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Abstract

Reinforcement Learning (RL) is a promising approach for real-world applications of Multi-
Agent Path Finding (MAPF). However, its success depends on a good reward function,
which is difficult to design manually in this complex domain. PBRSS (Potential-Based Re-
ward Shaping with Search), our MAPF planner, automatically generates potential functions
to guide RL-based MAPF agents using potential-based reward shaping. It invokes the the-
oretical and empirical advantages of accelerated training and likely convergence to better
policies. We first formulate an adapted version of the Partially Observable MAPF (PO-
MAPF) problem to standardize the comparison of RL-based against search-based planners
and cross-fertilize techniques between them. We develop Partially Observable Conflict-Based
Search (PO-CBS) as a generalization of CBS in the PO-MAPF domain. We then design the
potential functions required for reward shaping using the PO-CBS plans and single-agent
shortest path computations. PBRSS can be applied to any RL-based MAPF planner to
improve its generalizability and performance.

Keywords: Multi-Agent Path Finding; Reinforcement Learning; Potential-Based Reward
Shaping; Partial Observability
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Chapter 1

Introduction

The Multi-Agent Path Finding (MAPF) problem is a combinatorial problem in which mul-
tiple agents operating in the same environment are required to plan conflict-free paths from
their start locations to their goal locations. MAPF problems arise at the core of many
real-world problem domains, and therefore, MAPF techniques have applications in these
domains. Examples include aircraft towing vehicles [36], automated warehousing [61], and
traffic control [12].

In MAPF, minimizing either the flowtime (the total number of timesteps required for
all agents to reach their destinations) or the makespan (the timestep at which all agents
reach their destinations) is NP-hard to solve optimally and NP-hard to approximate within
any constant factor less than 4/3 [31]. However, practically, the MAPF problem can be
solved using reductions to Boolean Satisfiability [52], Integer Linear Programming [62],
and Answer Set Programming [13]. Other dedicated optimal MAPF algorithms include
Independence Detection with Operator Decomposition [47], Enhanced Partial Expansion
A∗ [15], Increasing Cost Tree Search [44], M∗ [56], and Conflict-Based Search (CBS) [43, 3, 5].
Many suboptimal MAPF algorithms have also been developed. These include Windowed-
Hierarchical Cooperative A∗ (WHCA∗) [45, 50], Push and Swap/Rotate [27, 8], TASS [21],
BIBOX [51], and MAPP [59]. Various generalizations of the MAPF problem have also been
formulated and solved using algorithmic enhancements to the above solvers [17, 29, 18, 30,
28].

Despite the extensive work done in the MAPF domain, centralized MAPF planners have
several disadvantages. They require the environment to be fully observable. In the real world,
this may not always be feasible since agents typically have limited sensing capabilities. For
example, cars, drones, and warehouse robots can only recognize other agents in their vicinity
and are still required to coordinate globally. Decentralized planners have the advantage of
being applicable in domains where the agents’ sensing capabilities are limited. Moreover,
they may also be required to improve the scalability of MAPF planners since centralized
planners typically have the disadvantage of scaling exponentially with the number of agents.

1



Decentralized planners typically decompose the global problem into smaller subprob-
lems. They carry out navigation and conflict avoidance for the agents while letting them
interact with the environment [59]. Existing decentralized planners include WHCA∗ [45]
and MAPP [59]. Although these decentralized planners are much more scalable than cen-
tralized planners, they are not complete and often impose rules or restrictions on the agents’
movements, leading to poor solution quality [57]. Another approach is to use reactive plan-
ners that follow precomputed single-agent shortest paths but avoid conflicts at execution
time by making various kinds of adjustments [57]. While some decentralized and reactive
planners still need full observability, some others, like ORCA [55], can work in partially ob-
servable domains. However, many decentralized planners are often susceptible to deadlocks
and livelocks in cluttered environments [42].

Reinforcement Learning (RL) has gained attention in the MAPF domain as being capa-
ble of simultaneously addressing the issues of partial observability, scalability, and suscep-
tibility to deadlocks and livelocks. First, RL-based MAPF agents use a belief state space
that does not require full observability. Second, each agent decides its actions based on its
policy, and, therefore, the deliberation time of a team of agents scales only linearly with
the number of agents. Third, having the ability to learn from previous experiences, the RL-
based MAPF agents are more resistant to deadlocks and livelocks. Examples of RL-based
MAPF planners include [42], [26], [32], and [6].

However, RL-based MAPF planners require tedious training processes and often con-
verge very slowly because of partial observability, sparsity of rewards, and the complexity
of the domain in general. To alleviate these issues, researchers have attempted to provide
additional guidance to the RL-based MAPF agents in their training phase. For example,
in PRIMAL [42] and DHC [32], single-agent shortest path computations are used in dif-
ferent ways to guide the agents. In [26] and [58], guidance for the agents is derived from
single-agent planners that have access to the global map of the environment, while in PRI-
MAL [42] and Global-to-Local Autonomy Synthesis (GLAS) [41], guidance is derived from
global centralized MAPF planners. On the one hand, using single-agent planners for reward
manipulation requires careful examination since indiscriminate reward manipulation can be
detrimental [40]. On the other hand, using global centralized MAPF planners for guidance
is computationally expensive. Moreover, using plans generated by global centralized MAPF
planners in imitation learning [42, 41] can lead to overfitting [38].

In this thesis, we use the potential-based reward shaping method [37] for guiding the
RL-based MAPF agents. In general, this method relies on the design of potential functions
that map each state to a real number. We design two potential functions for the MAPF
domain: one is derived from single-agent planners, and the other is derived from our own
novel multi-agent planner called Partially Observable Conflict-Based Search (PO-CBS). PO-
CBS is used to solve an adapted version of the Partially Observable MAPF (PO-MAPF)
problem. We formulate the adapted version of the PO-MAPF problem to normalize the
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comparison of RL-based MAPF planners against search-based MAPF planners and cross-
fertilize techniques between them. In our formulation, agents have a restricted Field of View
(FoV) but have access to a global map of the environment. Agents can communicate with
each other when they are in each others’ FoV. We call our RL-based MAPF planner PBRSS
(Potential-Based Reward Shaping with Search).

The issue of indiscriminate reward manipulation is addressed in PBRSS via the use
of potential-based reward shaping. It is well known that potential-based reward shaping
retains the optimal policy [37]. In fact, it invokes both theoretical and empirical advantages
of accelerated training and likely convergence to higher-utility Nash Equilibria. Moreover,
the guidance is required only during the training phase. The issue of computational expense
incurred by global centralized MAPF planners is addressed in PBRSS via the use of the
adapted version of the PO-MAPF problem. Here, the joint space of planning is factorized
into dynamic subgroups of agents over rolling time horizons.

PBRSS does not require the manual design of potential functions that are used to enrich
the reward signals of the environment. Moreover, because of the generality of the potential-
based reward shaping method, our approach can be used with any RL-based MAPF planner
to improve its performance.
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Chapter 2

Background and Related Work

In this section, we describe the background and previous work related to the various com-
ponents of PBRSS.

2.1 MAPF

The MAPF problem [49] is the combinatorial problem of finding a set of optimal conflict-
free paths for a set of m agents {a1, a2, . . . , am} on a given graph G = (V, E), where each
agent ai has a starting vertex si ∈ V and a goal vertex gi ∈ V . Time is discretized into
timesteps, and, at each timestep, each agent can either wait on its current vertex or move

to an adjacent vertex. Two agents conflict with each other if, at the same timestep, they
either are on the same vertex or traverse the same edge in opposite directions. Two common
objectives of the MAPF problem are to minimize either the flowtime, i.e., the total number
of timesteps required for all agents to reach their goal vertices, or the makespan, i.e., the
timestep at which all agents reach their goal vertices. The MAPF problem is NP-hard to
solve optimally and NP-hard to approximate within any constant factor less than 4/3 for
both of these objectives [31]. In this thesis, we focus on the makespan objective, which is
popularly used by RL-based MAPF planners.

Centralized MAPF planners search in the joint space of all the agents. Among them,
CBS [43] is a MAPF planner that operates on the conflict-resolution space and finds a set
of optimal, collision-free paths for all agents. CBS is a bi-level search algorithm where the
two levels are referred to as the high level and the low level. Both the high-level and the
low-level searches of CBS can be guided using clever heuristics [23, 14], constraint propa-
gation [63], and Machine Learning [20]. Another CBS enhancement is the idea of disjoint
splitting [24], in which subtrees of the high-level search are designed to have empty inter-
sections to avoid redundant work. Despite incorporating various algorithmic ingredients,
CBS invests exponential time in resolving conflicts as the complexity of the environment
increases.
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In our approach, i.e., in PO-CBS, we use CBS with disjoint splitting for solving PO-
MAPF problems.

2.1.1 CBS

As mentioned before, CBS is a bi-level search algorithm [43]. Using space-time A∗, it first
plans paths independently for each agent and then uses a high-level search tree, called a
constraint tree, to resolve any conflicts between them. The high-level search node will impose
spatiotemporal constraints, and the low-level search will find a new path that satisfies those
constraints for the agent that is in conflict. Algorithm 1, adapted from Algorithm 2 in [43],
shows the pseudocode for the high-level search of CBS. Although the high-level search tree
expands the nodes with the lowest flowtime (sum-of-costs), it can be easily modified to
utilize the makespan objective instead. It’s important to highlight line 11 of Algorithm 1,
where a conflict is represented as the tuple (ai, aj , v, t), showing that agents ai and aj have
a conflict on vertex v at timestep t. This representation only shows the vertex conflicts.
Similarly, an edge conflict can be represented as the tuple (ai, aj , v1, v2, t), where agent
ai’s transition from vertex v1 to v2 at timestep t causes an edge conflict with agent aj ’s
transition from vertex v2 to v1 at the same timestep. For ease of exposition, however, the
edge conflicts are not shown in the pseudocode.

Disjoint splitting is a strategy that allows CBS to find a solution faster [24]. In the high-
level search of CBS, the constraints are added for each of the conflicting agents, resulting in
one child node for each agent, prohibiting them from being on a given vertex or traversing
a given edge at the specified timestep. However, the disjoint splitting strategy generates
two distinct child nodes for only one of the conflicting agents. The constraint added to one
child node prevents the selected agent from being on a given vertex or traversing a given
edge at the specified timestep. The constraint added to the other child node requires the
selected agent to be on a given vertex or traverse a given edge at the specified timestep. It
has been shown empirically that disjoint splitting speeds up CBS and more quickly finds
optimal, collision-free paths.

2.2 RL-Based MAPF

RL can be viewed as the problem of maximizing the expected total reward accumulated
by an agent operating in an environment over a certain time horizon [53]. The agent takes
appropriate actions by learning a mapping function that maps each state to a distribution
over actions. More specifically, the task can be formalized in the framework of a Markov
Decision Process (MDP). An MDP M is defined by a tuple (S, A, T, γ, R), where S is the
finite set of states, A is the finite set of actions, T is the transition function that defines the
probability of transitioning from state s ∈ S to the next state s′ ∈ S having taken a specific
action a ∈ A, γ ∈ (0, 1] is the discount factor, and R is the reward function that maps
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Algorithm 1: High Level of CBS
Input: a MAPF instance on graph G = (V, E) with agents {a1, a2, . . . , am}
Result: a set of conflict-free paths for all agents, if exists

1 Root.constraints← ∅
2 Root.solution← find individual paths for each agents ai using the low level
3 Root.cost← sum-of-costs(Root.solution)
4 insert Root to OPEN
5 while OPEN ̸= ∅ do
6 P ← a node with the lowest sum-of-costs from OPEN
7 C ← find conflicts for the paths in P
8 if C = ∅ then
9 return P.solution

10 end
11 c← the first conflict (ai, aj , v, t) in C
12 foreach ai in c do
13 A← new node
14 A.constraints← P.constraints ∪ (ai, v, t)
15 A.solution← P.solution
16 update A.solution[ai] using the low level
17 A.cost← sum-of-costs(A.solution)
18 if A.cost <∞ then
19 insert A to OPEN
20 end
21 end
22 end

each state-action pair to a numerical reward. A policy π maps each state to a distribution
over actions. The objective of an RL agent is to learn a policy that maximizes the expected
total reward accumulated over a time horizon, discounting the future rewards by γ. This is
formulated as E[Σ∞

t=0γtrt].
Generally speaking, there are two ways to maximize the aforementioned objective. The

first is to find the optimal policy π∗ that maps each state to a distribution over the ac-
tions that yields the highest expected future rewards from that state. These methods are
called policy-based methods because they directly compute the policy. The REINFORCE
algorithm [54] is a well-known technique for finding π∗ for a given MDP. Some other RL
methods fall under the category of value-based methods. In these methods, the optimal
policy is not computed directly. Instead, the Q-value function is computed, which returns
the expected future rewards by taking action a ∈ A in state s ∈ S under policy π. This
function indicates how valuable it is to perform a particular action in a particular state.
From equation Q(s, a)∗ = maxπ Q(s, a)π, the optimal Q-value function Q(s, a)∗ can be eas-
ily derived. Consequently, an RL agent can act optimally by greedily taking the best actions
using Q(s, a)∗. In particular, equation π∗ = arg maxa Q(s, a)∗ can be used to determine the
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optimal policy. Q-learning and DQN are well-known methods for finding Q(s, a)∗ for a par-
ticular MDP [35]. Nowadays, due to the complexity of the problems and the size of their
state spaces, neural networks are utilized to approximate the Q-value or policy function.

In the MAPF domain, an extension of the MDP framework is more appropriate. This
is the framework of the Markov Game [25]. Here, multiple RL agents interact with the
environment and with each other. The environment can also be only partially observable
for each agent. Therefore, we include a finite set of agents {a1, a2, . . . , am} and a finite set
of observations O in the MDP formalization.

There are several RL-based MAPF planners, including PRIMAL [42], MAPPER [26],
and DHC [32]. PRIMAL uses a combination of RL and imitation learning. To address
the complexity of the problem, these planners use additional guidance derived from single-
agent shortest path computations. PRIMAL penalizes agents that block other agents from
reaching their goal. MAPPER penalizes agents that do not follow their reference shortest
path. DHC measures progress towards the goal using the single-agent shortest path distance
and represents it in the observation space.

While the use of single-agent shortest paths for guidance is both convenient and benefi-
cial, it can also be detrimental. This can happen when the guidance manipulates the reward
function indiscriminately, bearing the potential to change the optimal policy [40, 37]. For
instance, in MAPPER, an oscillating behavior is observed when the reward signals are
changed directly. Therefore, an additional penalty is placed on the agents that return back
to their previous position. In PRIMAL, the risk of directly manipulating the reward signals
is averted by creating an additional output in the actor-critic network and a corresponding
additional term in the loss function for blocking other agents’ paths. In PBRSS, we argue
for the guidance derived from the single-agent shortest paths to be used in the framework of
potential-based reward shaping. Potential-based reward shaping is known to be both neces-
sary and sufficient for shaping the reward signals without changing the optimal policy [37].
Moreover, since it treats the RL agents as a black box [10], our approach can be used to
improve any RL-based MAPF planner.

Some other works attempt to guide the RL agents using entire MAPF plans generated
by centralized MAPF planners. For instance, in PRIMAL, the imitation learning compo-
nent uses a centralized MAPF planner called ODrM∗ [57] for behavioral cloning. Similarly,
GLAS [41] extracts demonstrations from local trajectories of global MAPF plans and uses
them for imitation learning. Despite the promise of using centralized planners for guidance,
the training time increases exponentially with the number of agents. In PBRSS, we address
this issue via the formulation of the PO-MAPF problem and the development of a solver
called PO-CBS.
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2.2.1 DHC

As discussed previously, DHC [32] is one of the successful RL-based MAPF planners. The
DHC method relies on three major components for its success. First, to speed up the training
process, the Ape-X architecture [19] is utilized to parallelize the data gathering and gradient
computations. More specifically, multiple copies of the environment are made, which are
called actors. RL-based MAPF agents interact with these environments to collect data in a
global buffer. Simultaneously, a single learner learns by sampling data from the global buffer
and performing gradient updates on the neural network model. The learner then periodically
updates the parameters of the networks used by the actors. In this manner, data gathering
and neural network updates can be distributed across multiple computational resources.
The overview of the Ape-X architecture is provided in Figure 3 of [32].

Second, as previously mentioned, DHC provides RL-based MAPF agents with guidance
in their observation space. The single-agent shortest distances to the goal locations are
computed at the start of each episode of interacting with the environment for each agent.
This information is then represented in four distinct binary channels, known as heuristic
channels, in the observation space of each agent. Each channel corresponds to one of the
move actions (up, down, left, or right), and each location inside the FoV is filled with 1
only if the agent get closer to its goal by taking the corresponding action at that location.
In other words, they provide the agents with all possible single-agent shortest paths in their
observation space. An example of the heuristic channels is provided in Figure 2 of [32].

Thirdly, in DHC, they argued that the ability of RL-based MAPF agents to communi-
cate with each other is crucial to their success in a partially observable environment. By
communicating, an agent can obtain useful information from its nearby agents (the agents
inside its FoV) and develop policies that are more collaborative and effective. In order to
achieve this, an encoded version of each agent’s observation is passed to its nearby agents.
Later, graph convolution is used to derive communication, wherein each agent is treated as
a node, and the graph is constructed by connecting the nearby agents.

DHC’s neural network architecture consists of three modules: the observation encoder,
the communication blocks, and the Q-network. These modules are the same for each agent
but have different inputs. The observation encoder encodes the agent’s observation from the
current timestep and its latent message from the previous timestep to produce an intermedi-
ate message. The first communication block ingests the intermediate messages of the nearby
agents and feeds the output to the second communication block that produces the latent
messages for each of the agents. The structure of these two consecutive communication
blocks is the same, but the inputs are different. The communication block employs convolu-
tion operations so that information percolates between nearby agents. The latent message
of each agent is passed to the Q-network to produce the Q-values in a dueling manner [60].
The overview of the neural network architecture is provided in Figure 1 of [32].
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2.3 Potential-Based Reward Shaping

Reward shaping is the process of enriching the reward signals of the environment to help the
RL agents converge faster [37]. The new reward function R′ can be written as R′ = R + F ,
where R is the reward function of the environment in the original MDP and F is the shaping
reward function. Technically, F can be any reward function. However, a poor choice of F

can change the optimal policy and even cause oscillating behavior [40]. A potential-based
reward shaping function is a function F that is defined as F (s, a, s′) = γΦ(s′)−Φ(s), where
s′ is the next state reached by taking action a in state s, and Φ(s) is a real-valued function
on individual states. γ is the same as the discount factor in the original MDP. Using such
a function is both necessary and sufficient for policy invariance, i.e., the optimal policy
remains unchanged [37]. Empirically, the use of such a function has been effective in many
different domains [22, 7].

Several benefits of potential-based reward shaping have also been investigated in multi-
agent settings. For example, [9] shows that the set of Nash equilibria remains unchanged
and, with a well-designed potential function, the RL agents are more likely to converge
to a higher utility Nash equilibrium. Other works [34, 1, 10] show that potential-based
reward shaping also accelerates the training process and improves the solution quality in
multi-agent settings.

Potential-based reward shaping can be extended to dynamic potential functions as
well [11]. Such a function Φ(s, t) is defined on a state s and a time t at which the agent
visits s. The reward shaping function is defined as

F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t), (2.1)

where t is the time at which the agent visits s and t′ is the time at which the agent
visits the next state s′. The use of dynamic potential functions allows additional flexibility
in reward shaping while preserving policy invariance in single-agent settings and the set
of Nash equilibria in multi-agent settings. Furthermore, dynamic potential-based reward
shaping has been empirically shown to be beneficial in both settings [11, 33, 4].

9



Chapter 3

Partially Observable MAPF

In this section, we introduce and formulate the PO-MAPF problem. Several RL-based
MAPF planners address PO-MAPF without a standard formulation by merely viewing it
as MAPF in partially observable environments [42, 26, 32, 6]. However, the absence of
standardization may present some difficulties. For example, the formulation used in [46]
is not consistent with those used by many RL-based MAPF planners [42, 26, 32, 6]. In
general, we would like to formulate PO-MAPF by allowing the agents to have a full map of
the environment. This is not an impediment in the real world since a map of the operating
environment is usually readily available. In turn, this also allows RL-based MAPF planners
to use globally computed single-agent shortest paths.

As mentioned before, MAPF [49] is the combinatorial problem of finding a set of optimal
conflict-free paths for a set of m agents {a1, a2, . . . , am} on a given graph G = (V, E), where
each agent ai has a starting vertex si ∈ V and a goal vertex gi ∈ V . Time is discretized into
timesteps, and, at each timestep, each agent can either wait on its current vertex or move

to an adjacent vertex. Two agents conflict with each other if, at the same timestep, they
either are on the same vertex or traverse the same edge in opposite directions. Two common
objectives of the MAPF problem are to minimize either the flowtime, i.e., the total number
of timesteps required for all agents to reach their goal vertices, or the makespan, i.e., the
timestep at which all agents reach their goal vertices.

Like MAPF, PO-MAPF aims to find a set of collision-free paths for a given set of m

agents {a1, a2, . . . , am} on a given undirected graph G = (V, E). The wait actions, move

actions, vertex collisions, and edge collisions are defined as before. The objective is to
minimize the flowtime or the makespan. However, unlike MAPF, PO-MAPF bestows a
limited FoV of length li on each agent ai. While li can be defined in graph-theoretic terms,
the resulting FoV can represent different geometries depending on G. In the case that G is
a 2D grid world, the FoV translates to a square of area (2li + 1)× (2li + 1) centered around
the current location of ai. Any observation that ai makes within this FoV at timestep t

is denoted by ot
i. The agent ai cannot observe anything, including the location of another
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agent, if it is outside its FoV. Therefore, each agent operates in a partially observable
environment. It does not have access to the global state of the environment.

The above formulation of PO-MAPF is consistent with that proposed in [46] but is not
consistent with those used in most existing RL-based MAPF planners. To bridge this gap,
we propose the following two enhancements to the above formulation: First, although each
agent does not have access to the global state of the environment, it is able to access the
full map of the environment. Second, when two agents are within each others’ FoV, they
can communicate with each other. Communication between agents is known to be useful in
the MAPF domain [32]. In our framework, we allow the communicating agents to plan on
their joint space.
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Chapter 4

Partially Observable CBS

In this section, we present a novel adaptation of the CBS algorithm, called PO-CBS. While
CBS is a bi-level search algorithm, PO-CBS is a tri-level search and execution algorithm.
The three levels of PO-CBS are referred to as the high level, the mid level, and the low level.
The mid-level and low-level searches of PO-CBS correspond to the high-level and low-level
searches of CBS, respectively. The high-level search and execution of PO-CBS is based on
a partitioning of the vertices of a graph that represents communicating agents.

4.1 High-Level Search and Execution

Algorithm 2 shows the high-level search and execution procedure of PO-CBS. It assumes
that the FoV li for each agent ai is the same. While this assumption can be easily relaxed, it
is currently used for ease of exposition. Algorithm 2 operates on a dynamic undirected graph
H, called the FoV graph, that changes at each timestep t. At any timestep, vertices of H

correspond to agents, and edges of H correspond to pairs of agents that are in each others’
FoV. The algorithm partitions the vertices of H based on (a) the connected components
of H, (b) a user-specified maximum number of agents allowed in a partition, and (c) an
algorithmic parameter adjustable within the limits of the FoV. On each of these partitions,
the algorithm invokes the mid-level search of PO-CBS, which resolves conflicts between the
agents in that partition within the boundary of their FoVs. The actions recommended for
each agent are derived either from the mid-level search or from other conditions. They are
executed for all agents across all partitions simultaneously.

After initialization in lines 1 to 3, Algorithm 2 constructs the FoV graph H in line 4
at each timestep t. In line 5, it partitions the vertices of H, i.e., {a1, a2, . . . , am}, into W .
Each w ∈ W represents a non-empty subset of vertices, where wi ∩ wj = ∅ for i ̸= j and⋃|W |

i=1 wi = {a1, a2, . . . , am}. In lines 6 to 20, Algorithm 2 iterates over all the partitions
w ∈ W . Each w is restricted to be a connected component of H. It contains a single
agent if that agent is not in the FoV of any other agent. In such a case, lines 7 to 10, any
neighboring vertex of the agent’s location that is closer to its goal vertex qualifies as the
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Algorithm 2: High Level and Execution Procedure of PO-CBS
Input: a MAPF instance on graph G with agents {a1, a2, . . . , am}, max timestep T
Result: execution of an action for each agent at each t ≤ T

1 t← 0
2 while (∃ agent ai not at its goal vertex gi) ∧ t ≤ T do
3 A← ∅
4 H ← the FoV graph, in which vertices represent agents
5 W ← the partitions of the vertices of H
6 foreach w ∈W do
7 if |w| = 1 then
8 Let ai be the only agent in w
9 act(i, t)← follow a neighbor that is on any shortest path of ai

10 A← A ∪ act(i, t)
11 else
12 b← collision-avoidance region on G w.r.t. w
13 I ← MAPF sub-instance w.r.t. w
14 P ← collision-free paths, pi for each agent ai, obtained using mid-level

search on (I, b)
15 foreach ai ∈ w do
16 if P ̸= ∅ then
17 act(i, t)← follow path pi

18 else
19 act(i, t)← a random action
20 end
21 A← A ∪ act(i, t)
22 end
23 end
24 end
25 Perform all actions act(i, t) ∈ A on the environment
26 t← t + 1
27 end

next move action for it. When a connected component becomes larger than a user-specified
threshold parameter, the mid-level search is disabled at that timestep for that partition.
Another way to limit the size of the connected components is to artificially limit the FoV
to be no greater than li. For ease of exposition, these two conditions are not described in
the pseudocode of Algorithm 2.

In general, if w contains multiple agents, Algorithm 2 invokes the mid-level search on
them. In line 12, it identifies a region b on G where conflicts have to be avoided. This region
is computed to be the union of all pairwise intersections of the FoVs of the agents in w.
It is referred to as the FoV of partition w. In line 13, a MAPF sub-instance is conceived
on the agents in w. In line 14, the mid-level search is called to generate paths pi for each
agent ai ∈ w that leads ai from its current location to its goal vertex on the global map.

13



However, the paths avoid collisions with each other only within the region b. This minimizes
the computational effort in the mid-level search and is also consistent with the partial
observability of the agents. Lines 15 to 20 iteratively gather the actions recommended for
the agents. Line 16 tests the outcome of the mid-level search. If the search has succeeded,
line 17 records the recommended wait or move action for the relevant agent. If the search
has failed, line 19 records a random action instead. In line 21, the algorithm executes the
gathered actions for all agents simultaneously.

The planning component (lines 6 to 20) factorizes the joint space of planning on all
agents into smaller joint spaces on agents in each partition. It can thus be parallelized at
each timestep and separate computational resources can be allocated to each partition.

4.2 Mid-Level and Low-Level Searches

The mid-level and low-level searches of PO-CBS are similar to the high-level and low-level
searches of CBS [43], respectively. Analogous to the high-level search of CBS shown in
Algorithm 2 of [43], the mid-level search of PO-CBS searches a constraint tree and resolves
collisions between the agents’ paths by branching and appropriately constraining the low-
level searches of the generated child nodes. Similarly, the low-level search of PO-CBS is
analogous to the low-level search of CBS that computes paths for individual agents under
the spatiotemporal constraints imposed by the higher-level search nodes.

Despite the similarities, there are a few critical differences, particularly between the
mid-level search of PO-CBS and the high-level search of CBS. First, the mid-level search
of PO-CBS resolves collisions only within the FoV of the concerned partition, while the
high-level search of CBS resolves collisions in the entire environment. In effect, the mid-
level search of PO-CBS operates on a comparatively smaller joint space and on a smaller
region. Therefore, it is expected to be faster and, consequently, is given a time limit of a
few seconds. Second, the mid-level search of PO-CBS expands the nodes of the constraint
tree according to their g-values given by the makespan, while the high-level search of CBS
uses the g-values given by the flowtime.

Figure 4.1 shows the drawback of using flowtime minimization in the mid-level search
of PO-CBS. In general, flowtime minimization can lead to livelocks since PO-CBS creates
partitions based on limited FoVs. For example, in the left picture, Agent 2 and Agent 3
are in each others’ FoV. Flowtime minimization in this situation leads to the red path for
Agent 2. However, executing one step of it leads to the situation in the right picture. Here,
Agent 2 and Agent 3 are not in each others’ FoV. Consequently, a single-agent shortest path
is planned for Agent 2, executing one step of which brings it back to the situation in the
left picture, creating a livelock. However, makespan minimization does not result in such
livelocks. In particular, for the situation in the left picture, makespan minimization yields

14



Figure 4.1: A livelock exhibited by flowtime minimization in the mid-level search of PO-
CBS. Two agents, Agent 2 and Agent 3, are shown as part of a larger system. The orange
color indicates the goal location, and the green color indicates the current location of the
agents. Agent 3 is already at its goal location. The pink region indicates the FoV of Agent
3. For clarity, the FoV of Agent 2 is not indicated. Agent 2 and Agent 3 are in each others’
FoV on the left picture but not on the right picture. Flowtime minimization leads to a
livelock between these two situations.

the green path for Agent 2 while Agent 3 unblocks this path by slipping in and out of its
goal location.

In general, the choice of makespan minimization is consistent with prior work on other
RL-based MAPF planners [32, 6]. While flowtime minimization can also be done in the
mid-level search of PO-CBS, its inability to resolve livelocks often leads to lower success
rates. The low-level search of PO-CBS is identical to the low-level search of CBS, except
that it terminates when it reaches a cell outside the FoV of the agent. A novel tie-breaking
rule, explained in the next section, is also used in the low-level search.

4.3 PO-CBS Enhancements

Two major enhancements can be added to PO-CBS to improve its performance. The first
enhancement is in the high-level search and the second enhancement is in the low-level
search.

As discussed in the previous subsection, some livelocks can be avoided by using the
objective of makespan minimization instead of flowtime minimization. However, even with
makespan minimization, livelocks are not completely ruled out. For example, two agents
heading in opposite directions through a narrow corridor can enter a livelock when the exits
of the corridor are not observable to either of them. Even though conflict-free paths can exist
for the two agents using detours outside the corridor, their limited FoVs force the mid-level
search to oscillate. When the two agents are in each others’ FoV, the necessary detours can
be generated. However, while following these detours, the agents can get out of each others’
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FoV and subsequently generate single-agent shortest paths through the corridor. Following
their respective shortest paths brings them back to each others’ FoV, creating a livelock.

The first enhancement is added in the high-level search to minimize such livelocks.
It is a simple mechanism that stores ot

i, for each agent ai in each partition w ∈ W on
which the mid-level search is invoked at timestep t. At a future timestep t′ > t, if the
same partition reappears, the mechanism compares ot

i to ot′
i and scores their similarity. The

similarity metric is an element-wise comparison of the FoV cells in them, accounting for the
fraction of cells that are either free, have obstacles, or have agents, at both timesteps. The
percentage of unchanged elements is computed for each agent ai and the overall product of
these percentages µw is obtained for that partition. The mid-level search is invoked on w

with probability 1 − µwηw, where ηw is a decay factor initially set to 0.95 and is squared
every time the mid-level search is skipped for that partition. As per line 19 of Algorithm 2,
we note that the agents inside a partition act randomly when the mid-level search for it is
skipped.

The first enhancement has two benefits. First, it detects many livelocks and resolves
them using randomness. Second, it avoids the repeated computational efforts of the mid-
level search in livelocks. These savings are significant particularly because livelocks tend to
occur in cluttered regions of the environment involving numerous agents.

The low-level search of PO-CBS computes the shortest paths for individual agents under
the spatiotemporal constraints imposed by the mid-level search. The second enhancement is
used here to decrease the likelihood of creating cluttered regions. It is a simple mechanism
that breaks ties between the shortest paths in favor of those that have smaller segments
within b, the collision-avoidance region defined in line 12 of Algorithm 2. The mechanism is
implemented by maintaining, for each search node in the region b, a b-value in addition to
the f -value. The b-value is pre-computed to be the smallest horizontal or vertical distance
to a cell outside b. The adapted space-time A∗ search proceeds as usual by expanding
nodes with the smallest f -value but breaks ties in favor of those with smaller b-values. This
enhancement has a tendency to avoid cluttered regions since it leads agents outside the FoV
of other agents as soon as possible, dispersing them in the process.
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Chapter 5

Potential-Based Reward Shaping
with Search

In this section, we describe the main components of our approach, encapsulated in our
planner PBRSS. One of the main ideas in PBRSS is to derive the potential function for
reward shaping from single-agent shortest path computations as well as from PO-CBS.
A dynamic potential function derived from PO-CBS can enhance one that is derived from
single-agent shortest path computations since PO-CBS incorporates elements of multi-agent
collision avoidance.

5.1 Single-Agent Shortest Path Potential Function: Φ1

In this method, we generate the potential function Φi
1 for each agent ai using a single-agent

shortest path algorithm such as A∗. Φi
1(s) for a state s, corresponding to a location, is defined

to be the shortest path distance from s to the goal location of agent ai. Although Φi
1 does not

include any information about the other agents, it captures important information about
the environment beyond agent ai’s FoV.

While DHC [32] demonstrates the usefulness of single-agent shortest path computations
in the observation space, we use Φi

1 in the reward function instead of the observation space.
This enables agent ai to receive an immediate positive or negative reward for following or
deviating from its shortest path, respectively, but without changing the optimal policy. It
is ideal to make Φi

1(s) correspond to the negative shortest path distance from s to the goal
location. If s0 is the initial location of agent ai, we set Φi

1(s0) = 0 and define Φi
1 recursively

as follows:
Φi

1(s′) = Φi
1(s)−Δ. (5.1)

Here, Δ = dist(s′, g) − dist(s, g), s is the current state, s′ is the next state, and dist(s, g)
is the single-agent shortest path distance from state s to the goal location g. The recursive
form in Equation 5.1 is convenient for generalization and combination with other terms. It
also makes the definition of Φi

1 agnostic to the size of the map. Notably, recursively defining
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the potential functions does not affect the theoretical guarantees of potential-based reward
shaping fulfilling policy invariance, as the potential functions continue to be independent of
actions. Consequently, the same theoretical guarantees can be applied once more [37, 11].
Considering γ = 1, the maximum shaping reward that agent ai can receive using Φi

1 is +1
at each timestep.

5.2 PO-CBS-Based Potential Function: Φ2

The potential function Φi
1 encourages agents to follow their individual shortest paths but

has the drawback of not considering interactions between them. It also has the second
drawback of being static and therefore unable to deliver guidance for wait actions since the
shaping reward for them would be zero. In the MAPF domain, interactions between agents
in the form of collision avoidance as well as wait actions are both key aspects of MAPF
that make it NP-hard. Therefore, there is significant scope for improvement upon Φi

1.
We address the drawbacks of Φi

1 by generating a dynamic potential function Φi
2 for each

agent ai using the PO-CBS planner. Since the PO-CBS planner generates valid MAPF
solutions, it gives us a chance to incorporate shaping rewards for collision avoidance as well
as wait actions. In particular, useful information can be derived from PO-CBS on partitions
with two or more agents.

PO-CBS generates a sequence of locations for each agent in each partition. For each
agent ai, a sequence of (s, t) tuples is prescribed, where s is a location and t is a timestep.
We define the dynamic potential function Φi

2 on the same (s, t) tuples. Specifically, Φi
2(s, t)

is designed such that, considering γ = 1, transitioning to the next state prescribed by PO-
CBS delivers a positive shaping reward +p and transitioning to any other state delivers a
negative shaping reward −p. Φi

2(s, t) delivers a shaping reward of 0 if the PO-CBS plan
does not exist for agent ai (either because PO-CBS times out or because it cannot find a
solution in a deadlock or a livelock situation).

If s0 is the initial location of agent ai, we set Φi
2(s0, 0) = 0 and define Φi

2 recursively as
follows:

Φi
2(s′, t + 1) = Φi

2(s, t) + pβ(ai, s′, t + 1). (5.2)

Here, s is the current state, t is the current timestep, and s′ is the next state. β(ai, s′, t +1)
is an indicator function that returns +1, −1, or 0 depending on the agreement of s′ with
the PO-CBS plan, as discussed above. p is a quantification of the fraction of agents in that
partition that adhere to the plan, as explained later.

Reward shaping for the individual agents does not force them to follow the PO-CBS
paths. An agent that adheres to its PO-CBS path can still collide with another agent that
does not adhere to its PO-CBS path. Therefore, indiscriminately giving a positive shaping
reward to the adhering agent could be misleading. To address this issue, a proper credit
assignment strategy should be employed. In general, credit assignment strategies determine
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how the collective reward resulting from the agents’ joint actions is distributed among
them [39].

We use the fraction p in Equation 5.2 for the required credit assignment in our domain.
It is guided by the following intuition: In a partition, the more agents there are that adhere
to their PO-CBS paths, the more we want to reward them and the more we want to punish
the non-adhering agents. This is because the PO-CBS plan is largely valid and the desire is
to maintain its validity by rewarding the adhering agents and punishing the non-adhering
ones. Similarly, the more non-adhering agents there are, the less we want to punish them
and the less we want to reward the adhering agents. This is because the PO-CBS plan is
largely invalid and the desire is to reduce the reward for the adhering agents that no longer
have a reason to follow the PO-CBS plan and distribute the blame among the non-adhering
ones.

5.3 Fine-Tuning the Potential Functions

As mentioned before, considering γ = 1, the maximum and minimum shaping rewards that
Φi

1 can deliver are +1 and −1, respectively. The same is true for Φi
2 as well. However,

these unit shaping rewards should be appropriately proportioned against the environment’s
reward signals. Previous theoretical and experimental studies have indicated that the mag-
nitudes of the shaping rewards relative to the environment’s reward signals bear a huge
impact on the performance of the RL agents [37].

In principle, the ideal potential function is the optimal value function V ∗, defined as
per the environment’s reward signals [37]. Although our potential functions can be used
regardless of what the environment’s reward signals are, it is desirable to introduce a space
of possibilities within them to get as close to V ∗ as possible. Towards this end, we introduce
the hyperparameters δ1 and δ2.

Equations 5.1 and 5.2 respectively become

Φi
1(s′) = Φi

1(s)− δ1Δ (5.3)

and
Φi

2(s′, t + 1) = Φi
2(s, t) + δ2pβ(ai, s′, t + 1). (5.4)

The two potential functions can also be combined in various ways to yield a larger set of
possibilities. In this thesis, we experiment with a combination defined as follows:

Φi
12(s′, t + 1) = (Φi

1(s)− δ1Δ) + δ2pβ(ai, s′, t + 1) (5.5)

Algorithm 3 shows the overall control structure of PBRSS that builds and utilizes the
potential functions Φi

1 and Φi
12.
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Algorithm 3: Potential-Based Reward Shaping with Search (PBRSS)
Input: multi-agent RL algorithm, PO-MAPF environment
Result: trained multi-agent RL model

1 foreach episode do
2 Φi

1(si
0)← 0 for each agent ai

3 Φi
12(si

0, 0)← 0 for each agent ai

4 repeat
5 Update Φi

1(si
+) for all reachable next states si

+ of each agent ai

6 P ← PO-CBS plan
7 Get the action set A, recommending an action for each agent, using the

multi-agent RL algorithm
8 Execute the actions in A; obtain the rewards ri and the next states si

+ for
each agent ai

9 Update Φi
12(si

+, t + 1) using Equation 5.5 w.r.t. P for each agent ai

10 F i ← γΦi
12(si

+, t + 1)− Φi
12(si, t) for each agent ai

11 ri ← ri + F i for each agent ai

12 Use the new rewards ri for each agent ai in the multi-agent RL algorithm
13 si ← si

+ for each agent ai

14 until for all agents ai, si is a terminal state;
15 end
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Chapter 6

Experiments

In this section, we present experimental results that demonstrate how PBRSS enhances
DHC, a value-based RL MAPF planner [32], with respect to several performance metrics.
Although DHC is chosen for this demonstration, PBRSS can enhance any other RL-based
MAPF planner as well. On the performance metric of success rate, we compare DHC,
PBRSS, and PO-CBS. We also evaluate PO-CBS with several timeout values for its mid-
level search based on the success rate and the total wall-clock time performance metrics.

6.1 Setup

For each algorithm, its various performance metrics are gathered at testing time from its
runtime behavior on 200 different MAPF instances. These MAPF instances are posed on
2D grid-world environments, where the grid maps are of size 40 × 40 with 30% randomly
placed obstacles. The number of agents varies in the set {4, 8, 16, 32, 64}. At each timestep,
agents act simultaneously, and an individual agent can either move up, down, right, or
left, or wait at its current location. The MAPF instances used for evaluation are the ones
provided in the github repository associated with DHC.1

In an episode, an RL-based algorithm is given a limited number of timesteps on a
MAPF instance. It is deemed successful if all agents are routed to their destinations before
timing out. In our experiments, the time limit is set to 256 timesteps. In addition to the
DHC’s MAPF instances, we also perform experiments on MAPF instances derived from
more structured environments, such as warehouses, rooms, and mazes [48].

The training process implements the Ape-X architecture [19]. Here, as mentioned before,
multiple actors, one for each environment (MAPF instance), continually generate experi-
ences and store them in a global buffer. In parallel, a single learner is continually trained
on these experiences, and the learned model is periodically copied out to all the RL agents.

1https://github.com/ZiyuanMa/DHC
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The learned model is often a single Q-value network. In our experiments, we copy out the
learned model every 400 timesteps, referred to as an epoch.

A performance metric related to training is the speed of learning. It is rendered as a
curve that measures the number of epochs on the x-axis and the mean episode length,
until success or timeout, on the y-axis. A similar performance metric plots the number of
successful episodes on the y-axis.

We use another performance metric to measure the speed of learning. This metric arises
from the context of curriculum learning. In general, the idea of curriculum learning is to
graduate a learning agent through higher and higher levels of complexity [2]. Once the agent
scores well at a certain level, it unlocks the next level. After transitioning to the next level,
it is presented with more complex instances. The related performance metric is rendered
as a curve that measures the number of epochs on the x-axis and the number of unlocked
curriculum levels on the y-axis.

As previously used in DHC, a curriculum level for the MAPF domain is a tuple (li, lj),
where li is the number of agents and lj × lj is the map size. The next curriculum levels
(li + 1, lj) and (li, lj + 5) are unlocked when our learned model solves at least 90% of the
200 most recently generated random MAPF instances at the current level. The first level
has li = 1 and lj = 10, while the last level has li = 12 and lj = 40, resulting in a total of 84
different levels.

It is important to note that the success rate performance metric is the percentage of
successfully solved instances, while the total wall-clock time is the total amount of time
PO-CBS runs when trying to solve all of the instances, regardless of being successful or not.

6.2 Design Choices

To ensure proper comparison, we largely retain the design choices of DHC [32], except
wherever required otherwise. Below, we describe the commonalities and differences. We
also discuss the considerations under which we set an appropriate value of γ for PBRSS.

The general RL formulation is identical to that of DHC. The reward function of the
environment remains unchanged. Each wait action at a non-goal location and each move

action is given a slightly negative reward of −0.075 to avoid extraneous movements and
incentivize reaching the goal location faster. Each wait action at the goal location is given
a 0 reward. All agents receive a positive reward of +3 upon successfully completing an
episode. Any action that results in a collision with an obstacle or another agent is given a
negative reward of −0.5. If an action results in a collision, the colliding agent(s) are reverted
to their previous states. Table 6.1 shows the described reward function.

The observation space is also identical to that of DHC. The entire observation space
is a binary matrix of free cells and obstructions. An obstruction could be an obstacle or
another agent. Each agent has only partial observability with a limited FoV. Within its
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Action Reward
Move -0.075

Wait (off/on goal) -0.075, 0
Collision -0.5

All agents on goal +3

Table 6.1: The overview of the environment’s reward function.

FoV, an agent can observe the obstructions and categorize them as obstacles or agents in
two different input channels. The observation space also has four channels, corresponding
to each of the move actions, that provide binary information to the agent about getting
closer to the goal location (see Figure 2 of [32]).

The neural network architecture is also identical to that of DHC (see Figure 1 of [32]).
The hyperparameters, including the ones used in training, are also identical to those of DHC.
For example, the batch size in training, the number of actors in the Ape-X architecture,
the sequence length for the recurrent units, the number of hidden layers in the Q-network,
and the maximum number of communicating agents are all kept the same. We also set a
timeout of 3 seconds for the mid-level search of PO-CBS. This value is chosen empirically
based on the comparisons we made between several values of timeouts.

Despite the similarities with DHC, we architect some important differences. This is
done in consideration of PO-CBS being more expensive and the effects thereof when the
learned model is updated independently of the actors. Since PO-CBS invests a fair amount
of computation to generate collision-free paths, the global buffer is populated with less new
data and the updates of the learned model are based on poor sample efficiency. To alleviate
this, we introduce a synchronization protocol between data gathering and the learning
process. The learned model is updated only when there is sufficient new data in the global
buffer. While this synchronization increases the wall-clock time, it fixes the issue of sample
efficiency. Importantly, it also allows us to analyze the benefits of PBRSS by standardizing
the sample efficiency of the competing methods.

To set the appropriate value of the discount factor γ, we consider the following. On the
one hand, the theoretical property of potential-based reward shaping on policy invariance
is guaranteed only when the value of γ matches that of the original MDP. On the other
hand, further studies in [16] have demonstrated that, for long enough episodes with γ < 1,
the shaping reward can become negative when moving to a higher potential state, even
when the potential values are positive. This can adversely affect the performance of the RL
agents. Through experiments, we resolved the inconsistent suggestions made by the above
arguments. We found that using the value of γ in the original MDP as it is but setting the
value of γ for potential-based reward shaping to 1 compromises the theoretical guarantees
on policy invariance but has huge benefits in practice.
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Figure 6.1: Different performance metrics related to learning for the asynchronous (first
row and the left picture in the last row) and the synchronous (second row and the right
picture in the last row) versions of DHC with PBRSS. The first, second, and third columns
in the first two rows indicate the mean episode length, the number of successful episodes,
and the number of unlocked curriculum levels, respectively. The third row indicates the
success rate. The inlaid legends indicate the potential function(s) in the first two rows and
PO-CBS additionally in the third row. The shaded regions around the curves in the first two
columns of the first two rows indicate variance over 20 actors. ‘lim 6’ indicates the limit of
6 agents in the high-level search of PO-CBS. Φ1 and Φ2 that utilize δ1 and δ2, respectively,
are indicated by δ1Φ1 and δ2Φ2, respectively.

6.3 Results and Analysis

We first test the learning capabilities of PBRSS by evaluating performance metrics related
to training. The three columns in the first two rows of Figure 6.1 show these results for
the mean episode length, the number of successful episodes, and the number of unlocked
curriculum levels, respectively. We observe that, on all these metrics, PBRSS is significantly
better than naive DHC in both the asynchronous and synchronous versions. This shows that
potential-based reward shaping is beneficial in the MAPF domain. We also observe that
PBRSS with the combination of Φ1 and Φ2 is better than PBRSS with just Φ1, barring
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map warehouse-
10-20-10-2-1

room-
32-32-4

room-
64-64-8

maze-
32-32-2

maze-
32-32-4

num agents 32 64 128 32 64 74 32 64 32 64 32 64
0.2 Φ1 + 0.1 Φ2 86.5 50.5 1.5 99.0 84.0 55.5 83.5 43.5 87.5 6.0 66.5 29.0

0.2 Φ1 + 0.1 Φ2 (lim 6) 70.0 24.0 1.0 100.0 98.5 96.0 77.5 59.5 98.5 25.5 68.5 35.5
0.1 Φ1 93.0 76.0 37.0 90.0 72.0 79.5 92.0 78.0 92.0 53.5 83.5 58.0
naive 16.0 0.0 0.0 88.0 23.0 9.0 74.0 43.5 59.0 0.5 15.5 0.0

0.2 Φ1 + 0.1 Φ2 (sync) 87.5 58.5 8.0 100.0 89.0 67.0 98.5 80.0 99.0 27.5 77.5 12.0
0.1 Φ1 (sync) 95.5 92.0 65.0 99.0 78.5 59.0 100.0 93.5 97.5 27.5 99.5 63.0
naive (sync) 25.5 3.5 0.0 80.5 40.5 24.5 45.5 23.5 87.5 4.5 52.5 4.5

Table 6.2: Success rates of the synchronous (‘sync’) and asynchronous versions of DHC
with PBRSS on benchmark maps with a varying number of agents. The rows indicate the
potential function(s) used for reward shaping.

the number of successful episodes in the asynchronous version while leveling off.2 Generally
speaking, this shows that potential-based reward shaping with guidance from PO-CBS is
beneficial. We further observe that limiting the number of agents to 6 in the high-level
search of PO-CBS in the asynchronous version also improves performance.3 This shows
that making PO-CBS more efficient is beneficial.

The third row of Figure 6.1 shows the comparative performances for the success rate
related to testing. The test instances are from DHC’s github repository. We observe that,
on this metric, PBRSS is better than naive DHC in both the asynchronous and synchronous
versions. Both versions of PBRSS are also better than PO-CBS. This shows that potential-
based reward shaping is superior to both DHC and PO-CBS that do not use reward shaping.
We also observe that PBRSS with the combination of Φ1 and Φ2 is better than PBRSS with
just Φ1 in the synchronous version. This shows that potential-based reward shaping with
guidance from PO-CBS is beneficial, provided that the sample efficiency is normalized.
Otherwise, their comparative performances are reversed in the asynchronous version, since
drawing guidance from PO-CBS takes more time. For the same reason, limiting the num-
ber of agents to 6 in the high-level search of PO-CBS increases the success rate in the
asynchronous version.

Table 6.2 shows the comparative performances for the success rate in another testing
phase. Here, the test cases come from structured maps [48], although training has been
carried out on random maps. This setup is intended to test the generalizability of the
competing methods. We observe that PBRSS is significantly better than naive DHC in
both the asynchronous and synchronous versions. Once again, this shows the benefits of

2Here, δ1 and δ2 are empirically set to optimize performance.

3barring a few regions in the number of unlocked curriculum levels
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Figure 6.2: Different performance metrics related to several timeout values for the mid-level
search of PO-CBS. The left picture indicates the success rate and the right one indicates
the total wall-clock time. The performance metric of total wall-clock time is represented in
minutes. The y-axis for the metric of total wall-clock time is limited to 100 minutes so that
the differences between the curves can be shown clearly. For the timeout of 60 seconds, the
total wall-clock time is 229 minutes for 32 agents and 354 minutes for 64 agents. The inlaid
legends indicate the timeout values for the mid-level search of PO-CBS.

potential-based reward shaping. We also observe that PBRSS with the combination of Φ1

and Φ2 is not always better than PBRSS with just Φ1. In this context, characterizing the
benefits of using different potential functions may require training to be done on structured
maps as well. This study is delegated to future work. Figure A.1 shows the map structures
for this testing phase, which are borrowed from Moving AI’s website.4

Figure 6.2 compares the results of several timeout values for the mid-level search of
PO-CBS. We note that raising the timeout value only increases the success rate for 64
agents, whereas the outcomes remain the same for fewer than 64 agents. Additionally, we
find that choosing 3 seconds for the timeout has the least total wall-clock time. The reason
for selecting a timeout of 3 seconds for the mid-level search of PO-CBS when used in PBRSS
is that our training instances are not normally overcrowded with agents. Because of this,
we expect that a timeout of 3 seconds will give us the same or similar performance as 60
seconds while keeping the wall-clock time lower.

We also demonstrate how advantageous it is to use the second potential function when
the reward function is less sparse. To do this, we alter the original reward function of
the environment so that agents are penalized by −0.025 when they are one move away
from other agents. Using the new reward function in the asynchronous Ape-X architecture,
we train both the naive version and PBRSS with the combination of Φ1 and Φ2 (lim 6).
Figure 6.3 shows the comparative results between the learning models using the old and new
reward functions of the environment. Even without the new, less sparse reward function, the
number of successful episodes and the mean episode length are comparable to those with

4https://movingai.com/benchmarks/mapf/index.html
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Figure 6.3: Different performance metrics related to learning for the asynchronous version
of DHC with PBRSS using the old and the new reward functions of the environment. The
first, second, and third columns indicate the mean episode length, the number of successful
episodes, and the number of unlocked curriculum levels, respectively. The inlaid legends
indicate the potential function(s). The shaded regions around the curves indicate variance
over 20 actors. ‘lim 6’ indicates the limit of 6 agents in the high-level search of PO-CBS. Φ1
and Φ2 that utilize δ1 and δ2, respectively, are indicated by δ1Φ1 and δ2Φ2, respectively. ’+’
indicates the models that are trained using the new reward function of the environment.

Figure 6.4: Different performance metrics related to learning for the asynchronous version
of DHC with PBRSS utilizing various values for δ1 and δ2. The first, second, and third
columns indicate the mean episode length, the number of successful episodes, and the num-
ber of unlocked curriculum levels, respectively. The inlaid legends indicate the potential
function(s). The shaded regions around the curves indicate variance over 20 actors. ‘lim 6’
indicates the limit of 6 agents in the high-level search of PO-CBS. Φ1 and Φ2 that utilize
δ1 and δ2, respectively, are indicated by δ1Φ1 and δ2Φ2, respectively.

the new, less sparse reward function. Furthermore, we find that PBRSS enables agents to
gain more from the new reward function than the naive version. On the performance metric
of the number of unlocked curriculum levels, however, we observe that models trained on
the old reward function unlock the last levels of the curriculum faster, indicating that the
new, manually designed reward function is not advantageous in more difficult instances.

Finally, we demonstrate the degree of hyperparameter adjustment required for δ1 and
δ2. We arbitrarily select a few values for these two hyperparameters and train PBRSS using
the combination of Φ1 and Φ2 (lim 6) in the asynchronous Ape-X architecture. As shown in
Figure 6.4, keeping the magnitudes of both δ1 and δ2 close to the original reward function
of the environment is sufficient to yield superior results compared to the naive version.
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Chapter 7

Conclusions and Future Work

In this thesis, we presented PBRSS, a method that uses potential-based reward shaping for
RL-based MAPF agents. PBRSS is able to draw guidance from search-based methods such
as PO-CBS, our generalization of CBS to partially observable environments. We first for-
mulated a version of PO-MAPF that is more relevant to existing RL-based MAPF planners,
in which agents have a restricted FoV but a global map of the environment. We used this
problem to normalize the comparison of RL-based MAPF planners against search-based
MAPF planners and cross-fertilize techniques between them. Then, we developed PO-CBS
by generalizing CBS to a partitioning of the agents. Subsequently, we used the plans gener-
ated by PO-CBS, along with other single-agent shortest path computations, to design the
potential functions required for PBRSS. PBRSS can be used with any RL-based MAPF
planner, invoking both the theoretical and empirical advantages of accelerated training and
likely convergence to better policies. Through various experiments, we demonstrated the
benefits of PBRSS over relevant baseline methods.

There are many avenues for future work. First, we would like to speed up PO-CBS to
boost the performance of PBRSS in the Ape-X architecture by increasing sample efficiency.
Second, we would like to further study the benefits of different potential functions when
training is carried out on structured maps. Third, we would like to design more refined
strategies for credit assignment in the potential functions.
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Appendix A

MAPF Benchmark Maps

34



(a) warehouse-10-20-10-2-2

(b) room-32-32-4 (c) room-64-64-8

(d) maze-32-32-2 (e) maze-32-32-4

Figure A.1: MAPF Benchmark Maps [48]. These data are made available under the Open
Data Commons Attribution License.
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