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Abstract 

The inability to tolerate everyday sounds, also known as Decreased Sound Tolerance 

(DST), has proven to be one the most prevalent issues in Autism Spectrum Disorder 

(ASD). While advanced Neural Networks have shown promising results in classifying 

environmental sounds, those conventional classification models rely on sound classes 

that were used in the training process. In DST, the list of aversive sound classes may be 

unique and different for each person, and training a conventional classification model 

that can classify all possible aversive sound classes is not feasible. Hence, a 

classification approach that works beyond this limitation is required. In this thesis, the 

idea of One/Few Shot Learning for environmental sound classification is explored. This 

model can classify a given sound by having one or very few samples of that class. As a 

part of this research, different aspects of the model are optimized and a state-of-the-art 

model is developed. 

Keywords:  Autism Spectrum Disorder (ASD); Deep Learning; One/Few Shot 

Learning; Environmental Sound Identification; Sound Classification; Transfer Learning 
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Chapter 1. Introduction 

1.1. Background and Motivation 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder and 

characterized by social communication impairments, and the existence of restricted 

interest and repetitive behaviors [1]. As estimated by the Autism and Developmental 

Disabilities Monitoring Network (ADDM), the prevalence of ASD in the US has more than 

doubled between 2000-2002 (one in 150 children) and 2010-2012 (one in 68 children) 

[2]. Sensory processing issues have been frequently reported in ASD despite the 

general heterogeneity of the disorder. Notable sensory processing issues have been 

reported by 90% of autistic individuals [3]. 

One of the most persistent and disabling sensory processing issues in autism is 

the inability to tolerate everyday sounds, called Decreased Sound Tolerance (DST) 

[4][5]. Based on a recent meta-analysis estimation by Williams et al. [6] 50-70% of 

autistic individuals have experienced DST at some point in their lives and the current 

prevalence of DST in the autistic population is estimated to be between 38% to 45%. 

Many caregivers have reported that DST prevented the children from participating in 

many situations ranging from family to community activities [7]. For autistic individuals, 

certain sounds trigger extreme aversive reactions that affect their everyday life. Although 

the nature of these sounds varies between different individuals, most caregivers have 

described these sounds as loud, sudden, and high-pitched [8].  

Disorders of DST can be defined in 3 specific conditions: hyperacusis, 

misophonia, and phonophobia. Hyperacusis is a hearing disorder characterized by 

decreased tolerance of sounds at a level that would not trouble others. Everyday sounds 

can become unpleasant, painful or overwhelming for someone with hyperacusis, where 

these sounds are often perceived as louder compared to how a non-autistic individual 

would perceive them [9]. Misophonia, a newly described neuropsychiatric condition, is 

characterized by inappropriate and excessive emotional responses to specific trigger 

sounds such as chewing or tapping, even at low amplitudes. The triggers and responses 

vary greatly between different individuals, and they may change over time, however, 

primary responses include some form of anger, irritation, and disgust [10]. 

Phonophobia, which translates to fear of sound, is a common term in neurology to 
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describe sound intolerance typically accompanied by migraine headaches [11]. In this 

framework, phonophobia is defined as the fear of specific sound classes that would 

result in anticipatory responses and avoidance of prospective sound sources [12][13]. 

Common methods used by caregivers to help with the DST disorders in autistic 

people, such as warning or avoiding noisy settings [8], removes the individual from the 

environment and causes social exclusion. Wearable devices like earmuffs and noise-

canceling headphones can block all the ambient sounds including the aversive ones, but 

these approaches isolate the individual from the environment by blocking sounds such 

as human speech which can also result in social exclusion.  

To create a method that helps with DST but does not result in social exclusion, an 

intelligent system acting based on each individual’s preferences is required since sound 

sensitivity in autistic individuals is a subjective issue and the list of aversive sounds can 

vary from one person to another [8]. To create an intelligent and personalized device 

that finds and blocks these aversive sounds, the system should be able to accurately 

classify different ambient sounds and block only those which are aversive for that 

specific individual. The intelligent system can be separated into two major blocks, a 

sound classification and detection block and an intervention block which would be 

activated when an aversive sound is detected by the classification.  

The intervention block is out of scope for this thesis but in general the intervention can 

happen in different manners such as filtering the aversive sound, playing white noise to 

cover the aversive sound, or blocking all the sounds. For the sound classification and 

detection block, machine learning models have shown high accuracy in classifying 

environmental sounds. Machine learning models can vary from classic machine learning 

algorithms to a much more complex approach called the Deep Neural Networks (DNN)1, 

but for environmental sound classification DNN models have a much higher accuracy in 

comparison with the classic methods [14], [15]. However, in the common DNN model 

training approaches the model learns to identify separate classes based on the 

knowledge learned from the training data (DNN models learn to solve a problem by 

analyzing a provided dataset called the training data). This results in a model that can 

only detect and classify sound classes that were used in the training process (seen 

 
1 Explained in Chapter 2 
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classes) and is unable to classify a sound class that did not have any samples in the 

training data (unseen classes). To address the issue of DST in autistic individuals, the 

system must be able to detect and classify all seen and unseen sound classes, which 

would be impossible using such approaches. Common aversive sounds can be used to 

train a model and then be classified by such models with high accuracy, but an 

alternative approach that can work beyond the classification limits of a DNN model 

would be necessary to work alongside the high-performance classification model and 

detect the sound classes that are not in the classification model’s vocabulary. 

As an alternative to traditional classification approaches, One/Few Shot Learning 

can be used to create a classification model that is not limited just to the training data. 

The idea of One/Few-Shot Learning is to create a model that can compare two inputs 

and find the probability of them being in the same class [16]. Since the One/Few-Shot 

Learning is trying to be a general answer and not dependent on the training classes, a 

successful implementation should be able to compare an input with any class by just 

having one/few samples of that class and hence, classify an input into any classes that it 

has sample/samples of. This idea has shown to be greatly powerful in the vision domain, 

such as image recognition [17] and face recognition [18], but the use of One/Few-Shot 

Learning in audio detection or classification has not been intensely explored. 

1.2. Previous Work 

Over the past decades, audio classification has been a subject undergoing 

intense study in machine learning due to its impact on how machines can interpret their 

environment and help in various fields such as hearing aids [19], surveillance [20], and 

even disease identification (e.g., lung sound classification [21]). In general, a 

classification approach in any area such as sound or image would only be able to 

classify an input to the classes that were used in the training process. The idea of 

One/Few Shot Learning was introduced to address the limitation caused by being only 

able to classify and compare the classes used in the training process [16] [22]. The 

approach is defined as a Bayesian Model2 which can generalize into new unseen 

 
2 A model where inference is based on using Bayes theorem to obtain a posterior distribution 
using prior distribution for the relevant parameters 
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classes with one or very few samples, called One Shot Learning for one sample and 

Few Shot Learning for few samples.  

The One/Few Shot Learning idea is a general approach that can be applied to 

many different fields, but it has been mostly investigated in computer vision. Many 

successful implementations have been developed to address image classification and 

object detection problems [23][24][25], with the help of large image data sets such as 

ImageNet [26] and Omniglot [27]. One/Few Shot Learning has also shown promising 

results for face recognition problems [28]. In audio-related applications of One/Few Shot 

Learning, improvements have been made on speaker identification [29][30] and there 

have been studies on audio classification using a small labeled dataset (Few Shot 

Learning) where the authors reported an accuracy of ~74% on UrbanSound8k [31] 

dataset [32] (a audio dataset with ~8k labeled sounds of 10 urban sound classes). In a 

newer study, using attentional graph neural networks, a 5-way 5-shot classification (a 

classification with 5 samples per class and 5 classes) was done with the highest 

accuracy of %78.3 [33]. 

An effective approach for One/Few Shot Learning is called Siamese Networks 

[17], a subset of Deep Neural Networks3 with two identical sub-networks having shared 

weights (called the feature extractor), and a comparison function that compares the 

outcome of these two identical networks4. The idea here is to use two distinct inputs and 

find the probability of these two distinct inputs belonging to the same class (or having the 

same origin). Siamese Networks were originally introduced in 1994 for signature 

verification by calculating a similarity score between two inputs [34].  

The most important step for creating a Siamese Network for One/Few Shot 

Learning is defining the feature extractor. An optimized feature extractor for the Siamese 

Network can be the feature extractor component of a classification model trained to 

solve a similar problem (like audio classification). We know that In general, each 

conventional classification model is comprised of: (i) a feature extractor and (ii) a 

classifier. Therefore by dropping the last layers which act as the classifier we can use 

the rest as the network’s feature extractor. Even though the difference between an 

 
3 Explained in Chapter 2 
4 Further explained in 2.4 
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image and a spectrogram5 of audio (most common representation of an audio for sound 

classification) is significant, image classification model architectures have achieved 

state-of-the-art results in sound classification [35] and can be considered as a possible 

feature extractor. 

To train the feature extractor, one can either start with random values for the 

initial weights (starting point of training) or use a method that expedites and enhances 

the training process called transfer learning, a method where a model trained on a large 

dataset for a particular task is extended to another task (usually a similar one) and 

learns to solve the second task based on prior knowledge. Transfer learning has been 

used in many cases to improve a classification model’s accuracy. Examples of transfer 

learning from image datasets such as ImageNet have proven to be effective for tasks 

like image segmentation [36] and medical image analysis [37]. Transfer learning has 

also been widely applied in audio-related tasks, where models trained on AudioSet [38] 

and Million Song Dataset [39] have shown a performance improvement for multiple 

applications [40][41]. The idea of applying transfer learning to image classification 

models trained on image datasets and using that for audio classification problems has 

been around for a while [42] and transferring knowledge from a model pre-trained on 

ImageNet has been shown to improve the performance of multiple audio classification 

and detection problems [43][44][45]. 

The feature extractor, with or without transfer learning, would be able to extract 

sound features from one frame (window in time) but extracting features that can fully 

represent a sound may require looking at more than one frame. Splitting a sound into 

multiple frames in time can show the feature extractor how the sound has changed over 

time as well as the features of the sound in each frame – which can lead to a more 

accurate representation of the sound. Hann Window, a renowned signal processing 

method invented by Julius Von Hann around 1900, is used to reduce the importance of 

borders when windowing a signal such as a sound. Using this method, audio could 

become a series of frames showing how the sound has changed over time. Although 

looking at all these frames at the same time is a possibility, finding a compact 

representation of them may be needed to improve a One/Few Shot Learning model. 

 
5 Further explained in 3.1.1 
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Auto-Encoders6 were introduced to solve a similar task - training an encoder that finds 

an internal representation of an input and at the same time training a decoder that 

reconstructs the input from this internal representation [46]. In case of One/Few Shot 

Learning, the idea is to use the encoder components of such systems to build a compact 

representation of multiple frames of an input sound (as a second layer of feature 

extraction)7. A more recent version of Auto-Encoders using Recurrent Neural Networks 

(RNN)8 could find a representation of sequential data effectively [47]. LSTM9 (Long 

Short-Term Memory, a type of RNN immune to exploding gradient problem) Auto-

Encoders have also shown state-of-the-art performance in finding a representation for 

multiple sequential data such as video [48] and sensor data [49]. LSTM-Auto Encoders 

have shown to result in improvement of accuracy in audio classification as well [50] and 

therefore, LSTM-Auto Encoders are potential candidates for creating an efficient 

representation of the series of audio frames. 

1.3.  Research questions and contributions 

1.3.1. Can knowledge transfer from image classification improve the 
accuracy of a One/Few Shot Learning model fine-tuned for 
sound classification? 

Although transfer learning between different areas (image and audio) has been 

investigated, its effect is not yet proven for One/Few Shot Learning in audio 

classification. Three famous state-of-the-art models have been chosen and the effect of 

transfer learning has been investigated using a pre-trained model on ImageNet and fine-

tuned on ESC-50 data set as the feature extractor of the Siamese Network in One/Few 

Shot Learning. 

 
6 Further explanation in 2.8 
7 Refer to 3.5.2 
8 Explained in 2.6 
9 Explained in 2.7 
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1.3.2. How much transfer learning from an audio classification model 
to the feature extractor can improve the result of the One/Few 
Shot Learning model? 

To analyze the effect of transfer learning from an audio classification model to 

the feature extractor, two scenarios are investigated on the same model architecture: i) 

A model initialized using random weights and trained on the ESC-50 dataset from 

scratch and ii) A similar model initialized by transferring knowledge from an audio 

classification model which was trained on AudioSet and then fine-tuned on the ESC-50 

dataset.  

1.3.3. In Siamese Network, can a neural network learn to compare the 
feature extractors’ outputs and improve the One/Few Shot 
Learning model accuracy? 

In the original idea, Siamese Networks use a comparison function like cosine 

distance to find the probability of two feature vectors (representing two inputs) being in 

the same class. It is proposed to design and train a neural network to act as this 

comparison function. The effect of using this proposed comparison model is investigated 

and compared to the original comparison function (cosine distance). 

1.3.4. How can the One/Few Shot Learning Model look at more than 
one time-frame? 

Using a Convolutional Neural Network (CNN) as the first layer of feature 

extractor, a LSTM-Auto Encoder as the second layer of feature extractor, the Siamese 

Networks idea (having two identical networks as feature extractor), and a Neural 

Network as comparison function, a novel One/Few Shot Learning model is proposed to 

find features in each time frame, compress them as one whole feature vector and make 

the decision based on not only the data from the last time frame but also on how the 

sounds have changed during a longer period. 

 

 



8 

1.4. Thesis Structure 

The remainder of the thesis is structured as follows: 

 Chapter 2 presents a summarized description of Machine Learning 

terminology used in this research, followed by a brief introduction to the 

Dataset used in training and testing. 

 Chapter 3 presents the experimental methods including a detailed 

description of proposed model architectures for each test. 

 Chapter 4 presents the results of proposed tests showing the effect of 

different approaches. The research questions are all answered here. 

 Chapter 5 presents a summary of the outcome, obstacles in this 

research, and recommendations for possible future works. 
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Chapter 2. Neural Networks and Deep Learning 

This chapter provides a high-level description of Deep Learning with a focus on 

concepts used in the proposed system.  

The artificial intelligence algorithms were originally designed to copy how the 

human brain learns from environmental activities; thus, they were called Artificial Neural 

Networks (ANN). The term “deep” is used to show that these networks have more layers 

and can grow much bigger compared to conventional systems.  

2.1. Fully Connected Layers  

Fully Connected Layers are consisted of a set of neurons where each neuron is 

connected to all the input data that comes to the layer, where the input data could be the 

output of a different layer or it could be the model’s input. These neurons are 

mathematical replicas of how a biological neuron works in human body. Figure 2-1 

shows the structure of a single biological and mathematical neuron. 

            

Figure 2-1: A schematic drawing of a biological neuron (left) and its mathematical 
model (right)10 

From a mathematical perspective, these neurons can be split up into two 

different parts: 

1. The body where a linear combination of the input (with a bias value) is 

calculated using the following function, 

 
10 https://www.gabormelli.com/RKB/Artificial_Neuron 
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𝑦௜ =  ෍൫𝑤௜௝ ∗ 𝑥௝൯ + 𝑏௜

௡

௝ୀଵ

 (1) 

where i is the neuron number, j is the input number, w is the weight for the input, 

x is the input and b is the bias. 

2. The activation function which adds non-linearity to the system by applying a 

nonlinear function to a linear combination of the input. 

2.2. Activation Functions 

Activation functions are integral parts of any neural network as they allow the model to 

go beyond the trivial linear problems and generalize and adapt with variety of nonlinear 

combination of input passing through multiple layers. There are many activation 

functions, but the following 3 were used throughout this work which are explained as 

below: 

2.2.1. Rectified Linear Unit (ReLU) 

A piecewise function that outputs the input directly for positive inputs and returns zero 

otherwise. Figure 2-2 shows the plot for this function which describes as, 

𝑓(𝑥) = max (0, 𝑥) (2) 
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where x is the input. 

 

Figure 2-2: ReLU activation function 

ReLU became extremely popular due to its robustness to vanishing gradient and 

sparsity. Another advantage of ReLU is the low computational costs compared to much 

more complex activation functions. 

2.2.2. Sigmoid 

A mathematical function that has an “S” shaped curve. A common example of 

such a function is the logistic function shown in Figure 2-3 and equation (3) [51]. Such 

function would be monotonic, continuous, and differentiable everywhere such as, 
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𝜎(𝑥) =  
1

1 +  𝑒ି௫
 (3) 

where x is the input. 

 

Figure 2-3: Sigmoid activation function 

2.2.3. Hyperbolic Tangent (Tanh) 

This function acts like a stretched and shifted version of the Sigmoid function. 

The output is in the range of [-1, 1] vs Sigmoid’s output which is in the range of [1, 0], as 

shown in Figure 2-4. Tanh is calculated using, 

tanh(𝑥) =  
𝑒௫ − 𝑒ି௫

𝑒௫ + 𝑒ି௫
 (4) 

where x is the input. 
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Figure 2-4: Tanh activation function 

2.3. Convolutional Layer  

 Convolutional Neural Networks (CNNs), introduced by a postdoctoral computer 

science researcher in the 1980s [52], are one of the most popular Neural Networks to 

work with multidimensional data (like a 2D photo or a 2D representation of audio). CNNs 

are typically consisted of a series of convolutional layers followed by few fully connected 

layers. Convolutional layers are made of a set of filters (a set of parameters usually 

having a smaller size than the input). The filter parameters are learned through the 

training process. These filters will create the output of the layer by sliding across the 

input (going over every spatial position) and finding the sum of dot product of the filter 

and the input (convolution of the input and the filter). This would allow Convolutional 

Neural Networks to successfully catch spatial and temporal dependencies of the input 

while having fewer parameters using the application of relevant filters. Figure 2-5 shows 

how a filter is applied to a 2D input.  
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Figure 2-5: Filters in CNNs. The filter is applied on each colored box and creates a 
cell in the output. Colors in the output are matched with the 
corresponding box color. The * denotes a convolution. 

CNNs have been primarily used in visual recognition contexts, but there are also 

many successful applications in audio-related problems such as speech recognition and 

large scale audio classification [53][54][55]. 

2.3.1. Pooling  

The pooling layer is responsible for spatial size reduction. Pooling layers result in 

decreased computational power and they are useful for extracting the dominant features 

in a positional-invariant and rotational way that can maintain the process of effective 

training. Max and Average pooling are the common ways of implementing the pooling 

layer as shown in Figure 2-6. In Max pooling, the filter returns the maximum value from 

the input while the Average pooling returns the mean of the input. 

 

Figure 2-6: Max Pooling vs Average Pooling 
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2.3.2. Batch Normalization 

Introduced by two Google researchers in 2015 [56], batch normalization makes 

the network train faster and more stable by re-centering and re-scaling of the hidden 

layers. The underlying logic behind batch normalization is still under investigation but the 

effectiveness of it has been proven [56]. 

2.3.3. Regularization 

It is a technique used to control the process of fitting the model to the training set 

and avoid overfitting. This method tries to discourage the model to learn too much 

complex function that fits perfectly into the training set but would perform poorly on the 

unseen test set [57]. 

2.4. Siamese Networks 

As discussed in the previous chapter, the Siamese Networks were initially 

introduced by [34] for signature verification. The idea behind Siamese Networks is to 

have two identical networks extract a set of features from input and a labeled sample. 

Then a comparison is made on the extracted features to determine the similarity of the 

input and the labeled sample. Figure 2-7 shows the structure of a Siamese Network. 

 

Figure 2-7: Structure of a Siamese Network 
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2.5. Transfer Learning 

It is a machine learning method where a model trained for a task is reused as a 

starting point in another (similar) task. A model (or part of it) that has been trained in one 

setting will be exploited to improve generalization in another setting. The idea works the 

same as if a person knows how to ride a bike, they can learn how to ride a motorcycle 

much easier and even better (with the same training data) than a person with no 

experience at all.  

2.6. Recurrent Neural Network (RNN) 

A class of neural networks created to analyze sequential data and time series. 

Figure 2-8 shows the structure of a RNN where the model looks at the input at each time 

step and a variable, called state, from itself in the previous time step. This allows RNN to 

make its prediction not only based the input, but also based on the inputs in the previous 

time steps, which makes RNN a perfect fit for analysing sequential data and time series 

since it can make predictions considering the history of the data. With larger sequences, 

because the state of the model is fed back into the model at every time step, 

vanishing/exploding gradients become a common problem happening during the 

training. Vanishing gradient is when layers more distant from the output would not 

change much during the training (compared to the last layers of the model) and 

exploding gradient is when there is an exponential growth in the model parameters. 
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Figure 2-8: Structure of a Recurrent Neural Network11 with 𝒙𝒕 being the input and 
𝒚𝒕 being the output at time t. The model looks at the input at each 
time step and also the state of itself in previous time step. Rolled 
RNN represents the whole neural network and the unrolled RNN 
represents the model unrolled over a input sequence sample (with 
size: 3) and shows how the model is passing the state from one time 
step to the next one (green arrows).  

2.7. Long Short-Term Memory (LSTM) 

As the time window of the input gets larger, the problem of vanishing or 

exploding gradient becomes more common in a Recurrent Neural Network. LSTM is an 

architecture specially designed to address such problems [58]. The architecture of each 

memory cell guarantees constant error flow within its Constant Error Carousell (CEC). 

Figure 2-9 shows how an LSTM cell controls the information flow using three gates. The 

forget gate can control how much of the previous cell state passes on which can 

guarantee a Constant Error Carousell. 
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Figure 2-9: Structure of LSTM Cells [59] with C being the Cell State at each time 
step, X being the input at each time step and h being the output of 
the model at each time step. Forget gate controls how much of the 
cell state passes on to the next time step. 

2.8. Auto Encoders 

Initially introduced in 1968 to find an internal representation of input by error 

propagation [46], an auto encoder can be considered as an unsupervised technique with 

one goal , “representation learning” or learning to create a vector for each input that 

perfectly represents the input. It can be used to reconstruct the input with minimum loss. 

As shown in Figure 2-10, it is a neural network that is trained to reconstruct its input 

while having a bottleneck – a layer that is limited by size where not all parts of the input 

can pass through. Since the model must reconstruct the input after this bottleneck and 

the size of this bottleneck is limited, it tries to create a vector that explains the input in 

the bottleneck which can be interpreted as the “representation” of the input. Figure 2-10 

shows how an image is converted to a vector (output of the bottleneck layer) and then 

reconstructed. The reconstructed image is not exactly the same as the input but the 

better the model learns to create the presentation the less loss there will be. 
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Figure 2-10: A simple Auto Encoder12, The encoder creates a representation of the 
input at the bottleneck and the decoder usese the representation to 
reconstructe the input. 

2.9. Datasets 

2.9.1. Dataset for Environmental Sound Classification (ESC-50)[60] 

This is a data set of 2000 5-sec audio samples from 50 different classes as listed in 

Table 1: 

Table 1: Ontology of the ESC-50 Dataset 

Animals Natural soundscapes & water sounds Human, non-speech sounds Interior/domestic sounds Exterior/urban noises 
Dog Rain Crying baby Door knock Helicopter 
Rooster Sea waves Sneezing Mouse click Chainsaw 
Pig Crackling fire Clapping Keyboard typing Siren 
Cow Crickets Breathing Door, wood creaks Car horn 
Frog Chirping birds Coughing Can opening Engine 
Cat Water drops Footsteps Washing machine Train 
Hen Wind Laughing Vacuum cleaner Church bells 
Insects (flying) Pouring water Brushing teeth Clock alarm Airplane 
Sheep Toilet flush Snoring Clock tick Fireworks 
Crow Thunderstorm Drinking, sipping Glass breaking Hand saw 

 
12 https://medium.com/analytics-vidhya/what-is-auto-encoder-in-deep-learning-5d668f94651b 
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ESC10 is a subset of ESC50 that includes only these 10 classes: 

Dog, Rooster, Rain, Sea waves, Cracking fire, Crying baby, Sneezing, Chainsaw, 

Helicopter, Clock tick 

The audios are all 5 seconds long and each class has exactly 40 samples. The clips 

were manually extracted from the Freesound13 project. 

This would be a perfect dataset to work on for One/Few Shot Learning because 

of the following reasons: 

1. The diversity of classes: In training process of any classification model, it is 

common to keep a part of the training data for testing and validation. In 

conventional classification models, this is done by keeping data from each of 

the classes while in One/Few Shot Learning one or more classes must be 

entirely reserved for testing (unseen by the training process). This makes the 

diverse list of classes in ESC-50 a perfect candidate for the job as we can 

easily exclude 10 or even more classes from the training process and still 

have 40 classes to train the model with. Also, One/Few Shot Learning model 

is designed to generalize and learn to find a general answer for a wide variety 

of possible classes. This means having a lot of samples for few classes can 

create a biased model toward those specific classes while a diverse dataset 

with diverse list of classes can help the model to better generalize, as it is 

supposed to. 

2. Handpicked Clips: Audios in this dataset are handpicked and hence do not 

need a cleaning process. This guarantees that the training process does not 

get affected by imperfections of the dataset. 

3. Balanced Dataset: Each class has exactly 40 samples with same length 

which would not cause an overfitting problem like an unbalanced dataset. 

 
13 freesound.org 
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Chapter 3. Sound Classification with One/Few 
Shot Learning 

A summary of methods explored in this thesis is shown in Figure 3-1. This 

chapter gives an explanation on each part starting with the major parts of the One/Few 

Shot learning with Siamese Networks followed by proposed adjustments to improve the 

accuracy of the model.  

 

Figure 3-1: Summary of methods that were explored to improve the accuracy of a 
One/Few Shot Learning model with Siamese Networks. The orange 
boxes give a brief explanation on each component. The parts in grey 
are optional and both scenarios with and without them are 
investigated in this thesis. 

The major parts of a One/Few Shot Learning model with Siamese Networks can 

be broken down into three parts as shown in Figure 3-2. Following questions were 

addressed regarding these major parts: 

1. How to process the audio so that the model can extract the most possible 

information – preprocessing. 
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2. How to create a model that can extract the features of the processed audio – 

feature extraction. 

3. How to compare the features extracted from the input with the features 

extracted from the labeled sample(s) – comparison network. 

 

Figure 3-2: Different parts of a One Shot Learning model with Siamese Networks, 
input and the labeled sample go through three different stages: 
Preprocessing, Feature Extraction and Comparison 

3.1.  Preprocessing 

Successful application of convolutional neural networks in audio classification 

and speech recognition became the motivation to search for better audio representation 

to achieve better training. Time-frequency representations of sounds have always played 

a huge role in audio signal processing. Among the common approaches, Mel 

Spectrogram (Short-Time Fourier Transform or STFT) has shown a great boost for 

convolutional neural network audio-related training tasks [61]. Most of the proposed 

models were created based on Mel Spectrogram but Continuous Wavelet Transform 

(CWT) and Mel Frequency Cepstral Coefficients (MFCC) [62] were also used alongside 

the Mel Spectrogram to create a 3-layer (same as RGB in pictures) input when 

investigating transfer learning from image classification models. 

3.1.1. Mel Short-time Fourier Transform 

The Fourier Transform is one of the most powerful analytical tools in many 

different scientific applications. Waveform data can be transformed from the time domain 

– i.e., amplitudes of a measurement (air pressure for audio) in each time step, into the 

frequency domain using Fourier Transform. The transformation is done by breaking a 
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waveform down to a series of sinusoidal terms with unique magnitude, frequency, and 

phase. An efficient way of implementing Fourier Transform on Discrete data such as 

audio is to use Fast Fourier Transform (FFT), an implementation of Discrete Fourier 

Transform (DFT) with almost the same result and significantly less computation time 

[63].  

Fourier Transform makes the analysis of a signal’s frequency contents easier. 

However, in environmental sound classification and many other similar tasks (non-

periodic signals), the frequencies change over time and these changes sometimes show 

the characteristic of the sound. Short-Time Fourier Transform (STFT) is performing 

FFT on multiple windowed segments of a signal (usually with overlap). The result of an 

STFT is called a Spectrogram, a series of FFTs stacked next to each other showing the 

power of each frequency in different time steps. Figure 3-3 shows spectrogram of a dog 

barking sound compared to the sound plot.  

 

Figure 3-3: Spectrogram of a dog barking sound. Barking creates a sound with 
higher energy than background noise and can be detected where 
higher amplitude is seen. In frequency domain, lighter colors 
indicate higher energy in that specific frequency bin at that time. 

Human ears do not perceive sound frequencies on a linear scale. The mel scale 

was introduced to scale sound frequencies in a way that pitches are judged at the same 

distance as much as they are distanced to a human listener. A common practice for 
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converting frequencies (f) into a scale that is similar to how a human interpret frequency 

(m) is, 

𝑚 = 2595 logଵ଴ ൬1 +
𝑓

700
൰ (5) 

Using equation (5), the same Spectrogram in Figure 3-3 can be converted to mel-scale. 

The converted mel scale Spectrogram is shown in Figure 3-4. 

 

Figure 3-4: Mel-Spectrogram of a dog barking sound. In frequency domain, lighter 
colors indicate higher energy in that specific frequency bin at that 
time. 

3.1.2. Continuous Wavelet Transform 

The Continuous Wavelet Transform compares the signal to the shifted and 

compressed or stretched version of the wavelet. Here the inner product is used 

to find the similarity of a selected wavelet (a localized wave) and the input. The 

similarity of the input with selected wavelet is computed as, 

𝐶൫𝑎, 𝑏, 𝑓(𝑡), 𝜓(𝑡)൯ =  න 𝑓(𝑡)
1

𝑎
𝜓∗

ቆ
𝑡 − 𝑏

𝑎
ቇ 𝑑𝑡

ାஶ

ିஶ

 (6) 

where ∗ denotes the complex conjugate, a is the scale parameter, b is the 

position parameter, 𝛙 is the wavelet, t is time, and f(t) is the input signal.  
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By definition, any wavelet can be used in equation (6). For this research, first-

order derivative of the Gaussian wavelet, as shown in equation (7), is used. 

𝜓(𝑡) = 𝐶 ∗  𝑒ି௧మ
 (7) 

where t is time and C is a normalization constant. 

A Continuous Wavelet Transform is done on the same dog barking sound used 

in Figure 3-3 and Figure 3-4 and the result is shown in Figure 3-5. This figure shows the 

similarity of the audio with the Gaussian wavelet over time. Lighter colors indicate a 

higher similarity if the input at that time with the Gaussian wavelet. 

 

Figure 3-5: CWT of a signal with Gaussian wavelet, lighter colors indicate higher 
similarity. 

3.1.3. Mel Frequency Cepstral Coefficients(MFCC) 

MFCC, is obtained by applying Fourier Transform on log of magnitudes of a 

Fourier Transform in Mel Scale. The process of finding MFCCs is shown in Figure 3-6. 

Since in MFCC a spectrum of a spectrum is calculated, the result is neither in the time 

domain nor the frequency domain and hence it was named the quefrency domain [64]. 
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Figure 3-6: Steps in calculating Mel Frequency Cepstral Coefficients 

Applying the steps described in Figure 3-6 on same dog barking sound as before 

would result in MFFCC Coefficients shown in Figure 3-7. 

 

Figure 3-7: MFCC of a dog barking sound, absolute value of coefficients increases 
as the color changes from red to blue. 

3.2.  Feature Extraction 

A common feature extraction design strategy for One/Few-Shot Learning models 

is to use part of a network used for classification of a similar task. In the case of 

environmental sound classification, convolutional neural networks have proven to be a 

wise choice [65][66][67]. Convolutional neural networks have also proven to achieve 

astonishing results on very limited computing resources for edge devices (devices with 
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limited computational and potentially small amount of power such as a cell-phone) [68]. 

A variation of convolutional neural networks was tested in the following steps to find the 

optimum feature extraction model starting with image classification models. 

3.2.1. State of Art Image Classification Models 

There might be a significant difference between an image and a sound 

representation like the ones discussed in preprocessing stage, but studies have shown 

that models trained for image classification (e.g., on ImageNet [26]) can be a great 

baseline network for sound classification tasks [35]. Considering how auditory and visual 

brain regions in a human brain have shared representational structure [69], transferring 

knowledge between these two domains should be considered a possible way of 

achieving better performance. ImageNet has become a benchmark for image 

classification models, so the following state of art models with outstanding performance 

on ImageNet were used to explore the effect of transferring knowledge from an image 

classification task to a One/Few-Shot Learning problem (models with high computational 

costs like NASNetLarge [70] were not considered despite their high performance): 

DenseNet201 [71]:: 

A shorter connection between the layers close to output and layers close to the 

input can make a model more accurate and efficient as shown by recent studies [71]. 

Dense Blocks connect every layer to all preceding layers to create short connections 

between layers close to the output and the ones close to input. Figure 3-8 shows a 

network with three Dense Blocks where layers within a block are connected to every 

other layer in a feedforward fashion. 

 

Figure 3-8: A deep DenseNet with 3 Dense Blocks [71], each layer whitin a dense 
block is connected to all other layers in that block in a feedforward 
fashion. 

DensNet201 is a network with 201 layers in total containing four Dense Blocks. 

Table 2 shows a summary of DesneNet201 architecture. 
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Table 2: A summary of DenseNet201 architecture 

Layer Description 

Convolution 7 × 7 conv, stride 2 

Pooling 3 × 3 max pool, stride 2 

Dense Block (1) ቂ
1 ×  1 conv
3 ×  3 conv

ቃ  × 6 

Transition Layer (1) 
1 × 1 conv 

2 × 2 average pool, stride 2 

Dense Block (2) ቂ
1 ×  1 conv
3 ×  3 conv

ቃ  × 12 

Transition Layer (2) 
1 × 1 conv 

2 × 2 average pool, stride 2 

Dense Block (3) ቂ
1 ×  1 conv
3 ×  3 conv

ቃ  × 48 

Transition Layer (3) 
1 × 1 conv 

2 × 2 average pool, stride 2 

Dense Block (4) ቂ
1 ×  1 conv
3 ×  3 conv

ቃ  × 32 

Classification Layer 
7 × 7 global average pool 

1000D fully connected, Softmax 

 

InceptionV3 [72] 

As a variant of GoogleNet [73], InceptionV3 focuses on computational costs by 

modifying previous architectures and has proven to be more computationally efficient 

compared to GoogleNet[72]. A summary of InceptionV3’s architecture is shown in Table 

3 based on the original paper. 

Table 3: A summary of InceptionV3 architecture 

Layer Patch Size/Stride Input Size 

Convolution 3×3/2 299×299×3 

Convolution 3×3/1 149×149×32 

Convolution (Padded) 3×3/1 147×147×32 

Pooling 3×3/2 147×147×64 
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Convolution 3×3/1 73×73×64 

Convolution 3×3/2 71×71×80 

Convolution 3×3/1 35×35×192 

3 × Inception Figure 3-9: Original Inception module 
[73] 

35×35×288 

5 × Inception Figure 3-9: Original Inception module 
[73] 

17×17×768 

2 × Inception Figure 3-9: Original Inception module 
[73] 

8×8×1280 

Pooling 8 × 8 8 × 8 × 2048 

Linear logits 1 × 1 × 2048 

Softmax classifier 1 × 1 × 1000 

Inception module, as shown in Figure 3-9, runs multiple operations (pooling, 

convolution) with different filter sizes (1x1, 3x3, 5x5) in parallel to have the result of 

different options (different combination of operations and different filter sizes) with one 

single module. 

 

 

Figure 3-9: Original Inception module [73], a combination of different operations 
and filter sizes which are calculated in parallel 

In InceptionV3 the fully connected layer of the auxiliary classifier is normalized as 

well as the convolutions. 
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Xception [74] 

Xception is called the extreme version of the Inception model. By changing the 

order of operation and presence/absence of non-linearity (activation functions), the 

model has a slightly better performance than InceptionV3. Residual shortcuts, as 

originally proposed by ResNet [75], are placed for all flows. Figure 3-10 shows a 

summary of Xception model architecture. 

 

Figure 3-10: The Xception Model architecture splited into three parts which are 
connected in order of Entry, Middle and Exit flow. Residual 
shortcuts are placed in each flow on the left side. 

Summary of the accuracies of the selected Image Classification Models 

ImageNet validation is among one of the most popular benchmarks for image 

classification models. All these three chosen models were tested on ImageNet validation 

dataset (by the original authors) and reported a Top-1 and Top-5 accuracies where a 

Top-N accuracy means whether the model chose the right answer as one of the first N 

most probable classes for the input.  

Since these models were all pre-trained on ImageNet (which contains images 

with varieties of sizes) a fixed input shape of [3, 299, 299] was chosen when training the 

models on ImageNet and all the images where resized or cropped to fit this input size. 
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This input size indicates that when using this architecture for One/Few Shot Learning 

audio classification, each audio should be converted into 3 layers each with the size of 

299x299. For the layers, Mel Short-time Fourier Transform (Mel-Spectrogram), 

Continuous Wavelet Transform (CWT), and Mel Frequency Cepstral Coefficients 

(MFCC) are used to create the required input. 

All the mentioned models have a Softmax layer as the last layer to classify the 

input. By removing the last Softmax later, the new last layer would have the output 

shape of 2048 which can then be interpreted as a feature vector of the input. Table 4 

shows a summary of the three chosen classes, all the models have state-of-the-art 

performances and based of their reported accuracies, Xception has proven to be the 

most optimal model (almost same size, higher accuracy). 

Table 4: A summary of chosen image classification models on ImageNet 
validation dataset. 

Model Size (MB) 
Top-1 
Accuracy 

Top-5 
Accuracy 

Parameters Depth 

DenseNet201 80 77.3% 93.6% 20.2M 402 

InceptionV3 92 77.9% 93.7% 23.9M 189 

Xception 88 79.0% 94.5% 22.9M 81 

 

3.2.2. Transferring knowledge from Audio Classification models 

AudioSet [38] is one of the largest audio datasets available online. It was made 

based on a large-scale video data set now known as YouTube-8M [76]. With the initial 

release of AudioSet, a 128-dimensional embedding was provided for each segment (a 

0.96s moving window) of the audio. These embeddings were produced using a VGG-like 

[77] classification model. The weights from the classification model trained for classifying 

AudioSet were used as a starting point for the VGGish feature extractor shown in Figure 

3-11. The input for the VGGish model would be a Mel-Spectrogram of the audio created 

using the configuration in Table 5 and creates a 128-dimensional feature vector which 

will be fed eventually to the comparison network as shown in Figure 3-2. 
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Figure 3-11: A representation of how the VGGish feature extractor would fit in the 
Siamese Network 

The preprocessing required for VGGish feature extractor is calculating a Mel 

Spectrogram of the audio with the configuration shown in Table 5. 

Table 5: VGGish model preprocessing configuration 

Number of Frames 96 
Number of Bands 64 
Sample Rate 16000 
STFT Window Length  0.025s 
STFT Hop Length 0.01s 
Window Size 0.96s 

 

The VGGish model is originally derived from a popular image classification model 

called VGG [78]. As shown in Figure 3-12, the modification was done to create the 128 

feature vector from the output of the model, replacing the Softmax layer used for 

classifying images in the VGG model. 
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Figure 3-12: A VGGish network is derived from VGG-16 (16 layer VGG Model [77] 
originaly designed for image classification). Black cells are the same 
as VGG and the last red fully connected cell is to create a 128-
dimensional feature vector. 

3.3. Comparison Network 

After finding a feature vector that can represent each audio, a comparison must 

be made between the feature vector of input and the feature vector of the labeled 

sample. Cosine similarity is a popular approach to compare two feature vectors for 

One/Few Shot Learning models. In addition to testing the cosine similarity as 

comparison network, a Neural Network is also proposed to do the comparison. To train 

such Neural Network, the goal of the training should be defined in a way that eventually 

the result would show the probability of the input belonging to the same class as the 

labeled sample. Cosine similarity and the proposed Neural Network as the comparison 

network are further discussed in this section. 

3.3.1. Cosine Similarity 

One of the most common mathematical approaches for comparing feature 

vectors is cosine similarity. It would result in 1 for the identical feature vectors, 0 for 

orthogonal vectors, and -1 for exact opposite vectors which can be transformed to a 

probability range of [0, 1] for being in the same class. The probability of input and the 

labeled sample being in the same class is calculated for feature vectors A (input) and B 

(labeled sample) using, 
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𝑃𝑟𝑜𝑝𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑏𝑒𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑐𝑙𝑎𝑠𝑠 = 0.5 ∗ (𝐶𝑜𝑠𝑖𝑛𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 1)

=  0.5 ∗ (cos 𝜃 + 1) =  0.5 ∗ (
∑ 𝐴௜𝐵௜

௡
௜ୀ଴

ට∑ 𝐴௜
ଶమ

ට∑ 𝐵௜
ଶమ

+ 1) 

 

(8) 

where A is the feature vector of the input audio, B is the feature vector of the labeled 

sample and 𝑨𝒊 and 𝑩𝒊 indicate the 𝒊𝒕𝒉 element in each feature vector. 

3.3.2. A Neural Network to compare the results. 

A model can be trained to find the probability of two feature vectors belonging to 

the same class. An L2 distance (squared distance of each feature) was calculated on the 

feature vectors and the result was fed to the proposed neural network shown in Figure 

3-13 with three dense layers and a sigmoid layer at the end to limit the output between 0 

and 1. This model should either be trained connected to the feature extractor as a whole 

or with the result of a fully trained feature extractor. 

 

 

Figure 3-13: Structure of the proposed comparison Neural Network model. The L2 
distance of the two feature vectors is fed to the network with three 
dense layers (with size of 128, 64, 32) and a sigmoid layer is used at 
the end to limit the outcome to the range of 0 and 1. Dropouts were 
used to stop the model from overfitting. 
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3.4. Using five labeled samples (Few Shot) instead of one 
(One Shot) 

With more samples for a class, the system would have a better chance to find the 

significant features of each class. To be able to look at more than one labeled sample 

the two following approaches were tested: 

3.4.1. Compare the results separately for each labeled sample 

By running a Siamese One-Shot Learning model for each labeled sample versus 

the input, the probability of that input being in the same class as the labeled sample 

would be calculated. By having more than one labeled sample for one class, a set of 

probabilities were achieved for each class. The classification was done by looking at the 

max value or mean value of the calculated probabilities for each class as shown in 

Figure 3-14 where an input is converted to its feature vector alongside five labeled 

samples (all from the same class). Using the comparison network, the feature vector 

representing the input is compared to each labeled sample’s feature vector creating five 

separate similarity scores (one for each pair). The mean and max value of the five 

similarity scores represents the probability of the Input being from the same class as the 

five labeled samples. 

 

Figure 3-14: Using Few Samples (Few-Shot) instead of one to find MEAN or MAX 
probability of Input being in the same class as labeled samples 
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3.4.2. Creating a Feature Vector representing all the Labeled Samples 

Using the feature extractor, each labeled sample is transformed into a 128-

dimensional feature vector. A super sample can be created by calculating the mean of 

each of the 128 features over all available samples. This super sample represents the 

class that the input is being compared to. Figure 3-15 shows how five labeled samples 

(from the same class) are converted to five feature vectors representing them, then a 

super sample is created by taking the mean of these five feature vectors and the 

comparison network compares the feature vector representing the input with the super 

sample to find the probability of the input being in the same class as the labeled 

samples. 

 

Figure 3-15: Creating a super sample from multiple labeled samples and 
comparing the super sample with the Input to find the probability of 
the Input being in the same class as the labeled samples. 
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classification. Each of these frames can get a probability of being in the same class as 
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3.5.1. Mathematical approaches: Mean and Max 

By splitting a sound of 5 seconds into 0.96s frames and 
ଶ

ଷ
∗ 0.96 second hop 

length, 7 different frames were created. Comparing each one with the labeled sample 

resulted in 7 different probabilities each showing the probability of that specific frame 

having the same class as the labeled input. Figure 3-16 shows how an audio with the 

length of 5 second is compared to a labeled sample. This results in 7 different 

probabilities each corresponding to a time frame in the input audio, and to achieve a 

single probability for the whole audio belonging to the same class as the labeled sample 

two approaches where tested: Max of these 7 probabilities or Mean of them as the 

single probability of the whole audio belonging to the same class as the input. 

 

Figure 3-16: Converting a 5s audio into 7 frames of 0.96 with 2*0.96/3s hop length 
and finding the probability of each frame being in the same class as 
the labeled sample. 

Feature Extractor

Labeled Sample

Comparison

Frame 1 
Probability

Frame 2 
Probability

Frame 3 
Probability

Frame 4 
Probability

Frame 5 
Probability

Frame 6 
Probability

Frame 7 
Probability

MEAN MEANProbability of Input being the same class as 
Labeled Samples



38 

3.5.2. Converting multiple frames into a new feature vector (two-layer 

feature extraction): LSTM Auto Encoders 

After training the feature extractor, using a specific type of Auto Encoders called 

LSTM Auto Encoder, a new embedding was created for the input and the labeled 

sample. Figure 3-17 shows a 5 second sound converted into 7 frames (0.96s frames and 
ଶ

ଷ
∗ 0.96 second hop length) and a feature vector is calculated for each frame which 

creates 7 feature vectors each with the size of 128 (7x128 in total). A proposed LSTM 

Auto-Encoder as shown in Figure 3-18 converts the 7x128 feature vector representing 

the whole 5s audio into a new feature vector with the size of 512.  

 

Figure 3-17: Conversion of a 5s audio into a 512 dimensional feature vector using 
the trained feature extractor and an LSTM Auto-Encoder 

This method resulted in a feature vector that not only has the features from each 

frame of the input audio but also would contain info on how the sound has changed 

during a longer period. 

The proposed LSTM Auto-Encoder, as shown in Figure 3-18, is part of a bigger 

model which converts the input into an embedding and then reconstructs the input using 

Feature Extractor (Creates 128 Dimensional Feature Vector for each part)

LSTM Auto-Encoder

………………
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the created embedding. If the model learns to reconstruct the input with a low error, the 

created embedding by the encoder in this process would contain main features of the 

input (because decoder only uses the features in this embedding to reconstruct the 

input) and can be used as the feature vector. To obtain the proposed LSTM Auto-

Encoder in Figure 3-17, the connected LSTM Auto-Encoder and Decoder, shown in 

Figure 3-18, was trained on training dataset and a low error was achieved. It is a 

common practice to choose the size of the embedding vector around 2/3 of the size of 

the input. As the input size is 7x128, three different sizes were tested – 3x128, 4x128, 

5x128. Since having smaller feature vector would result in smaller comparison function 

and hence lower latency, lowest size with neglectable performance loss was chosen, 

4x128. 

 

Figure 3-18: Proposed LSTM Auto-Encoder Architecture 

Chapter 4 reports the test results of the methods and proposed models 

discussed in Chapter 3 on the Dataset for Environmental Sound Classification (ESC-

50)[60]. 
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Chapter 4. Audio Classification using One/Few 
Shot Learning results 

4.1. Transfer Learning from Image Classification Models 

Three state-of-the-art image classification models were used for investigating the 

effect of using models pre-trained on ImageNet (transfer learning) vs training the same 

model from scratch for feature extraction. The ESC-10 (10 classes) subset of the dataset 

is used as a validation set and the rest (40 classes) were used to (i) train the model from 

scratch or (ii) fine-tune the pre-trained model in ImageNet. Since the One/Few Shot 

Learning model is designed to compare a pair of inputs and is not initially designed for 

classification, the training accuracy is a pairwise accuracy and not a classification 

accuracy. 

4.1.1. DenseNet201 

Although the model can get overfitted on the training set in both scenarios 

(training the model from scratch or using transfer learning), as shown in Figure 4-1, the 

results on the validation set are higher from the beginning when using the weights from 

the model trained on ImageNet. This result shows that transferring knowledge from a 

different space can improve the accuracy and result in a more general trained model. 
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Figure 4-1: Training DenseNet201 model from scratch (Highest validation 
accuracy: 75.8%) vs using pre-trained weights and fine-tuning the 
model (Highest validation accuracy: 79.6%) 

4.1.2. InceptionV3 

Showing the same pattern as DenseNet201, the model gets overfitted on the 

training set in both cases (training the model from scratch or using transfer learning) but 

using weights from the model trained on ImageNet can make the model achieve better 

results on the validation set (79.9% vs 77.6%). The results are shown in Figure 4-2. It 

might be worth mentioning that the validation accuracy does not improve significantly by 

fine-tuning the model, showing that the model was already performing at a peak level 

just by training on a different space. The model trained from scratch shows signs of 

overfitting from 4th epoch. Eventually both cases achieve an accuracy of over 95% on 

the training set. 
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Figure 4-2: Training InceptionV3 model from scratch (Highest validation accuracy: 
77.6) vs using pre-trained weights and fine-tuning the model 
(Highest validation accuracy: 79.9%) 

4.1.3. Xception 

Even though there is not a significant difference between learning from scratch 

and using the ImageNet weights, using the weights from a model trained on ImageNet is 

more resilient to overfitting and in the end (validation accuracy does not drop as the 

training goes on), can achieve higher accuracies as shown in Figure 4-3. 
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Figure 4-3: Training Xception model from scratch (Highest validation accuracy: 
76.5%) vs using pre-trained weights and fine-tuning the model 
(Highest validation accuracy: 78.7%) 

4.2. Transfer Learning from Sound Classification Models 

Using the VGGish model trained on AudioSet and fine-tuning the results on ESC-

50 Dataset vs training the same model on ESC-50 Dataset from scratch, the effect of 

transferring knowledge from the sound classification domain is explored. Figure 4-4 

shows how using transfer learning makes the training process more resilient to over 

fitting and achieves a higher validation accuracy. 
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Figure 4-4: Training VGGish model from scratch (Highest validation accuracy: 
78.8%) vs using pre-trained weights and fine-tuning the model 
(Highest validation accuracy: 81.9%) 

Although the VGGish model trained from scratch achieves good scores, using 

the pre-trained model on AudioSet and fine-tuning it, the performance on the validation 

set gets an 81.9% accuracy which is the highest achieved at this point with this 

configuration. 

4.3. Cosine Similarity vs a Neural Network as Comparison 
Function 

Using a pre-trained VGGish model on AudioSet as the feature extractor, the 

effect of having a Neural Network or cosine similarity as the comparison function is 

explored. Figure 4-5 compares the results from using cosine similarity and the proposed 

Neural Network in Figure 3-13 on ESC-50 dataset. 
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Figure 4-5: Training VGGish model with Cosine Similarity as Comparison Function 
(Highest validation accuracy: 75.9%) vs using a Neural Network as 
Comparison Function (Highest validation accuracy: 81.9%) 

The results show a great improvement (6% better accuracy on the validation set) 

made by using a Neural Network as the comparison function compared to a cosine 

similarity. 

4.4. Classification Task 

From this point forward, all tests are done using a fine-tuned VGGish network 

trained on AudioSet as the feature extractor and a Neural Network as comparison 

function. Each audio in ESC50 Dataset is 5s long and is converted into 7 frames for 

analysis. The classification is done based on the mean score of all these 7 frames for 

each class. 

4.4.1. Effect of choosing different sets of classes for testing 

As the human ear might find it difficult to distinguish between sounds such as 

rain vs. sea wave, a One/Few Shot Learning Model would achieve different accuracies 

on different class sets. To find a general accuracy, using ESC-10 with 10 classes as a 
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test set and for a k-way classification, every possible combination of k classes out of 10 

classes were tested and an average result is calculated. 

Figure 4-6 shows the normalized classification accuracy result for a One-Shot 3-

Way classification. Figure 4-7 shows the same results for a One-Shot 5-Way 

classification. 

Figure 4-6 to Figure 4-11, Figure 4-13 and Figure 4-14 all show the confusion 

matrices based on average values. There are 10 classes in the test set which means for 

the 3-way classification tests, 120 different combinations and for the 5-way classification 

tests, 252 different combinations can be chosen from the available 10. Each of these 

combinations is tested separately resulting in a separate confusion matrix, but instead of 

displaying 120 confusion matrices for 3-way classification and 252 confusion matrices 

for the 5-way classification, the results of the 3-way and 5-way classifications are 

combined into a single figure. To create these average confusion matrices, the results of 

all the combinations for 3-way or 5-way classification are combined, and each cell is 

calculated by finding the percentage of all the tests that a true label (row) was predicted 

as a specific value (column) by the model. 

 

Figure 4-6: A One-Shot 3-Way classification normalized result. Each cell 
represents the percentage that the row class was classified as the 
column class (column) – Average Accuracy: 79.2% 
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Figure 4-7: A One-Shot 5-Way classification normalized result. Each cell 
represents the percentage that the row class was classified as the 
column class (column) – Average Accuracy: 66.8% 

These results show how a selective group of distinguishable classes can result in 

much higher accuracy, so in order to find a general answer the same testing must be 

performed on all possible combinations in the test set. For example, this model has a 

problem distinguishing rain sound from sea_wave and helicopter, but barely mistakes 

rain for dog_bark which also makes sense as many humans may have the same 

difficulty. 

4.4.2. Few Shot Learning with average similarity 

Instead of classifying the input based on similarity with one sample of each class, 

the classification is done based on average similarity to 5 samples. Figure 4-8 shows the 

results for doing a Few Shot classification with 5 samples and 3 classes (5-Shot 3-Way) 

and can be compared to Figure 4-6 where the same test is done with only one sample 

(One-Shot 3-Way). Figure 4-9 shows the result for 5-Shot 5-Way classification and can 

be compared to Figure 4-7 which is a One-Shot 5-Way classification. 
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Figure 4-8: A 5-Shot 3-Way classification normalized result. Each cell represents 
the percentage that the row class was classified as the column class 
(column) – Average Accuracy: 87.4% 

 

Figure 4-9: A 5-Shot 5-Way classification normalized result. Each cell represents 
the percentage that the row class was classified as the column class 
(column) – Average Accuracy: 78.4% 

Using the same model and by having 5 samples instead of one, the average 

accuracy for the 3-way classification has improved by 8.2% and for the 5-way 
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classification, it has improved by 11.6% which shows how having more samples can 

significantly improve the accuracy. 

4.4.3. Few Shot Learning with the Super Sample 

Using the same feature extractor and the same Neural Network as comparison 

function, 5 labeled samples of each class are converted into one super sample (mean of 

five feature vectors representing five labeled sample) and the same tests are performed. 

Figure 4-10 shows the results for doing a Few Shot classification with 5 samples 

converted to a super sample and 3 classes (5-Shot 3-Way) and can be compared with 

the results shown in Figure 4-8 (same test without creating the super sample). Figure 

4-11 also shows a Few Shot Classification with 5 samples converted to a super sample 

with 5 classes (5-Shot 5-Way) and can be compared with Figure 4-9 (same test without 

creating the super sample). 

 

Figure 4-10: A 5-Shot 3-Way classification using super sample normalized result. 
Each cell represents the percentage that the row class was 
classified as the column class (column) – Average Accuracy: 85.6% 
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Figure 4-11: A 5-Shot 5-Way classification using super sample normalized result. 
Each cell represents the percentage that the row class was 
classified as the column class (column) – Average Accuracy: 74.5% 

Using the super sample, the accuracy has decreased compared to looking at 

each labeled sample separately, however, it has improved the results compared to just 

having one sample for each class. This suggests that the super sample is a better 

representation of a class compared to a single random labeled sample. The results for 

these 3 different One/Few Shot Learning methods are summarized in Table 6. 

Table 6: Summary of One-Shot, super sample and Few Shot Learning accuracies 
created using the same feature extractor and the same comparison 
network 

Number of classes One-Shot Super Sample Few Shot 
3-Way 79.2% 85.6% 87.4% 
5-Way 66.8% 74.5% 78.4% 

 

Using the t-distributed stochastic neighbor embedding (t-SNE) method [79] (a 

way of displaying high dimensional data in a 2D or 3D space), a representation of 

different samples in the feature space is plotted to see how different samples of each 

class are located compared to each other. 
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Figure 4-12: A 2D representation of ESC-10 Dataset in the feature space created 
by VGGish feature extractor 

This plot shows how some classes like chainsaw and rooster are well 

separated in the feature space while some classes like rain and sea_waves are 

intertwined. 

Plotting the feature space in 2D using t-SNE gives valuable insight on how the 

feature extractor is performing. In the current work, this method was used only during the 

latest stages of the development, however, it is recommended that any future work on 

One/Few Shot Learning leverages this approach from the first time a feature vector is 

calculated. 

4.4.4. Converting multiple frames into a new feature vector 

Using the novel 2-layer feature extraction for audio classification with the first 

layer being the VGGish feature extractor and the second layer being the LSTM Auto 

Encoder, the same classification task has been investigated. For these tests, instead of 

using the mean of similarity scores of different samples, the following function has been 

used, 
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𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

2
∗ (𝑚𝑒𝑎𝑛(𝑠) + max(𝑠)) (9) 

where s is the set of the scores the input gets in comparison with each labeled sample 

separately. 

This approach divides the similarity score between the average similarity of the 

input with different labeled samples and the maximum similarity value it got. Therefore, 

in comparison of similar classes, a class would be chosen when it has a labeled sample 

very similar to the input and also other samples from that class share some similarities 

with the input. 

Figure 4-13 shows the results for doing a 5-Shot 3-Way Classification using the 

two-layer feature extraction method and can be compared with the results shown in 

Figure 4-8 (same test without the second feature extraction layer). Figure 4-14 also 

shows a 5-Shot 5-Way Classification using the two-layer feature extraction method and 

can be compared with Figure 4-9 (same test without the second feature extraction layer). 

 

Figure 4-13: A 5-Shot 3-Way classification using two-layer feature extraction with 
LSTM Auto Encoder normalized result. Each cell represents the 
percentage that the row class was classified as the column class 
(column) – Average Accuracy: 89.8% 
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Figure 4-14: A 5-Shot 5-Way classification using two-layer feature extraction with 
LSTM Auto Encoder normalized result. Each cell represents the 
percentage that the row class was classified as the column class 
(column) – Average Accuracy: 83.9% 

To summarize, Table 7 shows the results on how using a second layer of feature 

extraction and looking at how the sound has changed over multiple frames (7 frames in 

these tests) can help the model achieve higher accuracies. 

Table 7: A comparison between classification accuracies of a normal Few Shot 
Learning vs. the proposed Two-Layer Feature Extraction Few Shot 
Learning 

Number of classes Few Shot Two-Layer Feature Extraction (LSTM Auto Encoder) 
3-Way 87.4% 89.8% 
5-Way 78.4% 83.9% 

Using the t-SNE, a new representation of different samples in the feature space 

is plotted in Figure 4-15 to see how different samples of each class are located 

compared to each other. 
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Figure 4-15: A 2D representation of ESC-10 Dataset in the feature space created 
by two layers of feature extractor: VGGish feature extractor and 
LSTM Auto Encoder 

Comparison of Figure 4-15 with Figure 4-12 which was created by just using the 

VGGish feature extractor shows that most classes are much more distinguishable from 

each other in feature space using the two-layer feature extraction method. It also shows 

that the second layer of feature extractor has improved the model in a way that it would 

be able to classify sound with higher accuracies. 
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Chapter 5. Discussion and Conclusion 

This research work aimed to develop a machine learning model that could 

identify the aversive sounds for people with Autism Spectrum Disorder (ASD) based on 

their specific needs and sound sensitivities. Artificial Intelligence systems, specifically 

the ones using the approach known as One/Few-shot learning were investigated in the 

current work and to see if knowledge transfer from image classification (transfer 

learning) improves the accuracy of a One/Few Shot Learning model (fine-tuned for 

sound classification), three different image classification models (pre-trained on 

ImageNet) were fine-tuned for One/Few Shot Learning. Through multiple training and 

testing scenarios, it is shown that transferring knowledge will help the model find a better 

general answer (helps with the overfitting problem), leading to better performance on the 

validation set. 

In addition, the idea of transfer learning from an audio classification model to the 

feature extractor of a One/Few Shot Learning model was explored by fine-tuning the 

VGGish model (A derivative of the VGG model used for audio classification, pre-trained 

on AudioSet) for One/Few Shot Learning and benchmarked against a comparable one 

trained from scratch. The results showed that transfer learning from the pre-trained 

model on AudioSet can achieve better accuracy and be less prone to over-fitting. 

Compared to transfer learning from image classification, the VGGish model pre-trained 

on AudioSet achieved even higher accuracy.  

As Siamese Network (the One/Few Shot Learning implementation used in this 

research) needs a comparison function for comparing the input with the labeled sample 

(in feature space), a neural network was proposed and trained to compare the outputs of 

the feature extractors. The test results of the proposed neural network (called the 

comparison network) showed an improvement in the model’s accuracy compared to 

using cosine distance (a common approach for Siamese Networks) for comparing the 

input and the labeled sample. 

Eventually, to create a model that looks at more than one time-frame, an extra 

layer of feature extraction was proposed using LSTM Auto Encoders and the tests 

showed a significant improvement in the accuracy of the new two-layer feature 

extraction One/Few Shot Learning compared to the same model without the extra 
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feature extraction layer. The proposed model achieved the highest score in all the tests 

done here and beat the highest accuracy reported on an environmental sound Few-Shot 

Learning Classification (5-Shot 5-Way Classification, 83.9% vs 78.3% [33]). 

5.1. Future works 

First, the representations used to create the three channels for image 

classification models are the most common audio representations and they work 

perfectly when used separately. But the combination of these three representations 

should be further investigated to see if it has the same correlation between the channels 

as an RGB image. Changing the representations in a way that the combination becomes 

more similar to how the three channels of an RGB image are correlated, could result in a 

much better performance when transferring knowledge from image classification. Also, 

the gaussian wavelet used for CWT is a bell-shaped symmetrical wavelet which makes it 

a great general mother wavelet, but other options such as Mexican Hat or Morlet wavelet 

should also be considered and tested. 

Second, a newly published model, EfficientNet [80], has shown state-of-the-art 

performance on ImageNet classification. Using a similar approach used in designing the 

VGGish model from the original VGG model, EfficientNet can probably be optimized to 

work only with the Mel-Spectrogram of audio for audio classification. That model should 

be trained for audio classification on AudioSet and then, using transfer learning, the 

same steps done in this thesis should be repeated and hopefully, a higher performance 

can be achieved.  

Third, the proposed LSTM Auto Encoder can still be investigated for 

improvement. The designed LSTM Auto Encoder made a great improvement to the 

One/Few Shot Learning model, but the architecture of the LSTM Auto Encoder was not 

fully investigated and probably has room for improvement.  
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