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Abstract

All major league sports teams are interested in projecting the performance of their players
into the future. The seemingly most important feature of a model to project future perfor-
mance is age. On average, players tend to improve from their rookie (earliest) season in the
league, until they retire from the league (due to poor performance or injuries, for example).
In this project we apply Functional Principal Component Analysis (FPCA) to the careers of
NHL players in order to fit individual aging curves for each player. We compare the results
of three methods: ImFuncPCA, SOAP and PACE.

Keywords: Functional Data Analysis; Sports Analytics; Aging Curves; Principal Compo-
nents Analysis; National Hockey League
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Chapter 1

Introduction

1.1 Motivation

Many decisions made by the front office staff of a major league sports club are predomi-
nantly concerned with projecting the future performance of players. In the case of drafting
younger players, teams would like to predict a player’s future performance given their abil-
ities relative to a player’s peers in the junior leagues. The decisions the front office staff
make based on trades and free-agency, however, are quite different. In this case, a team
must forecast the performance of players who have already been entrenched in the league;
and this is subject to the constraint that the number of players on the roster of a team is
fixed. The composition of players is constantly changing as older players retire and younger
players take on more prominent roles. Therefore, it is of interest to teams to approximate
the value a player is likely to provide as they age; we call the models, aging curves. Aging
curves can be difficult to study in team sports due to the fact that the performance of
players is highly dependent on their teammates and the number of minutes they play; thus
we are faced with the problem of multicollinearity, where the independent variables in the
model are correlated. Aging curves have been studied in a number of sports including: golf
[1], baseball [8], soccer [6], hockey [4] and basketball [7].

The effect of aging on the body is a common issue for all athletes [15]. For most major
sports leagues, players reach their peak performance between ages 25-29, and generally de-
cline as they age due to decreasing athleticism and increased injury risk. The observance of
this ’peak’ in performance has been studied, for example, by [6] and [8]. In [8], the authors
show that different skills decline at different rates; baserunning, for example, declines at
a much faster rate as compared to power in baseball. Most research reaches the general
consensus that these age effects are positional dependent; for example in [4] the authors
conclude that the peak age for NHL forwards is between ages 27-28, while the peak age of
performance for defencemen is between 28-29. Each player has a unique aging curve (due
to different body composition or previous athletic history, for example)- but there should
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be some agreement between players who have similar styles of play. Previously, the most
common way to build an aging curve was to calculate the difference between a player’s
performance between years that they have played in the league, and then average over a
number of players (this is called the "Delta Method" [20]). A feature of the Delta Method
is that it is not impacted by the differences in quality between players. Some research at-
tempted to expand on the Delta Method by projecting forward for players who have left
the league (creating so called "phantom players") [21].

There is an obvious risk in using the Delta Method, in that the tails of the age distribu-
tion (players who begin their careers at a very young age and players who stay in the league
until a very old age) are bound to suffer from small sample sizes. This is called survivorship
bias, and is a special case of the more general problem of selection bias in statistics. Se-
lection bias is a systematic statistical error caused by drawing a non-random sample from
a population. In the case of aging curves, samples of player performances are non-random
because only the most talented players enter the league significantly sooner than the modal
age, and these are usually the same players who stay in the league the longest (except for the
case of early career ending/altering injuries). A number of different techniques have been
studied to account for selection bias. For example: [12] uses modern imputation techniques,
[14] uses a multilevel Bayesian model, [4] uses a fixed effects regression model and [1] uses
a random effects model.

In this MSc. project, we attempt to build an aging model using Functional Principal
Component Analysis (FPCA). This approach has been taken by [7], with the authors mak-
ing use of the PACE package. One benefit of this method is that we do not need to specify
the functional relationship of the aging model; whereas many papers, such as [4] assume
a quadratic or cubic [13] functional form for the model. In FDA, we can use an arbitrary
number of basis spline functions to determine functional relationships. Another benefit of
FDA models is that we are able to fit separate aging curves for each player since each player
has an individually estimated principal component score which is added to the mean func-
tion. Furthermore, we can form clusters from these principal component scores, allowing us
to compare players in the sample.

1.2 Data

The data studied in this project was scraped from Sports Reference LLC at https://www.

hockey-reference.com [23]. It contains summary statistics (goals, points, games played,
etc) for each player in the National Hockey League (NHL) from the years 1920-2022. There
are n = 7393 unique players in our dataset, with a total of p = 43689 seasons worth of data;
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and there is a total of approximately 52 thousand rows in our dataset before adjusting
for duplicated rows (due to a player changing teams mid season). The observed maximum
player age is 51, and the minimum observed player age is 17. From an alternative study,[24]
the average career length is 4.5 years.

There are limitations on the statistics available for modelling because the NHL only
started to track individual shots and plus-minus statistics since 1960-1961; and time on ice
(TOI) was not tracked for individual players until the 2000-2001 NHL season [23].

1.3 Measures of Player Value

As a measure of the value of a player we used the metric "point shares" (PS) [23]. It is a
measure derived from a metric created by Bill James in 2002 [22] that was originally used
to evaluate baseball players. Here "points" refers to the points a team gains from winning
games, and not the points a player gains from scoring a goal or assisting on a goal in hockey.
Hence, the metric attempts to credit a player’s contribution to their team’s success, and
thus can be thought of as an earlier version of WAR (wins above replacement) for hockey.
This metric was chosen because we wanted a metric that takes into account a composite
measure of performance, and adjust for the linemates that an individual player plays along-
side. The goals and assists metrics are not reflective of contributions to the team such as
defense; and would overvalue forwards (who’s principal contribution to a team is to score
goals) compared to defensemen.

The point shares metric is adjusted so that a hockey team with 100 team points (repre-
senting 50 wins, or 40 wins and 10 overtime losses, etc.) in the standings, will have players
whose individual point shares sum to 100. Players may have negative point shares. Negative
point shares would indicate that you are losing your team points relative to a replacement
level player. Point shares are obtained from both offensive and defensive components point
shares. To calculate offensive point shares for each player we calculate goals created (a
weighted sum of a players goals and assists divided by team goals and assists), adjust for
the minutes played by the player and adjust for the league environment (league goals divided
by league points). There are different positional adjustments for forwards compared to de-
fensemen. The point shares metric is obtained from https://www.hockey-reference.com

and more details of it’s calculation are found in [23].

The rest of the project is organized as follows: in Chapter 2, we perform exploratory
data analysis to investigate the distribution of key variables. In Chapter 3, we outline the
methods we will use to model the problem. We briefly outline some of the underlying
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mathematical background required to understand Functional Data Analysis. In Chapter 4,
we present the results of our modelling. In Chapter 5, we discuss some of insights provided
by the modelling.
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Chapter 2

Exploratory Data Analysis

In this chapter, we present some plots and tables to investigate the distribution of key
variables. As this project is concerned with developing models to simulate aging curves, we
are principally interested in the distribution of related variables across the sampled seasons
(1920-2022). Table 2.1 presents some summary statistics for the age and career PS variables
in our dataset based on the two position groups - forwards and defensemen. Note that the
NHL requires 12 forwards and 6 defensemen on the roster for each game; this fact, along
with the different responsibilities of the two positions, leads to differences in the distribu-
tions of these key variables. Figure 2.1 shows the frequencies of ages for the two positional
groups we are studying. The number of observations is 12766 for defensemen and 24970
for forwards. The modal age for both positions is between 25-27 years. It is apparent that
defensemen play to more advanced ages than forwards. We show the the distributions of
the starting (rookie) and ending (retirement season) ages of NHL players in Figures 2.2 and
2.3, respectively. Most players tend to start around 20-21 years of age; to be eligible for
the NHL draft, players must be at least 18 years old, and younger than 20 years - hence
we can conclude that most drafted NHL players start their careers a couple years after

(a) Forwards (b) Defencemen

Figure 2.1: Histograms of age by position.
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Position Variable Mean Max Min
FWD Age 26.17 51 17

PS 27.44 250.9 -10.6
DEF Age 26.54 48 17

PS 36.78 242.5 -6.4

Table 2.1: Summary statistics grouped by position.

they have been drafted. They spend these early post-draft years developing in the minor
leagues. The median rookie age for both positions is 21 years. The age distribution for the
retirement age shows significant variance; while the distribution is clearly centered between
ages 30-35 years. The median retirement ages are 31 and 32 years for forwards and defense-
men respectively. We see there are NHL players who end their careers quite early (due to
poor performance or injuries) and in rarer cases, NHL players who end their careers past
age 36 years. Note that the early "retirement" ages often correspond to players who are
deemed not sufficiently "good" to play in the NHL. We would assume the older age players
are NHL stars who have garnered much respect in the league, and who’s careers have been
relatively free from injuries or poor performance. This point is emphasized in Figure 2.4;
the distribution for career point shares is clearly left skewed - with the majority of players
ending their careers with between 0-20 point shares. Career PS is the sum of a player’s PS
for each season he has played in his career, which would reward players with longer careers.
If a player is able to consistently perform at a high level, while avoiding career threatening
injuries, then they are likely to continue playing in the NHL.

We are also concerned with the number of samples we get from each player as illustrated
in Figure 2.5. Some NHL players may have 20-year careers, while others may have relatively
short careers. We are also interested in visualizing the average minutes played and average

(a) Forwards (b) Defensemen

Figure 2.2: Histograms of rookie age by position.
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(a) Forwards (b) Defencemen

Figure 2.3: Histograms of retirement season age by position.

point shares for players grouped by age, this is presented in Figure. 2.6. The selection bias
in the sample is evident due to the fact that the mean function is not a smooth curve -
which is what we would expect if we had an equal number of samples for each age. As seen
in Figure. 2.1, very few players play past 36 years; and the ones who do are highly skilled
players - we would expect the plot to increase to a maximum at age 27, and then show a
decline. However, Figure 2.6 shows that the average PS increases past age 40, and then is
subjected to an aggressive decline. Figure 2.6 highlights the issue of the naive approach of
calculating the aging curve by simply averaging player performances by age.

The final plot for this section is descriptive of the pattern we wish to predict from our
model. Figure 2.7 presents the point shares trajectories for two forwards and two defense-
men. One can see that the player with higher PS stayed in the league later (and experienced
a much shallower decline in performance) relative to the less skilled players who exited the
league at a much earlier age.

(a) Forwards (b) Defensemen

Figure 2.4: Histogram of Career PS by position.
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(a) Forwards (b) Defencemen

Figure 2.5: Histogram of seasons played by position.

(a) Plot of average point shares versus age. (b) Plot of average minutes played versus age.

Figure 2.6: Average PS (left) and minutes played (right) by age.

(a) Forwards (b) Defencemen

Figure 2.7: Career trajectories for two players by position.
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Chapter 3

Methodology

3.1 Functional Data Analysis

3.1.1 Overview

Functional Data Analysis (FDA) is a highly flexible modelling technique which is concerned
with the modelling of longitudinal or repeated measurements data. To be more specific, the
models are appropriate for tracking the same sample at different points in time (i.e. each
sample is a function of one or several variables). It is a modern approach to multivariate sta-
tistical modelling, with many applications as seen in [19]. A review of the current advances
in the topic can be found in [11]. Recently, FDA has been used as an application for sports
data, as seen in [10], where it is used to specify conditional distributions for the in-game win
probability in rugby; and in [9], where FDA is used to model the score difference process in
basketball.

FDA is different from more well known techniques such as time series analysis due to
the fact that there are no underlying assumptions about the stationary of the underlying
trajectories being studied. It is different from multivariate statistics, where each observation
is a vector of observed values, because we can more readily perform analysis where nearby
values are correlated. There is an underlying assumption (for the case of multiple subjects)
in FDA that the observed samples are independent stochastic processes (i.e. the observation
from one subject does not influence observed values from the other subjects). FDA is also
uniquely built to be able to handle sparse data- i.e. the case of missing data at one or more
time steps of a given subject. Another feature of FDA is that it allows for clustering of
repeated measurements.

FDA can be used to perform a number of common machine learning tasks such as classifi-
cation, clustering, ANOVA, regression, principal component analysis, interpolation/extrapolation
and registration- the difference being we replace the more common point estimator with
a functional estimator. The benefits of FDA include being able to represent the observed
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data as smooth functions, dimensional reduction of the observed data and the ability to
compute derivatives of the smooth estimator. The are numerous packages in R and Python
that can be used to perform FDA; the common ones being scikit-fda (python) and the R
package fda available on CRAN.

3.1.2 Mathematical Background

When performing FDA, we consider the set of observations from each individual to be a
random, smooth function. Hence we can do statistics on the set of random curves coming
from each individual we observe, rather than looking at the individual observations. For
example, suppose that we observe data from i = 1, ..., N players, and from each player we
observe m data points (yi1, ..., yim) at time points t1, ..., tn; then the core assumption in
FDA is that the observed data yij for individual i and observation j is expressed as:

yij = Xi(tij) + ϵij (3.1)

where we assume ϵij are independent and normally distributed with mean 0 and variance σ2.
Formula (3.1) explicitly assumes that all the observations from individual i can be modelled
by a single stochastic function Xi(t) after accounting for measurement error (ϵij). The
number of observed points m observed from each player can vary from player to player; this
is called irregular or sparse data. In order to approximate the functions Xi(tij), we express
them in terms of Q spline basis functions b1(t), .., bQ(t). Spline functions are piece wise
polynomials joined at specific points, called knots. The number of knots, τ , is determined
by τ = p + Q − 2, where p is the order of the polynomial and Q is the chosen number of
basis functions. We write each function for the individual players as

Xi(t) − µ(t) =
∞∑

k=1
αikbk(t) ≈

Q∑
k=1

αikbk(t) (3.2)

for sufficiently large Q. The basis functions bk(t) are evaluated at τ knot points which span
the range of t. Hence the centered process, Xi(t) −µ(t), is specified by a linear combination
of spline basis functions, and is fully determined by the Q coefficients αi1, ..., αiQ. Often
we wish to smooth the approximated function using a parameter λ chosen using cross
validation. To estimate αi1, ..., αiQ our loss function is the least squares cost function.

α̂ik = arg min
αi1,...,αiQ

m∑
j=1

yij − µ(t) −
Q∑

k=1
αikbk(t)

2

(3.3)

Once the αik have been estimated, we can compute common summary statistics such as the
mean function

µ̂(t) = E[Xi(t)] =
∑N

i=1Xi(t)
N

(3.4)
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and the variance-covariance function.

v̂(s, t) = 1
N

N∑
i=1

(Xi(t) − µ(t)) (Xi(s) − µ(s)) (3.5)

The problem with simply using spline basis functions to model the aging curves of each
player is twofold:

1. We do not have enough observation points for each player (sparsity) which would
result in poor spline fits for these players.

2. We can not use the spline fits for unobserved players (i.e. prediction).

A more robust model that does not have the issues above is Functional Principal Component
Analysis (FPCA).

3.2 Functional Principal Component Analysis (FPCA)

Principal Component Analysis (PCA) is a technique used when the number of variables/features
(m) in a model is large compared to the number of observation points (N); or when several
variables are highly correlated. A helpful review is found in [16]. We observe m-dimensional
vectors yi1, .., yim for each of the i = 1, ..., N subjects. The observation points form a N ×m

design matrix, X. We aim to reduce the dimensionality of the model by projecting the
observed values onto a smaller subspace of variables. To do this, we look for the direction
within the data that explains the most variability in the data by projecting the data onto a
unit vector such that the variability of points about the unit vector is less than the variabil-
ity of points around the m-dimensional mean. The problem becomes an eigenvalue problem,
where the eigenvectors are called the principal components of the data, and the eigenvalues
are called the principal component scores.

For FPCA, the data is now in the form of random curves, Xi(t), .., XN (t); where each
curve is sampled at a maximum of m points, for example, X1(t1), .., X1(tm). To move to
the case of functional data, we simply replace the discrete sums in the multivariate PCA
formulation, with integrals which represents the continuous nature of the observed values.
We reformulate the multivariate eigenvalue problem to be:∫

v(s, t)ξ(t)dt = ρξ(s) (3.6)

where ξ(s) is the eigenfunction with corresponding eigenvalue ρ. The eigenfunction is called
the Functional Principal Component (FPC) and the eigenvalue is the Functional Principal
Component Score (FPC score), which is individually estimated for each subject. To find the
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principal component score we solve:

ρij =
∫
ξj(s) (Xi(s) − µ(s)) ds (3.7)

for the ith subject and the jth principal component. Equation (3.7) is solved subject to
the constraints of unit norm,

∫
ξi(t)ξj(t)dt =< ξi, ξi >= 1, and orthogonality between

eigenfunctions, < ξi(t), ξj(t) >= 0; where < ., . > denotes the standard inner product
between functions. Here the FPC scores are given by ρij . FPCA seeks to maximimize the
variation in these FPC scores. Equation (3.7) can be solved with numerical integration if
there is no sparsity in the data. We will discuss methods to determine the FPC scores in
the case of sparse data in following sections. Once we have determined the FPCs, one can
show that we can express each observation by:

Xi(t) = µ(t) +
∞∑

j=1
ρijξj(t) (3.8)

where µ(t) = E[X(t)] is the mean function for the observed curves. This formula (called
the Karhunen–Loève expansion) would be ineffective, unless we could truncate the infinite
sum to look at the top K eigenfunctions from the FPCA. These k eigenfunctions seek to
minimize

1
N

 N∑
i=1

∫ Xi(t) − µ̂(t) −
k∑

j=1
ρijξj(t)

2

dt

 (3.9)

which is the sum of squares loss function. As in the multivariate case, we choose the value
of k by calculating the explained variance of the first K FPCA functions and by setting
a cutoff at a given tolerance (for example- 90% of the explained variation). The explained
variance of the mth eigenfunction, πm, is given by

πm = Var(ξim)∑K
k=1 Var(ξik)

(3.10)

we can then write
∑K

m=1 πm to get the cumulative explained variance for the first K eigen-
functions; which allows us to select the number of PC components for our modelling.

3.3 Methods to Determine the Functional Principal Compo-
nent Scores (FPCs)

3.3.1 Principal Analysis by Conditional Expectation (PACE)

The packages mentioned above (scikit-fda, fd) do not allow for the use of FDA on data sets
with missing (sparse) data. The Principal Analysis by Conditional Expectation (PACE)
package [5] in R allows for the functional analysis of data that has been generated by data
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that is not fully observed. The algorithm uses a local regression estimator to determine the
covariance structure and the variance of the measurement error, followed by eigendecom-
position of the covariance function to obtain the estimates of FPCs, and calculation of the
FPC scores through conditional expectation.

ρ̂ij = E[ξj |yij ] = σ̂j ξ̂jΣ̂−1
i (yij − µ̂) (3.11)

where σ̂j is the estimated variance of the jth subject, µ̂ = (µ̂(t1)..µ̂(tm))), ξ̂j = (ξ̂j(t1)..ξ̂j(tm))).
Equation (3.11) represents the Best Linear Unbiased Predictor (BLUP) for the functional
data. Because this method requires the inverse of the covariance function (through the
eigendecomposition), it may be numerically unstable in some instances. The other main
issue of this method is that it requires the assumption that the FPC scores are normally
distributed. We will see below two alternatives to this method which attempt to correct for
this.

3.3.2 Sparse Orthonormal Approximation (SOAP)

In [3], the authors seek to find the optimal empirical basis functions to approximate the
centered (or de-meaned) stochastic process X⋆

i (t) = Xi(t) − µ(t); these empirical basis
functions are taken to be the eigenfunctions calculated from the FPCA analysis. The main
benefit of the approach the authors take is that they are able to approximate the uncentered
stochastic process Xi(t) through calculation of the eigenvectors of:

K(s, t) = E[Xi(s)Xi(t)] =
∑

i

λiξi(s)ξi(t) (3.12)

which is the so called Mercer kernel. This function is slightly different from the usual
covariance function, but the authors state a theorem showing that the uncentered process
Xi(t) can be approximated as a finite sum of the eigenvectors (empirical basis functions) of
the estimate K̂(s, t) = 1

N

∑
iXi(s)Xi(t).

Xi(t) =
∞∑

j=1
ρijξj(t) (3.13)

where ρij =< Xi(t), ξj(t) >. As previously stated, this method does not require the esti-
mation of the mean function (and therefore does not require a centering step), and does
not require eigendecomposition of the sample covariance function- which may be difficult
when the sampling points for each process Xi(t) is sparse. The eigenvalues of this mercer
kernel estimate, ρij , are called the FEC (Functional Empirical components) scores, which
are equivalent to the FPC scores in the case of a zero-mean process.
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The process by which the FEC scores are estimated is outlined as follows (where n is
the number of subjects and m is the number of observed samples for the ith subject):

1. Choose an initial value for the FEC ξ1(t) which satisfies the usual constraints (or-
thornormalility)

2. Obtain an estimate to the FEC score ρ⃗1 = (ρ11...ρ1n)T by minimizing

1
N

n∑
i

1
m

m∑
j=1

(yij − ρi1ξ̂1(tij)) (3.14)

(this is equivalent to least squares estimation)

3. Given the curent estimate of the FEC score ρ⃗1, update the estimate of ξ1(t) by mini-
mizing the same loss function above

4. Continue the iterations until the desired threshold is achieved

The subsequent (2nd) FEC scores are approximated by replacing yij in the loss function
above with the residual r̂1

ij = yij − ρ̂i1ξ̂1(tij). The subsequent J-2 FEC vectors are then
determined by appending to this residual with the previously estimated FEC scores.

3.3.3 Informatively Missing Functional Principal Component Analysis
(imFunPCA)

Methods (like PACE) used to calculate the FPCs from sparse data often assume the data
is missing at random. For the case of the aging curves, as we have previously explained this
is not the case; for example it is well known that the majority of players see a decline in
performance and an increase of injury risk as they age. In [2] the authors adjust for this
bias by proposing a likelihood approach to the imputation of missing data. By assuming the
data is normally distributed, the authors show that the first eigenfunction can be calculated
by maximizing

n∏
i=1

ni∏
j=1

ϕ(yij ; µ̂(tij) + ρi1ξ1(tij), σ2)
1−δij

ni Φ(cij ; µ̂(tij) + ρi1ξ1(tij), σ2)
δij
ni (3.15)

(A similar equation is used to find the estimate mean function µ̂(t)) subject to |ξ1|2 = 1.
Here δij is an indicator for whether the jth out of nith observation of individual i is missing
(δij = 1) or not. ϕ is the Gaussian pdf and Φ the Gaussian cdf as per the usual convention.
cij is chosen such that the missing data is assumed to smaller than cij . The eigenfunction
ξ1(t) is expressed as a sum of B-spline basis functions:

ξ1(t) =
S∑

i=1
β1,sbs(t) = βT

1 b(t) (3.16)
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The full algorithm is described as:

1. Choose an initial estimate for β1, β(0)
1 (and hence through the equation above we have

an initial estimate for ψ1)

2. Obtain an estimate for ρi1 through maximization of:

ni∏
j=1

ϕ(yij ; µ̂(tij) + ρi1ξ
(0)
1 (tij), σ2)1−δij Φ(cij ; µ̂(tij) + ρi1ξ

(0)
1 (tij), σ2)δij (3.17)

3. Conditional on the current estimate of ρi1, update the estimate for ξ1 using the loss
function above

4. Repeat 2-3 until desired convergence tolerance is reached

The subsequent J FPCs are estimated sequentially conditioned on the previous J-1 FPCs
calculated through the algorithm supplied above.
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Chapter 4

Results

4.1 Functional Principal Component Analysis

Following the approach described in Section 3.2 we subset the data to include only players
ages 22 years to 34 years with a minimum threshold of 30 games played in a season. We also
limit the data to players who had a career length of at least seven seasons. This provides us
with 438 unique defensemen and 873 unique forwards. We further randomly partitioned the
data into training (750 forwards, 370 defensemen) and testing (123 forwards, 68 defense-
men) sets.

First, we compare the estimated mean function using the three methods outlined in
Chapter 3 (PACE, SOAP, imFunPCA) on the training data in Figure 4.1. We use six spline
basis functions of order four, resulting in τ = 8 knot points. We normalize the target variable
(PS) by subtracting the mean from each player. The normalization helps with the estimation
of the mean function and FPC eigenfunctions but does not affect prediction of a player’s
career PS trajectory. The three methods all lead to aging curves (for both forwards and
defensemen) which peak at 26 years and monotonically decline until 34 years. This point
is further emphasized by Figure 4.2, which presents the derivative of the mean function for
the three methods. In Figure 4.2, we see that each method has a derivative function which
is zero at age 26 years - meaning each method agrees that age 26 years corresponds to the
peak age of performance for players. The mean functions for the SOAP and PACE methods
are very similar, although the SOAP method predicts a slightly higher peak compared to
the PACE method. The imFunPCA method predicts a drastic decline, especially after age
30 years. The imFunPCA method is more susceptible to the decline in performance seen in
most players. This is because the imFunPCA method uses a likelihood approach to impute
the missing data at the tails of a career, and enforces the condition that the unobserved
seasons should have a lower PS value than the minimum observed by the player.
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(a) Forwards (b) Defensemen

Figure 4.1: Comparison of the estimated mean function from three methods by position.

(a) Forwards (b) Defensemen

Figure 4.2: Comparison of the first derivative of the estimated mean function from three
methods by position.
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(a) Forwards (b) Defensemen

Figure 4.3: Comparison of the first estimated FPCA eigenfunction from three methods by
position.

Figures 4.3 and 4.4 show the calculated FPCA eigenfunctions for the three methods by
position. Figure 4.3 is the first estimated FPC eigenfunction for the two position groups
studied. We notice similar trends between the two positions. The first FPC eigenfunction is
the weighted average of the data over the time interval. Figure 4.3 can be interpreted as the
change in performance between the early and late career of a player. Each method predicts
a different decline; the PACE method is positive over the interval (22 years, 28 years) and
negative between (28 years, 34 years), versus the SOAP and imFunPCA methods which are
positive between (22 years, 30 years) and negative otherwise. Hence, a player with a large
positive ρi1 would correspond to a player who performs extremely well in their early career
(players who perform poorly in their early career would have negative ρi1).

Figure 4.4 plots the second estimated FPC eigenfunction. For the PACE method the
eigenfunction is positive between ages 24-30 years, and negative otherwise. The second FPC
eigenfunction is interpreted as the difference between a player’s peak age, and their early
and late stages in their careers. Hence, players who peak late in their careers would have
large ρi2 versus players who peak early. The SOAP method is positive over the entire inter-
val considered, and so the method would overestimate players with late career peaks.

4.2 Using the FPC Scores for Prediction

The prediction error for the ith player is given by the mean absolute error (MAE)

MAEi =
∑
j∈D

|yij − X̂i(tij)| (4.1)

where j ∈ D are the observed ages, yij is the true performance (point shares for age j

years) and X̂i(tij) is the predicted value at age j years. While the mean function and
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(a) Forwards (b) Defensemen

Figure 4.4: Comparison of the second estimated FPCA eigenfunction from three methods
by position.

FPC eigenfunctions are estimated with the normalized PS, prediction is done on the raw
PS values for the player. We measure the performance of each FDA model as the average
prediction error for the n players in the testing set

Test Error = 1
n

n∑
i=1

MAEi (4.2)

To make predictions on the test set we implement the following procedure:

1. Estimate the mean function, FPC eigenfunctions and FPC scores from the training
data.

2. Regress the j = 2 eigenfunctions, ξ̂j on the observed performance of the player min-
imizing the sum of squared errors; the coefficients from the linear regression are the
FPC score estimates, ρ̂ij , for the test player. See Section 3.2 for a review of FPCA.

3. Predict the future performance, X̂i(t), of the player using the mean function and
Karhunen–Loève expansion

X̂i(t) = µ̂(t) +
k∑

j=1
ρ̂ij ξ̂j . (4.3)

Table 4.1 below compares the prediction error per player for the three methods we have
explored. The error corresponds to the difference in career point shares between the pre-
diction and actual results. Hence a test error of 10 corresponds to a model being 10 career
point shares off from the true performance of the player (since we use mean absolute error,
10 could be an overstimate or an underestimate from the model). For a player who plays
for 10 years in the NHL, this error would correspond to a difference in one PS per year
between the predicted and actual performance. To compare to the baseline prediction, we
include the testing error from using the delta method [20] calculated from the same training
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(a) Forwards (b) Defensemen

Figure 4.5: Comparison of training set prediction from the three methods by position.

and testing datasets. Five out of six of the FDA models outperform the baseline prediction.
Figures 4.5 demonstrates the training prediction on a random player from each position
group.

Figure 4.6 and Figure 4.7 present prediction on the test set, where by we use the first
six seasons of a player’s performance to predict their aging curve until their age 34 season.
This is one of the major benefits of the FPCA analysis, we can approximate the FPC scores
from a player’s first six seasons, and then use the estimated mean curve and estimated FPC
eigenfunctions to forecast the player’s future performance. In Figure 4.6 the players Yanic
Perreault and Steven Finn display little variation in their career performance in the first six
seasons; and the FDA models correctly forecast a moderate decline in performance as they
age. In Figure 4.7, Teemu Selanne and Ryan Whitney are both high performing players,
and their projected decline is more extreme compared to the players in Figure 4.6.

Position Method Error
PACE 18.65

FWD SOAP 16.29
imFunPCA 21.51

Delta 19.24
PACE 16.95

DEF SOAP 17.59
imFunPCA 14.73

Delta 18.27

Table 4.1: Performance of the different models.
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(a) Forwards (b) Defensemen

Figure 4.6: Comparison of test set prediction on player one from the three methods by
position.

(a) Forwards (b) Defensemen

Figure 4.7: Comparison of test set prediction on player two from the three methods by
position.
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4.3 Cluster Analysis of the FPC scores

Cluster analysis is an unsupervised learning technique where by we attempt to form groups
of subjects that share common characteristics. If the clustering algorithm is effective, then
one would see significant variation in between groups. We use the FPC score estimates
from the PACE method for each position in order to cluster different players. We chose the
KMeans clustering algorithm from python’s scikit-learn library [18] using the first two FPC
scores as features, to partition players into three groups. The KMeans algorithm endeavours
to subset N samples into K groups of equal variance such that the within-cluster sum of
squares loss function, WCSS, for each cluster C

WCSS =
N∑

i=1
minµj∈C(||ρi − µ⃗j ||2) (4.4)

is minimized [18]. Here ρi corresponds to a single observation with the two estimated FPC
scores as features; µj is the cluster mean for cluster j, also called the centroid. The cluster
averages for each position are shown in Table 4.2.

The FPC scores represent the only two features in the KMeans clustering model, and
yet they do a good job of forming separable clusters. For the forward position group in
particular, we notice that players from cluster three play longer, retire at a later age and
produce more career point shares as compared with the players in cluster one and two.
There is a similar differentiation between the defensemen clusters, but the between cluster
variation is smaller. Accurately predicting the future performance of a NHL player is a dif-
ficult problem; by assigning players to different clusters it is easier for the front office staff
to estimate the trajectory of a player. For forwards, a player assigned cluster two would be
expected to play 600 games and retire with 22 career PS, versus a player assigned to cluster
three who is estimated to play 900 career games and retire with 62 career PS. By clustering
the players we can get a rough estimate of how their careers will play out without having
to accurately forecast their performance. This is especially relevant for players who are just

Position Class Career Games Played Career PS Retirement Age
1 814 53.5 33.2

FWD 2 633 21.7 31.9
3 923 62.9 35.6
1 628 36.9 32.1

DEF 2 854 64.7 35.7
3 810 61.4 33.8

Table 4.2: Cluster averages by position.
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(a) Forwards (b) Defensemen

Figure 4.8: Clustering the FPC scores by position.

starting out in their career or players who have missed a number of seasons due to injuries.

Figure 4.8 is a scatter plot demonstrating the different clusters graphically, plotted
against the two features (the two FPC scores estimated for each player). For the forward
position group, players in the top right of the plot (cluster one) have larger FPC scores and
correspond to players who decline at a slower rate relative to players in cluster two (bottom
left of the plot).
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Chapter 5

Discussion

The first conclusion we can draw from Chapter 4 is that all three FDA models have rela-
tively similar accuracy when it comes to making predictions. Each model estimates the same
peak, age 26 years, for performance and the estimated mean functions have similar shapes
(although as previously stated, the imFunPCA methods predicts a more drastic decline
in performance after age 30 years relative to the two other methods). The eigenfunctions
estimated by the three models are also quite similar other than the second eigenfunction
estimated by SOAP. In general, we can say that the FDA models perform better predict-
ing the performance of the defensemen position group relative to the forward position group.

The three methods are each useful when tasked with different problems. The SOAP
method tends to excel when the sparsity of the data is large. In our application, sparsity
would occur if a player misses seasons due to injury; or if a player starts his career later than
age 22 years or ends his career earlier than age 34 years. The PACE method is the simplest
model to use (since it is executable from a simple R package and can be implemented with
relatively few lines of code). The imFunPCA method predicts drastic declines in perfor-
mance, which is useful for worst case analysis. All three mthods do not require us to assume
a given polynomial degree and allow us to fit quite different curves to different players;
this is a testement to the flexibility of the FDA models. In terms of runtime, the imFun-
PCA method was the slowest to run, followed by SOAP; PACE was the fastest model to run.

The FDA models we have considered in this work are useful for front office staff to make
decisions on acquiring players. When considering signing a veteran player in Free Agency,
for example, it is useful to know how his performance might decline in future seasons. This
might influence the length of the contract you offer him, or the role you expect him to play
on your team (star player versus supporting cast, for example). For a player coming off of
a major injury or outlier season, the imFunPCA method would help project the worst case
forecast for the player. We saw in the results section that we can use the first s seasons
of a player’s career to predict his performance in future seasons. This is important for a
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front office staff since a player drafted by a team is under team control in the form of an
entry level contract or restricted free agency (RFA). A player may only declare himself to
be an unrestricted free agent if he is over the age of 27 or has played in the league for a
minimum of 7 years. Using the FDA models we have considered, a team can forecast the
future performance of their young players to make decisions such as extensions for young
players or matching RFA offer sheets from other teams.

When trading younger players for older players a front office staff might take into ac-
count the fact that the younger player is likely to perform better in future seasons, while
the veteran (older) player is likely to see a decline in performance. In general, teams are
likely to use aging curve models when making roster decisions. The front office staff must
balance short term decisions (optimizing their roster in the current season) versus long term
decisions (what players do they want to keep for future seasons).

The FDA models studied here are unique in the fact that we are able to fit separate
aging curves for each player using Functional Principal Component Analysis. This means
that not all veteran players are projected to see the same decline in performance in future
seasons, and not all younger players are likely to see the same increase in performance over
time. While projecting a player’s future performance solely using age effects is not the most
accurate method for prediction as opposed to other modelling techniques; these age effects
could be combined with other features in a regression model. For example, one might use
the previous three years of a player’s performance along with age effects from the FPCA
analysis in a projection system.

Future work to extend the modelling done in this research include adding more covariates
to the model; for example dividing the training data in different ways (separating the forward
group into different positions - right wing, center, left wing; or creating different aging curves
for players binned by specific height or weight thresholds). We could also study the effect of
using different target variables (for example minutes played, goals, points per game, etc.),
and considering different sports and position groups (goalies, for example).
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