
Designing an IEEE Floating-Point Unit with

Configurable Compliance Support and Precision for

FPGA-Based Soft-Processors
by

Yuhui Gao

B.A.Sc., The Pennsylvania State University, 2019

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Applied Science

in the

School of Engineering Science

Faculty of Applied Sciences

© Yuhui Gao 2022

SIMON FRASER UNIVERSITY

Fall 2022

Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done
in accordance with the relevant national copyright legislation.

DECLARATION OF COMMITTEE

Name: Yuhui Gao

Degree: Master of Applied Science (Computer Engineering)

Title: Designing an IEEE Floating-Point Unit with Configurable
Compliance Support and Precision for FPGA-Based Soft-Processors

Committee: Chair: Andrew Rawicz
Professor, Engineering Science

Lesley Shannon
Supervisor
Professor, Engineering Science

Zhenman Fang
Committee Member
Assistant Professor, Engineering Science

Mieszko Lis
Examiner
Associate Professor, Electrical and Computer Engineering
University of British Columbia

ii

ABSTRACT

Field Programmable Gate Arrays (FPGAs) are commonly used to accelerate floating-point applications. The

advancements in FPGA technology and the introduction of the RISC-V Instruction Set Architecture (ISA) have

collectivelyenabledanumberof soft-processordesigns.Although researchershaveextensively studiedFPGA-

based floating-point implementations, existingworkhas largely focusedonstandalone, and frequency-optimized

data-pathdesigns. Theyarenot suitable for soft-processors targetingFPGAsdue to theunits’ long latency, and

soft-processors’ innate frequency ceiling. Furthermore, the few existing integrated Floating Point Unit (FPU)

hardware implementations targeting FPGA-based soft-processors are not IEEE 754 compliant. We present a

floating-point unit for FPGA-based RISC-V soft-processors that is fully IEEE compliant and configurable. Our

design focuses onmaximizing runtime performance with efficient resource utilization. We allow the users to

configure the FPU to four varying levels of compliance, or to select reduced precision configurations. Bench-

marking against a set of real-world floating-point applications, we evaluate the FPU variants in term of re-

sourceusage, operating frequency, runtimeperformance, andperformance efficiency.Wealsopresent trade-

off analyses of twomicroarchitecture design choices.

Our fully compliant FPU uses 5423 Look-Up Tables (LUTs), and achieves an operating frequency of 105 MHz.

Thekey results fromourworkdemonstrate the effect of running floating-pointworkloadsusing reducedcom-

pliance FPUs. Our experimentation shows that decreasing the Fused Multiply-Add (FMA)’s intermediate rep-

resentation leads to a 25% reduction in LUTusage that translates to an average 46% increase in performance-

efficiency. Additionally, disablingdenormal support reduces the resourceutilizationby10%and improves the

clock frequency by 6%, which results in a 14% higher performance efficiency, while having no impact on the

result accuracy for our benchmark applications. Furthermore, we find that running applications in reduced

precision can improve runtime performance by up to 75%, although applicationsmay suffer from significant

loss of precision.

Keywords: FPGA; Floating-Point; Computer Architecture; Soft-Processor

iii

ACKNOWLEDGEMENTS

I could not have undertaken this journey without the help of many. I would like to thank my supervisor,

Dr. Lesley Shannon, for her invaluable guidance and patience. Your mentorship was essential in completing

this thesis. Additionally, I would like to express my deep gratitude to Eric. Thank you for always going out of

your way to help and share your wealth of knowledge.

Words cannot express my gratitude to my parents and family, whose continuous support and sacrifice

made graduate school possible. I am also grateful to my friends andmy partner, Drina, for their support and

abundant words of encouragement. Lastly, I would be remiss in not mentioning the people of the Recon-

figurable Computing Lab. From the Friday Catan games to the Zoom bantering sessions, your comradery is

greatly appreciated.

iv

Table of Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures x

Glossary xiii

1 Introduction 1

1.1 Motivation . 2

1.2 Objective . 3

1.3 Contributions . 3

1.4 Thesis Organization . 3

2 Background 4

2.1 FPGA Overview . 4

2.2 Floating-Point Overview . 5

2.2.1 Binary Floating-Point Format . 5

2.2.2 Reduced Floating-Point Format . 6

2.2.3 Underflow and Denormal Floating-Point Numbers 7

2.2.4 IEEE Rounding . 8

2.2.5 IEEE Exception . 9

2.2.6 RISC-V Floating-Point Instruction Extensions [1] 9

2.3 Taiga Overview . 10

2.4 Related Work . 11

2.4.1 FPUs on Application Specific Integrated Circuits (ASICs) 11

2.4.2 Standalone Floating-Point Cores on FPGAs . 11

v

2.4.3 Existing Integrated FPUs for FPGA-based Soft-Processors 13

2.4.4 Compliance Status of Existing Research . 14

2.4.5 Related Work Summary . 15

3 FPU Implementation 17

3.1 FPU Integration to Taiga . 17

3.1.1 Instruction Fetch, Decode, Issue, and Management 18

3.2 FPU Stages . 20

3.2.1 Issue Stage . 21

3.2.2 Pre-Processing Stage . 21

3.2.3 Execution Stage . 23

3.2.4 Write-back Stage . 28

3.3 Instruction Pipeline Detail . 29

3.3.1 Floating-point Load and Store Unit . 29

3.3.2 FMUL, FADD, and FMA Units . 30

3.3.3 Floating-Point Divider . 33

3.3.4 Floating-Point Square Root . 34

3.3.5 Floating-Point Units that Write-back to Floating-Point Register (WB2FP) 36

3.3.6 Floating-Point Units that Write-back to Integer Register (WB2INT) 38

3.3.7 Post-Normalization and Rounding Integration Scheme 40

3.3.8 Post-Normalization . 41

3.3.9 Rounding Unit . 41

3.4 Summary . 43

4 Experimental Framework 47

4.1 Evaluation Configurations . 47

4.1.1 Base Taiga . 47

4.1.2 FPU Configurations . 47

4.2 Benchmarking Applications . 50

4.2.1 FPMark . 50

4.2.2 Imperas Compliance Tests . 51

4.3 Instrumentation . 52

4.3.1 Runtime Performance . 52

4.3.2 Hardware Data . 53

4.3.3 Metrics . 53

5 Experimental Results 55

5.1 Compliance Variations . 55

5.1.1 Resource Usage and Clock Frequency . 55

5.1.2 Benchmarking Results . 58

vi

5.1.3 Summary . 64

5.2 Reduced Precision Variations . 65

5.2.1 Resource Usage and Clock Frequency . 65

5.2.2 Benchmarking Results . 70

5.2.3 Summary . 74

5.3 Merged FMA . 76

5.3.1 Clock Frequency and Resource Usage . 76

5.3.2 Benchmarking Result . 77

5.3.3 Summary . 79

6 Conclusions and Future Work 80

6.0.1 Future Work . 81

Bibliography 82

vii

List of Tables

Table 1.1 Tradeoff Between Software Emulation vs. Hardware FPU 1

Table 2.1 VFLOAT’s [2] reciprocal, divide and square-root operators require massive resources

on Xilinx Virtex 6. 12

Table 3.1 Floating-point instructions supported. Source and destination columns outline the

instructions’ input and output types. 19

Table 3.2 The shared pre-processing stage performs sorting, pre-normalization, and special in-

put detection. 22

Table 3.3 Each execution unit supports several floating-point instructions. 24

Table 3.4 FMA Unit Supported Instruction List . 32

Table 3.5 Floating-point min/max logic table (assuming inputs are sorted in descending order

by magnitude). The first row is the instruction type, and the first column is the RS1’s

sign. 37

Table 3.6 Floating-point sign injection implementation. 37

Table 3.7 Floating-point classify instruction output format. 39

Table 3.8 Default overflow exception handling for each rounding modes 43

Table 3.9 Existing standalone floating-point data-paths: clock frequency, resource usage and

latency. 44

Table 3.10 Our FPU: floating-point instructions’ clock frequency, resource usage and latency. . 44

Table 4.1 Reduced Compliance Feature List . 48

Table 4.2 FPMark workloads. 50

Table 4.3 Imperas RV32D compliance test suite data. 51

Table 5.1 Resource utilization and clock frequency of compliant/non-compliant FPUs on Zed-

board. 55

Table 5.2 Resource utilization and clock frequency of compliant/non-compliant FPUs on U200. 56

Table 5.3 Resourceutilizationandclock frequency: full-compliance/no-intermediate-fmavs.NaxRiscv/VexRiscv

targeting Zedboard. 57

Table 5.4 Resourceutilizationandclock frequency: full-compliance/no-intermediate-fmavs.NaxRiscv/VexRiscv

targeting U200. 57

viii

Table 5.5 Reducedcompliance runtimeperformancechangescompared tobase line full-compliance

on Zedboard. 62

Table 5.6 Ourno-intermediate-fmadesignhas lower latency for themost frequentlyused floating-

point instructions. 63

Table 5.7 Digital Signal Processing (DSP) usage decreases slowly as mantissa width decreases

on Zedboard. 66

Table 5.8 DSP usage decreases slowly as mantissa width decreases on U200. 68

Table 5.9 Clock Frequency and Resource Utilization of full-compliance and merged-fma FPUs

on Zedboard. 76

Table 5.10 Clock Frequency and Resource Utilization of full-compliance and merged-fma FPUs

on U200. 76

Table 5.11 Columnsare: FPMarkworkloads’ FADDandFMUL instructioncountasapercentageof

total floating-point instructions;merged-fma Instructions Per Cycle (IPC) no-id-stall,

and operands-stall changes vs. full-compliance. 78

ix

List of Figures

Figure 2.1 FPGAs consists of Input-Outputs (IOs), Configurable Logic Blocks (CLBs), Block-

RAMs (BRAMs) and DSPs . 4

Figure 2.2 A simplified view of LUT and Flip-Flop (FF) elements within an CLB. 5

Figure 2.3 IEEE754Floating-PointFormat:w=8, t=23 forSingle-Precision (SP)numbers.w=11,

t=52 for Double-Precision (DP) numbers. 6

Figure 2.4 Normal Numbers Abruptly Jumps to 0 in Abrupt Underflow 7

Figure 2.5 Normal Numbers Gradually Converge to 0 in Gradual Underflow 8

Figure 2.6 RV32FD Floating-point instruction encoding. 10

Figure 2.7 Taiga Pipeline Overview [3] . 10

Figure 2.8 Step-by-stepcalculationof -100.15*0.999999990+100.15: additionstepcausescom-

plete loss of precision unless the intermediate result is preserved. Note that the

mantissa fields are 53-bits wide, thus shifting causes irregular changes to the hex-

adecimal representation. 15

Figure 3.1 Custom Accelerator Integration Options . 17

Figure 3.2 FPU Integration with Taiga. 18

Figure 3.3 From the issue stage, floating-point instructions are issued in-orderwith execution

being broken down into: pre-processing, execution and write-back stages. 20

Figure 3.4 Unit issue interface . 21

Figure 3.5 Implementation of the shared (a) sorting, (b) pre-normalization, and (c) special-

input-detection modules. 22

Figure 3.6 The pre-processing stage pre-computes intermediate results, packs and propa-

gates execution unit inputs. 23

Figure 3.7 FMAunitoverview: theFMA instructionsareconstructedusinga floating-pointmul-

tiplier and a floating-point adder. 25

Figure 3.8 Floating-point divide and square-root pipeline overview. 26

Figure 3.9 Miscellaneous floating-point instructions that commit to the floating-point regis-

ter file are grouped together. 27

Figure 3.10 Miscellaneous floating-point instructions that commit to the integer register file

are grouped together. 27

Figure 3.11 Interface connecting the execution units and the write-back stage. 28

x

Figure 3.12 Floating-pointmemory interfacewidens thedatabus, shrinks theaddressbus, and

adds the 2-bit word enable vector. 29

Figure 3.13 Cycle Breakdown of Floating-Point Multiply. 30

Figure 3.14 Cycle Breakdown of Floating-Point Add. 31

Figure 3.15 Floating-point adder’s alignment may completely right-shift out the most signifi-

cant mantissa bits. 33

Figure 3.16 Floating-point divide uses a fixed-latency mantissa divider. 34

Figure 3.17 Floating-point square-root uses a fixed-latency mantissa square-root core. . . . 35

Figure 3.18 Pseudo-code for the mantissa square-root algorithm 35

Figure 3.19 Integer to floating-point conversion uses the post-normalization shifter. 36

Figure 3.20 Integer to floating-point conversion pipeline. 36

Figure 3.21 Floating-point to integer conversion pipeline. 38

Figure 3.22 Floating-point comparison pseudocode. 39

Figure 3.23 Post-Normalization and Rounding Integration: (a) single write-back interface. (b)

separate write-back interfaces for arithmetic andmemory instructions. 40

Figure 3.24 Floating-point normalizationdata-paths: (a)mantissa leftand right shifting are im-

plemented using a combined right-shifter. (b) the exponent decreases when left-

shifting, and increases when right-shifting. 41

Figure 3.25 Pseudo Code for round-ties-to-even. 42

Figure 3.26 The FMA unit is larger due to the larger shared adder and control logic overhead. 46

Figure 4.1 Reduced Floating-Point Format . 48

Figure 4.2 Compared to (a), design (b) removes the FADD First-In First-Out (FIFO), FMA glue

logic, and the independent write-back interface. 49

Figure 4.3 Imperas compliance test passed. 52

Figure 4.4 Taiga and FPU Block Design in Vivado . 53

Figure 5.1 TheFPMark’s self-verificationpasseswhenaverage,maximum,andminimumnum-

ber of accurate bits are 52 (DP). 59

Figure 5.2 FPMark: IPC,Millionsof InstructionsPer Second (MIPS), andMIPS/LUT (normalized

to full-compliance) . 61

Figure 5.3 Reduced Precision: Clock Frequency and Resource Utilization on Zedboard. . . . 65

Figure 5.4 Reduced Precision: Clock Frequency and Resource Utilization on U200. 67

Figure 5.5 Minimum number of accurate bits generated by reduced precision configurations

of the full-compliance FPU. 70

Figure 5.6 IPC (normalized to52-bit):workloadswithmeaningful numberof floating-pointdi-

vide/square-root instructionsbenefit fromthe reduced latency. The reducedpreci-

sionchangesworkload xp1px-sml-c100n20’s executionpaths, resulting in increased

IPC. 72

xi

Figure 5.7 MIPS (normalized to 52-bit): MIPSmostly scale with IPC since operating frequency

has little fluctuation among reduced precision FPUs. 73

Figure 5.8 MIPS/LUT (normalized to 52-bit). 74

Figure 5.9 IPC, MIPS andMIPS/LUT (normalized to full-compliance) comparison between full-

compliance andmerged-fma . 77

xii

GLOSSARY

ALU Arithmetic Logic Unit. 57

ASIC Application Specific Integrated Circuit. v, 2, 11, 15, 80

BRAM Block-RAM. x, 4, 5, 12, 44, 53, 55–57, 76

CLB Configurable Logic Block. x, 4, 5

CSR Control and Status Register. 52

DP Double-Precision. x, xi, 6, 9, 12–14, 22, 29, 36, 51, 59, 68

DSP Digital Signal Processing. ix, x, 4, 5, 12, 13, 44, 53, 55–57, 66, 68, 76

FCSR Floating-Point Control Status Register. 9, 19, 20

FEQ Floating-Point Equal to. 39

FF Flip-Flop. x, 4, 5, 24, 44, 55–58, 64, 68, 69, 75, 76, 80

FIFO First-In First-Out. xi, 25, 26, 32, 34, 35, 49, 50, 76

FLE Floating-Point Less than or Equal to. 39

FLT Floating-Point Less than. 39

FMA Fused Multiply-Add. iii, vi–viii, x, xi, 2, 3, 9, 10, 14, 19, 24, 25, 28–33, 43–46, 48–51, 55, 56, 59, 60, 62–64,

76, 79–81

FPGA Field Programmable Gate Array. iii, vi, x, 1–5, 10–16, 53, 55, 58, 68, 75, 80, 81

FPU Floating Point Unit. iii, v, vi, viii, ix, xi, xii, 1–5, 10–18, 20, 21, 28, 29, 33, 40, 43, 44, 47–53, 55–58, 60, 62–64,

68–70, 73–76, 80, 81

G Guard Bits. 8, 42, 43

HDL Hardware Description Language. 13, 14

HLS High-Level Synthesis. 13

ILP Instruction Level Parallelism. 10, 12, 17

xiii

IO Input-Output. x, 4

IPC Instructions Per Cycle. ix, xi, xii, 12, 28, 29, 40, 52, 53, 61–64, 71–75, 77–81

ISA Instruction Set Architecture. iii, 1, 2, 5, 9, 13, 14, 16, 18, 20, 52

LE Logic Element. 13

LSB Least-Significant-Bit. 8, 42

LUT Look-Up Table. iii, x–xii, 1, 2, 4–6, 11–14, 24, 40, 44, 45, 53–58, 61, 62, 64, 68, 69, 74–81

MAC Multiply-Accumulate. 12

MIPS Millions of Instructions Per Second. xi, xii, 53, 54, 61–64, 73–75, 77–80

NaN Not-a-Number. 6, 39

OOO Out-of-Order. 10

R Round Bit. 8, 42, 43

RAS Return Address Stack. 47

RTL Register Transfer Language. 13

S Sticky Bit. 8, 42, 43

SP Single-Precision. x, 6, 7, 9, 12–14

UART Universal Asynchronous Receiver/Transmitter. 53

WB2FP Floating-Point Units that Write-back to Floating-Point Register. vi, 23, 24, 27–29, 36, 38

WB2INT Floating-Point Units that Write-back to Integer Register. vi, 23, 24, 27, 28, 38

xiv

1 INTRODUCTION

Floating-point computation is ubiquitous in the modern digital world. It is used in a wide range of ap-

plications, from automotive [4], to communications [5], to graphics [6]. Despite the introduction of various

custom floating-point standards [7] [8] [9] for domain specific applications, IEEE 754 [10] continues to be the

mostpopular floating-point format since its inception in1985.However, due to thecomplexnatureof floating-

point operations, the inclusion of a hardware Floating Point Unit (FPU) is often cost prohibitive compared to

integer-only platforms. In many embedded environments, engineers often choose to emulate floating-point

computations using software libraries such as softfloat [11], resulting in significant performancedegradation.

Table 1.1 summarizes the design tradeoffs between IEEE 754 hardware FPU and software emulation. Soft-

ware emulation of floating-point is slower than hardware floating-point, but offers more flexibility, because

it enables floating-point arithmetic on FPU-less platforms and multi-precision support [12] [13]. Hardware

floating-point is more costly to design and verify, both in terms of resources (gates/Look-Up Tables (LUTs)),

and engineering complexity.

Table 1.1: Tradeoff Between Software Emulation vs. Hardware FPU

Implementation Speed Flexibility Cost
Soft-Float Low High Low
Hard-Float High Low High

IEEE 754 FPUs can be implemented on Field Programmable Gate Arrays (FPGAs). However, historically,

hardware FPUs’ resource requirements and complexity have led to very few implementations. Instead, the

focus has been on implementing specific floating-point operations [14] [15] [16]. With today’s high-capacity

FPGAs, the size of an FPU is no longer the limiting factor it once was. Additionally, FPGAs’ reprogrammability

is ideally suited for designing adaptable floating-point hardware to satisfy varying application requirements.

Furthermore, the larger size of modern FPGAs and the recent rise in popularity of RISC-V have collec-

tively enabled a number of soft-processor cores [3] [17] [18] [19]. Designedwith the FPGA’s flexibility inmind,

these soft-processors often offer support the integration of customaccelerators. For applications that require

floating-point operations, the inclusion of a hardware FPUwould increase the runtimeperformance substan-

tially.However,weareawareof onlyone fully-compliant IEEE754FPUdesign for FPGA-based soft-processors.

Due to performance/resource constraints, existing integrated FPU implementations [17] [20] [21] often omit

specific data-path features and exclude denormal number and non-default rounding mode support. More-

over, implementing and optimizing FPUs for existing soft-processor architectures is extremely complex. In

this thesis, we create an easily-integrated FPU targeting theRISC-V Instruction Set Architecture (ISA)with user

customizable compliance andprecision levels. Furthermore,we investigate and analyze the design tradeoffs,

including supporting IEEE754compliance features, reducedprecisionconfigurations, and twomicroarchitec-

tural variations.

1

1.1 Motivation

Researchers have explored various optimization techniques for floating-point designs. Bertaccini et al. [22]

experiments with extreme resource-saving,multi-cycle Application Specific Integrated Circuit (ASIC) FPU de-

signs. Hockert et al. [23] implements an FPGA-based, resource-optimized FPU by selectively accelerating the

soft-float [11] instructions in hardware, leaving others to emulation. Emulation has been a common solution

to unavoidable floating-point workloads for integer-only systems. However, emulation can be 10x slower

[24] than dedicated hardware. While having use cases for heavily resource limited systems, the resource-

optimized implementationsunder-utilize thecapabilitiesofmodernFPGAs, and leavesignificantperformance

potential unused. Forexample, theFPUdesignproposedbyHockert etal. [23] is 9x slower thanaperformance-

optimized FPU, while saving only 23% in LUT.

In addition, existing work is not suitable for integration to soft-processors. Much research effort has fo-

cused on optimizing the frequency of standalone floating-point function(s) implementations. This design

methodology can lead todeeply-pipelined (e.g. 9 cycle for FADD [14]) andhigh clock frequencydesigns.More-

over, as standalone designs are unaware of their surroundings, they can be independently resource efficient,

but are unable to share hardware with adjacent modules.

Implementing integrated FPUs requires a different approach. In a processor system, the floating-point

components’ maximum operating frequency is dictated by that of the base processor. Unfortunately, FPGA-

based soft-processors typically achieve much lower frequencies than that of standalone, highly-pipelined

data-paths. Furthermore, deeply-pipelined data-paths in a processor environment can induce long proces-

sor stalls, as dependencies inevitably arise—especially since the amount of instruction-level parallelism that

compilers can extract is limited. Standalone data-paths are often resource intensive, and lack the scope of

the overall system that can lead to further resource optimizations. As such, FPGA-based FPU designs for soft-

processors should focus on minimizing latency and resource usage. The latter often comes with the added

benefit of reduced routing congestion on FPGAs, which can lead to higher operating frequency. Moreover, in-

tegratedFPUdesignsenableadditional resource sharingoptimizationswithadjacenthardware inaprocessor

environment that are not available in standalone data-paths.

Furthermore, floating-point designs targeting FPGAs have the unique advantage of tailoring their hard-

ware to the applications’ constraints, including varying compliance and precision levels. As a result, existing

FPGA-based, standalone [16] [25] and integrated [26] [21], floating-point implementations only partially sup-

port the IEEE 754 compliance features, with few exceptions [14] [27]. These academic and commercial imple-

mentations often omit compliance features including denormal support and full roundingmodes. Moreover,

the RISC-V [1] ISAmandates the inclusion of FusedMultiply-Add (FMA) instructions, which are resource inten-

sive if full compliance is required (elaborated in Section 3.3.2). Therefore, existing RISC-V based FMA imple-

mentations are either partially compliant [28], deeply-pipelined [27], or multi-cycle [22]. In addition, FPGA-

based FPUs enable users to run their applications in reduced precision to improve performance efficiency.

It is expected that executing floating-point workloads in reduced compliance level or reduced precisionmay

result in a degraded quality of results. Moreover, sincemost floating-point applications arewritten to be IEEE

754 compliant, software standards must be strictly upheld even if the hardware is not fully compliant. This

2

requires implementation considerations where the familiar software interface is supported, while the under-

lying hardware is abstracted from the users.

1.2 Objective

The goal of this work is to create an open-source, RISC-V FPU for FPGA-based soft-processors that provides:

compile-time configurable compliance support andmulti-precision support. Furthermore, the design is opti-

mized for runtime performance and performance efficiency (performance per resource). In the course of im-

plementing the FPU and its non-compliant variations, we wish to facilitate a quantitative discussion on the

impact of running floating-point applications in reduced compliance levels and reduced precision. As part of

our focus on runtime performance and performance-efficiency, we plan to explore two design variations for

themost frequently used instructions, FADD, FMUL, and FMA.We seek to quantify the design tradeoffs among

different FPU designs across the same set ofmetrics, and identify themost optimal set of design choices. The

FPUconfigurations are evaluated in termsof accuracy, runtimeperformance, andperformance-per-resource.

1.3 Contributions

In this work, we introduce an FPGA-optimized, optionally compliant, compile-time multi-precision FPU. We

investigate and evaluate four configurations at different compliance levels based on accuracy, runtime per-

formance and performance efficiency. Moreover, by leveraging the reconfigurability of FPGAs, we explore

executing floating-point binaries in reduced precision. And lastly, we provide tradeoff analysis of two FPU

microarchitectural variations. The contributions of this thesis can be summarized as follows:

• An implementationof a runtimeperformance andperformance-per-resourcedirected, optionally IEEE

754 compliant, compile-timemulti-precision FPU for FPGA-based soft-processors.

• A trade-off analysis of three IEEE 754 compliance features, such as reduced FMAs instruction interme-

diate representation, denormal support and full rounding modes support.

• A quantitative discussion on the effect of running application in reduced precision, in terms of accu-

racy, runtime performance, and performance efficiency.

• Comparisons of two FMAmicroarchitectural design choices.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents the relevant information on FPGAs, the IEEE

754 floating-point standard, and provide an overview of related research. Chapter 3 presents implementa-

tion details of the FPU. Chapter 4 covers our experimental environment, including the different FPU configu-

rations, measurement techniques, and our benchmarking methods. The results of our experiments are then

presented in Chapter 5. Lastly, Chapter 6 provide a summary of this work alongwith potential improvements

to the FPU and future work.

3

2 BACKGROUND

This chapter provides relevant background information for the thesis. We begin with a brief introduction

of SRAM-based FPGAs, including the common components and hardware features. We then outline Taiga,

the processor architecture with which we our FPU is integrated. Finally, we present an overview of related

research.

2.1 FPGA Overview

An FPGA is an integrated circuit that allows users to adapt and program the device to the desired application

and/or functionality requirements within the FPGA’s resource constraints. As shown in Figure 2.1, an FPGA is

made of an array of Configurable Logic Blocks (CLBs) that implement logic functions. They are connected via

a hierarchy of programmable routing interconnects that interface each CLB with other CLBs, Input-Output

(IO) signals, and various compute and memory components such as Digital Signal Processings (DSPs) and

Block-RAMs (BRAMs).

I/Os

CLBs

BRAMs

DSPs

Figure 2.1: FPGAs consists of IOs, CLBs, BRAMs and DSPs

Logic blocks are the most abundant hardware resource in an FPGA. Even though there are differences

among FPGA vendors and their respective device families. At theminimum, each CLB typically containsmul-

tiple K-input LUTs and storage elements (Flip-Flops (FFs)). Figure 2.2 provides a simplified view of the con-

nections between LUTs, and FFs within the CLBs.

4

K-LUT

FF

Figure 2.2: A simplified view of LUT and FF elements within an CLB.

As the foundational element of an FPGA, the K-input LUTs within a CLB are the function generators. Each

K-input LUT can implement any function of K inputs and one output. Some CLB architectures support frac-

turing, where the K-input LUTs have two outputs if (K-1) inputs are shared. Wider functions can be created

by combining multiple K-input LUTs and multiplexers. Furthermore, FPGA vendors provide dedicated fast

carry logic to accelerate arithmetic operations. In addition to the configurable elements, modern FPGAs also

include hard logic blocks that implement a set of common functionalities, such as DSPs that enable high-

performance implementationsofmultipliers, andBRAMs for embeddedmemory.Notably, adjacentDSPsand

BRAMs can be cascaded to implement larger arithmetic functions andmemory blocks. Both DSPs andBRAMs

are organized vertically within the FPGA fabric, as shown in Figure 2.1. Therefore, routing congestionmay oc-

cur in designs with high utilization of DSPs and BRAMs due to placement constraints.

2.2 Floating-Point Overview

Our FPU targets RISC-V based soft-processors, and the RISC-V ISA specifies its floating-point instructions to

be compliant with the IEEE 754 standard. Therefore, this section provides a brief overview of the IEEE 754

floating-point specification [10], including the floating-point format, denormal numbers, and exception and

rounding. We also outline the RISC-V ISA’s floating-point extensions.

2.2.1 Binary Floating-Point Format

The IEEE 754 floating-point format is conceptually similar to scientific notation. As shown in Figure 2.3, a k-bit

floating-point number can be uniquely represented using three variables [10]:

• 1-bit sign S.

• w-bit biased exponent E = e+ bias, whereas bias = 2w–1 – 1.

5

• t-bit trailing mantissa field T.

S���(S)

� �

�

�

E�������(E) M������� (T)

Figure 2.3: IEEE 754 Floating-Point Format: w=8, t=23 for Single-Precision (SP) numbers. w=11, t=52 for
Double-Precision (DP) numbers.

The exponent field uses biased representation to mitigate the complexity of handling signed numbers

in hardware. The signed exponent values are converted to unsigned values by adding a bias to the actual

exponent. Like in scientific notation, the exponent field width w controls the range, i.e. the upper and lower

limits of the format. Themantissa fieldwidth t dictates the precision of the representation, and fine-tunes the

distance between successive numbers representable by the format. It is common to tradeoff t with hardware

complexity, as we will discuss in Section 2.2.2. The value of a normal floating-point number encoded in IEEE

754 format can be expressed using:

(1)S ∗ 2E–bias ∗ (1.T), if1 ≤ E ≤ 2w – 2 (2.1)

It can be seen that normal floating-point numbers contain an implicit leading one bit in the mantissa

field. Moreover, the standard defines additional encodings to represent several special numbers:

• Not-a-Number (NaN): E = 2w – 1 and T 6= 0

• ±∞: E = 2w – 1 and T = 0

• Denormal numbers (more in Section 2.2.3): (–1)S ∗ 21–bias ∗ (0.T), if E = 0 and T 6= 0

• ±0: E = 0 and T = 0

NaN can be interpreted as undefined floating-point values, or used to propagate specific debug information,

i.e. multiply(0,∞). Denormal numbers are the subset of floating-point values that are too small to be rep-

resentable by a given floating-point format. We provide a detailed discussion on denormal numbers in Sec-

tion 2.2.3.

2.2.2 Reduced Floating-Point Format

To meet applications’ performance, resource and power constraints, designers often choose to implement

floating-point using non-standard floating-point formats. Compared to exponent processing, mantissa com-

putation is substantiallymorecomplexand resource intensive,due to the largeadders,multipliers, andshifters

required. Our experiments show that truncating exponent field by 1 bit leads to <1% LUT usage reduction,

6

whereas decreasing the mantissa width by the same amount results in >4% saving in resource utilization.

Therefore, it is common to trade-off improved hardware performance and efficiency with reduced computa-

tion precision and accuracy degradation. For example, by simply reducing SP floating-point format’s man-

tissa width to 10 bits, Nvidia’s tensor float format [7] provides a substantial 6x speedup in machine-learning

applicationswhilemaintaining similar computation accuracy. Moreover, in applicationswhere storage size is

a bottleneck, such as the motion picture industry, compression algorithms with smaller mantissa widths [8]

are employed to decrease the storage requirements.

2.2.3 Underflow and Denormal Floating-Point Numbers

In order to represent numbers with smaller magnitude than that of the smallest normal number, IEEE 754

uses a special format called denormal format. This section presents an overview of the denormal number

format and the rationale behind its adoption.

IEEE 754 defines normal floating-point numbers as those floating-point numbers with biased exponent

values greater than zero. Normal floating-point numbers have an implicit leading bit of 1, and their mantissa

fields can bewritten as 1.m0m1...mp–1, wheremn are themantissa digits. The normal number encoding cov-

ers the majority of the floating-point numbers. However, there exists a caveat for tiny floating-point values.

Figure 2.4 illustrates thephenomenoncalledabrupt underflow. Abrupt underflowoccurswhen the tiny values

around zero are not representable using normal encoding, leaving an abrupt gap between±floatmin and 0.

The lack of representation of tiny values can cause various problems. For example:

• x ± y may underflow, where x and y are two neighboring normal floating-point numbers.

• x = y cannot be safely deduced from x – y = 0 for normal, finite x and y.

∞-∞

0-|float_min| +|float_min|

Figure 2.4: Normal Numbers Abruptly Jumps to 0 in Abrupt Underflow

To mitigate the aforementioned issues, IEEE 754 defines a new format specifically for tiny values called

denormal. Denormal numbers are the subset of floating-point numberswhose implicitmantissa leadingbit is

0.Mathematically, denormalnumbers represent thesmall valuesaroundthe intervalof (–floatmin,+floatmin),

filling the gap between normal numbers and±0, shown as the red bars in Figure 2.5. This scheme is also re-

ferred to as gradual underflow. Gradual underflow enhances software’s numerical stability, though it comes

at additional cost in hardware complexity and degraded performance. Many processors choose to handle

denormal numbers by treating them as zeros (flush-to-zero). Others use software traps [29] which results in

reduced runtime performance.

7

∞-∞

0-|float_min| +|float_min|

Figure 2.5: Normal Numbers Gradually Converge to 0 in Gradual Underflow

2.2.4 IEEE Rounding

IEEE-754[10] mandates that every operation must be carried out as if the intermediate results are correct to

infinite precision and with unbounded range. Rounding is then performed to fit the ”infinitely precise” num-

bers in thedestination’s finite representation.However, ”infiniteprecision” isphysically impossible, therefore

implementations only keep a subset of the total precision bits beyond the destination’s format for rounding

purposes. Guard Bits (G) are the bits to the right of the least significant bit of the mantissa. Round Bit (R) is

the bit to the right of the guard bit, and Sticky Bit (S) is the logical OR of all bits to the right of R.

IEEE 754 defines five rounding-direction attributes:

• roundTiesToEven (default mode): store the floating-point number nearest to the infinitely precise re-

sult; if two floating-point numbers are equally near, choose the onewith the even Least-Significant-Bit

(LSB).

• roundTowardPositive: store the floating-point number closest to and no less than the infinitely pre-

cise result.

• roundTowardNegative: store the floating-point number closest to and no greater than the infinitely

precise result.

• roundTowardZero: store the floating-point number closest to and no greater in magnitude than the

infinitely precise result.

Rounding modes roundTiesToEven and roundTiesAway deliver the floating-point number closest to the

infinitely precise result. ”Closeness” is determinedby theGRSbits: in decimal integer rounding, two rounding

results are equally close to the infinitely precise value if the fraction is 0.510, which translates to 0.1002 in

binary, as shown in equation Section 2.2.

0.50010 = 0.1002 (2.2)

Thus, assuming that the mantissa fields are integers, we conclude that:

• Mant.100: there exists two values that are equally near to the infinitely precise result.

• Mant.0xx: Mant.000 is the nearest to the infinitely precise result.

• Mant.1xx: Mant+1 is the nearest to the infinitely precise result.

8

We note that floating-point instructions use either a static roundingmode that is encoded in the instruc-

tions, or a dynamic roundingmode encoded as 111 in the instructions’ rm field. When an instruction requires

dynamic rounding, the actual roundingmode is fetched from RISC-V’s Floating-Point Control Status Register

(FCSR).

2.2.5 IEEE Exception

The IEEE 754 standard specifies five kinds of exceptions that should be signalled when they arise, as well as

the default handling for each exception in the absence of any explicit user specification. The RISC-V ISA de-

fines a special register, called the FCSR, where exception flags are accumulated. However, RISC-V does not

trap floating-point exceptions, and leaves exception handling to the software’s discretion. The supported ex-

ceptions are:

• InvalidOperation: signalled if andonly if there is nomeaningfully definable result, e.g.multiply(0,∞).

• Division by Zero: signalled if and only if an exact infinite result is delivered for operations on finite

operands.

• Overflow: signalled if and only if the result is larger inmagnitude than the destination format’s largest

finite number.

• Underflow: signalled if and only if a tiny non-zero result is delivered.

• Inexact: signalled if and only if the delivered result is different fromwhat would have been computed

were the range and precision infinite.

2.2.6 RISC-V Floating-Point Instruction Extensions [1]

RV32F and RV32D are the RISC-V instruction extensions for SP and DP floating-point instructions. RISC-V’s

floating-point instruction set covers a wide range of instructions that have been supported by previous ISAs.

Figure 2.6 illustrates different encodings of RV32FD floating-point instructions. The floating-point load/store

instructions are encoded in I-type and S-type respectively, identical to their integer counterparts. FMA in-

structions uses the R4-type instruction encoding as they operate on three inputs. For those floating-point in-

structions that require rounding, the funct3 field indicates the rounding attribute. Floating-point conversion,

classification, and move instructions require only one operand, thus the I-type encoding is utilized, where

the 12-bit immediate field functions as control signals. Not explicitly shown in the Figure 2.6, floating-point

load/store, integer-to-floating-point conversion instructions read from the integer register file, while floating-

point-to-integer conversion, comparison, and classification instructions write to the integer register file.

In addition to the traditional floating-point instructions, RISC-V floating-point extensionmandates the inclu-

sionof FMA instructions. In termsof implementation,unfusedmultiply-add (FMUL followedbyFADD) requires

a (t+3)-bit adder for mantissa addition, where three extra bits are used for rounding. However, compliant

FMA implementations are carried out as if with unbounded range and precision, and rounding is only per-

formed at the end of addition [10]. Therefore, the (2*t)-bit intermediatemantissa generated by themultiplier

9

funct7 rs2 rs1 funct3 rd opcode

imm[11:0] rs1 funct3 rd opcode
rs3 rs2 rs1 funct3 rd opcode

31 25 24 20 19 15 14 12 11 7 6 0

funct2

2627

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

R-tyep
R4-type
I-type
S-type

Figure 2.6: RV32FD Floating-point instruction encoding.

is propagated to the adder for FMA instructions. This greatly increases the width of the alignment and post-

normalization shifters, as well as the floating-point adder to (3*t) bits, which increase resource usage and

presents additional challenges in timing closure.

2.3 Taiga Overview

An important consideration for the implementation of our FPU is that it should not be bottlenecked by the

performance of the base processor. Heinz et al. [30] conducted a comparative study across an array of RISC-

V processors, and found Taiga [3] to be the most performant, and performance-efficient. Taiga is an FPGA-

optimized,highly configurable, opensource32-bitRISC-Vprocessor supporting theRV32IMAextensions.Taiga

features parallel execution units, which allows the execution stage to be decoupled from the fetch, decode

and issue stages. To support execution units with different latencies, Taiga implements register renaming

and tracks instructions throughout their life-cycle in the pipeline, from instruction-fetch to instruction-retire.

These features enables Out-of-Order (OOO) execution which allows more Instruction Level Parallelism (ILP).

Figure 2.7 provides an overviewof Taiga’s pipeline. A standard execution unit interface is provided to simplify

the integration process. We discuss the FPU’s integration scheme to Taiga in Section 3.1.

TLB/MMU

I$

L� A������

F���� B����

I����

F����

�/�+� � �+� �/�+
LSB� ALU CSRM�� D��

B� P��� M
��

 I��������

P�������� P�������

S������D�����/R�����

W��������

��-�����
���-��-�����

AMO TLB/MMU

D$

B�� M

L��� S���� U���

S������

S�����
 B��

�-����� �-���� ��� ����

R������� R�������

K�� C���������
�������

�-�� ��-������ ������������
��������� ���� ������� �����-������

������ ���� ��������� �������� ������� ���������������� ��������
�������������

Figure 2.7: Taiga Pipeline Overview [3]

10

2.4 RelatedWork

In this section, we first highlight a few floating-point designs targeting ASICs, and demonstrate that the tech-

niques and optimizations for ASIC are not directly transferable to FPGAs. Moreover, as this represents the

bulk of floating-point research for FPGAs, we list existing work on standalone floating-point data-path de-

signs, libraries and automated data-path generators. We then discuss several open-source and commercial

integrated FPU designs. Finally, we outline the compliance deficiency of existing FPGA-based floating-point

implementations in both standalone operators and integrated FPUs.

2.4.1 FPUs on ASICs

Extensive research has explored optimizing floating-point data-paths for ASICs, such as leading-one predic-

tors [31] [32], rounding stagemerging [33], and dual-path floating-point adders [34] [35] [36]. Bruguera et al.

[32] [31] proposes and optimizes a leading-one prediction unit that detects the location of the leading-one

concurrently with mantissa addition for floating-point adders. Bruguera et al. [33] introduces a compound

adder that computes A + B and A + B + 1 simultaneously, resulting in reduced latency due to the merging

of mantissa addition and rounding stages. Moreover, Farmwald [34] introduces a dual-path (far-close-path)

floating-point adder architecture. Dual-path adders partition the floating-point addition operation into two

parallel paths depending on the inputs. The correct output is selected at the end of the pipeline. Since each

path is only responsible for a subset of the possible inputs, the hardware required for one path can be re-

moved from the other, resulting in reduced timing delay. Oberman et al. [35] improves the dual-path adders

by allowing the back-loaded close-path to execute speculatively, achieving up to 33% reduction in latency.

Seidel et al. [36] implements adelay-optimizeddual-pathadderbymodifying thepartitioning criterion.Other

complex floating-point operators, such as divide and square-root [37] [38] [39], have also been extensively

studied.

Unfortunately, the optimization opportunities afforded by ASIC’s high-performance nature are not read-

ily available for FPGAs due to technology differences. Malik et al. [40] point out that the adder optimizations

[32] [34] previously discussed can increase resource utilization by 88% if implemented on FPGAs. Moreover,

FPNew [41] is an ASIC-based FPU for RISC-V processors. A bare-bone FPNew core, i.e. no decode-and-issue,

register file, or write-back logic, requires more than 6400 LUTs compared to our 5423 LUTs on a Zedboard.

Last but not least, the general purpose LEON3 [42] configuration requires 7560 LUTs, whereas a similarly con-

figured Taiga [3] core only needs 1950 LUTs, both targeting Xilinx 7-Series devices.

2.4.2 Standalone Floating-Point Cores on FPGAs

Much work touching upon floating-point on FPGAs has explored standalone data-paths [14] [16] [25]. This is

likely due to FPGAs’ usage as standalone accelerators, and the high parallelism that can be realized by repli-

cating standaloneoperators. Furthermore,mostworkhas focusedonsubsetsof floating-pointoperations, i.e.

just adders and multipliers [14] [15] [16], or dividers and square-root operators [25] [2]. For FPUs integrated

into processors, we need to support all floating-point operations, and have additional constraints and opti-

11

mization goals over the standalone data-path designs. Since the base soft-processor constrains the operating

frequency of the overall system , floating-point designs clocked at frequencies higher than that of the base

processor offer no benefit in runtime performance compared to the ones clocked at the base-processor’s

frequency. Unfortunately, the additional pipeline stages required to achieve said high operating frequen-

cies induce longer unit latency, and drastically degrade the processor’s Instructions Per Cycle (IPC). Last but

not least, standalone data-paths cannot take advantage of the resource sharing opportunities available in

the processor system. For example, the post-normalization and rounding modules can be shared among all

floating-point modules in an integrated FPU.

Early work has looked at the feasibility of implementing floating-point operators on FPGAs [43] [44]. As

FPGA technology matured, their adoption in domain-specific applications drove a strong demand for fast,

high-throughput floating-point operators. Hemmert et al. [14] explore and implement IEEE 754 compliant,

FPGA-optimized floating-point adder (9 stages) andmultiplier (14 stages). Dou et al. [15] proposes a 13-stage,

DP floating-point Multiply-Accumulate (MAC) unit for accelerating floating-point matrix multiplication ker-

nels. Jaiswal et al. [16] proposes a DSP efficient, DP floating-point multiplier. The low-latency configuration

of the proposedmultiplier has 6 pipeline stages, and achieves 310MHz. Somework has also explored param-

eterized floating-point cores [45] [46].

These standalone, deeply-pipelined floating-point cores enable designers to offload demanding compu-

tations to FPGAs. However, they will likely perform poorly when integratedwith general-purpose processors,

as most software applications have limited ILP due to data dependencies. Albeit advanced processor archi-

tectures, such as Taiga, canmitigate the anti-dependencies (write-after-read andwrite-after-write) by imple-

menting register renaming. In the event of true dependencies (read-after-write), deep pipelines will cause

long processor stalls, and severely degrade the processor’s runtime performance. Moreover, the high clock

frequency achieved through additional pipelining provides little benefit, as the base soft-processor dictate

the overall system’s operating frequency.

Furthermore, standalone floating-point implementationsareoften too resource intensive forFPGA-based

soft-processors. The DP floating-point multiplier proposed by Jaiswal et al. [16] utilizes 2071 LUTs, which is

more than what Taiga [3] requires. Wang [25] et al. propose table-based, SP floating-point, pipelined divi-

sion/reciprocal cores. However, the lookup table size increases exponentially with mantissa bit-width, mak-

ing a DP version prohibitively large for FPGAs. Fang et al. [2] build uponWang et al. [25] and propose variable-

precision floating-point reciprocal, division and square root operator designs. Although the improved algo-

rithm requires a smaller lookup table, the floating-point modules are still significantly larger than our base-

processor Taiga, as shown in Table 2.1.

Table 2.1: VFLOAT’s [2] reciprocal, divide and square-root operators requiremassive resources on Xilinx Virtex
6.

Operation 6-input LUT BRAM
1÷x 3449 8
y÷x 3487 8√

x 6285 58

12

Vendor supplied floating-point operators can have significant hardware footprint as well. Xilinx floating-

point divide core [20] configured to high-throughput mode requires 3218 LUTs, while Intel’s performance-

optimized ALTFP_DIV core [47] requires 44 DSPs, significantly exceeding the resource requirement of Taiga

(1948 LUTs and 2 DSPs). The extensive resource requirements add substantial constraints on the placer, and

may further exacerbate the already frequency-constrained soft-processor system. In addition, researchers

have explored automated floating-point libraries andgenerators in order to simplify the implementationpro-

cess. VFLOAT [25] is an open-source library of variable-precision floating-point operators. FloPoCo [48] gen-

erates complex floating-point arithmetic cores in VHDL. Moreover, High-Level Synthesis (HLS) tools [49] [50]

[51] abstract programmable logic development by enabling the synthesis of high-level programming code

(C/C++) to Register Transfer Language (RTL). Although leveraging existing libraries and generators can accel-

erate the design process, users possess little control over the generated hardware besides the parameters the

tools choose to expose (e.g. the pragmas in Xilinx HLS). Additionally, the libraries and automatic tools follow

the same design methodology as that of the standalone cores, which are not suitable for soft-processors as

discussed previously. Moreover, to our knowledge, no existing tools support generation of fully compliant

floating-point data-paths.

2.4.3 Existing Integrated FPUs for FPGA-based Soft-Processors

Thereexists several SP [21] andDP [26] [17] [52] FPUs for soft-processorswith support for all common floating-

point operations. However, all FPUs targeting soft-processors are only partially compliant to IEEE 754. More-

over, there is a significant barrier to adopting these existing designs to other soft-processors, due to their

closed-source nature, or the unconventional Hardware Description Language (HDL) used. In this section,

we introduce the commercial and open-source FPUs targeting FPGA-based soft-processors, and provide an

overview of their features (or lack thereof), as well as their adoptability to other soft-processors.

The vendor suppliedMicroBlaze [26] and NIOS II [21] are proprietary soft-processors developed for Xilinx

(recently bought by AMD) and Intel FPGAs respectively. Both implementations are equipped with optional

FPUs that support floating-point addition, subtraction, multiplication, division, comparison, conversion and

square root instructions. The FPUs share the floating-point register fileswith that of the integer ones. As such,

only the 64-bit MicroBlaze configuration supports DP floating-point operation, and NIOS II only supports SP

floating-point. Furthermore, both FPUs break IEEE 754 conformance for performance reasons, as neither Mi-

croBlaze or NIOS II supports denormal number processing, full roundingmodes, or compliant exception han-

dling. As a result, both FPU designs achieve relatively low resource utilization. The DPMicroBlaze FPU can be

clocked at 100MHz and requires 1760 6-input LUTs onXilinx Artix-7 FPGAs, and the SPNIOS II FPU can achieve

130 MHz with 2500 4-input Logic Elements (LEs) on Intel Cyclone IV devices.

GRFPU [52] is a paritially IEEE 754 compliant FPU designed for LEON [42] processors. The FPU supports

both SP and DP floating-point instructions specified by the SPARC V8 ISA [53]. GRFPU features a sharedmul-

tiplier that implements FMUL and non-blocking FDIV and FSQRT instructions. Similar toMicroBlaze andNIOS

II, GRFPU does not support denormal numbers, therefore, it has a relatively low hardware footprint of 4700

LUTs on Xilinx 7-series devices. Although SPARC V8 is an open-source ISA, the free version of GRFPU only pro-

13

vides a pre-synthesized netlist for Xilinx Virtex II FPGAs,making it impossible tomodify the GRGPU’s backend

implementation.

VexRiscv [28] is a highly configurable, open-source RISC-V processor. It supports both SP andDP floating-

point operations through its extensive list of complementary plug-ins, however it deviates from the IEEE 754

standard. VexRiscv FPU does not fully support denormal number processing, as denormal numbers are not

correctly promoted to normal numbers during rounding. Additionally, the FMA instructions’ intermediate re-

sults are truncated to just (MANT_WIDTH+2), which can lead to complete loss of precision as we will demon-

strate in Section 2.4.4. The omission of these compliance features leads to a relatively small FPU design of

3779 6-input LUTs clocked at 114 MHz on a Zedboard. Despite being fully open-source, VexRiscv is written in

unconventional HDL SpinalHDL [17] that is compiled to Verilog and VHDL before synthesis. As the compila-

tion engine flattens the design hierarchy, and discards any comments associated with the SpinalHDL source

code, the generated Verilog and VHDL source code is unreadable. Therefore, it is difficult to migrate the FPU

to other architectures.

NaxRiscv [27] is another open-source RISC-V processor developed using the SpinalHDL language. As an

upgrade to the VexRiscv project, NaxRiscv’s FPU propagates the full (2*MANT_WIDTH)-bit intermediateman-

tissa from FMA’smultiplication stage to the addition stage. Expectedly, the fully compliant FPU requires 5591

LUTs, and achieves 98 MHz on a Zedboard. We note that despite its advancements, NaxRiscv still suffers from

the same flaws of implemented using unconventional language SpinalHDL [17].

2.4.4 Compliance Status of Existing Research

A commonality across all existing floating-point work for FPGAs is that full IEEE 754 compliance is rarely

achieved. Almost all standalone data-path designs are non-compliantwith few exceptions [14]. Furthermore,

existing open-source and commercial integrated FPUs targeting soft-processors are rarely compliant [28] [26]

[21] [52]. The non-compliant implementations typically remove denormal number processing due to the sig-

nificant hardware requirement. Moreover, further resource optimization is possible if only default rounding

mode is supported (i.e. merging rounding addition with mantissa addition).

Previous work [45] [46] has investigated the effect of running benchmarks in reduced compliance levels,

and found that supporting denormal numbers and full roundingmodes can have a resource usage overhead

of 200%and15%respectively.However, previous researchwerenot conducted in the scopeof theprocessor’s

environment, especially RISC-V based soft-processors. Additionally, among the fewRISC-V FPUdesigns, none

implements the fully compliant FMA instructions mandated by the RISC-V ISA.

In order to demonstrate the negative impact of neglecting FMA compliance, we present the step-by-step

computationof an FMA instruction in Figure 2.8. The example solves for –100.15∗0.99999999990+100.15

in the following steps:

1. Multiplication stage generates a 2*T-bit intermediate result, where T is the mantissa field width (2.3).

The residual bits are colored in green. The exponent fields are colored in gray, as we emphasize the

interactions betweenmantissa fields.

14

2. The 2*T-bit intermediate result is propagated to the adder. Since the intermediate result and the third

operand have opposite signs, the effective operation is subtraction.

3. The adder’s inputs are swapped so that the minuend is larger in magnitude. The subtrahend is right-

shifted so that its radix point is aligned with that of the minuend.

4. The twomantissas are subtracted, and normalized to obtain the final floating-point result.

It can be seen after alignment (step 3), the two upper mantissas (colored in red) are almost identical.

As a result, the subtraction operation causes the most significant bits to cancel, and the actual mantissa is

preserved in the residualbits (colored inblue). Post-normalization then left-shifts the residualbits tocompose

the final output. However, these precision bits would have been lost if themultiplication intermediate result

(colored in green) is truncated, as is the case in VexRiscv [28], resulting in a catastrophic loss of precision.

In addition to maximizing portability and accuracy, users should be able to leverage FPGAs’s flexibil-

ity and turn on/off specific compliance features when appropriate. However, existing implementations have

fixed compliance features. Given the size of modern FPGAs, providing an optionally compliant FPU will al-

low the user to tradeoff performance and performance efficiency versus accuracy to meet the needs of their

application.

C05
3FE

1909999999999A

C04 32133333333332 6F66666666666
1FFFFFFFFFFFFF*

Addition:

Multiplication:

405 1909999999999A 0000000000000
C04 32133333333332 6F66666666666

+

405 1909999999999A 0000000000000
404 32133333333332 6F66666666666-

405 1909999999999A 0000000000000
405 19099999999999 37b3333333333-

=

405 00000000000000 C84CCCCCCCCCD=

3D01909999999999A 0000000000000=

Effective
Subtraction

Alignment

Normalization

Figure 2.8: Step-by-step calculation of -100.15*0.999999990+100.15: addition step causes complete loss of
precision unless the intermediate result is preserved. Note that the mantissa fields are 53-bits wide, thus
shifting causes irregular changes to the hexadecimal representation.

2.4.5 RelatedWork Summary

As discussed, FPU designs targeting ASICsmap poorly on FPGAs. Furthermore, existing FPGA-based floating-

point standalone data-paths design are independently frequency-optimized. As such, they are not suitable

for FPGA-based soft-processors due to long latency and soft-processor’s clock frequency constraints. More-

over, the resource requirement of standalone cores makes them prohibitively large, as they are optimized

15

for throughput, and unable to leverage the resource sharing opportunities available in a processor’s envi-

ronment. In addition, existing integrated FPU designs for FPGA-based soft-processors omit important com-

pliance features such as denormal and full rounding modes. Their proprietary nature makes it impossible to

support additional functionalities. While we are aware of one RISC-V based, open-source FPU implementa-

tion, its programming environment is unconventional and difficult to adapt to other architectures. Crucially,

no existing design supports the full set of compliance featuresmandated by the RISC-V ISA. Therefore, in this

work we explore optionally compliant, compile-timemulti-precision FPU designs.

16

3 FPU IMPLEMENTATION

In this chapter, we discuss the implementation details of our FPU. We begin with an overview of the

FPU’s integration to Taiga, including instruction decode-and-issue, ID management, and shared integer reg-

ister file access. We then present the FPU’s top-level processing stages, and provide insight into the FPU’s

micro-architecture designs. Lastly, we describe each instruction’s pipeline in detail.

3.1 FPU Integration to Taiga

W

C

F D E F D E W

C W

F D WE/C

(a) (b) (c)
Figure 3.1: Custom Accelerator Integration Options

There exists several ways to integrate custom logic into a soft-processor, as visualized in Figure 3.1. Option

(a) is typically used in fixed-pipeline designs where the custom accelerators are merged with the existing

execution stage. This option has low overhead, but the ILP is limited due to the single pipeline. Option (b)

enables higher parallelism than (a), but overhead and synchronization at the write-back stage can become

the bottleneck — especially for low latency instructions. Option (c) visualizes the integration scheme that

supports parallel execution units and custom accelerators. In this scheme, the custom logic interfaces with

the processor as a base execution unit would. As a result, option (c) combines the advantages of (a) and (b),

and enables low-overhead and high ILP custom logic integration. However, (c) has the additional complexity

in managing pipelines and ordering. Fortunately, Taiga supports option (c) natively, and has conveniently

provided a standardized unit interface that simplifies the integration process.

In this section, we present a detailed discussion on the integration of the FPU to Taiga. We then de-

scribe the modifications needed to the ID management and instruction decode-and-issue logic to support

the floating-point instructions.

17

3.1.1 Instruction Fetch, Decode, Issue, and Management

FP WB�INT

R�������
R�������

D�����/
���-����������

FP D�����/
���-����������

R������� F��� D���������
C������� FP R������� F���FP D���������

C�������

B��� T����

I������ W����-����

D�
��
��

F�
��
�

I�
��
�

E�
��
��
��
�

I������ F�������-P����

FP W����-����

FP WB�FP

F����

S����� I����

ID
M���������

FP R�������
R�������

Figure 3.2: FPU Integration with Taiga.

Figure 3.2 provides an overview of Taiga with the integrated FPU. It can be seen that the integer and floating-

point pipelines share the instruction fetch unit, as highlighted in both green and orange. The FPU also shares

the pool of instruction IDs with the integer instructions. This enables a unified instruction management unit

which simplifies the interaction between integer and floating-point instructions. As a result, we expand upon

the existing instruction decode and IDmanagement logic to handle floating-point instruction tracking. Addi-

tionally, we have implemented a separate floating-point register file asmandated by the RISC-V ISA [1]. Thus,

the logic for integer register renaming (in the decode stage) is duplicated for the floating-point register file.

The pipeline splits once the instruction reaches the issue stage. However, some floating-point instruc-

tions read their operands from the integer register file, and vice versa. Table 3.1 outlines the floating-point

instructions supported by our FPU, and their source and destination register types.

18

Table 3.1: Floating-point instructions supported. Source and destination columns outline the instructions’
input and output types.

Instruction Functional Description Read Write

FLD Floating-point load INT FP

FSD Floating-point store INT, FP No Output

FMA Fused Multiply-Accumulate FP FP

FADD, FSUB Add, subtract FP FP

FMUL Multiply FP FP

FDIV Divide FP FP

FSQRT Square-root FP FP

FCVT.D.(U)W (Unsigned) integer to floating-point conversion INT FP

FMIN, FMAX Minimum, maximum FP FP

FSGNJ, FSGJN, FSGNJX Move, negate, absolute value FP FP

FCVT.(U)W.D Floating-point to (unsigned) integer conversion FP INT

FLE, FLT, FEQ <=, <, == FP INT

FCLASS Classify FP INT

As such, the issue stage must be shared to enable the floating-point and integer data transfers. To fa-

cilitate such inter-register-file dependency checking and unified instruction management, we need to track

additional instruction metadata:

• read-int-data and read-fp-data: signifies the source operand types.

• write-int-data andwrite-fp-data: signifies the destination types.

• is-float: asserted when the instruction is a floating-point instruction.

• accumulate-csr: asserted when the instruction may update the FCSR.

Read-int-data and read-fp-data are used to track the instructions’ operand types, and facilitate operand

dependency checking. The ability to distinguish the operand type is crucial as some floating-point instruc-

tions require integer operands. For example, floating-point store instructions reads the integer register file

for base address and offset, while obtaining the out going data from the floating-point register file. Moreover,

to further decouple the two data-paths, the integer and floating-point register files have independent regis-

ter renaming units. Notably, renaming the integer registers should not affect the floating-point registers, and

vice versa.

Write-int-data and write-fp-data attributes help the ID management and renamer modules identify the

instructions’ destination register type, andprovide appropriate physical registers in the issue stage. Similarly,

wealsouse these flags toensure that thephysical registers are returned to thecorrect free registerpoolduring

instruction retirement.

19

Is-float flag is asserted for all floating-point instructions, although it is only used for controlling memory

operations. The integer and floating-pointmemory operations share a singlememory bus. Therefore, the flag

is-float is needed to distinguish the resulting data type. Is-float also controls the store byte-mask and load-

store-queue output selection. Since the load store unit can commit data to both register files, we use is-float

to assert the appropriate output valid bit during its write-back stage.

Accumulate-csr tracks instructions that may write to the FCSR. The RISC-V ISA does not trap for floating-

point exceptions [1]. Instead, the standard specifies that floating-point exceptions should be accumulated in

the FCSR and handled by software. The accumulate-csr flag therefore controls the floating-point exception

status update logic.

Furthermore, Figure 3.2 also visualizes the shared issue interface between integer and floating-point ex-

ecution units. The interface is responsible for propagating the integer operands and dependency status to

those floating-point instructions that require integer operands, suchas floating-point load/store, and integer-

to-float conversion. Moreover, the integer write-back logic is extended to support the floating-point instruc-

tions that commit to the integer register file.

3.2 FPU Stages

I�� R��F���

S����� I����

P��-����������

N������������/
R�������

I�����������
W����-����

FP W����-����INT W����-����

F���� R��F��� I����
P��-����������
E������
W����-����

FP L/SF���/
F����

FMA/
F���/
F���

FP M���
WB�FP

FP M���
WB�INT

Figure 3.3: From the issue stage, floating-point instructions are issued in-order with execution being broken
down into: pre-processing, execution and write-back stages.

20

In this section, we describe the top-level FPU stages. The four main stages, as highlighted in Figure 3.3, can

be briefly summarized as:

• Issue Stage: reads integer and floating-point operands from the register files.

• Pre-processing Stage: pre-computes signals shared by the execution units.

• Execution Stage: processes the instructions.

• Write-back Stage: Commits results to the register file.

The following sections will discuss the interfaces between the stages, and provide an overview of the FPU’s

micro-architecture design.Wenote that these stages describe the high-level floating-point instruction execu-

tion sequence in the FPU, and are not a representation of the hardware pipeline (measured in clock cycles).

3.2.1 Issue Stage

The issue stagemodules,marked in black in Figure 3.3, consist of the single-cycle issue logic and two register

files. As discussed in Section 3.1, the shared issue interface coordinates dependency checking between both

integer and floating-point register files. Moreover, it facilitates data transfer for those floating-point instruc-

tions that require integer operands. We note that the floating-point load-store’s execution stage interfaces

with the issue stage directly, as it requires no pre-processing.

���_�������
�����ID

D��� D���

I���� P��-P���������
��������_�������

Figure 3.4: Unit issue interface

Figure 3.4 presents the interface between issue and pre-processing stages. The issue stage receives the

ready signal from the pre-processing stage, and forwards the new_request signal when an instruction can be

issued and the pre-processing stage is ready. The ready signal of the pre-processing stage is itself dependent

on the statusof the executionunit requiredby the current instruction. If the requiredexecutionpipeline stalls,

the upstream pre-processing and issue stages may also stall. Moreover, The instruction ID, for ordering and

tracking purposes, is propagated along with the data and other metadata for the instructions.

3.2.2 Pre-Processing Stage

The pre-processing stage, visualized in Figure 3.3 in green, is an intermediate stage that performs three im-

portant tasks:

21

• forwards the control signals and data from the issue stage to the execution stage.

• back-propagates the unit ready status signals from the execution units to the issue stage.

• computes various intermediate results that are shared by many instructions.

We have discussed the first two tasks in the previous section, therefore we focus on the third task in this

section.

Many floating-point instructions require similar preparation steps before the operands canbeprocessed.

For example, FADD inputs are sorted in descending order before mantissa addition/subtraction. The sorted

results can then be shared by floating-point compare andmin/max instructions.

Table 3.2: The shared pre-processing stage performs sorting, pre-normalization, and special input detection.

Modules Shared By

Sorting FMUL, FADD, FCMP, FMIN/FMAX

Pre-normalization FMUL, FDIV, FSQRT

Special-Input-Detection All FP Instructions, except memory operations

E���� E����

<

(a) (b) (c)

E����

S���?

I��?

M���� M���� RS�M����

<

<<-

CLZ QN�N? SN�N? Z���?

Figure 3.5: Implementation of the shared (a) sorting, (b) pre-normalization, and (c) special-input-detection
modules.

Table 3.2 and Figure 3.5 provide an overviewof the three shared hardwaremodules in the pre-processing

stage. The sorting module (a) sorts two floating-point numbers in descending magnitude order. Sorting in-

volves comparing the exponent andmantissa fields, and it is typicallymapped to subtractors by the synthesis

tool. As DP floating-point mantissa comparison requires a 53-bit subtractor, sharing this hardware allows us

to save substantial resource and reduce routing congestion. Next, pre-normalization (b) refers to the opera-

tion of converting a denormal number to a normal one. This is implemented by first computing the count-

leading-zero of the mantissa, and then left-shifting the mantissa by that amount so that the implicit leading

bit is asserted. Floating-point multiplication, division, and square-root instructions require this step so that

the resultingmantissa canbecorrectly scaled.However, instantiating separatepre-normalizationmodules for

each instruction is too expensive, as the large 53-bit shifters can cause significant resource usage and routing

congestion. Lastly, the special-input-detectionmodule (c) determineswhether the inputs are IEEE 754 special

22

values outlined in Section 2.2. Every arithmetic instruction must perform special input handling, thus, it is

resource efficient to share this module.

FMA I�����
F���/F���� I�����

FP M��� WB�FP I�����
FP M��� WB�INT I�����

U��� R����[�:�]U��� I����[�:�]

D���

P��-���������� E��������

Figure 3.6: Thepre-processing stagepre-computes intermediate results, packs andpropagates executionunit
inputs.

Figure 3.6 presents the interface connecting the pre-processing and execution stages. As mentioned in

Section 3.2.1 and the beginning of this section, each execution unit, except floating-point load-and-store, is

connected to the issue stage through the pre-processing stage via the shared issue interface visualized in

Figure 3.4.

3.2.3 Execution Stage

The execution stage is visualized as the yellow blocks in Figure 3.3. It consists of five execution units:

• FP L/S

• FMA/FADD/FMUL

• FDIV/FSQRT

• FP MISC Floating-Point Units that Write-back to Floating-Point Register (WB2FP)

• FP MISC Floating-Point Units that Write-back to Integer Register (WB2INT)

23

Table 3.3: Each execution unit supports several floating-point instructions.

Unit Instruction Functional Description

FP L/S FLD, FSD Load, Store

FMA

FMA Fused Multiply-Accumulate

FADD, FSUB Add, Subtract

FMUL Multiply

FDIV/FSQRT
FDIV Divide

FSQRT Square-root

WB2FP

FCVT.D.W(U) (Unsigned) Integer to Floating-Point Conversion

FMIN, FMAX Minimum, Maximum

FSGNJ, FSGJN, FSGNJX Move, Negate, Absolute Value

WB2INT

FCVT.W(U).D (Unsigned) Floating-Point to Integer Conversion

FLE, FLT, FEQ <=, <, ==

FCLASS Classify

We present the supported floating-point instructions again in Table 3.3, but categorized by their respec-

tive execution units. We designed each execution unit to handle multiple instructions in order to reduce the

number of issue interfaces needed. The instruction decode-and-issue stage has often been in the critical path

duringour implementationprocess, partially due tohigh fan-out. Additionally, Taigaheavily leverages theLU-

TRAM primitives for instruction and register file management, and LUTRAMs have longer delays than FFs. As

a result, paths starting and ending at LUTRAMs, common in the decode stage, can become the critical path.

The synthesis tool can sometimes remove redundant logic and duplicated registers. Nonetheless, we expect

the tool to produce better designs if the issue interfaces are explicitly merged.

Furthermore, the write-back interfaces are also merged to promote better routing and resource sharing.

Matthews et al. [54] explored various write-back and storagemechanisms, and investigated the scalability of

Taiga in termsof adding extra units. They found that supporting 4 additional units could cause a 32% increase

in LUT utilization and -5.7% decrease in clock frequency. The impact for floating-point units could be higher,

as while the control logic will scale similarly, the floating-point data-path is significantly wider.

To simplify the control logic, we prioritize merging instructions with similar pipeline characteristics, e.g.

unit latency, destination register type, andwhether hardware sharing is possible. The FPU instantiates a total

of four issue interfaces, five floating-point write-back interfaces, and one integer write-back interface. The

following sections discuss each execution unit and their supported instructions in detail.

FP L/S Unit

The floating-point load/store unit shares its issue interface with the integer load/store, therefore bypassing

thepre-processing stageasdiscussed inSection3.2.1.One floating-pointwrite-back interface is added for the

floating-point load results. The floating-point load-and-store instructions are implemented leveraging the

existing integer load-store-queue with minimal additional logic to track floating-point attributes and data.

24

FMA Unit

FMA I�����

FMUL
W����-����

FMA/FADD
W����-����

FADD I�����

FMUL

FMA G���
L����

FADD I����
M��

FADD

Figure 3.7: FMA unit overview: the FMA instructions are constructed using a floating-point multiplier and a
floating-point adder.

Figure 3.7 provides an overview of the FMA unit pipeline. The FusedMultiply-Add (FMA) unit implements the

floating-point FMA, FADD and FMUL instructions. While the FMUL and FMA instructions are both issued to the

floating-point multiplier immediately, FADD instructions are first stored in a First-In First-Out (FIFO). We then

propagate the FADD instructions to the floating-point adder only if no FMA instruction can claim the adder.

This allows us to prioritize FMA instruction processing.

Twowrite-back interfaces are instantiated: one for themultiplier path (FMUL instruction) and one for the

adder path (FMA and FADD instructions). Though it is possible to combine the two write-back interfaces, we

maintain the current design, as multiplication occurs relatively frequently — as much as 24%. Thus, it can

benefit from an independent write-back port. This design enables us to construct the FMA data-path using

the add andmultiply hardware, with only a small resource overheard for glue logic.

25

FP DIV/SQRT

F���/F����
I�����

F���/F����
W����-����

FDIV FSQRT

O�����
M��

0 0

FDIV?

Figure 3.8: Floating-point divide and square-root pipeline overview.

The FP DIV/SQRT unit supports the floating-point division and square-root instructions, as shown in Fig-

ure 3.8. We use two FIFOs to store the inputs, as both instructions are multi-cycle. When both instructions

are ready to commit simultaneously, the outputmultiplexer prioritizes the FDIV results since they occurmore

frequently — our benchmark applications contain up to 4% floating-point division instructions, while having

at most 0.2% floating-point square-root ones.

26

WB2FP

W��FP
I�����

W��FP
W����-����

I������ ��
F����

M��/
M��

S���
I�����

Figure 3.9: Miscellaneous floating-point instructions that commit to the floating-point register file are
grouped together.

TheWB2FPunit implementsmiscellaneous floating-point instructions thatwrite to the floating-point register

file. Figure 3.9 visualizes the unit organization. It supports integer to floating-point conversion,min/max, and

sign injection instructions which realize floating-point move, negate and absolute value functions. We group

these instructions together, since they all finish in two cycles, and commit back to the floating-point register

file.

WB2INT

W��INT
I�����

W��INT
W����-����

F���� ��
I������ </<=/== C�������

Figure 3.10: Miscellaneous floating-point instructions that commit to the integer register file are grouped to-
gether.

27

The WB2INT unit supports miscellaneous floating-point instructions that write to the integer register file, in-

cluding floating-point to integer conversion, floating-point comparison, and classification instructions, as

shown in Figure 3.10. The comparison instruction writes to the integer register file because RISC-V branch

instructions operate on integer registers. The classification instruction returns a bit vector that indicates the

input floating-point number’s status. The floating-point to integer conversion data-path has a latency of two

cycles, whereas floating-point comparison and classification operations finish in one cycle. To avoid the re-

source overhead of additional pipeline control logic, we delay the floating-point comparison and classifica-

tion results by one cycle to synchronize with the floating-point to integer conversion instruction. The added

latency has trivial impact on runtime performance (IPC) as all three instructions are not performance critical.

Similar to the WB2FP unit, the results are multiplexed and share a common integer write-back interface.

3.2.4 Write-back Stage

ID
A��A��

ID

R����� ������

E�������� W����-����

D���

Figure 3.11: Interface connecting the execution units and the write-back stage.

The execution units connect to the write-back stage using a standardized interface as shown in Figure 3.11.

The instruction ID passes through the execution units to the write-back stage, and is later used to accommo-

date instruction retirement. The done signal indicates to thewrite-back stage that the unit result is ready, and

the ack signifies that if write-back stage has accepted the result.

Figure 3.3 presents two floating-point write-backmodules: an intermediate write-back and a final write-

back to the floating-point register file. The intermediatewrite-back selects one intermediate arithmetic result

for post-normalization and rounding, as discussed in Section 2.2. It can be seen from Figure 3.3 that floating-

point load results bypass the intermediate write-back, and connects to the final write-back stage directly.

Memory operations can make up to 80% of floating-point workloads [55]. Therefore, this design allows the

performance critical memory operation to commit earlier, and improves the FPU’s IPC (7.9% compared to

non-bypass floating-point load). The final write-backmodule then selects between the post-normalized and

rounded arithmetic and floating-pint load results for write-back to the register file.

We note the current design can retire up to two instructions per cycle, with only one of the instruc-

tions writing back to either register file. Therefore, to handle simultaneous write-back requests, we commit

floating-point results with the following fixed priority

1. Load.

2. FMA/FADD.

28

3. FMUL.

4. FDIV/FSQRT.

5. WB2FP instructions.

The ordering is based on the instructions’ frequency of occurrence. As we have shown that memory oper-

ations dominate floating-point applications, prioritizing floating-point load over arithmetic results reduces

thenumber of pipeline stalls, thus increasing IPC. Furthermore, the FMA/FADD share a singlewrite-back inter-

face which is ranked above FMUL, followed by FDIV/FSQRT. The WB2FP instructions have the lowest priority

as they are used relatively infrequently, and have the least impact on IPC.

3.3 Instruction Pipeline Detail

In this section,wepresent implementationdetailsof all instructions supportedbyeachexecutionunits shown

in Figure 3.3.Wenote that some instructions require the intermediate results generated in the pre-processing

stage as discussed in Section 3.2.2.

3.3.1 Floating-point Load and Store Unit

D��� I�[��:�] D��� O��[��:�]

N�� R������
B��� E�����

A������ [��:�]

W��� E�����[�:�]

V����
D��� I�[��:�] D��� O��[��:�]

N�� R������
B��� E�����

A������ [��:�] V����

B��� T���� L����
M����� I��������

FPU L����
M����� I��������

(a) (b)

Figure 3.12: Floating-pointmemory interfacewidens thedata bus, shrinks the address bus, and adds the 2-bit
word enable vector.

Wemodified the32-bit Taiga to supportDP floating-pointmemoryoperations. Figure 3.12 visualizes themod-

ifications done to the memory interface. In order to support DP floating-point numbers, the 32-bit memory

blocks are widened to 64 bits which allows us to store two 32-bit integers per block. The 32-bit Taiga has a

30-bit address bus, with the least significant two bits used as bytemasks. With the DP FPU integrated, the ad-

dress bus shrinks to 29bitswhere the address[2] acts as aword select. In addition to the address bus changes,

we widen the data bus to 64 bits. To select the appropriate 32-bit data, we use the 2-bit word enable control

signal to multiplex the two 32-bit words on the data bus.

While floating-point load-and-store shares the issue interface with the integer variant, additional data

and control signals are needed to support floating-point instructions. The floating-point store data and for-

warding instruction ID are propagated to the load-store-queue. The is-float instruction attribute (3.1) is also

29

included to distinguish between floating-point and integer types. As mentioned in Section 3.2.3, the existing

load-store-queue is extended and tracks floating-point attributes, such as is-float and floating-point store

forwarding information.

The integer load are committed through an integer write-back interface, and floating-point load has a

floating-point write-back interface. The bus valid signal and the is-float flag are AND-ed to drive the correct

output done signal.

3.3.2 FMUL, FADD, and Fused Multiply-Add (FMA) Units

We have provided an overview of the FMA unit, and discussed the hardware sharing scheme for the instruc-

tions implemented by the unit. In this section, we describe the floating-point multiplier, adder and the glue

logic in detail.

Floating-Point Multiply

- BIAS

R����� M�� CLZ

+XOR M���������
C���

P�
�-

��
��
��
��
�� S���� E���� M����S���� E���� M����

S������ C���
H�������

S������
C���

�

�

�

I����������� W����-���� FADD I����
M��

FMA G���
L����

RS� OP

Figure 3.13: Cycle Breakdown of Floating-Point Multiply.

Typically,without consideringexceptionhandling, floating-pointmultiplicationconsistsof the followingsteps:

1. Reorder the inputs so that RS1 holds the larger input.

2. Pre-normalize RS2 if it’s denormal.

3. Calculate sign Signresult = XOR(Sign1, Sign2)

4. Calculate exponent: Expresult = Exp1 + Exp2 – BIAS.

30

5. Multiply mantissas.

6. Normalize/denormalize.

7. Round.

Figure3.13visualizes the floating-pointmultiplicationpipeline. The input fieldsareorderedandpre-normalized

in thepre-processingstage, aswehavediscussed.TheSpecialCase signal, alsocalculated in thepre-processing

stage, is a 4-bit vector, {is_inf , is_QNaN, is_SNaN, is_zero}, indicating the status of the input operands.

The result sign bit is calculated by XOR-ing the input sign bits, and we obtain the result exponent using

the equation in step 3.We note that a negative exponent after step 3 indicates a denormal result which can be

post-normalizedby left-shifting. Themultiplier coreproduces the (2*MANT_WIDHT)-bit intermediate result of

the twomantissas. Themost significant (MANT_WIDTH+3) bits are thepreservedas the FMUL resultmantissa,

and the rest are OR-ed to generate the sticky bit. The selected result, either the arithmetic or the special

case output, is packed and propagated to the intermediate write-back module for post-normalization and

rounding. The full (2*MANT_WIDTH)-bit intermediatemantissa, RS3, and control signals are forwarded to the

glue logic to prepare for the FMA’s addition stage.

Floatin-Point Add

S���

A��������/
S�����

A����
C���

E���� M���� E���� M����

R�����
M��

CLZ

S������ C���
H�������

I����������� W����-����

�

�

P�
�-

��
��
��
��
��

O�S������
C��� S����S����

S�������?

Figure 3.14: Cycle Breakdown of Floating-Point Add.

A basic floating-point add algorithm can be summarized as follows:

1. Sort the inputs in descending order (magnitude).

2. Right shiftMant2 by the absolute value of the exponents.

3. Set Exporesult = Expo1, Signresult = Sign1.

31

4. Add/Subtract the mantissas.

5. Normalize/denormalize the intermediate result.

6. Round.

Figure3.14visualizes the floating-pointadder’spipeline. Similar to the floating-pointmultiplier, theadder

inputs must be sorted in descending order. However, a separate sortingmodule is instantiated as the adder

must handle both FMA and FADD instructions. We decided against sharing the existing sorting module in the

pre-processingstage, as complexcontrol logicwouldbeneeded to facilitateFADDoperandsback-propagation.

Theeffectivemantissaoperation, either additionor subtraction, is thendeterminedusing the sorted signbits.

Mant2 is right-shifted to align Expo2 and Expo1. The bits that are shiftedout of theMant2 are used to calculate

the rounding bits.

The result sign and exponent are equal to that of Sign1 and Expo1 since it is larger in magnitude. De-

pending on the effective operation, the adder core adds/subtracts the inputmantissas.We note that a typical

FADD/FSUB algorithm requires a (MANT_WIDTH+3)-bit adder/subtractor. However, since the floating-point

adder is sharedwith the FMA instructions, we implement a (3*MANT_WIDTH)-bit adder to account for the full

intermediate multiplication bits (details in Section 3.3.2). The computed fields are packed and multiplexed

with the special case outputs. The appropriate result is then sent to intermediatewrite-backmodule for post-

normalization and rounding.

FMA

Table 3.4: FMA Unit Supported Instruction List

Instruction Functionality
FMUL rs1 ∗ rs2
FADD rs1 + rs2
FMADD rs1 ∗ rs2 + rs3
FMSUB rs1 ∗ rs2 – rs3
FNMADD –rs1 ∗ rs2 – rs3
FNMSUB rs1 ∗ rs2 – rs3

The glue logic is responsible for preparing the intermediate multiplication signals for the addition stage

as shown in Figure 3.7. This mainly includes repacking the intermediate multiplication signals, and RS3 to

a valid FADD input packet. Moreover, the control signal OP must reflect the effective FMA instruction addi-

tion/subtraction as outlined in Table 3.4.

The glue logic also contains a FIFO responsible for storing FADD instruction inputs, and amultiplexer for

selecting one of the FADD input packets. This allows us to prevent the structural hazard on the floating-point

adder when both FMA and FADD instructions may enter the addition stage. The multiplexer prioritizes FMA

instructions as they occur more frequently in our benchmarks (avg. 23% vs FADD’s 10%).

32

Wementioned in the previous section that a larger adder/subtractor facilitates the FMA instructions. IEEE

754mandates that FMA instructions canonly be roundedonceat the endof the addition stage [10]. Therefore,

the glue logic must propagate the full (2*MANT_WIDTH)-bit intermediate multiplication result to the adder.

I�����������
F��� R�����

�*M���_W����

�*M���_W����

>> M���_W����

Figure 3.15: Floating-point adder’s alignment may completely right-shift out the most significant mantissa
bits.

Since the adder’s alignment stage may right-shift Mant2 by more than MANT_WIDTH bits, as visualized

in Figure 3.15. We implement a (3*MANT_WIDTH)-bit adder/subtractor in order to account for both the in-

termediate and rounding bits. We have demonstrated in Section 2.4.4 that failure to include all intermediate

and rounding bits in the addition stage can lead to catastrophic loss of precision. However, usersmay option-

ally configure our FPU to reduce the number of bits propagated to the adder, assuming they can ascertain

application numerical accuracy is unaffected. This optimization decreases the size of the alignment shifter,

comparator, and mantissa adder/subtractor significantly, and leads to lower resource utilization and better

performance efficiency.

3.3.3 Floating-Point Divider

Typically, without considering exception handling, floating-point division consists of the following steps:

1. Pre-normalize RS1 and RS2 if they are denormal.

2. Calculate sign Signresult = XOR(Sign1, Sign2)

3. Calculate exponent: Expresult = Exp1 – Exp2 + BIAS.

4. Divide mantissas.

5. Normalize/denormalize.

6. Round.

Themantissadivisionmodule is themost complex stepof the floating-pointdividealgorithm.Wediscussed in

Section 2.4.2 that existingmultiplier-based floating-point divider implementations are prohibitively large for

integrated FPU designs. Therefore, we elect to implement the mantissa division core using a radix-2 integer

divider.

33

+ BIAS

R����� M�� CLZ

-XOR D�������
C���

FI
FO

S���� E���� M����S���� E���� M����

S������ C���
H�������

S������
C���

�

I����������� W����-����

N

Figure 3.16: Floating-point divide uses a fixed-latency mantissa divider.

Given the mantissa divider’s multi-cycle nature, a FIFO is used to store inputs, as shown in Figure 3.2.3.

Figure 3.16 presents the rest of the pipeline. With the two inputs pre-normalized in the pre-processing stage,

we calculate the result sign and exponent fields as outlined in step 2 and 3. The division core computes

Mant1/Mant2 in fixed latency of N, where N = MANT_WIDTH+ 2. Two extra bits are calculated for rounding,

and the sticky bit is produced by OR-ing the remainder field. We then compute the count-leading-zero of the

divided mantissa. The results are multiplexed with special case output, and packed for post-normalization

and rounding.

3.3.4 Floating-Point Square Root

Floating-point square-root consists of the following steps:

1. Pre-normalize RS1 if it is denormal.

2. Result sign is always 0 (positive).

3. Calculate exponent: Expresult = Exp1 ÷ 2

4. Square-root mantissa.

5. Normalize/denormalize.

6. Round.

34

+ BIAS

R����� M�� CLZ

- BIAS

SQRT
C���

S���� E����

>> �

M����

S������ C���
H�������

S������
C���

�

I����������� W����-����

N

FI
FO

Figure 3.17: Floating-point square-root uses a fixed-latency mantissa square-root core.

Figure 3.17 presents the floating-point square-root pipeline. We note that the inputs are pre-normalized

in the pre-processing stage before being stored in the FIFO. As negative inputs are invalid, the result sign is

always logic low. The final exponent should be half of the input exponent, since

√
M ∗ 2E =

√
M ∗ 2

E
2

Therefore, we first un-bias the input exponent, right-shift it by 1 to compute its half, and re-bias it back to the

floating-point format.

Iteration=Overflow=Subtractend=Quotient=0, Rad=Radicand

while(Iteration<Mant_Width+2)
Subtractend={Subtractend[WIDTH-3:0], rad[WIDTH-1:WIDTH-2]}
{Overflow, Sub}=Subtractend - {Q[WIDTH-3:0], 2'b01}
Q=Q<<1
Q[0]=Overflow ? 0 : 1

Remainder=Subtractend
Iteration++
Subtractend=Sub

Figure 3.18: Pseudo-code for the mantissa square-root algorithm

Themantissa square-root algorithm is shown in Figure 3.18. The algorithm has fixed latency of N, where

N = MANT_WIDTH + 2. Two extra iterations are needed to facilitate rounding. During each cycle, two most

significant bits of the radicand is shifted into the subtrahend. The subtractor is computed by left-shifting the

current root by twoand setting the least significant twobits to2′b01.Weperform the subtraction, and set the

new root bit to 1 if the subtraction result if positive, and vice versa. After calculating the root and two rounding

35

bits, we generate the sticky bit by OR-ing the final subtractend. We then compute the count-leading-zero of

the root mantissa. The results are multiplexed with special case output, and packed for post-normalization

and rounding.

3.3.5 Floating-Point Units that Write-back to Floating-Point Register (WB2FP)

This section describes the pipelines of the instructions supported by the WB2FP unit:

• Integer to floating-point conversion.

• Floating-point minimum/maximum.

• Floating-point sign injection.

Integer to Floating-Point Conversion

Tominimize resourceutilization,we implement the integer to floating-point conversionusing thepost-normalization

shifter. We first initialize themantissa by placing the 32-bit integer in the least significant bits, and leaving the

most significant bits as zeros. This is equivalent to right-shifting the the input integer by MANT_WIDTH bits.

Therefore, we add MANT_WIDTH to the integer’s initial biased exponent (1023 for DP floating-point).

C��

S����A��

P��-����������

<< S����A�� M���

��

C��

M���_W����

Figure 3.19: Integer to floating-point conversion uses the post-normalization shifter.

���_���

A��()

P�
�-

��
��
��
��
��

�

C��

I��� E���S����A��

R����� P������

I����������� W����-����

I��� M���

Figure 3.20: Integer to floating-point conversion pipeline.

36

To utilize the post-normalization shifter, we need to calculate the shift amount. Figure 3.19 visualizes the

algorithm. We first compute the count-leading-zero of the magnitude of the input integer. We then generate

the shift amount using

Shift Amount = MANT_WIDTH – 32 + CLZInteger

, which gives us the count-leading-zero of the intermediatemantissa. The results are packed and propagated

to the post-normalization unit where the intermediate mantissa is normalized to floating-point format. The

bulk of the processing happens in the pre-processing stage, as shown in Figure 3.20.

Floating-Point Minimum andMaximum

The floating-point min/max instructions compare two floating-point numbers and return the smaller/larger

one respectively. Fortunately, the sorting module already put the two input floating-point numbers in de-

scending order by magnitude. Therefore, we only need to add little logic to determine the right output for

the FMIN/FMAX instructions.

Table 3.5: Floating-pointmin/max logic table (assuming inputs are sorted indescendingorderbymagnitude).
The first row is the instruction type, and the first column is the RS1’s sign.

FMAX FMIN

+ RS1 RS2
- RS2 RS1

Table 3.5 summarizes the FMIN/FMAX logic. Assuming |RS1| >= |RS2|:

• Instruction is FMAX: output RS2 if RS1 is negative, output RS1 otherwise.

• Instruction is FMIN output RS1 if RS1 is negative, output RS2 otherwise.

We note one exception to the logic table: RISC-V [1] mandates+0 > –0, therefore a special case is generated

when both inputs are zeros.

Floating-Point Sign Injection

Table 3.6: Floating-point sign injection implementation.

Instruction Implementation
FSGNJ {Sign2, Expo1,Mant1}
FSGNJN {~Sign2, Expo1,Mant1}
FSGNJX {Sign1^Sign2, Expo1,Mant1}

Floating-point sign injection instructions takes two inputs RS1 and RS2, andmodifies RS1’s sign bit using

RS2’s sign bit, as shown in Table 3.6:

• FSGNJ returns RS1’s exponent andmantissa fields with RS2’s sign bit.

37

• FSGNJN is similar, but result sign bit is the inverse of RS2’s sign bit.

• FSGNJX ’s result sign bit is equal to RS1 sign bit XOR-ed with RS2’s sign bit.

3.3.6 Floating-Point Units that Write-back to Integer Register (WB2INT)

This section describes the pipelines of the instructions supported by the WB2FP unit:

• Floating-point to integer conversion.

• Floating-point comparison.

• Floating-point classification.

Floating-Point to Integer Conversion

S������ C���
H�������

��� S����

R�������

R����� M��

I������ W����-����

P�
�-

��
��
��
��
��

�

�

E���� M����

- BIAS

��
S�����

<<

Figure 3.21: Floating-point to integer conversion pipeline.

Figure 3.21provides anoverviewof the floating-point to integer conversion instructions’ pipeline.We first ob-

tain the unbiased exponent by subtracting the bias from the input exponent. We then left-shift the mantissa

field by the maximum between the unbiased exponent and 31 to obtain the absolute value of the integer.

The lower mantissa bits that are not part of the integer are used as rounding bits. We then convert the abso-

lute value to signed integer if necessary, and round the result integer according to IEEE 754 rounding modes

outlined in Section 2.2.

38

Floating-Point Comparison

Different Sign
Compare Sign

Compare Magnitude

Compare Magnitude

Same Sign
Positive Inputs

Negative Inputs

Figure 3.22: Floating-point comparison pseudocode.

Figure 3.22 provides the pseudocode for processing floating-point compare instructions, Floating-Point Less

than (FLT), Floating-Point Less than or Equal to (FLE), and Floating-Point Equal to (FEQ). If the input operands

have different signs, then the positive number is larger. Otherwise, the number with the greater magnitude

is larger for positive inputs, and vice versa. Similar to FMIN/FMAX, we reuse the pre-processing stage sorting

module to compare the magnitudes. We note that floating-point compare instructions must assert+0 ==

–0. This is different from FMIN/FMAX handling of±0 Section 3.3.5.

Floating-Point Classification

Floating-point classification is a simple instruction that returns the type of floating-point number to the inte-

ger register file. Its output format is shown in Table 3.7 [1]. We note that the classification result is delayed by

one cycle to synchronize with the floating-point to integer pipeline, as discussed in Section 3.2.3.

Table 3.7: Floating-point classify instruction output format.

result bit Meaning

0 input is -∞.

1 input is a negative normal number.

2 input is a negative subnormal number.

3 input is -0.

4 input is +0.

5 input is a positive subnormal number.

6 input is a positive normal number.

7 input is +∞.

8 input is a signalling NaN.

9 input is a quiet NaN.

39

3.3.7 Post-Normalization and Rounding Integration Scheme

We wish to provide more details regarding the shared post-normalization-and-rounding module in this sec-

tion. Figure 3.23 visualizes:

• (a): a single write-back stage for all floating-point results.

• (b): separate write-back stages for floating-point load and arithmetic results.

I�� R��F���

S����� I����

P��-����������

N������������/
R�������

I�����������
W����-����

FP W����-����INT W����-����

F���� R��F���

FP L/SF���/
F����

FMA/
F���/
F���

FP M���
WB�FP

FP M���
WB�INT

(b)

I�� R��F���

S����� I����

P��-����������

N������������/
R�������

FP W����-����

INT W����-����

F���� R��F���

FP L/SF���/
F����

FMA/
F���/
F���

FP M���
WB�FP

FP M���
WB�INT

(a)

Figure 3.23: Post-Normalization and Rounding Integration: (a) single write-back interface. (b) separate write-
back interfaces for arithmetic andmemory instructions.

We integrated the post-normalization and rounding using scheme (a) in the early FPU designs. While

scheme (a) enables the sharing of the post-normalization and rounding hardware, it inadvertently adds three

additional cycles of latency to floating-point load instructions. The added latency can result in non-negligible

performance degradation, as floating-point workloads can contain up to 84%memory operations [55]. As a

result, we proposed design (b) which allows the load results to bypass the post-normalization-and-rounding

module. Under (b), the intermediate write-back stage selects arithmetic result for post-normalization and

rounding, while the final write-back stage commits floating-point numbers to the floating-point register file.

Design (b) uses 2%more LUTs, as it instantiates one extrawrite-back interface, as illustrated by the green

arrows in Figure 3.23. Moreover, additional pipeline control logic is needed in the post-normalization-and-

rounding module to ensure the correct intermediate result propagation. Furthermore, design (b) achieves

2%higher clock frequency. In terms of runtimeperformance,we find that bypassing load results can increase

memory intensive workloads’ IPC by 7.9%. We use scheme (b) in our final design, as it has similar resource

utilization and clock frequency as (a) while improving IPC by a non-negligible amount.

40

3.3.8 Post-Normalization

Post-normalization is theprocessof converting floating-point results to the final format. Foranormal floating-

point number, this entails adjusting the exponent and shifting themantissa fields so that the implicit leading

mantissa bit is 1. On the other hand, negative exponent indicates that the intermediate result is denormal.

This can occur duringmultiplication/division, and is handled by setting the normalized exponent to zero, and

right shifting mantissa accordingly.

>>

+R������

R������

R������� R�������

���� �����
A�����{M���, R������� B���} ����� �����

A�����
���� �����
A�����

����� �����
A����� E���L���

S����?
L���

S����?

1

2

-

(a) (b)

Figure 3.24: Floating-point normalization data-paths: (a)mantissa left and right shifting are implemented us-
ing a combined right-shifter. (b) the exponent decreaseswhen left-shifting, and increaseswhen right-shifting.

Figure 3.24 presents the normalization unit pipeline. The data-path is partitioned into two graphs for

clarity: (a) mantissa shifting and (b) exponent normalization. In the mantissa data-path, we first obtain the

shift amount by multiplexing between right shift amount and left shit amount. We then determine the shifter

input by multiplexing between the concatenation of the un-normalized mantissa and rounding bits and its

bit-reversal. The reversedbit field allows us to implement the left-shifting using the right-shifter, although the

shifter output must be reversed back for left-shifting. Moreover, the exponent must be adjusted accordingly

as the mantissa is shifted. In left-shifting, we compute the normalized exponent by subtracting shift amount

from the input exponent. On the other hand, right-shifting increases the input exponent by shift amount. The

normalized mantissa and exponent fields are then packed and propagated to the rounding stage.

3.3.9 Rounding Unit

The rounding unit implements the five roundingmodes discussed in Section 2.2.4. Depending on the round-

ing mode and rounding bits, we generate a ”roundup” signal which is added to the mantissa to generate the

final floating-point number. We calculate the roundup signal for each mode in parallel, and select the ap-

propriate one using a multiplexer. Additionally, eachmode handles overflow exception differently as we will

41

outline in this section. For the optional configurationwhere only the default roundingmode is supported, we

assign the ”roundup” and overflow output to one generated by roundTiesToEven.

Round Ties to Even

RoundTiesToEven delivers the floating-point number closest to the infinitely precise result. We have defined

how ”closeness” is measured in Section 2.2.4.

if(G&(R|S))
 roundup=1
else if(G & !R & !S)
 roundup=LSB
else
 roundup=0

Figure 3.25: Pseudo Code for round-ties-to-even.

Figure 3.25 provides the pseudocode for the rounding attribute roundTiesToEven. The intermediate re-

sult is rounded up if G is asserted, and (R | Sticky Bit (S)) evaluates to true. When there’s a tie, i.e. GRS=3’b100,

the floating-point number with an even (1’b0) LSB is delivered.

Round Ties to Away

RoundTiesToAway is similar to RoundTiesToEven, except it outputs the number with the larger magnitude

when two numbers are equally near to the infinitely precise result. Three scenarios are considered:

• GRS < 3’b100: the unrounded result is nearest.

• GRS = 3’b100: there exists two nearest numbers, rounding up produces the one with the largermagni-

tude.

• GRS > 3’b100: the rounded-up result is nearest.

It can be seen that the intermediate result is rounded up if the guard bit is asserted. Thus:

roundupTiesToAway = G (3.1)

Round toward Positive

In roundTowardPositive mode, the intermediate result if rounded to the closest value no less than the in-

finitelyprecise result. This implies thatnegativevaluesarenot rounded,andpositivevaluesarealways rounded

up if any of the GRS bits are asserted. Therefore:

rounduptowardPositive = ~sign & |({G, R, S}) (3.2)

42

Round toward Negative

RoundTowardNegative is theoppositeof roundTowardPositive. Positive valuesarenot rounded, andnegative

numbers are rounded if G|R|S==1, as shown below:

rounduptowardNegative = sign & |({G, R, S}) (3.3)

Round toward Zero

RoundTowardZero is effectively truncation, where all bits beyond the destination format’s precision are dis-

carded.

rounduptowardZero = 0 (3.4)

Overflow Handling

Table 3.8 outlines the default overflow handling for each rounding mode.

Table 3.8: Default overflow exception handling for each rounding modes

Rounding Mode Positive Overflow Value Negative Overflow Value

roundTiesToEven/roundTie-

sAway
+∞ -∞

roundTowardPositive +∞
format’s most negative finite

number

roundTowardNegative
format’s most positive finite

number
-∞

roundTowardZero
format’s most positive finite

number
format’s most negative number

3.4 Summary

In this chapter, we described the FPU’s integration to Taiga. We presented the four top-level stages in the

FPU: issue, pre-processing, execution and write-back stages. We then provided implementation details of all

floating-point executionunits, including thepost-normalizationand roundingunits.Wealsobriefly discussed

a few design choices, such as the instruction write-back priority, the FMAmicro-architecture design, and the

post-normalization-rounding integration scheme.

43

Table 3.9: Existing standalone floating-point data-paths: clock frequency, resource usage and latency.

Instruction Freq (MHz) LUTs FFs DSPs BRAMs Latency

FMA [15] 204 17001 19151 9 0 13

FADD, FSUB [14] 200 8001 6071 0 0 9

FMUL [14] 206 12211 10001 9 0 11

FDIV [2] 177 2540 1833 0 8 10

FSQRT [2] 179 6285 4025 0 58 10

Table 3.10: Our FPU: floating-point instructions’ clock frequency, resource usage and latency.

Instruction Freq (MHz) LUTs FFs DSPs BRAMs Latency

FMA 132 1853 1314 92

0

8

FADD, FSUB 170 1279 498 0 6

FMUL 132 900 772 92 6

FDIV 217 279 422

0

60

FSQRT 185 275 342 60

FLD 116 NA3 4

FMIN, FMAX

4894 914 794 5FSGNJ(N)(X)

FCVT.D.(U)W

FCVT.(U)W.D

3065 5155 675 4FLE, FLT, FEQ

FCLASS

Table 3.9 presents the clock frequency, resource usage, and latency for existing standalone arithmetic

floating-point data-paths. Table 3.10 presents the same data for our implementation, along with the mis-

cellaneous floating-point instructions. It can be seen from the tables that our FMA and FADD implementa-

tions achieve lower operating frequency and require higher resource utilization compared to the custom

data-paths. This is expected as our FMA design supports denormal processing, whereas existing work [15]

does not. More importantly, our FMA unit implements three instructions: FMA, FADD and FMUL. Therefore,

the resource overhead can be attributed to the extra control logic as discussed in Section 3.3.2 and visual-

1Estimated from 4-LUTs.

2Shared.

3Cannot separate floating-point load-store data from that of the integer load-store.

4Reported WB2FP data as these instructions share most of the logic.

5Reported WB2INT data as these instructions share most of the logic.

44

ized in Figure 3.26 — the glue logic and FADD input multiplexers. Similarly, since the floating-point adder is

shared by the FMA and FADD instructions, it must support the wider input of the FMA instructions. As such,

Figure 3.26 visualizes the FADD’s inputwidth of 2*MANT_WIDTH,while a standalone floating-point adder pro-

cesses MANT_WIDTH-bit inputs. In both cases, our designs have significantly lower latency, which is crucial

for runtimeperformance for general software as discussed in 2.4.2. Specifically, our FMA implementation, the

most frequently used instruction in floating-point applications, completes 5 cycles quicker than the existing

solution [15]. Furthermore, our design focuses on minimizing resource usage for the less frequently used in-

structions floating-point divide and square-root. Compare to existing implementations, our FDIV and FSQRT

designs require 9x and 22x fewer LUTs, although the lower area comes at a cost of higher latency. We discuss

this trade-off further in Section 5.1.2.

45

FMA I�����

FMUL
W����-����

FMA/FADD
W����-����

FADD I�����

FMUL

FMA G���
L����

FADD I����
M��

FADD

Mant_Width

Mant_Width

Mant_Width

2*Mant_Width

2*Mant_Width

Mant_Width

Figure 3.26: The FMA unit is larger due to the larger shared adder and control logic overhead.

46

4 EXPERIMENTAL FRAMEWORK

This chapter provides an overview of the evaluation methods and experiments used to characterize the

FPU implementation. First, we present the base Taiga configuration— into which we integrated the FPU, and

the FPU design configurations to be evaluated. We then introduce the benchmarking methodology used to

measure the FPU’s run-time performance and performance efficiency, including a brief introduction of the

workloads used, an overview of the evaluation platform, and our metrics for comparing among different im-

plementation variations.

4.1 Evaluation Configurations

In this section, we first provide an overview of the base processor configuration that the FPU is integrated

in. We then present a set of FPU variants to be tested. These variants include FPUs configured with different

compliance levels and reduced precision. We also discuss a few architectural features that did not make into

the final FPU.

4.1.1 Base Taiga

To minimize the base processor’s impact on the FPU’s performance, we configure Taiga with a high perfor-

mance configuration as outlined by the creators [56] :

• 2-way set-associative, 512-entry branch predictor with an 8-entry Return Address Stack (RAS).

• Dedicated integer multiplier and divider.

• Maximum of 8 in-flight instruction IDs.

• 64 KB shared local memory.

We note that 64 KB of localmemory is used for collecting Vivado place-and-route data. However, we increase

the simulation local memory size to 16 MB to accommodate for the large benchmark applications in order to

collect runtime performance data.

4.1.2 FPU Configurations

Due to the high configurability of the FPU, only a selected number of common options are tested. As such,

this section presents the configurations we have chosen to evaluate in this work.

47

Reduced Compliance

Table 4.1: Reduced Compliance Feature List

Full FMA Intermediate Rep-

resentation
Denormal Support All Rounding Modes

full-compliance [27] X X X

default-rounding-

only [26] [57]
X X

no-denormal [26]

[57] [52]
X X

no-intermediate-fma

[28]
X X

Wementioned inSection2.4.3, thatmanyexisting floating-pointoperators, commercial/open-source floating-

point cores are only partially compliant. We have identified the following common FPU configurations out-

lined in Table 4.1, alongwith existing FPUs that resemble the respective options. Full-compliance supports all

compliance features mandated by IEEE 754, and is used as the baseline FPU. The default-rounding-only FPU

only supports the roundTiesToEvenmode,whichwepresented inSection3.3.9.No-denormal removesdenor-

mal number processing. This entails the removal of the pre-normalization shifters discussed in Section 3.2.2.

Finally, no-intermediate-fma decreases the number of bits preserved in the FMA instructions’ multiplication

stage from 2*MANT_WIDTH to MANT_WIDTH+4 bits.

Reduced Precision

S���

� ��

M�����
E�������

M�����
M�������

I�������
E�������

I�������
M�������

����

Figure 4.1: Reduced Floating-Point Format

We are interested in investigating the effect of running applications in lower precision, and this is realized

by adjusting the mantissa width. Figure 4.1 visualizes the reduced precision format used for this work. Inter-

nally, the exponent width is fixed since its processing is significantly less intensive than that of themantissa.

Instead, the internal mantissa width is reduced, therefore decreasing the data-path, control logic, and reg-

48

ister file sizes. As such, we maintain the same dynamic range, while reducing the computation precision.

Externally, the memory interface retains the same format as specified by IEEE 754. This is done so that the

familiar software interface is supported, and existing binaries can be executed without re-compilation. We

collect runtime and Vivado place-and-route data for mantissa widths in the range of [10, 52].

Merged FMA Unit

Given the prevalence of FMA, FADD and FMUL instructions — up to 42%, 31%, and 24% in our benchmark

workloads respectively, their designs have a significant impact on the FPU’s performance. As such, we have

chosen to investigate twodifferent architectures for the FMAunit which implements the three critical instruc-

tions.

We discussed in Section 3.3.2 that the floating-point adder is shared by the FMA and FADD instructions,

and that a FIFO is needed tomitigate the structural hazard due to simultaneous requests from FMA and FADD

instructions. We can eliminate the FIFO by issuing FMA, FMUL and FADD instructions as the following:

• FMA:±(rs1 ∗ rs2)± rs3 (unchanged)

• FADD: 1.0 ∗ rs1± rs2

• FMUL: rs1 ∗ rs2 + 0

FMA I�����

FMUL
W����-����

FMA/FADD
W����-����

FADD I�����

FMUL

FMA G���
L����

FADD I����
M��

FADD

M�����
W����-����

M����� I�����

FMUL

FMA G���
L����

FADD

(a) (b)

Figure 4.2: Compared to (a), design (b) removes the FADD FIFO, FMA glue logic, and the independent write-
back interface.

Figure 4.2 visualizes the design differences. While (a) allows the floating-point adder to be shared by FMA

and FADD instructions with the resource overhead FADD’s input buffer. The single-pipeline design in (b) re-

49

quires less hardware, as it removes the FIFO and FMUL’s write-back interface. However, design (b) adds ad-

ditional latency to the FMUL and FADD instructions, as they now must propagate through the entire FMA

pipeline.

4.2 Benchmarking Applications

In this section, we provide an overview of the applications used to benchmark the FPU, as well as the com-

pliance test suite used to verify the floating-point implementation.

4.2.1 FPMark

Table 4.2: FPMark workloads.

Description Name Data Size Iterations

Arctangent atan
1k 10k
64k 10k

Black Scholes blacks 500x20 10

Horner’s Method horner
10k 1k
1k 10k

Fast Fourier Transform radix2
8k 10k
2k 100k

Linear Algebra linear_alg
100x100 50
50x50 500

Enhanced Livermore Loops
loops 32 500

inner-product
10k 400
1k 1k

LU Decomposition lu
200 1k
20 10k

Neural Net nnet 35 1k
Fourier Coefficients xp1px 100 1k

We chose FPMark [55] as the benchmarking applications used to collect runtime data on the FPU. Ta-

ble 4.2 presents an overview of the 16 workloads selected for this work. FPMark features a suite of 10 differ-

ent kernels that can be configured to 53 workloads of varyingmemory/compute demands. To accommodate

our soft-processor environment and accelerate data collection, we selected a subset of the workloads with

moderate runtime (<30 minutes).

The FPMark workloads are compiled with self-verification mode turned on. We modified the verifica-

tion/reporting infrastructures so as to exclude the verification function calls from the performance calcu-

lations. Otherwise the performance data will be inflated due to verification functions comprising of mostly

integer instructions.Moreover,weextend theverification infrastructure to calculate theminimum,maximum,

average, and standarddeviationof thenumberof accuratebits. Theseadditional datapoints enableus toper-

formstatistical analysis, andquantify thequalityof result producedby thevariousFPUvariants. Furthermore,

FPMark’s provided reference data is generatedwithout the FMA instructions. Since RISCV-GCC does not allow

50

the omission of FMA instructions, we had to re-generate the reference data as the use of FMA instructions

can drastically affect the results produced. This is necessary since, unlike an FMUL followed by FADD, FMA in-

structions only round once, and therefore generate different rounding error for certain inputs. The rounding

error then propagates in the algorithms, and can have a significant impact on computation result. As such,

we re-compile and re-run the FPMark on a Linuxmachine (Ubuntu 18.04, Intel Xeon 4214CPU) usingGCCwith

FMA instructions enabled (gcc -mfma). For benchmarking our FPU,we compile theworkloadswithGCC11.1.1

(-O3) to singled-threaded binaries, and then simulate execution using Verilator [58].

4.2.2 Imperas Compliance Tests

Table 4.3: Imperas RV32D compliance test suite data.

Category Instruction # of Tests

DP floating-point Computational

FADD 248

FDIV 248

FMADD 248

FMIN 31

FMSUB 248

FMAX 31

FMUL 248

FNMADD 248

FNMSUB 248

FSQRT 248

FSUB 248

DP floating-point Classify FCLASS 31

DP floating-point conversion andmove

FCVT.D.W 31

FCVT.D.WU 31

FCVT.W.D 248

FCVT.WU.D 248

FSGNJ 31

FSGNJN 31

FSGNJX 31

DP floating-point compare

FEQ 31

FLE 31

FLT 31

DP floating-point load and store
FSD 3317

FLD 31

51

Figure 4.3: Imperas compliance test passed.

Full floating-point formal verification is an ongoing research topic in of itself, and is beyond the scope of this

work due to the vast complexity inherent to floating-point operations. However, there are existing software

compliance tests that perform some checks on the implementation. RiscvOVPsimPlus[59] contains a collec-

tion of compliance tests for the RISC-V ISA and its extensions. Table 4.3 presents the RV32D test details. The

test suite drives various normal and edge case inputs to the FPU, and verifies standard conformance by com-

paring the output with reference signatures — both result and exception flags are verified. Figure 4.3 shows

that our FPU passes all 144 compliance tests for the RV32D instruction set. We note that Imperas reports the

RV32D test suite has a basic functional coverage of 91.02% [59].

4.3 Instrumentation

In this section,weprovide details on howwequantify the FPUs’ performance.We first introduce the firmware

used to collect run-time metrics, including IPC, cycle count, number of instructions executed, and three se-

lected trace signals used to analyze the FPU’s performance. We then briefly discuss the environment used to

collect timing and resource utilization data.

4.3.1 Runtime Performance

To compare the run-time performance of different FPU configurations, we need an accurate way to record

application runtime. Since the applications are run bare-metal, we resort to RISC-V’s performance counter

Control andStatus Registers (CSRs) tomeasure the number of instructions executed, and thenumber of clock

cycles usedby thebenchmarkapplications. Taigaprovideswrapper functions start_profiling()and end_profil-

ing() toabstract theperformancecounteraccess to instret and cycleCSRs.Theyare64-bituser-level, read-only

counters specified inRV32I,which canbeaccessedusingCSRRS instructions. Thebenchmarkapplications are

modified to call the start_profiling() and end_profiling() routines at the beginning and end of executions re-

spectively. The number of instruction executed and processor cycle counts are determined by computing the

difference between ending and starting instruction/cycle counts.

Since we collect performance data using simulation, we implement a set of simulation trace signals to

record the FPU’s microarchitecture details. These signals enable us to analyze the performance differences

among various FPU configurations. We collect a range of internal states, such as:

• The number cycles of operand-stall: captures pipeline stalls due to data dependency.

• The number cycles of unit-stall: captures pipeline stalls due to busy execution units.

• The number cycles of write-back-stall: captures floating-point arithmetic pipeline stalls due to priori-

tized memory operation in the write-back stage.

52

• Instruction mix.

4.3.2 Hardware Data

Z���� PS
T���� +

FPU
R����

FPGA

BRAM

AXI UART

���

����

���

I����������

AXI L���

D���

R��

Figure 4.4: Taiga and FPU Block Design in Vivado

Figure 4.4presents anoverviewof theoverall system. TheZynq7ProcessingSystem (Zynq7PS) andProcessor

SystemReset (Reset) provide clock and reset sources for the design. The FPU is integratedwith Taiga, and has

two memory interfaces with local instruction and data memory implemented using BRAMs. The processor

communicates with external world through an AXI Universal Asynchronous Receiver/Transmitter (UART) IP

core by Xilinx [60].

We use Vivado 2020.1 with default settings and run place-and-route for all FPU configurations on a Zed-

board and U200. Collecting hardware data on the two boards allows us to learn about the FPUs’s perfor-

manceonbothold andmodern FPGAs.Wenote that the reported resourceusagedata includes thearithmetic

hardware, aswell as necessary instructiondecoding, floating-point register file, and instructionmanagement

logic.

4.3.3 Metrics

Since thiswork targets FPGAs,weuse thenumberof LUTsusedbyeachFPUvariant as an indicator of resource

utilization, as LUTs are proportionally used (relative to device capacity) more than BRAMs and DSPs. Proces-

sors performance is oftenmeasured by throughput. Taiga’s firmware reports the number of user instructions,

and user cycle count, which can be used to calculate IPC:

Instruction per Cycle =
instruction count

cycle count

For configurations with differing clock frequencies, we can use Millions of Instructions Per Second (MIPS) to

quantify the throughput difference:

Million Instructions per Second = 106 ∗ Instruction
Cycle

∗ Cycle
Second

53

and finally, we use MIPS/LUT as a measurement of performance efficiency.

54

5 EXPERIMENTAL RESULTS

In this chapter, we present the experimental results for the configurations mentioned in the previous

chapter:

• full-compliance: baseline fully-compliant FPU.

• default-rounding-only: only default rounding mode supported.

• no-denormal: no denormal processing supported.

• no-intermediate-fma: FMA instructions do not preserve the full 2*mant_width-bit intermediate multi-

plication results.

Our evaluation of the different FPU variants includes their operating frequency, resource utilization, accuracy

and throughput.

5.1 Compliance Variations

In Section 2, we discussed that few FPGA-based, RISC-V capable integrated FPUs are fully compliant. Most

existingdesignsomit compliance features inorder toachievebetterperformanceandperformanceefficiency.

Since our FPU allows users to optionally enable/disable certain compliance features, we provide a trade-off

analysis of supporting these features.

5.1.1 Resource Usage and Clock Frequency

Table 5.1: Resource utilization and clock frequency of compliant/non-compliant FPUs on Zedboard.

Configurations Frequency (MHz) LUTs FFs DSPs BRAMs

Taiga [56] 122.0 2503 1129 4 2

full-compliance 105.7 5423 3527 9 0

default-rounding-only 107.7 (+1.89%) 5427 (+0.03%) 3527 9 0

no-denormal 108.3 (+2.46%) 4873 (-10.14%) 3351 (-4.99%) 9 0

no-intermediate-fma 114.5 (+8.33%) 4048 (-25.35%) 2862 (-18.85%) 9 0

55

Table 5.2: Resource utilization and clock frequency of compliant/non-compliant FPUs on U200.

Configurations Frequency (MHz) LUTs FFs DSPs BRAMs

Taiga [56] 369.1 2785 1711 4 2

full-compliance 323.6 5735 3575 9 0

default-rounding-only 341.5 (+5.53%) 5658 (-1.34%) 3557 (-0.5%) 9 0

no-denormal 343.4 (+6.09%) 5144 (-10.31%) 3381 (-5.43%) 9 0

no-intermediate-fma 340.0 (+5.07%) 4197 (-25.60%) 2894 (-19.05%) 9 0

Table 5.1 shows that no-intermediate-fma has the largest reduction in resource: 25.35% and 18.85% in LUTs

and FFs on the Zedboard, respectively. We discussed in Section 3.3.2 that the fully compliant FMA addition

stage must account for the (2*MANT_WIDTH)-bit mantissa generated by the floating-point multiplier. By de-

creasing thenumberofmultiplicationbitspreserved,wesignificantly reduce thewidthsof theshifters, adders,

and other logic needed to implement the compliant FMA instructions. Specifically, the floating-point align-

ment shifter canbe reduced from3*MANT_WIDTHtoMANT_WIDTH+6bits.Moreover,wecanshrink the (3*MANT

_WIDTH)-bitmantissa adder toMANT_WIDTH+3bits. Additionally, thewidthsof intermediatewrite-backmul-

tiplexers and the post-normalization shifter also decrease as fewer rounding bits are propagated and pro-

cessed.

Disabling denormal support sees a moderate improvement in resource utilization of 10.14% and 4.99%

in LUTs and FFs, respectively. The reduction in resource usage can largely be attributed to the removal of the

(MANT_WIDTH)-bit pre-normalization shifters. Moreover, while the full-compliance data-paths carry out ex-

ponent related computation using (EXPO_WIDTH+2)-bit vectors in order to support the negative denormal

exponents, (EXPO_WIDTH)-bit exponents suffice for the no-denormal configuration. Configuration default-

rounding-only has almost identical usage as full-compliance. This is expected since disabling non-default

rounding modes removes little logic and a few multiplexers used to select the ”roundup” signals and the

overflow results.

We observe similar resource usage trend on the U200, as shown in Table 5.2. The no-intermediate-fma

design sees themost area reduction of 25.6% and 19.05% in LUT and FF requirements, respectively. Further-

more, no-denormal configurations uses 10.31% fewer LUTs and 19.05% fewer FF, compared to the baseline.

Additionally, thedefault-rounding-only design is again almost identical to full-compliance, and has 1.34%and

0.5% reduction in LUT and FF usage, respectively.

With regard to operating frequency, Table 5.1 shows that full-compliance, default-rounding-only, and no-

denormal configurations achieve almost identical frequencies on the Zedboard — 105.7 Mhz, 107.7 Mhz, and

108.3 Mhz, respectively. The rounding path is the critical path for both Full-compliance and default-rounding-

only designs, although both configurations suffer from significant routing congestion — more than 81% of

critical path delay. Moreover, as the data-paths shrink, the decode stage becomes the critical path for no-

denormal with a routing delay of 77%. Due to Taiga’s extensive use of LUTRAMs for instruction and register

management, the decode stage has often been the critical path throughout our design process. LUTRAMs

have longer delays than FFs, and impose additional placement constraints on Vivado as not all LUTs can be

56

used as LUTRAM. Only no-intermediate-fma sees a non-trivial frequency increase of 8.33% compared to the

baseline. Similar to no-denormal, the LUTRAM-heavy decode stage is in the critical path where routing delay

consists of more than 81% of the total delay.

On the U200, the baseline full-compliance achieves 323.6Mhz, representing a 206% increase over the fre-

quency achieved on the Zedboard. Despite being almost identical, configuration default-rounding-only has

a 5.53% higher operating frequency than the baseline. We believe this is due to Vivado’s variability, as evi-

denced by the fact that the two designs have completely different critical paths:

• full-compliance: the single-cycle integer Arithmetic Logic Unit (ALU).

• default-rounding-only: floating-point intermediate write-back.

The random nature of the synthesis tool is furthered demonstrated by no-denormal configuration’s 6.09%

higher frequency compared to the baseline. While the achieved frequency is similar to default-rounding-only,

no-denormal’s critical path is in the store-forwarding logic in the load-store unit. Furthermore, we expected

no-intermediate-fma to have the best operating frequency due to its lower resource usage. However, it has

the lowest frequency among the reduced compliance design as shown in Table 5.2. Examining the timing

report, we notice that the rounding unit is back in the critical path. Although the three reduced compliance

configurationshavesimilar clock frequencies—within1.5MHzofeachother, their criticalpathsaredrastically

different as a result of the tool’s randomness. However, the commonality among these FPUs is high routing

congestion.

Table 5.3: Resource utilization and clock frequency: full-compliance/no-intermediate-fma vs.
NaxRiscv/VexRiscv targeting Zedboard.

Configurations Frequency (MHz) LUTs FFs DSPs BRAMs

full-compliance 105.7 5423 3527 9 0

NaxRiscv [27] 98 (-7.28%) 5591 (+3.1%) 3194 (-9.44%) 9 0

no-intermediate-fma 114.5 4048 2862 9

VexRiscv [28] 114 (-0.44%) 3779 (-6.65%) 3035 (6.04%) 9 0

Table 5.4: Resource utilization and clock frequency: full-compliance/no-intermediate-fma vs.
NaxRiscv/VexRiscv targeting U200.

Configurations Frequency (MHz) LUTs FFs DSPs BRAMs

full-compliance 323.6 5735 3575 9 0

NaxRiscv [27] 305.7 (-5.53%) 5977 (+4.22%) 3196 (-10.6%) 9 0

no-intermediate-fma 340.0 4267 2894 9 0

VexRiscv [28] 346.7 (+1.97%) 3714 (-12.96%) 3236 (+11.82%) 9 0

As discussed in Section 4.1.2, the NaxRiscv [27] and VexRiscv [28] FPUs resemble our full-compliance and

no-intermediate-fma, respectively. Table5.3andTable5.4outline the resourceutilizationandclock frequency

57

of the four FPUs targeting theZedboardandU200, respectively. Since theFPUshave similar relative frequency

and resource utilization on the two FPGAs, we use the data generated on U200 for the following discussion.

It can be seen that NaxRiscv achieves a 5.53% lower clock frequency than our full-compliance, whereas

VexRiscv observes a 1.97%higher frequency than no-intermediate-fma. We note that we chose the FMax con-

figurations for both NaxRiscv and VexRiscv. As for utilization, we could not calculate the resource required by

NaxRiscv and VexRiscv’s floating-point instruction decode and issue logic, as the logic is embedded with the

integer dispatchmodule. NaxRiscv uses 4.22%more LUTs and 10.6% fewer FFs than full-compliance, despite

excluding decode-and-issue logic. Moreover, VexRiscv sees 12.96%decrease in LUTs usage but 11.82%higher

FFs utilization than no-intermediate-fma. In addition to the decode and issue logic, no-intermediate-fma’s

larger LUT usage can be attributed to different floating-point register file implementations.We use a 64-entry

physical floating-point register pool to support register renaming, while VexRiscv has a 32-entry register file.

Furthermore, our register files aremapped to LUTRAMs, whereas VexRiscv uses FFs. The different technology

mapping thus explain the resource utilization variations.

5.1.2 Benchmarking Results

In this section, we present an accuracy and performance comparison for the four configurations for FPMark

[55].

58

0

10

20

30

40

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

me
an

Av
er

ag
e

of

 A
cc
ur

at
e

Bi
ts

0

10

20

30

40

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

me
an

Ma
xi

mu
m

of

 A
cc
ur

at
e

Bi
ts

0

10

20

30

40

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

me
an

Mi
ni

mu
m

of

 A
cc
ur

at
e

Bi
ts

0

5

10

15

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

me
an

St
an

da
rd
 D

ev
ia

ti
on

of
 #

 o
f
Ac

cu
ra

te
 B

it
s

full-compliance
default-rounding-only

no-dernoaml
no-intermediate-fma

52

52

52

Figure 5.1: The FPMark’s self-verification passeswhen average,maximum, andminimumnumber of accurate
bits are 52 (DP).

Initial Verification

The Imperas compliance tests do not test denormal inputs, therefore both full-compliance and no-denormal

pass all test cases. However, both default-rounding-only and no-intermediate-fmadesigns fail the compliance

test, as all roundingmodes andcorner case FMA inputs are tested. In addition to the compliance tests, FPMark

59

performs self-verification that checks the accuracy of computed results against reference datasets. Figure 5.1

visualizes the average number of accurate bits generated by the four configurations for each workload. We

notice that no-denormal and default-rounding-only see no impact on the average number of accurate bits

generated by the FPUs for ourworkloads. Through our tracing infrastructure, we find that FPMark’s workload

utilizes the default roundTiesToEven rounding mode only. Additionally, our profiling shows that none of the

workloads has either denormal input operands, nor produces denormal results. As removing these two com-

pliance features have no impact on the computation accuracy, we omit them from the rest of the discussion.

In addition to presenting the average accuracy, we are interested in whether no-intermediate-fma de-

creases the accuracy uniformly across all computations. As such, we also present the minimum, maximum

and standard deviation of the number of accurate bits. We observe that for most workloads, reducing FMA’s

intermediate representation results in a reduction in the average number of accurate bits. Moreover, the ac-

curacy degradation affects computation unevenly, as evidenced by the increase in standard deviation of the

number of accurate bits, as shown in Figure 5.1. We note that nnet_data1 is an outlier: its accurate bit stan-

dard deviation remains zero, while no-intermediate-fma clearly decreased the number of accurate bits. This

is because all computation, therefore all comparison points, for thisworkload sees a uniform reduction in the

number of accurate bits.

Only workload xp1px-sml-c100n20 fails the FPMark’s verification using the full-compliance configuration.

To better understand the accuracy loss, we perform additional profiling for this workload, and found that the

algorithm diverges at sin() calls compared to running the application on a standard x86 server. Therefore, we

locate the specific sin() function inputwithwhichour FPUdisagreeswith the server.We then simulate the sin()

subroutine floating-point instructions individually, and compare those results with the ones computed by

our server and find that our FPU and server generate the same intermediate results. This implies that our FPU

delivers perfectly rounded results for any single basic operations per IEEE 754’smandate, as evidencedby the

matching intermediate instruction results. However, the difference in the micro-architectures between our

FPU and x87 can cause inconsistency in complex computations. We believe this specific instance is the result

of x87’s 80-bit floating-point registers, which allow floating-point numbers to accumulate in higher precision

before they are stored in memory. Additionally, as VexRiscv resembles the no-intermediate-fma design, its

computed results likely suffer similar accuracy degradation. We conclude that while we allow users to select

configurations that are not fully compliant for improved performance, the decision to disable compliance

features should be application specific as the impact on accuracy is highly dependent on the algorithm and

input data.

60

Runtime Performance

0

0.2

0.4

0.6

0.8

1

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

IP
C

0

20

40

60

80

100

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

MI
PS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

me
an

MI
PS

/L
UT

(N
or

ma
li
ze

d)
full-compliance

default-rounding-only
no-dernoaml

no-intermediate-fma

Figure 5.2: FPMark: IPC, MIPS, and MIPS/LUT (normalized to full-compliance)

61

Table 5.5: Reduced compliance runtime performance changes compared to base line full-compliance on Zed-
board.

Configuration IPC MIPS MIPS/LUT

max min avg max min avg max min avg

default-rounding-only 0.1% 0.0% 0.0% 1.9% 1.9% 1.9% 1.9% 1.8% 1.8%

no-denormal 0.3% 0.0% 0.0% 2.8% 2.4% 2.5% 14.4% 13.9% 14.1%

no-intermediate-fma 11.1% 1.0% 5.7% 20.4% 9.3% 14.5% 61.2% 46.5% 53.4%

We visualize the IPC, MIPS, and MIPS/LUT data for the four compliance configurations in Figure 5.2. Table 5.5

also presents each reduced compliance design’s runtime performance changes compared to the base line

full-compliance configuration.

It can be seen that workloads executed using default-rounding-only and no-denormal all have the same

IPC as those executed using full-compliance. This is expected since all three designs have the same latency.

Furthermore, workloads executed using no-intermediate-fma configuration see up to 11.1% increase in IPC

(horner-mid-10k). On average, no-intermediate-fma results in a 5.7% IPC improvement. This is because re-

ducing the number of intermediate bits in the FMA data-path allows us to convert the 2-stage pipelined post-

normalization shifters to combinational ones. As a result, floating-point arithmetic instructions have one cy-

cle lower latency in no-intermediate-fma.

Since full-compliance, default-rounding-only, and no-denormal configurations achieve largely identical

IPC as full-compliance, we expect their throughout to increase the same amount as their respective operat-

ing frequencygain. Table 5.5 shows thatdefault-rounding-only andno-denormal seeanaverageMIPS increase

of 1.9% and 2.5%, respectively. These throughput increases thus are attributed to their clock frequency im-

provement of 1.9%and 2.5% respectively, as presented in Table 5.2. Moreover, we observe a substantial MIPS

increase in no-intermediate-fma, as a result of its improved IPC and higher operating frequency compared to

its peers. Workload horner-mid-10k sees the highest increase in throughput of 20.4% over the baseline, and

the no-intermediate-fma design results in a 14.1%MIPS increase on average.

Figure 5.2 also presents the normalized MIPS per LUT. It’s clear that default-rounding-only has almost

the identical performance efficiency as the baseline, while no-denormal and no-intermediate-fma have sig-

nificantly better performanceper resource improvements.Onaverage, disablingdenormal support increases

MIPS/LUT by a maximum of 14.4%, and on average of 14.1%. Furthermore, no-intermediate-fma has a max-

imum performance efficiency improvement of 61.2% (horner-mid-10k and horner-sml-1k), and an average

improvement of 46.5%.. The increased efficiency can be attributed to the resource reduction discussed in the

previous section.

We were not able to benchmark the VexRiscv and NaxRiscv FPUs, as neither project provided up-to-

date/functional documentation on running customapplications either in simulation or in hardwarewith FPU

enabled. However, we can draw some general performance estimations based on VexRiscv’s instruction la-

tency and clock frequency.

62

Table 5.6: Our no-intermediate-fma design has lower latency for the most frequently used floating-point in-
structions.

Instruction Our FPU VexRiscv Max% Min% Avg%

FLD 4 9 66.4% 25.0% 45.0%

FMA 8 15 41.8% 2.9% 23.0%

FADD, FSUB 6 9 33.0% 0.0% 9.9%

FMUL 6 10 24.3% 0.0% 8.0%

FDIV 60 34 3.7% 0.0% 0.6%

FSQRT 60 62 0.2% 0.0% 0.0%

FMIN, FMAX 5 6 0.0% 0.0% 0.0%

FSGNJ, FSGJN, FSGNJX 5 6 3.4% 0.0% 1.0%

FCVT.D.(U)W 5 9
1.4 0.0 0.3

FCVT.(U)W.D 3 5

FLE, FLT, FEQ 3 5 4.0% 0.0% 1.5%

FCLASS 3 NA 0.0% 0.0% 0.0%

Table 5.6 compares our no-intermediate-fma FPU’s latency to that of VexRiscv, and outlines each instruc-

tion as a percentage of the total number of floating-point instructions. We note that the latency is calculated

from the instruction issue stage to write-back. It can be seen that our FPU processes floating-point instruc-

tions in fewer clock cycles for all but floating-point divide. Notably, our FPU has lower latency for the most

frequently used instructions:

• Load: five cycles faster.

• FMA: seven cycles faster.

• FADD/FSUB: three cycles faster.

• FMUL: four cycles faster.

With the four instructions make up to 66%, 41%, 33%, and 24% of FPMark [55] applications respectively,

we can reasonably conclude that our low-latency design has materially better IPC. While VexRiscv’s floating-

point divider completes in half asmany clock cycles as our FPU, floating-point divide consists atmost 3.7%of

FPMark’s workloads. Therefore, the low-latency divider offers little runtime performance benefit. Moreover,

although we could not find NaxRiscv’s microarchitecture details, its FPU is built upon VexRiscv’s FPU. There-

fore, NaxRiscv’s FPU has at best the same instruction latency as VexRiscv. Moreover, as we have mentioned

in the previous section, NaxRiscv is frequency-optimized. This designmethodology likely introduced deeper

pipelines which would decrease its IPC and MIPS.

63

5.1.3 Summary

In this section, we explored four FPU designs with four different levels of compliance. Using the fully compli-

ant FPU as the base line, we analyzed the impact of each reduced compliance configuration. Additionally, we

compared two of our designs against two existing open-source FPUs, NaxRiscv [27] and VexRiscv [28].

Compared to the base processor Taiga [3], the full-compliance design saw a 13% reduction in frequency,

and 116.7% and 212.4% increase in LUT and FF usage respectively on a Zedboard. When comparing against

the full-compliance design, we found that the default-rounding-only configuration is virtually identical to the

base line. Moreover, disabling denormal processing sawminimal operating frequency gain, while the design

required 10% less LUTs, which resulted in an average MIPS and MIPS/LUT improvement of 2.5% and 13.9%.

Furthermore, our more performant no-intermediate-fma had 8.33% higher frequency and 25.4% fewer LUTs.

These improvementsmeant that the design had an average increase of 11.1%, 9.4%, and 46.5% in IPC, MIPS,

andMIPS/LUT, respectively. Additionally, our full-compliance sawa 7.28%higher frequency, and uses 3% less

LUTs, compared toNaxRiscv. SinceNaxRiscv’s resource utilization data did not include floating-point instruc-

tion decode and issue, their resource overhead would be higher in practice. On the other hand, although our

no-intermediate-fma required 13%more LUTs than VexRiscv, the extra LUTs can be attributed to:

• VexRiscv’s data did not include decode and issue either.

• VexRiscv implemented a 32-entry floating-point register file, whereas ours used a 64-entry one for reg-

ister renaming.

• VexRiscv’s register file were mapped to FFs, whereas ours mapped to LUTRAMs.

Moreover, our designs had substantially lower latency for all floating-point instruction, except floating-point

divide, as shown in Table 5.6. This allowed us to estimate that our designs would have significantly better

runtimeperformance, since theperformance critical instructions—FLD, FMA, FADD/FSUB, and FMULall com-

pleted in fewer cycles.

In terms of computation accuracy, since FPMark [55] does not utilize non-default rounding modes or

denormal processing, only no-intermediate-fma’s results saw degraded accuracy/precision. We noticed that

while most workloads still produce meaningful results despite the lack of FMA intermediate representation,

workloads lu-mid-200x2_50 and lu-mid-20x2_50 observed complete loss of precision.

64

5.2 Reduced Precision Variations

5.2.1 Resource Usage and Clock Frequency
Fr

eq
ue

nc
y

(M
H

z)

of

 L
U

Ts
/F

Fs

Mantissa Width

100

105

110

115

120

125

1520253035404550
1000

2000

3000

4000

5000

6000

(b) Default-Rounding-Only

100

105

110

115

120

125

1520253035404550
1000

2000

3000

4000

5000

6000

(c) No-Denormal

100

105

110

115

120

125

1520253035404550
1000

2000

3000

4000

5000

6000

(d) No-Intermediate-FMA

Freq FFLUT

(a) Full-Compliance

100

105

110

115

120

125

101520253035404550
1000

2000

3000

4000

5000

6000

Figure 5.3: Reduced Precision: Clock Frequency and Resource Utilization on Zedboard.

65

Table 5.7: DSP usage decreases slowly as mantissa width decreases on Zedboard.

Mantissa Range DSP Usage

[52:42] 9

41 8

[40:37] 5

[36:25] 4

24 3

[23:20] 2

[19:10] 1

66

Fr
eq

ue
nc

y
(M

H
z)

of

 L
U

Ts
/F

Fs

Mantissa Width

(b) Default-Rounding-Only

(c) No-Denormal

(d) No-Intermediate-FMA

Freq FFLUT

(a) Full-Compliance

260
280
300
320
340
360
380
400

1520253035404550
1000

2000

3000

4000

5000

6000

260
280
300
320
340
360
380
400

1520253035404550
1000

2000

3000

4000

5000

6000

260
280
300
320
340
360
380
400

1520253035404550
1000

2000

3000

4000

5000

6000

260
280
300
320
340
360
380
400

1520253035404550
1000

2000

3000

4000

5000

6000

Figure 5.4: Reduced Precision: Clock Frequency and Resource Utilization on U200.

67

Table 5.8: DSP usage decreases slowly as mantissa width decreases on U200.

Mantissa Range DSP Usage

[52:43] 9

[42:37] 5

[36:26] 4

[25:20] 2

[19:10] 1

It is common to trade-off precision and accuracy to performance and performance efficiency. In this section,

wepresent our experimental data of running floating-pointworkloadsusing reducedprecision FPUs.Wenote

that in order to automate the data collection process, each reduced precision configuration targets 120 MHz

on the Zedboard and 400Mhz on the U200 during place-and-route. While the higher target frequency slightly

inflates the resource usage as Vivado compensates for the tighter timing constraint, the trend should still

reflect how FPU’s hardware performance scales with mantissa width.

Figure 5.3 and Table 5.7 visualize the scaling of resource usage and operating frequency of FPUs on Zed-

board, as mantissa decreases from 52 bit to 10 bits. Since the data trends are similar, our discussion focuses

on the full-compliance FPU and its reduced precision configurations. In order to expedite data collection for

the other configurations, we present their data in the mantissa width range of [52:12] in steps of 4 bits. It

can be seen that both LUT and FF usage scales linearly with the mantissa width, while DSP usage decreases

slowly. The 52-bit configuration uses 5626 LUTs, whereas the 10-bit mantissa variant uses 1726 LUTs, repre-

senting a significant 69.3% decrease in resource utilization. The reduction in resource usage is the result of

the smaller adders, shifters, register file, and control logic widths as mantissa width decreases. We note that

the relatively smooth LUT and FF utilization curves indicate that Vivado alwaysmaps themantissamultiplier

to DSPs, instead of the fabric, even though many bits may be left unused. This is due to DSPs having rout-

ing resources independent to the fabric routing, and their usage helps alleviate Vivado’s timing constraints.

Moreover, the multiplier output registers can be absorbed by the DSPs, further reducing the resource usage.

Additionally, Figure 5.4 and Table 5.8 present the same data for the U200. The resource usage on the more

modern FPGA has the same scaling with a peak-to-trough LUT utilization reduction of 69.4%.

Conversely, theoperating frequencygraphsshowsubstantiallymorevariations.Notably, the49-bit-mantissa

FPU has the lowest frequency of 107 MHz and 283 MHz on the Zedboard and U200 respectively, representing

a 4.4% and 18% reduction on the respective FPGAs. Moreover, the configurations with the 10-bit data-paths

achieve only a 1.7%and 8.1%higher frequency over the Double-Precision (DP) design on Zedboard andU200

respectively, despite using 69% less resources. We believe the unexpected timing trend can be attributed to

two factors:

• Vivado’s variability.

• Taiga’s heavy use of LUTRAMs.

68

FPU configurationswith similarmantissawidths, i.e. the 52-bit and the 49-bitmantissa FPUs, have similar re-

source requirements. The non-trivial frequency difference between two otherwise nearly identical FPUs can

therefore be explained by the placer’s variability, which affects the downstream routing performance. Addi-

tionally, contrary to our expectation, FPUs with significantly smaller resource footprint does not translate to

meaningfully better operating frequency. Further examining the timing reports, we see that routing consists

of 80% and 65% of the critical path delay among virtually all reduced precision configurations on the Zed-

board and U200, respectively. Moreover, we note that the decode-and-issue stage is often in the critical path.

Aswediscussed in Section 3.2.3, Taigautilizes LUTRAMs tomanage instruction IDs and register files. However,

LUTRAMs have worse timing performance than FFs, and their usage poses additional placement constraints

on Vivado, as not all LUTs can bemapped to LUTRAMs. Given the additional LUTRAMs needed tomanage the

floating-point instructions, Vivado struggles to find an optimal design,which limits the clock frequency of the

overall system.

69

5.2.2 Benchmarking Results

Accuracy

0
10
20
30
40
50
60

101520253035404550

M
in

im
um

of

 A
cc

ur
at

e
Bi

ts atan-1k
atan-64k

blacks-sml-n500v20
horner-mid-10k

0
10
20
30
40
50
60

101520253035404550

M
in

im
um

of

 A
cc

ur
at

e
Bi

ts horner-sml-1k
inner-product-mid-10k

inner-product-sml-1k
linearalg-mid-100x100

0
10
20
30
40
50
60

101520253035404550

M
in

im
um

of

 A
cc

ur
at

e
Bi

ts linearalg-sml-50x50
loops-all-tiny

lu-mid-200x250
lu-sml-20x250

0
10
20
30
40
50
60

101520253035404550

M
in

im
um

of

 A
cc

ur
at

e
Bi

ts

Mantissa Width

nnetdata1
radix2-mid-8k
radix2-sml-2k

xp1px-sml-c100n20

Figure 5.5: Minimum number of accurate bits generated by reduced precision configurations of the full-
compliance FPU.

FPMark [55] contains scientific computing workloads, therefore, it is expected that executing these applica-

tion with reduced precision will result in degradation of accuracy and precision. We present the minimum

numbers of accurate bits produced by our full-compliance FPU as mantissa width decreases in Figure 5.5,

since computation results are as accurate as their least accurate data point. Although all workloads gener-

ally see positive correlation between accuracy andmantissa width, the exact scaling heavily depends on the

algorithms. It can be seen from Figure 5.5 (a) that workloads atan-1k and atan-64k experience linear scaling

between mantissa width and accuracy, whereas blacks-sml-n500v20 scales poorly and produces completely

meaningless results when mantissa width is≤ 42. Examining the source code, atan-1k and atan-64k com-

70

pute the arctan function using a telescoping series:

arctan(x) = x ∗ P(x2)
Q(x2)

, where P and Q are polynomials. On the other hand, blacks-sml-n500v20 computes the equations:

C = SN(d1) – Ke–rtN(d2)

d1 =
lnSK +(r + σ2

2 t)

σ
√
t

d2 = d1 – σ
√
t

It is obvious that blacks-sml-n500v20 computes significantly more intermediate results, which are reused

throughout the algorithm. Any relatively small initial error, therefore, accumulates and causes drastic degra-

dation to accuracy to the overall application.

Furthermore, input data also plays a role in computation accuracy. Workload inner-product-sml-1k com-

putes the inner product of two vectors. Due to its highly sparse input data, the output contains only two non-

zero floating-point numbers. This causes the unusually high average number of accurate bits. However, the

computation becomes meaningless when the mantissa width is≤ 32, as shown in Figure 5.5 (b). Moreover,

despite being the same algorithm, workload lu-mid-200x2_50 sees a rapid drop in the minimum number of

accurate bits, while lu-sml-20x2_50 has extreme fluctuation as the mantissa width decreases. This indicates

that the algorithm is extremely sensitive to input data and reduced precision.

Runtime Performance

Two factors can affect the workloads’ IPC as the mantissa width decreases:

• FDIV, FSQRT latency.

• Program execution path.

As discussed in Section 3.3.3, the floating-point divide and square-root are multi-cycle, and their latency de-

creases with mantissa width. Moreover, execution using reduced precision may change floating-point work-

loads’ control flow, as intermediate values change due to the error introduced by smaller mantissa widths.

71

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

101520253035404550

IP
C

(n
or

m
al

iz
ed

) atan-1k
atan-64k

blacks-sml-n500v20
horner-mid-10k

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

101520253035404550

IP
C

(n
or

m
al

iz
ed

) horner-sml-1k
inner-product-mid-10k

inner-product-sml-1k
linearalg-mid-100x100

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

101520253035404550

IP
C

(n
or

m
al

iz
ed

) linearalg-sml-50x50
loops-all-tiny

lu-mid-200x250
lu-sml-20x250

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

101520253035404550

IP
C

(n
or

m
al

iz
ed

)

Mantissa Width

nnetdata1
radix2-mid-8k
radix2-sml-2k

xp1px-sml-c100n20

Figure 5.6: IPC (normalized to 52-bit): workloads with meaningful number of floating-point divide/square-
root instructions benefit from the reduced latency. The reduced precision changes workload xp1px-sml-
c100n20’s execution paths, resulting in increased IPC.

Figure 5.6 presents the full-compliance’s reducedprecision IPCdata, normalized to the 52-bit data-paths’

result.Weomit the graph for the other reduced compliance configurations as the data trends are similar since

the designs have the same latency. We see that workloads atan-1k, atan-64k, blacks-sml-n500v20 and loops-

all-tiny have 75%, 75%, 10%, and 17% increased IPC, respectively. As the four workloads contain the most

floating-point divide and square-root instructions, their IPCs benefit the most from the reduced latency. Ad-

ditionally, the lower latency alsomitigates other processor bottlenecks, e.g. atan-64k sees a decrease of 46%

and 78% in the number of operand-stalls and no-id-stalls respectively.

Furthermore,workload xp1px-sml-c100n20 seesa9%increase in IPCdespitehavingvirtually zero floating-

point divide or square-root instructions. It is likely that the error introduced by reduced precision causes the

algorithm to take different execution paths. This is evidencedby the 36% increase in the number of branch in-

structions issuedwhenmantissa decreases from 52 to 10. The change in execution sequence results in a 14%

72

increase in the number of integer instructions issued, which biases the IPC higher, since integer instructions

have lower latency.

1
1.2
1.4
1.6
1.8

2
2.2
2.4

101520253035404550

M
IP

S
(n

or
m

al
iz

ed
) atan-1k

atan-64k
blacks-sml-n500v20

horner-mid-10k

1
1.2
1.4
1.6
1.8

2
2.2
2.4

101520253035404550

M
IP

S
(n

or
m

al
iz

ed
) horner-sml-1k

inner-product-mid-10k
inner-product-sml-1k

linearalg-mid-100x100

1
1.2
1.4
1.6
1.8

2
2.2
2.4

101520253035404550

M
IP

S
(n

or
m

al
iz

ed
) linearalg-sml-50x50

loops-all-tiny
lu-mid-200x250

lu-sml-20x250

1
1.2
1.4
1.6
1.8

2
2.2
2.4

101520253035404550

M
IP

S
(n

or
m

al
iz

ed
)

Mantissa Width

nnetdata1
radix2-mid-8k
radix2-sml-2k

xp1px-sml-c100n20

Figure 5.7: MIPS (normalized to 52-bit): MIPS mostly scale with IPC since operating frequency has little fluc-
tuation among reduced precision FPUs.

73

1
2
3
4
5
6
7
8
9

101520253035404550

M
IP

S
pe

r L
U

T
(n

or
m

al
iz

ed
) atan-1k

atan-64k
blacks-sml-n500v20

horner-mid-10k

1
2
3
4
5
6
7
8
9

101520253035404550

M
IP

S
pe

r L
U

T
(n

or
m

al
iz

ed
) horner-sml-1k

inner-product-mid-10k
inner-product-sml-1k

linearalg-mid-100x100

1
2
3
4
5
6
7
8
9

101520253035404550

M
IP

S
pe

r L
U

T
(n

or
m

al
iz

ed
) linearalg-sml-50x50

loops-all-tiny
lu-mid-200x250

lu-sml-20x250

1
2
3
4
5
6
7
8
9

101520253035404550

M
IP

S
pe

r L
U

T
(n

or
m

al
iz

ed
)

Mantissa Width

nnetdata1
radix2-mid-8k
radix2-sml-2k

xp1px-sml-c100n20

Figure 5.8: MIPS/LUT (normalized to 52-bit).

Full-compliance’s reducedprecision FPUs have trivial improvements in operating frequency as discussed

inSection5.2.1. As such, theMIPS largely scaleswith IPC,which is dependentonalgorithmsand inputdata, as

visualized in Figure 5.7. It can be seen that only workloads atan-1k, atan-64k, blacks-sml-n500v20 and loops-

all-tiny have non-trivial increase in throughput, while others stay mostly flat. Furthermore, as the resource

utilization decreases with mantissa width, the performance efficiency improves significantly, as shown in

Figure 5.8. Workloads atan-1k and atan-64k have themost MIPS/LUT improvement of 5.5x, while thosework-

loads whose IPCs do not improve as a result of lowermantissa width see a 3.3x increase in their performance

per LUT.

5.2.3 Summary

In our reduced precision work, we evaluated the low-precision designs in terms of operating frequency, re-

source usage, runtime performance, and accuracy. While we found that our floating-point data-paths’ re-

source utilization scaled linearly with the mantissa width, the clock frequency had significant fluctuation

74

on both Zedboard and U200. Specifically, the smallest 10-bit-mantissa FPU configuration used 69% less re-

sources compared to the 52-bit configuration, but only achieved a 1.7% and 8% frequency improvement on

the respective FPGAs. Additionally, our examination of the timing reports revealed that routing congestion

dominated the critical paths of virtually all reduced precision FPUs, and decode-and-issue logic was often

in the critical paths. The decode-and-issue logic heavily leveraged LUTRAMs, which had worse timing than

FFs. Moreover, the use of LUTRAMs constrained the placer and router further, as not all LUTs can be used as

LUTRAMs. Future work could explore different storage mechanisms for the floating-point decode-and-issue

logic.

In terms of runtime performance, only workloads with a meaningful number of floating-point divide in-

structions (3.7%) saw IPC improvements of up to 75%, while others’ IPCs stayed mostly flat. This is due to

the multi-cycle nature of our division algorithm, whose latency decreased as the mantissa width decreased.

The unaffecting IPC scalingmeant thatMIPS andMIPS/LUTwere solely dependent on the resource utilization

reduction, and operating frequency improvements—whichwere erratic andunremarkable on the Zedboard.

Future workwill explore lower latency floating-point data-paths with lowmantissa widths onmodern FPGAs

inorder to extractmore IPC. Furthermore, our accuracy analysis showed that onlyatan-64k andatan-1k could

take advantage of the reduced precision FPUs, as others quickly generated meaningless results as the man-

tissa width decreased. In the future, we hope to benchmark the reduced precision FPUs with applications

that can withstand the reducedmantissa widths, such as machine learning workloads.

75

5.3 Merged FMA

In this section, we evaluate the impact of merging the FMUL unit’s write-back port with that of the FMA unit.

We use the full-compliance FPU as the baseline configuration. Themerged-fma and full-compliance produce

the same floating-point results. Therefore, we focus our analysis on hardware performance, runtime perfor-

mance and performance efficiency, and omit the discussion on result accuracy.

5.3.1 Clock Frequency and Resource Usage

Table 5.9: Clock Frequency and Resource Utilization of full-compliance andmerged-fma FPUs on Zedboard.

Configurations Frequency (MHz) LUTs FFs DSPs BRAMs

full-compliance 105.7 5423 3527 9 0

merged-fma 109.8 (+3.9%) 5169 (-4.7%) 3233 (-8.4%) 9 0

Table 5.10: Clock Frequency and Resource Utilization of full-compliance andmerged-fma FPUs on U200.

Configurations Frequency (MHz) LUTs FFs DSPs BRAMs

full-compliance 323.6 5735 3575 9 0

merged-fma 341.2 (+5.4%) 5546 (-3.3%) 3264 (-8.7%) 9 0

Table 5.9 presents the clock frequency and resource utilization of full-compliance and merged-fma FPU on

the Zedboard. Compared to full-compliance,merged-fma has 4.7% and 8.4% reduction in LUT and FF usage

respectively. Examining the two pipelines shown in Figure 4.2, we see that merged-fma removes the FIFO

used to arbitrate the floating-point adder. Additionally, merging the FMA, FMUl and FADD instructions allows

us to remove the dedicated write-back port to FMUL instructions. Similarly,merged-fma’s LUT and FF usage

decreases by 3.3% and 8.7% on the U200.

In terms of operating frequency, we see a 3.9% increase in merged-fma on the Zedboard, and a 5.4%

increase on the U200. On Zedboard, the two FPUs have the same critical path in the rounding unit, and both

aredominatedby routingdelay (+80%). Similarly on theU200, full-complianceandmerged-fmahave71%and

72% routing delay in their critical paths, respectively. This small increase in frequency for both platforms can

be attributed to the non-trivial decrease in resource utilizationwhich relaxes Vivado’s placement and routing

constraints.

76

5.3.2 Benchmarking Result

0

0.2

0.4

0.6

0.8

1

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

IP
C

full-compliance merged-fma

0
10
20
30
40
50
60
70
80

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

MI
PS

0

0.2

0.4

0.6

0.8

1

1.2

at
an
-1
k

at
an
-6
4k

bl
ac
ks
-s
ml
-n
50
0v
20

ho
rn
er
-m
id
-1
0k

ho
rn
er
-s
ml
-1
k

in
ne
r-
pr
od
uc
t-
mi
d-
10
k

in
ne
r-
pr
od
uc
t-
sm
l-
1k

li
ne
ar

a
lg
-m
id
-1
00
x1
00

li
ne
ar

a
lg
-s
ml
-5
0x
50

lo
op
s-
al
l-
ti
ny

lu
-m
id
-2
00
x2

5
0

lu
-s
ml
-2
0x
2 5
0

nn
et

d
at
a1

ra
di
x2
-m
id
-8
k

ra
di
x2
-s
ml
-2
k

xp
1p
x-
sm
l-
c1
00
n2
0

me
an

MI
PS

/L
UT

(N
or

ma
li
ze

d)

Figure 5.9: IPC, MIPS andMIPS/LUT (normalized to full-compliance) comparison between full-compliance and
merged-fma

77

Table 5.11: Columns are: FPMark workloads’ FADD and FMUL instruction count as a percentage of total
floating-point instructions;merged-fma IPC no-id-stall, and operands-stall changes vs. full-compliance.

Workloads FADD + FMUL IPC Change
No ID Stall

Change

FP Operand Stall

Change

atan-1k 26.1% -0.9% 1.6% 3.6%

atan-64k 26.2% -0.9% 1.8% 3.4%

blacks-sml-n500v20 54.4% -9.5% 33.7% 30.0%

horner-mid-10k 7.0% -2.3% 12.2% 3.6%

horner-sml-1k 6.9% -2.3% 12.4% 3.6%

inner-product-mid-10k 0.0% 0.0% 200.0% 0.0%

inner-product-sml-1k 0.0% 0.0% 200.0% 0.0%

linear_alg-mid-100x100 1.0% -0.3% 1.5% 1.0%

linear_alg-sml-50x50 1.8% -0.5% 2.9% 1.0%

loops-all-tiny 14.7% -3.4% 6.0% 13.7%

lu-mid-200x2_50 2.0% -0.7% 0.5% 6.1%

lu-sml-20x2_50 1.9% -0.7% 0.5% 6.0%

nnet_data1 26.2% -6.5% 16.4% 18.0%

radix2-mid-8k 30.5% -12.8% 1595.9% 14.0%

radix2-sml-2k 30.0% -12.9% 1920.0% 14.3%

xp1px-sml-c100n20 57.2% -10.7% 70.9% 43.0%

Figure 5.9 visualizes the IPC, MIPS, and normalizedMIPS/LUT data. Additionally, Table 5.11 presents, for each

workload:

• the FADD and FMUL instructionmix as a percentage of the total number of floating-point instructions.

• merged-fma design’s IPC change vs. full-compliance.

• merged-fma design’s number of no-id-stalls change vs. full-compliance.

• merged-fma design’s number of operand-stalls change vs. full-compliance.

In Figure 5.9, we observe that workloads with a relatively low number of FADD and FMUL instructions

(<20%) do not see materially reduction in their IPCs. However, workloads atan-1k and atan-64k are the out-

liers here, as their IPCs decrease by only 0.9%, despite having 26%of FADD and FMUL instructions. Examining

the stall data, we notice that the two workloads have a trivial 3.6% increase in the number of operands stalls

withmerged-fma. This indicates that the FADD and FMUL results produced by atan-1k and atan-64k are not

frequently immediately reused, resulting in a negligible impact on their IPCs.

78

Moreover, themerged-fma design causes a non-negligible (>5%) IPC decrease for workloads blacks-sml-

n500v20,nnet_data1, radix2-mid-8k, radix2-sml-2k, and xp1px-sml-c100n20,whicharehighlighted inTable5.11.

Specifically, workloads radix2-mid-8k and radix2-sml-2k have the most reduction in IPC of 12.8% and 12.9%

respectively, as a result of the 15x and 19x higher number of no-id-stalls respectively, and 14% and 14.3% in-

creased number of operand-stalls respectively. It is evident that for these workloads, themerged-fma design

causesmore operand-stalls as FADDand FMUL instructions take longer to commit. Moreover, it forces instruc-

tions to stay in the execution pipeline longer, which prevents new instructions from entering the execution

stage due to the depleted instructoin ID pool.

In terms of throughput, those workloads highlighted in Table 5.11 have reducedMIPS, as a result of their

degraded IPC. Workloads radix2-mid-8k and radix2-sml-2k have the most MIPS reduction of 9.4% and 9.5%,

respectively. Similarly, despite the clock frequency and resource usage improvements, the highlightedwork-

loads all have lower MIPS/LUT using merged-fma — except nnet_data1. Moreover, workload inner-product-

sml-1k has the most MIPS/LUT improvement of 9.0%. On average, themerged-fma design has a 4.7% higher

performance per LUT than full-compliance.

5.3.3 Summary

In this section, we studied the alternative merged FMA unit microarchitecture, and evaluated its trade-off

with that of full-compliance in terms of resource, clock frequency, and runtime performance. On average, the

merged-fma design had 4.7% higher clock frequency and used 4% fewer LUTs on the Zedboard and U200.

However, the merged FMA microarchitecture increased FADD and FMUL instruction’s latency, which led to

more operands-stalls and no-id-stalls, and lower IPC. In general, workloads with a meaningful number of

FADD and FMUL instructions had substantial decrease in IPCs. The outliers here were the atan-1k and atan-

64k workloads, which did not immediately reuse their FADD or FMUL results, leading to a low operand-stalls

and no-id-stalls increases of 3.6% and 1.6%. In terms of throughput and efficiency, since the merged-fma

configuration did not have significant operating frequency and resource utilization improvements over full-

compliance, IPCdominated theMIPSandMIPS-per-LUTcalculations.Theworstperformingworkloads, radix2-

mid-8k and radix2-sml-2k, saw the most MIPS reduction of 9.5% and MIPS/LUT decrease of 5% when using

merged-fma.Onaverage, themerged-fmacauseda0.3%reduction inMIPSand9.0% increase inperformance-

per-LUT. Based on our findings, usersmay choose themerged-fma design if their applications do not contain

many FADD or FMUL instructions, or if the results produced by these instructions are not frequently reused.

79

6 CONCLUSIONS AND FUTURE WORK

Throughout this work, we have explored designing IEEE 754 compliant FPU targeting FPGA-based soft-

processors. We reemphasized the speedup opportunity of hardware floating-point implementations, and

that modern FPGAs are well-suited for such designs. We demonstrated that many existing floating-point de-

signs do notmapwell to FPGAs. ASIC-based optimizations are resource intensive and can incur over 88% uti-

lizationoverhead [40] . Themajorityof FPGA-based floating-point research focusesonstandalonedata-paths.

These frequency-optimized designs often have deep pipelines, which are not appropriate for soft-processors

where instruction-level parallelism is not guaranteed. Existing FPGA-based integrated FPUs have scant com-

pliance support, omitting denormal processing, compliant FMA instructions implementation, and full round-

ing modes and exception support.

In our exploration of reduced compliance FPUs,we showed that the no-denormal configuration provided

minimal throughput increase over the baseline, while it saw a substantial 14% performance-efficiency in-

crease as the result of lower LUT requirements. Moreover, we found that removing the compliant FMA imple-

mentation provided over 25% reduction in LUTs over the compliant FPU. Furthermore, the smaller reduced-

fmadesignallowedus todecreaseunit latency,which translated toup to7.3% increase in IPC, 16% in through-

put, and 61% inMIPS/LUT compared to the baseline. Despite the performance and efficiency gain, the lack of

compliant FMA instructions caused accuracy degradation to all but two of our benchmark applications. For

some corner-case inputs, reduced-fma’s computed results became completely meaningless, as we have dis-

cussed inSection2.4.4. Compared to the fully compliant integratedRISC-V FPUsNaxRiscv, our full-compliance

design had a 7%better clock frequency and 3% fewer LUT usage. On the other hand, our reduced-fma design

achieved the same frequency as VexRiscv, but required 13% more LUTs. In our analysis, we attributed our

resource overhead to our LUTRAM-based register file implementation, whereas VexRiscv used FFs. Addition-

ally, our FPUs’s register renaming scheme meant that we had double the register count. Neither NaxRiscv

or VexRiscv’s resource data included floating-point instruction decode and issue logic, due to the flattened

Verilog files generated by SpinalHDL [17]. Althoughwe could not directly analyze the performance difference

between our FPUs against NaxRiscv and VexRiscv, Table 5.6 showed that our reduced-fmawould outperform

VexRiscv, as our design had smaller unit latency for all but floating-point divide instructions — which ac-

counted for at most 3.7% of floating-point instructions in our benchmark. NaxRiscv was built upon VexRiscv,

therefore its FPU had at best the same latency. Coupled with our higher frequency and lower LUT require-

ment, the full-compliance design likely had better throughput and efficiency.

In our study of reduced precision FPUs, we showed that as precision decreased, resource usage scaled

linearly while frequency fluctuated erratically. Furthermore, we found that Taiga’s front end dominated the

critical pathswithmore than 80% routing delay on the Zedboard, as a result of its heavy use of LUTRAMs. This

indicated that changes to the base processor was needed, as integrating even the smallest FPU resulted in

massive routing congestion.

80

Finally, we explored two FMA unit microarchitectures as FMA, FADD and FMUL instructions dominated

floating-point applications. We showed that workloads with many FADD and FMUL instructions saw up to

13% decreased IPC with our merged-fma design. However, the reduction in IPC was partially alleviated by

merged-fma design’s 4.7% higher clock frequency and 4.0% lower resource usage. As a result, usingmerged-

fma resulted in a 9% increase in performance efficiency.

6.0.1 Future Work

Thiswork has studied the implementation of FPGA-based integrated FPUs and somedesign trade-offs. As the

current Taiga is limitedon thedatedZedboard,wewould like to continue the trade-offexplorationonmodern

FPGAs. Specifically, the U200 saw significant timing improvement over the Zedboard. The better board will

allow us to investigate more aggressive latency-optimized designs. Moreover, we would like to explore the

more performantmultiplication-based floating-point divider and square-root implementations. The current

radix-2 design uses a substantial number of LUTs, whereas a multiplicative algorithm may allow us to share

the multiplier with that of the FMUL implementation and enable low-latency FDIV and FSQRT. Furthermore,

thecurrentCVA5 [61], formerly knownasTaiga [3], retires two instructionsper cyclewhenonlyone instruction

writes back to the register file. Future FPU integration will support multi-retire when the retiring instructions

write back to both integer and register files.

81

BIBLIOGRAPHY

[1] A. Waterman and A. Krste, “The risc-v instruction setmanual, volume i: User-level isa, document version
20191214-draft.” [Online]. Available: https://github.com/riscv/riscv-isa-manual/releases/download/
draft-20220301-9ec8c01/riscv-spec.pdf

[2] X. Fang and M. Leeser, “Open-source variable-precision floating-point library for major commercial
fpgas,” ACM Trans. Reconfigurable Technol. Syst., vol. 9, no. 3, Jul. 2016. [Online]. Available: https:
//doi.org/10.1145/2851507

[3] E. Matthews and L. Shannon, “Taiga: A new risc-v soft-processor framework enabling high performance
cpu architectural features,” in 2017 27th International Conference on Field Programmable Logic and Ap-
plications (FPL), 2017, pp. 1–4.

[4] P. Stewart and V. Kadirkamanathan, “Dynamic control of permanent magnet synchronous motors
for automotive drive applications,” in Proceedings of the 1999 American Control Conference (Cat. No.
99CH36251), vol. 3, 1999, pp. 1677–1681 vol.3.

[5] S. Z. Gilani, N. S. Kim, and M. Schulte, “Energy-efficient floating-point arithmetic for software-defined
radio architectures,” in ASAP 2011 - 22nd IEEE International Conference on Application-specific Systems,
Architectures and Processors, 2011, pp. 122–129.

[6] “Floating point and ieee 754 compliance for nvidia gpus.” [Online]. Available: https://docs.nvidia.com/
cuda/floating-point/index.html#cuda-and-floating-point

[7] M. 14 and P. Kharya, “Nvidia blogs: Tensorfloat-32 accelerates ai training,” May 2020. [Online]. Available:
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/

[8] “Understanding exr data compression.” [Online]. Available: https://rainboxlab.org/downloads/
documents/EXR_Data_Compression.pdf

[9] “The bfloat16 numerical format.” [Online]. Available: https://cloud.google.com/tpu/docs/bfloat16

[10] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2019 (Revision of IEEE 754-2008), pp. 1–84,
2019.

[11] “Berkeley softfloat.” [Online]. Available: http://www.jhauser.us/arithmetic/SoftFloat.html

[12] “The gnumpfr library.” [Online]. Available: https://www.mpfr.org/

[13] “The gnump bignum library.” [Online]. Available: https://gmplib.org/

[14] K. S. Hemmert and K. D. Underwood, “Fast, efficient floating-point adders and multipliers for fpgas,”
ACM Trans. Reconfigurable Technol. Syst., vol. 3, pp. 11:1–11:30, 2010.

[15] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev, “64-bit floating-point fpga matrix
multiplication,” in Proceedings of the 2005 ACM/SIGDA 13th International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’05. New York, NY, USA: Association for Computing Machinery,
2005, p. 86–95. [Online]. Available: https://doi-org.proxy.lib.sfu.ca/10.1145/1046192.1046204

82

https://github.com/riscv/riscv-isa-manual/releases/download/draft-20220301-9ec8c01/riscv-spec.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20220301-9ec8c01/riscv-spec.pdf
https://doi.org/10.1145/2851507
https://doi.org/10.1145/2851507
https://docs.nvidia.com/cuda/floating-point/index.html#cuda-and-floating-point
https://docs.nvidia.com/cuda/floating-point/index.html#cuda-and-floating-point
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://rainboxlab.org/downloads/documents/EXR_Data_Compression.pdf
https://rainboxlab.org/downloads/documents/EXR_Data_Compression.pdf
https://cloud.google.com/tpu/docs/bfloat16
http://www.jhauser.us/arithmetic/SoftFloat.html
https://www.mpfr.org/
https://gmplib.org/
https://doi-org.proxy.lib.sfu.ca/10.1145/1046192.1046204

[16] M. K. Jaiswal and H. K.-H. So, “Dsp48e efficient floating point multiplier architectures on fpga,” in 2017
30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Sys-
tems (VLSID), 2017, pp. 1–6.

[17] SpinalHDL, “Spinalhdl.” [Online]. Available: https://github.com/SpinalHDL/SpinalHDL

[18] Cliffordwolf, “cliffordwolf/picorv32: Picorv32 - a size-optimized risc-v cpu.” [Online]. Available: https:
//github.com/cliffordwolf/picorv32

[19] Riscveval, “riscveval/orca-1: Risc-v by vectorblox.” [Online]. Available: https://github.com/riscveval/
orca-1

[20] “Floating-point operator.” [Online]. Available: https://www.xilinx.com/products/intellectual-property/
floating_pt.html

[21] “Nios® ii processors for fpgas - intel® fpga.” [Online]. Available: https://www.intel.com/content/www/
us/en/products/programmable/processor/nios-ii.html

[22] L. Bertaccini, M. Perotti, S. Mach, P. D. Schiavone, F. Zaruba, and L. Benini, “Tiny-fpu: Low-cost floating-
point support for small risc-v mcu cores,” in 2021 IEEE International Symposium on Circuits and Systems
(ISCAS), 2021, pp. 1–5.

[23] N. Hockert and K. Compton, “Ffpu: Fractured floating point unit for fpga soft processors,” in 2009 Inter-
national Conference on Field-Programmable Technology, 2009, pp. 143–150.

[24] “Armhardfloatportvfpcomparison.” [Online]. Available: https://wiki.debian.org/ArmHardFloatPort/
VfpComparison

[25] X. Wang and M. Leeser, “Vfloat: A variable precision fixed- and floating-point library for reconfigurable
hardware,” vol. 3, no. 3, Sep. 2010. [Online]. Available: https://doi-org.proxy.lib.sfu.ca/10.1145/1839480.
1839486

[26] “Microblaze soft processor core.” [Online]. Available: https://www.xilinx.com/products/design-tools/
microblaze.html

[27] SpinalHDL, “Spinalhdl/naxriscv.” [Online]. Available: https://github.com/SpinalHDL/NaxRiscv

[28] ——, “Spinalhdl/vexriscv: A fpga friendly 32 bit risc-v cpu implementation.” [Online]. Available:
https://github.com/SpinalHDL/VexRiscv

[29] M. Schmookler, M. Putrino, C. Roth, M. Sharma, A. Mather, J. Tyler, H. Van Nguyen, M. Pham, and J. Lent,
“A low-power, high-speed implementation of a powerpc/sup tm/ microprocessor vector extension,” in
Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336), 1999, pp. 12–19.

[30] C. Heinz, Y. Lavan, J. Hofmann, and A. Koch, “A catalog and in-hardware evaluation of open-source drop-
in compatible risc-v softcoreprocessors,” in 2019 International ConferenceonReConFigurableComputing
and FPGAs (ReConFig), 2019, pp. 1–8.

[31] J. Bruguera and T. Lang, “Leading-one prediction scheme for latency improvement in single datapath
floating-point adders,” in Proceedings International Conference on Computer Design. VLSI in Computers
and Processors (Cat. No.98CB36273), 1998, pp. 298–305.

83

https://github.com/SpinalHDL/SpinalHDL
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
https://github.com/riscveval/orca-1
https://github.com/riscveval/orca-1
https://www.xilinx.com/products/intellectual-property/floating_pt.html
https://www.xilinx.com/products/intellectual-property/floating_pt.html
https://www.intel.com/content/www/us/en/products/programmable/processor/nios-ii.html
https://www.intel.com/content/www/us/en/products/programmable/processor/nios-ii.html
https://wiki.debian.org/ArmHardFloatPort/VfpComparison
https://wiki.debian.org/ArmHardFloatPort/VfpComparison
https://doi-org.proxy.lib.sfu.ca/10.1145/1839480.1839486
https://doi-org.proxy.lib.sfu.ca/10.1145/1839480.1839486
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://github.com/SpinalHDL/NaxRiscv
https://github.com/SpinalHDL/VexRiscv

[32] ——, “Leading-one prediction with concurrent position correction,” IEEE Transactions on Computers,
vol. 48, no. 10, pp. 1083–1097, 1999.

[33] ——, “Rounding in floating-point addition using a compound adder,” 12 2000.

[34] P. M. Farmwald, “On the design of high performance digital arithmetic units,” Ph.D. dissertation, Stan-
ford, CA, USA, 1981, aAI8201985.

[35] S. Oberman, H. Al-Twaijry, and M. Flynn, “The snap project: design of floating point arithmetic units,” in
Proceedings 13th IEEE Sympsoium on Computer Arithmetic, 1997, pp. 156–165.

[36] P.-M. Seidel and G. Even, “Delay-optimized implementation of ieee floating-point addition,” IEEE Trans-
actions on Computers, vol. 53, no. 2, pp. 97–113, 2004.

[37] T.-J. Kwon, J. Sondeen, and J. Draper, “Floating-point division and square root using a taylor-series ex-
pansion algorithm,” in 2007 50th Midwest Symposium on Circuits and Systems, 2007, pp. 305–308.

[38] J. D. Bruguera, “Low latency floating-point division and square root unit,” IEEE Transactions on Comput-
ers, vol. 69, no. 2, pp. 274–287, 2020.

[39] ——, “Radix-64 floating-point divider,” in 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH),
2018, pp. 84–91.

[40] A. Malik and S.-b. Ko, “A study on the floating-point adder in fpgas,” in 2006 Canadian Conference on
Electrical and Computer Engineering, 2006, pp. 86–89.

[41] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “Fpnew: An open-source multiformat floating-point unit
architecture for energy-proportional transprecision computing,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 29, no. 4, pp. 774–787, 2021.

[42] Administrator. [Online]. Available: https://www.gaisler.com/index.php/products/processors/leon3

[43] C. Renard, “Fpga implementation of an ieee standard floating-point unit,” Tech. Rep, Tech. Rep.

[44] B. Fagin and C. Renard, “Field programmable gate arrays and floating point arithmetic,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 3, pp. 365–367, 1994.

[45] J. Allan and W. Luk, “Parameterised floating-point arithmetic on fpgas,” in 2001 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), vol. 2, 2001, pp.
897–900 vol.2.

[46] G. Govindu, R. Scrofano, and V. K. Prasanna, “A library of parameterizable floating-point cores for fp-
gas and their application to scientific computing,” in In Proc. of International Conference on Engineering
Reconfigurable Systems and Algorithms, 2005, pp. 137–148.

[47] “About floating-point ip cores.” [Online]. Available: https://www.intel.com/content/www/us/en/docs/
programmable/683750/20-1/about-floating-point-ip-cores.html

[48] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths with flopoco,” IEEE Design Test of
Computers, vol. 28, no. 4, pp. 18–27, 2011.

[49] Xilinx, “Xilinx/hls: Vitis hls llvm source code and examples.” [Online]. Available: https://github.com/
Xilinx/HLS

84

https://www.gaisler.com/index.php/products/processors/leon3
https://www.intel.com/content/www/us/en/docs/programmable/683750/20-1/about-floating-point-ip-cores.html
https://www.intel.com/content/www/us/en/docs/programmable/683750/20-1/about-floating-point-ip-cores.html
https://github.com/Xilinx/HLS
https://github.com/Xilinx/HLS

[50] M. Langhammer and T. VanCourt, “Fpga floating point datapath compiler,” in 2009 17th IEEE Symposium
on Field Programmable Custom Computing Machines, 2009, pp. 259–262.

[51] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown, and T. Czajkowski,
“Legup: High-level synthesis for fpga-based processor/accelerator systems,” ser. FPGA ’11. New
York, NY, USA: Association for Computing Machinery, 2011. [Online]. Available: https://doi.org/10.1145/
1950413.1950423

[52] Administrator. [Online]. Available: https://www.gaisler.com/index.php/information/ordering/
orderip-cores/ordergrfpu

[53] “Technical documents.” [Online]. Available: https://sparc.org/technical-documents/

[54] E. Matthews, Y. Gao, and L. Shannon, “Exploring writeback designs for efficiently leveraging parallel-
execution units in fpga-based soft-processors,” in 2020 IEEE 28th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2020, pp. 120–128.

[55] “About the eembc fpmark™ floating-point benchmark suite.” [Online]. Available: https://www.eembc.
org/fpmark/

[56] E. Matthews, “Modernizing soft-processor architecture for today’s sram-based fpgas,” Aug 2021.
[Online]. Available: https://summit.sfu.ca/item/35160

[57] “5. introduction to nios® ii floating point custom instructions.” [On-
line]. Available: https://www.intel.com/content/www/us/en/docs/programmable/683242/current/
introduction-to-floating-point-custom.html

[58] Verilator, “Verilator/verilator: Verilator open-source systemverilog simulator and lint system.” [Online].
Available: https://github.com/verilator/verilator

[59] Riscv-Ovpsim, “Riscv-ovpsim/imperas-riscv-tests.” [Online]. Available: https://github.com/
riscv-ovpsim/imperas-riscv-tests

[60] “Axi uart16550.” [Online]. Available: https://www.xilinx.com/products/intellectual-property/axi_
uart16550.html

[61] Openhwgroup, “Openhwgroup/cva5: The core-v cva5 is an application class 5-stage risc-v cpu
specifically targetting fpga implementations.” [Online]. Available: https://github.com/openhwgroup/
cva5

85

https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1950413.1950423
https://www.gaisler.com/index.php/information/ordering/orderip-cores/ordergrfpu
https://www.gaisler.com/index.php/information/ordering/orderip-cores/ordergrfpu
https://sparc.org/technical-documents/
https://www.eembc.org/fpmark/
https://www.eembc.org/fpmark/
https://summit.sfu.ca/item/35160
https://www.intel.com/content/www/us/en/docs/programmable/683242/current/introduction-to-floating-point-custom.html
https://www.intel.com/content/www/us/en/docs/programmable/683242/current/introduction-to-floating-point-custom.html
https://github.com/verilator/verilator
https://github.com/riscv-ovpsim/imperas-riscv-tests
https://github.com/riscv-ovpsim/imperas-riscv-tests
https://www.xilinx.com/products/intellectual-property/axi_uart16550.html
https://www.xilinx.com/products/intellectual-property/axi_uart16550.html
https://github.com/openhwgroup/cva5
https://github.com/openhwgroup/cva5

	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Introduction
	Motivation
	Objective
	Contributions
	Thesis Organization

	Background
	FPGA Overview
	Floating-Point Overview
	Binary Floating-Point Format
	Reduced Floating-Point Format
	Underflow and Denormal Floating-Point Numbers
	IEEE Rounding
	IEEE Exception
	RISC-V Floating-Point Instruction Extensions riscv-spec-isa

	Taiga Overview
	Related Work
	FPU on ASIC
	Standalone Floating-Point Cores on FPGAs
	Existing Integrated FPU for FPGA-based Soft-Processors
	Compliance Status of Existing Research
	Related Work Summary

	FPU Implementation
	FPU Integration to Taiga
	Instruction Fetch, Decode, Issue, and Management

	FPU Stages
	Issue Stage
	Pre-Processing Stage
	Execution Stage
	Write-back Stage

	Instruction Pipeline Detail
	Floating-point Load and Store Unit
	FMUL, FADD, and FMA Units
	Floating-Point Divider
	Floating-Point Square Root
	WB2FP
	WB2INT
	Post-Normalization and Rounding Integration Scheme
	Post-Normalization
	Rounding Unit

	Summary

	Experimental Framework
	Evaluation Configurations
	Base Taiga
	FPU Configurations

	Benchmarking Applications
	FPMark
	Imperas Compliance Tests

	Instrumentation
	Runtime Performance
	Hardware Data
	Metrics

	Experimental Results
	Compliance Variations
	Resource Usage and Clock Frequency
	Benchmarking Results
	Summary

	Reduced Precision Variations
	Resource Usage and Clock Frequency
	Benchmarking Results
	Summary

	Merged FMA
	Clock Frequency and Resource Usage
	Benchmarking Result
	Summary

	Conclusions and Future Work
	Future Work

	Bibliography

