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Abstract

Remediation techniques involving thermal treatment technologies, such as thermal conduc-

tive heating, are effective at removing non-aqueous phase liquids (NAPL) from soils. In this

process, co-located cylindrical heaters and extractors are placed in the soil. As the soil heats

up, the contaminants vaporize and are removed by the extractors. In this thesis, we present

a numerical model for the remediation of contaminated soil. This numerical model couples

a continuum model of the temperature in the soil with a macroscopic invasion percolation

(Macro-IP) model to capture the dynamics of the gas migration. The heat transport is mod-

elled using a finite difference scheme and Macro-IP uses constitutive relations to describe

the fluid and gas phases. Finally, we compare the results of the Macro-IP model with a

simpler Stefan problem in one dimension. The results show that the dynamics of the NAPL

front are primarily determined by the time the location reaches a depth-dependent temper-

ature, and only weakly on the amount of NAPL initially present. Moreover, it is unclear

whether the additional model fidelity provided by including the Macro-IP step is necessary

to make reasonable predictions of how long the heaters need to run.

Keywords: Porous media; thermal conductive heating; Macroscopic invasion percolation;

Stefan problem
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Chapter 1

Introduction

Soil contamination with petroleum and other heavy hydrocarbons is a major environmental

problem and safety concern. Many contaminants can flow into the aquifer systems, con-

taminating the public water supply. Many sites are so contaminated that there is nowhere

safe to send excavated soil. In addition, the depth at which some contaminants occur ren-

ders excavation prohibitively expensive, so other methods must be employed to remove the

contaminants in situ. In urban settings, contaminated sites, like gas stations, are often left

vacant for decades waiting for the site to become usable.

One rapid approach is in situ thermal remediation technology: the contaminated soil

is heated up with an array of large heating devices, thus accelerating evaporation (and

subsequent extraction) of the contaminants and cleaning the soil in a matter of months

rather than years or decades. In areas with a high concentration of non-aqueous phase

liquids (NAPL), in situ methods are typically more effective than conventional methods

[9]. They have the advantage of shorter remediation times and high remediation rates. But

heating contaminated soil to sufficiently high temperatures is an energy-intensive and costly

endeavour, calling for a careful understanding of what is happening in the soil.

Some common in-situ technologies are steam-enhanced extraction (SEE), thermal con-

ductive heating (TCH), electrical resistance heating (ERH), radio frequency heating (RFH)

and free product thermal enhancement recovery. We focus on TCH treatments; these have

the benefit of reaching higher temperatures, which makes it an ideal technology to use in

large domains.

This thesis aims to examine a simulation technique typically used in the chemical en-

gineering literature, to understand its convergence properties and implementation details,

and to compare it with other simpler models to see if they can easily capture the most

significant information.

The basic model is to use the heat equation to model the heat flux in the soil (dry or

wet) and then use a model based on percolation theory to handle the movement of water

and gases. The boiling of the contaminant and water is handled via energy balance in a

manner similar to an enthalpy method for Stefan problems [11].
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Figure 1.1: A 5m × 5m domain which is set up with z in the positive downward direction.
The collocated heaters and extractors, shown in red, are located at the boundary of left
and right wall of the domain. The heaters provide a constant heat flux at the left and right
walls and we implement no heat flux at the top and bottom. In some simulations only the
heater on the left will be turned on to better see the front propagate.

We will be implementing a model similar to [21] which is conducted over a rectangular

domain of 20m × 5m. There are 5 heaters in the domain placed 5 meters apart. We will

focus on a subsection of this region, a 5m × 5m domain with a heater on the left and right

wall, as shown in Figure 1.1. The power of the heaters at the left and right wall are the

same, so our simulations will be conducted over half the domain in x with only the left

heater turned on. A simulation conducted with nonuniform NAPL saturation is shown in

Figure 1.2.

There are other variations of the model. Our simulations model vertical cross sections

but in [22] the simulations model horizontal cross sections. This requires solving the heat

equation in radial coordinates. But the simulations were done on a small scale so the removal

of vapors was instantaneous. Therefore this particular model was not coupled with Macro-IP.

This model also considered multi-component NAPL but in our model we will only consider

single-component NAPL. The model in [18] couples the continuum model for heating of the

soil with Macro-IP but ERH is implemented instead of TCH. With ERH, the temperature

of the domain is limited to about 120◦C because it is restricted by the boiling point of water

[22]. In Figure 1.2a, we can see that TCH can reach temperatures above that.
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(a) Temperature profiles during the duration of the simulation. Initial temperature that was uni-
formly 10◦C and after 60 days the max temperature was about 212◦C. Thus range of the colorbar
is from 10◦C to 212◦C.

(b) NAPL profiles during the duration of the simulations. The initial saturation has values randomly
chosen from the interval [0, 0.05] with an average of 0.0145 in the entire domain. The colorbar is
from 0 to 0.05. By 60 days all of the NAPL in the domain has been vaporized.

Figure 1.2: Temperature and NAPL saturation distributions for a simulation over a 5m×5m
domain for 60 days. Only the left heater is turned on, so there was a constant heat flux and
the other 3 walls had no heat flux.

3



1.1 Structure of the thesis

The goal of this thesis is to better understand the Macro-IP algorithm as it applies to this

model and to compare it to some simplified PDE approaches for gleaning certain informa-

tion.

We begin in Chapter 2 with some basic facts about porous media. These properties are

required to understand some aspects of the formulation of the model. Chapter 3 describes

the Thermal Conductive Heating model and how phase change is handled. We then describe

the Macro-IP algorithm used to simulate fluid transport and how it differs from a continuous

fluid model in Chapter 4. Chapter 5 describes the discretization of the heat equation and

the implementation of Macro-IP. In Chapter 6 we construct some exact solutions to related

simplified continuum models. Chapter 7 includes details of model validation: convergence

to an exact solution, convergence to a high resolution numerical solution and comparison

to published plots for parameter estimation. Chapter 8 presents some simulations and com-

parisons between the full model and a simplified Stefan problem.
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Chapter 2

Porous Media Flow

The soil is modeled as a porous medium, which is a solid medium with void volume. The void

volume allows fluid to flow through the medium and the study of this is known as porous

media flow. In this Chapter we will describe some basic facts of flow in porous media as

they will be needed to describe the phase changes in the thermal model and subsequent

dynamics when using Macro-IP as that algorithm uses pressure differences to move and

rearrange the mobile fluid states.

In one part of our model, we are essentially modelling the movement of two immiscible

fluids, gas and water. Understanding how water and gas interact with each other is im-

portant in understanding the movement of gas vapors in our simulations. We will present

details on the movement of a fluid in the presence of another by introducing details on

capillary pressure and Darcy’s law.

We’ll introduce a few properties of porous media. In porous media, the porosity is a

fraction that expresses the void volume of the porous medium

0 ≤ ϕ < 1.

We will assume a uniform porosity, but typically it is a nonuniform distribution. The void

volume is occupied by one or more fluids. The saturation of fluid α, denoted as Sα, is the

fraction of the void volume that is occupied by that fluid,

Sα =
Vα

V
, 0 ≤ Sα ≤ 1

where Vα is the volume of the fluid and V is the void volume. In a medium that is fully

saturated, the sum of the saturations must equal 1

∑

Si = 1 .

The permeability, denoted k, describes the porous medium’s capacity for fluid movement.

For the soils we are considering, typical values of k will range between 1e−13 to 5e−09 [2].
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Figure 2.1: An example of the cell at the pore scale containing soil (brown), NAPL (gray),
and water (blue). Gas phase is not shown but as water and NAPL are vaporized gas will
fill the space.

Lower values of k in this range correspond to impermeable soil, which fluids have difficulty

moving through. The permeability is usually expressed as a tensor, but we will assume it is

constant.

2.1 Capillary Pressure

In a system with two immiscible fluids, we say that one of the fluids is the wetting fluid and

the other is the non-wetting fluid. The interaction between the wetting and non-wetting

fluid is described by capillary forces. In our simulations, water is the wetting fluid and gas

is the non-wetting fluid, but the details on capillary pressure that will follow are introduced

in the context of a general wetting and non-wetting fluid.

Consider a capillary tube in a domain with only water and air, as shown in Figure 2.2a.

Capillary forces will cause the water to rise up in the tube and the interface between the two

will create a contact angle with the surface of the capillary tube [4]. At the interface of two

immiscible fluids in a capillary tube, the curvature of the interface can help us determine

which of the two is the wetting fluid. The curvature is always concave towards the wetting

fluid [7]. In Figure 2.2a the wetting fluid is water and non-wetting fluid is air, and in Figure

2.2b the wetting fluid is air and non-wetting fluid is mercury.

We can simplify a porous media to a capillary model, where the pore throats are capillary

tubes [4]. The simplest models of porous media, such as used here, use a capillary model

where void spaces are connected by capillary tubes.

6



(a) Interface between air and water. The con-
tact angle is less that π/2, so water is the wet-
ting fluid.

(b) Interface between air and mercury. The con-
tact angle is greater than π/2, so air is the wet-
ting fluid.

Figure 2.2: Interface of a wetting and non-wetting fluid in a capillary tube. In Figures 2.2a
and 2.2b, the concavity of the interface can determine which fluid is the wetting and non-
wetting fluids. In addition, the contact angle can also tell us which fluid is the wetting and
non-wetting fluid.

The capillary force acting on the capillary tube is calculated using

F = 2πrσ cos(θ) (2.1)

where σ is the interfacial tension, θ is the contact angle, and r is the radius of the capillary

tube [23]. Then the capillary force can be used to compute the capillary pressure

Pc =
2σ cos(θ)

r
. (2.2)

Consider an air-water system, there are upward and downward forces acting on the water

column affecting the height of the water. The downward force is the capillary force while the

upward force is gravity or buoyancy force. The capillary pressure can be computed using

this balance of the upward and downward forces

Pc = H(Gw − Ga) (2.3)

where H is the height of the water column, Gw is the water pressure gradient and Ga is the

air pressure gradient.

The capillary pressure can also be expressed by the pressure difference between the

wetting and non-wetting phase

Pc = PN − PW

7



where PN and PW are the pressure of the non-wetting and wetting phase respectively and

PN > PW . The capillary pressure changes with the saturation of the fluids, so we can

express the capillary pressure as function of saturation. There are multiple ways to define

the relationship between capillary pressure and saturation, but we will use the Brooks-Corey

relationship [8].

First, we can define the effective saturation, Se, in terms of the capillary and bubbling

pressure

Se =

(

Pb

Pc

)Λ

(2.4)

where Λ is the pore size distribution index, Pb is the bubbling pressure and satisfies Pc ≥ Pb.

In theory, the pore size distribution index ranges from 0 to ∞ but in practice from about 1.8

to 7.3 [13]. Small Λ corresponds of a small range of pore sizes whereas a large Λ corresponds

to a large range. The bubbling pressure is defined as the minimum capillary pressure at which

a continuous non-wetting phase exists in a porous medium [7]. The effective saturation is

Se =
SW − Sr

1 − Sr
(2.5)

where Sr is the irreducible wetting saturation which is the minimum saturation where the

wetting phase is mobile. The wetting phase saturation must be in the range Sr ≤ SW ≤ 1. As

SW approaches the irreducible wetting saturation, the effective permeability of the wetting

phase approaches 0. So in each cell there will be some fluid that is immobile and trapped

in the soil.

Combining (2.4) and (2.5) yields the Brooks-Corey Pc − SW relationship

Pc =

(

SW − Sr

1 − Sr

)−1/Λ

· Pb (2.6)

As SW approaches 1, the capillary pressure approaches the bubbling pressure Pb.

The dynamics of water in soil is very complicated and can exhibit fingering, hysteresis,

imbibition and more depending on whether the soil has recently been wet. We will stick to

the assumptions in [20] and not consider other effects here.

2.2 Darcy’s law

A basic equation that describes fluid flow through a porous media is the continuity equation,

∂(ϕρS)

dt
+ ∇ · (ρv) = q (2.7)

where v is the flow velocity and q is the source and sink term [1]. For low flow velocity, fluid

flow can be modelled by Darcy’s law, which is an empirical relationship between velocity

8



Figure 2.3: Plots of the Brooks-Corey relative permeabilities for water and NAPL (with
Sr = 0.13)

and pressure. It is given by

q = −k

µ
∇(P − ρgz) (2.8)

where g is the acceleration due to gravity. We can express k in terms of the relative perme-

ability of the fluid

k=kijkr. (2.9)

where k is the permeability of the porous media and 0 ≤ kr ≤ 1 is the relative permeability.

We assumed the permeability is just a constant so it does not have directional dependent

effects. The relative permeability of a fluid is a nonlinear function of saturation that describes

how the fluid moves in the presence of other fluids [1]. In a system where we have a wetting

fluid and a non-wetting fluid the relative permeability for each phase is approximated by

kr,W = S(2+3Λ)/2
e (2.10)

kr,N = (1 − Se)2(1 − S(2−Λ)/Λ
e ) (2.11)

Figure 2.3 shows the plots of the relative permeability as a function of the water saturation.

We will not solve Darcy’s law-type equations directly. What is important is to recognize

that changes in saturation are driven by differences in pressure. We will use the Macro-IP

algorithm which implements rules based on mass and energy balance to discretely move the

fluid. No PDEs are solved, instead cell pressures being above or below certain thresholds

triggers certain actions.
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Chapter 3

Thermal Conductive Heating

Model

Our goal is to build a mathematical model for the remediation of soils using TCH. We

will be conducting the simulations over a 5m × 5m vertical plane, with positive z in the

downward direction. The collocated heaters and extractors are located on the left and right

wall of the domain and extend across the entire vertical domain. The domain along with

the collocated heaters and extractors are shown in Figure 1.1.

The model has two main components. The first models the heating of the soil with the

heat transfer equation. There is a constant heat flux at the left and right wall due to the

heaters, and there is no heat flux at the top and bottom of the domain 1. We compute

the heat flux at the left and right walls using Fourier’s law of thermal conduction, which is

given by

QH = ±λ∇T (3.1)

where QH is the power of the heaters, λ is the thermal conductivity and T is the temperature.

The sign comes from the outward normal, at the left and right walls they are negative and

positive, respectively. We will be using QH that gives us results consistent with [21]. Once

the mixture reaches a certain temperature the liquid phases will turn into vapour. The

gaseous states are mobile only once critical gas saturation is reached. This leads us to

the second component of our model which is modelling the gas movement using a form of

invasion percolation as described in Chapter 4.

1An extension of this model would incorporate a Robin condition at top surface as it is not perfectly

insulated. In practice these devices run until the temperatures are over 600C and we rarely go much beyond

that.
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3.1 TCH model development

3.1.1 Heat transfer equation

The heating of the soil and liquid mixture is given by the conductive heat transfer equation

(ρCp)e
∂T

∂t
= ∇ · (λ∇T ) − Q (3.2)

where t is the time, Q is the heat source/sink term and (ρCp)e is the effective volumetric

heat capacity. We implement no heat flux at the top and bottom walls of the domain

∂T

∂z

∣

∣

∣

∣

z=0

=
∂T

∂z

∣

∣

∣

∣

z=5

= 0 (3.3)

The left and right walls have a constant heat flux which are computed using (3.1),

∂T

∂x

∣

∣

∣

∣

x=0

= −QH

λ
and

∂T

∂x

∣

∣

∣

∣

x=5

=
QH

λ
(3.4)

The effective volumetric heat capacity accounts for all of the constituent materials and

is given by

(ρCp)e = SwϕρwCp,w + SnϕρnCp,n + (1 − ϕ)ρsCp,s (3.5)

where ϕ is the porosity of the soil, Sα is the saturation, ρα is the density and Cp,α is the spe-

cific heat capacity for each component α. The thermal conductivity is a linear combination

of the dry and saturated states

λ = Ke (λsat − λdry) + λdry (3.6)

where 0 ≤ Ke ≤ 1 is known as Kersten’s number, and λsat and λdry are the thermal

conductivities of saturation and dry soil. Kersten’s number is dependent on the material

parameters and gas saturation

Ke =
κ(1 − Sg)

1 + (κ − 1)(1 − Sg)
(3.7)

where κ is a soil texture dependent parameter. The choice of κ will depend on the type of

soil and whether it is frozen or unfrozen [10]. We will use κ = 1.9 as it best describes the

relative permeability and saturation relationships of the unfrozen soil that we are using in

our simulations [10]. This yields a weighted thermal conductivity 2 where

Ke → 1 and λ → λsat as Sg → 0 and Ke → 0 and λ → λdry as Sg → 1

2In some literature this may be referred to as a normalized thermal conductivity.
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Substance A1 (log10(mmHg)) A2 (◦C · log10(mmHg)) A3 (◦C)

Water 7.9492 1657.46 227.02
NAPL 6.87981 1157.83 202.58

Table 3.1: Antoine coefficients for water and NAPL [24]

Since the domain is initially fully saturated, Q is zero until gas production begins.

Additionally, the heat capacity and thermal conductivity term depends on the saturations

which do not change until co-boiling begins. Thus, up until co-boiling we are solving the

two dimensional heat equation with a variable coefficient that depends on space.

3.1.2 Co-boiling

The water-NAPL-soil mixture is heated until it reaches a critical value, which is the pressure-

dependent temperature at which water and NAPL vapor can start vaporizing. This process

is called co-boiling and, surprisingly, allows for water and NAPL vapor to be produced at a

temperature lower than the boiling point of either fluid. The soil mixture starts co-boiling3

when the following is satisfied

P v
w + P v

n = Pw + Pd (3.8)

where P v
α is the vapor pressure, Pw is the water pressure, and Pd is the displacement pressure

[21].

The vapor pressures can be estimated using the empirically derived Antoine equation,

which is a monotonically increasing function of T given by

P v
α = 10

(

A1− A2

T +A3

)

(3.9)

The Ai’s are called Antoine coefficients and are chosen to best fit experimental data. This

equation gives P v
α in mmHg, so we would need to convert this to Pa by multiplying (3.9)

by 133.322Pa · mmHg−1. The Antoine coefficients for water and NAPL are given in Table

(3.1). In cells where no fluid is present the vapor pressure is set to zero.

Figure 3.2 shows a plot of the boiling temperature as a function of z where we have

taken uniform values for the saturations, porosity, and permeability as

Sn ≡ 0.01, Sw ≡ 0.99, ϕ ≡ 0.3, and k ≡ 1.03151e − 12 .

The water and NAPL mixture has a lower boiling temperature than water or NAPL, so

water and NAPL mixture vapor can be produced at a temperature lower than the boiling

3Co-boiling is a common term in this field for when two liquids boil at the same time.
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Figure 3.1: Plots of the water and NAPL vapor pressures in the range 10 − 110◦C

Figure 3.2: Plot of the temperature at which boiling and co-boiling begins as a function of
depth.

point of water or NAPL. Additionally, for all 3 curves the boiling temperature increases

with depth as the pressures increase with depth.

When a cell reaches its co-boiling temperature, the energy that was used for heating

the water-NAPL-soil mixture is now used to produce water and NAPL vapor. In that cell

the temperature will plateau and we compute Q by substituting ∂T/∂t = 0 into (3.2). In

co-boiling cells, the heat sink term is

Q = ∇ · (λ∇T ) (3.10)
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We can calculate the moles of gas produced using the energy balance and Dalton’s law. The

energy balance is given by

Lwng,w + Lnng,n =

∫ tl+1

tl

∫

V
Q dV dt (3.11)

Q =
Lwng,w + Lnng,n

V ∆t
(3.12)

where Lα is the latent heat for evaporation, ng,α is the moles of gas produced, and V is the

volume of the cell. Dalton’s law is
ng,w

ng,n
=

P v
w

P V
n

(3.13)

We now use chemical and thermodynamical properties to close the system. The ideal

gas law relates the moles of gas to volume of gas

Vg =
(ng,w + ng,n)RT

Pg
(3.14)

where R is the gas constant and Pg is the gas pressure. We assume liquid NAPL is immobile

so we take water be the wetting phase fluid and the vapor be the non-wetting phase fluid.

Using (2.1) we can express the gas pressure as the sum of the capillary and water pressure

Pg = Pc + Pw. (3.15)

The water pressure is given by

Pw = ρwgh + Pw(h0) (3.16)

where g is the acceleration due to gravity, h is the height of water, and Pw(h0) is the water

pressure at the top of the domain [20]. For the capillary pressure we will use the Brooks-

Corey Pc − Sw relationship given by (2.6), but we will need to make an adjustment to

account for the immobile NAPL. We follow reference [21] and add the NAPL saturation to

the irreducible wetting phase saturation to get the following

Pc =

(

Sw − Sr

1 − S′
r

)−1/Λ

· Pd (3.17)

where S′
r = Sr + Sn is the modified irreducible wetting phase saturation and Pd is the

displacement pressure. The displacement pressure follows from Leverett’s J−function [12]

and is given by

Pd = Pcdimσ

√

ϕ

k
(3.18)
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Here Pcdim is dimensionless capillary pressure, σ is the gas-water interfacial tension, and k

is the intrinsic permeability.

This gives us a method to heat the soil and boil off any liquid components in a cell.

This approach is equivalent to an Enthalpy method for solving Stefan-like phase change

problems, [11, 15] but with two key differences. First, rather than increasing the enthalpy

until enough energy has been added to boil the contents of a cell we convert liquid into gas

until there is none left or we are no longer at the pressure-dependent boiling temperature.

Secondly, we can boil multiple cells at once with no additional modifications. The movement

of gas is modelled using macroscopic invasion percolation (Macro-IP). In Macro-IP, adjacent

gas occupied cells that exceed the critical gas saturation may merge or migrate.
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Chapter 4

Macroscopic Invasion Percolation

The second component to our model facilitates the movement of gas. We are essentially

modelling the displacement of a wetting fluid (water) by a non-wetting fluid (gas) as it is

being generated. To avoid handling the creation and destruction of gas in a continuum model,

or tracking interfaces, one can simply rearrange the fluid mechanistically. There are a few

continuum models that can model discontinuous gas flow such as [16], but the Macroscopic

Invasion Percolation (Macro-IP) algorithm has the advantage of being able to capture the

essential physics at a lower computational cost [19]. Using MIP, the movement of gas is

governed by drainage and imbibition thresholds, which are dependent on the pressures and

saturations of the fluid. Once above or below certain thresholds multiple cells are joined

together and their properties appropriately averaged.

Macro-IP is based on invasion percolation theory, which is a form of percolation theory

that uses network models to model the flow of two immiscible fluids. We will first review

percolation theory and its application to porous media flow. Then we will describe the

relationships that govern the movement of gas in Macro-IP and its’ application to this

setting.

4.1 Invasion Percolation Theory

Invasion percolation (IP) theory is based on percolation theory, which is a a branch of

statistics and probability that deals with fluid transport in porous media with random

properties. Consider a square lattice shown in Figure 4.1, the intersection of the lines are

called sites and the segments connecting sites are called bonds. We let sites either be open

or closed and the openness of a site is independent of its neighbors. A group of connected

sites are called clusters. The properties of the system are determined by the connectivity of

sites and bonds [6]. Since the properties of the porous media are random, the openness of

sites and bonds are assigned randomly.

IP theory uses a pore network model to describe the flow of two immiscible fluids. We can

represent the porous media as a network where the pore bodies and capillary tubes represent
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Figure 4.1: Two dimensional square lattices where the points are sites and the lines con-
necting them are bonds. In the image on the right blue sites and bonds represent open sites
and bonds.

sites and bonds respectively, as shown in Figure 4.2. Like percolation theory, sites and bonds

are either open or closed, and the movement of fluid is governed by the connectivity of the

network. In IP theory, one of the two fluids is defined to be the ‘invading’ fluid and the

other is the ‘defending’ fluid. So IP theory, models the infiltration of the invading fluid in

the presence of the defending fluid. Network models can give us an understanding of fluids

at the pore scale, but percolation theory allows us to do the same at a larger scale in an

averaged sense.

4.1.1 IP vs Macro-IP

Macro-IP models the movement of gas in the presences of water, so we let gas and water

be the invading and defending fluids, respectively. Invasion percolation models focus on

fluid flow at individual capillary tubes (sub mm−scale) and bodies but with Macro-IP we

will focus on average behaviour in sub regions of the porous medium (mm − cm scale).

Darcy’s law determines continuous fluxes based on pressure gradients. Macro-IP models use

the same idea ‘pressure differences move material’ but now replaces gradients with discrete

thresholds.

4.2 Pressure and Thresholds

The movement of gas clusters is governed by drainage and imbibition thresholds, which are

dependent on entry and terminal pressures across the bonds. The entry pressure (Pe) is the
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Figure 4.2: A porous medium where the pore bodies and throats are depicted as sites and
bonds respectively.

pressure required for a clusters to invade a cell, this is given by

Pe = PcSw (4.1)

The terminal pressure (Pt) is the pressure required for a cell to imbibe and it is given by

Pt = αPe (4.2)

where α is a material dependent parameter based on capillary pressure measurements and

is considered uniform throughout the domain [17]. Across various soils and fluids occupying

the medium, α ranged from 0.44 to 0.71 [14]. We will be implementing Macro-IP with

α = 0.57 [20].

Then using the entry and terminal pressures we can define the thresholds for drainage

and imbibition. The threshold for drainage is

T e = P e + Pw (4.3)

and the threshold for imbibition is

T t = Pt + Pw (4.4)

We check these thresholds in each cell and then rearrange material as appropriate.

4.3 Processes

There are several different ways that cells can join or leave clusters and we need to implement

each carefully. First, we define a critical gas saturation, Sgcr, which we assume is uniform
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Figure 4.3: A visual of clusters in a domain with 10 × 10 cells. The black cells represent
gas occupied cells where Sg ≥ Sgcr. Only cells that share a face form a cluster so in this
domain there are 6 clusters. The cluster at the bottom spans across the horizontal domain
so NAPL vapor can travel from left to right. But since there isn’t a cluster spanning across
the vertical domain it can’t travel from top to bottom.

throughout the domain. The critical gas saturation is the minimum gas saturation for gas

transport to occur. Adjacent gas occupied cells where Sg ≥ Sgcr can be thought of as open

sites. The connection between these open sites can be thought of as open bonds. So groups

of connected cells are clusters. Only cells that share faces form a cluster. For example, in

Figure 4.3 the domain has 6 clusters.

Then in each cell we define an entry and terminal pressure which dictates the expan-

sion and mobilization of clusters. The process of expansion and mobilization/fragmentation

repeats until we can no longer do so and the distribution has stabilized.

4.3.1 Expansion

Expansion occurs when the cluster’s gas pressure is greater than the threshold for drainage

in any adjacent cells. When an expansion event occurs there is an increase in volume and

decrease in gas pressure. An example is shown in Figure 4.4a.

4.3.2 Mobilization and fragmentation

One difference between expansion and mobilization is that when a cluster expands the

volume of gas increases whereas during mobilization the volume of the cluster remains the

same. For a cluster to mobilize, first the condition for expansion must be satisfied. Next,

the imbibition threshold of a cell in a cluster must be greater than the drainage threshold

in any cell adjacent to the cluster. Figure 4.4b shows one example of mobilization. After a
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mobilization event, the gas pressure in the invading block must be adjusted. Using the ideal

gas law the gas pressure in cell 4 (shown in Figure 4.4b) is adjusted to

Pg,4 =
Pg,1Sg,1T4

T1Sgcr

During a mobilization event fragmentation can also occur, as shown in Figure 4.4c.

Fragmentation occurs when the imbibed cell is located within a cluster and it breaks a

connection to other cells in the cluster. For both mobilization and fragmentation, the gas

saturation in the imbibed cell is decreased to the residual gas saturation. This represents

gas trapped in an imbibed cell after mobilization or fragmentation.

4.4 Redistribution

At the start of Macro-IP and after each expansion or mobilization/fragmentation event we

need to redistribute the mass across the cluster. We want the gas pressure across the cluster

to be constant. This requires us to solve a system of equations where mass is conserved and

the local relationship between capillary pressure and water saturation is satisfied for all the

cells across the cluster [21].

4.4.1 Collapse check

Once the cluster can’t expand or mobilize each cell will undergo a collapse check. A cell

collapses if the confining pressure, which is the sum of the capillary and water pressure, is

greater than the total gas pressure. This will either occur because of high capillary pressures

or cold temperatures. If a cell collapses, the saturation is zero and any gaseous mass is added

to the aqueous phase [18].

4.4.2 Implementation

To define the clusters, we used Matlab’s Image Processing toolbox. First, we created a logical

array that satisfied Sg ≥ Sgcr, where cells that satisfy this were labelled 1 and the rest 0.

This array was used to generate a binary image where the cells that are labelled 1 are colored

black and the rest were white, as shown in Figure 4.3. Then we use the bwlabel command

that returns the number of clusters and a matrix with each cluster labelled. After the

clusters are defined, the mass is redistributed so that the gas pressure is constant across the

cluster. During redistribution, we assume that the NAPL vapor has a uniform concentration

across each cluster and that liquid phases are immobile. Then we check if the cluster can

expand or mobilize. We check for expansion first then mobilization/fragmentation, but the

processes are assumed to occur instantaneously.

After each process, the gas saturation in the invaded block is increased to Sgcr and we

redistribute the mass again. This process is repeated until clusters can no longer expand
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(a) Expansion: Cells 1 and 2 are occupied with gas and then the cluster expands to cell 3. This
occurred because the gas pressure over cells 1 and 2 was greater than the drainage threshold, i.e.,
P1,2 > T e

3
.

(b) Mobilization: Cells 1, 2 and 3 are occupied with gas and after the cluster mobilized the resulting
cluster includes cells 2, 3 and 4. This occurred because the threshold for imbibition in cell 1 was
greater than the threshold for drainage in cell 4 and the condition for expansion was met, i.e.,
T t

1
> T e

4
and P1,2,3 > T e

4
.

(c) Fragmentation: The gas from cell 2 moved to cell 4, via cell 3. In this event the threshold for
imbibition in cell 2 was greater than the threshold for drainage in cell 4 and the condition for
expansion was met, i.e., T t

2
> T e

4
and P1,2,3 > T e

4

Figure 4.4: A visual of the three processes. The crosshatched cells represent cells where
Sg ≥ Sgcr and the rest are cells where Sg < Sgcr

or mobilize/fragment. This implementation occurs between the time steps for the heat

transfer equation. So Macro-IP has a smaller time step, but we assume everything happens

instantaneously [18].
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During the process, multiple clusters can join together to form one or break apart into

separate clusters (due to fragmentation). After Macro-IP, if any cluster that has reached the

extractor, then the vapor is removed from the system. Areas around the heater will even-

tually dry out and form a dry path connected to an extractor. To enhance NAPL recovery,

we assume that dried out regions adjacent to the extractors act as spatial extensions of the

extractor [21]. Thus, a cluster just needs a dry path to the extractor for it to be removed.
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Chapter 5

Numerical model

In this Chapter, we will outline the numerical scheme used for solving (3.2). The heat

transfer equation is solved using an implicit cell centered finite difference scheme as shown

in Figure 5.1. We will be using a staggered grid where temperature is located at the cell

centers and the thermal conductivity is at the edge centers. In our discretization we will

use a uniform spatial grid and time step.

First, we discretize (3.2) using a backward finite difference for the time derivative and

a central difference scheme for the spatial derivative. This defines a a linear system of

equations to be solved to update the temperatures.

The coefficients (ρCp)e and λ depend on the local gas, water and NAPL saturations.

When we discretize (3.2) we will use lagged values for the coefficients, in other words, we

use the value of the coefficient at time step l. This ensures that the system of equations is

linear, which is easy to solve in MATLAB. If we were to use the value at time step l + 1, we

Figure 5.1: The grid choice that we will use for the numerical model where temperature is
at the cell center and thermal conductivity is at the edge center.
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(λlT l+1)i,j (λlT l+1)i+1/2,j(λlT l+1)i−1/2,j

(λlT l+1)i,j−1/2

(λlT l+1)i,j+1/2

Figure 5.2: A 5 point stencil for the discretization of the outer derivative.

would get a coupled system of cubic equations, which can be difficult to solve on a laptop

when there are thousands of nodes 1.

5.1 Discretization

First we will discretize the time and spatial derivatives separately and then construct a

linear system for the temperature at time n + 1.

For the time derivative we will use a first order backward difference. The discretization

is

(ρCp)e
∂T

∂t
(xij , tl) ≈ ((ρCp)e)l

i,j

T l+1
i,j − T l

i,j

∆t
. (5.1)

For the inner and outer derivatives, we will use a central difference. For the outer spatial

derivative we get

∇ · (λ∇T ) ≈ 1

∆x

(

(λl∇T l+1)i+1/2,j − (λl∇T l+1)i−1/2,j

)

+
1

∆z

(

(λl∇T l+1)i,j+1/2 − (λl∇T l+1)i,j−1/2

)

.

We use a central difference again for the inner derivative to obtain

((ρCp)e)l
i,j

T l+1
i,j − T l

i,j

∆t
=

1

∆x

(

λl
i+1/2,j

T l+1
i+1,j − T l+1

i,j

∆x
− λl

i−1/2,j

T l+1
i,j − T l+1

i−1,j

∆x



+
1

∆z

(

λl
i,j+1/2

T l+1
i,j+1 − T l+1

i,j

∆z
− λl

i,j−1/2

T l+1
i,j − T l+1

i,j−1

∆z



− Ql
i,j .

1Our goal was to build a computational model which could be run fairly quickly on simple hardware.
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Collecting the temperature unknowns together, the discretization of (3.2) becomes

((ρCp)e)l
i,j

T l+1
i,j − T l

i,j

∆t
=

λl
i+1/2,j

∆x2
T l+1

i+1,j +
λl

i−1/2,j

∆x2
T l+1

i−1,j +
λi,j+1/2

∆z2
T l+1

i,j+1 +
λl

i,j−1/2

∆z2
T l+1

i,j−1

−
(

λl
i+1/2,j

∆x2
+

λl
i−1/2,j

∆x2
+

λi,j+1/2

∆z2
+

λl
i,j−1/2

∆z2



T l+1
i,j − Ql

i,j .

Then rearranging gives

T l
i,j =



∆t

(ρCp)e)l
i,j

(

λl
i+1/2,j

∆x2
+

λl
i−1/2,j

∆x2
+

λi,j+1/2

∆z2
+

λl
i,j−1/2

∆z2



+ 1

]

T l+1
i,j

− ∆t

(ρCp)e)l
i,j

(

λl
i+1/2,j

∆x2
T l+1

i+1,j +
λl

i−1/2,j

∆x2
T l+1

i−1,j +
λi,j+1/2

∆z2
T l+1

i,j+1

+
λl

i,j−1/2

∆z2
T l+1

i,j−1 − Ql
i,j



.

(5.2)

This is the linear system of equations for to solve for T l+1
i,j .

We use ghost cells beyond the boundary to evaluate the centered difference scheme for

the points outside the domain. For i = 1 and i = Nx + 1 we get

T0,j = T1,j − ∆xfL,j and TNx+1,j = TNx,j + ∆xfR,j .

For the top and bottom wall, there is no heat flux so we get

Ti,0 = Ti,1 and Ti,Nz+1 = Ti,Nz

5.1.1 Thermal conductivity

For the thermal conductivity, we are given the values at the cell-center but we want to use

the value at the edge center. We can approximate the value at the edge center by taking

the mean of two cell center values. We have a few choices for taking the mean such as

arithmetic, geometric or harmonic mean. We follow the standard approach in CFD and use

the harmonic mean. For the harmonic mean we get

λi±1/2,j =
2λi,jλi±1,j

λi,j + λi±1,j
(5.3)

λi,j±1/2 =
2λi,jλi,j±1

λi,j + λi,j±1
(5.4)

To compute the mean at the boundary, i = 1, Nx or j = 1, Nz, we again use ghost points

as needed.
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5.2 Solving for T
l+1
i,j

To solve (5.2) we first define the quantities

Θ =1 − (θ+
x + θ−

x + θ+
z + θ−

z )

θ+
x = − ∆t

((ρCp)e)l
i,j

λl
i+1/2,j

∆x2

θ−
x = − ∆t

((ρCp)e)l
i,j

λl
i−1/2,j

∆x2

θ+
z = − ∆t

((ρCp)e)l
i,j

λl
i,j+1/2

∆z2

θ−
z = − ∆t

((ρCp)e)l
i,j

λl
i,j−1/2

∆z2

We want to represent T l, T l+1 and Ql as vectors to organize the values from left to right

and then top to bottom. We will denote the vectors as T⃗ l, T⃗ l+1 as the temperature at time

levels l and l + 1 and Q⃗l as the source or sink term in each cell at time level l.

For the boundary, we will add it to Q⃗l
i,j . So we instead solve the following

T⃗ l = A · T⃗ l+1 + B⃗l (5.5)

where A is sparse Nx × Nz tridiagonal block matrix given by





















D − L U

L D U
. . .

. . .
. . .

L D U

L D − U





















(5.6)

The entries of A are the Nx × Nz matrices given by the following.

D =





















Θ − θ−
x θ+

x

θ−
x Θ θ+

x

. . .
. . .

. . .

θ−
x Θ θ+

x

θ−
x Θ − θ+

x




















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U =





















θ+
z

θ+
z

. . .

θ+
z

θ+
z





















, L =





















θ−
z

θ−
z

. . .

θ−
z

θ−
z





















The vectors for the system are given by

T⃗ l =

























































































T l
1,1

T l
2,1
...

T l
Nx,1

T l
1,2

T l
2,2
...

T l
Nx,2
...
...
...
...

T l
1,Nz

T l
2,Nz

...

T l
Nx,Nz

























































































, T⃗ l+1 =

























































































T l+1
1,1

T l+1
2,1
...

T l+1
Nx,1

T l+1
1,2

T l+1
2,2
...

T l+1
Nx,2
...
...
...
...

T l+1
1,Nz

T l+1
2,Nz

...

T l+1
Nx,Nz

























































































, B⃗l =

























































































Q̄l
1,1 + f̄L,1

Q̄l
2,1
...

Q̄l
Nx,1 + f̄R,2

Q̄l
1,2 + f̄L,2

Q̄l
2,2
...

Q̄l
Nx,2 + f̄R,2

...

...

...

...

Q̄l
1,Nz

+ f̄L,Nz

Q̄l
2,Nz

...

Q̄l
Nx,Nz

+ f̄R,Nz

























































































where

Q̄ =
∆t

(ρCp)e
Q

Additionally, we have added the flux terms from the boundary condition to the vector B⃗l

and the terms fL,j and fR,j are given by

f̄L,j = ∆x ∗
(

∆t

(ρCp)e



λ1/2,j

∆x2
fL,j

f̄R,j = ∆x ∗
(

− ∆t

(ρCp)e



λ1/2,j

∆x2
fR,j

Lastly, we can solve for T⃗ l

⃗T l+1 = A−1
(

T⃗ l − B⃗
)

(5.7)
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The matrix A has state-dependent parameters, so it needs to be frequently recomputed,

but it is always strongly diagonally dominant and hence invertible.

5.2.1 Higher-order extensions

The method as presented is only first-order in time. A simple way to improve this is to store

and use the output from previous time steps to determine the new slope to higher order.

A simple implicit method with second-order accuracy is BDF2 [3]:

Tn+2 − 4

3
Tn+1 +

1

3
Tn =

2

3
∆tf(tn+2, Tn+2) (5.8)

The formulation using this is identical to that of equation 5.7, except that now we

replace T l with 4/3T l −1/3T l−1. To start, we can take one step with the first-order method

(possibly with a reduced time step). We use BDF2 in the final version of our code to obtain

a second-order method in both time and space.

5.3 Solution process

At the beginning of each time step, we use the heat transfer equation to compute the

temperature distribution. Next, we compute the moles of gas produced and compute the

new gas saturation. Then, we check if any cells have reached critical gas saturation. If

so, Macro-IP is invoked to simulate the movement of gas. Finally, we update the thermal

properties and repeat this process.

We have two criteria to choose the time step. Firstly, we must ensure that a stability

criterion is satisfied. This can be done in advance of taking a step, and in practice can be

done before beginning the computation. However, we must also make sure that we can never

generate more gas in a time step than would fill a cell,

Vg ≤ Vcell (5.9)

where Vg is the gas volume and Vcell is the void volume of the cell. A loose upper bound

for this can be found before the computation by ensuring that the time step is not so large

that the heat flux from the heater could generate too much gas in the adjacent cell in one

step. This calculation simply assumes that all the heat from the heater goes in to boiling a

fully water saturated cell at the boiling temperature.

First, using the ideal gas law and criterion in (5.9), the moles of water produced has to

satisfy

ng,w ≤ VcellPg

RT
(5.10)
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Then, combining this with the energy balance equation we get

Q ≤ LwVcellPg

RTV ∆t
(5.11)

Lastly, rearranging we get

∆t ≤ LwVcellPg

RTV Q
(5.12)

In a 0.1m × 0.05m cell fully saturated with water, this gives a time step restriction of

∆t ≤ 3.9765e+04s (5.13)

which is about 0.46 days.

Too large a time step can also lead to instabilities related to the Macro-IP stage. If the

time step is too large, it can immediately become unreasonably high. In practice, one can

reduce the time step whenever irregularities are detected in the temperature and recompute.
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Chapter 6

Exact and asymptotic solutions

To better understand the dynamics of this problem, we can construct an exact solution in

a special case. This will give us a solution to compare with for our convergence studies and

insight into what happens more generally.

We will focus on the simplified geometry of a semi-infinite one-dimensional domain. From

the simulation shown in Figure 1.2 presented in the Introduction, this should be reasonable

for times until the heat has diffused well into the domain. If there is little NAPL in any cell,

it is both vaporized instantly and has very little impact on the material parameters. Thus,

we can consider the classical Stefan problem of heating in two domains with a moving front

between them, where a phase change occurs.

Impact on depth on co-boiling and boiling temperatures Phase change occurs

when we meet the co-boiling condition (3.8). However, seeing that the Antoine equation is

temperature dependent and the water pressure only depth dependent, these temperatures

are simply functions of z. From Figure 3.2 we see that the temperatures needed for phase

change increase by about 2◦C per m of depth. We will see in the exact solution that, for

reasonable time and space intervals, the solution is quite steep at this point and a change

of 2C occurs on a scale of cm.

Thus, it seems reasonable to consider a one-dimensional approximation in the x direc-

tion.

Impact of loss of NAPL on material parameters In most settings [22], typical NAPL

saturation is on the order of 0.05 or less. In all of our numerical simulations, once the co-

boiling temperature is reached, the NAPL is boiled off within 30 minutes. This is essentially

instantaneous since we are solving the problem on a time scale of 6-9 months. Values of Sn of

this magnitude have very little impact on the specific heat capacity or thermal conductivity

at a point. Using Dalton’s law and the discussion in Section 3.1.2 on the energy balance, we

can calculate precisely how Sg and Sw change in a cell once Sn is reduced to zero. Figure

6.1 shows the relative changes in the parameters before and after the NAPL is completely
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Figure 6.1: Proportional change in the parameters λ and β = λ/(ρCp)e as a function of the
NAPL saturation.

removed from a cell. Recall also that the gaseous NAPL is only removed after the water

has boiled or the gas is redistributed via Macro-IP.

Given that NAPL in low concentrations has very little impact on the thermal behaviour

of the system, we can ignore its impact in a simplified model. Instead, we will track when the

co-boiling has occurred and use that to estimate a bound for then NAPL may be removed.

6.1 Nondimensionalization

First we introduce the following change of variables:

• t = t0τ

• x = L0y

• θ = T −Ta

∆T .

Here, t0, L0 and ∆T are scales to be determined and Ta is initial ground temperature.

Making these substitutions and dropping z derivatives, the heat transfer equation be-

comes

(ρCp)e
∆T

t0

∂θ

∂τ
=

1

L0

∂θ

∂y

(

λ

L0

∂θ

∂y
(∆Tθ + Ta)

)

∆T (ρCp)e

t0

∂θ

∂τ
=

∆Tλ

L2
0

∂2θ

∂y2

∂θ

∂τ
=

t0λ

L2
0(ρCp)e

∂2θ

∂y2
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Defining β = λ
(ρCp)e

we set t0β
L2

0

= 1 to relate the time and space scales. We set ∆T =

TB − Ta as the difference between the boiling and ambient temperatures.

To determine the length-scale we will use the boundary condition.

∆T

L0

∂θ

∂y

∣

∣

∣

∣

y=0

= − Q

λ

∂θ

∂y

∣

∣

∣

∣

y=0

= − QL0

∆Tλ

and set
QL0

∆Tλ
= 1 ⇒ L0 =

∆Tλ

Q
.

The time scale is then set by the relation

t0 =
L2

0

β
.

Typical values for this problem in saturated soil are β = 9.9378e − 07 and for dry soil

β = 4.3275e − 07.

The complete nondimensionalized problem is











































∂θ

∂τ
=

∂2θ

∂y2

θ(y, 0) = 0

∂θ

∂y

∣

∣

∣

∣

y=0

= −1

limy→∞ θ(y, τ) = 0

This system has no free parameters, so it only needs to be solved once. However, it is only

valid for θ(0, τ) ≤ 1. At that point the water boils off and we need to introduce a second

domain and a Stefan condition connecting them.

First, we will derive the similarity solution for the constant temperature and constant

heat flux boundary conditions.

6.2 Derivation of similarity solution

Similarity solutions are a common feature of many PDE and appear even when they are

not exact solutions to the problem [5].
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We consider the problem with a Neumann condition at y = 0











































∂θ

∂τ
=

∂2θ

∂y2

θ(y, 0) = 0

∂θ

∂y

∣

∣

∣

∣

y=0

= −1

limy→∞ θ(y, τ) = 0

(6.1)

We seek a solution of the form θ(y, τ) = τpf(z) where z = yτ q. Substituting this into the

PDE gives

pτp−1f(z) + τpf ′(z) ∗ qyτ q−1 =τpf ′′(z) ∗ τ zq

τp
(

p

τ
f(z) +

qz

τ
f ′(z)

)

=τp(f ′′(z)τ zq)

This is only balanced for q = −1/2. Then we use the Neumann boundary condition to find

p. The boundary condition is for θ(y, t) constant and the boundary condition for f(z) is

also expected to be constant, i.e. τpf ′(0)/
√

τ is constant. We can conclude p = 1/2 as then

∂θ

∂y
=

√
τ

df

dy

dz

dy
=

√
τ√
τ

f ′ = f ′(z) .

Thus the constant boundary condition can be satisfied at z = 0 for all τ .

For θ(y, τ) =
√

τf(z) the partial derivatives in the PDE are

∂θ

∂τ
= − 1

2τ
f(z) − z

2τ
f ′(z),

∂2θ

∂y2
=

1

τ
f ′′(z).

Plugging them into the PDE gives the following ODE

2f ′′(z) + zf ′(z) − f(z) = 0.

The solution to this is

f(z) = c1z − c1 exp

(

−z2

4



− c2

√
πz

2
erf

(

z

2

)
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so the general solution to the PDE is

θ(y, τ) =
√

τ

(

c1
y√
τ

− c1 exp

(

− y2

4τ



− c2

√
πy

2
√

τ
erf

(

y

2
√

τ

)



=c1y − c1

√
τ exp

(

− y2

4τ



− c2

√
πy

2
erf

(

y

2
√

τ

)

The boundary conditions give that c1 = −1 and c2 = − 2√
π

. So we get

θ(y, τ) = y

(

erf

(

y

2
√

τ

)

− 1

)

+
2
√

τ√
π

exp

(

− y2

4τ



From this we can find the time that co-boiling is reached as there T (0, t) = Tcb:

θ(0, τcb) =
Tb − Tcb

Tb − Ta
= θcb =

2τcb√
π

⇒ τcb ≃ 0.379 . . .

Similarly we can find the time at which boiling first occurs with

θ(0, τb) = 1 ⇒ τb =
π

4

Hence this problem is only defined over the range 0 ≤ τ ≤ τb ≃ 0.7854 . . ..

Because the solution is monotonically decreasing, here is only NAPL remaining on y >

ycb such that θ(ycb, τ) = θcb. This front ycb will satisfy

θ(ycb, τ) = θcb = ycb

(

erf

(

ycb

2
√

τ

)

− 1

)

+
2
√

τ√
π

exp

(

−y2
cb

4τ



.

This can be solved asymptotically as τ → ∞ to find that ycb ≃
√

τ ln(τ) but that is not

helpful as this problem is only defined up until τ = τb < 1 at which time boiling begins.

Converting this back to the original coordinates recovers

T (x, t) = Ta +
Q

λ



2

√

βt

π
exp

(

− x2

4βt



+ x

(

erf

(

x

2
√

βt

)

− 1

)



 (6.2)

This gives us an exact solution profile to compare our numerical solutions to and an

estimate of when both co-boiling and boiling will begin (see Figure 6.2).

6.2.1 Removing NAPL from dry soil

If the soil is dry to begin with, then there is no water to boil off, and we can solve the

problem as above until all NAPL is removed. This is a much slower process than wet soil

heating, and therefore this gives a very loose upper bound to the time it would take.
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temperatures at either end of a growing domain. The Stefan condition describes the growth

of the melted domain and is derived via conservation of energy, similar to how we describe

the phase change in Chapter 3.

This would leave us to solve the system



































T (0, t) = TL

Tt = Txx 0 ≤ x ≤ s(t)

ρLds
dt = −λdT

dx (x = s−, t)

T (s+, t) = TM

with s(0) = 0.

There is a self-similar solution due to Neumann, [11] which shows that the interface

speed is proportional to
√

t.

A similar problem can be posed in our case if we ignore the dynamics of the water

vapour. We would solve 6.1 until t = tb and then solve the two-phase Stefan problem































































Tx(0, t) = −Q/λ

Tt = β̃Txx 0 ≤ x ≤ s(t)

(ρL)e
ds

dt
= −

[

λ
dT

dx

∣

∣

∣

∣

x=s

T (s+, t) = Tb

Tt = Txx s(t) ≤ x

limx→∞ T (x, t) = Ta

There are no exact solutions to two-phase problems. However, solutions to this problem

could give insight into the full problem. Comparison to the Macro-IP approach is an area

for future investigation.
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Chapter 7

Model verification

Before running simulations, we want to ensure that our model runs accurately. To do this,

we will conduct two convergence studies. First, we will check that the 1-dimensional solution

defined for a short time converges to the exact solution described in the previous Chapter.

Then we will do a full two-dimensional calculation. We will check for convergence before

co-boiling begins and afterward. At each point we will check for convergence by decreasing

the spatial or time step and observing if the error between the numerical solution and the

exact solution decreases with the refinement.

The error will be measured by the L2-norm. The L2 norm for a continuous function

f(x) in some domain Ω is given by

∥f∥2 =

√

∫

Ω
♣f(x)♣2 dx (7.1)

For a discrete function represented as a vector, f⃗ , the discrete L2-norm is

∥f⃗∥2 =

√

√

√

√

1

N

N
∑

i=1

♣fi♣2 (7.2)

where N is the number of elements in f⃗ . Given the exact and numerical solution of T ,

denoted as T e and T n, the error is given by

E =

√

√

√

√

1

Nx ∗ Nz

∑

i,j

♣T e
i,j − T n

i,j ♣2 (7.3)

where Nx, Nz are the number of points on the grid in x and z.

7.1 Convergence in one spatial dimension

We first compute the convergence to an exact similarity solution of the form REF. We take

Sn = 0, Sw = Scr and Sg = 1 − Sw. This is simply heating of dry soil. We first fix ∆t = 10
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∆x Error Ratio

1/5 −−
1/10 2.095930425034272
1/20 2.364850411678903
1/40 2.144649293750456

∆t Error Ratio

1800 −−
900 2.198127634999944
450 2.282266296739253
225 2.529444966122901

Table 7.1: Errors of T for ∆x at 60 days.

∆x Error

1/5 0.086331546647208
1/10 0.021153979120073
1/20 0.005232204213720
1/40 0.001297693735876
1/80 3.198005106851352e − 04
1/160 7.604655326884321e − 05
1/320 1.519907339805314e − 05

Table 7.2: Errors of T for ∆x at 9 days.

and perform a study in ∆x then fix ∆x and perform a study in ∆t. The results are presented

in table 7.1.

Next we perform a convergence study when there is co-boiling in the problem. We will

implement the model with uniform permeability and initial saturations, and we will only

have a constant heat influx at the boundary x = 0 (the other three sides will have no heat

flux). We will use the following initial values.

Sn ≡ 0.01, Sw ≡ 0.99, ϕ ≡ 0.3, and k ≡ 1.03151e − 12 .

With these parameters, co-boiling begins around 9.5 days, so we will check for convergence

at 9 days and 30 days.

Thus we see that for one-dimensional problems the scheme is second-order accurate in

both space and time.

∆x Convergence rate

1/5 −
1/10 2.028958771228965
1/20 2.015438308016146
1/40 2.011468912401539
1/80 2.020705790385569
1/160 2.072217476752661
1/320 2.322899487420808

Table 7.3: Convergence rate for ∆x for the two dimensional simulation. This was calculated
by log(E2 − E2)/ log(x2 − x1) where Ei is the error at step xi.
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∆z 15 days 30 days

1/5 − −
1/10 0.818936082502286 0.863966639543981
1/20 1.324607589168777 1.321330126252627
1/40 2.380242662981333 2.300397664166125
1/80 0.904679021069586 0.987178648608159
1/160 1.385513148065661 1.700351940937858
1/320 2.320770197646365 2.314879769347753

Table 7.4: Convergence rate for ∆z for the two dimensional simulation. This was calculated
by log(E2 − E2)/ log(z2 − z1) where Ei is the error at time step zi.

7.2 Convergence in two space dimensions with boiling and

Macro-IP

For spatial convergence, we will only check for convergence in the z direction. The numerical

solution with grid sizes of ∆x = 1/10 and ∆z = 1/640 was used as the exact solution. We

will use a time step of ∆t = 720.

Since our scheme is second-order in space, we would expect the rate of convergence to be

second-order. This is the case prior to co-boiling, as shown in Tables 7.1 and 7.3. But after

co-boiling we see that the rate of convergence is not exactly second-order. In Table 7.4, we

see that we lose an order of accuracy. There are a few factors that contribute to the loss of

order. When we discretize the heat transfer equation, we use λ from the previous time step

to compute T at the new time step. Also, after co-boiling begins, we start to see jumps in

λ which are due to the jump in the saturations. For time, we expect to see second-order

convergence since a second order backward difference was implemented. The error ratio in

Table 7.1 confirms this.

7.3 Parameter validation

Not all the parameters and implementation details are described in all the related papers.

In particular, it is not clear exactly how strong the heaters are or how they are implemented

in some cases. However, by inspection of some of the figures we can glean that co-boiling

of the NAPL begins around 10 days for the soil and initial parameters used here. From the

exact solution, we can estimate the heater power required to do this. For co-boiling to being

at 10 days, the power of the heater is QH = 179.395W · m−2. We rounded the power of the

heater to QH = 175W · m−2 and with this value, the co-boiling begins at around 10.3 days.

This shows that our results are comparable to those in [21].
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(a) Temperature from 0 to 10 days. This is proportional to
√

t just as seen in the self-similar solution.

(b) Temperature from 0 to 60 days. First the temperature increases until we reach water and NAPL
co-boiling. While water and NAPL are vaporized, the temperature doesn’t change in time, as seen
by the first plateau which is between 10 and 20 days. All of the NAPL and some water is vaporized
in a few days. Then temperature increases until we reach water boiling, this is indicated by the
second plateau, which begins just after 20 days. Water is vaporized just after 40 days and afterwards
T continues to increase again.

Figure 7.1: Temperature at the boundary cell for a 1D simulation in x.
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Chapter 8

Simulations

In this Chapter, we present the results from a few simulations. The objective is to compare

simulations with and without Macro-IP implemented, and observe if it has an impact on

the completion times. The NAPL recovery with and without MIP for 1D simulations are

included. Most of the model parameters were obtained from [21], but some were also acquired

from [2] and [20].

8.1 Assumptions

We will run simulations under the following assumptions [21]

1. No gas is present prior to heating (i.e. Sg ≡ 0 at t = 0)

2. Porosity, thermal conductivity of saturated and thermal conductivity of dry soil are

uniform throughout the domain

3. Influence of NAPL on thermal conductivity is neglected

4. Liquid phase NAPL is immobile during heating

5. Water pressures are hydrostatic (i.e. the gradient in the vertical direction is constant)

6. Liquid water is immobile during MIP

7. Sw ∈ [Sr, 1], i.e. no cells have Sn > 1 − Sr. Or we could make the assumption that

Sr = 0

8. Water can’t be vaporized once it reaches Sr

9. Effects of hysteresis are neglected
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Figure 8.1: A flow chart showing the process of the model.

8.2 Macro-IP vs no Macro-IP

We want to compare simulations with and without Macro-IP implemented. The reason is

because we want to determine whether or not implementing it will have a considerable

impact on the removal of NAPL. Recall that the dried regions around the heaters act as

spatial extensions of the extractors. The simulations without Macro-IP will rely solely on

the extension of extractors for NAPL recovery. Simulations ran to 90 days and stopped

early if all of the NAPL was removed.

Figures 8.3 and 8.4 shows the NAPL recovery percentage with and without Macro-IP

implemented for the one dimensional case. All of the NAPL was removed before 90 days,

so we will compare completion times. For the simulations in Figure 8.3, the difference in

completion time was less than 3 days, and for the simulations in Figure 8.4, the difference

was just over half a day. The time difference is relatively small compared to how long the

simulations were running for.

Figures 8.5 and 8.6 shows the NAPL recovery rate with and without Macro-IP for the

two dimensional case. There was only one instance where the simulation stopped early due

to all of the NAPL being removed, so for the two dimensional simulations we compare the
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recovery percentage at 90 days. Similar to the one-dimensional case, there isn’t a substantial

difference whether or not Macro-IP is implemented.
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(a) Temperature profiles during the duration of the simulation. The initial temperature is uniformly
10◦C. At t = 60 days the maximum temperature is just above 223◦C. At 10 and 20 days, the
temperature appears uniform in z, but by 30 days we see that it is non uniform. This is due to
phase change of water occurring along the boundary. During phase change, the temperature doesn’t
change in time. By 60 days, from z = 0 to about 3.5 the water along the boundary has vaporized so
the temperature increases again. But from z = 3.5 to the bottom there is still water in the cells, so
the temperature doesn’t change in time yet.

(b) NAPL saturation profiles during the duration of the simulation. The initial saturation was non
uniform with an average of 0.0505. The saturation ranged from 0 to 0.1. The vaporization has a
nonuniform front, the NAPL towards the top of the domain vaporizes earlier than at the bottom.
This is due to the top of the domain having a lower co-boiling temperature than the bottom, as
shown in Figure 3.2.

Figure 8.2: Temperature and NAPL profiles for a simulation over a 2.5m × 5m domain.

44



(a) Intial NAPL saturation used in the simulations for Figure 8.3b. The saturation ranged between
0 and 0.05 and the mean is 0.0175.

(b) NAPL vapor recovery percentage for three simulations. The blue curve is for the simulation
using a nonuniform Sn, as shown in Figure 8.3a, with Macro-IP implemented. For the red and
yellow curve, a uniform Sn was used and this value was the mean of the nonuniform Sn. For the red
curve, Macro-IP was implemented and for the yellow curve, Macro-IP was not implemented.

Figure 8.3: A comparison of the completion time and recovery percentage for one dimen-
sional simulations in x with and without Macro-IP implemented. For all three simulations,
all of the NAPL was recovered, but the completion times varied. The completion times for
the blue, red and yellow curves were 81.2750, 83.4333 and 84.2167 days, respectively.
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(a) Intial NAPL saturation used in the simulations for Figure 8.4b. The saturation ranged between
0 and 0.1 and the mean is 0.0462.

(b) NAPL vapor recovery percentage for three simulations. The blue curve is for the simulation
using a nonuniform Sn, as shown in Figure 8.4a, with Macro-IP implemented. For the red and
yellow curve, a uniform Sn was used and this value was the mean of the nonuniform Sn. For the red
curve, Macro-IP was implemented and for the yellow curve, Macro-IP was not implemented.

Figure 8.4: A comparison of the completion time and recovery percentage for a one dimen-
sional simulations in x with and without Macro-IP implemented. For all three simulations,
all of the NAPL was recovered, but the completion times varied. The completion times for
the blue, red and yellow curves were 82.5333, 82.5917 and 83.1250 days, respectively.
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(a) Initial NAPL sauration used in the simulations in Figure 8.5b. The saturation ranged from 0 to
0.05 and the mean is 0.0143.

(b) NAPL vapor recovery percentage for three simulations. The blue solid curve is for the simulation
using a nonuniform Sn, as shown in Figure 8.5a, with Macro-IP implemented, For the red and yellow
dashed curve, Sn was uniformly the mean of the nonuniform Sn. For the red curve, Macro-IP was
implemented, and for the yellow curve, it was not implemented.

Figure 8.5: A comparison of the recovery percentage for a two dimensional simulation with
and without Macro-IP implemented. The simulations ran up to 90 days and for all three
simulations all of the NAPL wasn’t removed. The recovery percentage at 90 days for the
blue, red and yellow curves were 99.9143, 99.9118 and 99.9553 respectively.
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(a) Initial NAPL sauration used in the simulations in Figure 8.6b. The saturation ranged from 0 to
0.1 and the mean is 0.0501.

(b) NAPL vapor recovery percentage for three simulations. The blue dashed curve is for the sim-
ulation using a nonuniform Sn, as shown in Figure 8.6a, with Macro-IP implemented, For the red
solid and yellow dashed curve, Sn was uniformly the mean of the nonuniform Sn. For the red curve,
Macro-IP was implemented, and for the yellow curve, it was not implemented.

Figure 8.6: A comparison of the recovery percentage for a two dimensional simulation with
and without Macro-IP implemented. The simulations ran up to 90 days and only for one of
the three simulations all of the NAPL vapor was removed. The recovery percentage at 90
days for the blue, red and yellow curves were 99.8176, 100 and 99.9554 respectively.
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Chapter 9

Conclusion

In this thesis we have presented an implementation of the Macro-IP algorithm and com-

pared the results to simpler models in one dimension. We found that the dynamics of the

NAPL front is primarily determined by the time the location reaches a depth-dependent

temperature and only weakly on the amount of NAPL initially present. By examining the

material parameters, we see that wet soil is much more efficient in removing NAPL. With

constant or mildly varying NAPL saturation it makes very little difference whether we ac-

tually use the Macro-IP algorithm; the problem is well described by only considering the

thermal dynamics and completely ignoring the moisture and gas dynamics. With highly

inhomogeneous model parameters, Macro-IP is beneficial and helps to remove the NAPL

vapour more quickly.

In general, we can estimate an upper bound on the completion time with Macro-IP

implemented. The process of NAPL removal is slightly slower in soils with uniform dis-

tributions without Macro-IP implemented. But this difference is relatively small, thus the

simulations without Macro-IP can be conducted in lieu of simulations with Macro-IP.

The benefit of running simulations without Macro-IP is that it takes less time than

those with Macro-IP. Although compared to continuum methods for gas movement Macro-

IP lowers the computational cost, the simulations take a few hours to complete whereas

simulations conducted without Macro-IP take less than an hour.
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