem. In International Workshop on Combinatorial Algorithms
2022 (pp. 199-213). Springer, Cham.

[10] Bhattacharya B, Kameda T, Mozafari A. A Sub-quadratic Time Algorithm for the
Proximity Connected k-center Problem on Paths via Modular Arithmetic. 34th Cana-
dian Conference on Computational Geometry, 2022

[11] Biro M. Beacon-based routing and guarding (Doctoral dissertation, State University
of New York at Stony Brook).

[12] Biro M, Gao J, Iwerks J, Kostitsyna I, Mitchell JS. Beacon-based routing and coverage.
In 21st Fall Workshop on Computational Geometry (FWCG 2011) 2011 Nov 4.

[13] Biro M, Iwerks J, Kostitsyna I, Mitchell JS. Beacon-based algorithms for geometric
routing. In Workshop on Algorithms and Data Structures 2013 Aug 12 (pp. 158-169).
Springer, Berlin, Heidelberg.

105



[14] Biro M, Gao J, Iwerks J, Kostitsyna I, Mitchell JS. Combinatorics of beacon-based
routing and coverage. 25th Canadian Conference on Computational Geometry, 2013

[15] Bose P, Shermer TC. Attraction-convexity and normal visibility. Computational Ge-
ometry. 2021 Jun 1;96:101748.

[16] Bose P, Shermer TC. Gathering by repulsion. Computational Geometry. 2020 Oct
1;90:101627.

[17] Chan TM. More planar two-center algorithms. Computational Geometry. 1999 Sep
1;13(3):189-98.

[18] Chazelle B. Triangulating a simple polygon in linear time. Discrete and Computational
Geometry. 1991 Sep;6(3):485-524.

[19] Chazelle B, Edelsbrunner H, Grigni M, Guibas L, Hershberger J, Sharir M, Snoeyink J.
Ray shooting in polygons using geodesic triangulations. Algorithmica. 1994 Jul;12(1):54-
68.

[20] Chin F. Optimal algorithms for the intersection and the minimum distance problems
between planar polygons. IEEE Transactions on Computers. 1983 Dec 1(12):1203-7.

[21] Cho K, Oh E. Optimal algorithm for the planar two-center problem. arXiv preprint
arXiv:2007.08784. 2020 Jul 17

[22] Choi J, Ahn HK. Efficient planar two-center algorithms. Computational Geometry.
2021 Apr 2:101768.

[23] Cole R. Slowing down sorting networks to obtain faster sorting algorithms. Journal of
the ACM (JACM). 1987 Jan 1;34(1):200-8.

[24] Berg MD, Kreveld MV, Overmars M, Schwarzkopf O. Computational geometry. In
Computational geometry 1997 (pp. 1-17). Springer, Berlin, Heidelberg.

[25] Drezner Z. The planar two-center and two-median problems. Transportation Science.
1984 Nov;18(4):351-61.

[26] Drezner Z, Hamacher HW, editors. Facility location: applications and theory. Springer
Science & Business Media; 2004 May 3.

[27] Eppstein D. Faster construction of planar two-centers. In Proc. of the 8th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 131–138, 1997.

[28] Frederickson GN. Parametric search and locating supply centers in trees. In Work-
shop on Algorithms and Data Structures 1991 Aug 14 (pp. 299-319). Springer, Berlin,
Heidelberg.

[29] Frederickson GN. Optimal algorithms for tree partitioning. In Proceedings of the Second
Annual ACM-SIAM Symposium on Discrete Algorithms 1991 Mar 1 (pp. 168-177).

[30] Gowda I, Kirkpatrick D, Lee D, Naamad A. Dynamic voronoi diagrams. IEEE Trans-
actions on Information Theory. 1983 Sep;29(5):724-31.

106



[31] Gudmundsson J, Haverkort H, Park SM, Shin CS, Wolff A. Facility location and
the geometric minimum-diameter spanning tree. Computational Geometry. 2004 Jan
1;27(1):87-106.

[32] Hakimi SL. Optimum distribution of switching centers in a communication network
and some related graph theoretic problems. Operations research. 1965 Jun;13(3):462-75.

[33] Hershberger J. A faster algorithm for the two-center decision problem. Information
processing letters. 1993 Aug 9;47(1):23-9.

[34] Hershberger J, Suri S. Efficient computation of Euclidean shortest paths in the plane.
In Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science 1993 Nov
3 (pp. 508-517). IEEE.

[35] Hershberger J, Suri S. Off-line maintenance of planar configurations. Journal of algo-
rithms. 1996 Nov 1;21(3):453-75.

[36] Huang CH. Some problems on radius-weighted model of packet radio network, Doctoral
dissertation, Ph. D. Dissertation, Dept. of Comput. Sci., Tsing Hua Univ., Hsinchu,
Taiwan, 1992.

[37] Huang PH, Tsai YT, Tang CY. A near-quadratic algorithm for the alpha-connected
two-center problem. Journal of information science and engineering. 2006 Nov
1;22(6):1317.

[38] Huang PH, Te Tsai Y, Tang CY. A fast algorithm for the alpha-connected two-center
decision problem. Information Processing Letters. 2003 Feb 28;85(4):205-10.

[39] Hwang RZ, Lee RC, Chang RC. The slab dividing approach to solve the Euclidean
P-Center problem. Algorithmica. 1993 Jan 1;9(1):1-22.

[40] Jeger M, Kariv O. Algorithms for finding p-centers on a weighted tree (for relatively
small P). Networks. 1985 Sep;15(3):381-9.

[41] Kariv O, Hakimi SL. An algorithmic approach to network location problems. I: The
p-centers. SIAM Journal on Applied Mathematics. 1979 Dec;37(3):513-38.

[42] Karp B, Kung HT. GPSR: Greedy perimeter stateless routing for wireless networks.
In Proceedings of the 6th annual international conference on Mobile computing and
networking 2000 Aug 1 (pp. 243-254).

[43] Katz MJ, Sharir M. An expander-based approach to geometric optimization. SIAM
Journal on Computing. 1997 Oct;26(5):1384-408.

[44] Khuller S, Sussmann YJ. The capacitated k-center problem. SIAM Journal on Discrete
Mathematics. 2000;13(3):403-18.

[45] Kirkpatrick D. Optimal search in planar subdivisions. SIAM Journal on Computing.
1983 Feb;12(1):28-35.

[46] Kim YD, Yang YM, Kang WS, Kim DK. On the design of beacon based wireless
sensor network for agricultural emergency monitoring systems. Computer standards and
interfaces. 2014 Feb 1;36(2):288-99.

107



[47] Kouhestani B, Rappaport D, Salomaa K. Routing in a polygonal terrain with the
shortest beacon watchtower. Computational Geometry. 2018 Mar 1;68:34-47.

[48] Kouhestani B, Rappaport D, Salomaa K. On the Inverse Beacon Attraction Region of
a Point. 27th Canadian Conference on Computational Geometry, 2015.

[49] Kostitsyna I, Kouhestani B, Langerman S, Rappaport D. An optimal algorithm to
compute the inverse beacon attraction region. arXiv preprint arXiv:1803.05946. 2018
Mar 15.

[50] Lim A, Rodrigues B, Wang F, Xu Z. k-Center problems with minimum coverage.
Theoretical Computer Science. 2005 Feb 28;332(1-3):1-7.

[51] Megiddo N. Linear-time algorithms for linear programming in R3 and related problems.
SIAM journal on computing. 1983 Nov;12(4):759-76.

[52] Megiddo N. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM (JACM). 1983 Oct 1;30(4):852-65.

[53] Megiddo N, Supowit KJ. On the complexity of some common geometric location prob-
lems. SIAM journal on computing. 1984 Feb;13(1):182-96.

[54] Megiddo N. Partitioning with two lines in the plane. Journal of Algorithms. 1985 Sep
1;6(3):430-3.

[55] Mozafari A, Shermer TC. Transmitting particles in a polygonal domain by repulsion.
In International Conference on Combinatorial Optimization and Applications 2018 Dec
15 (pp. 495-508). Springer, Cham.

[56] Overmars MH, Van Leeuwen J. Maintenance of configurations in the plane. Journal of
computer and System Sciences. 1981 Oct 1;23(2):166-204.

[57] Pach J, editor. New trends in discrete and computational geometry. Springer Science
& Business Media; 2012 Dec 6.

[58] Patel M, Chandrasekaran R, Venkatesan S. Energy efficient sensor, relay and base
station placements for coverage, connectivity and routing. In PCCC 2005. 24th IEEE
International Performance, Computing, and Communications Conference, 2005. 2005
Apr 7 (pp. 581-586). IEEE.

[59] Sharir M. A near-linear algorithm for the planar 2-center problem. Discrete and Com-
putational Geometry. 1997 Sep 1;18(2):125-34.

[60] Shermer T. A combinatorial bound for beacon-based routing in orthogonal polygons.
Journal of Computational Geometry. 2022 Apr 20;13(1):13-51.

[61] Shmoys DB, Tardos É, Aardal K. Approximation algorithms for facility location prob-
lems. In Proceedings of the twenty-ninth annual ACM symposium on Theory of comput-
ing 1997 May 4 (pp. 265-274).

[62] Sojka E. A simple and efficient algorithm for sorting the intersection points between a
Jordan curve and a line. In Fifth international conference in Central Europe in computer
graphics and visualisation 97 (Plzeň, February 10-14, 1997) 1997 (pp. 524-533).

108



[63] Toth, Csaba D., Joseph O’Rourke, and Jacob E. Goodman. Handbook of discrete and
computational geometry. Chapman and Hall/CRC, 2017.

[64] van Goethem A, Kostitsyna I, Verbeek K, Wulms J. Repulsion region in a simple
polygon. In Abstr. 36th European Workshop on Computational Geometry (EuroCG)
(Vol. 73, pp. 1-73).

[65] Wang H. On the Planar Two-Center problem and intersection hulls. arXiv preprint
arXiv:2002.07945. 2020 Feb 19.

[66] Wang H, Zhang J. An O(n log n)-time algorithm for the k-Center problem in trees.
SIAM Journal on Computing. 2021;50(2):602-35.

109


	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	I Beacons and Repulsors in Polygonal Regions
	A Sub-quadratic Time Algorithm for the Discrete and Semi-Discrete Beacon Kernel Problem in Simple Polygons
	Background and Previous Works
	Previous Works

	Preliminaries
	The Discrete Beacon Kernel Problem
	The Semi-Discrete Beacon Kernel Problem
	The Split Decomposition Tree of P
	The Chord Elimination Problem (CEP)
	Solving the Semi-Discrete Beacon Kernel Problem
	Computing the Beacon Kernel Points on the Segments


	Transmitting Particles in Polygonal Domains by Repulsion
	Background and Previous Works
	Preliminaries and Definitions
	The Algorithm
	Computing T0
	The Expand Procedure
	Building Ai

	Complexity of the Algorithm


	II The Proximity Connected k-center problem
	A Sub-quadratic Time Algorithm for the Proximity Connected k-Center Problem on Paths
	Background and Previous Works
	PCkCP for Unweighted Paths
	Computing an Element of 

	PCkCP for Weighted Paths
	Matrix Search for Weighted Paths

	Computing an Element of  for Weighted Paths
	Proving the Sub-sequence Property


	An Efficient Algorithm for the Proximity Connected 2-Center Problem
	Background and Previous Works
	Preliminaries and Definitions
	A Review on Farthest-point Voronoi Diagrams and their Properties.
	Computing a BOS for a Partition
	Obtaining a BOS for the PCTCP
	Computing a BOS in the Nearby Case
	Computing rm,l
	Searching the Doubly-Marked Elements
	Obtaining (Dm,l-,Dm,l+) having rm,l

	Computing a BOS in the Far Distant Case
	Computing a BOS for the Distant Case.
	Proof of Theorem 5.1 

	Conclusion and Future Works
	Bibliography




