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Abstract

Jellyfish have evolved the most energy-efficient method of propulsion of any animal on
Earth, despite having an extremely simple physical and neural structure. For this reason,
they are a very popular model organism for biologists and have been the subject of numerous
experimental and computational studies. But despite the many attempts to comprehend
their swimming dynamics and performance, there still remains a great deal to discover about
jellyfish. This thesis employs numerical simulations using the immersed boundary method
to investigate the Huid-structure interaction between a 2D model for a swimming jellyfish
with the surrounding fluid. Various jellyfish species employ a variety of swimming “gaits” to
generate forward motion, and we will focus on jet-like swimming occurring mostly in prolate
jellies that contract their bell muscles periodically to expel water from their interior. We
first study the scaling properties of jellyfish in terms of two dimensionless parameters — the
Reynolds number and swimming number — to show that a power-law dependence derived
for undulatory swimmers (such as fish and eels) extends naturally to jellyfish that use
a jetting mode of propulsion. We next investigate the feeding technique used by jetting
swimmers, in which trailing vortices generated by bell contractions are exploited to redirect
into their bell interior the mostly passive prey such as algae and plankton that they feed
on. Our numerical simulations are used to quantify and visualize the effect of changes in
prey distribution and jellyfish size and shape with a degree of detail that is typically not
possible in experiments. Finally, we present a preliminary study of pair-wise interactions
between jellyfish in which nearby swimmers generate repulsion forces and initiate turning
responses when they come into close proximity. The overall aim of this research is to lay
the groundwork for future computational simulations of swimming and feeding dynamics in
swarms of interacting jellyfish.

Keywords: jellyfish; immersed boundary method; bioHuid mechanics; swimming dynamics;

fluid-structure interaction
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Chapter 1

Introduction

Jellyfish is the common name for a huge group of marine species known as the cnidarian
medusae. They are easily observed in aquarium exhibits around the world, and their swim-
ming dynamics are fascinating and beautiful to observe. Jellyfish are unique in the animal
kingdom because of two characteristics: they are among the most energetically efficient an-
imal swimmers [10], and their simple physical structure allows them to be modelled using
only a small number of structural elements [9]. They have drawn the interest of biologists
for a long time as the study [11] demonstrates, and their physical structure makes it es-
pecially easy to quantify their swimming dynamics: the transparency of their gelatinous
bodies permits easy viewing through their body tissues, and their radially symmetric body
architecture provides a significant advantage for extending two-dimensional measurements
(17, 3, 2] to the whole three-dimensional body shape [15, 18, 12]. This combination of high
efficiency, minimal complexity, and easy availability of data is also advantageous for using
jellyfish as a model for energy-constrained underwater wvehicles that do not require high
speeds.

In this thesis, we study jellyfish swimming as a fluid-structure interaction (FSI) prob-
lem, involving a swimming jellyfish as a deformable elastic structure in an incompressible
fluid using the immersed boundary method (IBM). The IBM was initially developed by
Peskin [25] to study the flow of blood flow through human heart valves. To solve this FSI
problem, we utilize the open-source immersed boundary software package IB2d. A detailed
discussion of the IBM and IB2d can be found in Chapter 2. Instances of other FSI ap-
proaches used to study swimming jellyfish are extraction of bell cyclic movement from the
video records of a swimming jellyfish while its displacement was simultaneously estimated
from the numerically anticipated forces of the bell on the fluid [13], and a geometrically
conservative arbitrary Lagrangian-FEulerian formulation for the moving boundary problems
in the swirl-free cylindrical coordinates [29].

In Chapter 3, we describe the geometry of a jellyfish bell in our two-dimensional com-
putational studies which is based on the genus Sarsia, similar to the model proposed by


IB2d
IB2d

Hoover et al. [19]. Sarsia were also studied computationally by Miles et al. [5] and Colin et
al. [8].

Aquatic organisms have a variety of locomotion mechanisms and swimming dynamics.
Different swimming modes may be more or less efficient at different scales or Reynolds
numbers. In the intermediate to high range of Reynolds numbers, undulatory locomotion
is common and includes anguilliform swimming in lampreys and eels, carangiform swim-
ming in most fish and thunniform swimming in tuna, whales, and dolphins. However there
are many other creatures that employ alternate modes of propulsion such as suction-based
swimming in oblate jellyfish or jetting propulsion using momentum injection in prolate
jellyfish. The dynamics of these various modes have received significant attention from the
scientific community through experimental investigations and computational fuid dynamics
(CFD). Bioinspired computational studies are crucial because they make it relatively easy
for researchers to explore biological parameter spaces. For instance, researchers have looked
at the characterization of undulatory locomotion and uncovered a power-law scaling rela-
tionship that connects body kinematics and fluid characteristics to swimming velocity, and
swimmer-specific CFD models have also supported this scaling law. In particular, the study
of Gazzola et al. [14] prompted us to investigate the scaling applied to jellyfish locomotion
which uses jet-like propulsion in Chapter 4.

Investigating jellyfish feeding dynamics and efficiency is vital because they make up a
dominant group of mesozooplankton that have experienced huge blooming events in oceanic
waters in recent yvears. Jellyfish feeding rates vary based on characteristics such as the preda-
tor species capture surface morphology [6], size, and behaviour, as well as the prey’s species,
size, and behaviour. Several previous experimental studies have attempted to analyze jelly-
fish feeding behaviour [1, 30|, but there has not yet been a thorough computational study
of prey capture by a swimming jellyfish. In Chapter 5, we perform such a computational
study, focusing on the role of various prey distribution patterns and parameters on jellyfish
feeding performance which in practice is difficult to do using lab experiments, but relatively
easy in simulations.

Jellyfish almost never swim alone but rather appear in large, dense swarms, so the inter-
action dynamics should also be carefully examined. One of the gaps in the literature is the
careful evaluation of pairwise interactions. In Chapter 6, we were inspired by the numerical
study of hydrodynamic interaction of swimming organisms at intermediate Reynolds num-
ber regimes by Li et al. [22] to investigate the repulsion between interacting jellyfish using

our 2D} implementation.



Chapter 2

Immersed Boundary Method

In the immersed boundary method (IBM) an immersed boundary is modelled as an elastic
fiber in 2D (or an interwoven mesh of such fibers in 3D) which are immersed within an
viscous and incompressible fluid. The immersed structures are neutrally buoyant and move
with the local fluid velocity, while at the same time exerting on the adjacent Hluid particles
an elastic force which depends on their state of stretching and bending (the force term
can be any function of the immersed boundary configuration). The IBM employs a mixed
Eulerian-Lagrangian framework to discretize the fluid-structure interaction (FSI) problem.

2.1 Governing Equations

The Huid is described by velocity u(x,t) = (u(x,t), v(x,t)), pressure p(x,t) and body force
f(x,t). Here, x = (z,y) is the Eulerian position variable in two dimensions and ¢ is the time
variable. The forces applied to the fluid by the immersed boundary are described by the
function f(x,t), which gives the external force per unit volume applied to the fluid. The
governing equations of motion for a viscous and incompressible fluid are the Navier-Stokes

equations which are:

P (Eugtc, t) +u(x,t)- ?u{x,t}) = —Vp(x,t) + pAu(x,t) + f(x,t) (2.1)

V- u(x,t)=0 (2.2)

where Equation (2.1) is equivalent to the conservation of fluid momentum, and Equation
(2.2) is the incompressibility condition.

The immersed structure is typically represented as a collection of one-dimensional fibers,
denoted by I'. Each fiber can be viewed as a parametric curve X (s,t) where s is a Lagrangian

parameter and ¢ is time. The entire fluid domain is denoted by {1, see Figure 2.1a.



(a) (b)

Figure 2.1: (a) The 2D immersed boundary model for a jellyfish bell, consisting of a fiber I'
immersed in a rectangular fluid £. (b) The fluid grid points and moving fiber mesh points.

2.2 Fluid-Structure Interaction (FSI)

The interaction between the fluid and the immersed structure is described as follows:

s The force exerted by the immersed boundary on the surrounding fluid is represented

as a source term in the momentum Equation (2.1) using
flx.t) = f F(s,t)d(x — X(s,1))ds, (2.3)
r

where F(s,t) is the force density exerted by the immersed elastic boundary and § is
a two-dimensional delta function.

» The immersed structure moves at the local fluid velocity, thus its motion equation can

be written as
o0X(s,t
% =u(X(s,t),t) = f u(z,t)d(x — X(s,1))dx. (2.4)
i
Note that Equation (2.3) makes sense since integrating over all x € () yields the following

L f(x)dz = /; F(s,t)ds. (2.5)

The force F as defined by Equation (2.3) is singular, being zero everywhere except on the
immersed structure (I') and yet having a finite integral over the Hluid domain (£2). In other



words, the total of all the forces acting on the fluid is equal to the total of all the immersed
structure forces (which are the only forces applied to the fluid).

Since the force density F(s,t) is determined by the boundary configuration X(s,t), it can
be written as a function describing the elastic properties of the boundary, or in other words,
it is a combination of all the fiber components modelling the desired material properties of
the immersed structure. For instance, the simplest force density for a linearly elastic material
is F(s,t) = 08*X/8s” which is analogous to having Hookean springs linking successive fiber
points, each with spring constant o and resting length zero.

Equations (2.1)-(2.4) are a coupled system of partial differential equations, which we
refer to as the immersed boundary method. Equations (2.1)-(2.4) clearly show that the 4§

function is responsible for Huid and immersed structure interaction.

2.3 Numerical Method

We consider approximations at equally-spaced times t, = nAt and divide the fluid domain
1 = [0,L;] x [0, L] into a regular N> x N, square lattice of points with spacing Az =
Ay = h. The Eulerian points on the 2D fuid grid are denoted by (i,j) so that discrete
approximations of fluid quantities can be written Ui’; == u(ih, jh,t,) and P:.'; == plih, jh,tn)
representing the fluid velocity and pressure at node (i, j) and time nAt, fori =0,1,--- ,N,—
land j =0,1,---, Ny—1, respectively. Similarly, we discretize the fiber at a set of N} moving
points, with spacing As < 0.5Az and the immersed boundary is represented by discrete
points XJ =~ X(kAs,nAt) for k = 0,1,--- ,Ny — 1. Note that choosing grid spacing as
As < 0.5Ax is a practical accuracy requirement that avoids leakage of the fluid between the
immersed boundary points. The numerical scheme we use employs an explicit discretization

MNumerical parameter Symbol Value 51 units
Spatial Cartesian grid Axr = Ay Ly/Nz = Ly/N, -

Spatial Lagrangian grid As Ax/f2 m

Time step size At 1072 s

Tahle 2.1: Table of all numerical parameters.

of advection terms and so there is a built-in stability restriction of the form |u|At < Az
everywhere, which implies that the displacement of the immersed boundary points is less
than a mesh width during any time step [25]. A typical Eulerian-Lagrangian grid is pictured
in Figure 2.1b, from which it is clear that Lagrangian nodes need not coincide with the
Eulerian mesh. Here, the crucial role of the delta function as an interpolating function
between fluid and immersed boundary becomes evident.

Upon discretizing the fluid-structure interaction (FSI) equations, (2.3) and (2.4), we
replace d(x) by the discrete approximation ., which is non-singular for each Ax but
approaches 4(x) as Ax — 0. Although there are many possible variants of the discrete delta

[ ]



function, we use da.(x) = ¢(x)d(y) where
1 T
S — {m (1+cos(5Z)), z<2Az 26
0, r > 2Ax

which is chosen according to [26] to satisfy a series of discrete compatibility conditions.

Now, consider a two dimensional rectangular fluid domain with periodic boundary condi-
tions that contains an immersed boundary that interacts with the fuid. Although imposing
periodic boundary conditions is not entirely physical, we can justify this choice since, for
our study, the fluid is at a relatively low Reynolds number, and as long as the structure
remains near the center of the domain, the fuid viscosity is high enough to damp out any
disturbances near the boundaries that could interfere with the periodic copies. Furthermore,
periodic boundary conditions mimic the presence of multiple jellyfish interacting in a swarm,
which is a long-term goal of this work. Finally, the periodicity assumption allows a Fourier
method to be employed as a fluid solver, which is both straightforward and efficient. An
example of such an immersed structure which motivated the present study is a jellyfish that
propels itself using regular contractions of its bell muscles. In Chapter 3 we will describe
the 2D model of immersed jellyfish bell and its implementation.

The numerical algorithm for the IBM described as follows:

Step 1: Compute the elastic force F™(s,t) on the immersed boundary from the current im-
mersed structure configuration X", where n indicates the n** time-step.

Step 2: Spread these forces from the Lagrangian nodes to the neighboring fluid grid points,
with a discretized form of the integral in Equation (2.3).

Step 3: Update the fluid velocity everywhere in the domain using the Navier-Stokes equations,
Equations (2.1) and (2.2). E.g., update u™t! and p™*! from u™ and f".

Step 4: Update the immersed structure position, X™+!, using the immersed boundary velocity
computed from U™*! and Equation (2.4).

Step 5: Increase n and go to step 1.

The above algorithm had been previously used in initial release of IB2d and the details
of the discretization can be found in Section 2.4. However, the current release no longer
requires square grids (with Az = Ay), instead supporting all rectangular grids. A second-
order time stepping scheme has also been implemented giving rise to a formally second-order
accurate IBM. Details of this recent algorithm’s implementation can be found in [4].



2.4 1IB2d

An open source immersed boundary software package, IB2d, is described in this section.
Implementations of IB2d are provided in both MATLAB (23] and Python 3.5 [28] which
are capable of modeling a broad array of problems in engineering and biomechanics includ-
ing aquatic locomotion, cellular deformation and transport, blood flow, and wave-induced
deformation of underwater structures [5, 4].

We utilize IB2d to mimic jellyfish swimming due to its ease of use, simplicity compared
to 3D solvers, and additional functionality (compared with other IB solvers) for specifying
a wide range of immersed boundary forces that can mimic material properties that are
encountered in applications (e.g., elastic, visco-elastic, plastic, etc.)

The IB2d uses a Fast Fourier Transform (FFT) approach to solve the discrete fluid equa-
tions, which exploits the periodic fluid boundary conditions to solve the pressure Poisson
equation. The process of solving the incompressible Navier-Stokes equations in IB2d using
Fast Fourier Transform (FFT) can be summarized as follows:

1. Compute and store coefficients of the discrete Fourier transform operator.

2. Compute 1st and 2nd derivatives of the Huid velocity.

3. Compute the right hand side of the Navier-Stokes equations.

4. Perform the Fast Fourier Transform to transform velocity into wave number space.
5. Calculate the fluid pressure and velocity.

6. Perform the inverse Fast Fourier Transform to get velocities/pressure in real space.

Next we describe the discrete approximation used in IB2d for solving the Navier-Stokes
equations, which is based on Appendix A of [5]. The IB2d uses finite difference approxima-
tions to discretize the Navier-Stokes equations on a fixed lattice, e.g., the Eulerian (fuid)
grid. The discrete equations are an implicit linear system for the velocity U*+1:

U.ii: +1 _ U.ii:
P —_—

2
At Sﬁ,(U‘T"}U‘T‘) —D'PH = N DED U 4 FF (2.7)

a=1
DY. Ukl =g (2.8)

such that At and Az are the time-step size and Eulerian mesh width, respectively, and D"
is the central difference operator, defined as

D’ = (D}, D3), (2.9)
with

d(x + Axe,) — ¢(x — Axe,)
2Ax

(Dag)(x) = (2.10)



for @ = 1,2 where {e1, e2} is the standard basis in R2. The viscous term, given by D} D [7/k+1
in (2.7) is a difference approximation to the Laplacian Au, where the D} is a forward and
I, is a backward approximation to d/dz,. The two difference operators are defined as

_ d(x + Axes) — @(x)

(D3 4)(x) o ) (2.11)
(D7 6)(x) = LX) 8~ Txca) (2.12)

The skew-symmetric difference operator, Sa-., is an approximation to the non-linear
advection term (u- Vu), and is defined as follows

Saz = 5[U-DR,¢ + Do (Ug)]. (2.13)

[

The following provides the justification for the skew-symmetric differencing of the convection
terms [21]. Consider a model problem in which a scalar function ¢ is transported by an

incompressible fluid with velocity u
H+u-Vo=0, (2.14)

V-u=0. (2.15)

The integral of the L2 norm of ¢ is conserved

d d
< |1811° = Eﬁzcézdm =0, (2.16)

because the boundary conditions are periodic. Note that ¢ must be a continuous function of
both time and space for Equation (2.16) to hold. It is desirable for the discrete solution to
satisfy the analogous conservation property. This is because if the discrete convection equa-
tion satisfies both this conservation property and the standard Courant-Friedrichs-Lewy
number criterion for linearized stability, the weak instability brought on by the nonlinear
convection term can be avoided [27)].

By discretizing (2.10), (2.11), (2.12) and (2.13), Equations (2.7) and (2.8) are linear in
U*+1 and P*+1, Note that there is no need to discretize the Navier-Stokes equations exactly
as described, and the above can be replaced with any fluid solver of your choice, e.g., finite

element, Lattice Boltzmann, etc.



A visual diagram of the immersed boundary method (IBM) steps is as follows (Note
that the total IB force for the jellyfish model is fully explained in Chapter 3):

[ IBM ]
¢ llmmersed Boundary Method] ¢
Eulerian 1 Lagrangian 1
viscous and incompressible fluid motion elastic immersed boundary
governs using Navier-Stokes equations viewed as a parametric curve
p(%+u-?u)=—?p+pﬂ.u+f X(s,t)
V-u=0 J where s is a parameter at time ¢
Y
FSl

{Fluid—Structure Interaction

(IB— Fluid) (Fluid— 1B)
Fluid Force Immersed Boundary Evolution
f(x,t) = f F(s,t)d(x — X(s,t))ds L% = Jou(x,t)d(x — X(s,t))dx
Y

Total IB Force

Frotal = Frlastic + FDriving
where elastic force density derived as
Frlastic = FSp'-ing + FBeam




Chapter 3

Jellyfish Structure and Dynamics

The current chapter introduces background preliminaries regarding jellyfish structure and
swimming dynamics along with a simple 2D model. We start by defining the two dimensional
geometry of the jellyfish bell and then introduce a simplified muscle structure that drives the
swimming dynamics. We also describe the spatial discretization of the bell and its desired
material properties. This is followed by a description of important nondimensional numbers
like Reynolds number (Re) and swimming number (Sw) which characterize the jellyfish
swimming dynamics. This chapter closes with a discussion of the implementation in the
IB2d software package.

3.1 Computational Geometry

We chose the jellyfish genus Sarsia, pictured in Figure 3.1a, for our study since it propels
itself by jetting motion and its bell configuration is straightforward to model. The other
major mode of swimming that is more common to oblate jellyfish is called paddling, in
which forward motion is driven by a much more complex and genuinely three dimensional
wave of motion that propagates around the edge of the bell. This Sarsia jellyfish is similar
to that studied by Hoover and Miller [19], where the jellyfish bell is approximated in 2D by
a portion of an elliptical curve with a specified cut-off for the lower portion of the bell. In
other words, the bell is a partial ellipse with semi-major axis b, semi-minor axis a and its
overall height denoted as H (see Figure 3.1b). Various researchers have used this approach
to model jellyfish, such as Hoover and Miller [19], Colin and Costello [8], and Herschlag and
Miller [17]. The bell is made to resist bending and stretching and IB forces encourage the
bell to return to its preferred configuration as this partial ellipse. The equation for the bell
shape is

_z,)? — )2
(z a;'c) LW bzyf} =1 for z,—a<zr<z.+a, y-d<y<y.+b  (3.1)
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(a) (b)

Figure 3.1: (a) Image of a swimming Sarsia. (b) The jellyfish geometry in 2D with bell
height H = b+ d, semi-major axis b and semi-minor axis (or bell radius) a.

where (x.,y.) is the center of the ellipse, a is the semi-minor axis of the bell which is also
known as a bell radius, and H = b+ d is the height of the bell (see Figure 3.1h).

3.2 Jellyfish Dynamics

To determine the total force due to the elastic deformation of the bell and the force due to
the contraction of the bell (driving force), we may separate the Lagrangian force density
into the elastic force Figjasti- and the driving force Fpriving (contraction), such that the
total force density is

Frotal = FElastic + FDriving- (3.2)

The elastic force in our two-dimensional jellyfish model consists of a stretching-resistant
spring force and a bending-resistant beam force, therefore Equation (3.2) can be rewritten
as

Frotal = Fspring + FBeam + FDriving, (3.3)

with more details in Sections 3.4 and 3.5.

3.3 Spatial Discretization

Based on the jellyfish model of Hoover and Miller [19] described in Section 3.1, the jellyfish
bell is discretized by points a distance of As apart modelled in a Lagrangian framework.

This initial discretization is a curvilinear mesh consisting of equidistant points along the
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partial ellipse. The horizontal (z) and vertical (y) positions along the bell are prescribed

using polar coordinates as follows:

x = acos(f) + z,, (3.4a)
y = bsin(f) + y,, (3.4b)

where (z.,y.) is the center of the ellipse and the polar angle is 8 € (—fp, ™ + fo) such
that #y = sin—!(d/b), which satisfies Equation (3.1). Identifying k, k + 1 as two successive
Lagrangian points, the distance between points in the equilibrium configuration can be

k41
A =fﬂ \ As? + As3 df, 3.5
5 B, 51 53 (3.5)

where As; and Asy are defined as

written as

Asy(6) = asin(6), (3.6a)
Asa(8) = beos(6), (3.6b)

and ., 1 are located so that As is constant. Then, the desired As can be written using

a simple approximation of the integral as:

As = j:aﬂ \/m df == (g1 — E?;:J\/l:asin{ﬂkjjﬂ + (bcos(f))2. (3.7)

Simplifying Equation (3.7) results in the following formula for determining the position of
Lagrangian points along the bell:

g — As
ML T (asin(0k))? + (beos(Gk))2

16, for k=1,2--- N, (3.8)

Note that Equation (3.8) is used to determine both the initial position of the bell and
the rest state configuration (to which the bell relaxes when there are no muscle contractions
and the fluid is at rest). The number of Lagrangian points N is chosen to satisfy As S
Ax/2, which in the immersed boundary method minimizes interpolation errors between the
Eulerian and the Lagrangian grids, and avoids mass conservation errors due to “leakage”
between 1B points [26].

3.4 Jellyfish Forces and Material Properties

This section presents all material properties of our jellyfish model relevant to desired ap-
plication which are based on the spring and beam fiber models available in the IB2d im-

plementation. See Figure 3.2 for a depiction of how immersed boundary points along the
jellyfish bell are connected by spring and beam forces.
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Figure 3.2: Critical aspects of the jellyfish model implemented in IB2d. (A) Each pair of
successive Lagrangian points is connected by a virtual spring, shown at the resting length
of the spring (left) and a rendering of the longitudinal forces induced when the spring is
stretched (right). (B) Each set of three adjacent Lagrangian points is treated as an elastic
beam with equilibrium angle ¢p. The resting configuration is shown above, and the case in
which force being applied by the middle node (Xi) while the system is not at its lowest
energy state is shown below. There are forces corresponding to the bending force applied
to X;_1,X41 in an opposite direction which are depicted as red arrows. A driving force
is applied to the lower portion of the jellyfish bell (muscle points) which are the horizontal
springs colored in dark blue.

For any given deformation energy IB2d never actually computes E. Instead, the code
implements Equations (3.12) and (3.14) describing the stretching and bending state of the
bell, by taking

E = E(X4(t),Xa(t), - . Xn,(t)), (3.9)

and then the corresponding elastic force at point X can be written as the derivative of the
Energy
(3.10)

where N is the number of immersed boundary points in the immersed structure. We note
that Equation (3.9) is a combination of the deformation energies from all respective fiber
models which are explained below. The code does not compute E, instead this is a convenient

framework to define the forces that are implemented in the code.

3.4.1 Springs

The force between any two successive Lagrangian points that resists stretching and com-
pression is modelled as a Hookean spring with resting length Ry and spring stiffness ks.
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The elastic potential energy for the spring connecting two successive Lagrangian nodes X,
and Xg 4, is given by

1
ESpring = Ek3(||}{k+1 —X||-Ry)?, for k=1,2,--- ,N,—1. (3.11)

The corresponding IB force is given by a derivative of the elastic energy in Equation (3.11)

as
AEq, . R T4l — Tk
Fs, .. = OEspring _ 1 (1_ —L) : [ l , (3.12)
Spring X [ Xees1 — Xkl | wrrs — e

Note that there is a corresponding spring force at X;,,; in the negative direction given by
.. AEs i
the derivative _SX%&'

3.4.2 Beams

A wvirtual beam connection is introduced between each set of three successive Lagrangian
points to have a bending effect. The model assumes a desired external angle ¢y which is
a prescribed curvature between the three Lagrangian points along with a corresponding
bending stiffness kg. The bending energy can be written

1
Epeam = kB (% - (X1 — Xi) % (X — Xi11) = C)’, (3.13)

where X1, X3 and X + 1, are left, middle and right Lagrangian points coordinates,
respectively, and the local curvature is C' = dg_1 3)dx k1) Sin(¢o) at the desired angle ¢p
and distances between links, d_1 &) and dg g4 1). Thus, the corresponding bending force is

BE eam
Feam = BJB(k =kp ((Zre1 — Tr) (W — Y1) — (U1 — W) (Th — Tp—1) — C)

(v — yk—1) + (Vr+1 — k)

(2 — Tpy1) — (T — Tp_1)] (3.14)

and there are additional contributions to the force at points Xg_; and Xpyq that come
from the corresponding derivatives of the same energy term. An illustration of such a 2D

beam connection is provided in Figure 3.2B.

3.5 DMuscle Contraction

Jet swimming involves the contraction of circular muscle fibers lining the subumbrellar sur-
face, called subumbrellar muscles. Shortening of the muscles contracts the bell and reduces
the bell volume. This action forces fluid out of the subumbrellar region as a jet that forms a
series of vortices behind the bell and drives the forward swimming motion. Virtual springs
joining points on opposite sides of the bell mimic the subumbrellar muscles, which cause
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the bell to contract by dynamically varying their resting lengths. While the deformation
force is identical to Equation (3.12), a different spring stiffness coefficient k4. and a
time-dependent spring resting length Ry (t) are used. The subumbrellar muscles squeeze
the bell toward the centre axis of the bell and push the fluid out during the contraction
phase of forward swimming. We can mimic this contraction process by imposing a resting
length of a pair of muscle points X; and X, on opposite sides of the bell in the following

manner

Ry (t) = |cos(2mft)| x /(@1 — 27)2 + (1 — ti)? (3.15)

where f is the contraction frequency {s_lj and t is time. Note that during the contraction
phase, the driving force term is positive, and contracts the bell towards the center line.
During the expansion phase, the driving force term is negative and the force term is directed
outwards from the center line.

3.6 Tracers or Food Particles

In this section, we will describe the IB2d implementation for tracer particles which move
with the local fluid velocity without exerting any force on the fuid. Suppose that a tracer’s
position is denoted by X,,., then its equation of motion is simply

dX - _ _
Tﬁf = u(Xer(t),t) = Lu{x, t)d(X — Xy )dX. (3.16)
MNote that tracer points are moved in the same way as other force-bearing IB points during a
simulation. Tracers are not only useful for visualizing the fluid motion during a simulation,

but they can also be used to mimic the presence of passively floating prey such as plankton
or algae which are the main food source for jellyfish like Sarsia.

3.7 Parameters and Nondimensional Numbers

Table 3.1 provides reference parameters related to our two dimensional jellyfish model.
To compare our computed results with those from the literature across different stroke
frequencies and sizes of jellyfish, we used results from dimensional analysis to define certain
dimensionless quantities that are relevant to swimming. Defining dimensionless numbers
ensures that various model results can be compared appropriately over a wide range of
dimensional parameters. The three nondimensional parameters that are applicable to our
study are described below.

3.7.1 Reynolds Number, Re.

The Reynolds number measures the ratio of inertial to viscous forces in the Huid and is

obtained during the nondimensionalization of the Navier-Stokes equations. There are many
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possible choices for length and velocity scales but we choose values relevant to swimming
dynamics:
oD

Re = —‘OU’“”; Jelly (3.17)
where Uy, is a characteristic swimming velocity, D)., is the characteristic jellyfish length,
p is the density of the fluid, and u is the dynamic viscosity. The characteristic jellyfish length
Djeny is taken to be the diameter of the bell in its rest state configuration. Then we specify
the characteristic velocity in terms of the bell contraction frequency f as Ujenry = fDjeny;
therefore, Equation (3.17) can be rewritten as

2
Re = P Dieny. (3.18)
n
Jellyfish bell reference parameters
Parameter Symbol Value ST units
Contraction force magnitude Fiag 107 N
Bending stiffness kn 2.5 % 10° -
Spring stiffness kg 107 -
Muscle stiffness Emuscles 107 -
Contraction frequency f 1 s 1
Bell radius a 0.5 m
Bell height (top) b 0.75 m
Bell height (bottom) d 0.25 m
Characteristic length D (2a) 1 m
| Fluid property

Parameter Symbol Value ST units
Density I 1000 kg/m?*
Dynamic viscosity m 6.5 Ns/m*

Tahble 3.1: Reference parameters related to the jellyfish bell model, which are
representative of a jellyfish within genus Sarsia [19)].

3.7.2 Swimming Number, Sw.

The swimming number is a dimensionless number that has been described as a transverse
Reynolds number characterizing the undulatory motions that drive swimming in organisms
such as fish, lamprey, etc. We have adapted this definition for jellyfish and define:

AD,
Sw = ’M—#ﬂi (3.19)

where A is the bell contraction amplitude, w = 27 f is the contraction frequency, Dy, is

the bell diameter, p is the fluid density, and p is dynamic viscosity. Note that this Sw was
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defined for undulatory swimmers like fish and lamprey [14], and we are extending this to

jellies to investigate whether or not Sw captures scaling in jet-like swimming,.

3.7.3 Fineness Ratio, Fi

The fineness ratio is the ratio of bell height to diameter:

Fie bell height b+ d

" bell diameter  2a ’ (3.20)

and characterizes jellyfish shapes. Whenever Fi < 1 the jellyfish is oblate or flat and plate-
shaped in form. Oblate jellyfish predominantly use paddling motions (termed rowing) to
move water around the bell margin during swimming. When Fi > 1 the jellyfish is prolate in
shape which is more elongated or bullet-shaped. Prolate jellyfish typically swim producing
a jet of water during swimming. To be consistent with other authors in the literature, we
will refer to jellyfish having a fineness ratio Fi = 1 as “circular” in shape; however, they
are not exactly circular because our parameter a < b. Our initial jellyfish bell geometry is
chosen such that the bell’s fineness ratio is roughly equal to 1 (Fi = 1).

3.8 1IB2d Implementation

In this section, we briefly describe the typical workflow for using the IB2d code and how

we have modified the code for our jellyfish model. The following data are stored at equally
spaced time points during a simulation:

1. Position of Lagrangian points: X (s, 1)
. Horizontal /vertical forces on each Lagrangian point: F(s,t)
. Fluid velocity: u(x,t) = (u(x,t),v(x,t))

2
3
4. Fluid vorticity: w(x,t)
5. Fluid pressure: P(x,t)
6

. Forces spread onto the fluid (Eulerian) grid from the jellyfish (Lagrangian) mesh:
fix,1).

Both MATLAB and Python versions of IB2d have their own respective directories which
in turn contain two folders: IBM_Blackbox and Jellyfish. The Jellyfish folder contains
all data for the current simulation, including input files needed to run each simulation. The
IBM_Blackbox folder contains all methods for solving the Huid-structure interaction (FSI)
problem. IB2d is designed such that the user will not have to change the underlying IB
algorithm in the black-box, unless they need to make additions such as implementing more
fiber models, etc.
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First of all, the user needs to execute the Jelly Geometry function which creates the
jellyfish bell rest state configuration geometry as described in Section 3.3. All input files for
each force type such as vertexes, springs, non-Invariant beams and tracers. In all simulations,
the immersed structure is called “jelly” and the possible file types are as follows:

s jelly.vertex: A list of all initial coordinates of Lagrangian points.

» jelly.spring: A list of pairs of successive Lagrangian nodes (each of which is connected
by a spring) along with their associated spring stiffness and resting-length.

» jelly.beam: A list of indices for three adjacent Lagrangian nodes (associated with a
beam) and their beam stiffness and target curvature.

» jelly.tracer: A list of all tracer points and their initial coordinates. Tracers mimic the

presence of passively floating prey.

» jelly.user-force: A list of all Lagrangian nodes and the user-defined force magnitude
and jellyfish geometry parameters. Note that this file also keeps records of the jellyfish
bell radius, semi-major axis, semi-minor axis and contraction frequency. Other desired
details of the immersed structure can be kept in this file.

Inside the Jellyfish folder, are two essential files named input2d and main2d.m. The
file input2d is where all parameters required for the simulation are specified by the user
including fluid parameters, temporal information, grid parameters, the Lagrangian structure
model and printing options. The main2d script reads the input2d file and then reads in the
corresponding input files associated with the choices selected in input2d.

After setting desired parameters and selecting the necessary flags, main2d.m this in-
formation to the IBM Driver script. Once the simulation finishes, a visnalization folder
(viz_IB2d) is created that contains all the Lagrangian structure and dynamical data from
the simulation in .vtk format. The . vtk format files are visualized using Vislt [7]. A more
detailed discussion of the workflow in IB2d can be found in [5].

The remainder of this section describes the functions created to help interpreting the
computational results of simulations. Along with the functions listed below.

The Give Me Jellyfish Details function implemented in the Jellyfish folder, and
its associated modifications made in the time-stepping part of the IBM_Blackbox where nec-
essary to derive jellyfish swimming parameters such as swimming direction angle, swimming
velocity magnitude, bell amplitude, and bell diameter as a function of time. This function
computes the mentioned parameters during each time step, and itself is made up of four
different functions which are listed below:

» Give_Me_Jellyfish Swimming Angle: Calculates the angle of the jellyfish swimming
direction in relation to the angle of the bell’s central axis. Note that to minimize the
oscillations of the swimming direction angle, which may be caused by small oscillations
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main2d
input2d
input2d
main2d.m
IBM_Driver
viz_IB2d
.vtk
.vtk
Give_Me_Jellyfish_Details
IBM_Blackbox
Give_Me_Jellyfish_Swimming_Angle

of Lagrangian points due to rapid local changes in spring and beam forces, the central
axis of the bell is assumed to be the perpendicular bisector of the line joining the
symmetric pair of Lagrangian points that flank the uppermost point, see Figure 3.3a.

» give Me_Jellyfish Velocity_ Magnitude: Calculates the velocity magnitude of La-
grangian nodes by taking the average of IB points velocity.

» give Me_Jellyfish Amplitude: Computes the jellyfish bell amplitude, Figure 3.3b
depicts bell amplitude during contraction phase.

» give Me_Jellyfish Diameter: Computes the bell diameter during simulation by
measuring the distance between the lowermost points of the bell.
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Figure 3.3: (a) The illustration of how we compute the swimming direction angle « in the
Give Me_Jellyfish Swimming Angle function (We considered a very special case o = /2
for most of our simulations). (b) The illustration of jellyfish bell amplitude during the
contraction phase. The dark blue IB points correspond to the bell margin points at rest
state and the gray ones corresponding the bell margin points in the deformed state.

In addition, we were also interested to investigate jellyfish feeding performance, so we
added a function Check Tracers In Bell to keep track of tracer points, and determine
whether they have entered the region inside the bell during a simulation. We used a flag for
each tracer point which indicates whether or not the prey particle has been eaten by the
jellyfish. A more detailed discussion of feeding performance can be found in Chapter 5.

An additional force term is applied to address unrealistic interactions between jellyfish
as they collide, preventing unnatural looking motions. To implement this force term, we
use the IB2d option of creating a user-defined force model. Many items are passed into the
model automatically, such as the current and previous positions of the Lagrangian points,

current time, time-step, and so on, and the user has control over how they define their
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model and what Lagrangian points are involved. It also includes the functionality for the
user to read in appropriately chosen data for parameters, etc.

The user defined force functionality works similar to the other fiber models, for
instance, there is an associated input file that gets read into the IBM Driver file and then
finally into a function that computes the deformation forces at each time step. The style of
the input file user_defined_force is shown in [5]. The input file data then gets passed to
a script give_Me_General User Defined Force Densities which is located in the jelly
folder. That script receives the input parameters listed in Table 3.2 from the IBM_Driver file.
With these parameters and the data read in from the jelly.user force file, the user can

As Lagrangian spacing
Nb Number of Lagrangian points
zLag current x-Lagrangian coordinate positions
yLag current y-Lagrangian coordinate positions
Ly Computational domain size in x-direction
L, Computational domain size in y-direction
general — force | matrix containing all data from the jelly.user force

Tahble 3.2: Parameters passed into the user-defined force script.

define their Lagrangian deformation force law. Upon running the simulation, during each
time-step, the data is passed to the give_Me_General User Defined Force Densities.
Here, that script computes a force. The entire procedure can be summarised as follows:

1. Create input files jelly.user-force.
2. Define user-defined force model in the give_Me_General User Defined Force Densities

script.
3. Turn the flag for the user-defined force model in the input2d file.

4. Run simulation using main2d.m.

A detailed discussion of the force term and its implementation is given in Chapter 6.
For visualizing the simulation results we used a combination of MATLAB [23] and the

open-source visualization software VisIt [7].
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Chapter 4

Scaling Jellyfish Locomotion

In this chapter, we follow the work of Gazzola et al. [14] to test whether or not jellyfish that
utilize jet swimming satisfy the same scaling relationship for aquatic organisms that employ
undulatory swimming gaits. As a result, we extend their scaling relationship to connect
jellyfish swimming speed (U) to jellyfish bell contraction amplitude (4) and frequency
(w), which reveals a unifying dimensionless equation describing their locomotion. Using the
definition of the Reynolds number (Re = pUL/p) and swimming number (Sw = pwAL/p)
discussed in Section 3.7, this principle can be expressed as a power law:

Re ~ Sw". (4.1)

MNote that we are interested in confirming whether such a power law applies to jet-propelled
swimmers and comparing to the exponent o observed for undulatory swimmers.

It is worth emphasizing that the underlying dynamics of aquatic swimmers are often
described using the Strouhal number (5t = wA/U), a dimensionless variable taken from
engineering. Even though this makes sense in many engineering applications, such as vortex
shedding and vibration, Strouhal number confuses input (A,w) and output (U) variables
in a biological context, captures only one length scale by assuming 4 ~ L, and does not
take into account the effect of the fluid environment through different values of fluid viscos-
ity. In contrast, swimming number captures the two usually distinct length scales for the
stroke amplitude and body size, making it a more natural quantity to describe biological
locomotion. This also allows us to directly connect the swimming dynamics (A,w) with the

resulting swimming velocity (U).

4.1 Scaling Aquatic Locomotion

An aquatic swimmer's locomotion is characterized by a complicated interaction between the
swimmer's deforming body and the induced flow in the surrounding fluid. Swimming at low
Reynolds number (Re < 1) is governed by linear hydrodynamics and is more analytically
tractable, but at high Reynolds number (He > 1) locomotion involves non-linear inertial
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forces. The wide range of sizes, morphologies, and gaits of aquatic swimmers makes it
challenging to find a unifying framework that holds across many different species. As a
result, most researchers have taken a more restricted approach, assessing the challenge of
swimming in specific settings from experimental, theoretical, and computational viewpoints.

First, we start with a brief review of Gazzola et al. [14], who combined simple scal-
ing arguments, numerical simulations, and a comprehensive comparison with experiments
to provide new insights into undulatory swimming. They begin by recalling the primary
physical mechanism underlying the inertial motion of a slender swimmer length, tail beat
frequency and amplitude, swimming speed and fluid viscosity. See Figure 4.1b illustrating an
undulatory swimmer (fish) of characteristic length L that is propelled forward with velocity
' by pushing a bolus of water by means of body undulations characterized by tail beat
amplitude A and frequency w. The body-induced Huid acceleration generates inertial thrust
balanced by hydrodynamic resistance at high Reynolds numbers (Re > 1). Gazzola et al.
suppose that the tail amplitude is minimal in comparison with the body length and that
the organism’s body is slender. This suggests that fluid acceleration can be converted into
longitudinal thrust. Furthermore, all quantities are described per unit depth since undula-
tory motions are considered in the plane. For inertial aquatic swimmers that use undulatory
gaits, the mass of fluid set in motion by the deforming body scales as pL? per unit depth,
assuming that the wavelength associated with the undulatory motions scales with the body
length (L), which is compatible with experimental and empirical data. The surrounding
fluid acceleration is scaled as Aw?, and hence the fluid reaction force on the swimmer is
scaled as pL2Aw?. The effective thrust pw?A’L is obtained when the body makes a local
angle with the direction of motion that scales as A/L. The viscous resistance to motion
(skin drag) per unit depth scales as plUL /4, where 4 is the thickness of the boundary layer.
For fast laminar flows, the classical Blasius theory predicts § ~ LRe~ /2 [16], hence the
skin drag force due to viscous shear scales as p{vL}lﬂU %/2, Balancing thrust and skin drag
yields the relation U ~ AY3w*3L1/2y~1/3 which may be rewritten as

Re ~ Sw'/®, (4.2)

When the boundary layer around the body becomes turbulent at very high Reynolds num-
bers (Re ~ 10% — 10%), pressure drag overtakes skin drag. The corresponding force scales as
pU?L per unit depth, which when balanced by the thrust yields

Re ~ Sw. (4.3)
Equations (4.2) and (4.3) can be restated in terms of the Strouhal number to obtain

Sw = Re - St, (4.4)



which means that for laminar flows, St ~ Re~ /4, and for turbulent flows, St ~ Re, indi-
cating little or no effect of the Reynolds number on the Strouhal number.

To validate their proposed power laws (4.2) and (4.3), Gazzola et al. [14] show that
data from over 1,000 measurements on fish, amphibians, larvae, reptiles, mammals, and
birds, as well as direct numerical simulations, are consistent with their scaling relationships.
Interestingly for us, jellyfish were not included in this comparison. Figure 4.1a depicts the
diverse range of organisms covered by Gazzola et al. including, which span eight orders of
magnitude in Reynolds number.

Our aim is to extend Gazzola et al's work to characterize jellyfish with jet-like swim-
ming over a much more limited range of Re. We accomplish this by developing a scaling
relationship that connects the swimming speed to the body dynamics and the fluid pa-
rameters. Note that the amplitude of the bell motion is relatively small compared to the
length of the jellyfish (compared with undulatory swimmers). The jellyfish body is not slen-
der, but despite these differences, the symmetric muscle contraction that induces jetting
induces a backward jet in the (negative) longitudinal direction so that acceleration is still
be effectively channelled into longitudinal thrust.

Figure 4.1c shows a jellyfish (Sarsia) with L equal to the bell diameter (Djen,) that is
propelled forward with swimming velocity U7 by contraction of circular muscle fibers lining
the subumbrellar surface of jellyfish characterized by bell contraction amplitude A.
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Figure 4.1: (a) List of aquatic organisms ordered according to Reynolds number. Charac-
teristic scales for (b) an undulatory swimmer (inspired by Figure 1 from [14]) and (c) a
jellyfish (Sarsia) that swims by jetting.
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4.2 Computing Swimming Number in I1B2d

To obtain values of Sw from simulations, we added code to save the jellyfish geometry
details, such as bell radius, semi-minor axis and semi-major axis, and also compute the bell
amplitude during the contraction phase. Moreover, we added lines of code right after the
time-stepping section in the black-box to compute and print the jellyfish Reynolds number
and swimming number. Note that we choose the maximum bell amplitude value ohserved
during an entire simulation for computing the swimming number. This is because we assume
that the jellyfish bell amplitude is minimal compared to the characteristic length.

4.3 Results

To uncover the scaling law for jellyfish swimming, we performed 30 2D simulations of
single jellyfish swimming vertically in a rectangular domain with dimensions L, = 3m and
L, = 6m over a computational time of T' = 2s. The grid spacing is set to be Az = 6/320.
The fluid viscosity is p = 1 Ns/ m? and density p = 1000 kgfm.z. MNote that the jellyfish
bell contraction frequency equals 1 for all simulations, thus w = 2w. The jellyfish vary in
size and fineness ratio. Details of the initial jellyfish bell geometry are provided in Table
4.1. The methodology of creating the initial bell geometry is the same for all simulations
and is determined via the parameterization proposed in Chapter 3. The jellyfish vary in
diameter from 0.6 to 1 metres [19, 3] in our 2D numerical simulations and are characterized
by a swimming number and Reynolds number spanning the range 150 < Sw < 650 and
350 < Re < 1000.
Note that to uncover the power law holding for jellyfish with jet-like swimming, we can
rewrite Equation (4.1) as
Re =c- Sw™. (4.5)

Taking the logarithm of both sides yields
log(Re) = log(c) + alog(Sw), (4.6)

where a and log(c) represent the slope and intercept of the best fit line on a log-log scale.
To determine the parameters in this scaling relationship we perform a linear least squares
fit to data computed for swimming number and Reynolds number.

Since our dimensionless scaling relationship depends heavily on the characteristic length

scale L, we tested our results for two choices:
= bell diameter L = ) = 2a.

, where a and b are the semi-minor

= an average length scale computed as L,, = _2“"‘25"'&

and semi-major axis of the jellyfish bell, and d is the height of the lower portion of
the partial ellipse, as shown in Figure 3.1h.
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| Fi |Simulati0n| a | b | d | Re | Sw |

1 05 | 0.75 | 0.25 | 153.846 | 42.638
2 0.45 | 0.675 | 0.225 | 124.615 | 33.418
3 04 | 06 | 02 | 98461 | 25.656
%I;C;l?r 4 0.35 | 0.525 | 0.175 | 75.384 | 19.000
5 0.3 | 0.45 | 0.15 | 55.384 | 18.203
6 0.48 | 0.72 | 0.24 | 141.784 | 37.793
7 0.36 | 0.54 | 0.18 | 79.753 | 20.216
8 0.42 | 0.63 | 0.21 | 108.553 | 27.885
9 0.33 | 0.495 | 0.165 | 67.015 | 17.204
10 0.39 | 0.585 | 0.195 | 93.600 | 24.112
11 05 | 06 | 0.2 | 153.846 | 43.543
12 0.45| 06 | 02 | 124615 | 34.231
13 0.5 | 0.45 | 0.15 | 153.846 | 48.138
g?lgtf 14 0.4 | 0.45 | 0.15 | 98.461 | 28.233
15 0.45 | 0.45 | 0.15 | 124.615 | 37.786
16 0.5 | 0.675 | 0.225 | 153.846 | 42.676
17 0.5 | 0.525 | 0.175 | 153.846 | 46.705
18 0.45 | 0.525 | 0.175 | 124.615 | 36.358
19 0.35 | 045 | 0.15 | 75.384 | 20.119
20 0.4 | 0525 | 0.175 | 98.461 | 27.347
21 0.45 | 0.75 | 0.25 | 124.615 | 28.501
22 0.4 | 0.75 | 0.25 | 98.461 | 24.246
23 035| 06 | 02 | 75384 | 17.404
1;';1!3};? 24 03 | 0.75 | 025 | 55.384 | 13.002
25 03| 06 | 02 | 55.384 | 15.830
2 035 | 0.75 | 0.25 | 75.384 | 17.154
27 0.3 | 0.525 | 0.175 | 55.384 | 17.673
28 0.4 | 0.675 | 0.225 | 98.461 | 25.230
29 0.35 | 0.675 | 0.225 | 75.384 | 17.438
30 0.3 | 0.675 | 0.225 | 55.384 | 14.848

Table 4.1: Parameter for two-dimensional jellyfish simulations.

Note that to find the best fit to data and compare them to Gazzola et al. [14], we used
the coefficient of determination R? which measures how well a fit can predict the data. The
coefficient of determination falls between 0 and 1, and the quality of the fit increases as R?

gets closer to 1. The coefficient of determination is

RZ=1_ Yri(m— )’

S =9 7

where jj; is a calculated data, and ¥ is the mean for y data.

Figure 4.2 displays the best-fitting outcomes for both version of characteristic lengths,
D and L,,. A linear fit for the case with L = D yields the power law Re = 2.935w?%
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with R? = 0.95, and for L = L, vields the power law Re = 10.0Sw%% with B2 = 0.62.
The fitting errors and comparison with later results in both cases suggests that choosing
the bell diameter as characteristic length is more suitable to use for a definition of jellyfish

swimming number.
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—— Linear fit, L= D

800 ||~ — Linearfit, L~ L ¢
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=

SE 600
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500
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Sw = <4k

Figure 4.2: Scaling for different characteristic lengths: I? and L,

Figure 4.3 shows a more refined picture of three categories of jellyfish separated hy
fineness ratio as follows: prolate (Fi < 1), circular (Fi =~ 1) and oblate (Fi > 1). Figure 4.3
depicts the data from simulations considering L = D, a linear fit for circular jellyfish yields
a power law Re = 1.325w!'® with R? = 0.97, for prolate jellyfish yields Re = 1.995w?%
with B? = 0.89, and for oblate jellyfish Re = 3.795w?%0 with R? = 0.97. According to the
exponent of the linear fit for each of the three categories and their relative errors, circular
jellyfish (Fi == 1) exhibit a scaling relationship that is closest to what Gazzola et al. [14]
observed for undulatory swimmers in the turbulent regime (He ~ Sw).

To evaluate a wider range of Reynolds numbers, we changed the fluid viscosity p rather
than changing other parameters, which could affect the grid size and time step, and thus the
computational cost. Figure 4.4 depicts the power law fitting for our simulations considering
two values of fluid viscosity, a linear fit for p = 1 yields Re = 2.935w®" with R? = 0.95,
for u = 3 yields Re = 2.71Sw"?! with R? = 0.96. These results emphasize that the scaling
results are insensitive to changes in .

To provide an illustration of the fluid viscosity effect on swimming dynamics, Figure
4.5 is provided which depicts the vorticity field (w = V x u) that the swimming jellyfish

generates in the flow considering five different values of fluid viscosity. We observe that as
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Figure 4.3: Effect of fineness ratio on the jellyfish scaling law with L = D.
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Figure 4.4: Various fluid viscosity. Data of 2D jellyfish simulations for g = 1 and u = 3.

it increases, the swimming velocity decreases and the generated trailing line of vortices is
shorter.
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Figure 4.5: Each screenshot shows counter plot of w generated by simulations at time = 5s.

To summarize, we reproduced Figure 2a from [14] in Figure 4.6 and added direct data
from our two-dimensional jellyfish simulations in blue. Figure 2 from [14] is a plot of all
the data in terms of Reynolds numbers and swimming number from more than 1,000 mea-
surements for fish (ranging from zebrafish larvae to stingrays and sharks), amphibians (tad-
poles), reptiles (alligators), marine birds (penguins), and large mammals (ranging from
manatees and dolphins to belugas and blue whales). The size of the organisms ranged from
0.001 to 30 meters. A power law fit for undulatory swimmers results in Re = 0.035w!-*!
with B? = 0.95 for the laminar regime, and Re = 0.4Sw!® with R? = 0.92 for the turbulent
regime. The power law fit of our jellyfish simulation data (shown in blue) ranging between
0.6 and 1 metre results in Re = 2.935w""! with R? = 0.94, and suggests that our results
are closer to Gazzola et al’s turbulent case because of the close match in slope (exponent).

Given that the critical Reynolds number (He.) at which a transition from laminar to
turbulent flow can occur is highly dependent on the flow geometry, it is not surprising that
undulatory swimmers may have a different Re,. than jetting swimmers such as jellyfish. For
instance, Re. ~ 2 x 10° for flow over a cylinder, Re. ~ 2.3 x 10° for flow in a cylindrical
pipe with no obstruction, and Re. {1{]3, 2% 105:| for flow over various NACA airfoils.

In addition, we reproduced Figure 3a from [14] in Figure 4.7 and added data from our
2D circular jellyfish simulations in blue. Figure 3a from [14] displays the outcomes of 2D
anguilliform swimmers and 3D simulations carried out by several groups using diverse nu-
merical approaches to further test their theoretical scaling relationship. Slopes in Figure
4.7 are match but the vertical shift could be explained by a variety of factors, most im-
portantly that the jellyfish use a completely different mode of locomotion (jet-like motion)

than anguilliform swimmers.
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Figure 4.6: Scaling undulatory swimmers and jellyfish locomotion. This figure is reproduced
from [14] and our jellyfish data is added as blue circles superimposed on the plot.

4.4 Conclusion

Our results suggest that jet-like swimmers like jellyfish do not follow the scaling laws pro-
posed by Gazzola et al. [14] for undulatory swimmers strictly. We attribute these variations
to the fact that jellyfish adopt an intermittent type of locomotion that involves a combi-
nation of acceleration, steady swimming, and coasting, such as a quick jet phase followed
by a recovery period during which the bell returns to its equilibrium state. Other explana-
tions for the variances may be related to various gaits or anatomical changes related to the
body, tail, and fins which may influence the hydrodynamic profile directly or indirectly by
changing the gaits.

Moreover, our numerical data set does not cover the complete range of sizes, shapes
and swimming dynamics for jellyfish species. Further studies can look at the simulations
of jellyfish in three dimensions and examine a wider variety of jellyfish species, sizes and
shapes.
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Chapter 5

Jellyfish Feeding

In this chapter, we will propose a simple model for jellyfish feeding to examine their feeding
dynamics and efficiency using the two-dimensional model presented in chapter 3. Our aim
is to investigate the role of various parameters and prey distribution patterns on jellyfish
feeding performance, which in practice is difficult to do using lab experiments, but relatively
easy in simulations. Several previous experimental studies have attempted to analyze jelly-
fish feeding behaviour [1, 30|, but there has not yet been a thorough computational study
of prey capture by a swimming jellyfish. We will focus on the computational assessment of
passive prey capture using the numerical data from simulations (note that “passive” refers
to prey that do not swim themselves). The basis of jellyfish swimming is the Hexible bell’s
repetitive contraction over short time intervals, followed by an unforced bell expansion over
a longer rest or recovery period. To evaluate jellyfish feeding ability, it is necessary to study

the fluid-structure interaction (F5SI) and the associated flow patterns or vortex structures.

5.1 Literature Review

The ability of jellyfish to capture food occurs in two stages: first, they come into near
contact with potential prey through natural swimming motions (we are not considering prey
searching or active predation); and second, the pressure and momentum of the swimming-
induced Huid dynamics is exploited to capture prey by entraining it within the bell where the
mouth is located. Jellyfish frequently use their self-generated swimming currents to capture
stationary prey. Based on morphological and behavioural traits, jellyfish can be divided into
two functional types: (1) traveling predators, which actively create a feeding current to bring
prey into contact with the tentacles, and (2) ambush predators, which stretch their tentacles
and wait for an opportunity to capture prey. Note that tentacles are not explicitly treated in
our simulations, since jellyfish in the Sarsia genus have tentacles that are relatively thinner,
shorter and fewer in number than other species. Moreover, Sarsia belongs to the first type
jellyfish called traveling predators, which is another reason we ignore tentacles.
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In general, jellyfish use a primitive prey capture mechanism that necessitates direct
contact with the prey, whereas fish rely more on effective visual detection and active hunting.
Acuna et al. [1] have used a large collection of published data to show that despite their
primitive nature, jellyfish have prey clearance and respiration rates comparable to that of
fish, as well as similar growth and reproduction potential. Furthermore, their results show
that jellyfish have evolved relatively large, water-filled bodies that help to boost prey contact
rates. Feeding differences between visual and tactile predators have been suggested as the
reason for differences in competing capacities between fish and jellyfish. Fish have compact
bodies and detect prey via their eyes. On the other hand, many jellyfish are passive hunters
that use their bells to create vortical feeding currents, carrying prey to within reach of
their tentacles and the prey capture region near their mouth inside their bell. A predator’s
competitive ability is determined by prey capture, ingestion rates and how well the energy
collected is converted into body growth and reproduction.

Acuna et al. [1] proposed an approach to model the feeding performance, in which they
assume that total Huid volume cleared of prey by a traveling jellyfish is proportional to
swimming velocity U and projected cross sectional area S (see Figure 5.1a), such that

C = BSU. (5.1)

Here, 7 is the searching efficiency which is the ratio of fluid volume cleared from prey to
fluid volume perturbed by jellyfish. Solving Equation (5.1) for 8 results in

C

f= g (5.2)

which varies between 0.02 and 2.7 for jellyfish, whereas varies between 3 and 5 for fish [1].

Titelman et al. [30] have suggested a simple method of analyzing jellyfish feeding per-
formance. They quantified rates for Aurelia aurita feeding on the yolk sac of cod larvae in
a series of experiments. Their results depict that the ingestion rates increase linearly in a
short-time experiment and over a wide range of prey concentrations, leading to comparable
clearance rates for all concentrations. Note that Titelman et al. [30] considered homoge-
neous prey distribution for the incubation containers at the start of their experiments by
adding the prey to the jellyfish containers and mixing carefully. They defined the clearance

rate (m® h~1) as follows:
_ Vv Catart
F—?x]n(ceﬂd)? (5.3)

where V is the container volume (m®), t is time (h) and Cigr¢ and Ceng are the prey
concentrations {m_aj at the start and the end of the experiment, respectively.

Note that Titelman et al. [30] have chosen this particular definition among many other
possible fits in the literature because it gives a good fit with their experimental data, but

they provide no justification for using the natural logarithm term. We choose the same form
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Figure 5.1: (a) The fluid volume that a jellyfish swims through can be approximated by a
cylinder with dimensions determined by the projected cross sectional area S and its velocity
[7. (b) Only a portion of the cylinderical Huid region actually interacts with the bell margin
and facilitates prey capture (volume shaded in green).

for reporting F since it allows us to compare with their results on feeding in another species

(Aurelia aurita).

5.2 Simulations

Inspired by Equation (5.3), we implement a method to compute the clearance rate of a
swimming jellyfish during simulations. We simulate feeding by adding tracer points in the
fluid that mimic the presence of passively floating prey like plankton or algae. Tracer points
are one of the standard immersed boundary point types in IB2d discussed in Chapter 3.
To estimate the number of prey captured by a swimming jellyfish during a simulation,
we check the location of each tracer point in every time step to see whether or not it lies
inside the prey capture region. We implement a function for this purpose that takes as
input the Lagrangian point coordinates, tracer point coordinates, and an array of labels for
the tracers. Figure 5.2 provides an illustration of how the labelling procedure works. Figure
5.2a shows the prey capturing region of the jellyfish in green. Figure 5.2b shows a tracer
point outside the capturing region while its corresponding label is “FREE”, and Figure
5.2c shows a tracer point inside the capturing region while its corresponding label changed
is from “FREE" to “CAPTURED". Note that any tracer point marked as “CAPTURED”
remains so for the rest of the simulation, even if the tracer point is ejected from the bell

later on.
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Figure 5.2: (a) Prey capturing region shaded in green. (b) Tracer point shown in gray lies
outside the bell and is labelled “FREE”. (c) Tracer point shown in red is drawn inside the
bell capturing region and label is updated to “CAPTURED".

5.3 Results

We considered a rectangular computational fluid domain with L, = 3, L, = 9 and with
periodic boundary conditions. The grid spacing Az = Ay is fixed as L, /N, = 3/160 for all
simulations and the timestep is At = 4 x 10, Other numerical parameters are the same
as Table 3.1 and the initial jellyfish bell geometry is the same as Table 4.1.

5.3.1 Prey Distribution

To study the effect of prey distribution on feeding efficiency, we performed three sets of
simulations with different patterns of prey distribution. We are visualizing feeding perfor-
mance as shown in Figures 5.3, 5.4, and 5.5 since the first pattern is homogeneous and is
consistent with previous experiments in [1], the second pattern has a narrow horizontal prey
strip which can be thought of as approximating a concentrated region of prey that a jellyfish
swims through, and the third pattern is an analogous vertically oriented strip that the jelly-
fish swims alongside to investigate the ability of swimming vortices to entrain nearby prey.
The simulations for homogeneously distributed prey performed with prey concentration of
400 (prey m_s} as shown in Figure 5.3. Figure 5.4 depicts the simulations consisting of a
horizontal strip of prey with a prey concentration of 232 (prey m~*) and the simulations
with a vertical strip with a concentration of 464 (prey m—*) shown in Figure 5.5.

NMNote that to be consistent across all simulations, the initial distance between the jellyfish
bell and the prey strip has been chosen the same. We also assumed L. = L, = 3 for
computing the container volume to compare our 2D numerical results with experiments in
[1], therefore, taking V = 54 m® for all simulations.
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Figure 5.3: Screenshots of swimming jellyfish through homogeneously distributed prey.
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Figure 5.4: Screenshots of swimming jellyfish through a horizontal block of prey.
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Figure 5.5: Screenshots of swimming jellyfish alongside across a vertical block of prey.
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5.3.2 Jellyfish Shapes

Figures 5.6 to 5.8 illustrate the role of various prey distributions on the feeding dynamics
while considering three different bell shapes determined by fineness ratio denoted as Fli.
Recall that for Fi < 1, the jellyfish is called oblate; for Fi > 1, the jellyfish is called
prolate; and for Fi = 1, the jellyfish is called circular. Note that we use the relative mean
square error (rRMS), a standard least square fitting error measure, to test the effectiveness
and accuracy of the linear fitting performed on simulation results; and we left out the fits
for prolate jellyfish since the data points are too disperse and lack any clear trend. The
initial bell geometry for entire simulations is the same as in Table 4.1.

Figure 5.6 shows the simulations data for homogeneous prey distribution: Figure 5.6a
depicts the jellyfish clearance rate as a function of diameter with linear fits of two different
bell shapes determined by fineness ratio:

¢« Circular: F' = 778601 — 3881 with rRM S = 0.03
« Oblate: F = 26540 — 1494 with v+ RM S = 0.01

and Figure 5.6b shows the jellyfish clearance rate as a function of the swimming number

with linear fits as:
s« Circular: F = 1095w — 605 with v+ RMS = 0.05

« Oblate: F = 165w — 281 with rRM S = 0.02

; o 7 x10°
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Figure 5.6: Homogeneous prey distribution: (a) F' versus D, (b) F versus Sw.

Our simulations suggest that the prey clearance rate for circular jellyfish has an obvious
upward trend, increasing roughly linearly with both diameter and swimming number. For
oblate jellyfish, there is a much less obvious linear trend in both plots with a significantly
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smaller slope. For prolate jellyfish, the data are much more disperse and so a linear fit seems
inappropriate which emphasizes the effect of elongated bell shape on feeding efficiency. One
can argue that for a prolate jellyfish swimming through a horizontal or vertical prey strip, the
bell opening is possibly too small to allow prey to penetrate deeply enough to be captured
compared to other bell shapes. The clearance rate of circular jellyfish increases linearly
as the diameter and swimming number increase. This is an expected feeding performance
given that larger jellyfish generate larger vortices. Also oblate jellyfish generate less energetic
vortices that do not penetrate as far into the bell, so it is not surprising the clearance rate
is much smaller.

Figure 5.7 shows the simulation data for a horizontal prey distribution. Linear fits for
data shown in Figure 5.7a are:

+ Circular: F = 503180 — 27388 with rRM S = 0.04

= Oblate: F = 184930 — 10818 with rRM S = 0.1
and in Figure 5.7b are:

s Circular: F = 7465w — 7211 with rRM S = 0.04

+ Oblate: F = 1335w + 937 with rRM 5 = 0.1
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Figure 5.7: Horizontal prey distribution: (a) F versus D, (b) F versus Sw.

Figure 5.8 depicts the data for a vertical prey distribution, with linear fits in Figure 5.8a
s Circular: F = 38910 — 1317 with rRM S = 0.1
= Oblate: F = 62070 — 4277 with rtRM S = 0.1

and in Figure 5.8b are:
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s Circular: F = 445w + 582 with rRM S = 0.1

« Oblate: F' = 745w — 1411 with rtRM S5 = 0.1
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Figure 5.8: Vertical prey distribution: (a) F versus D, (b) F versus Sw.

Figures 5.7 and 5.8 also exhibit similar linear trends and so the results can be explained
similarly to the homogeneous prey distribution.

5.3.3 Time Series of Prey Capture

Figure 5.9 illustrates the number of captured prey as a function of time. Simulation numbers
2, 12 and 21 from Table 4.1 are chosen as a sample of circular, oblate and prolate jellyfish
types, respectively. The bell contraction frequency is f = 1, so that the jellyfish experiences
a muscle contraction once every second, which is easy to identify in the resulting plots.
Figure 5.9 sheds light on the time-dependence of feeding performance by depicting the
time periods in which jellyfish do not capture any prey. As expected for homogeneously
distributed prey cases feeding performance is more consistent during simulations shown in
Figure 5.9a. These results also suggest that the homogeneous distribution is the best because
it is simple to implement in laboratory experiments and because feeding models depend less
on homogeneous prey distribution than on other distribution types. Figure 5.9b corresponds
to the jellyfish swimming through a narrow horizontal strip of prey. There is a clear jump
in prey captured as the strip is passed through, after which the jellyfish encounters no more
prey until it approaches the periodic boundary and approaches the dispersed remains of
the original strip. And at least the oblate jellyfish is able to capture a few additional prey.
Time-dependent capture of prey is shown in Figure 5.9¢c for the vertical strip, where the
jellyfish remains closer to regions containing prey through its motion. As a result, there is a
rapid rise in the number of prey captured each second when the swimming muscles contract
and jetting vortices act to entrain nearby prey lying to the right of the bell margin.
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Figure 5.9: Number of prey captured as a function of time for 3 types of distribution:

(a) Homogeneous prey distribution, (b) Horizontal prey distribution, and (c) Vertical prey
distribution.

5.3.4 Contraction Frequency

The number of captured prey as a function of time for various bell contraction frequencies
is shown in Figure 5.10, demonstrating the role of frequency on capture success. We ran a
second simulation set with frequency of f = 2, which is twice that of the first set considering
prey that are homogeneously distributed for all three types of jellyfish: circular, oblate, and
prolate. Assuming no behavioral changes with size, our findings are consistent with those
obtained experimentally [30], as an increase in frequency leads to increased fluid volume
encountered, directly affecting feeding success.

Comparing the three jellyfish types, circular and oblate jellyfish exhibit superior prey
capturing as their contraction frequency increases compared to prolate jellyfish. Results
imply that the number of prey captured by circular and oblate jellyfish increase roughly

39



proportional to contraction frequency (doubling the frequency doubles the number of prey
captured). Less frequency dependence is another characteristic of prolate jellyfish that can
be explained by the its distinct bell shape. In other words, a prolate jellyfish is relatively
narrow and prevents large numbers of prey from being captured. Therefore, doubling the
bell contraction frequency has much less effect on prey capturing.
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Figure 5.10: Contraction frequency role on feeding dynamics.

Note that we did not investigate the relationship between bell frequency and jellyfish size,
even though it has been demonstrated experimentally that bell frequency is also affected
by jellyfish size [30]; this demonstrates the difficulty of modelling the interactions between
bell frequency and feeding dynamics realistically. Therefore, we must determine the bell
frequency for each jellyfish size based on experimental data for more reliable results.

5.4 Conclusion

This study can be viewed as an initial step toward the ultimate goal of modelling the
feeding of jetting jellyfish. The results indicate the capability of simulations in examining the
feeding dynamics and efficiency. Despite the challenges of conducting lab experiments, such
as their limitations like incapability to modify the shape and size of predators and the size,
concentration, and distribution of prey, computational simulations allow us to circumvent
all these restrictions. Possible areas for future work include more in-depth studies of different
prey concentrations and different jellyfish sizes including the corresponding differences in
contraction frequency.



Chapter 6

Pairwise Interactions

In this chapter, we investigate the dynamics of interactions between pairs of jellyfish which
is important because they are so seldom alone but rather swim in close proximity or even
in dense swarms. Many animals depend on their ability to manoeuvre which is exemplified
in circumstances like feeding and avoiding predators [20]. As a result, we were motivated
to study the pairwise interaction of jellyfish using numerical simulations. To evaluate close
contact, we first extend our IB2d implementation, which initially was designed for single
jellyfish as explained in Chapter 3, to a model for two jellyfish. We investigate several
approaches to handle the jellyfish reactions to colliding or near contact, namely rebounding
and changing swimming direction. In section 6.1, we propose an approach which creates an
imbalance in forces across the body to generate repulsion forces and asymmetric turning
forces that cause both jellyfish to alter their swimming trajectories and repel each other. In
section 6.2, we discuss the implementation of our repulsion strategy in IB2d. and in section
6.3 we compiled the results of simulations. Lastly, in section 6.4 we discuss the unsuccessful

strategies we investigated to make jellyfish turn.

6.1 Strategy

We employ a strategy to make jellyfish repel each other during a collision, inspired by Li et
al. [22] who employ direct numerical simulations to examine the hydrodynamic interaction
of model swimming organisms in the small to intermediate Reynolds number regime. This
repulsive reaction can be induced by applying a force term directed normal to the nearest
point of contact between the two jellyfish. We call this repulsive force term Fopulsive and
we apply this force to a subset of the bell points from each jellyfish as they approach within
a user-defined “active force range” as shown in Figure 6.1. The repulsive force causes the
jellyfish to gradually change their swimming trajectories during the near-contact and hence
to separate from one another. The definition of the repulsive force term imposes force only

on bell points lying within the “active force range”. Suppose that O, denotes the maximum
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or peak repulsive force, then we define

D —dr\?
Ffepidsii:e = l‘:“I‘l'n ( dr ) e, {61}

where I} is the Euclidean distance between two jellyfish Lagrangian points, dr is the force
range and is set to be dr = 2Ax and e is the direction of the repulsive force which is along
the vector joining each pair of points. The Euclidean distance is

D =/d2? + dy?, (6.2)

and the direction of the force term is

o= (%* %’) : (6.3)

where dx, dy are the distance between the Lagrangian points in the r and y directions,
respectively. It is worth mentioning that the characteristic force is tuned by using the results
of numerical simulations to have natural-looking reactions. The choices of characteristic
force also depend on grid spacing since increasing resolution causes more Lagrangian points
to be affected by the repulsive force. Assuming a fixed grid size of Axr = 10/400 and
comparing various numerical simulations suggest that a value of C', in the range of [1[)‘1.., 1[!5]
is most appropriate.

Consider the following concrete example. Suppose two jellyfish are approaching each
other with half-angle o = /3, and that the pair come within the force range dr. At this
moment, the repulsion force begins to apply on the Lagrangian points within the force
range and Figure 6.1 depicts how the repulsion force function operates for this case. The
interaction distance does not have to be the same for other IB forces since it is not a
numerical parameter but is connected with jellyfish ability to sense others nearby. However,
in the absence of experimental values of this sensing distance, we have found that taking a
value of 2Ax gives at least visnally believable results.

6.2 1IB2d Implementation

To implement two jellyfish with pairwise repulsion forces, we change the primary file used
to create the single jellyfish geometry to define a second jellyfish and call the corresponding
file, Two_Jellies.m. The methodology used to do so is the same as that used to create the
geometry of single jellyfish bell explained in chapter 3. To permit increasing the number
of jellyfish beyond two in future, we define an integer parameter NJ that is set to 2 and
is used to output information regarding the Lagrangian points, virtual springs and beams.
Moreover, we also need to generate additional force information for repulsive forces in the
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Figure 6.1: The IB points within the force range and the corresponding repulsion force
arrows are shown in red. Dotted black lines show the Euclidean distance IJ between each
pair of IB points.

file jelly.user force. In addition, alterations are made to the time-stepping part of the
IBM Driver.m file in the black box to adapt the implementation for multiple jellyfish.

We utilize the option of creating a user-defined force model to impose the repulsion force
term into IB2d implementation. By this option we have the flexibility to design any force
term. Many parameters are automatically passed into the force model, such as the current
and past positions of the immersed boundary points, current time, time-step, etc.

Like the other fibre models, the user-defined force reads data from an attached input file
into an IBM Driver file before passing it on to a function that calculates the deformation
forces at each time step. The information from the input file is then sent to the script give_
Me General User Defined Force Demsities in the jelly folder where our repulsive force
term is implemented. In each time step, this force function computes the Euclidean distance
between all immersed boundary points of two jellyfish and checks whether or not they place
within the force range. The repulsive force applies to those immersed boundary points which
are within the force range.

6.3 Simulations of Pairwise Interactions

Simulations of pairwise interactions are conducted on a fixed grid using the IBM solver
IB2d. The reference parameters related to the initial bell geometry and fluid properties are
the same as those listed in Table 3.1. The computational domain is set to L, =5, L, = 10
with grid size Axr = 10/400 and time step At = 4 x 107> are fixed for all cases. The
two jellyfish are the same size and shape with center points initially located at positions
(1.5,1.5) and (3.5,1.5). As shown in Figures 6.2 and 6.3, the two jellyfish swim toward
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each other at a swimming angle of o = 7/3 and they collide. The images show how jellyfish
interact with one another with and without imposing the repulsion force. These plots depict
vorticity with blue corresponding to negative (clock-wise) and red corresponding to positive
(counter-clockwise), and represent a time sequence. In the first scenario shown in Figure
6.2, no contact forces were imposed and so this pair of jellyfish swim towards one another,
collide and adhere without separating. This is not realistic behaviour since real jellyfish
resist adhering by altering their trajectories. As a result this simulation is not regarded as

a sensible pairwise interaction.
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Figure 6.2: Screenshots of jellyfish interacting each other without taking into account the
repulsive force term. A video is provided as supplementary information on my personal
web-page.

To obtain more realistic interactions, we imposed the repulsive force as described earlier
and Figure 6.3 provides screenshots from the simulation. The force term was applied to the
subsets of both jellyfish bell points, causing them bounce off each other a few times then
separate throughout the time sequences depicted in Figure 6.3.

It is worth mentioning that the choice of characteristic force and grid size significantly
impacts interaction dynamics according to our characterization of the repulsive force term
in Equation (6.1). As a result, we provide Figure 6.4 which plots the minimum separation
distance versus time for three simulations using 3 different values of the characteristic force,
Cp = 5 x 10%,10°,5 x 10°. This plot suggests that for the particular simulation with
mentioned initialization, the characteristic force 10° is the most appropriate choice since it
can cause a change in swimming trajectory and repulsion while the two other choices are

unsuccessful.


https://sites.google.com/view/msalehzadeh/simulations/interaction
https://sites.google.com/view/msalehzadeh/simulations/interaction
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Figure 6.3: Screenshots of jellyfish interacting under the influence of a repulsive force. A
video is provided as supplementary information on my personal web-page.
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Figure 6.4: Jellyfish distance as a function of time for different characteristic force.

We consider these simulations to only be partially successful, in that the jellyfish repel
each other and separate after some close interactions, however the relative swimming angle
o never changes and this aspect seems unrealistic.
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Another factor affecting the interaction dynamics using the repulsion force is the role
of the grid size. The number of jellyfish bell points in the force range strongly influences
the repulsive force field. Thus, it would be interesting to study the grid size when closely
examining the hydrodynamic interaction in future work.

6.4 Attempts at Inducing Turning Dynamics

In current section, we describe three attempts to implement forces that induce an additional
turning reaction by introducing an asymmetry in IB forcing:

» Asymmetric muscle stiffness: In our 2D simulations, we implement a function
that stiffens one side of the bell margin to attempt to induce the jellyfish to turn.
We implemented a method that is roughly similar to that discussed by Pallasdies et
al. [24], who discussed the motion of the bell margin used by some oblate species in
which the outer side of the bell (i.e., facing outside the turn) is stiffer than the inside
and paddling action drives motion instead of jetting contraction. They observed that
turning motion in jellyfish occurs by varying the stiffness of the bell in proportion to
one another and impacting the strength of the vorticity created by the bell, which
explains the difference in rotational speed. Figure 6.5 provides an illustration of how
we aimed to mimic this behaviour with the points corresponding to stiffened beam
forces on the bell margin shaded in grey. The reason that the current attempt failed
is probably because it calls for adding new paddling motions on one side, which are

not typically seen in jet-like swimmers.
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Figure 6.5: Varying bell margin stiffness to impact the strength of vortices and induce turn-
ing. The “normal” beam points are colored in blue, while the stiffened points are coloured
gray.



» Apply opposing forces at the central IB points: In addition to the subsets of bell
points within the force range which are already affected by repulsion force introduced
earlier, a force is applied to a subset of points near the front edge or “nose” of each
jellyfish, but pointing in opposite directions to cause a relative rotation. Figure 6.6
illustrates the normal repulsion forces in read that operate at the points of nearest
approach, whereas the turning forces are imposed at the blue points and depicted
with arrows directed in opposite directions to induce a turning motion. Applying this
strategy strengthens the repulsion forces but does not cause any noticeable turning
or relative rotation between the two jellyfish.
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Figure 6.6: Applying an additional force to the central points of the bell (three dark blue
central points) as they place within the force range, and any other bell point within the
force range undergo a repulsion force shown in red.

» Introduce asymmetric muscle points: In a third attempt to simulate turning, we
defined additional asymmetric muscle contractions, which begin contracting alongside
the original muscle points as soon as a pair of jellyfish enters the force range. This
method is depicted in Figure 6.8. Note that the extra asymmetric pairs of muscle points
are defined according to this particular orientation of jellies. Consequently, different
collision orientations may necessitate distinct types of asymmetric muscle points. This
strategy fails to cause turning motion and results in an asymmetric, tangential skew
in the bell shape that seems non-realistic since we have never observed such motions
in videos of actual jellyfish. Figure 6.7 illustrates the mentioned tangential skew,
one aspect of this seems promising in that they appear to be turning relative to each
other; however, the turn is in the wrong direction (that is, turning inwards toward each
other). But, if we reverse the orientation of those asymmetric forces, the behaviour of
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jellyfish through the interaction when they are close to each other is even less realistic
than the one we have proposed.

Q.

t=1.5s t=4, 53 t=6,8s t=8.,6s

Figure 6.7: Screenshots of jellyfish interacting while considering asymmetric muscle points.

Figure 6.8: An extra asymmetric pairs of muscles points start contracting within force range.

In summary, none of these three attempts described above were able to produce any
measurable turning. Turning appears to be difficult to induce in two dimensions and so it
may be that we must introduce some form of artificial torque to the entire bell. Because
torque forces are not one of the options in IB2d, we have not yet attempted to implement
this.

6.5 Conclusion

The long-term purpose of our effort in this chapter is to simulate jellyfish swarms in two
dimensions. We examined two different aspects of interactions: turning, which hasn't yet
worked perhaps because turning requires a fully three-dimensional response, and repulsion,
which produced acceptable results and caused two jellyfish swimming symmetrically towards
each other to separate after a couple of jetting cycles.
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Chapter 7

Conclusion

This thesis aims to develop a 2D model for jet-like swimming in jellyfish and use numerical
simulations with the immersed boundary method to study questions related to scaling of
swimming dynamics, feeding efficiency and pairwise interactions. We validated our model
and compared our numerical simulations with other results from the literature related to
scaling locomotion of aquatic animals, jellyfish feeding efficiency and dynamics, and jellyfish
interaction. Even though certain aspects of jellyfish swimming, such as turning motion, can
be more realistically modelled in three dimensions, our two-dimensional model sheds light
on certain aspects of swimming dynamics.

First, we showed that dimensionless swimming numbers derived for undulatory swim-
mers can be applied to jet-like swimming in jellyfish. The results are consistent with a wide
variety of other aquatic animals. Some small variations in the power law scaling relationship
can likely be attributed to various gaits related to the body.

Secondly, we used passive tracer particles to represent passive prey such as algae or
plankton. We generated swimming visualizations that demonstrate how the vortices gener-
ated by periodic bell contractions are responsible for entraining food particles within the
bell for consumption. Furthermore, we are able to quantify feeding efficiency in our various
simulations using a prey clearance rate proposed by marine biologists and compare it with
their experimental results.

Thirdly, we studied pairwise interactions between colliding jellyfish intending to develop
IB forces that generate realistic-looking repulsion and turning behaviour. COur repulsion
force kinetics seem to mimic real jellyfish, but further work is required to obtain forces
that yield realistic turning motions as we assumed only identical forces for both jellyfish
while in reality the two jellyfish would not react in exactly the same way. Future studies
may include better looking repulsion behaviour by introducing some random component to
the force amplitude that captures the innate variation between individual organisms that
cannot be predicted in advance, moreover, they may include more approaches to the turning
problem, and once it is resolved, our immersed boundary code may be applied to simulating
suspensions of several jetting jellyfish.
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Appendix A

Supplementary Videos

Creator: Mahdi Salehzadeh

Description: The videos are complementary to this thesis. They explore the idea of jelly-
fish feeding performance considering different types of prey distribution pattern.

Filenames:

» Homogeneous.mp4
» Horizontal. mp4
» Vertical. mp4

Description: The videos are complementary to this thesis. They explore the idea of jelly-
fish pairwise interaction with and without the repulsion force.

Filenames:

» NoForce.mp4
» WithForce.mp4

Description: The video is complementary to this thesis. It explores the idea of introducing
asymmetric muscles points.

Filename:

» AsymMuscles.mp4

Feeding simulation and interaction simulation videos can be found in the linkl and link2,
respectively.


https://sites.google.com/view/msalehzadeh/simulations/feeding
https://sites.google.com/view/msalehzadeh/simulations/interaction
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