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Abstract

A graph coloring is an assignment of a label, usually called a color, to each vertex of a graph.
In nearly all applications of graph coloring, the colors on a graph’s vertices must avoid certain
forbidden local configurations. In this thesis, we will consider several problems in which we aim to
color the vertices of a graph while obeying more complex local restrictions presented to us by an
adversary.

The first problem that we will consider is the list coloring problem, in which we seek a proper
coloring of a graph in which every vertex receives a color from a prescribed list given to that vertex
by an adversary. We will consider this problem specifically for bipartite graphs, and we will take
a modest step toward a conjecture of Alon and Krivelevich on the number of colors needed in the
list at each vertex of a bipartite graph in order to guarantee the existence of a proper list coloring.

The second problem that we will consider is single-conflict coloring, in which we seek a graph
coloring that avoids a forbidden color pair prescribed by an adversary at each edge. We will prove
an upper bound on the number of colors needed for a single-conflict coloring in a graph of bounded
degeneracy. We will also consider a special case of this problem called the cooperative coloring
problem, and we will find new results on cooperative colorings of forests.

The third problem that we will consider is the hat guessing game, which is a graph coloring problem
in which each coloring of the neighborhood of a vertex v determines a single forbidden color at v,
and we aim to color our graph so that no vertex receives the color forbidden by the coloring of its
neighborhood. We will prove that the number of colors needed for such a coloring in an outerplanar
graph is bounded, and we will extend our method to a large subclass of planar graphs.

Finally, we will consider the graph coloring game, a game in which two players take turns properly
coloring the vertices of a graph, with one player attempting to complete a proper coloring, and
the other player attempting to prevent a proper coloring. We will show that if a graph G has a
proper coloring in which the game coloring number of each bicolored subgraph is bounded, then
the game chromatic number of G is bounded. As a corollary, we will obtain upper bounds for the
game chromatic numbers of certain graph products and answer a question of X. Zhu.

Keywords: list coloring; single-conflict coloring; hat guessing game; graph coloring game; Lovász
Local Lemma
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Chapter 1

Introduction

A graph is an abstract object consisting of a set of elements called vertices, as well as a set of
edges, which consist of vertex pairs. A graph is a natural theoretical model for any structure
whose objects have pairwise relationships, such as a computer network, a social network, or a
logistical network. In these applications, vertices typically represent the members of a network, and
edges represent connections between these network members, such as direct communication links,
acquaintanceships, or shipping routes between facilities.

A graph coloring is an assignment of a color to each vertex of a graph. Graph coloring is often
used as a theoretical tool used to represent assignments of properties, roles, locations, or times
to the members of a network. For example, in a social network consisting of employees, a graph
coloring may represent a job assignment to each worker. Applications of graph coloring often require
that a graph coloring satisfy a certain property, such as always assigning distinct colors to any two
vertices joined by an edge. Given a graph representing a group of employees, for example, if each
edge in the graph represents a conflict between two workers, then this restriction ensures that no
two conflicting employees are assigned to the same job.

Graph coloring is one of the oldest concepts in graph theory, first considered by Francis Guthrie
in 1852, who conjectured that every map can be colored using four colors so that no two contiguous
regions use the same color [59]. Graph coloring is especially popular nowadays in computer science
due to its numerous applications therein [61]. One important application of graph coloring in
computer science is the register allocation problem [26], which asks whether a compiler can store a
given set of variables in a limited number of registers, which the computer can access faster than
other memory. A computer’s architecture typically forbids two variables stored in the same register
from being accessed at the same time. Therefore, the register allocation problem is often modelled
as a graph coloring problem in which vertices represent variables, and two vertices are adjacent if
the two corresponding variables require simultaneous access. Since computation speed depends on
efficient use of registers [30], a better understanding of graph coloring has the potential to allow for
the design of faster computers, which would have a positive impact in all fields using computational
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approaches, including protein structure prediction [52], renewable energy methods [5], and green
transportation infrastructure [62].

In this thesis, we will consider several problems in which we are required to color the vertices
of a graph while obeying certain local restrictions given to us by an adversary. Before we introduce
the problems that we will consider in this thesis, we establish some definitions and notation.

1.1 Definitions and notation

Our definitions and notation follow Diestel [28]. A graph G is a pair (V,E), where V is a finite set,
and E is a collection of unordered pairs of elements from V . We say that V is the vertex set of G,
and we call the elements of V vertices. Similarly, we say that E is the edge set of G, and we call
the elements of E edges. In this thesis, we do not allow a graph G = (V,E) to have edges of the
form {v, v} for some v ∈ V (often called loops). Unless otherwise noted, we do not allow repeated
elements in E (often called parallel edges). A graph with no parallel edges is sometimes called a
simple graph for the sake of clarity.

Given a graph G, we often write V (G) and E(G) for the vertex set and edge set of G, respectively.
For two vertices u, v ∈ V (G), if {u, v} ∈ E(G), then we say that u and v are adjacent. For an edge
{u, v} ∈ E(G), we will often simply write uv for short. If H is a graph satisfying V (H) ⊆ V (G) and
E(H) ⊆ E(G), then we say that H is a subgraph of G. If H is a subgraph of G such that for each
vertex pair u, v ∈ V (H) it holds that uv ∈ E(G) if and only if uv ∈ E(H), then H is an induced
subgraph of G. Two graphs G and G′ are isomorphic if there exists a bijection ϕ : V (G) → V (G′)
such that for each pair u, v ∈ V (G), uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(G′). If G and G′ are
isomorphic, we write G ∼= G′. If G contains no subgraph isomorphic to H, then G is H-free.

An directed graph (or digraph) is a graph G in which each edge uv ∈ E(G) has an order (u, v)
or (v, u). An ordered edge in a directed graph is called an arc. Given a digraph G and a vertex
v ∈ V (G), the out-degree of v is the number of arcs of the form (v, u) in G, where u ∈ V (G). If
G has an arc (v, u), then we say that u is an out-neighbor of v. We write N+(v) for the set of
out-neighbors of v. Similarly, the in-degree of v is the number of arcs of the form (u, v) in G, where
u ∈ V (G). If G has an arc (u, v), then we say that u is an in-neighbor of v. We write N−(v) for
the set of in-neighbors of v. We often call a graph with unordered edges an undirected graph. An
orientation of an undirected graph G is an assignment of an order or direction to each edge of G.

Given a graph G and a vertex v ∈ V (G), we write N(v) for the set of vertices u ∈ V (G) for
which u and v form an edge—that is, N(v) = {u ∈ V (G) : uv ∈ E(G)}. We say that N(v) is the
neighborhood of v and that the elements of N(v) are neighbors of v. The vertex v is universal if
N(v) = V (G)\{v}. If e ∈ E(G) and v ∈ e, then we say that v is incident to e. We define the degree
of v as the number of edges e ∈ E(G) to which v is incident, and we note that deg(v) = |N(v)|
(unless we allow G to have parallel edges). A vertex of degree 1 is called a leaf. We often write ∆
for the maximum degree over all vertices in a graph, and we often write δ for the minimum degree.
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A graph G is d-regular if every vertex of G has degree d, and G is regular if it is d-regular for some
d.

A path is a graph G with a vertex set V (G) = {v1, . . . , vt} and an edge set E(G) = {vivi+1 : 1 ≤
i ≤ t− 1}, and the vertices v1 and vt are called the endpoints of the path. A graph G is connected
if for every vertex pair u, v ∈ V (G), G contains a path with endpoints u and v as a subgraph. A
cycle is a connected graph in which every vertex has degree exactly 2. A component of a graph G

is a maximal connected subgraph of G.
A graph G is k-degenerate if every nonempty subgraph H of G has a vertex of degree at most

k. If d is the minimum integer such that G is k-degenerate for each value k ≥ d, then we say that d
is the degeneracy of G. A 1-degenerate graph is called a forest or an acyclic graph. Alternatively,
a graph G is a forest if and only if G contains no cycle as a subgraph. A connected forest is called
a tree.

A graph G for which uv ∈ E(G) for each pair u, v ∈ V (G) is called a clique or a complete graph.
A clique of t vertices is called a t-clique and is denoted as Kt. The clique number of a graph G

is the maximum integer ω for which G contains a subgraph isomorphic to Kω. A K3 is called a
triangle. A graph G for which E(G) = ∅ is called an independent set.

A graph G is planar if, roughly speaking, G can be drawn on the sphere S2 = {(x, y, z) : x2 +
y2 +z2 = 1} with no crossing edges. More formally, let each edge e ∈ E(G) have an associated open
interval Ie ⊆ R, with distinct edges having disjoint intervals, and let each vertex v ∈ V (G) have a
distinct value xv ∈ R\

⋃
e∈E(G) Ie. (Here, Ie denotes the closure of Ie, obtained from Ie by adding the

two endpoints of the open interval.) Then, a continuous injection π : ⋃v∈V (G){xv}∪
⋃

e∈E(G) Ie → S2

is a planar embedding if for each edge uv ∈ E(G) and each ε > 0, π(Iuv) contains a point at a
distance of at most ε from π(xu) and a point at a distance of at most ε from π(xv). The graph G

is planar if it has a planar embedding.
In addition to the sphere, we will also consider graph drawings on more complex surfaces.

However, the formal definition of a surface is highly technical, so we give an informal definition
instead. For a formal definition of surfaces, see Hatcher [45]. Informally, we say that a handle is
added to the sphere by flattening a small region of the sphere and then removing the interior of an
r × r square in this flattened region with a boundary parametrized by a function

f(t) =



(x0, y0) + (rt, 0) t ∈ [0, 1],

(x0, y0) + (0, r(t− 1)) t ∈ (1, 2),

(x0, y0 + r) + (r(t− 2), 0) t ∈ [2, 3],

(x0 + r, y0) + (0, r(t− 3)) t ∈ (3, 4),

and then identifying the point f(t) with f(2 + t) for all t ∈ [0, 2). Similarly, we say that a cross
cap is added to the sphere again by flattening a small region of the sphere and then removing
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the interior of a circle of some radius r in this flattened region with a boundary parametrized by
a function f(t) = (x0, y0) + r(cos t, sin t) for t ∈ [0, 2π], and then identifying the point f(t) with
f(t + π) for all t ∈ [0, π]. If we add multiple handles or cross caps to the sphere, then we require
that their associated squares and circles be disjoint, and we say that a sphere possibly with handles
and cross caps added is called a surface. If a surface S is constructed from the sphere by adding h
handles and c cross caps, then we say that the Euler genus of S is 2h+ c. Note that the sphere has
Euler genus 0. We define a graph embedding on a surface similarly to a planar embedding; that is,
roughly speaking, a graph embedding is a drawing of a graph on a surface with no crossing edges.
For a formal definition of a graph embedding on a surface, see Hatcher [45]. If a graph G can be
embedded on a surface of Euler genus g with no crossing edges, then we say that the Euler genus
of G is at most g. A planar graph has Euler genus 0. For an example of a graph with Euler genus
1, consider the complete graph K5. A simple exercise shows that K5 has no planar embedding.
However, we may draw K5 on the sphere with only one pair of edges crossing, and then we may
replace a small neighborhood of this crossing in the sphere with a cross cap, yielding an embedding
of K5 on a surface of Euler genus 1.

Given a graph G, a graph coloring of G is a map ϕ : V (G) → N. Given a graph coloring ϕ, we
often refer to the elements in the codomain of ϕ as colors, and for each element c in the image of
ϕ, we say that the vertex set ϕ−1(c) is a color class of ϕ. A graph coloring ϕ of G is proper if for
each edge uv ∈ E(G), ϕ(u) ̸= ϕ(v). In other words, ϕ is proper if and only if each color class of ϕ is
an independent set. If the image of a proper coloring ϕ contains exactly k colors, then we say that
ϕ is a k-coloring. If G admits a k-coloring, then we say that G is k-colorable. A 2-colorable graph
is called bipartite. Given a 2-coloring ϕ of a bipartite graph G, we refer to the color classes of ϕ
as partite sets. A complete bipartite graph is a graph with two partite sets A and B and an edge
set {ab : a ∈ A, b ∈ B}. We write Km,n for a complete bipartite graph with partite sets of sizes m
and n. A graph of the form K1,n is called a star. Similiar to a graph coloring, an edge coloring of
a graph G is a map ϕ : E(G) → N. We say that ϕ is proper if whenever e, e′ ∈ E(G) are incident
edges, ϕ(e) ̸= ϕ(e′).

We write χ(G) for the chromatic number of G, which is defined as the least integer k for which
G is k-colorable. The chromatic number of every graph G is well defined, as a greedy argument
shows that χ(G) ≤ ∆ + 1, where ∆ is the maximum degree of G.

All logarithms that we use in this thesis are natural (with base e) unless otherwise specified.
Suppose f : N → R and g : N → R are functions. If there exists a positive value C ∈ R such
that |f(n)| ≤ C|g(n)| for all n ∈ N, then we write f = O(g) and g = Ω(f). If limn→∞

f(n)
g(n) = 0,

then we write f = o(g) and g = ω(f). In particular, if f = o(1), then limn→∞ f(n) = 0, and if
f = ω(1), then limn→∞ f(n) = ∞. If an event A depends on some unbounded parameter so that
the probability of A satisfies Pr(A) = 1 − o(1), then we say that A occurs asymptotically almost
surely, or a.a.s. for short.
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Throughout the thesis, we will often omit floors and ceilings when they have no effect on our
arguments.

1.2 Chromatic number

The notion of a graph’s chromatic number goes back to Guthrie’s map coloring problem from 1852,
and the study of the relationship between a graph’s chromatic number and its other properties is
one of the foundational problems in graph theory. In particular, a great deal of graph theoretic
research has focused on the relationship between a graph’s maximum degree and its chromatic
number. In 1941, Brooks [24] proved that if G is a graph of maximum degree ∆ ≥ 3 and is not a
clique, then χ(G) ≤ ∆. In 1977, Borodin and Kostochka [17] made a conjecture of a similar flavor,
postulating that if G is a graph of maximum degree ∆ ≥ 9 with clique number at most ∆ − 1, then
χ(G) ≤ ∆ − 1. Reed proved that Borodin and Kostochka’s conjecture holds whenever ∆ ≥ 1014,
and he claims that a more careful analysis can prove the conjecture for ∆ ≥ 1000 [69]. Reed also
conjectured a more general relationship between a graph’s maximum degree, clique number, and
chromatic number [68]. Reed’s conjecture states that if G is a graph of maximum degree ∆ and
clique number ω, then χ(G) ≤ ⌈1

2(∆ + 1 + ω)⌉. While Reed’s conjecture is still open, Reed has
proven the weaker result that there exists a constant ε > 0 such that χ(G) ≤ ⌈(1 − ε)(∆ + 1) + εω⌉
holds for all graphs G of maximum degree ∆ [68, Corollary 2].

One particular branch of research on the relationship between a graph’s maximum degree and
chromatic number considers the special case that the clique number of a graph G is at most 2—that
is, that G is triangle-free. In 1996, Johansson [50] proved that if a graph G of maximum degree
∆ is triangle-free, then χ(G) ≤ 9∆

log ∆ . Molloy [65] later reduced the constant asymptotically in this
upper bound with the following theorem:

Theorem 1.2.1. If G is a triangle-free graph of maximum degree ∆, then χ(G) ≤ (1 + o(1)) ∆
log ∆ .

Theorem 1.2.1 is best possible up to a factor of 2 + o(1), since random constructions show
that triangle-free graphs G exist satisfying χ(G) ≥ (1

2 + o(1)) ∆
log ∆ [41]. However, improving the

coefficient in Theorem 1.2.1 seems to be a difficult problem for several reasons. First, the best
known lower bound for the independence number of a ∆-regular triangle-free graph on n vertices
is (1 + o(1))n log ∆

∆ , which was established in 1983 by Shearer [71] and has not been improved since
then apart from the o(1) function [72]. Since a graph on n vertices with chromatic number χ has
independence number at least n/χ, a reduction of the coefficient in Theorem 1.2.1 to 1 − ε for
some ε > 0 would also give an improvement to Shearer’s result, namely an increase of the 1 + o(1)
coefficient to 1

1−ε . Second, Molloy has pointed out that due to similarities between random regular
graphs and triangle-free graphs, finding an efficient algorithm that colors a triangle-free graph with
(1 − ε) ∆

log ∆ colors for any ε > 0 would solve a major open problem in the theory of colorings of
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random graphs (see [1, 65, 79] for details). Therefore, it seems that Theorem 1.2.1 is best possible
without a major advance in current knowledge.

While this thesis does not directly study the chromatic numbers of graphs, the existing research
on chromatic number discussed above provides important foundation and context for our results.

1.3 List coloring

One graph coloring problem that we will consider in the thesis is the list coloring problem, defined
as follows. Consider a graph G, and suppose that each vertex v ∈ V (G) has an associated list
L(v) ⊆ N. Then, an L-coloring of G is a proper coloring ϕ : V (G) → N such that ϕ(v) ∈ L(v) for
each v ∈ V (G). Given a graph G and a list assignment L, the list coloring problem asks whether
G has an L-coloring.

If G has an L-coloring for each list assignment L satisfying |L(v)| ≥ k for each vertex v ∈ V (G),
then we say that G is k-choosable. The list chromatic number, choice number, or choosability of a
graph, written ch(G), is the minimum integer k for which G is k-choosable. The choosability of
every graph G is well defined, as a greedy argument shows that ch(G) ≤ ∆ + 1, where ∆ is the
maximum degree of G. If G is k-choosable, then G has an L-coloring when L(v) = {1, . . . , k} for
each vertex v ∈ V (G); therefore, χ(G) ≤ ch(G). When determining the choosability of a graph G,
we may imagine that the lists L(v) for vertices v ∈ V (G) are chosen by an adversary who wishes
to make finding an L-coloring as difficult as possible.

The list coloring problem was first considered by Erdős, Rubin, and Taylor [36], who proved that
every connected graph G of maximum degree ∆ ≥ 3 satisfies ch(G) ≤ ∆, except when G ∼= K∆+1.
Similarly to the chromatic number, a great deal of research on choice number has investigated
the relationship between this parameter and a graph’s maximum degree and clique number. For
instance, Choi, Kierstead, Rabern, and Reed [27] showed that Borodin and Kostochka’s conjecture
discussed above holds for choosability in graphs of large maximum degree, proving that if G has
maximum degree ∆ ≥ 1020, then ch(G) ≤ ∆ − 1 whenever G contains no subgraph isomorphic
to K∆. Furthermore, the results of Johansson and Molloy for graphs of bounded clique number
discussed above also hold in the setting of list coloring.

One specific subclass of triangle-free graphs that has been the target of list coloring research
is the class of bipartite graphs. While the chromatic number of a bipartite graph G is at most 2,
Erdős, Rubin, and Taylor [36] showed that the choosability of a bipartite graph G may be arbitrarily
large by proving that ch(Kn,n) = (1 + o(1)) log2 n. Later, Alon showed that in addition to complete
bipartite graphs, every bipartite graph G with large minimum degree δ has large choosability,
proving the lower bound ch(G) ≥ Ω

(
log δ

log log δ

)
[6] and later ch(G) ≥ (1

2 − o(1)) log2 δ [7]. Saxton
and Thomason [70] later proved a better lower bound ch(G) ≥ (1 − o(1)) log2 δ, and the fact that
ch(Kn,n) = (1 + o(1)) log2 n shows that this bound is best possible up to the o(1) function.
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In [10], Alon and Krivelevich show that there exists an absolute constant d0 such that if G is a
random bipartite graph of expected average degree d > d0 obtained from two partite sets A and B
of size n by adding each edge in {ab : a ∈ A, b ∈ B} independently with probability p = d/n , then
a.a.s. ch(G) ≤ (1 + o(1)) log2 d. They made the following conjecture, which asserts that a similar
upper bound holds for the choosability of every bipartite graph.

Conjecture 1.3.1 ([10]). If G is a bipartite graph of maximum degree ∆, then ch(G) = O(log ∆).

While Conjecture 1.3.1 asks a very natural question about a fundamental property of a highly-
studied graph class, surprisingly, researchers have made very little progress toward an answer.
In particular, the currently best-known upper bound for the choosability of a bipartite graph of
maximum degree ∆ is (1 + o(1)) ∆

log ∆ , which Molloy [65] proved for all triangle-free graphs, as
discussed above.

In Chapter 2, we will prove the following upper bound for the choosability of a bipartite graph,
which improves the currently best-known coefficient of 1 + o(1) when ∆ is large.

Theorem 1.3.2. If G is a bipartite graph of sufficiently large maximum degree ∆, then ch(G) <
0.797 ∆

log ∆ .

On one hand, Theorem 1.3.2 makes only a modest improvement to the coefficient of the
previously-known upper bound and is still far away from the conjectured bound of O(log ∆). On the
other hand, since the bound of (1+o(1)) ∆

log ∆ in Theorem 1.2.1 for triangle-free graphs seems to be a
very difficult to improve with current knowledge, as discussed above, Theorem 1.3.2 gives evidence
that the list coloring problem is significantly easier in bipartite graphs than in triangle-free graphs.
Therefore, Theorem 1.3.2 gives a good step toward Conjecture 1.3.1 by reducing the upper bound
on the choosability of bipartite graphs well below what is believed possible with current methods
for triangle-free graphs and therefore showing evidence of a fundamental difference between the list
coloring problem in bipartite graphs and triangle-free graphs.

1.4 Single-conflict coloring

Another graph coloring problem that we will consider is the single-conflict coloring problem, which
is defined as follows. Let G be a graph, and let C = {1, . . . , k} be a set of colors. Suppose that f
is a function that maps each edge uv ∈ E(G) to an ordered forbidden color pair f(u, v) = (c1, c2),
with c1, c2 ∈ C. Then, we say that a (not necessarily proper) coloring ϕ : V (G) → C is a single-
conflict coloring with respect to f and C if f(u, v) ̸= (ϕ(u), ϕ(v)) for each edge (u, v) of G. We
call the image of an edge (u, v) under f a conflict, and we call f a conflict function. If a graph G

always has a single-conflict coloring for any conflict function f when C = {1, . . . , k}, then we say
that the single-conflict chromatic number of G is at most k, and we write χ↮(G) ≤ k. Hence, the
single-conflict chromatic number of G is the minimum integer k for which the property above holds.
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A simple argument shows that if G has a single-conflict coloring for any conflict function C when
C = {1, . . . , k}, then the same holds when C = {1, . . . , k+1}. When determining the single-conflict
chromatic number of a graph, we may imagine that the graph’s conflict function is chosen by an
adversary who wishes to make finding a single-conflict coloring as difficult as possible. When we
consider the single-conflict coloring problem, we will typically allow graphs to have parallel edges.

Note that a conflict is an ordered pair; that is, if f(u, v) = (red, blue), then it is forbidden to
use red at u and blue at v, but it is acceptable to use blue at u and red at v. Hence, we consider
the edge set E(G) to be a set containing ordered vertex pairs, and we write that f is a mapping
f : E(G) → C2. If (u, v) ∈ E(G) is an edge with conflict f(u, v) = (c1, c2), then we will also say
that (v, u) ∈ E(G) is an edge with conflict f(v, u) = (c2, c1). Furthermore, if we allow parallel edges
in G, then if an edge (u, v) ∈ E(G) appears with multiplicity m, we let f map (u, v) to a set of m
conflicts in C2, one for each parallel edge.

The single-conflict coloring problem is a specific kind of independent transversal problem, which
is defined as follows. Given a graph H with a vertex partition V1∪· · ·∪Vr, we say that an independent
transversal on H is an independent set I in H such that I contains exactly one vertex from each
part Vi. Given a graph G with a conflict function f : E(G) → {1, . . . , k}, we can transform the
single-conflict coloring problem on G into an independent transversal problem as follows. We define
a graph H with a vertex set V (H) = V × [k], an edge (u, f(u))(v, f(v)) for each edge uv ∈ E(G),
and with a vertex partition consisting of a part {v} × [k] for each vertex v ∈ V . Then, given such
a graph H constructed from G and f , an independent transversal on H with respect to the parts
described above gives a single-conflict coloring of G, and any single-conflict coloring of G can be
transformed into an independent transversal on H. Certain other graph coloring problems can also
be naturally described as independent transversal problems. For example, DP-coloring (also called
correspondence coloring) is a recent generalization of list coloring invented by Dvořák and Postle
[32]. One way of defining the DP-chromatic number χDP (G) of a graph G is with the following
statement: χDP (G) ≤ k if and only if every graph H forming a k-sheeted covering space of G with a
projection p : H → G has an independent transversal with respect to the partition ⋃v∈V (G) p

−1(v)
of V (H) (see Hatcher [45] for relevant definitions).

The concept of a single-conflict coloring of a graph was considered in several equivalent settings
by Erdős, Gyárfás, and Łuczak [35], Dvořák and Postle [32], and Fraigniaud, Heinrich, and Kosowski
[40]. The notion of the single-conflict chromatic number was later introduced by Dvořák, Esperet,
Kang, and Ozeki [31], who proved the following upper bounds.

Theorem 1.4.1. If G is a graph of maximum degree ∆, then χ↮(G) ≤
⌈
2
√

∆
⌉
.

Theorem 1.4.2. If G is a simple graph of Euler genus g, then χ↮(G) = O((g + 1)1/4 log(g + 2)).

Dvořák et al. prove Theorem 1.4.1 using Bernshteyn’s Local Cut Lemma [13], and a simple
argument using Rosenfeld counting can also prove the result (see [76] for an introduction to this
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method). In the case that G has edge-multiplicity o(∆), Glock and Sudakov [44], as well as Kang
and Kelly [53], were able to reduce the upper bound of Theorem 1.4.1 to (1 + o(1))

√
∆.

As for lower bounds on the single-conflict chromatic number, Dvořák, Esperet, Kang, and Ozeki
[31] showed that that if a graph G has degeneracy d, then χ↮(G) = Ω

(√
d

log d

)
. Furthermore, Molloy

[64] showed that for every d-degenerate graph of chromatic number d+1, χ↮(G) ≥ (1+o(1))
√
d+ 1.

Dvořák, Esperet, Kang, and Ozeki [31] posed the following question, which asks whether these lower
bounds are close to best possible.

Question 1.4.3. Suppose G is a d-degenerate graph on n vertices. Is it true that χ↮(G) =
O(

√
d log n)?

The reason that Dvořák, Esperet, Kang, and Ozeki ask Question 1.4.3 with an “error" factor
as large as log n is that the log n factor is still small enough that a positive answer would give an
alternative proof of Theorem 1.4.2, as shown in [31]. We will give an affirmative answer to Question
1.4.3 for simple graphs in Chapter 3 with the following theorem, which also shows that the error
factor can be reduced to roughly

√
log ∆.

Theorem 1.4.4. If G is a d-degenerate simple graph of maximum degree ∆, then

χ↮(G) ≤
⌈
2
√
d [1 + log((d+ 1)∆)]

⌉
.

Theorem 1.4.4 gives a large class of d-degenerate graphs G satisfying χ↮(G) = O(d 1
2 +o(1)),

containing in particular d-degenerate simple graphs G with maximum degree ∆ = exp(do(1)). While
we are unable to prove that the logarithmic error factor in Theorem 1.4.2 is best possible, we note
that an upper bound of less than d + 1 is unachievable, as Kostochka and Zhu [57] give examples
of d-degenerate graphs G that satisfy χ↮(G) = d+ 1.

1.4.1 Adapted colorings and cooperative colorings

One special case of the single-conflict coloring problem is the adapted coloring problem, which is
obtained from the single-conflict coloring problem by requiring that each conflict be monochro-
matic. Specifically, the adapted-coloring problem can be defined as follows. Given a graph G with
a (not necessarily proper) edge-coloring ψ : E(G) → {1, . . . , k}, an adapted coloring of G is a (not
necessarily proper) vertex coloring ϕ : V (G) → {1, . . . , k} such that ϕ(u) = ϕ(v) = ψ(uv) does not
hold for any edge uv ∈ E(G). In other words, the forbidden condition in an adapted coloring of G
is an edge e ∈ E(G) for which both endpoints are colored ψ(e). The adapted coloring problem was
first introduced by Hell and Zhu [49].

Adapted colorings are equivalent to cooperative colorings, which are defined as follows. Given
a family G = {G1, . . . , Gk} of graphs on a common vertex set V , a cooperative coloring on G is
defined as a family of sets R1, . . . , Rk ⊆ V such that for each 1 ≤ i ≤ k, Ri is an independent set of
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Gi, and V = ⋃k
i=1Ri. The term “cooperative coloring" and this formulation of the adapted coloring

problem first appear in [2]. A cooperative coloring problem may be translated into an adapted
coloring problem by coloring the edges of each graph Gi ∈ G with the color i and then considering
the union of all graphs in G. Overall, this gives us the following observation.

Observation 1.4.5. Given a family G = {G1, . . . , Gk} of graphs on a common vertex set, the
cooperative coloring problem on G is equivalent to the adapted coloring problem on the edge-colored
multigraph G = ⋃k

i=1Gi in which each edge originally from Gi is colored with the color i.

In [2], Aharoni, Berger, Chudnovsky, Havet, and Jiang ask how many graphs of maximum
degree d must belong to a family G on a common vertex set in order to guarantee the existence of a
cooperative coloring. It is straightforward to show that Theorem 1.4.1 implies that a graph family
G containing k graphs of maximum degree d on a common vertex set V has a cooperative coloring
whenever k ≥ 4d. However, a theorem of Haxell [46] for independent transversals shows that it is
sufficient to let k ≥ 2d, as in the following theorem.

Theorem 1.4.6. If G is a family of graphs maximum degree d on a common vertex set, and if
|G| ≥ 2d, then G has a cooperative coloring.

Furthermore, the following result of Aharoni, Berger, Chudnovsky, Havet, and Jiang [2] shows
that if T is a family of 1-degenerate graphs (i.e. forests) of maximum degree d on a common vertex
set, then G has a cooperative coloring even when |T | is small compared to d.

Theorem 1.4.7 ([2]). If T is a family of forests of maximum degree d on a common vertex set
V , then there exists a value k = (1 + o(1)) log4/3 d such that if |T | ≥ k, then T has a cooperative
coloring.

Aharoni, Berger, Chudnovsky, Havet, and Jiang [2] gave a lower bound of the form Ω(log log d)
for the minimum number of forests required in T to guarantee the existence of a cooperative
coloring by constructing a family of Ω(log log d) forests of maximum degree d that do not admit
a cooperative coloring. In Chapter 3, we will find a better lower bound on the number of forests
needed for a cooperative coloring that nearly matches the upper bound in Theorem 1.4.7. Namely,
we will prove the following.

Theorem 1.4.8. For each sufficiently large value d, there exists a family T of (1 + o(1)) log d
log log d

forests of maximum degree d on a common vertex set that does not admit a cooperative coloring.

In addition, using a stronger version of Theorem 1.4.4, we will extend Theorem 1.4.7 to families
of graphs of bounded degeneracy at the expense of a constant factor, as follows.

Corollary 1.4.9. Let G be a family of m ≥ 13(1 + k log(kd)) graphs on a common vertex set V .
If each graph G ∈ G is at most k-degenerate and of maximum degree d, then G has a cooperative
coloring.
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1.5 The hat guessing game

The hat guessing game is defined as follows. We have a graph G, and a player resides at each vertex
of G. For each vertex v ∈ V (G), the player at v can see exactly those players at the neighbors
of v. In particular, a player cannot see himself. An adversary possesses a large collection of hats
of different colors. When the game starts, the adversary places a hat on the head of each player,
and then each player privately guesses the color of his hat. The players win the game if at least
one player correctly guesses the color of his hat; otherwise, the adversary wins. Before the game
begins, the players may come together to devise a guessing strategy, but this strategy is known to
the adversary, and the adversary may choose a hat assignment with the strategy of the players in
mind. The hat guessing game was first considered for complete graphs by Winkler [77] and later
for general graphs by Butler, Hajiaghayi, Kleinberg, and Leighton [25].

The hat guessing game is typically studied with the following two assumptions. First, it is
assumed that the adversary possesses enough hats of each color so that no color will ever run
out while the adversary is assigning hats to players. Second, it is assumed that the players follow
a deterministic strategy to guess their hat colors; that is, the guess of a player at a vertex v is
uniquely determined by the hat colors at neighbors of v. Given a graph G, we say that the hat
guessing number of G is the maximum number k of hat colors such that the players on G have a
strategy that guarantees that at least one player will correctly guess his hat color when each player
is given a hat with a color from the set {1, . . . , k}. We write HG(G) for the hat guessing number
of G. In other words, if HG(G) ≥ k, then there exists a strategy for players on the graph G such
that for any hat color assignment V (G) → {1, . . . , k}, at least one player will correctly guess the
color of his hat.

We may describe the hat guessing game formally as a graph coloring problem as follows. Let G
be a graph, and let S = {1, . . . , k} be a set of colors. We define a hat guessing strategy on G to be a
family Γ = {Γv}v∈V (G) of functions, where each function is a mapping Γv : SN(v) → S; that is, each
function Γv takes a coloring of N(v) as input and returns a color from S as output. We say that the
strategy Γ is a winning strategy if, for every (not necessarily proper) graph coloring ϕ : V (G) → S,
there exists a vertex v ∈ V (G) with neighbors (u1, . . . , ut) such that Γv maps (ϕ(u1), . . . , ϕ(ut)) to
ϕ(v). It is clear that the players win the hat guessing game on G with hat color set S if and only if
there exists a winning strategy Γ on G. Kohkas and Latyshev show in [55] that with optimal play,
the winner of the hat guessing game does not change even when each vertex v ∈ V (G) receives a
hat from an arbitrary list Lv of size |S|, rather than from the set S. Furthermore, they show that
if each vertex v ∈ V (G) has a list Lv of possible hat colors, then only the size of each list Lv affects
whether or not the players have a winning strategy on G. Note that if we consider the hat guessing
game as a graph coloring problem in which we seek a hat assignment that defeats the players on
a graph G, the players in fact play the adversarial role by choosing hat guessing strategies that
require as many colors to defeat as possible.
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We find it useful to give a simple example of a winning strategy in the hat guessing game. We
consider the hat guessing game played on K2 in which the adversary has only red hats and blue
hats. We refer to the players as Alice and Bob. It is straightforward to see that Alice and Bob
have the following winning strategy: Alice will guess the color of Bob’s hat, and Bob will guess
the opposite color of Alice’s hat. This way, if Alice and Bob receive the same hat color, then Alice
will guess correctly. On the other hand, if Alice and Bob receive different hat colors, then Bob will
guess correctly. This shows that HG(K2) ≥ 2, and in fact, HG(K2) = 2 [39].

While the rules of the hat guessing game are simple, establishing upper bounds for the hat
guessing numbers achieved by graphs in large classes is surprisingly difficult. In contrast to other
game-related graph parameters such as game coloring number [81] and cop number [51, 19], no
upper bound is known for the hat guessing number of graphs of bounded treewidth or graphs of
bounded Euler genus. Farnik [38] asked whether the hat guessing number of a graph G is bounded
by some function of the degeneracy of G, but this question remains unanswered, and graphs of
degeneracy d and hat guessing number at least 22d−1 have been constructed [48]. In particular, the
following more specific question, appearing in [18] and [56], remains unanswered:

Question 1.5.1. Is the hat guessing number of planar graphs bounded above by some universal
constant?

While Question 1.5.1 has not yet been answered, Kokhas and Latyshev [56] have shown examples
of planar graphs G for which HG(G) ≥ 14. For some restricted graph classes, such as cliques [39],
cycles [73], complete bipartite graphs [8, 43], graphs of bounded degree [38], graphs of bounded
treedepth [48], embedded graphs of large girth [18], cliques joined at a single cut-vertex, and split
graphs [47], bounds for the hat guessing number have been determined.

In Chapter 4, we will take a major step toward answering Question 1.5.1 by proving an affirma-
tive answer for a large class of planar graphs. For outerplanar graphs, we will prove the following
result.

Theorem 1.5.2. If G is an outerplanar graph, then HG(G) < 2125000.

Recently, Knierim, Martinsson, and Steiner [54] improved this upper bound to 40.
We will also prove an upper bound for the hat guessing number of layered planar graphs,

which we roughly define as planar graphs that can be obtained by beginning with a 2-connected
outerplanar graph G1, and then for some value τ and 1 ≤ i ≤ τ , adding a 2-connected outerplanar
graph Gi+1 to some interior face of Gi and adding non-crossing edges between Gi and Gi+1. We
also use the term layered planar graph to describe a subgraph of such a planar graph. For layered
planar graphs, we have the following result.

Theorem 1.5.3. If G is a layered planar graph, then log2 log2 log2 log2 log2 HG(G) < 149.
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Theorems 1.5.2 and 1.5.3 are the first results that show upper bounds for the hat guessing
number of large topologically defined graph classes. The main ingredients for the proofs of Theo-
rems 1.5.2 and 1.5.3 will be a vertex partition lemma from Bosek, Dudek, Farnik, Grytczuk, and
Mazur [18], as well as a new theorem that bounds the hat guessing number of graphs that admit a
vertex partition with a certain tree-like structure. The proof of this new theorem uses an argument
based on a Turán-type edge density problem, and the combination of our edge-density argument
and the lemma of Bosek et al. is what causes our upper bounds to be so large.

1.6 The graph coloring game

The graph coloring game is a game played on a finite graph G with perfect information by two
players, Alice and Bob. In the graph coloring game, Alice and Bob take turns coloring vertices of
G, with Alice moving first. On each player’s turn, the player chooses an uncolored vertex v ∈ V (G)
and colors v using a color from a predetermined set {1, . . . , k}. Each player must color G properly on
each turn; that is, a player may not color a vertex v with a color that appears in the neighborhood
of v. Alice wins the game if each vertex of G is properly colored, and Bob wins the game if every
color of {1, . . . , k} appears in the neighborhood of some uncolored vertex v, as this means that v
can never be properly colored. The game chromatic number of G, written χg(G), is the minimum
integer k for which Alice has a winning strategy in the graph coloring game on G when playing
with a color set {1, . . . , k}. When determining the game chromatic number of a graph G, we assume
that Bob is Alice’s adversary and wishes to make it as difficult as possible to complete a proper
coloring on G.

The game chromatic number was introduced by Bodlaender [15] in 1990 and has received
considerable attention since its invention. It is straightforward to show that for a graph G of
chromatic number χ(G) and maximum degree ∆(G), the following inequality holds:

χ(G) ≤ χg(G) ≤ ∆(G) + 1.

The upper bound of ∆(G)+1 is far from optimal in many cases, however. For instance, when G is a
forest, χg(G) ≤ 4 [37], and when G is planar, χg(G) ≤ 17 [83]. Furthermore, χg(G) can be bounded
above by other parameters of G. For instance, when G has treewidth at most w, χg(G) ≤ 3w + 2
[81], and when G has genus at most g, χg(G) ≤ ⌊1

2(3
√

1 + 48g+ 23)⌋ [81]. Furthermore, Dinski and
Zhu [29] show that χg(G) is bounded above by a function of the acyclic chromatic number of G,
written χa(G), which is the minimum number of colors needed to give G a proper coloring in which
every bicolored subgraph of G is a forest. Dinski and Zhu give the following upper bound:

χg(G) ≤ χa(G)(χa(G) + 1).
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Similar to the graph coloring game, the graph marking game is also a game played on a finite
graph G with perfect information by two players, Alice and Bob. In the graph marking game, first
considered by Faigle et al. [37], the players take turns, with Alice moving first, and on a player’s
turn, the player chooses an unmarked vertex v ∈ V (G) and marks v with a black pen. The game
ends when all vertices in G have been marked. After a play of the graph marking game, each vertex
v ∈ V (G) receives a score equal to the number of neighbors of v that were already marked at the
time that v was marked. A play of the graph marking game on G is then given a score equal to
the maximum score over all vertices of V (G), plus one. Alice’s goal in the graph marking game is
to minimize the score of the play, and Bob’s goal is to maximize the score of the play. The game
coloring number of G, written colg(G), is the minimum integer t for which Alice has a strategy to
limit the score of a play on G to t. It is straightforward to show that χg(G) ≤ colg(G) [80].

When attempting to find an upper bound for the game chromatic number of a graph G, it is
often convenient to consider the graph marking game on G and find an upper bound for colg(G).
The reason for this is that the game coloring number satisfies certain convenient properties that
are not satisfied by the game chromatic number. For instance, when H is a subgraph of G, Wu and
Zhu [78] show that colg(H) ≤ colg(G). On the other hand, Tuza and Zhu [75] show that the “cocktail
party graph," obtained from the complete bipartite graph Kn,n by deleting a perfect matching, has
a game chromatic number of n, but the game chromatic number drops to 2 if a single isolated
vertex is added to the graph. Therefore, many upper bounds for the game chromatic number of
certain graph classes, such as the bounds for planar graphs and graphs of bounded treewidth given
above, are obtained by studying the graph marking game.

In [82], Zhu asked whether the game chromatic number of the Cartesian product of two graphs
is bounded whenever each graph’s game coloring number is bounded:

Question 1.6.1. Suppose both colg(G1) and colg(G2) are bounded by a constant. Is it true that
χg(G1□G2) is bounded by a constant?

In Chapter 5, we will show a relationship between the game chromatic number of a graph G

and the properties of the bicolored subgraphs of G with respect to some fixed proper coloring. Our
method will generalize the method of Dinski and Zhu [29] used to prove the inequality χg(G) ≤
χa(G)(χa(G) + 1). As a corollary, we will obtain the following theorem, which answers Question
1.6.1 in the affirmative.

Theorem 1.6.2. Let G1 and G2 be graphs, and let t = max{colg(G1), colg(G2)}. Then,

χg(G1□G2) ≤ t2((t2 − 1)t+ 1) = t5 − t3 + t2.
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1.7 The Lovász Local Lemma

Since we consider graph coloring problems with local restrictions, one tool that we will frequently
use is the Lovász Local Lemma. This lemma was first introduced by Erdős and Lovász [34] and can
be used in the following general setting. Suppose that we perform a random experiment and wish to
avoid certain bad events. (For example, we might randomly color the vertices of a graph and hope
to avoid monochromatic edges.) The Lovász Local Lemma roughly states that if the probability
of each bad event is not too large, and if each bad event is not dependent with too many other
bad events, then there is a positive probability that our experiment will avoid all bad events. If
our experiment is a random graph coloring, for example, then the Lovász Local Lemma gives us
conditions under which there exists a coloring avoiding certain undesired properties. We will use
the following form of the lemma, which appears in [66, Chapter 19].

Lemma 1.7.1. Let A1, . . . , An be a set of bad events, and for each i = 1, . . . , n, let Di denote the
set of events Aj, j ̸= i, with which Ai is dependent. If there exist real numbers x1, . . . , xn ∈ [0, 1)
such that for each i = 1, . . . , n,

Pr(Ai) ≤ xi

∏
Aj∈Di

(1 − xj),

then with positive probability, no bad event Ai occurs.

By setting each xi = 1
D+1 in Lemma 1.7.1, the Lovász Local Lemma has the following simpler

form.

Lemma 1.7.2. Let A1, . . . , An be a set of bad events of probability at most p, and for each i =
1, . . . , n, let Ai be dependent with at most D other events Aj. If

pe(D + 1) ≤ 1,

then with positive probability, no bad event Ai occurs.

In almost all applications of the Lovász Local Lemma, a set P of mutually independent variables
in a probability space Ω is given. (For example, in graph coloring, these mutually independent
variables are typically the randomly assigned colors of vertices.) In this setting, each bad event Ai

is determined by some unique minimal subset S ⊆ P of random variables, and two bad events Ai

and Aj are dependent if and only if the subsets of P determining those bad events intersect [67].
The first proofs of the Lovász Local Lemma are nonconstructive; that is, given a set of bad

events determined by P, these proofs do not explicitly determine an assignment to the variables of
P that avoids all bad events. However, Moser and Tardos [67] developed a randomized algorithm,
often called the entropy compression algorithm, that finds an assignment to the variables of P
that avoids all bad events a.a.s. in linear time whenever the conditions of the Lovász Local Lemma
are satisfied. In the setting of graph coloring, this means that whenever the existence of a specific
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coloring of a graph G is proven using the Lovász Local Lemma, a randomized algorithm exists that
finds such a coloring of G a.a.s. in O(|V (G)|) time. In particular, all coloring results in this thesis
proven with the Lovász Local Lemma have an associated efficient randomized algorithm.
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Chapter 2

List colorings of bipartite graphs

2.1 Introduction

In this chapter, we prove that a bipartite graph G of sufficiently large maximum degree ∆ satisfies
ch(G) < 0.797 ∆

log ∆ (Theorem 1.3.2). This result establishes the best known upper bound on the
choosability of a bipartite graph in terms of its maximum degree and takes a modest step toward
Alon and Krivelevich’s conjectured upper bound of O(log ∆) (Conjecture 1.3.1). Our method is
based on an approach of Alon, Cambie, and Kang [9] related to the coupon collector problem.

The approach of Alon, Cambie, and Kang [9] can be summarized as follows. If G is a bipartite
graph of maximum degree ∆ with partite sets A and B, and if each vertex v ∈ A receives a color
uniformly at random from its list L(v), then the probability that a given vertex w ∈ B has no
available color from its list L(w) is small enough to apply the Lovász Local Lemma and find a
proper L-coloring of G whenever each color list has at least (1 + o(1)) ∆

log ∆ colors. In fact, their
method implies that if the vertices in A have color lists of size ω(1), then there exists a function
o(1) so that by giving the vertices in B lists of size (1 + o(1)) ∆

log ∆ , G has a proper L-coloring.
The method that we will use to prove Theorem 1.3.2 is very similar to the approach of Alon,

Cambie, and Kang, but we will improve their upper bound on list sizes by choosing a particular
non-uniform distribution on each list L(v) for v ∈ A. Our proof also uses the Lovász Local Lemma
and hence yields an efficient randomized algorithm via Moser and Tardos’s entropy compression
method [67, 74]. Given the apparent difficulty of designing an efficient algorithm to list-color a
∆-regular triangle-free graph with (1 − ε) ∆

log ∆ available colors at each vertex for any ε > 0, as
discussed in the introduction, Theorem 1.3.2 provides evidence that the list-coloring problem is
fundamentally easier in bipartite graphs than in triangle-free graphs. Hence, our result takes a step
toward solving Conjecture 1.3.1.
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2.2 The choice number of bipartite graphs

In our proofs, we will omit floors and ceilings, as they will have no effect on our arguments. Before
proving our main result, we will need a lemma about the coupon collector problem, which takes
place in the following setting. Let L,L1, . . . , L∆, be lists, each of exactly k colors. We may imagine
that the colors in L represent differently colored coupons that a coupon collector wishes to gather
and that the collector has a set of ∆ unopened boxes, each with one coupon inside. We further
assume that the coupon contained in the ith box must be of a color from Li, for each i (1 ≤ i ≤ ∆).
We are interested in the probability that the coupon collector will be able to gather coupons of all
k colors in L.

In order to estimate the probability that the coupon collector successfully obtains coupons of
all colors in L, we need to define some parameters. We let 0 < p < 1 be a positive number, possibly
dependent on ∆. For each value i (1 ≤ i ≤ ∆), we define a probability distribution Pi : Li → [0, p).
Since Pi is a probability distribution, we require that ∑c∈Li

Pi(c) = 1, and for a color c ̸∈ Li, we
write Pi(c) = 0. We also define independent random variables ϕ1, . . . , ϕ∆ so that for each i and
c ∈ Li, ϕi = c with probability Pi(c). For each c ∈ L, we write ρ(c) = ∑∆

i=1 Pi(c). Then, we have the
following lemma, which gives us an upper bound on the probability that every color in L appears
at some random variable ϕi, i.e. the probability that for each of the k colors c ∈ L, the coupon
collector obtains a coupon of color c. The ideas in this lemma are similar to those in the coupon
collection argument of Alon, Cambie, and Kang [9].

Lemma 2.2.1. Let 0 < ε ≤ 1 and 0 ≤ a ≤ 1 be fixed, and let k =
⌈

a∆
(1−p)(log ∆−4 log log ∆)

⌉
. Suppose

that there exists a set L∗ ⊆ L of size at least εk such that the average value ρ(c) for c ∈ L∗ satisfies

1
|L∗|

∑
c∈L∗

ρ(c) ≤ a∆/k.

Then, when ∆ is sufficiently large, Pr (L ⊆ {ϕ1, . . . , ϕ∆}) < exp(− log2 ∆).

Proof. First, we will show that

Pr (L ⊆ {ϕ1, . . . , ϕ∆}) ≤ exp
(

−
∑
c∈L

exp
(

− 1
1 − p

ρ(c)
))

. (2.1)

Consider a color c ∈ L, and let Bc be the event that ϕi = c for some value i (1 ≤ i ≤ ∆), i.e. the
event that the coupon collector obtains a coupon of color c. Since the variables ϕi are independent,
Pr(Bc) = 1 −

∏∆
i=1(1 − Pi(c)). Applying the inequality 1 − x ≥ e

−x
1−x ≥ e

−x
1−p for x < p, we see that

Pr(Bc) ≤ 1 − exp

− 1
1 − p

∆∑
i=1

Pi(c)

 = 1 − exp
(

− 1
1 − p

ρ(c)
)
.
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Furthermore, it is well known that the individual coupon collection events {Bc : c ∈ L} are
negatively correlated (see e.g. [9, Section 3]), so the probability of the event ⋂c∈LBc, or equivalently
the event L ⊆ {ϕ1, . . . , ϕ∆}, is at most

∏
c∈L

(
1 − exp

(
− 1

1 − p
ρ(c)

))
≤ exp

(
−
∑
c∈L

exp
(

− 1
1 − p

ρ(c)
))

,

proving (2.1).
By possibly taking a subset of L∗, we assume without loss of generality that ε < 1 and that

|L∗| = εk. We write L∗ = L \ L∗. By (2.1),

Pr (L ⊆ {ϕ1, . . . , ϕ∆}) ≤ exp

−
∑

c∈L∗
exp

(
− 1

1 − p
ρ(c)

)
−
∑

c∈L∗

exp
(

− 1
1 − p

ρ(c)
) . (2.2)

Since the function f(x) = e−x is convex, and since 1
εk

∑
c∈L∗ ρ(c) ≤ a∆/k, it follows that

∑
c∈L∗

exp
(

− 1
1 − p

ρ(c)
)

≥ εk exp
(

− a∆
(1 − p)k

)
.

Furthermore, as ∑c∈L∗ ρ(c) ≤
∑

c∈L ρ(c) < ∆,

∑
c∈L∗

exp
(

− 1
1 − p

ρ(c))
)
> (1 − ε)k exp

(
− ∆

(1 − p)(1 − ε)k

)
.

Therefore, the argument of the outer exponential in (2.2) is less than

−εk exp
(

− a∆/k
(1 − p)

)
− (1 − ε)k exp

(
− ∆/k

(1 − p)(1 − ε)

)
= −(ε+ o(1))k exp

(
− a∆/k

(1 − p)

)
.

Now, if we substitute our value of k, then the argument of the outer exponential function in (2.2)
becomes −(ε+ o(1)) · ∆

(1−p) log ∆ · exp(4 log log ∆ − log ∆) < − log2 ∆, so the lemma holds.

2.2.1 A warmup: ch(G) ≤
(

4
5 + o(1)

)
∆

log ∆

We will first prove the following weaker result. The main ideas in the proof of the following theorem
are very similar to those in our proof of Theorem 1.3.2, which achieves the smaller coefficient of
0.797. However, the ideas of the following proof avoid some technical details from the proof of
Theorem 1.3.2, so we present this result first as a warmup.

Theorem 2.2.2. If G is a bipartite graph of maximum degree ∆, then ch(G) ≤ (4
5 + o(1)) ∆

log ∆ .

Proof. We fix an arbitrarily small value γ > 0 and assume that the maximum degree ∆ of G is
sufficiently large with respect to γ. Without loss of generality, we may assume that G is ∆-regular.
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We let each vertex v ∈ V (G) have a list L(v) of k =
⌈

(4/5+γ)∆
(1−1/

√
∆)(log ∆−4 log log ∆)

⌉
colors, represented

as integers in increasing order. We will show that G has a proper list coloring.
We partition V (G) into two partite sets A and B. Our strategy will be to create a probability

distribution on each list L(v) for v ∈ A, and we will use these distributions to color all vertices
v ∈ A. Then, we will use Lemma 2.2.1 and the Lovász Local Lemma to show that with positive
probability, each vertex w ∈ B still has an available color even after all vertices in A have been
colored.

For each vertex u ∈ V (G), we write L(u) = (c1, . . . , ck) as an increasing integer sequence, and
for each color c ∈ L(u), we write I(u, c) = i if c = ci—that is, if c is in the ith position in L(v). We
say that I(u, c) is the index of c in u. For each vertex w ∈ B, we define the weight of w as

Z(w) =
∑

v∈N(w)
|L(v) ∩ L(w)|.

Clearly, for each vertex w ∈ B, Z(w) ≤ ∆k. For each vertex v ∈ A and c ∈ L(v), we write

Pv(c) = 8/5
k(1 − 3

5k )

(
1 − 3

4 · I(v, c)
k

)
.

For convenience, we will define I(v, c) = 4
3k for c ̸∈ L(v) so that Pv(c) = 0 for these colors c.

Observe that ∑c∈L(v) Pv(c) = 1. For each w ∈ B and c ∈ L(w), we write ρw(c) = ∑
v∈N(w) Pv(c).

For each v ∈ A and c ∈ L(v), we will use c to color v with probability Pv(c). Then, we will use
the Lovász Local Lemma to show that with positive probability, our random coloring of A can be
extended to a proper list coloring of G. Observe that each color in L(v) is used with a probability
of (much) less than 1/

√
∆.

Now, consider a vertex w ∈ B, and write z = Z(w)
∆k . For a color c ∈ L(w) and a constant ε > 0,

if I(w, c) ≥ (1 − ε)k, then since our color lists are sorted in increasing order,

∑
v∈N(w)

I(v, c) ≥ (z − ε)∆k.

Therefore,

ρw(c) =
∑

v∈N(w)
Pv(c) = 8/5 + o(1)

k

∑
v∈N(w)

(
1 − 3

4 · I(v, c)
k

)
≤
(8

5 + o(1)
)(

1 − 3
4(z − ε)

) ∆
k
.

Hence, for the last εk colors c ∈ L(w) (i.e. those of largest index), the average value of ρw(c) is at
most

(
8
5 + o(1)

) (
1 − 3

4y + 3
4ε
)

∆
k . On the other hand,

∑
c∈L(w)

∑
v∈N(w)

I(v, c) > ∆ · 1
2(zk)2 + 4

3(1 − z)k∆,
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as this sum is minimized when for each vertex v ∈ N(w), L(v) contains exactly zk colors of L(w).
Therefore, the average value ρw(c) over all colors c ∈ L(w) satisfies

1
k

∑
c∈L(w)

ρw(c) =
∑

c∈L(w)

∑
v∈N(w)

Pv(c) = 8/5 + o(1)
k2

∑
c∈L(w)

∑
v∈N(w)

(
1 − 3

4 · I(v, c)
k

)

<
8/5 + o(1)

k2

(
Z(w) − 3

8z
2k∆

)
=

(8
5 + o(1)

)
z

(
1 − 3

8z
) ∆
k
.

Hence, we can always find a dense subset L∗(w) ⊆ L(w) of size at least εk for which the average
value ρ(c) for c ∈ L∗(w) is at most min

{(
1 − 3

4z + 3
4ε
)
, z
(
1 − 3

8z
)}

·
(

8
5 + o(1)

)
∆
k <

(
4
5 + γ

)
∆
k ,

where the inequality holds whenever ε is sufficiently small and ∆ is sufficiently large with respect
to γ.

Now, for each vertex w ∈ B, we define a bad event Bw as the event that after A is randomly
colored, no color in L(w) is available—that is, that every color in L(w) appears in N(w). By
applying Lemma 2.2.1 with our value ε, as well as with a = 4

5 + γ, L = L(w), L∗ = L∗(w), and
{L1, . . . , Lk} = {L(v) : v ∈ N(w)}, we find that Pr(Bw) < exp(− log2 ∆). It is easy to see that
if no bad event occurs, then every vertex of G can be successfully colored. Since each bad event
occurs with probability less than exp(− log2 ∆) and is dependent with fewer than ∆2 other bad
events, it follows from the Lovász Local Lemma (Lemma 1.7.2) that with positive probability, no
bad event occurs provided that ∆ is large enough so that e∆2 exp(− log2 ∆) ≤ 1. Thus, the proof
is complete.

2.2.2 Breaking the 4
5 coefficient

In this subsection, we show that the 4
5 +o(1) coefficient from Theorem 2.2.2 can be reduced to 0.797

using a similar coupon collection argument to that in Theorem 2.2.2. While this improvement is
minimal, the fact that the 4

5 + o(1) coefficient can be broken with a similar argument suggests that
perhaps a more involved application of similar ideas can reduce the coefficient even more.

Before we prove that this lower coefficient can be achieved, we summarize the method used in
Theorem 2.2.2 and observe which parts of the method give room for improvement. In our proof of
Theorem 2.2.2, we consider a vertex w ∈ B, and we hope to show that after randomly coloring all
vertices in A, the probability that w has no available color is small. In order to show this, we aim
to show that for some dense set of colors c ∈ L(w), the values ρw(c) are small. We write z∆k for
the weight of w, and we roughly describe two cases.

In the first case, if z is large, then the colors c ∈ L(w) must appear at the lists L(v) for neighbors
v ∈ N(w) with high frequency. Consequently, the colors c of large index must also have fairly large
indices I(v, c) for many neighbors v ∈ N(w). Since the probability of c being used to color v
becomes small when I(v, c) is large, this means that colors c ∈ L(w) of large index must have small
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values ρw(c). Specifically, we see in the proof of Theorem 2.2.2 that these colors c of large index in
w approximately satisfy ρw(c) ≤ 8

5(1 − 3
4z)

∆
k .

In the second case, if z is small, then for each neighbor v ∈ N(w), L(v) on average does not
contain many colors from L(w). Therefore, the average value ρw(c) for all colors c ∈ L(w) is small.
Specifically, we see in the proof that the average value ρw(c) is at most roughly 8

5z(1 − 3
8z)

∆
k .

In both cases, we can find a dense set of colors c ∈ L(w) for which the average value ρ(c) is at
most (4

5 + o(1))∆
k , with the upper bound being achieved when z is close to 2

3 . Now, let us consider
the extremal case when this value (4

5 + o(1))∆
k is achieved in more detail. When we compute the

upper bound 8
5z(1 − 3

8z)
∆
k for the average value ρ(c) over all colors c ∈ L(w), we assume that

the values |L(v) ∩ L(w)| are the same for each neighbor v ∈ N(w) and that the indices I(v, c) for
c ∈ L(w) are as low as possible. Therefore, in our extremal case, we assume that for each neighbor
v ∈ N(w), L(v) contains roughly 2

3k colors from L(w) occupying the first 2
3k indices at v. However,

if this is the case, then we should be able to slightly increase the probabilities Pv(c′) for the colors
c′ ∈ L(v) with indices close to k without increasing the probabilities Pv(c) of colors c ∈ L(v)∩L(w),
as the colors c′ ∈ L(v) with large index should not belong to L(w). This will allow us to decrease
the probabilities Pv(c) of the colors c ∈ L(v) with smaller index, which will reduce Pv(c) for colors
c ∈ L(v) ∩ L(w) and allow us to reduce our coefficient below 4

5 . On the other hand, if increasing
the probabilities Pv(c′) for colors c′ ∈ L(v) of large index causes the probabilities Pv(c) of many
colors in c ∈ L(v) ∩L(w) to increase, then this implies that the colors in L(v) ∩L(w) for neighbors
v ∈ N(w) are not arranged like in the extremal case, and the method of Theorem 2.2.2 should still
give a coefficient lower than 4

5 .
Now, we are ready to prove our improved coefficient.

Theorem 2.2.3. If G is a bipartite graph of sufficiently large maximum degree ∆, then ch(G) <
0.797 ∆

log ∆ .

Proof. We assume that the maximum degree ∆ of G is sufficiently large. Without loss of gen-
erality, we may assume that G is ∆-regular. We let each vertex v ∈ V (G) have a list L(v) of
k =

⌈
0.7969∆

(1−1/
√

∆)(log ∆−4 log log ∆)

⌉
colors, represented as integers in increasing order. We will show

that G has a proper list coloring.
We partition V (G) into two partite sets A and B. Again, we will randomly color the vertices of A

and then use the Lovász Local Lemma to show that B can be colored with positive probability. We
define the weight Z(w) of each vertex w ∈ B as before, and we also define I(u, c) for each u ∈ V (G)
and each c ∈ L(u) as before. For vertices v ∈ A and w ∈ B, we write |L(v) ∩ L(w)| = ℓv,w.

We define a function f : [1,∞) → R as follows:

f(x) =

1 − 3
4kx if x ≤ 9

10k or x > k

13
40 if 9

10k < x ≤ k.

22



We write C for the average value of f(i) for i ∈ {1, . . . , k} and observe that C = 503
800 + o(1). For

each c ∈ L(v), we write
Pv(c) = 1

Ck
f (I(v, c)) .

Again, for convenience, we will define I(v, c) = 4
3k for c ̸∈ L(v) so that Pv(c) = 0 for c ̸∈ L(v). Ob-

serve that ∑c∈L(v) Pv(c) = 1. For each w ∈ B and c ∈ L(w), we again write ρw(c) = ∑
v∈N(w) Pv(c).

For each v ∈ A and c ∈ L(v), we will use c to color v with probability Pv(c).
Now, consider a vertex w ∈ B, and write z = Z(w)

∆k . Define 0 ≤ y ≤ 1 so that exactly y∆
neighbors v ∈ N(w) satisfy ℓv,w > 9

10k. Define α so that ∑v∈N ′(w)

(
ℓv,w − 9

10k
)

= αyk∆. Observe
0 ≤ α ≤ 1

10 . We write N ′(w) for the set of y∆ neighbors v ∈ N(w) for which ℓv,w > 9
10k, and we

write N ′′(w) = N(w) \N ′(w) for the remaining set of (1 − y)∆ neighbors of w.
Now, consider a color c ∈ L(w) of index at least (1−ε)k with respect to L(w). We upper bound

ρw(c) as follows, using the fact that f is decreasing and 3
4 -Lipschitz.

ρw(c) = 1
Ck

∑
v∈N(w)

f(I(v, c)) ≤ 1
Ck

∑
v∈N(w)

f(ℓv,w − εk)

≤ 3ε
4Ck∆ + 1

Ck

∑
v∈N(w)

f(ℓv,w)

= 3ε
4Ck∆ + 1

Ck

 ∑
v∈N ′′(w)

f(ℓv,w) +
∑

v∈N ′(w)
f(ℓv,w)


= 3ε

4Ck∆ + 1
Ck

 ∑
v∈N ′′(w)

(
1 − 3

4k ℓv,w

)
+

∑
v∈N ′(w)

(
1 − 3

4k ℓv,w + 3
4k ℓv,w − 27

40

)
= 3ε

4Ck∆ + 1
Ck

 ∑
v∈N(w)

(
1 − 3

4k ℓv,w

)
+

∑
v∈N ′(w)

( 3
4k ℓv,w − 27

40

)
= 3ε

4Ck∆ + 1
Ck

∆
(

1 − 3
4z
)

+ 3
4k

∑
v∈N ′(w)

(
ℓv,w − 9

10k
)

= ∆
Ck

(
1 − 3

4z + 3
4αy + 3

4ε
)
.

Hence, for any constant ε > 0, the average value of ρw(c) for the last εk colors c ∈ L(w) is at
most ∆

Ck

(
1 + 3

4(−z + αy + ε)
)
.
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On the other hand, the average value ρw(c) over all colors c ∈ L(w) satisfies

1
k

∑
c∈L(w)

ρw(c) = 1
Ck2

∑
v∈N(w)

∑
c∈L(w)

f(I(v, c)) ≤ 1
Ck2

∑
v∈N(w)

ℓv,w∑
i=1

f(i)

= 1
Ck2

 ∑
v∈N ′′(w)

ℓv,w∑
i=1

(1 − 3
4k i) +

∑
v∈N ′(w)


9

10 k∑
i=1

(1 − 3
4k i) +

ℓv,w∑
i= 9

10 k+1

13
40




<
1
Ck2

∑
v∈N ′′(w)

ℓv,w∑
i=1

(1 − 3
4k i) + 1

Ck2

∑
v∈N ′(w)

( 9
10k − 3

4k · 1
2( 9

10k)2 + 13
40(ℓv,w − 9

10)
)

= 1
Ck2

∑
v∈N ′′(w)

ℓv,w∑
i=1

(1 − 3
4k i) + y∆

Ck

(477
800 + 13

40α
)

Since ∑v∈N ′′(w) ℓv,w = k∆(z− ( 9
10 +α)y), the average value ℓv,w for v ∈ N ′(w) is ℓ := k(z−( 9

10 +α)y)
1−y .

Furthermore, the sum above will be maximized if all values ℓv,w for v ∈ N ′(w) are equal to ℓ. Hence,

1
k

∑
c∈L(w)

ρw(c) <
(1 − y)∆
Ck2

(
ℓ− 3

4k · 1
2ℓ

2
)

+ y∆
Ck

(477
800 + 13

40α
)

= ∆
Ck

(z −
( 9

10 + α

)
y

)1 − 3
8 ·

z −
(

9
10 + α

)
y

1 − y

+ y

(477
800 + 13

40α
) .

Hence, writing g(α, y, z) = z−
(

9
10 + α

)
y, we can always find a dense subset L∗(w) ⊆ L(w) of size

at least εk for which the average value ρ(c) for c ∈ L∗(w) is at most

∆
Ck

min
{

1 + 3
4(−z + αy + ε), g(α, y, z)

(
1 − 3

8 · g(α, y, z)
1 − y

)
+ y

(477
800 + 13

40α
)}

.

We would like to show that this quantity is less than 0.7969∆
k when ε is sufficiently small and ∆

is sufficiently large. To establish this upper bound, we first observe that if z − αy > 0.66535, then
∆
Ck (1+ 3

4(−z+αy+ε)) < (0.7968+ 3
4ε+o(1))∆

k , which is smaller than 0.7969∆
k when ε is sufficiently

small and ∆ is sufficiently large. Hence, we may assume that z − αy ≤ 0.66535. Since y ≤ 1 and
α ≤ 0.1, this implies in particular that z < 0.8. Furthermore, since z ≥ 0.9y, we thus may assume
that y < 0.9. We would like to show that under these constraints,

∆
Ck

(
g(α, y, z)

(
1 − 3

8 · g(α, y, z)
1 − y

)
+ y

(477
800 + 13

40α
))

<
0.7969∆

k
,

which will prove our upper bound. To this end, we execute the following commands in Maple:

f := (a, y, z) -> 800/503*(z - (0.9 + a)*y)*

(1 + (-1)*0.375*(z - (0.9 + a)*y)/(1 - y)) + 800/503*y*(477/800 + 13/40*a)
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with(Optimization)

Maximize(f(a, y, z), {0 <= a, a <= 0.1, 0 <= y, y <= 0.9, 0 <= z, z <= 1,

-a*y + z <= 0.66535})

This gives us the following output:

[0.796309237086130106, [a = 0.100000000000000, y = 0.202933582180192,

z = 0.685643358218019]]

As a result, we find that under our constraints on α, y, and z, our expression is less than (0.7964 +
o(1))∆

k , which is certainly less than our upper bound when ∆ is sufficiently large. Hence, we can
always find a dense subset L∗(w) ⊆ L(w) of colors for which the average value ρ(c) for c ∈ L∗(w)
is less than 0.7969∆

k .
As before, for each vertex w ∈ B, we define a bad event Bw to be the event that no color

of L(w) is available after A is colored. By applying Lemma 2.2.1 with our value ε, as well as
with a = 0.7969, L = L(w), L∗ = L∗(w), and {L1, . . . , Lk} = {L(v) : v ∈ N(w)}, we find that
Pr(Bw) < exp(− log2 ∆). As before, we apply the Lovász Local Lemma (Lemma 1.7.2) when ∆ is
sufficiently large to find that with positive probability, no bad event occurs. Hence, we find our
proper coloring of G, and the proof is complete.
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Chapter 3

Single-conflict colorings

3.1 Introduction

In this section, we allow a graph G to have parallel edges, which are edges that appear in the set
E(G) more than once. In other words, we allow the edge set E(G) of a graph to be a multiset.
Recall that the degree of a vertex v is defined as the number of edges incident to v. Thus, in a
graph with parallel edges, a vertex v may have fewer than deg v distinct neighbors.

Recall that a single-conflict coloring is defined as follows. Let G be a graph, and let {1, . . . , k}
be a set of colors. Suppose that f is a function that maps each edge (u, v) of G to a forbidden
color pair f(u, v) = (c1, c2), with c1, c2 ∈ {1, . . . , k}. Then, we say that a (not necessarily proper)
coloring ϕ : V (G) → {1, . . . , k} is a single-conflict coloring with respect to f and {1, . . . , k} if
f(u, v) ̸= (ϕ(u), ϕ(v)) for each edge (u, v) of G. We call the image of an edge (u, v) under f a
conflict, and we call f a conflict function. If k is the minimum integer for which a graph G always
has a single-conflict coloring for the color set {1, . . . , k} and any conflict function f , then we say
that k is the single-conflict chromatic number of G, and we write χ↮(G) = k.

In the first section of this chapter, we consider the single-conflict coloring problem in its most
general setting, in which the conflict at a given may be any ordered pair from the color set {1, . . . , k}.
In the second section of this chapter, we will consider the problems of adapted colorings and co-
operative colorings, in which we seek a single-conflict coloring for a graph in which each conflict is
monochromatic.

3.2 General conflicts

In this section, we will prove the following theorem, which implies Theorem 1.4.4 and also implies
Corollary 1.4.9 as a corollary.

Theorem 3.2.1. If G is a d-degenerate graph with maximum degree ∆ and edge-multiplicity at
most µ, then

χ↮(G) ≤
⌈√

d · 2µ/2+2√
µ
√

1 + log((d+ 1)∆)
⌉
.
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One key tool that we will use to prove this theorem is an application of the Lovász Local Lemma
in which each vertex v ∈ V receives a random inventory Sv of colors, and then a color c is deleted
from Sv if c also belongs to the inventory Sw of some in-neighbor w of v with respect to a given
edge orientation. This technique of applying the Lovász Local Lemma to random color inventories
is also used by Bernshteyn, Kostochka, and Zhu [14] for fractional DP-colorings and by Aharoni,
Berger, Chudnovsky, Havet, and Jiang [2] for cooperative colorings of forests.

We will fix some preliminaries. Suppose G is a d-degenerate graph on n vertices with a linear
vertex-ordering v1, . . . , vn in which each vertex vj has at most d neighbors vi satisfying i < j. Then,
there exists an orientation of E(G) of maximum out-degree d obtained by giving each edge vivj

with i < j an orientation (vj , vi). Therefore, the class of d-degenerate graphs may be considered
as a subclass of directed graphs of maximum out-degree d, and we will often consider this more
general class rather than the class of d-degenerate graphs. For a vertex v ∈ V (G), we write E+(v)
for the set of arcs outgoing from v, and we write E−(v) for the set of arcs incoming to v.

3.2.1 Uniquely restrictive conflicts

In this subsection, we will consider the single-conflict coloring problem with uniquely restrictive
conflict functions, defined as follows. Consider a color set C = {1, . . . , k} and a directed graph
G with a conflict function f : E(G) → C2. First, given a vertex v ∈ V (G) and an arc e ∈
E(G) containing v, we say that the (v, e) conflict color is the color appearing in the entry of f(e)
corresponding to the position of v in e. We write cc(v, e) for the (v, e) conflict color. Then, we have
the following definition.

Definition 3.2.2. Let w ∈ V (G). Suppose that for each pair of parallel arcs e1, e2 ∈ E−(w) such
that cc(w, e1) = cc(w, e2), it holds that cc(v, e1) = cc(v, e2), where v is the second endpoint of e1

and e2. Then, we say that f is uniquely restrictive at w. Furthermore, if f is uniquely restrictive
at each vertex w ∈ V (G), then we simply say that f is uniquely restrictive.

An informal way of describing unique restrictiveness would be to say that if we color a vertex
w ∈ V (G) with some color, say red, then we only want this choice of red at w to contribute
to the exclusion of at most one color possibility at each in-neighbor of w. We note that unique
restrictiveness is a rather natural idea, as the conflict functions that represent adapted coloring
and proper coloring problems are uniquely restrictive; indeed, in both of these settings, choosing
the color red at a vertex v can only contribute to the exclusion of the color red at neighbors
of v. Furthermore, DP-coloring problems always give uniquely restrictive conflict functions when
represented as single-conflict coloring problems, since the conflicts between any two vertices form
a matching in C × C.

With this definition in place, we have the following theorem, which gives an upper bound on
the number of colors needed for a single-conflict coloring of a d-degenerate graph whose conflict
function is uniquely restrictive. Since any conflict function on a simple graph is uniquely restrictive,
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this following theorem implies Theorem 1.4.4. Our main tool for this theorem will be the application
of the Lovász Local Lemma used by Aharoni, Berger, Chudnovsky, Havet, and Jiang [2], in which
each vertex receives a random inventory of colors.

Theorem 3.2.3. Let G be a directed graph of maximum degree ∆ with a maximum out-degree of at
most d. Let C be a set of k colors, and let each arc e ∈ E(G) have an associated conflict f(e) ∈ C2.
If f is uniquely restrictive, and if

k ≥ 2
√
d [1 + log((d+ 1)∆)],

then G has a single-conflict coloring with respect to f and C.

Proof. First, we note that since every subgraph of G has an average degree of at most 2d, G is
(2d)-degenerate and hence has a single-conflict coloring whenever k ≥ 2d + 1. Therefore, we may
assume in our proof that k ≤ 2d.

First, for each vertex v ∈ V (G), we define a color inventory Sv, and for each color c ∈ C, we
add c to Sv independently with probability p = k

2d ≤ 1. Next, we let S′
v be a copy of Sv. (We will

need these copies for technical reasons related to the Lovász Local Lemma.) Then, for each vertex
v ∈ V (G), we consider each outgoing arc e of v, and we write e = (v, w). If, for some color c ∈ Sv,
we have

f(e) ∈ {(c, c′) : c′ ∈ Sw},

then we delete c from S′
v. In other words, if the color c at v contributes to the forbidden pair

f(v, w) = (c, c′) of an outgoing arc (v, w) ∈ E+(v), and if c′ ∈ Sw, then we delete c from S′
v. Then,

for each vertex v ∈ V (G), we let Bv denote the bad event that after this process, S′
v is empty. We

observe that if no bad event occurs, then we may arbitrarily color each vertex v with a color from
S′

v to obtain a single-conflict coloring of G. Indeed, if some arc (v, w) is colored with a forbidden
pair (c, c′) where c ∈ S′

v and c′ ∈ S′
v, then it must follow that c was actually deleted from S′

v, a
contradiction.

Now, given a vertex v ∈ V (G), we calculate the probability that the bad event Bv occurs. For
a given color c ∈ C, we write bc for the number of arcs e ∈ E+(v) for which c = cc(v, e). If c does
not belong to S′

v, then either c was never added to Sv, or c was added to Sv and then deleted from
S′

v. The probability that c was never added to Sv is equal to 1 − p, and the probability that c was
added to Sv and then deleted from S′

v is at most bcp
2. Therefore, the total probability that c ̸∈ S′

v

is at most 1 − p + bcp
2. Furthermore, since f is uniquely restrictive, the probabilities of any two

given colors being absent from S′
v are independent. Therefore, the probability of the bad event Bv

is at most

∏
c∈C

(
1 −

(
p− bcp

2
))

< exp
(

−
∑
c∈C

(
p− bcp

2
))

= exp
(

−pk + p2 ∑
c∈C

bc

)
= exp

(
−pk + p2d

)
.
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Substituting p = k
2d , we see that

Pr(Bv) < exp
(

−k2

4d

)
.

Furthermore, as the bad event Bv involves d + 1 vertices (namely v and at most d out-neighbors
of v), each of maximum degree ∆, Bv is dependent with fewer than (d + 1)∆ other bad events.
Note that since we use unmodified inventories Sw to determine whether the copy S′

v is empty, we
prevent the dependencies of Bv from spreading past the out-neighbors of v. Therefore, using the
Lovász Local Lemma (Lemma 1.7.2), we see that G receives a single-conflict coloring with positive
probability as long as the following inequality holds:

e(d+ 1)∆ exp
(

−k2

4d

)
≤ 1.

This inequality holds whenever

k ≥ 2
√
d[1 + log((d+ 1)∆)],

which completes the proof.

If G does not have parallel edges, then any conflict function f : E(G) → C2 must be uniquely
restrictive. Then, Theorem 3.2.3 tells us that

χ↮(G) ≤ 2
⌈√

d (1 + log((d+ 1)∆))
⌉
,

which gives an affirmative answer to Question 1.4.3 for simple graphs.

3.2.2 Non-uniquely restrictive conflicts

In this section, we will consider single-conflict colorings with general conflict functions, rather
than only those with uniquely restrictive conflict functions. To this end, we establish the following
definition. Given a directed graph G with a conflict function f : E(G) → C2, we define the
restrictiveness of f at v as the maximum value rv for which there exists an rv-tuple of parallel arcs
in E+(v) whose conflicts form a set

{(c1, c
∗), (c2, c

∗), . . . , (crv , c
∗)},

where the first entry in each conflict corresponds to v, where c∗ ∈ C is any single color, and
where c1, . . . , crv are all distinct colors. Then, we say that the restrictiveness of f is the maximum
restrictiveness rv of f at v, taken over all vertices v ∈ V (G). The restrictiveness r of a uniquely
restrictive conflict function satisfies r = 1. If f is a conflict function on a graph G of edge-multiplicity
at most µ, then the restrictiveness r of f satisfies r ≤ µ.
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Theorem 3.2.3 gives an upper bound on number of colors needed for a single-conflict coloring
given a conflict function with restrictiveness r = 1. In this section, we will show in the following
theorem that we can also find an upper bound on the number of colors needed for a single-conflict
coloring given a conflict function whose restrictiveness r is known but may be greater than 1. Since
r ≤ µ for any graph G with edge multiplicity at most µ, the following theorem also proves Theorem
3.2.1, giving an upper bound for χ↮(G) of d-degenerate graphs G with small edge-multiplicity.

Theorem 3.2.4. Let G be a directed graph of maximum degree ∆ with a maximum out-degree of
at most d. Let C be a set of k colors, and let each arc e ∈ E(G) have an associated conflict f(e).
If the restrictiveness of f is at most r, and if

k ≥
√
d · 2r/2+2√

r
√

1 + log((d+ 1)∆),

then G has a single-conflict coloring with respect to f and C.

Proof. We will use a similar probabilistic method as in Theorem 3.2.3, but we will need to work
much harder to show that the Lovász Local Lemma still applies. We write C = {1, . . . , k} for our
color set. We define our color inventories Sv and S′

v as well as our bad events Bv in the same way
as Theorem 3.2.3, but this time we will use the probability value

p = k

2r+3rd
.

Again, we can assume that k ≤ 2d, so we assume that p ≤ 1
4 .

Now, given a vertex v ∈ V (G), we calculate the probability that the bad event Bv occurs. For
each 1 ≤ t ≤ k and each subset

{c1, . . . , ct} ⊆ C,

we write b(c1, . . . , ct) to denote the number of t-tuples of parallel outgoing arcs from v whose
conflicts form a set

{(c1, c
∗), (c2, c

∗), . . . , (ct, c
∗)},

where the first entry in each conflict corresponds to v, and where c∗ ∈ C is any single color. In
other words, b(c1, . . . , ct) denotes the number of ways that c1, . . . , ct might all be simultaneously
deleted from S′

v due to a single color on the list of an out-neighbor of v.
Now, suppose that the bad event Bv occurs, so that S′

v is empty. It must have happened that
for some value 0 ≤ t ≤ k, exactly t colors were added to Sv, and then those t colors were all deleted
from S′

v. If Pt is the probability that exactly t colors were added to Sv and then all deleted from
S′

v, then
Pr(Bv) ≤ P0 + P1 + · · · + Pk.
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We aim to estimate each Pt, but in order to make our proof as easy to understand as possible, we
will start with small values of t.

First, when t = 0, it is straightforward to calculate that P0 = (1 − p)k.
Next, when t = 1, the probability that a given color c ∈ C is the only color added to Sv is equal

to (1 − p)k−1p. Then, the probability that c is subsequently deleted from S′
v is at most p · b(c).

Therefore,
P1 ≤ (1 − p)k−1p2 · (b(1) + b(2) + . . . b(k)) .

Next, when t = 2, the probability that two given colors c, c′ ∈ C are the only two colors added
to Sv is equal to (1 − p)k−2p2. Then, if c and c′ are deleted from S′

v, there are two possible reasons.
First, it is possible that there is an out-neighbor w of v that can be reached from v by two distinct
outgoing arcs e and e′ satisfying f(e) = (c, c∗) and f(e′) = (c′, c∗) for some color c∗ ∈ C, and
that since incidentally c∗ ∈ Sw, c and c′ were both deleted from S′

v. The probability of such a
subsequent event is at most p · b(c, c′). Second, it is possible that there exist two (possibly identical)
out-neighbors w and w′ of v that can be reached by two distinct arcs e and e′ satisfying f(e) = (c, c∗)
and f(e) = (c′, c̃), and that since incidentally c∗ ∈ Sw and c̃ ∈ Sw′ , c and c′ were deleted from S′

v.
The probability of such a subsequent event is at most p2b(c)b(c′). Therefore,

P2 ≤ (1 − p)k−2p3

 ∑
1≤i<j≤k

b(ci, cj)

+ (1 − p)k−2p4

 ∑
1≤i<j≤k

b(ci)b(cj)

 .
Note that the first term in the upper bound of P2 bounds the probability that S′

v became empty
because of the presence of a single color c∗ ∈ Sw for a single out-neighbor w of v, and the second
term bounds the probability that S′

v became empty because of two colors c∗ ∈ Sw and c̃ ∈ Sw′ for
two (possibly identical) out-neighbors w,w′ of v.

Now, we consider a general value 0 ≤ t ≤ k. The probability that some set {c1, . . . , ct} is exactly
the set added to Sv is equal to (1 − p)k−tpt. For some value z ≤ t, suppose that S′

v becomes empty
because of the presence of z colors at Sw1 , . . . , Swz for z out-neighbors w1, . . . , wz of v. Then it
must follow that there exists a partition q1 + · · · + qz = t such that for each 1 ≤ i ≤ z, some color
in Swi caused a set Ci of qi colors to be deleted from S′

v. Since we consider the outgoing arcs of
v one at a time, the sets Ci are disjoint, as otherwise a color would be deleted from S′

v twice. We
will also assume without loss of generality that the sets C1, . . . , Cz are in lexicographic order when
considered as increasing sequences. Since the restrictiveness of f is at most r, we may assume that
qi ≤ r for each i. We may also assume that each value qi in this partition is at least 1, as when some
qi = 0, we may cover this case with a smaller value of z. Therefore, when t ≥ 1, we may bound Pt
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as follows:

Pt ≤ (1 − p)k−tpt


t∑

z=1
pz

∑
q1+···+qz=t

1≤qi≤r for 1 ≤ i ≤ z

∑
|Ci|=qi for 1 ≤ i ≤ z
Ci pairwise disjoint

b(C1)b(C2) . . . b(Cz)

 .
We will make the following notational simplification. If we have sets A1, . . . , Am that are pairwise

disjoint and such that |Ai| = ai for 1 ≤ i ≤ m, then we write [A1, . . . , Am] = (a1, . . . , am). Also,
if A satisfies A ⊆ {1, . . . , k}, j ∈ A, and A ∩ {1, . . . , j − 1} = ∅, then we write ℓ(A) = j. For each
fixed integer partition q1 + · · · + qz = t, we make the following claim.

Claim 3.2.5.

∑
[C1,...,Cz ]=(q1,...,qz)

b(C1)b(C2) . . . b(Cz) ≤ 2zr
∑

1≤i1<i2<···<iz≤k

b(i1)b(i2) . . . b(iz).

Proof of Claim 3.2.5. We write

T =
∑

[C1,...,Cz ]=(q1,...,qz)
b(C1)b(C2) . . . b(Cz)

for the sum that we are bounding.
We induct on z. For the base case, when z = 1, we must show that

T =
∑

|C1|=t

b(C1) ≤ 2r
∑

1≤i≤k

b(i).

We have

T =
∑

|C1|=t

b(C1) ≤
k∑

j=1

∑
C1∋j

b(C1).

Let j be fixed. Consider an outgoing arc e = (v, w) from v for which cc(v, e) = j, and write
f(e) = (j, c∗). As the restrictiveness of f is at most r, there exist at most 2r sets of parallel edges
joining v and w whose conflicts have c∗ in the entry corresponding to w. It follows that

∑
C1∋j

b(C1) ≤ 2rb(j).

Then the base case follows immediately.
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Now, consider a value z ≥ 2. We have

T =
k∑

j=1

∑
[C2,...,Cz ]=(q2,...,qz)

b(C2) . . . b(Cz)
∑

|C1|=q1
C1∩Ci=∅ for 2 ≤ i ≤ z

ℓ(C1)=j

b(C1).

Since C2, S3, . . . are disjoint with C1, and since the sets Ci are in lexicographic order, it is equivalent
to write

T =
k∑

j=1

∑
[C2,...,Cz ]=(q2,...,qz),

ℓ(Ci)>j for 2≤i≤z

b(C2) . . . b(Cz)
∑

|C1|=q1
C1∩Ci=∅ for 2 ≤ i ≤ z

ℓ(C1)=j

b(C1).

By the same argument used in the base case, for fixed j, we have

∑
|C1|=q1,
ℓ(C1)=j

b(C1) ≤
∑

C1∋j

b(C1) ≤ 2rb(j).

Therefore, it follows that

T ≤ 2r
k∑

j=1
b(j)

∑
[C2,...,Cz ]=(q2,...,qz),

Ci ̸∋j for 2≤i≤z

b(C2) . . . b(Cz).

Now, we may apply the induction hypothesis to the sum

∑
[C2,...,Cz ]=(q2,...,qz),

ℓ(Ci)>j for 2≤i≤z

b(C2) . . . b(Cz),

after which we have that

T ≤ 2r
k∑

j=1
b(j)2(z−1)r ∑

j+1≤i2<···<iz≤k

b(i2) . . . b(iz)

= 2zr
∑

1≤i1<···<iz≤k

b(i1) . . . b(iz).

This completes induction. ♢

From now on, we will simply write

σz =
∑

1≤i1<···<iz≤k

b(i1) . . . b(iz).
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By Claim 3.2.5,

Pt ≤ (1 − p)k−tpt

 t∑
z=1

(2rp)z
∑

q1+···+qz=t
1≤qi≤r for 1 ≤ i ≤ z

σz

 .
As 1 ≤ qi ≤ r for each i, the number of integer partitions in the second sum is at most rz. Thus
we have

Pt ≤ (1 − p)k−tpt

(
t∑

z=1
(2rrp)zσz

)
.

It follows that

Pr(Bv) ≤ P0 +
k∑

t=1
(1 − p)k−tpt

(
t∑

z=1
(2rrp)zσz

)

= P0 +
k∑

t=1

t∑
z=1

(1 − p)k−tpt ((2rrp)zσz)

= P0 +
k∑

z=1

k∑
t=z

(1 − p)k−tpt ((2rrp)zσz)

< P0 + (1 − p)k
k∑

z=1
((2rrp)zσz)

∞∑
t=z

(
p

1 − p

)t

Since p ≤ 1
4 , we crudely estimate

∞∑
t=z

(
p

1 − p

)t

< (2p)z
∞∑

t=0
(2p)t ≤ 2z+1pz.

Therefore,

Pr(Bv) < P0 + (1 − p)k
k∑

z=1
2(2r+1rp2)zσz

= P0 + (1 − p)k
k∑

z=1
(2r/2+1√

rp)2zσz. (3.1)

Now, we claim that

Pr(Bv) <
k∏

i=1

(
(1 − p+ (2r/2+1√

rp)2b(i)
)
.

For convenience, we will write each factor as α + βi, where α = 1 − p and βi = (2r/2+1√
rp)2b(i).

It suffices to show that each term of (3.1) has a dominating term in the expansion of the product∏k
i=1(α+ βi).
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First, it is clear that P0 = αk. Now, for each 1 ≤ z ≤ k, we claim that

(1 − p)k(2r/2+1√
rp)2zσz

is bounded above by [αk−z]∏k
i=1(α + βi)—that is, the sum of the terms in ∏k

i=1(α + βi) in which
α has an exponent of k − z. Indeed,

[αk−z]
k∏

i=1
(α+ βi) = αk−z

∑
1≤i1<···<iz≤k

βi1 . . . βiz

= αk−z(2r/2+1√
rp)2zσz

> αk(2r/2+1√
rp)2zσz

= (1 − p)k(2r/2+1√
rp)2zσz.

Therefore, we see that

Pr(Bv) <
k∏

i=1
(α+ βi)

=
k∏

i=1

(
(1 − p+ (2r/2+1√

rp)2b(i)
)

≤
k∏

i=1
exp

(
−p+ (2r/2+1√

rp)2b(i)
)

= exp
(

−kp+ (2r/2+1√
rp)2

k∑
i=1

b(i)
)

= exp
(
−kp+ (2r/2+1√

rp)2d
)
.

Now, substituting p = k
2r+3rd

, we have that

Pr(Bv) < exp
(

− k2

2r+4rd

)
.

As Bv is a bad event that involves d + 1 vertices, and as G has a maximum degree of ∆, it
follows that Bv is dependent with fewer than (d+ 1)∆ other bad events. Therefore, by the Lovász
Local Lemma (Lemma 1.7.2), G has a single-conflict coloring as long as

e · (d+ 1)∆ · exp
(

− k2

2r+4rd

)
≤ 1,

which holds whenever
k ≥

√
d · 2r/2+2√

r
√

1 + log((d+ 1)∆).
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This completes the proof.

3.3 Cooperative colorings

3.3.1 Introduction

Recall that given a family G = {G1, . . . , Gk} of graphs on a common vertex set V , a cooperative
coloring on G is defined as a family of sets R1, . . . , Rk ⊆ V such that for each 1 ≤ i ≤ k, Ri is
an independent set of Gi, and V = ⋃k

i=1Ri. The notion of a cooperative coloring can be naturally
generalized to the notion of a cooperative list coloring, defined as follows. Consider a graph family
G = {G1, . . . , Gk} in which each graph Gi has a vertex set Vi that may or may not share vertices
with the vertex sets Vj of the other graphs Gj ∈ G. We write V = V1 ∪ · · · ∪ Vk. Then, we say that
a cooperative list coloring of G is a family of vertex subsets R1, . . . , Rk such that for each value
1 ≤ i ≤ k, it holds that Ri ⊆ Vi and Ri is an independent set of Gi, and such that V = ⋃k

i=1Ri.
Every list coloring problem on a graph G with a list function L can be transformed into a cooperative
list coloring problem as follows. For each color c ∈

⋃
v∈V (G) L(v), we define the graph Gc to be the

subgraph of G induced by those vertices v ∈ V (G) for which c ∈ L(v). Then, finding a list coloring
on G is equivalent to finding a cooperative list coloring on the family G = {Gc : c ∈

⋃
v∈V (G) L(v)}.

The cooperative list coloring problem can be transformed into an independent transversal problem
in a similar way to the cooperative coloring problem.

In the setting of cooperative colorings, we may naturally ask how many graphs of maximum
degree d are necessary in a graph family G on a common vertex set in order to guarantee the
existence of a cooperative coloring. (Note that in this section, we will use d rather than ∆ for
the maximum degree of a vertex in a graph Gi ∈ G. We do this both to follow the conventions of
previous research and also because a vertex v ∈ V may have more than d neighbors when all graphs
in G are considered.) Theorem 1.4.6 tells us that G is guaranteed a cooperative coloring whenever
|G| ≥ 2d, and when d is large, Loh and Sudakov [60] have shown that a lower bound of the form
|G| ≥ (1 + o(1))d also guarantees the existence of a cooperative coloring on G. On the other hand,
Aharoni, Holzman, Howard, and Sprüssel [4] have constructed families containing d + 1 graphs of
maximum degree d spanning a common vertex set that do not admit a cooperative coloring.

For a graph class H, Aharoni, Berger, Chudnovsky, Havet, and Jiang [3] defined the parameter
mH(d) to be the minimum value m for which the following holds: If G is a family of at least m
graphs of H of maximum degree at most d that span a common vertex set, then G must have a
cooperative coloring. When H is the family of all graphs, they write m(d) = mH(d). The discussion
above implies that m(d) ≤ 2d for all values d ≥ 1, and m(d) ≤ d + o(d) asymptotically when d is
large. Note that all asymptotics in this paper will be with respect to the parameter d, which will
always be an upper bound for the maximum degree of each graph in a given graph class.

In a similar fashion to Aharoni, Berger, Chudnovsky, Havet, and Jiang, we will define the
parameter ℓH(d) for a graph class H as follows. We say ℓH(d) is the minimum value ℓ such that
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if G is a family of graphs from H of maximum degree at most d whose vertex sets are subsets of
a universal vertex set V , and if each vertex v ∈ V belongs to at least ℓ graphs in G, then G has
a cooperative list coloring. It is straightforward to show that for any graph class H and for any
value d, mH(d) ≤ ℓH(d). When H is the class of all graphs, we write ℓ(d) = ℓH(d). Haxell’s proof
of Theorem 1.4.6, as well as Loh and Sudakov’s argument [60] showing m(d) ≤ d + o(d), were
both originally formulated for a more general independent transversal problem, and hence their
arguments give the same upper bounds on ℓ(d) as well.

We summarize the discussion above with the following inequalities:

d+ 2 ≤ m(d) ≤ ℓ(d) ≤ 2d (3.2)

d+ 2 ≤ m(d) ≤ ℓ(d) ≤ d+ o(d).

In [3], Aharoni, Berger, Chudnovsky, Havet, and Jiang considered the value mF (d) for the class
F of forests. These authors obtained a lower bound for mF (d) from a construction and obtained an
upper bound for mF (d) by using a creative application of the Lovász Local Lemma that resembles
an earlier method used by Bernshteyn, Kostochka, and Zhu [14, Section 4.2], which involves giving
each vertex in the problem a random color inventory and then attempting to greedily give each
vertex a color from its inventory. Since the method for obtaining an upper bound on mF (d) also
applies to the cooperative list coloring problem with no changes, we have the following result from
[3]:

log2 log2 d ≤ mF (d) ≤ ℓF (d) ≤ (1 + o(1)) log4/3 d. (3.3)

In this section, we will use Theorem 3.2.3 to extend the upper bound in (3.3) to all graphs
of bounded degeneracy, at the expense of a constant factor. We present this result in Theorem
3.3.1 below. Additionally, we will construct a family of forests which we can use to prove that
mF (d) ≥ (1 +o(1)) log d

log log d , improving the lower bound in (3.3) significantly. One interesting feature
of our construction is that each graph in our family is a forest of stars. Hence, we write S for the
class of of star forests, and since S ⊆ F , we observe that mS(d) ≤ mF (d). With S defined, we
remark that our construction actually implies the stronger lower bound mS(d) ≥ (1 + o(1)) log d

log log d .
With a lower bound for mS(d) established, it is also natural to ask for an upper bound on mS(d).
We will prove two results that both imply, as a corollary, that mS(d) ≤ ℓS(d) ≤ (1 + o(1)) log d

log log d ,
and hence, we will conclude that both mS(d) and ℓS(d) are of the form (1 + o(1)) log d

log log d .

3.3.2 Graphs of bounded degeneracy

In this subsection, we will prove that the upper bound in (3.3) can be extended to all graphs of
bounded degeneracy at the expense of a common factor.
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Theorem 3.3.1. Let G be a family of m graphs on a common vertex set V . Suppose each graph
G ∈ G is at most k-degenerate and of maximum degree d. Then, whenever

m ≥ 13(1 + k log(kd)),

G has a cooperative coloring.

Proof. If d ≤ 28, then as 13(1 + log(d)) ≥ 2d, then (3.2) gives us the result. Hence, we assume that
d > 28. Furthermore, if k = 1, then the corollary holds by (3.3), since the 1 + o(1) coefficient in
this theorem is less than 3 for d > 10. Hence, we assume that k ≥ 2. Additionally, if d ≤ 70, then
as 13(1 + 2 log(2d)) ≥ 2d, (3.2) again gives us the result.

By Observation 1.4.5, the graph G = ⋃
H∈G H may be edge-colored in such a way that the

cooperative coloring problem on G is equivalent to the adapted coloring problem on G. Observe
that the maximum degree of G is at most md, and G has an orientation of its edges so that every
vertex has an out-degree of at most mk.

Furthermore, by Theorem 3.2.3, G contains an adapted coloring as long as

m ≥ 2
√
mk[1 + log((mk + 1)md)],

or stronger, as long as m ≥ 4k[1 + log(2m2kd)]. It is enough to prove the corollary just for

m = ⌈13k(1 + log(kd))⌉ ,

which is at most 1√
2k

1.125d1.125 for k ≥ 2 and d > 70. Hence, the corollary holds as long as

m ≥ 4k[1 + log(k3.25d3.25)],

which holds whenever
m ≥ 13k(1 + log(kd)).

This completes the proof.

3.3.3 A lower bound for mS(d)

In this section, we will give a construction that shows that mF (d) ≥ mS(d) ≥ (1 + o(1)) log d
log log d . For

ease of presentation, we will work in the setting of adapted colorings, which is equivalent to the
cooperative coloring setting by Observation 1.4.5.

Theorem 3.3.2. mS(d) ≥ (1 + o(1)) log d
log log d .

Proof. For each value t ≥ 1, we will construct a graph Gt whose edges are colored with {1, . . . , t}
by some function φt and whose monochromatic subgraphs are star forests. We will show that
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1 2 3 4 t+ 1

v

· · ·H1 H2 H3 H4 Ht+1

Figure 3.1: The figure shows the construction of (Gt+1, φt+1) from (Gt, φt). First, we make t + 1
copies H1, . . . ,Ht+1 of Gt, and we obtain an edge-coloring of each Hi from φt by shifting the colors
so that no edge of Hi uses the color i. Then, we add a universal vertex v that is joined to each
vertex in each Hi by an edge of color i. These colored edges are denoted by the numbers above
each Hi. In any cooperative coloring of this new graph using the set {1, . . . , t+ 1}, some vertex of
each Hi must be colored i, and hence there is no available color at v.

(Gt, φt) does not have an adapted coloring with the colors {1, . . . , t}. Then, we will translate the
edge-colored graph (Gt, φt) into a graph family Gt that proves our lower bound.

We will construct the edge-colored graphs (Gt, φt) recursively. First, we let (G1, φ1) be a K2

whose edge is colored with the color 1. Now, suppose we have constructed Gt along with an edge-
coloring φt : E(Gt) → {1, . . . , t}, and suppose that (Gt, φt) does not have an adapted coloring with
the color set {1, . . . , t}. For 1 ≤ i ≤ t+ 1, we define a shift function ψi : {1, . . . , t} → {1, . . . , t+ 1}
so that

ψi(x) =

x 1 ≤ x ≤ i− 1

x+ 1 i ≤ x ≤ t.

Now, we construct (Gt+1, φt+1) first by creating t+1 disjoint copies H1, . . . ,Ht+1 of Gt, where each
Hi is edge-colored with the function ψi ◦ φt. Observe that (Hi, ψi ◦ φt) is isomorphic to (Gt, φt) as
an edge-colored graph, and hence (Hi, ψi ◦ φt) does not have an adapted coloring with the colors
{1, . . . , i− 1, i+ 1, . . . , t+ 1}. Therefore, in any adapted coloring of (Hi, ψi ◦φt) using the color set
{1, . . . , t + 1}, some vertex must be colored i. Now, we construct (Gt+1, φt+1) by first taking our
t + 1 disjoint edge-colored copies (Hi, ψi ◦ φt) of Gt and adding a single new vertex v, and then
adding an edge of color i joining v and each vertex of Hi, for 1 ≤ i ≤ t+ 1. We call this new graph
Gt+1, and we call its edge-coloring φt+1. We sketch the construction of (Gt+1, ϕt+1) from (Gt, ϕt)
in Figure 3.1.

Observe that by construction, all monochromatic subgraphs of (Gt+1, φt+1) are star forests.
Furthermore, for each value 1 ≤ i ≤ t+ 1, some vertex of Hi must be colored with i, and hence no
color from the set {1, . . . , t + 1} is available at v. Therefore, (Gt+1, φt+1) has no adapted coloring
using the set {1, . . . , t+ 1}.

Now, we compute the maximum degree of each monochromatic subgraph of Gt. We write
Vt = |V (Gt)|, and we write ∆t for the maximum number of edges of a single color incident to a
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vertex in (Gt, φt). It is easy to see that ∆1 = 1, V1 = 2, and that the following recursion holds for
t ≥ 2:

∆t = Vt−1

Vt = tVt−1 + 1.

Solving this recurrence, we see that

Vt = V1t
t−1 + tt−2 + · · · + t2 + t1 + 1 = (e+ o(1))t!

∆t = (e+ o(1))(t− 1)!,

where tk = t!/(t− k)! is the falling factorial.
Now, consider a value d, and choose t so that ∆t ≤ d < ∆t+1. We construct (Gt, φt) as above,

and we obtain a graph family Gt = {G1, . . . Gt} on the universal vertex set V (Gt) by letting each
Gi ∈ Gt have an edge set consisting of those edges of color i in (Gt, φt). Observe that each graph in
Gt is a star forest of maximum degree at most d. Furthermore, since (Gt, φt) has no adapted coloring
using the color set {1, . . . , t}, it follows that Gt has no cooperative coloring. Since d ≤ (e+ o(1))t!,
it follows that t ≥ (1 + o(1)) log d

log log d . Hence, mS(d) ≥ (1 + o(1)) log d
log log d , completing the proof.

3.3.4 A partition lemma and an upper bound on ℓS(d)

In this section, we aim to show that ℓS(d) ≤ (1 + o(1)) log d
log log d . In order to prove this upper bound,

we establish a partition lemma, which essentially shows that if H is a graph class whose graphs can
be vertex-partitioned into members of classes A and B for which ℓA(d) and ℓB(d) are not too large,
then ℓH(d) is also not too large. While proving the partition lemma, it is essential that we work in
the setting of cooperative list colorings rather than the setting of cooperative colorings.

While we can use our partition lemma to prove the upper bound ℓS(d) ≤ (1 + o(1)) log d
log log d

directly, we will see that the lemma gives us stronger results that imply this upper bound on ℓH(d)
as a corollary. We will prove two results that both show an upper bound on ℓH(d) for some graph
class H based on certain forest structures in the graphs of H, and both of these results will imply
that ℓS(d) ≤ (1 + o(1)) log d

log log d .
Our partition lemma is as follows.

Lemma 3.3.3. Let H, A, and B be graph classes, and let t = t(d) be a function of d. Suppose that

• Each graph G ∈ H of maximum degree at most d can be vertex-partitioned into sets A and B
so that G[A] ∈ A and G[B] ∈ B, and so that each vertex in A has at most t neighbors in B,

• ℓA(d) = o(log d),

• ℓB(d)t = o(log d).
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Then,
ℓH(d) ≤ (1 + o(1)) log d

log log d− log(ℓB(d)t) + ℓA.

It may help the reader first to visualize A = B as the class of edgeless graphs and to visualize
H = S as the class of star forests. In this special case, for each star forest G ∈ H, we may
let A denote the leaf set of G and let B denote the set consisting of the centers of the star
components of G. In this special case, ℓA(d) = ℓB(d) = t = 1, so the lemma immediately implies
that ℓS(d) ≤ (1 + o(1)) log d

log log d .

Proof. We fix a value d, and we consider a family G = {G1, . . . , Gk} of graphs from H of maximum
degree at most d whose vertex sets are subsets of a universal vertex set V . We will write ℓA = ℓA(d)
and ℓB = ℓB(d). We assume without loss of generality that each vertex v ∈ V belongs to exactly ℓ
graphs in G. We will show that for each γ > 0, if ℓ = (1 + γ) log d

log log d−log(ℓBt) + ℓA, then when d is
sufficiently large, G has a cooperative list coloring.

We let ε > 0 be a sufficiently small constant (which is at most 1). For each graph Gi ∈ G, we
suppose that V (Gi) can be partitioned into sets Ai and Bi satisfying the properties of A and B

in the lemma’s hypothesis. Note that if every vertex of V belongs to at most ε(ℓ − ℓA) sets Bi,
then every vertex of V must belong to at least ℓ− ε(ℓ− ℓA) ≥ ℓA sets Ai, and hence a cooperative
list coloring on V can be found by taking independent subsets of the graphs Gi[Ai]. Therefore, we
assume that for some nonempty set U ⊆ V of vertices, each vertex u ∈ U belongs to more than
ε(ℓ− ℓA) sets Bi.

Before we proceed to the next step of our proof, we need to show that ℓB < ε(ℓ− ℓA). To show
this, we use the third condition of the lemma to write ℓBt = log d/f , for some unbounded function
f for which infx∈[d,∞] f(x) is increasing with respect to d, which is possible by the third condition
of the lemma. Then, we observe that when d is large, log d · log f

f < ε log d, which implies

ℓBt = log d/f < ε log d
log f = ε log d

log log d− log(log d/f) = ε log d
log log d− log(ℓBt)

< ε(ℓ− ℓA),

which is even stronger than what we needed to show.
Now, for each vertex u ∈ U , we write Bu for the family of all sets Bi containing u, for 1 ≤ i ≤ k.

Then, we choose a family B′
u of exactly ℓB sets Bi uniformly at random (without replacement) from

Bu, and we write Cu = {i : Bi ∈ B′
u}. This is possible due to the fact that |Bu| ≥ ε(ℓ− ℓA) and the

inequality that we have just shown. We assign each vertex u a color from Cu so that G[U ] receives
a cooperative list coloring, where G[U ] = {G[U ∩ V (G)] : G ∈ G}. Note that this is possible, since
|Cu| = ℓB for each vertex u ∈ U , and since u ∈ Gi[Bi] for each i ∈ Cu. After this assignment, if
a vertex v ∈ V has a neighbor u ∈ U via a graph Gj and u is assigned the color j, we then say
that j is unavailable at v. If v ∈ Aj and the color j is not unavailable at v, then we say that j is
available at v. Observe that if each uncolored vertex v ∈ V has at least ℓA available colors, then we
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may extend our cooperative list coloring on G[U ] to a cooperative list coloring on G. Therefore, for
each vertex v ∈ V \ U , we define a bad event Xv, which is the event that fewer than ℓA colors are
available at v. The bad event Xv depends on at most tℓ neighbors of v, each of which has at most
dℓ neighbors. Therefore, Xv is dependent with at most ℓ2td+ tℓ < 2ℓ2td other bad events. We will
use the Lovász Local Lemma (Lemma 1.7.2) to show that with positive probability, no bad event
occurs and that we can hence find a cooperative coloring of G.

Now, consider a vertex v ∈ V \ U . Suppose that v ∈ Aj for some value j. Recall that v has
at most t neighbors u ∈ Bj via Gj , and each such neighbor u belonging to U is colored from a
randomly chosen set Cu of ℓB potential colors. The probability that a given vertex u ∈ U ∩NGj (v)
is assigned the color j is at most the probability that j ∈ Cu, which is at most ℓB

ε(ℓ−ℓA) . Therefore,
the probability that j is unavailable at v is at most ℓBt

ε(ℓ−ℓA) . Note that this argument remains true
even if it is given that some other set of colors has already been made unavailable at v. Therefore,
since v belongs to at least ℓ− ε(ℓ− ℓA) sets Ai, Pr(Xv) is bounded above by the probability that
more than

ℓ− ε(ℓ− ℓA) − ℓA = (1 − ε)(ℓ− ℓA)

colors are made unavailable at v, which is at most(
ℓ

(1 − ε)(ℓ− ℓA)

)(
ℓBt

ε(ℓ− ℓA)

)(1−ε)(ℓ−ℓA)
< 2ℓ

(
ℓBt

ε(ℓ− ℓA)

)(1−ε)(ℓ−ℓA)
.

Since each bad event Xv is dependent with fewer than 2ℓ2td other bad events, the Local Lemma
(Lemma 1.7.2) tells us that all bad events are avoided with positive probability as long as

2ℓ
(

ℓBt

ε(ℓ− ℓA)

)(1−ε)(ℓ−ℓA)
· 2ℓ2td · e ≤ 1.

Equivalently, by taking the natural logarithm on both sides, no bad event occurs with positive
probability as long as

ℓ log 2 + (1 − ε)(ℓ− ℓA)(log(ℓBt) − log ε− log(ℓ− ℓA)) + log 2 + 2 log ℓ+ log t+ log d+ 1 ≤ 0.

This inequality can be written more simply as follows:

(1 − ε+ o(1))(ℓ− ℓA)(log(ℓBt) − log(ℓ− ℓA)) + (1 + o(1)) log d ≤ 0.

We claim that this inequality holds when d is sufficiently large and ε is sufficiently small. Recall
that ℓ = (1+γ) log d

log log d−log(ℓBt) + ℓA. When we substitute this value for ℓ and assume d is large, we can
first write the inequality as

(1 − ε+ o(1))
( (1 + γ) log d

log log d− log(ℓBt)

)
(log(ℓBt) − log log d) + (1 + o(1)) log d ≤ 0,
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or more simply,
−(1 − ε+ o(1))(1 + γ) log d+ (1 + o(1)) log d ≤ 0,

which holds when ε is sufficiently small and d is sufficiently large. Therefore, with positive prob-
ability, our random procedure allows us to complete a cooperative list coloring of G. Since γ > 0
can be arbitrarily small, this completes the proof.

As mentioned before, we can use Lemma 3.3.3 directly to prove that ℓS(d) ≤ (1 + o(1)) log d
log log d ,

which shows that the lower bound in Theorem 3.3.2 is best possible up to the o(1) function. We
will see that Lemma 3.3.3 also implies much stronger results, and we will prove two such results
that both imply this upper bound on ℓS(d) as a corollary.

For the first of our results, we will need some definitions. Given a rooted tree T with a root r,
the height of a vertex v in T is the distance from v to r, and the height of T is the maximum height
achieved over all vertices v ∈ V (T ). Given integers q ≥ 1 and h ≥ 1, a q-ary tree of height h is a
rooted tree in which every vertex of height at most h− 1 has exactly q children. Given an integer
k ≥ 1, we write log(k) d = log log . . . log︸ ︷︷ ︸

k times

d. Then, we have the following result.

Theorem 3.3.4. Let q ≥ 2 and h ≥ 1 be fixed integers. If H is a family of graphs with no q-ary
tree of height h as a subgraph, then

ℓH(d) ≤ (1 + oq,h(1)) log d
log(h) d

+Oq(1).

Proof. We will prove the theorem by induction on h. When h = 1, then our hypothesis implies that
each graph of H has maximum degree q − 1. Hence, by (3.2), it holds that ℓH(d) ≤ 2q − 2, which
is certainly of the form Oq(1). Hence, the theorem holds when h = 1.

Now, suppose that h ≥ 2 and that the graphs of H contain no q-ary tree of height h as a
subgraph. We write t = 2qh. We consider a graph G ∈ H, and we let A ⊆ V be the set of all
vertices v ∈ V for which degG(v) < t. Now, we claim that G \ A has no q-ary tree subgraph of
height h − 1. Indeed, suppose that G \ A contains a q-ary tree T of height h − 1 as a subgraph.
Since no vertex of T belongs to A, this implies that every vertex of T must have degree at least k
in G. However, since

t = 2qh > (qh−1 − 1)q + 2qh−1 > (qh−1 − 1)q + |V (T )|,

we hence can greedily choose a set Nx of q neighbors in NG(x) ∩ (V (G) \V (T )) for each of the qh−1

leaves x ∈ V (T ) in such a way that the sets Nx are pairwise disjoint. Then, by taking the union of
T and the sets Nx, we have a q-ary tree of height h in G, a contradiction. Thus, we conclude that
G \A has no q-ary tree of height h− 1.
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Now, for each G, we define the set A as described above, and we let B = V (G) \ A. By
construction, each vertex of A as at most t neighbors in B via the graph G. Furthermore, G[A]
belongs to the family A of graphs of maximum degree t, which satisfies ℓA(d) ≤ 2t by Theorem
1.4.6, and G[B] belongs to the family B of graphs with no subgraph isomorphic to a q-ary tree of
height h. By the induction hypothesis, it holds that ℓB(d) ≤ (1+oq,h(1)) log d

log(h−1) d
+Oq(1). Therefore,

we can apply Lemma 3.3.3.
By applying Lemma 3.3.3 and recalling that k and ℓA(d) are constants depending on q and h,

we conclude that
ℓH(d) ≤ (1 + oq,h(1)) log d

log log d− log(ℓB) .

As h ≥ 2, it holds that log ℓB(d) = log log d− log(h) d+Oq,h(1), and thus the theorem is proven.

To use Theorem 3.3.4 to prove that ℓS(d) ≤ (1 + o(1)) log d
log log d , consider a binary tree of height

2, which has 7 vertices and 4 leaves. Since no star forest contains this binary tree as a subgraph,
the upper bound on ℓS(d) follows from Theorem 3.3.4 with q = h = 2.

Next, we show that if H is a graph class whose graphs have a certain quotient of bounded
treedepth, then ℓH(d) can be bounded above. For this next theorem, we will need some more defi-
nitions. If G is a graph and U1, . . . , Uk is a partition of V (G), then the quotient graph G/(U1, . . . , Uk)
is the graph on k vertices obtained by contracting each part Ui to a single vertex and deleting all
resulting loops and parallel edges.

Given a rooted tree T with a root r, we define the closure of T as the graph on V (T ) in which
two vertices u, v ∈ V (T ) are adjacent if and only if u and v form an ancestor-descendant pair.
Given a rooted forest F , in which each tree component has a root, the closure of F is the union of
the closures of the components of F . For a graph G, if there exists a rooted tree T of height h− 1
such that G is a subgraph of the closure of T , then we say that the treedepth of G is at most h.
The reason for this “off-by-one error" is that if T has height h− 1, then the longest path in T with
the root as an endpoint contains exactly h vertices.

With these definitions in place, we are ready for our second theorem implying that ℓS(d) ≤
(1 + o(1)) log d

log log d .

Theorem 3.3.5. Let 0 < ε < 1
2 be a fixed value. Let H be a graph class for which each graph

G ∈ H has a partition into parts U1, . . . , Uk of size at most t = (log d)ε, so that each component of
the quotient graph G/(U1, . . . , Uk) has treedepth at most h. Then, ℓH(d) ≤ h−1+oh(1)

1−2ε · log d
log log d .

Proof. We prove the theorem by induction on h. When h = 1, for each graph G ∈ H, the quo-
tient graph G/(U1, . . . , Uk) is an independent set, so each component of G has at most t vertices.
Therefore, ℓH(d) < 2t = o

(
log d

log log d

)
by (3.2).

Now, suppose that h ≥ 2. Consider a graph G ∈ H. Let F be a rooted forest subgraph of
G/(U1, . . . , Uk) in which each component has height at most h − 1 and so that the closure of F
contains G/(U1, . . . , Uk). We partition V (G) into parts A and B so that B contains the sets Ui
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corresponding to the roots of F and A contains all other vertices of G. Observe that each component
of G[B] contains at most t vertices, and each component K of G[A] can be partitioned using the
sets Ui so that the quotient graph of K with respect to this partition has treedepth at most h− 1.
Finally, observe that a vertex v ∈ A is adjacent to a given vertex u ∈ B only if v belongs to a set
Ui, Uj is the root ancestor of Ui in F , and u ∈ Uj . Hence, each vertex v ∈ A has at most |Uj | ≤ t

neighbors in B.
Now, we apply Lemma 3.3.3 to H. We let A be the graph class defined to satisfy the same

conditions of H except with h replaced by h − 1, and we let B be the class of graphs whose
components each have at most t vertices. By the induction hypothesis, ℓA(d) ≤ (h−2+oh(1))

1−2ε · log d
log log d ,

and ℓB(d) < 2t by (3.2). Since 2t2 = o(log d), all of the hypotheses Lemma 3.3.3 are satisfied, and
we can apply the lemma to H.

By applying Lemma 3.3.3 and using the induction hypothesis, we see that

ℓH(d) ≤ (1 + o(1)) log d
log log d− 2 log t + h− 2 + o(1)

1 − 2ε · log d
log log d = h− 1 + o(1)

1 − 2ε · log d
log log d.

Hence, the theorem is proven.

In order to use Theorem 3.3.5 to prove that ℓS(d) ≤ (1 + o(1)) log d
log log d , we observe that if G is

a star forest, then every component of G has treedepth at most 2, so we can apply Theorem 3.3.5
with h = 2 and obtain the upper bound.

3.3.5 Conclusion

By combining (3.3) and Theorem 3.3.2, we obtain the following inequality:

(1 + o(1)) log d
log log d ≤ mS(d) ≤ mF (d) ≤ ℓF (d) ≤ (1 + o(1)) log4/3 d.

While this inequality is certainly much tighter than (3.3), the correct asymptotic growth rates for
mF (d) and ℓF (d) remain open. While we do not have a conjecture for the correct growth rates of
these quantities, we remark that if mF (d) = Θ(log d), then Theorem 3.3.4 gives a strong necessary
condition for forest families that demonstrate this growth rate. Namely, suppose that {Gd}d≥1 is
a sequence of forest families such that |Gd| = Θ(log d), the forests of Gd have maximum degree at
most d, and Gd has no cooperative coloring. Then, Theorem 3.3.4 implies that for each finite tree
T , T must appear as a subgraph of infinitely many forests from the families in {Gd}d≥1.
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Chapter 4

The hat guessing game

4.1 Introduction

Recall that the hat guessing game is a graph coloring problem defined as follows. We have a graph
G, a set S = {1, . . . , k} of colors, and a family Γ = {Γv}v∈V (G) of functions, where each function is
a mapping Γv : SN(v) → S. We say that the hat guessing number of G is less than k if, for every
family Γ = {Γv}v∈V (G) of functions, there always exists a coloring ϕ : V (G) → S so that no vertex
v satisfies ϕ(v) = Γv(ϕ(N(v))). We write HG(G) for the hat guessing number of G. In Chapter 1,
we show that this problem can also be described as a game in which players try to guess the colors
of their hats.

In this chapter, we will establish an upper bound on the hat guessing number of outerplanar
graphs (Theorem 1.5.2), as well as an upper bound on a larger class of planar graphs, which we call
layered planar graphs (Theorem 1.5.3). The chapter will be organized as follows. In Section 4.2, we
will introduce some important tools that we will need for our two main theorems. In Section 4.3, we
will show that every outerplanar graph has a vertex partition satisfying certain key properties, and
then with the help of the tools introduced in Section 4.2, we will prove Theorem 1.5.2. In Section
4.4, we will use a similar strategy to extend our methods beyond outerplanar graphs and prove
Theorem 1.5.3. Finally, in Section 4.5, we will show that if an upper bound can be obtained for a
certain stronger version of the hat guessing number on planar graphs, then an upper bound on the
hat guessing number can be obtained for all graphs of bounded genus.

4.2 Multiple guesses, vertex partitions, and edge density

In this section, we will outline three key tools that we will use to prove Theorem 1.5.2 and 1.5.3.
These tools use a modified version of the hat guessing game in which each player attempts to guess
his hat color s times (without hearing the guesses of the other players). Given a graph G and an
integer s ≥ 1, if k is the maximum integer for which the players on G, when assigned hats from the
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color set {1, . . . , k}, have a strategy that guarantees at least one correct hat color guess when each
player is allowed to guess s times, then we write HGs(G) = k.

The first of our tools follows from a simple application of Lovász’s Local Lemma [34]; see [38]
for more details.

Lemma 4.2.1. Let s ≥ 1 be an integer. If G is a graph of maximum degree ∆, then HGs(G) <
(∆ + 1)es.

Our next tool tells us that if the vertices of a graph can be partitioned into sets satisfying certain
conditions, then the hat guessing number of the graph is bounded. This tool was introduced by
Bosek et al. [18].

Lemma 4.2.2 ([18]). Let s ≥ 1 be an integer. Let G be a graph, and let V (G) = A∪B be a partition
of the vertices of G. If each vertex in A has at most d neighbors in B, then HGs(G) ≤ HGs′(G[A]),
where s′ = s(HGs(G[B]) + 1)d.

By using the same approach originally used in [18], we can prove the following more general
version of Lemma 4.2.2. Note that Lemma 4.2.2 is obtained from the following lemma by setting
k = 2, V1 = A, and V2 = B.

Lemma 4.2.3. Let s ≥ 1 be an integer. Let G be a graph with a vertex partition V (G) = V1∪· · ·∪Vk,
and let ℓ1, . . . , ℓk be positive integers. Assume that for each pair i, j satisfying 1 ≤ i < j ≤ k, each
vertex v ∈ Vi has at most di,j neighbors in Vj. For 1 ≤ i ≤ k − 1, define

si = sℓ
di,i+1
i+1 · ℓdi,i+2

i+2 · · · · · ℓdi,k

k ,

and define sk = s. If, for each value 1 ≤ i ≤ k, it holds that

HGsi(G[Vi]) < ℓi,

then HGs(G) < max{ℓ1, . . . , ℓk}.

Proof. For 1 ≤ i ≤ k, we fix a list of exactly ℓi colors at each vertex in Vi, and we consider the
game in which each player makes s guesses. We will prove the following statement:

For each value 1 ≤ i ≤ k, if the hat colors on V1 ∪ · · · ∪ Vi−1 are already fixed, then
there exists a hat assignment on Vi for which no vertex in Vi correctly guesses its hat
color, regardless of how Vi+1 ∪ · · · ∪ Vk is colored.

By iteratively applying this statement for each value 1 ≤ i ≤ k, we obtain a winning hat assignment
on G that uses at most max{ℓ1, . . . , ℓk} colors, proving the lemma.

To prove this statement, consider a value 1 ≤ i ≤ k, and assume that hat colors are fixed
on V1 ∪ · · · ∪ Vi−1. With these hat colors fixed, every vertex in Vi has a hat guessing function

47



depending only on G[Vi ∪ · · · ∪ Vk]. Furthermore, for each vertex v ∈ Vi, every possible coloring of
N(v) ∩ (Vi+1 ∪ · · · ∪ Vk) gives v a unique guessing function depending only on G[Vi], and there are
ℓ

di,i+1
i+1 . . . ℓ

di,k

k possible colorings of N(v) ∩ (Vi+1 ∪ · · · ∪Vk). Therefore, with color lists fixed at every
vertex of Vi+1 ∪ · · · ∪ Vk, for each hat assignment on G[Vi], v will guess from a total of at most si

possible guesses. (Note that when i = k, the set Vi+1 ∪· · ·∪Vk is empty, so v guesses from a total of
sk = s guesses.) By our assumption, we may assign each vertex of Vi a hat from its set of ℓi colors
in such a way that no vertex of G[Vi] guesses its hat color correctly, even with si guesses. We give
G[Vi] such a hat assignment, and since each vertex v ∈ Vi guesses from a set of at most si colors,
no vertex of Vi guesses its hat color correctly. This completes the proof.

Finally, we will define a third tool that we will need for Theorems 1.5.2 and 1.5.3. Our last tool
relies heavily on theory related to a Turán-type edge density problem. We will need some definitions.
First, an r-partite r-uniform hypergraph H is defined as a set V of vertices and a collection E of
r-tuples from V , satisfying the following property: V can be partitioned into r parts V1, . . . , Vr

so that every r-tuple in E intersects each part Vi at exactly one vertex. We often use the term
r-partite r-graph to refer to an r-partite r-uniform hypergraph, and we often call the r-tuples in E
edges. We say that an r-partite r-graph is balanced if |V1| = · · · = |Vr|. We say that an r-partite
r-graph K is complete if it contains every possible edge e satisfying |e ∩ Vi| = 1 for each vertex
part Vi, and if K is also balanced and has rℓ vertices, then we write K = K

(r)
ℓ . Next, for integers

r ≥ 1, ℓ ≥ r, and n ≥ ℓ, we define the quantity E(r)(n, ℓ) to be the maximum number of edges in a
balanced r-uniform r-graph with rn vertices and with no complete K(r)

ℓ subgraph. Since a balanced
r-uniform r-graph with rn vertices and nr edges certainly must contain such a subgraph, we see
that E(r)(n, ℓ) is well-defined and less than nr.

We give several examples of the quantity E(r)(n, ℓ). When r = 1, an r-partite r-graph is simply
a collection of vertices in which some of these vertices are also called edges, and a K

(1)
ℓ is simply

a collection of ℓ of these “edges." Any 1-partite 1-graph with at least ℓ edges clearly must contain
a K(1)

ℓ , so for all 1 ≤ ℓ ≤ n, E(1)(n, ℓ) = ℓ − 1. When r = 2, the quantity E(2)(n, ℓ) describes the
maximum number of edges in a balanced bipartite graph on 2n vertices containing no copy of Kℓ,ℓ.
The question of determining the precise value of E(2)(n, ℓ) is a special case of a classic problem of
Zarankievicz, which asks how many edges a bipartite graph on m + n vertices can have without
containing a copy of Ks,t. This problem of Zarankiewicz has a long history and has led to many
beautiful results; see [42] for an extensive survey of this area of combinatorics.

For our final tool, we will need the following theorem of Erdős [33], which gives an upper bound
for E(r)(n, ℓ). The original result of Erdős assumes that n is sufficiently large, but we will need a
result that holds even for small n, so we present a slightly modified form of Erdős’s original result.

Lemma 4.2.4. Let r ≥ 2, let H be a balanced r-partite r-graph with rn vertices, and let 2 ≤ ℓ ≤ n.
If |E(H)| ≥ 3nr− 1

ℓr−1 , then H contains a copy of the r-graph K(r)
ℓ .
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Proof. The proof of the lemma is very similar to the original proof of Erdős, and we defer the proof
to the appendix.

Before we introduce our last tool for proving Theorem 4.3.5, we will need some more definitions.
For a graph G and a vertex subset U ⊆ V (G), we write N(U) for the set of vertices with at least
one neighbor in U . Given a graph G with a vertex partition V1, . . . Vt, we define the quotient graph
G/(V1, . . . , Vt) as the graph obtained from G by contracting each part Vi and deleting loops and
parallel edges. In other words, G/(V1, . . . , Vt) has t vertices v1, . . . , vt, and vi is adjacent to vj if
and only if some edge in G joins a vertex of Vi to a vertex of Vj .

We are now ready for our last main tool for proving Theorem 4.3.5. The following result, which
is useful for bounding the hat guessing number of outerplanar and layered planar graphs, is also
interesting in its own right. Our proof of this result uses key ideas from the proof of Butler et al. [25]
that HG(T ) = 2 for every tree T on at least two vertices.

Theorem 4.2.5. Let r, s ≥ 1 be integers. Let G be a graph, and let V1, . . . , Vt be a partition of V (G)
such that the quotient graph G/(V1, . . . , Vt) is a tree. Suppose that for each distinct pair Vi, Vj, it
holds that |N(Vi) ∩ Vj | ≤ r. If HGs(G[Vi]) < ℓ for all 1 ≤ i ≤ t, then HGs(G) ≤ (3ℓ)rℓr−1 when
r ≥ 2, and HGs(G) ≤ ℓ(ℓ− 1) when r = 1.

Proof. We would like to assume that for each Vi, every neighboring set Vj satisfies |N(Vi)∩Vj | = r.
This can be achieved by adding isolated vertices to each neighboring set Vj and then adding
edges between these new vertices and vertices of Vi. These extra vertices will not cause any of our
hypotheses to be violated, nor will they decrease the hat guessing number of G.

We let k = (3ℓ)rℓr−1 + 1 when r ≥ 2, and we let k = ℓ(ℓ− 1) + 1 when r = 1. We aim to show
that HGs(G) < k. We first make the following claim.

Claim 4.2.6. ℓr E(r)(k, ℓ) < kr.

Proof. When r = 1, the claim asserts that ℓ(ℓ− 1) < k, which is clearly true. When r ≥ 2, Lemma
4.2.4 states that E(r)(k, ℓ) < 3kr− 1

ℓr−1 . Then, ℓr E(r)(k, ℓ) < 3ℓrk− 1
ℓr−1 kr < kr.

Now, we fix a guessing strategy Γ = {Γv}v∈V (G) on G. We prove the following stronger state-
ment.

Let 1 ≤ i ≤ t. If every vertex in Vi has a list of ℓ colors and every other vertex in G has
a list of k colors, then the adversary has a winning hat assignment.

We induct on t. When t = 1, the statement holds from the fact that HGs(G[V1]) = HGs(G) < ℓ.
Now, suppose t > 1, and let i be some value satisfying 1 ≤ i ≤ t. We must show that if every vertex
in Vi has a list of ℓ possible hat colors and every other vertex of G has a list of k possible hat colors,
then the adversary has a winning hat assignment.

49



In each neighboring set Vj of Vi, there exists a set Uj ⊆ Vj of exactly r vertices that have
neighbors in Vi, and there also exists a set Wj ⊆ Vi of exactly r vertices that are neighbors of Uj .
We write Cj for the component of G \ Vi containing Vj . If a hat assignment α on Wj is fixed, then
Γ determines a unique hat guessing strategy on Cj . Furthermore, by the induction hypothesis, if
each vertex of Cj has the color list {1, . . . , k}, then with α fixed, the adversary has a winning hat
assignment on Cj . We let Bα,j be the set of hat assignments on Cj that cause the adversary to win
the restricted game on Cj when the players use the hat guessing strategy determined by α. Then,
we let Aα,j be the set of distinct colorings of Uj that can be obtained by restricting an assignment
from Bα,j to Uj . We see from the induction hypothesis that Aα,j is nonempty. Now, we make the
following claim:

Claim 4.2.7. If α is a fixed hat assignment on Wj, then Aα,j contains at least rk − E (r)(k, ℓ)
distinct colorings.

Proof. Suppose that Aα,j contains at most rk − E (r)(k, ℓ) − 1 distinct colorings. We construct a
balanced r-partite r-graph H on kr vertices as follows. We write Uj = {u1, . . . , ur}. Then, we let
the kr vertices of H be indexed by (up, q), where up ∈ Uj and 1 ≤ q ≤ k. Finally, for each hat
assignment in Aα,j in which each vertex up ∈ Uj is given a hat of some color γp, we add an edge to
H of the form {(u1, γ1), (u2, γ2), . . . , (ur, γr)}. Now, since Aα,j has at most rk − E(k, r) − 1 edges, it
follows that the complement r-graph H contains at least E(r)(k, ℓ) + 1 edges, and hence H contains
a copy of K(r)

ℓ . In other words, there exist sets L1 ⊆ {1, . . . , k}, . . . , Lr ⊆ {1, . . . , k}, each of size ℓ,
such that Aα,j contains no hat assignment in which each vertex up is assigned a hat with a color
from Lp. It then follows that when each vertex up ∈ Uj is given the color list Lp and every other
vertex of Cj is given a list of k colors, the adversary has no winning hat assignment on Cj using
these lists. However, this contradicts the induction hypothesis applied to Cj and with Vj instead of
Vi. Thus, the claim holds.

Now, for each component Cj , we compute Aα,j for each of the ℓr hat assignments α on Wj

using the pre-assigned lists of size ℓ. Since ℓr E(r)(k, ℓ) < kr, for each j, the intersection ⋂αAα,j is
nonempty by the pigeonhole principle, where α is taken over the ℓr hat assignments on Wj . Hence,
for each j, we can choose an assignment Aj from this intersection, and we use Aj to assign hats to
the vertices in Uj .

Next, with hats already assigned to each Uj , the vertices in Vi have a fixed guessing strategy
that depends only on the hat assignment at Vi. Since HGs(G[Vi]) < ℓ, we can assign each vertex in
Vi a hat in such a way that no vertex guesses its hat color correctly.

Finally, with colors assigned to Vi, we argue that we can complete a hat assignment on each
component Cj in such a way that no vertex in Cj guesses its hat color correctly. Since Vi has already
been colored, a coloring α on Wj is fixed, and hence the adversary can give a winning assignment to
Cj if and only if some assignment Bj ∈ Bα,j extends the already fixed coloring Aj at Uj . However,
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since Aj ∈ Aα,j , the set of restricted assignments of Bα,j , such a winning assignment Bj must exist
by definition. Therefore, we use Bj to color Cj , and hence no vertex in Cj will guess its hat color
correctly. By repeating this process for each component Cj , we assign hats to all remaining vertices
in such a way that no vertex will guess its hat color correctly.

4.3 Outerplanar graphs

In this section, we prove Theorem 1.5.2, showing that the hat guessing number of outerplanar
graphs is bounded. We need some definitions and lemmas.

Definition 4.3.1. We define a petal graph G to be a graph obtained from a (possibly empty) path
P by adding a vertex v adjacent to every vertex of P . We say that v is the stem of G. Then, we
define a petunia to be a graph in which every block is a subgraph of a petal graph.

We note that a petal graph is an example of a fan graph, which is constructed from a path and
a coclique joined by a complete bipartite graph. We use the term petunia rather than flower so as
not to be confused with other uses of the word flower in combinatorics (e.g. [11]). In the following
lemma, we show that petunias admit a vertex partition satisfying the conditions described in
Theorem 4.2.5.

Lemma 4.3.2. If G is a petunia, then V (G) can be partitioned into forests F1, . . . , Ft such that the
quotient graph G/(F1, . . . , Ft) is a forest and such that for each distinct pair i, j, |N(Fi)∩V (Fj)| ≤ 3.

Proof. We add edges to G until every block of G is a petal graph. Then, we will color V (G) red and
blue, and we will let each maximal connected monochromatic subgraph of G give the vertex set of
a tree Fi. After removing our extra edges from G, the subgraphs F1, . . . , Ft will make a family of
forests satisfying the conditions of the lemma.

We give a general procedure for how to color the vertices of a block H of G with red and blue.
We let H consist of a stem v and a path P . If v is colored with either color, then we color the path
P formed by the non-stem vertices of H so that P alternates between red and blue. If a vertex
w ∈ V (P ) is colored with either color, then extend the coloring of w to the entire path P formed by
the non-stem vertices of H so that P alternates between red and blue. Then, we color v with either
color. Then, to color G, we begin by coloring a vertex of each component of G with an arbitrary
color, and then we extend the coloring using the procedure we have described. After G is colored,
we observe that each maximal connected monochromatic subgraph of G intersects each block of G
either in a star or at a single vertex, and these single vertices form an independent set. Therefore,
each maximal connected monochromatic subgraph of G is a tree (which may span several blocks),
and these trees give a partition F1, . . . , Ft of V (G).

We argue that for a pair i, j, the tree Fi has at most three neighbors in Fj . If Fi has at most one
neighbor in Fj , then we are done. Otherwise, choose vertices u, v ∈ V (Fi) so that u has a neighbor
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x ∈ V (Fj) and v has a neighbor y ∈ V (Fj) distinct from x. Since Fi is a tree, there exists a path
P (possibly of length 0) in Fi from u to v, and similarly, there exists a path Q in Fj from x to y.
Then, V (P ) ∪ V (Q) gives the vertex set of a cycle C in G, and C must belong to a single block H
of G. It then follows that every vertex in N(Fi) ∩ V (Fj) belongs to the block H. Thus it is easy to
see from our construction of F1, . . . , Ft that Fi has at most three neighbors in Fj .

Finally, we argue that the quotient graph G/(F1, . . . , Ft) is a forest. Suppose that this quotient
graph contains a cycle C. We assume without loss of generality that F1 belongs to C, with neighbors
F2 and F3. Using a similar argument to that above, there exists a cycle C ′ in G that visits Fi, then
Fi+1, and then later visits Fi+2 without once again visiting Fi (with i ∈ {1, 2, 3} and addition
“wrapping around"). Since C ′ is two-connected, C ′ must belong to a single block H of G. However,
again, because H is partitioned by the trees Fi into a star and single independent vertices, the cycle
C ′ cannot satisfy these properties. Therefore, the quotient graph G/(F1, . . . , Ft) is a forest.

Lemma 4.3.2 shows that the hypotheses of Theorem 4.2.5 hold for petunias with r = 3. There-
fore, we can obtain an upper bound on the hat guessing number of petunias as follows.

Theorem 4.3.3. If G is a petunia, then HGs(G) ≤ (3s2 + 3s+ 3)3(s2+s+1)2.

Proof. We partition G into forests Fi as described in Lemma 4.3.2. By Theorem 4.2.5 (and also
by a result of Bosek et al. [18]), each forest Fi satisfies HGs(Fi) ≤ (s + 1)s. Then, by applying
Theorem 4.2.5 to each component of G with r = 3 and ℓ = (s+ 1)s+ 1, we obtain the result.

In order to prove Theorem 1.5.2, we will need one more lemma. In the following lemma, we show
that using the notion of petunias, we can find a useful vertex decomposition of any outerplanar
graph.

Lemma 4.3.4. If G is an outerplanar graph, then V (G) can be partitioned into two sets A and B
such that G[A] is a petunia, B is an independent set, and each vertex of A is adjacent to at most
three vertices of B.

Proof. If |V (G)| ≤ 1, then we let A = V (G), and we are done. Otherwise, we assume |V (G)| ≥ 2.
Since the class of petunias is closed under taking subgraphs, we may add edges to G until G is a
maximal outerplanar graph (or equivalently an outerplanar triangulation whenever |V (G)| ≥ 3),
and doing so will not make our task any easier.

We prove the following stronger claim:

Let G be a maximal outerplanar graph on at least two vertices, and let uv be an edge
of G oriented from u to v. Then V (G) can be partitioned into two sets A and B such
that the following hold:

1. G[A] is a petunia containing uv;

2. B is an independent set;
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3. u is not adjacent to any vertex of B;

4. v is adjacent to at most two vertices of B;

5. Every other vertex of G is adjacent to at most three vertices of B.

We prove the statement by induction on |V (G)|. If |V (G)| = 2, then again letting A = V (G) satisfies
the claim. Now, suppose that |V (G)| ≥ 3, and let uv ∈ E(G). We fix an outerplanar drawing of G.
Since G is an outerplanar triangulation, it follows that G is 2-connected, and hence G contains a
Hamiltonian cycle C separating the outer face of G from all other faces.

We begin to construct our sets A and B as follows. We first add all vertices in N [u] to A. Note
that N [u] induces a petunia in G. Now, let t = deg(u), and write w1 and wt for the neighbors
of u via C, and assume without loss of generality that the neighbors of u, in clockwise order, are
w1, w2, . . . , wt. We observe that any given component K of G \ N [u] is separated from the rest of
G by two vertices of the form wi, wi+1, for some 1 ≤ i ≤ t − 1. We show an example of such a
component K in Figure 4.1.

Now, if N [u] contains all vertices of G, then it is easy to check that we are done. Otherwise, let
K be some component of G \ N [u], and let K be separated from the rest of G by wi, wi+1. Since
G is an outerplanar triangulation, uwi and uwi+1 lie on some triangle T in the interior of C, so
wi and wi+1 are adjacent. Furthermore, since wi and wi+1 separate some component K from the
rest of G, it must follow that the edge wiwi+1 does not belong to C, and hence T shares the edge
wiwi+1 with a second triangle T ′ in the interior of C. The triangle T ′ includes the vertices wi and
wi+1, along with a third vertex xi. We add xi to B, and we add all neighbors of xi to A.

Now, let the neighbors of xi, in clockwise order, be y1, . . . , ys, with y1 = wi and ys = wi+1. Let
yj and yj+1 be neighbors of xi along C. Since G is an outerplanar triangulation, it follows that G
contains the edge yαyα+1 for 1 ≤ α ≤ j−1, as well as for j+1 ≤ α ≤ s−1. Now, for 1 ≤ α ≤ j−1,
we orient the edge yαyα+1 from yα to yα+1. Then, for j + 1 ≤ α ≤ s− 1, we orient the edge yαyα+1

from yα+1 to yα. Finally, for each value α ∈ [s − 1] \ j, we apply the induction hypothesis to the
outerplanar subgraph of G that is either 2-connected or isomorphic to K2 whose outer facial walk
is given by the edge yαyα+1 along with the path from yα to yα+1 along C. By induction, all vertices
of G are partitioned into the sets A and B.

We claim that all criteria of the induction statement are satisfied. First, we must show that G[A]
is a petunia containing uv. By construction, A contains u and v. Also, clearly N [u] is a petunia,
as G is outerplanar. Furthermore, each vertex yα described in the process above must be a cut-
vertex in G[A], so G[A] remains a petunia even after adding vertices using the induction hypothesis.
Second, clearly no pair xi, xj is adjacent, so B is initially an independent set. Furthermore, as all
neighbors of each xi are added to A, B remains an independent set even after applying the induction
hypothesis. Third, by construction, u is not adjacent to any vertex of B. Fourth, if v = wi, then
as G is outerplanar, v is initially adjacent to at most two vertices of B, namely xi and xi−1.
Furthermore, each vertex wi is the tail of an arc in all outerplanar graphs containing wi for which
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u

T

T ′

wi+1 = ys ys−1 · · · yj+1 xi yj · · · wi = y1

Figure 4.1: The figure shows part of the outerplanar graph G from the proof of Lemma 4.3.4. The
black vertices in the figure belong to the set A, and the white vertex belongs to the set B. Each
shaded region represents some outerplanar subgraph of G. We may partition V (G) as described in
Lemma 4.3.4 by applying the induction hypothesis to each of the outerplanar graphs shown as a
shaded region in the figure.
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the induction hypothesis is applied, and thus wi does not gain any neighbors in B after applying
induction because of criterion (3).

Finally, we argue that each vertex z ∈ A is adjacent to at most three vertices of B. If z is of
the form wi or u, then (5) holds for z. Otherwise, if z is of the form yα in the process described
above, then z belongs to at most two outerplanar graphs H,H ′ for which the induction hypothesis
is called, and z belongs to an arc of both H and H ′. Furthermore, z is the head of at most one of
these arcs. Therefore, by criteria (3) and (4), z gains at most two neighbors in B during induction.
As we have assumed that z is not of the form u or wi, it follows that z is adjacent to at most one
vertex of the form xi. Therefore, z has at most three neighbors in B. Finally, if none of the above
holds, then z belongs to an outerplanar graph H on which induction is applied, and z is separated
from all vertices xi by some edge yαyα+1. Therefore, by criterion (5), z has at most three neighbors
in B. Thus the induction statement holds, and the proof is complete.

With Lemma 4.3.4 proven, we are ready to apply Lemma 4.2.2 and Theorem 4.3.3 to obtain
an upper bound for the hat guessing number of outerplanar graphs. Letting s = 1 in the following
theorem immediately implies Theorem 1.5.2.

Theorem 4.3.5. If G is an outerplanar graph, then

HGs(G) ≤ (3(s+ 1)6 + 3(s+ 1)3 + 3)3((s+1)6+(s+1)3+1)2
.

Proof. We partition G using Lemma 4.3.4 so that G[A] is a petunia, B is an independent set, and
each vertex of A has at most three neighbors in B. Since HGs(G[B]) = s, we follow Lemma 4.2.2
and set d = 3 and s′ = (s+ 1)3. Then, according to Lemma 4.2.2 and Theorem 4.3.3,

HGs(G) ≤ HG(s+1)3(G[A]) ≤ (3(s+ 1)6 + 3(s+ 1)3 + 3)3((s+1)6+(s+1)3+1)2
.

4.4 Layered planar graphs

In this section, we compute an upper bound for the hat guessing number of layered planar graphs.
Formally, we define layered planar graphs as follows.

Definition 4.4.1. Consider a planar graph H obtained from the following process. We begin with
a 2-connected outerplanar graph G1 embedded in the plane so that the unbounded face is incident
to all vertices of G1. Then, we choose some integer τ ≥ 1, and for each 2 ≤ i ≤ τ , we draw a
2-connected outerplanar Gi inside some interior face of Gi−1 so that in the drawing of Gi, the
unbounded face contains all vertices of Gi. Then, we add some set of edges between Gi−1 and Gi

in such a way that does not introduce a crossing. If G is a subgraph of a graph H constructed in
this way, then we say that G is a layered planar graph.

55



v

u1 ut

Li

Li−1

Figure 4.2: The figure shows a vertex v ∈ Li with u1 as its counterclockwise-most parent and with
ut as its clockwise-most parent. We use green to color all vertices in Li−1 on the clockwise side of
vu1 and on the counterclockwise side of vut.

We obtain the following upper bound for the hat guessing number of layered planar graphs.
Letting s = 1 in the following theorem immediately implies Theorem 1.5.3.

Theorem 4.4.2. If G is a layered planar graph, then log2 log2 log2 log2 HGs(G) < 2149s35.

Proof. We fix a drawing of G in the plane. We partition the vertices of G into levels Li as follows.
First, we let L1 denote the set of vertices on the outer face of G. Then, for i ≥ 1, we let Li+1 denote
the set of vertices on the outer face of G \ (L1 ∪ · · · ∪ Li). Since G is a layered planar graph, we
may assume that Gi is a 2-connected outerplanar graph for each level Li, and that every edge of
G either has both endpoints in some Li or has one endpoint in some Li and the other endpoint in
Li+1. If a vertex v ∈ Li has a neighbor u, then we say that u is a parent of v if u ∈ Li−1, a sibling
of v if u ∈ Li, and a child of v if u ∈ Li+1.

Now, we will begin to partition the vertices of G into color classes. Initially, we let every vertex
of G be colored blank. Then, for each vertex v in each level Li, let u1, . . . , ut be the parents of v in
clockwise order. We let Kv denote the (possibly empty) subgraph of Gi−1 that is separated from
the rest of Gi−1 by u1 and ut and that can be reached by travelling from v to u1 and then turning
right. In other words, Kv is on the “clockwise side" of the arc vu1 and the “counterclockwise side"
of vut, and if Kv is nonempty, it contains the vertices u2, . . . , ut−1. We color every vertex of Kv

green, as shown in Figure 4.2. Observe that by planarity, since Gi and Gi−1 are 2-connected, each
vertex of Kv can only have v as a child.

Next, for every vertex v ∈ V (G), if v has at least three children, then we color v red. Since each
green vertex has only one child, no vertex will be colored both green and red. Then, if a red vertex v
has at least one red child, then we use pink to recolor the clockwise-most and counterclockwise-most
red child of v, as shown in Figure 4.3. Finally, we use blue to color all remaining blank vertices in
a level Li with i even, and we use indigo to color all remaining blank vertices in a level Li with i

odd.
Now, we make a series of claims about our coloring of G. The ultimate goal of these claims will

be to show that we can apply Lemma 4.2.3 to obtain an upper bound for HGs(G).

Claim 4.4.3. The green vertices of G induce an outerplanar graph, and every green vertex has at
most five neighbors in a color other than green.
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v
Li

Li+1

Figure 4.3: The figure shows a red vertex v ∈ Li with several red children. We use pink to recolor
the clockwise-most and counterclockwise-most red children of v.

Proof. We first show that each green vertex has at most five non-green neighbors. Let v be a green
vertex. Since all parents of v except for the clockwise-most and counterclockwise-most parent are
colored green, v has at most two non-green parents. If v ∈ Li, then by construction, v belongs to
a connected green subgraph in Gi that is separated from the rest of Gi by two non-green vertices.
Therefore, v also has at most two non-green siblings. Finally we have observed previously that v
has at most one child. Therefore, v has at most five non-green neighbors.

Now, we show that the green vertices of G induce an outerplanar graph. Since each Gi is an
outerplanar graph, clearly the green vertices in any single level Li induce an outerplanar graph.
Furthermore, by construction, for any two distinct green vertices u, v ∈ Li, no green parent of u
is equal to or adjacent to a green parent of v, and hence no ancestor of u in the green induced
subgraph is equal to or adjacent to an ancestor of v in the green induced subgraph. Therefore, the
green induced subgraph of G is a graph in which each block is an outerplanar graph contained in
some level Li, and hence the green induced subgraph of G is outerplanar.

Claim 4.4.4. The blue vertices of G induce an outerplanar graph, and every blue vertex has at
most six neighbors in indigo, red, or pink.

Proof. Clearly the blue vertices induce an outerplanar graph, as they induce a subgraph of the
disjoint union of the outerplanar graphs Gi for even values i.

Now, let v ∈ Li be a blue vertex. As v is not red or pink, v has at most two indigo, red, or pink
children. As all but at most two parents of v are colored green, v has at most two indigo, red, or
pink parents. We also observe that by construction, v has no indigo sibling.

Finally, we argue that v has at most two red or pink siblings. If Gi+1 is empty, then clearly v

does not have a red or pink sibling, so we assume that Gi+1 is a 2-connected outerplanar graph.
Since Gi is an outerplanar graph, Gi has a Hamiltonian cycle Ci such that E(Ci) and the interior
of E(Ci) contain all edges of Gi. Suppose that v has at least three red or pink siblings. Assume
that when starting outside Ci and then visiting the edges incident to v in clockwise order, we visit
edges incident to three red or pink siblings u1, u2, u3, in order. Observe that since Gi is outerplanar,
the edge vu2 separates the interior of Ci into two regions, one containing u1 and one containing
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u3. However, since Gi+1 is connected, the edge vu2 separates one of u1, u3 from Gi+1, contradicting
the assumption that both of these vertices have neighbors in Gi+1. Therefore, v has at most two
red or pink siblings.

Claim 4.4.5. The indigo vertices of G induce an outerplanar graph, and every indigo vertex has
at most six neighbors in red or pink.

Proof. The proof is similar to that of Claim 4.4.4.

Claim 4.4.6. The red vertices in G induce a petunia, and every red vertex has at most six pink
neighbors.

Proof. In our proof, we will often use the fact that for each value 1 ≤ i ≤ τ , the subgraph of Gi

induced by those vertices with at least one child is a subgraph of a cycle. This fact follows easily
from planarity.

To show that the red vertices in G induce a petunia, we first claim that if two distinct red
vertices u, v in a common level Li have respective red children u′ and v′, then u′ and v′ are not
joined by a path of red vertices in Li+1. Indeed, u has two pink children w,w′ ∈ Li+1 with respective
children x, x′ ∈ Li+2, and the edges wx and w′x′ along with Gi+2 separate u′ from v′. Thus, the
claim holds, and by a similar argument, u′ and v′ cannot be equal.

Next, consider the subgraph G′ of G induced by the red vertices of G, and consider a 2-connected
subgraph H of G′. If all vertices of H belong to a single level Li, then H is a subgraph of a cycle
and hence a petal graph. Otherwise, by the previous observation, for each vertex v ∈ V (G′), v
separates the descendants of v in G′ from all other vertices in G′. Therefore, if two vertices of H
belong to a level Li, then as H is 2-connected, no vertex of H can belong to Li+1. Therefore, it
must follow that H contains exactly one vertex in some level Li and that all other vertices of H
belong to Li+1. As seen before, the red and pink vertices in Li+1 induce a subgraph of a cycle, and
hence the red vertices of H in Li+1 induce a subgraph of a path. Therefore, H is a petal graph,
and G′ is a petunia.

Now, let v be a red vertex. As argued before, v has at most two non-green parents. By the same
argument used in Claim 4.4.4, v has at most two pink siblings. Finally, if v ∈ Gi, then since Gi+1

is 2-connected and outerplanar, v has at most two pink children.

Claim 4.4.7. The pink vertices in G induce a graph of maximum degree 6.

Proof. The proof is similar to that of Claim 4.4.6.

Now, we are ready to apply Lemma 4.2.3 and obtain an upper bound for the hat guessing
number of planar graphs. Following Lemma 4.2.3, we let V1 denote the green vertices of G, V2 the
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blue vertices, V3 the indigo vertices, V4 the red vertices, and V5 the pink vertices. Then, we define
the following values:

ℓ5 = 20s

s4 = sℓ65 = (20)6s7

ℓ4 = (3s2
4 + 3s4 + 3)3(s2

4+s4+1)2 + 1 < 22138s30

s3 = sℓ64 < 22141s35

ℓ3 = (3(s3 + 1)6 + 3(s3 + 1)3 + 3)3((s3+1)6+(s3+1)3+1)2 + 1 < 222145s35

s2 = sℓ63 < 222146s35

ℓ2 = (3(s2 + 1)6 + 3(s2 + 1)3 + 3)3((s2+1)6+(s2+1)3+1)2 + 1 < 2222147s35

s1 = sℓ52 < 2222148s35

ℓ1 = (3(s1 + 1)6 + 3(s1 + 1)3 + 3)3((s1+1)6+(s1+1)3+1)2 + 1 < 22222149s35

We verify these estimates in the appendix. Since the upper bound given by this method is probably
too large, we make no real effort to optimize our estimates.

Now, we must check that all of the hypotheses of Lemma 4.2.3 hold. It is easy to check from our
claims that we have given appropriate definitions to each value si. (In fact, we may overestimate
the values of s1, s2, s3, but this is fine.) Then, we show that each ℓi is large enough as follows.

As the pink vertices induce a subgraph of maximum degree at most 6, it follows from Lemma
4.2.1 that HGs(G[V5]) < 20s. As G[V4] is a petunia, HGs4(G[V4]) < ℓ4 by Theorem 4.3.3. Finally, as
G[Vi] is outerplanar for i ∈ {1, 2, 3}, HGsi(G[Vi]) < ℓi for i ∈ {1, 2, 3} by Theorem 4.3.5. Therefore,
HGs(G) < ℓ1, and the proof is complete.

4.5 Graphs of bounded genus

While it is still unknown whether the hat guessing number of planar graphs is bounded, it is
straightforward to show that if HGs(H) is bounded for every planar graph H, then HGs(G) is
also bounded for every graph G of bounded genus. We will use the following lemma of Mohar and
Thomassen, which follows from first principles of algebraic topology. For a graph G embedded on a
surface S, we say that a cycle C in G is separating if S \C has at least two connected components,
or equivalently, if C is zero-homologous.

Lemma 4.5.1 ([63]). Let G be a graph embedded on a surface, and let x and y be two distinct
vertices of G. If P1, P2, and P3 are distinct internally disjoint paths with endpoints x and y, and
if P1 ∪ P2 and P1 ∪ P3 are both separating cycles, then P2 ∪ P3 is also a separating cycle.
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This lemma will allow us to use a straightforward inductive argument to prove the following
theorem.

Theorem 4.5.2. If f is a function such that every planar graph H satisfies HGs(H) < f(s), then
every graph G of genus g satisfies HGs(G) < f(32(6g−1)s6g ).

Proof. If g = 0, then G is planar, and there is nothing to prove. Otherwise, we assume that g ≥ 1.
Since G has no planar embedding, we must be able to find some non-separating cycle C in G. We
choose C to be a shortest non-separating cycle.

Now, we claim that every vertex v ∈ V (G)\V (C) has at most five neighbors in C. If |V (C)| ≤ 5,
then this claim clearly holds. Otherwise, suppose that C is of length at least six. If v has at least
six neighbors in C, then we must be able to choose two neighbors x, y ∈ V (C) of v that are at a
distance of at least three along C. We define the path P1 = (x, v, y). We also define the path P2 to
be a shortest path from x to y along C, and we define P3 to be the path with edge set E(C)\E(P2).
We observe that the length of P1 ∪ P2 is at most 1

2 |V (C)| + 2 < |V (C)|, and since P3 has at most
|V (C)|−3 edges, the path P1 ∪P3 has length at most |V (C)|−1. Since C is a shortest nonseparating
cycle, it follows that P1 ∪ P2 and P1 ∪ P3 are both separating cycles. However, then Lemma 4.5.1
implies that P2 ∪ P3 = C is a separating cycle, a contradiction. Thus our claim holds.

Now, we apply Lemma 4.2.2. We let A = V (G) \ V (C) and let B = V (C). Observe that since
C is a nonseparating cycle, G[A] has genus at most g − 1. Following Lemma 4.2.2, we set d = 5.
Furthermore, since G[B] has maximum degree 2, it follows from Lemma 4.2.1 that HGs(G[B]) <
3es < 9s, so we let s′ = (9s)5s = 310s6. Then, according to Lemma 4.2.2, HGs(G) ≤ HGs′(G[A]).
By the induction hypothesis,

HGs′(G[A]) < f(32(6g−1−1)s′6g−1
)

= f(32·6g−1−2(310s6)6g−1)

= f(312·6g−1−2s6g )

= f(32(6g−1)s6g ).

This completes the proof.

4.6 Conclusion

While we are not able to prove an upper bound for the hat guessing number of planar graphs, one
principle that is clear from our method is that by bounding HGs(G) for graphs G in some small
graph class, it is often possible to use such a bound along with some vertex partitioning method
to obtain an upper bound for the hat guessing number of a larger graph class. Indeed, in order to
obtain our upper bound for the hat guessing number of layered planar graphs, we started with an
upper bound on HGs(F ) for forests F , and then we extended this result to an upper bound for
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petunias, and then we extended this result to an upper bound for outerplanar graphs and finally
for layered planar graphs. We hope that our upper bound in Theorem 4.4.2, along with some clever
observations, will be enough to bound the hat guessing number of all planar graphs and give an
affirmative answer to Question 1.5.1.

4.7 Appendix

Proof of Lemma 4.2.4. We induct on r. When r = 2, we must show that if H is a balanced bipartite
graph on 2n vertices containing at least 3n2− 1

ℓ edges, then H contains a copy of Kℓ,ℓ. By a classical
theorem of Kővári, Sós, and Turán [58], H contains a copy of Kℓ,ℓ as long as |E(H)| ≥ (ℓ−1)1/ℓ(n−
ℓ + 1)n1−1/ℓ + (ℓ − 1)n. To show that 3n2− 1

ℓ is greater than this lower bound, we begin with the
following inequality, which can easily be verified graphically:

3
2ℓ

1− 1
ℓ − ℓ+ 1 > 0.

Now, since (ℓ− 1)1/ℓ < 3
2 for all ℓ, and since n ≥ ℓ, we have

(3 − (ℓ− 1)1/ℓ)n1− 1
ℓ − ℓ+ 1 > 0.

Next, since n > 0, we have

3n2− 1
ℓ − (ℓ− 1)1/ℓn2− 1

ℓ − (ℓ− 1)n > −(ℓ− 1)
ℓ+1

ℓ n1− 1
ℓ .

Rearranging this equation gives us

3n2− 1
ℓ > (ℓ− 1)1/ℓ(n− ℓ+ 1)n1− 1

ℓ − (ℓ− 1)n,

which is exactly what we need to finish the base case. Next, suppose that r ≥ 3. We will need to
borrow a lemma from the original proof of Erdős.

Lemma 4.7.1 ([33]). Let S = {y1, . . . , yN } be a set of N elements, and let A1, . . . , An be subsets
of S. Let w > 0, and assume that

∑n
i=1 |Ai| ≥ nN

w . If n ≥ 2ℓ2wℓ, then there exist ℓ distinct sets
Ai1 , . . . , Aiℓ

such that |Ai1 ∩ · · · ∩ Aiℓ
| ≥ N

2wℓ .

Now, suppose we have a balanced r-partite r-graph H with rn vertices and t ≥ 3nr− 1
ℓr−1 edges.

We choose one of the r partite sets of H and name its vertices x1, . . . , xn. Next, we set N = nr−1,
and we let y1, . . . , yN denote the set of (r − 1)-tuples of vertices that can be obtained by choosing
exactly one vertex from each partite set of H outside of {x1, . . . , xr}. Then, for each xi, we let Ai
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contain those yj for which xi ∪ yj ∈ E(H). We have

n∑
i=1

|Ai| = t ≥ 3nr− 1
ℓr−1 .

We set w = 1
3n

1
ℓr−1 , and then it is easy to verify that t ≥ nN

w and that n ≥ 2ℓ2wℓ, so the hypotheses
of Lemma 4.7.1 hold. Hence, we may choose ℓ vertices xi1 , . . . , xiℓ

whose neighborhoods intersect
in at least

N

2wℓ
= 3ℓ

2 n
r− 1

ℓr−2 > 3nr− 1
ℓr−2

(r−1)-tuples. Then, by the induction hypothesis, we may find a copy of K(r−1)
ℓ among these (r−1)-

tuples, and this K(r−1)
ℓ along with the vertices xi1 , . . . , xiℓ

form a copy of K(r)
ℓ . This completes the

proof.

Proof of estimates in Theorem 4.4.2. Recall that ℓ5 = 20s and s4 = (20)6s7. We will use the in-
equalities

(3s2 + 3s+ 3)3(s2+s+1)2 + 1 < 2(3s)5 (4.1)

(3(s+ 1)6 + 3(s+ 1)3 + 3)3((s+1)6+(s+1)3+1)2 + 1 < 2(3s)13 (4.2)

for s ≥ 1. From (4.1), we see that

log2 ℓ4 < (3s4)5 = 35260530s35 < 2138s35.

Then,
log2 s3 = log s+ 6 log2 ℓ4 < 2141s35.

Then, using (4.2), log2 ℓ3 < (3s3)13, and so

log2 log2 ℓ3 < 13 log2 3 + 13 log2 s3 < 2145s35.

The remaining bounds can be proven similarly using (4.2).
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Chapter 5

The graph coloring game

5.1 Introduction

Recall that the graph coloring game is a game in which Alice and Bob take turns coloring the
vertices of a graph G with colors from the set {1, . . . , k}, with Alice moving first. Alice’s goal is
to complete a proper coloring of G, and Bob’s goal is to prevent Alice from doing so. The game
chromatic number of G, written χg(G), is the minimum value k for which Alice has a winning
strategy in the graph coloring game played on G with the color set {1, . . . , k}.

Recall also that the graph marking game is a game in which Alice and Bob take turns marking
the vertices of a graph G with a black pen. The score of an uncolored vertex v at some state of the
game is equal to the number of neighbors of v that have already been marked. (A marked vertex
can be said to have score 0.) We say that the game coloring number of G, written colg(G), is the
minimum value t for which Alice has a strategy in the graph marking game that limits the score
of every vertex v ∈ V (G) to t− 1 throughout the entire game. A greedy coloring argument shows
that χg(G) ≤ colg(G).

This chapter will be organized as follows. In Section 5.2, we prove that a properly colored
graph whose bicolored subgraphs have bounded game coloring number must have a bounded game
chromatic number, and we list a number of corollaries. Then, in Section 5.3, we apply the method
of Section 5.2 to calculate upper bounds on the game chromatic numbers of certain graph products,
namely the Cartesian product and the strong product of two graphs. In doing so, we will answer a
question of Zhu [82]. Finally, in Section 5.4, we pose some questions.

5.2 Bounding χg with the game coloring number of bicolored sub-
graphs

In this section, we will show that the game chromatic number of a properly colored graph G may be
bounded by a function of the number of colors used to color G and the game coloring numbers of the
bicolored subgraphs of G. Dinski and Zhu [29] show that for a graph G, χg(G) ≤ χa(G)(χa(G)+1),
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where χa(G) is the acyclic chromatic number of G. We will follow the ideas of Dinski and Zhu to
prove a more general upper bound on χg(G) in terms of the game coloring numbers of the bicolored
subgraphs of G with respect to some proper coloring.

We consider a slight variation of the graph marking game, which we name the Bob marking
game. In the Bob marking game on a graph G, Alice and Bob play on G by the same rules as those
in the graph marking game, but Alice marks with a red pen, and Bob marks with a blue pen. In
the Bob marking game, we let Bob move first. When a play of the game is finished, for each vertex
v ∈ V (G), we define the score of v as the number of neighbors of v marked in blue at the time v
was marked. In other words, only the neighbors of v marked by Bob contribute to the score of v.
Then, for a play of the Bob marking game on G, we say that the score of the play is equal to the
maximum score over all vertices of V (G), plus one. We say that the value Bob(G) is equal to the
minimum integer t for which Alice has a strategy to limit the score of a play of the Bob marking
game on G to t. Defining colBg (G) to be the lowest score achievable by Alice in the traditional
marking game on G with optimal play when Bob moves first, it is clear that Bob(G) ≤ colBg (G).
Furthermore, Zhu [82] shows that colBg (G) ≤ colg(G) + 1, so it follows that Bob(G) ≤ colg(G) + 1.

It is worth giving an example of a graph G for which Bob(G) < colBg (G) in order to show that
these parameters are indeed different. Bodlaender [15] shows that there exists forests F for which
χg(F ) = colBg (F ) = 4. In contrast, we will prove that Bob(F ) ≤ 3 holds for every forest F using the
following strategy for Alice, which is used implicitly by Dinski and Zhu [29]. At a given state of the
Bob marking game on F , let F ′ denote the subgraph of F that is obtained by removing from F the
vertices marked in red by Alice, as well as the edges whose endpoints are both marked in blue by
Bob. We will show that at the end of each of Alice’s turns, she can ensure that at most one vertex
from each component of F ′ is marked in blue by Bob. Alice can certainly ensure that this condition
holds at the end of her first turn. Now, suppose that the condition holds at the end of Alice’s ith
turn. On Bob’s (i+1)th turn, Bob chooses a component K of F ′ and marks a vertex v ∈ K blue. If
v is the only blue vertex in K, then Alice marks an arbitrary vertex, and the condition is satisfied
again at the end of Alice’s (i+ 1)th turn. Otherwise, there exists a single other blue vertex w ∈ K.
If w is a neighbor of v, then the edge vw is removed from F ′. Then, Alice marks an arbitrary
vertex, and the condition holds again at the end of Alice’s (i+ 1)th turn. On the other hand, if w
is not a neighbor of v, then there exists a unique path P in K connecting v and w with at least one
internal vertex. Alice marks an internal vertex u of P , and then since u is removed from F ′, the
condition again holds at the end of Alice’s (i+ 1)th turn. Now, if Bob(F ) ≥ 4, then at some point
in the game, an unmarked vertex u must have three blue neighbors, and u along with these three
blue neighbors belong to a single component of F ′. However, Alice’s strategy ensures that at any
point in the game, a component of F ′ contains at most two blue vertices, giving us a contradiction.
Therefore, Bob(F ) ≤ 3.

Now, consider a graph G for which Bob(G) ≤ t. In a play of the Bob marking game on G,
Alice has a strategy in which every vertex v ∈ V (G) is marked before the number of blue marked
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neighbors of v exceeds t−1. We say that Alice’s strategy on G with respect to the bound Bob(G) ≤ t

is reactive if for each vertex v, if v ever has t − 1 blue marked neighbors after Bob’s move, then
Alice marks v immediately. For example, the strategy for forests F described above is reactive with
respect to the bound Bob(F ) ≤ 3, because if Bob ever marks two neighbors of an unmarked vertex
u, then Alice will immediately mark u. If Alice plays a strategy on G to limit the score of each
vertex to t−1, then the only way that Alice’s strategy would not be reactive would be if Alice were
to allow a vertex to remain unmarked when all of its neighbors were marked, with exactly t − 1
neighbors marked in blue. Indeed, if an unmarked vertex v has t− 1 blue marked neighbors and at
least one unmarked neighbor on Bob’s turn, then Bob can achieve a score of t+ 1 on G by marking
an additional neighbor of v, so in any successful strategy, Alice would need to mark v to prevent
its score from increasing. Most strategies that we consider for a graph G that give a bound of the
form Bob(G) ≤ t will be reactive, as it is not usually convenient to try to ensure that all neighbors
of an unmarked vertex v are marked, and it is usually easier for Alice just to mark a vertex v in
order to prevent its score from increasing.

The following theorem generalizes the method of Dinski and Zhu [29] originally used to prove
that for any graph G, χg(G) ≤ χa(G)(χa(G) + 1). The method of Dinski and Zhu considers an
acyclically colored graph G, and using the acyclical coloring of G, these authors devise a winning
strategy for Alice in the graph coloring game on G. Using the strategy above, Dinski and Zhu
implicitly show that Bob(F ) ≤ 3 holds for every forest F , and they essentially use the fact that
every bicolored subgraph H of G satisfies Bob(H) ≤ 3 to devise their strategy. The following
theorem, however, shows that in order to bound the game chromatic number of a properly colored
graph G, it is enough simply to ensure that Bob(H) is bounded for every bicolored subgraph of G.
We use the term k-coloring to refer to a proper graph coloring using k colors.

Theorem 5.2.1. Let G be a graph with a k-coloring ϕ, and suppose that every bicolored subgraph
H of G with respect to ϕ satisfies Bob(H) ≤ t. If Alice has a reactive strategy with respect to each
graph H and the bound Bob(H) ≤ t, then

χg(G) ≤ k((k − 1)(t− 2) + 2).

Proof. Let ϕ be a proper coloring of G using k colors that satisfies the assumptions of the theorem.
In order to show that χg(G) ≤ k((k − 1)(t − 2) + 2), we must show that Alice has a winning
strategy in the graph coloring game using k((k − 1)(t − 2) + 2) colors. We will define a set C of
k((k − 1)(t − 2) + 2) values with which Alice and Bob will play the graph coloring game, and to
avoid confusion, we will refer to the values in C as shades, rather than colors. That is, on each
turn, we will let Alice or Bob assign a shade from C to a vertex of G that has not already been
assigned a shade. On the other hand, we will refer to the k values in the image of ϕ as colors. We
will partition C into k parts of size (k− 1)(t− 2) + 2, and we will say that for each color c used by
ϕ, C contains (k − 1)(t− 2) + 2 shades of c.
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For two colors c and d, let Gc,d ⊆ G be the subgraph of G induced by the vertices of V (G) that
are colored with c and d by ϕ. Let Sc,d be a reactive strategy of the marking game on Gc,d by which
Alice can limit the score of any vertex of Gc,d to t− 1 in the Bob marking game. We will describe
Alice’s strategy for the coloring game on G. In Alice’s strategy, Alice will always color some vertex
v ∈ V (G) with a shade of ϕ(v). We will sometimes allow Alice to choose an arbitrary vertex v to
assign a shade of ϕ(v), and in this case, we say that Alice plays an idle move.

As Alice plays the game, Alice will in fact consider
(k

2
)

different Bob marking games played on
the graphs Gc,d, one for each color pair c, d ∈ ϕ(V (G)). Each time Bob makes a move, Alice will
consider Bob’s move to be a move in a Bob marking game on one of the subgraphs Gc,d. Alice will
calculate a response to Bob’s move in the Bob marking game on Gc,d using the strategy Sc,d, and
based on Alice’s response in the Bob marking game on Gc,d, Alice will respond to Bob’s move in
the coloring game on G.

Alice’s strategy is as follows. Alice begins the game with an idle move. On each of Bob’s turns,
if Bob chooses a vertex v ∈ V (G) and colors v with a shade of ϕ(v), then Alice responds by playing
an idle move. If Bob colors a vertex v with a shade c that is not one of the shades of ϕ(v), then
Alice considers Bob’s move as if it were a move in the Bob marking game on Gc,ϕ(v). Alice then
uses Sc,ϕ(v) to choose a vertex w ∈ V (G) to mark in response to Bob’s move in the Bob marking
game on Gc,ϕ(v). Then, in the coloring game on G, Alice colors w with any available shade of ϕ(w).
If w has already been colored, then Alice plays an idle move. Alice repeats this process for each of
Bob’s moves.

We now show that Alice’s strategy always succeeds in producing a proper coloring of G. Suppose
that on some turn, Alice attempts to color a vertex v with a shade of ϕ(v). For any neighbor w of v
that is colored with a shade of ϕ(v), w must have been colored by Bob. Equivalently, w must have
been marked by Bob in the Bob marking game on Gϕ(v),ϕ(w). However, Alice has used the strategy
Sϕ(v),ϕ(w) to ensure that Bob does not mark more than t − 1 neighbors of an unmarked vertex in
the Bob marking game on Gϕ(v),ϕ(w). Therefore, for each color c ∈ ϕ(V (G)) that appears in the
neighborhood of v, at most t− 1 vertices w ∈ N(v) with ϕ(w) = c have been colored by Bob with a
shade of ϕ(v). Furthermore, as the strategy Sϕ(v),ϕ(w) is reactive, there exists at most one color c∗

for which t− 1 vertices w ∈ N(v) with ϕ(w) = c∗ have been colored with a shade of ϕ(v), and this
color c∗ must satisfy c∗ = ϕ(w∗), where w∗ ∈ N(v) is the vertex that has just been colored by Bob
with a shade of ϕ(v) on the last move. For all other colors c ∈ ϕ(V (G)), at most t − 2 neighbors
w ∈ N(v) with ϕ(w) = c have been colored by Bob with a shade of ϕ(v). This implies that the
total number of shades of ϕ(v) that appear in the neighborhood of v is at most (t− 2)(k − 1) + 1.
As Alice has (t− 2)(k − 1) + 2 shades of ϕ(v) to use, Alice thus has an available shade of ϕ(v) to
use at v. Hence, Alice’s strategy succeeds at every move.

As Alice always succeeds in coloring a vertex of G with a shade from C on her turn, the only
way that G would not be properly colored would be if Bob were unable to color any vertex of G
on some turn, in which case the coloring game would end prematurely with Alice losing. However,
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Bob may always “pretend to be Alice" and successfully color a vertex of V (G) with an idle move
using the previous argument. Therefore, Bob also always has a legal move, and hence G is properly
colored.

We make several observations about Theorem 5.2.1 and its proof. First, we have defined the
graph coloring game with Alice moving first, but it is easy to see that the strategy of Theorem 5.2.1
works regardless of which player moves first. Second, the upper bound on χg(G) from Theorem 5.2.1
also holds for any subgraph of G, as removing edges from G does not make the strategy any more
difficult for Alice, and if a vertex of G that Alice wishes to color is not present in some subgraph,
then Alice may simply play an idle move. Third, while the Bob marking game is not a standard
part of the literature, the inequality Bob(H) ≤ colBg (H) ≤ colg(H) + 1 implies that we can replace
the condition Bob(H) ≤ t of Theorem 5.2.1 with a bound using more standard parameters. Finally,
if Bob(H) ≤ t holds for every bicolored subgraph H of G, but Alice does not necessarily have a
reactive strategy with respect to these bounds, then a very similar argument gives the following
upper bound, which is only slightly worse than the bound in Theorem 5.2.1.

Corollary 5.2.2. Let G be a graph with a k-coloring ϕ, and suppose that every two-colored subgraph
H of G with respect to ϕ satisfies Bob(H) ≤ t. Then

χg(G) ≤ k((k − 1)(t− 1) + 1).

We note that the strategy of Zhu [82] used to bound the game chromatic number of graph
Cartesian products bears some resemblance to the strategy of Theorem 5.2.1, as Zhu explicitly
devises a single graph coloring strategy by combining many graph marking strategies on smaller
subgraphs. However, the strategy of Zhu still relies on acyclic colorings, so the strategy of Theorem
5.2.1 is the first strategy, to the best of our knowledge, that uses more general bicolored subgraphs.

Theorem 5.2.1 has a number of corollaries. First, the upper bound of Dinski and Zhu [29] follows
immediately.

Corollary 5.2.3. For every graph G, χg(G) ≤ χa(G)(χa(G) + 1).

Proof. We have shown previously that Bob(F ) ≤ 3 holds for every forest F , and furthermore, that
Alice has a strategy that is reactive with respect to this bound. In an acyclic coloring on G, every
bicolored subgraph on G is a forest, so letting k = χa(G) and t = 3 in Theorem 5.2.1 yields the
result.

Additionally, a number of similar upper bounds follow.

Corollary 5.2.4. Let G be a graph with a proper k-coloring in which every bicolored subgraph has
treewidth at most w. Then χg(G) ≤ k(3w(k − 1) + 2).
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Proof. Zhu [81] shows that for a graph H of treewidth at most w, colBg (H) ≤ 3w + 2, and further-
more, the strategy for Alice that Zhu gives is reactive with respect to this bound. Therefore, letting
t = 3w + 2 in Theorem 5.2.1 yields the result.

Corollary 5.2.5. Let G be a graph with a proper k-coloring in which every bicolored subgraph is
planar. Then χg(G) ≤ k(15k − 13).

Proof. Zhu [83] shows that for a planar graph H, colBg (H) ≤ 17, and furthermore, the strategy for
Alice that Zhu gives is reactive with respect to this bound. Therefore, letting t = 17 in Theorem
5.2.1 yields the result.

Corollary 5.2.6. Let G be a graph with a proper k-coloring in which every bicolored subgraph is
of genus at most g. Then χg(G) ≤ k((k − 1)⌊1

2(3 +
√

1 + 48g + 19)⌋ + 2).

Proof. Zhu [81] shows that for a graph H of genus at most g, colBg (H) ≤ ⌊1
2(3+

√
1 + 48g+23)⌋, and

furthermore, the strategy for Alice that Zhu gives is reactive with respect to this bound. Therefore,
letting t = ⌊1

2(3 +
√

1 + 48g + 23)⌋ in Theorem 5.2.1 yields the result.

It is natural to ask whether these upper bounds for the game chromatic number of a graph
obtained using the method of Theorem 5.2.1 are optimal. Giving an overall answer to this question
is difficult, as graph colorings in which bicolored subgraphs have bounded game coloring number
have not yet received any attention. It is known, however, that Corollary 5.2.3 often does not give
a tight upper bound. For instance, using the fact that a planar graph has an acyclic chromatic
number of at most 5 [16], Corollary 5.2.3 implies that a planar graph has a game chromatic number
of at most 30, a result shown in [29], but as stated, a different method of Zhu [83] shows that the
game chromatic number of a planar graph is in fact at most 17.

5.3 The Cartesian product and strong product of graphs

In this section, we will show that Theorem 5.2.1 may be used to calculate an upper bound on
certain graph products, namely the Cartesian product of two graphs and the strong product of two
graphs. We first consider the Cartesian products of two graphs, which we define as follows. Given
two graphs G1 and G2, the Cartesian product of G1 and G2, written G1□G2, is defined as the graph
on the vertex set V (G1) × V (G2) in which two vertices (u, v) and (u′, v′) are adjacent if and only
if either u = u′ and v ∼ v′ in G2, or v = v′ and u ∼ u′ in G1, where ∼ represents adjacency. An
example of the Cartesian product of two graphs is shown in Figure 5.1. In [82], Zhu calculates an
upper bound on the game chromatic number of the Cartesian product G1□G2 of two graphs G1

and G2, but Zhu’s upper bound relies on the acyclic chromatic number of one of the graphs and
the game coloring number of a modified form of the other graph. Using Theorem 5.2.1, however,
we may show that χg(G1□G2) may be bounded above only by colg(G1) and colg(G2). Recall that
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Figure 5.1: The figure shows a K3, a path of length 2, and the Cartesian product of these two
graphs.

for a graph G, we define colBg (G) to be the lowest score achievable by Alice in the graph marking
game on G with optimal play when Bob moves first.

Theorem 5.3.1. Let G1 and G2 be graphs. Let k = χ(G1)χ(G2), and let t = max{colBg (G1), colBg (G2)}.
Then

χg(G1□G2) ≤ k((k − 1)(t− 1) + 1).

Proof. Let ϕ1 : E(G1) → {1, 2, . . . , χ(G1)} be a proper coloring of G1, and let ϕ2 : E(G2) →
{1, 2, . . . , χ(G2)} be a proper coloring of G2. For each pair v1 ∈ V (G1), v2 ∈ V (G2), we may color
the corresponding vertex (v1, v2) ∈ V (G1□G2) with the color (ϕ1(v1), ϕ2(v2)), which gives us a
proper coloring

ϕ : E(G1□G2) → {1, 2, . . . , χ(G1)} × {1, 2, . . . , χ(G2)}

using k colors.
We claim that each connected bicolored subgraph H of G1□G2 under ϕ satisfies colBg (H) ≤ t.

Indeed, let H ⊆ G1□G2 be a connected bicolored subgraph with respect to ϕ. If H is a single vertex,
then colBg (H) = 1; otherwise, H has at least one edge e. We assume without loss of generality that
e has endpoints (u, v1), (u, v2), where u ∈ V (G1), and v1, v2 ∈ V (G2), and hence that H is colored
with the colors (ϕ1(u), ϕ2(v1)) and (ϕ1(u), ϕ2(v2)). If every vertex of H is of the form (u, v) for some
v ∈ V (G2), then H is isomorphic to a subgraph of G2, and hence colBg (H) ≤ t. Otherwise, as H is
connected, H must contain a vertex of the form (u′, v), where u′ ∈ V (G1) is a neighbor of u in G1,
and v ∈ V (G2) is any vertex in G2. However, as u and u′ are neighbors, ϕ1(u) ̸= ϕ1(u′), so ϕ(u′, v)
cannot be one of (ϕ1(u), ϕ2(v1)) and (ϕ1(u), ϕ2(v2)), a contradiction to the assumption that H is
bicolored. Therefore, H is isomorphic to a subgraph of G2, and Bob(H) ≤ colBg (H) ≤ t. The same
upper bound holds even if H is not connected, as colBg (H) is equal to the maximum value colBg (H ′)
over all components H ′ of H. As Alice does not necessarily have a reactive strategy with respect
to the game coloring numbers of G1 and G2, we apply Corollary 5.2.2 with our values k and t, and
we obtain an upper bound of χg(G1□G2) ≤ k((k − 1)(t− 1) + 1), which completes the proof.
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We note that given r graphs G1, . . . , Gr, we may use the same method to obtain the up-
per bound χg(G1□ · · ·□Gr) ≤ k((k − 1)(t − 1) + 1), where we let k = χ(G1) · · ·χ(Gr) and
t = max{colBg (G1), . . . , colBg (Gr)}.

Corollary 5.3.2. Let G1, G2 be graphs, and let t = max{colg(G1), colg(G2)}. Then

χg(G1□G2) ≤ t2((t2 − 1)t+ 1) = t5 − t3 + t2.

Proof. The bound follows directly from Theorem 5.3.1 after applying the inequalities χ(Gi) ≤
χg(Gi) ≤ colg(Gi) ≤ t and colBg (Gi) ≤ t+ 1 for i = 1, 2.

Corollary 5.3.2 answers a question of Zhu [82] asking if χg(G1□G2) is bounded whenever
colg(G1) and colg(G2) are bounded. Zhu asks this question for the graph coloring game in which
Bob moves first, but the original strategy from Theorem 5.2.1 works the same regardless of which
player moves first. The upper bounds of Theorem 5.3.1 and Corollary 5.3.2 are often far from tight,
however. For example, Theorem 5.3.1 tells us that the game chromatic number of the Cartesian
product of two planar graphs is at most 16(15 · 16 + 1) = 3856, but using a different method, Zhu
[82] obtains a sharper upper bound of 105. Furthermore, in the following example, we show two
graphs G1 and G2 for which the Cartesian product G1□G2 has a game chromatic number equal
to the trivial lower bound of χ(G1□G2) = max{χ(G1), χ(G2)}, which is far from the upper bound
given in Theorem 5.3.1.

For an even integer n ≥ 2, let G1 be the union of a complete graph Kn and a single isolated
vertex, and let G2 be the union of an edge K2 and a single isolated vertex. We illustrate G1, G2, and
their Cartesian product in Figure 5.2. G1□G2 has four components: a Kn component, a Kn□K2

component, a single vertex component, and a K2 component. We observe that χ(G1□G2) = n,
and we will show that χg(G1□G2) = n by giving a strategy using n colors with which Alice may
win the graph coloring game on G1□G2. In comparison, the upper bound for χg(G1□G2) given by
Theorem 5.3.1 is 4n3 − 2n2 + 2n, which is far from optimal.

Alice’s strategy is as follows. On the first move, Alice colors the isolated vertex of G1□G2 with
any color. Then, whenever Bob colors a vertex in a component C of G1□G2, Alice colors a vertex of
C on the next move. As each component of G1□G2 of size at least 2 has an even number of vertices,
Alice will always be able to respond to Bob by coloring a vertex in the same component that Bob
just colored, provided that each uncolored vertex still has a legal color. Therefore, in order to show
that χg(G1□G2) = n, it suffices to show that Alice wins the coloring game with n colors on each
component of G1□G2 of size at least 2 when Bob moves first.

It is clear that Alice wins the coloring game on K2 and Kn with n colors when Bob moves first;
thus, we will only explicitly describe Alice’s strategy for winning the coloring game on Kn□K2.
Let Kn□K2 have 2n vertices u0, . . . , un−1, v0, . . . , vn−1, so that ui ∼ uj and vi ∼ vj for each pair
0 ≤ i < j ≤ n− 1, and so that ui ∼ vi for each 0 ≤ i ≤ n− 1. Alice will play as follows. Whenever
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Kn

Kn□K2

Kn

G1

G2

Figure 5.2: The figure shows two graphs G1 and G2 along with their Cartesian product G1□G2. In
this example, χg(G1□G2) = χ(G1□G2), showing that the upper bound in Theorem 5.3.1 may be
far from optimal.

Figure 5.3: The figure shows a K3, a path of length 2, and the strong product of these two graphs.

Bob colors a vertex ui with a color c, Alice will respond by coloring vi+1 with c, and whenever
Bob colors a vertex vi with a color c, Alice will respond by coloring ui−1 with c, with addition
calculated modulo n. It is easy to check that after each of Alice’s turns, the partial coloring on
u0, . . . , un−1 is equal to the partial coloring at v0, . . . , vn−1, but “shifted down" by one. Therefore,
Alice’s strategy always gives her a legal move, and together Alice and Bob will complete a proper
coloring of Kn□K2 using n colors. Therefore, χg(G1□G2) = χ(G1□G2) = n, which is much smaller
than the upper bound we would obtain from Theorem 5.3.1.

Next, Theorem 5.2.1 allows us to establish the following result about the strong product of two
graphs. Given two graphs G1 and G2, the strong product of G1 and G2, written G1 ⊠G2, is defined
as the graph on the vertex set V (G1) × V (G2) in which two vertices (u, v) and (u′, v′) are adjacent
if and only if both of the following hold:

• u = u′, or u ∼ u′ in G1;

• v = v′, or v ∼ v′ in G2.

An example of the strong product of two graphs is illustrated in Figure 5.3. Furthermore, given
a graph G, the square of G, written G2, is defined as the graph on V (G) in which two distinct
vertices u, v ∈ V (G) are adjacent in G2 if and only if u and v are at a distance of at most 2 in G.
With these definitions in place, we have the following result.
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Theorem 5.3.3. Let G1 and G2 be graphs, let t = colg(G1), and let k = χ(G1)χ(G2
2). Then

χg(G1 ⊠G2) ≤ k((k − 1)t+ 1).

Proof. Let ϕ1 : V (G1) → {1, 2, . . . , χ(G1)} be a proper coloring of G1, and let ϕ2 : V (G2) →
{1, 2, . . . , χ(G2

2)} be a proper coloring of G2
2. As in Theorem 5.3.1, we define a proper coloring

ϕ : E(G1 ⊠G2) → {1, 2, . . . , χ(G1)} × {1, 2, . . . , χ(G2
2)}

using k colors by coloring each vertex (u, v) ∈ G1 ⊠G2 such that ϕ(u, v) = (ϕ1(u), ϕ2(v)).
If G1 is an independent set, then G1⊠G2 consists of copies of G2, so χg(G1⊠G2) ≤ ∆(G2)+1 ≤

χ(G2
2), as G2

2 has a clique of size ∆(G2) + 1. Hence, the theorem holds in this case, and we thus
assume that G1 has at least one edge, and hence that t ≥ 2.

Consider a connected bicolored subgraph H of G1 ⊠ G2 with respect to ϕ. We aim to show
that colg(H) ≤ t. If H contains no edge, then colg(H) = 1. If H contains an edge of the form
(u1, v)(u2, v) for vertices u1, u2 ∈ V (G1) and v ∈ V (G2), then by the argument of Theorem 5.3.1,
H is isomorphic to a subgraph of G1, and hence colg(H) ≤ t. Similarly, if H contains an edge of the
form (u, v1)(u, v2) for vertices u ∈ V (G1) and v1, v2 ∈ V (G2), then by the argument of Theorem
5.3.1, H is isomorphic to a subgraph of G2. However, as ϕ2 is a proper coloring of G2

2, v2 is the only
neighbor of v1 in G2 with color ϕ2(v2), and v1 is the only neighbor of v2 in G2 with color ϕ2(v1).
Hence, H must be isomorphic to K2, and colg(H) = 2 ≤ t.

Finally, suppose H contains an edge of the form (u1, v1)(u2, v2) for two adjacent vertices u1, u2 ∈
V (G1) and two adjacent vertices v1, v2 ∈ V (G2). Again, as ϕ2 is a proper coloring of G2

2, v1

and v2 must be the only vertices of G2 that appear as the second entry in an element of V (H).
Furthermore, as ϕ1 is a proper coloring of G1, every edge of H must be of the form (u, v1)(u′, v2),
where u, u′ ∈ V (G1) may be any distinct pair of adjacent vertices in G1. We recall that H is colored
with two colors and hence that H is bipartite. Therefore, H is isomorphic to the subgraph G′ ⊆ G1

induced by the vertices u ∈ V (G1) that appear in some pair (u, vi) ∈ V (H), where i ∈ {1, 2}, and
we see that the index i of the pair (u, vi) in which a vertex u ∈ V (G′) appears indicates to which
partite set of G′ the vertex u belongs. Hence, colg(H) ≤ t, and furthermore, colBg (H) ≤ t+ 1.

In each case, the bound colBg (H) ≤ t + 1 holds even when H is not connected, as the value of
colBg (H) is equal to the maximum value colBg (H ′) over all components H ′ of H, and colBg (H ′) ≤
colg(H ′)+1 ≤ t+1. Hence, we have a proper coloring ϕ of G using k colors in which colBg (H) ≤ t+1
holds for each bicolored subgraph H of G. Then, the result follows from Corollary 5.2.2.

Theorem 5.3.3 has the following corollary, which shows that a the strong product of a graph
with bounded game coloring number and a second graph of bounded degree must have bounded
game chromatic number.
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Corollary 5.3.4. Let G be a graph, and let G′ be a graph of maximum degree ∆. Then

χg(G⊠G′) ≤ χ(G)2(∆2 + 1)2 colg(G) ≤ (∆2 + 1)2 colg(G)3.

Proof. The chromatic number of the square of G′ is at most ∆2 + 1, so the result follows from
Theorem 5.3.3 by letting t = colg(G), using the fact that k ≤ χ(G)(∆2 + 1), and noting that the
upper bound of Theorem 5.3.3 is at most k2t.

Corollary 5.3.4 tells us, for instance, that the strong product of any graph G with a cubic
graph has a game chromatic number of at most 100 colg(G)3, and that the strong product of
a planar graph G with a graph of maximum degree ∆ has a game chromatic number of at most
42 ·17(∆2 +1)2 = 272(∆2 +1)2. However, Theorem 5.3.3 and Corollary 5.3.4 are likely far from best
possible. Furthermore, if we consider two complete graphs Km and Kn, we see that χg(Km⊠Kn) =
χ(Km ⊠Kn) = mn, so it is possible for the strong product G1 ⊠ G2 of two graphs G1 and G2 to
have a game chromatic number equal to the trivial lower bound of χ(G1 ⊠ G2), which is far from
the upper bound of Theorem 5.3.3.

5.4 Conclusion

We have shown in Corollary 5.3.2 that if two graphs G1 and G2 have their game coloring numbers
bounded by a constant, then χg(G1□G2) is also bounded by a constant. It seems natural to try to
strengthen this result by asking whether colg(G1□G2) is also bounded by a constant; however, Bart-
nicki et al. [12] have shown colg(G1□G2) is unbounded when G1 = G2 = K1,n, while colg(K1,n) ≤ 4.
Similarly, it is natural to ask whether the bounds on colg(G1) and colg(G2) in the hypothesis can
be replaced by bounds on χg(G1) and χg(G2). This fails as well, however, as Barnicki et al. [12]
show that while χg(Kn,n) ≤ 3 for all n, there exist values k and m for each integer t such that
χg(Kk,k□Km,m) > t.

On the other hand, we have shown in Corollary 5.3.4 that given a graph G1 of bounded game
coloring number and a graph G2 of bounded degree, χg(G1⊠G2) is bounded by a constant. However,
the following question remains open, which could strengthen Corollary 5.3.2 and Corollary 5.3.4.

Question 5.4.1. Let G1 and G2 be graphs, and suppose that colg(G1) and colg(G2) are both bounded
by a constant. Is it true that χg(G1 ⊠G2) is bounded by a constant?
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