
Accelerating Human-in-the-loop Data
Analytics

by

Jinglin Peng

B.Sc., Harbin Institute of Technology, 2016

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

© Jinglin Peng 2022
SIMON FRASER UNIVERSITY

Fall 2022

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.



Declaration of Committee

Name: Jinglin Peng

Degree: Doctor of Philosophy

Thesis title: Accelerating Human-in-the-loop Data Analytics

Committee: Chair: Yuepeng Wang
Assistant Professor, Computing Science

Jiannan Wang
Supervisor
Associate Professor, Computing Science

Jian Pei
Committee Member
Professor, Computing Science

Tianzheng Wang
Examiner
Assistant Professor, Computing Science

Ke Yi
External Examiner
Professor
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

ii



Abstract

Data analytics is essential to enable data-driven decision-making. While batch analytics is
often run offline and can take several hours or even days to generate results, human-in-the-
loop analytics requires a fast response. However, it is still a challenging problem to accelerate
human-in-the-loop data analytics. The challenge comes from both machine and human sides.
From the machine side, there is a gap between the massive volume of processed data and
limited hardware resources, which is constrained by practical considerations like price. From
the human side, a gap exists between the little human attention and the enormous details
that the attention needs to be paid to finish a task.

In this thesis, we develop several systems to accelerate human-in-the-loop data analytics
from both machine and human sides. The thesis contains two parts. In the first part of the
thesis, we present two systems (AQP++ and SamComb) to accelerate machine processing. In
order to achieve interactive response time, our key idea is to reduce the data that needs
to be processed by the machine. We focus on the online analytical processing (OLAP)
scenario and leverage sampling-based approximate query processing (AQP) techniques to
reduce the data. An AQP system can return an approximate query result in a short time.
To improve the estimation quality, we propose to combine different data summaries: In
AQP++, we combine samples with pre-computed aggregations; In SamComb, we combine
different types of samplers. In the second part of the thesis, we present one system to
accelerate human analytics. We focus on the exploratory data analysis (EDA) scenario
and propose a task-centric EDA system named DataPrep.EDA. DataPrep.EDA allows data
scientists to declaratively specify a wide range of EDA tasks with a single function call. In
this way, humans can pay more attention to deciding the task to perform, and the system
will handle the implementation details automatically.

Keywords: Data Analytics; Human-in-the-loop; Approximate Query Processing; Exploratory
Data Analysis

iii



Acknowledgements

I would like to express my deepest gratitude to my supervisor, Jiannan Wang. Jiannan has
introduced me to research and taught me skills from almost all aspects of being a good
researcher: from finding a good problem to maximizing the influence of work. Jiannan cared
about both my research and my personal life deeply. He was one of the nicest people I have
met. He always encouraged me whenever I faced difficulty and provided me with the best
support.

I would like to thank Prof. Jian Pei, Prof. Tianzheng Wang, Prof. Ke Yi and Prof.
Yuepeng Wang for serving on my thesis committee. They helped examine the thesis and
provided insightful feedback.

I was fortunate to meet a group of supportive mentors and collaborators. I would like
to thank Dr. Bolin Ding and Dr. Kai Zeng, who kindly hosted me while I did research
internships at Alibaba Group, shared many valuable and practical ideas and gave great
feedback on my research. I would like to thank Prof. Jeffrey M. Rzeszotarski for collaborating
on DataPrep.EDA project. He provided insightful advice on the user study design and
experiment.

I was fortunate to spend time with excellent peers. I would like to thank my lab mates:
Pei Wang, Weiyuan Wu, Changbo Qu, Danrui Qi, Xiaoying Wang, Chunyu Chen, Andy
Zhang, Yi Xie, Ruocheng Jiang, Yongjun He, Song Bian, Xi Yang, Lydia Zheng, Brandon
Lockhart and Mathew Teoh. The fantastic journey with you was an unforgettable memory in
my life. A special thanks to Jing Nathan Yan for the continuous help from different aspects
and the nice cooking. Special thanks to Yaliang Li and Tianhao Wang for the wonderful
time spent at Bellevue.

Finally, I would like to thank my parents for their unconditional love and tolerance. I
could not finish my Ph.D. study without their support and encouragement.

iv



Contents

Declaration of Committee ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Accelerating Machine Processing by Approximate Computation . . . 3
1.2.2 Accelerating Human Analytics by Task-Centric API Design . . . . . 4
1.2.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work 6
2.1 Related Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Approximate Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Accelerate Machine Processing by Approximate Computation 10

3 AQP++: Combining Samples and Precomputed Aggregations 11
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Problem Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 From AQP to AQP++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Sampling-based AQP . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 AQP++ Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



3.5 Aggregate Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Aggregate-Identification Approach . . . . . . . . . . . . . . . . . . . 25

3.6 Aggregate Precomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.1 One-Dimensional Query Template . . . . . . . . . . . . . . . . . . . 27
3.6.2 Multidimensional Query Template . . . . . . . . . . . . . . . . . . . 31

3.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8.2 Overall Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8.3 Detailed Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.8.4 Evaluation With Other Sampling Methods . . . . . . . . . . . . . . 40
3.8.5 Evaluation on More Datasets . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 SamComb: Combining Different Types of Samplers 44
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Problem Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Sampler Combination Problem . . . . . . . . . . . . . . . . . . . . . 50

4.3 Sampler Combination Framework . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 Optimal Weight Allocation . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Exploration and Exploitation Trade-off . . . . . . . . . . . . . . . . 52
4.3.3 Model as Multi-Armed Bandit . . . . . . . . . . . . . . . . . . . . . 53
4.3.4 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Allocation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.1 ϵt-greedy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 LCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Combination Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7.2 Evaluation of Our Approach . . . . . . . . . . . . . . . . . . . . . . 66
4.7.3 Comparison of Combination Approaches . . . . . . . . . . . . . . . . 68
4.7.4 Evaluation in Various Settings . . . . . . . . . . . . . . . . . . . . . 69
4.7.5 End-to-end Performance . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vi



II Accelerating Human Analytics by Task-Centric API Design 74

5 DataPrep.EDA: Task-Centric Exploratory Data Analysis in Python 75
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Task-Centric EDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Common EDA Tasks for Statistical Modeling . . . . . . . . . . . 78
5.2.2 DataPrep.EDA’s Task-Centric API Design . . . . . . . . . . . . . . . 79

5.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.1 Front-end User Experience . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Back-end System Architecture . . . . . . . . . . . . . . . . . . . . . 82

5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 Why Dask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Performance Optimization . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.2 Experiments on Large Data . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusion & Future Direction 92
6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 95

Appendix A Supplementary Material for AQP++ 106
A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.2 Preprocessing Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Appendix B Supplementary Material for SamComb 112
B.1 Proof of Lemma 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.2 Proof of Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.3 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.4 Proof of Lemma 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.5 Proof of Lemma 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vii



List of Tables

Table 3.1 Comparison of the overall performance (TPCD-Skew 100GB, k=50000,
0.05% uniform sample). . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table 4.1 Evaluation of maintenance cost (10% new data) . . . . . . . . . . . . 71
Table 4.2 End-to-end performance comparison (Budget = 1%) . . . . . . . . . . 72

Table 5.1 Comparison of EDA solutions in Python. . . . . . . . . . . . . . . . . 76
Table 5.2 Comparing DataPrep.EDA with Pandas-profiling on 15 real-world data

science datasets from Kaggle (N = Numerical, C = Categorical, PP=Pandas-
profiling). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

viii



List of Figures

Figure 3.1 A geometric illustration of the 2-D case. . . . . . . . . . . . . . . . 17
Figure 3.2 An illustration of P , P+, and P− for the 1D case. . . . . . . . . . 24
Figure 3.3 An illustration of P− for the 2D case. . . . . . . . . . . . . . . . . 26
Figure 3.4 (a) The equal-partition scheme is not feasible; (b) The equal-partition

scheme is not optimal. . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 3.5 An illustration for notations of Lx, L̄x, Ly, and L̄y . . . . . . . . . . 29
Figure 3.6 An illustration of the binary search algorithm to search for the BP-

Cube’s shape k1 × k2 (suppose k = 500). . . . . . . . . . . . . . . . 31
Figure 3.7 Comparison of AQP and AQP++ by varying # of dimensions (TPCD-

Skew 100GB, k=50000, 0.05% uniform sample). . . . . . . . . . . . 37
Figure 3.8 Evaluation of adjustment approach of hill climbing (TPCD-Skew

100GB, k1 = 200, k2 = 200, and 0.05% sample). . . . . . . . . . . . 39
Figure 3.9 Evaluation of the changes of the set of condition attributes in user

queries. Note that only Q3 has a precomputed BP-Cube (TPCD-Skew
100GB, k=50000, 0.05% sample). . . . . . . . . . . . . . . . . . . . 39

Figure 3.10 Comparing AQP++ with AQP using measure-based sampling and
stratified sampling (TPCD-Skew 100GB). . . . . . . . . . . . . . . 41

Figure 3.11 Comparing AQP++ with AQP on the BigBench (100 GB) and TLCTrip
(200GB) datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.1 An illustration of different samplers. . . . . . . . . . . . . . . . . . 47
Figure 4.2 The SamComb Framework . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 4.3 ϵ-greedy vs LCB vs AdaptiveLCB . . . . . . . . . . . . . . . . . . . . . 66
Figure 4.4 Justification for Sampler Combination . . . . . . . . . . . . . . . . 66
Figure 4.5 Parameter Selection for ϵ-greedy . . . . . . . . . . . . . . . . . . . . 67
Figure 4.6 Varying Batch Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 4.7 Comparing SamComb, TwoStepComb and BlinkSelection . . . . . . . 68
Figure 4.8 Evaluation in various settings (TPCS) . . . . . . . . . . . . . . . . 70
Figure 4.9 Performance of 90-Percentile Queries . . . . . . . . . . . . . . . . . 71

Figure 5.1 The front-end of DataPrep.EDA . . . . . . . . . . . . . . . . . . . . 76

ix



Figure 5.2 A set of mapping rules between EDA tasks and corresponding stat-
s/plots (N = Numerical, C = Categorical) . . . . . . . . . . . . . . 78

Figure 5.3 The DataPrep.EDA system architecture . . . . . . . . . . . . . . . . 81
Figure 5.4 Data processing pipeline in the Compute module . . . . . . . . . . 85
Figure 5.5 The percentage of tasks to finish within the given time constraint. . 88
Figure 5.6 Experiments on the Bitcoin Dataset: (a) Comparing the running time

of using different engines to compute visualizations in plot(df); (b)
Comparing the running time of create_report(df) of DataPrep.EDA
and Pandas-profiling by varying data size; (c) Evaluating the running
time of create_report(df) of DataPrep.EDA by varying the number
of nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.7 Relative Accuracy of DataPrep.EDA and Pandas-profiling across dif-
ferent skill levels of participants in dataset BirdStrike and Delayed-
Flights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

x



Chapter 1

Introduction

Data analytics is essential to enable data-driven decision-making. Two types of data ana-
lytics exist: batch analytics is often run offline and can take several hours or even days to
generate results, and human-in-the-loop analytics requires fast response and needs to get
results in seconds or minutes. In this thesis, we focus on human-in-the-loop data analytics.

For human-in-the-loop analytics, a fast response is crucial. A study shows that a delay
longer than 500ms "incurred significant costs, decreasing user activity and data set cover-
age while reducing rates of observation, generalization and hypothesis." [113]. Despite its
importance, accelerating human-in-the-loop analytics remains a challenging problem. In
human-in-the-loop analytics, both humans and machines are involved. The human sends
a computational request to the machine, then the machine processes the data and request
and sends the result to the human. After that, the human analyzes the result and comes up
with the following action. During this process, the time of finishing a task can be divided
into two parts: machine processing (i.e., machine processes the data and request) and hu-
man analytics (i.e., human analyzes the result and thinks about the following action). The
challenge of accelerating data analytics comes from both machine and human sides.

1.1 Challenges

Machine Side: Big Data vs. Limited Resources. From the machine side, there exists
a gap between the massive volume of the data and the limited hardware resources, which
is also observed in [142]. Nowadays, the data is growing at an unprecedented rate. For
example, Google ingests more than two terabytes of data per second in Monarch (Google’s
in-memory time series database) in July 2019 [45]. While the data grows fast, the usable
resources are constrained by practical considerations like the budget. Besides, even if we
have an unlimited budget to increase as many resources as we want, the system also faces
the challenge of interactive response when dealing with a large amount of data: due to the
time constraint, the latency needs to scale sub-linearly with the data size.

1



Human Side: Enormous Details vs. Limited Attention. From the human side, there
exists a gap between the limited human attention and the enormous details that need to be
handled in data analytics. An example can be found in Example 1. In this example, human
needs to pay attention to 1) what goal I want to achieve (gain an overview understanding),
2) what output I want to get from the machine (a histogram for each numerical attribute,
a box plot for each categorical attribute, and a count of missing values for each attribute),
and 3) the implementation details of getting those plots and statistics (e.g., what tool to
use, how to implement and customize the visualization). The enormous details can easily
make people lose their attention and slow down the whole process of data analytics.

Example 1. Alice collects a dataset of houses and wants to build a model to predict the
house price. When she explores the data, she first wants to understand the dataset, such
as how each attribute looks like and whether they contain missing values. To understand
the distributions, Alice plots a histogram for each numerical attribute and a bar chart for
each categorical attribute. Meanwhile, she writes code to count the missing values of each
attribute. After knowing the basic information, Alice finds that some attributes are not
helpful for price prediction, including an ID attribute, an attribute that contains only a
single category, and two attributes that contain too many missing values. She then drops
those attributes and continues her analysis.

1.2 Overview of Contributions

In this thesis, we develop systems to accelerate data analytics from both machine and human
sides. From the machine side, our key idea is to reduce the data that needs to be processed
by the machine. More specifically, we focus on the online analytical processing (OLAP)
scenario and leverage sampling-based approximate query processing (AQP) techniques to
approximately process analytical queries (e.g., SUM, COUNT, AVG, ...). In an AQP system,
users can make a trade-off between the answer quality and response time by tuning the
sample size. To further improve the estimation quality, we developed two systems with a
key idea of combining multiple data summaries: 1) in AQP++, we combine samples with
cubes that store pre-computed aggregations, and 2) in SamComb, we combine different types
of samplers. From the human side, our key idea is to accelerate human analytics through
declarative APIs. We focus on the exploratory data analysis (EDA) scenario and propose
a task-centric EDA system named DataPrep.EDA. In DataPrep.EDA, each API is mapped
to an EDA task. In this way, humans can pay more attention to identifying the task to
perform and leave the implementation details to the system.

Our systems are mainly designed for data scientists who have some basic knowledge of
statistics and programming: for the two AQP systems, the users should know the meaning of
the confidence interval, which is used to measure the quality of the returned estimation; for

2



the DataPrep.EDA system, the users should be able to conduct exploratory data analysis
by writing Python code in Jupyter notebook.

1.2.1 Accelerating Machine Processing by Approximate Computation

In the first part of this thesis, we present two systems that accelerate machine processing
by answering queries approximately.

There exist two approaches to speed up machine processing. The first approach is to
build a fast engine and make better use of hardware. Many systems (e.g., Spark [175],
Presto [147] and Flink [59]) have been developed in this direction and are commonly used
for big data analytics. This approach returns the exact result (rather than the approximate
result). However, it is hard to make the latency scale sub-linearly with the data size, which
makes it hard to achieve interactive responses for large-scale data. The second approach is
to only process a summary of the data (e.g., a sample) and return an approximate result.
Although the result is approximate, this approach can control the amount of processed
data, making it easier to achieve interactive responses. Due to the importance of interactive
responses in human-in-the-loop data analytics, we focus on this direction.

As discussed before, we leverage sampling-based approximate query processing (AQP)
to process analytical queries. It estimates the query result using a sample of the data rather
than the data itself. Users can make a trade-off between the response time and answer quality
by tuning the sample size. In order to achieve interactive response time, it is a common
choice to use a small sample. However, a small sample usually gives a bad estimation. It
remains a challenging problem to improve the estimation quality while keeping interactive
response time. To alleviate this problem, we observed that different data summaries that
are designed for different types of queries could usually achieve a better trade-off between
response time and answer quality for their suitable queries. Therefore, we propose a Sample

+ X framework, which combines samples with other data summaries. The sample is a general
data summary from which most queries can benefit, and X is a specialized data summary
from which its suitable queries can benefit. We then developed two systems based on this
idea: AQP++ [135] combines samples and precomputed aggregations, and SamComb [133]
combines different types of samplers.
AQP++: Combining Samples and Precomputed Aggregations. Apart from sam-
pling, aggregate precomputation (AggPre) is another commonly used approach to avoid
scanning the full data. It precomputes the answers of some aggregation queries and stores
the results in a structure such as the prefix-sum cube [91]. Although AggPre can achieve
interactive response time and give the exact result, it has a high preprocessing cost, which
increases exponentially with the number of dimensions. On the other hand, sampling does
not suffer from the curse of dimensionality, but it gives an approximate result. Then, the
question is can we combine these two approaches to make a flexible trade-off among prepro-
cessing cost, estimation quality and response time? To enable the combination of samples

3



and AggPre, we propose the AQP++ framework. The framework can leverage both a sample
as well as a precomputed aggregate to answer user queries. We discuss the advantages of
having such a unified framework and identify new challenges to fulfill this vision. We also
conduct an in-depth study of these challenges for range queries and explore both optimal
and heuristic solutions to address them. Our experiments using two public benchmarks
and one real-world dataset show that AQP++ achieves a more flexible and better trade-off
among preprocessing cost, query response time, and answer quality than AQP or AggPre.
SamComb: Combining Different Types of Samplers. AQP++ leverages cubes to im-
prove the answer quality of sample-based estimation. However, the cube only supports range
queries and suffers from the curse of dimensionality. On the other hand, the sample is a more
general data summary and does not suffer from the curse of dimensionality. Therefore, we
also study whether we can combine different types of samples. Various samplers have been
proposed (e.g., uniform sampler, stratified sampler, and measure-biased sampler) since no
single sampler works well in all cases. This also motivates us to combine different samplers
to solve the "one size does not fit all" issue. We then propose SamComb, a novel bandit-based
sampler combination framework. Given a set of samplers, a budget, and a query, SamComb
can automatically decide how much budget should be allocated to each sampler so that
the combined estimation achieves the highest accuracy. We model this sampler combination
problem as a multi-armed bandit (MAB) problem and propose effective approaches to bal-
ance the exploration and exploitation trade-off in a principled way. We provide theoretical
guarantees for our approaches and conduct extensive experiments on synthetic and real
datasets. The results show a strong need to combine multiple samplers to obtain accurate
estimations without knowledge about population predicates and distributions, and SamComb
is an effective framework to achieve this goal.

1.2.2 Accelerating Human Analytics by Task-Centric API Design

In the second part of this thesis, we present DataPrep.EDA [134], a system to accelerate
human analytics by task-centric API design.
DataPrep.EDA: A task-centric EDA System in Python. We focus on the exploratory
data analysis (EDA) scenario, which is a crucial step in any data science project. Currently,
existing Python libraries fall short of supporting data scientists to complete common EDA
tasks for statistical modelling. Their API design is either too low level, optimized for plot-
ting rather than EDA, or too high level, which is hard to specify more fine-grained EDA
tasks. In response, we propose DataPrep.EDA, a novel task-centric EDA system in Python.
DataPrep.EDA allows data scientists to declaratively specify a wide range of EDA tasks in
different granularity with a single function call. We identify several challenges to imple-
menting DataPrep.EDA and propose effective solutions to improve the system’s scalability,
usability, and customizability. In particular, we discuss some lessons learned from using
Dask to build the data processing pipelines for EDA tasks and describe our approaches to

4



accelerate the pipelines. We conduct extensive experiments to compare DataPrep.EDA with
Pandas-profiling [56], the state-of-the-art EDA system in Python. The experiments show
that Pandas-profiling significantly outperforms Pandas-profiling in terms of speed and user
experience.

1.2.3 Thesis Organization

The rest of the thesis is organized as follows. We introduce the background context and
related work in Chapter 2. In Chapter 3 and Chapter 4, we present AQP++ and SamComb,
which accelerate machine processing by approximate query processing. Then we introduce
DataPrep.EDA in Chapter 5. It accelerates human analytics in exploratory data analytics
scenarios by task-centric API design. Finally, we conclude the thesis and discuss the future
work in Chapter 6.

5



Chapter 2

Background and Related Work

In this chapter, we provide background context and briefly review related works.

2.1 Related Thesis

The most related thesis of this work is [142], which also studied how to improve machine
and human efficiency. This work and [142] focused on different scenarios and solved the
problem with different ideas. For improving machine efficiency, [142] focused on the big data
scenario (where data is stored in partitions) and KDE scenario, with a key idea of combining
precomputation and query-time sampling. Different from it, we focused on the common
OLAP scenario with the key idea of combining multiple data summaries. We did not assume
the way of doing sampling (e.g., samples are pre-created in AQP++). For improving human
efficiency, [142] focused on the monitoring scenario and studied how to prioritize human
attention to the important subset of data. Different from it, we focused on the exploratory
data analysis scenario and saved human attention by leaving the implementation details to
systems.

2.2 Approximate Query Processing

Sampling-based AQP has been extensively studied in the last several decades [122, 66, 73].
There exist two types of AQP systems based on when samples are created: 1) samples are
pre-created, and 2) samples are created on the fly. In this section, we focus on AQP systems
that pre-create samples.

In an AQP system, users can make a trade-off between estimation quality and response
time by tuning the sample size. When a query comes, the AQP system estimates the query
result and calculates the corresponding confidence interval under a customizable confidence
level, which can measure the estimation quality. For example, suppose the confidence level
is 95%. If the AQP system returns 300 ± 50, then it means that the real result lies in the
interval [300 − 50, 300 + 50] with a probability of 95%.

6



Uniform Sampling. The simplest sampling approach is uniform sampling. It samples each
tuple with an equal probability. Next, let us use a uniform sample to illustrate how the AQP
system works. The AQP system usually supports queries in the following form:

SELECT f(A) FROM table

WHERE Predicate (B1, B2, ...)

GROUP BY C1, C2, ...

where f is an aggregation function, such as SUM, COUNT and AVG, A is a numerical attribute,
and Predicate is a query predicate.

Suppose a user issues the following query:

SELECT SUM(price) FROM D

Let D be the population and S be the uniform sample. Then the sampling ratio is
|S|/|D|, where |S| is the sample size and |D| is the table size. The AQP system estimates
the query answer as:

est = SELECT |D| · SUM(price)
|S| FROM S.

For example, if the sampling ratio is 1%, SUM(price) will be multiplied by 100. The es-
timation will be more accurate with a larger sample size. The confidence interval of the
estimation (i.e., est) can be computed using either Central Limit Theorem (CLT) or Boot-
strapping. The former is more efficient to calculate, while the latter can support a broader
range of aggregation functions, including user-defined functions. The confidence interval of
a SUM query can be derived from CLT:

ϵ = SELECT λ · |D|
√︂

VAR(price)
|S| FROM S,

where λ is a parameter determined by a user-specified confidence level (e.g., λ = 1.96 for a
95% confidence level).

Due to the simplicity and generality of uniform samples, they are widely used by existing
AQP systems [131, 47]. However, since the uniform sampling takes each tuple with an equal
probability, the rare groups may be under-represented in the sample.
Stratified Sampling. Stratified sampling is a commonly used approach to improve estima-
tion quality. It divides the population into strata (i.e., partitions) and performs a uniform
sampling within each stratum. It first estimates within each stratum during query processing
and then combines all estimations.

The performance of stratified sampling mainly depends on two factors: 1) how data is
partitioned; and 2) how large the sample of each stratum is. The system can be optimized
for a query workload by tuning the stratified sampling design. For example, STRAT [64]
partitions the data based on a collection of historical queries to optimize the performance
over the workload. Given a total budget when creating samples, STRAT leverages an allo-
cation strategy that optimizes the estimation quality for the query workload. The strategy

7



is based on the Neyman allocation [170]. I.e., more budgets are allocated to the stratum
with a large variance and population size.
Biased Sampling. Uniform sampling takes each tuple with an equal probability. However,
tuples do not contribute to the result equally. For example, for a sum query, a tuple with a
large value contributes more to the final result. Based on this observation, biased sampling
is proposed. Biased sampling samples each tuple with a different probability and assign
more weights to the tuples that are important to the result.

Sample + Seek [78] has applied biased sampling to improve the performance. Given a
collection of measure columns, Sample + Seek draws biased samples. Each tuple is drawn
with a probability proportional to its measure value. Let t be a tuple and M be a measure
column, the probability of t appears in the sample is:

Pr(t) = tM∑︁
t′∈D t

′
M

, (2.1)

Since the probability is proportional to the measured value, this technique is called
measure-biased sampling. It is similar to the proportional-to-size sampling schema in statis-
tics [155]. Clearly, tuples with larger values have a higher impact on the query result.
Since they are sampled with a higher probability in the measure-biased sampling schema,
measure-biased sampling can improve the estimation quality.

2.3 Exploratory Data Analysis

Exploratory data analysis (EDA) is an essential step in the data processing pipeline, pro-
viding necessary data profiling and insight discovery before in-depth analysis [167]. In this
section, we review existing EDA tools.
EDA Tools in Python and R. Python and R are the two most popular programming
languages in data science. Similar to Python, there are many EDA libraries in R, including
DataExplorer [13] and visdat [159] (see [157] for a recent survey). However, they are either
similar to Pandas+Plotting or Pandas-profiling, thus having the same limitations as them.
In the database community, recently, there has been a growing interest in building EDA
systems for Python programmers to benefit a large number of real-world data scientists [76,
23]. To the best of our knowledge, DataPrep.EDA is the first task-centric EDA system in
Python and the only EDA system explicitly dedicated to the notion of task-centric EDA.
GUI-based EDA. A GUI-based environment is commonly used for doing EDA, partic-
ularly among non-programmers. In such an environment, an EDA task is triggered by a
click, drag, drop, etc. (rather than a Python function call). Many commercial systems in-
cluding Tableau [35], Excel [24], Spotfire [38], Qlik [28], Splunk [32], Alteryx [6], SAS [30],
JMP [21] and SPSS [20] support doing EDA using a GUI. Although these systems are suit-

8



able in many cases, they all have the fundamental limitations of being removed from the
programming environment and lacking flexibility.

In recent years, there has been abundant research in visualization recommendation sys-
tems [168, 169, 116, 74, 152, 77, 92, 115, 121]. Visualization recommendation is the process
of automatically determining an interesting visualization and presenting it to the user. An-
other related area is automated insight generation (auto-insights). An auto-insight system
mines a dataset for statistical properties of interest [79, 112, 158, 25, 75, 160]. Unlike these
systems, DataPrep.EDA is a programming-based EDA tool with several advantages over
GUI-based EDA systems, including seamless integration in the Python data science ecosys-
tem and flexibility since the data scientist is not restricted to one GUI’s functionalities.
Data Profiling. Data profiling is the process of deriving summary information (e.g., data
types, the number of unique values in columns) from a dataset (see [42] for a data profiling
survey). Metanome [130] is a data profiling platform where users can run profiling algorithms
on their data to generate different summary information. Data profiling can be used in
the tasks of data quality assessment (e.g., Profiler [101]) and data cleaning (e.g., Potter’s
Wheel [141]). Although DataPrep.EDA performs data profiling, unlike the above systems, it
is integrated effectively into a Python programming environment.

Python data profiling tools, including Pandas-profiling [56], Sweetviz [34], and Au-
toViz [8], enable profiling a dataset by running one line of code. These systems provide
rigorous and coarse-grained analyses, which are unsuitable for general, ad-hoc EDA.

9



Part I

Accelerate Machine Processing by
Approximate Computation

10



Chapter 3

AQP++: Combining Samples and
Precomputed Aggregations

This chapter presents AQP++, a unified framework to combine samples and precomputed
aggregations. It allows users to make a flexible trade-off among preprocessing cost, response
time and answer quality.

3.1 Motivation

As discussed in Chapter 1, we aim to accelerate machine processing by avoiding scanning
the full data. In the past, the database community proposed two separate ideas to achieve
this goal. One is sampling-based approximate query processing (AQP) [47, 44, 64]), which
creates a random sample of data and uses the sample to estimate query results. The other is
aggregate precomputation (AggPre) such as data cubes [89, 86, 91, 124], which pre-computes
the answers to some aggregation queries and then uses the pre-computed aggregates to
speed up query performance. In comparison, although both approaches can answer queries
fast, they achieve the goal via different trade-offs. Essentially, AQP varies sample size to
balance the trade-off between answer quality and query response time; AggPre varies the
size of pre-computed aggregates to balance the trade-off between preprocessing cost (i.e.,
the time and space used to calculate and store aggregates) and query response time.

AQP has been extensively studied in the past [127, 44, 43, 83, 90, 85, 62, 64, 96] and
there has been a resurgence of interest in recent years [47, 46, 125, 176, 177, 108, 78, 108,
66, 164, 107, 69, 132, 103, 123]. However, to the best of our knowledge, none of existing
AQP work has sought a general framework to connect AQP with AggPre (see Section 3.2 for
a detailed comparison).

There are (at least) two strong motivations for building such a connection. Firstly, it
is often the case that a data warehouse has already precomputed the answers to a large
number of aggregation queries (e.g., data cubes). Suppose one wants to apply AQP to the
data warehouse to reduce the query response time. Without building the connection with

11



AggPre, AQP will miss the opportunity to leverage the (free) precomputed aggregates to
improve its query performance. Secondly, as mentioned above, AQP and AggPre implement
interactive analytics through different trade-offs (i.e., answer quality vs. response time,
preprocessing cost vs. response time). Connecting AQP with AggPre will allow a more flexible
and better trade-off between preprocessing cost, query response time, and answer quality,
and thus is more likely to satisfy user needs.

To this end, we propose AQP++, a general framework to connect AQP with AggPre for
interactive analytics. The key idea of AQP++ is that, unlike AQP, which uses a sample to
directly estimate a query result, it uses a sample to estimate the difference of the query
result from a pre-computed aggregate. Consider a simple example. Suppose we want to
estimate the answer to the following query q.

q(D): SELECT SUM(A) FROM D WHERE 1 < C < 10.

Suppose the answer to the following aggregate query, pre, has been precomputed.

pre(D): SELECT SUM(A) FROM D WHERE 2 < C < 10.

To estimate q(D), AQP++ first uses a sample to estimate the difference of q(D) from
pre(D), i.e.,

q(D)-pre(D): SELECT SUM(A) FROM D WHERE 1 < C ≤ 2.

Then, it adds the estimated difference to the known pre(D) to obtain the estimation of
q(D).

We find that AQP++ framework is very general because (1) it works for a wide range of
aggregate functions such as SUM, COUNT, AVG, and VAR; (2) it can be easily extended
to support many optimization techniques (that were originally proposed for AQP) such as
stratified sampling [43, 62, 50, 63, 64, 153, 47, 83] and outlier indexing [62]. Furthermore,
for any aggregation query, if AQP can estimate its result unbiasedly, AQP++ can return an
unbiased estimate as well.

To quantify the uncertainty of an estimated answer, we investigate how AQP++ can
compute a confidence interval and demonstrate analytically and empirically when AQP++
can return a tighter confidence interval (i.e., a more accurate answer) than AQP. Specifically,
we treat the estimated answers to a user query and a pre-computed query as two random
variables. We find that the more correlated the two random variables are, the more accurate
answer AQP++ can return. In extreme cases, if a user query and a pre-computed query are
identical, with a correlation coefficient of 1, AQP++ will return the exact answer.

To examine whether AQP++ can achieve a better trade-off among preprocessing cost,
response time, and answer quality compared to AQP or AggPre alternatives, we conduct an in-
depth study of AQP++ for range queries. A range query applies an aggregation operation
over all records selected by a conjunction of range conditions. We choose this form of

12



queries because (1) it is a critical class of queries for analytical workloads, and (1) it can
not only be well supported by AQP but also has been extensively studied in the AggPre
literature [91, 61, 84, 71, 111]. The study requires solving two challenging problems.

• Aggregate Identification. Given a user query, there might be a large number of precom-
puted aggregate values available. How should we quickly identify the best one for the
query?

• Aggregate Precomputation. Pre-computing all possible aggregate values is prohibitively
expensive. Given a space budget, how should we decide which aggregate values to be
pre-computed?

We use a simple example to illustrate the challenges of the two problems as well as our
contributions made to address them. Suppose a user wants to interactively issue a query in
the following form:

SELECT SUM(A) FROM D WHERE x ≤ C ≤ y,

where x, y = 1, 2, · · · , 100. An efficient AggPre approach is to precompute a prefix
cube [91]. In this example, the (1-dimensional) prefix cube consists of 100 cells:

SELECT SUM(A) FROM D WHERE C ≤ t

where t = 1, 2, · · · , 100. Once the cube is created, it is easy to see that any user query can
be answered by accessing at most 2 cells in the cube. Since there are 101·100

2 = 5050 different
user queries, the pre-computed cube (with only 100 cells) can be thought of as containing
5050 aggregate values.

Let us first consider the aggregate-identification problem. Suppose that only ten cells
(e.g., t = 10, 20, · · · , 100) in the cube can be stored. In this situation, the cube contains
11·10

2 = 55 aggregate values. Given a query, e.g.,

SELECT SUM(A) FROM D WHERE 15 ≤ C ≤ 41,

AQP++ needs to decide which one of the following 55 precomputed values should be used
to estimate the answer to the above query.

SELECT SUM(A) FROM D WHERE x ≤ C ≤ y

where x, y = 10, 20, · · · , 100.
Since the query’s answer quality highly depends on the identified value, the decision

has to be made carefully. But, we cannot afford to try out all aggregate values as it will
increase query processing time significantly. To this end, we propose an efficient aggregate-
identification approach. The key idea is to quickly identify a small number of aggregate
values whose corresponding queries look similar to the user query and then examine which

13



one is the best only among them. We prove the optimality of this approach under certain
assumptions and show that it achieves good performance empirically in the general setting.

Next, let us turn to the aggregate-precomputation problem. Suppose the space budget
is only available for creating a prefix cube with ten cells. Our goal is to decide which 10 out
of 100 cells should be selected to precompute. Note that there are

(︁100
10

)︁
different ways to

choose the ten cells, so a brute-force search will not work. We formally define the problem
and find that an equal-partition scheme (i.e., t = 10, 20, · · · , 100) is not always optimal. To
solve the problem, we find that two factors, attribute correlation and data distribution, may
affect the cell-selection decision. We first prove that the equal-partition scheme is optimal if
attributes A and C are independent and C has no duplicate values. The theoretical result
guides us to develop a hill-climbing-based heuristic approach that can adjust the partition
scheme adaptively based on the actual attribute correlation and data distribution.

Please note that the above simple example demonstrates the challenges for one-dimensional
range queries (i.e., with a single range condition). There are many other challenges involved
when dealing with multidimensional cases. Later, we will discuss these challenges in detail
and propose effective approaches.

In summary, we make the following contributions:

• We argue that the two different ideas for interactive analytics, AQP and AggPre, should
be connected and propose AQP++, the first general framework to enable the connection.

• We conduct an in-depth study of AQP++ for range queries and formalize two challenging
problems in the study: aggregate identification and aggregation precomputation.

• We develop an efficient aggregate-identification approach and show the approach’s effec-
tiveness analytically and empirically.

• We identify two critical factors that affect the solution to the aggregation-precomputation
problem. We prove that the equal-partition scheme is only optimal under certain assump-
tions and propose an effective hill-climbing approach for general situations.

• We evaluate AQP++ using a commercial OLAP system on three datasets. Experimental
results show that AQP++ can achieve up to 10x more accurate answers than AQP for a
relatively small preprocessing cost.

The remainder of this chapter is organized as follows. We review related work in Sec-
tion 3.2. In Section 3.3, we formally define the aggregate identification and aggregate pre-
computation problems. To address these problems, we first present the AQP++ framework
in Section 3.4 and then propose effective approaches for them in Section 3.5 and Section 3.6,
respectively. We describe the results of our experimental studies in Section 3.8 and present
conclusions and future work in Section 3.9.

14



3.2 Related Work

Approximate Query Processing. Sampling-based AQP has been extensively studied in
the last several decades [122, 66, 73]. A lot of techniques have been proposed to optimize
AQP’s performance. Most of them are focused on generating better stratified samples [43,
62, 50, 63, 64, 153, 47, 83]. There has also been some work that tries to augment samples
with auxiliary indices [62, 78, 120]. Unlike them, AQP++ is a framework that can connect
any existing AQP engine with AggPre. Thus, all these techniques can be easily extended to
the AQP++ framework (see Section 3.4.2 for a detailed discussion).

AQP++ is similar in spirit to some recent work [132, 82], which observe that previous
answers can be beneficial to estimate the answers to future queries. AQP++ is fundamentally
different from these work in two aspects: (1) AQP++ utilizes precomputed exact answers
over full data rather than approximate answers over samples to improve future queries; (2)
AQP++ uses a sample to estimate the difference between the answers to a previous query
and a future query, rather than build a model to predict unobserved data points.

Our work is also related to Approximate Pre-Aggregation [97, 94], which combines sam-
ples with a small set of statistics of the data to improve answer quality. However, they
assume that the set of statistics is available in the system without considering how to
precompute a BP-Cube and how to use it for result estimation.

Online aggregation [90, 108, 103, 176, 144, 129, 172, 143] is another popular applica-
tion scenario of AQP systems, which progressively improves answer quality by dynamically
increasing sample size. In this, we consider the scenario where samples are created before
queries. Still, it would be an interesting future direction to investigate the use of AQP++ in
an online-sampling setting.

In fact, AQP++ was initially inspired by SampleClean [164, 107]. SampleClean enables
fast and accurate query processing on dirty data. Its basic idea is to clean a sample of
dirty data and then use the cleaned sample to correct dirty query results. Specifically,
SampleClean is given one query, and the goal is to estimate the difference between its
results computed on two datasets (a dirty dataset and a cleaned dataset). In contrast,
AQP++ is given two queries (a user query and a pre-computed query), and the goal is to
estimate the difference between their results computed on one dataset.

In addition to sampling-based AQP, several non-sampling-based techniques have been
proposed recently [139, 58]. They aim to support more complex queries and provide deter-
ministic guarantees using indices rather than samples. However, the query class we support
they are not as effective as sampling-based AQP.
Aggregate Precomputation. Aggregate precomputation is another extensively studied
topic in the database community [150, 119, 124, 86, 91]. Data cubes, which store data
aggregated across all possible combinations of dimensions, are widely used in data ware-
houses [124, 65]. Since it is often very expensive to store a complete data cube [151], there

15



is some work on partial data cube precomputation [80, 89, 80]. There is also some work that
tries to apply sampling or approximation techniques to data cubes [163, 110, 95, 51, 99, 100].
For example, Li et al. [110] studied how to compute the confidence intervals for a cube con-
structed from a sample. Vitter and Wang [163] proposed an I/O efficient technique to build
an approximate data cube based on wavelets. Compared with AQP, these techniques still
suffer from (1) much higher preprocessing cost or/and (2) not good at answering ad-hoc
queries. Thus, having a unified framework like AQP++ is more desirable.
Materialized Views. Precomputed query results are also known as materialized views
(see [70] for a survey). If we look at AQP++ in a materialized view context. aqpp essen-
tially materializes aggregation views [150] as well as sample views [98], and studies how
to answer queries using the materialized views. The two problems (aggregate identification
and aggregate precomputation) that this work delves into are known as answering queries
using views [87, 72] and selecting views to materialize [150, 89]. But, existing approaches
cannot be used to solve our problems because none of them has considered the connection
between AQP and AggPre.

3.3 Problem Formalization

This section formally defines our problems. For ease of presentation, we assume that our
queries do not have a group-by clause. The extension to group-by queries will be discussed
in Appendix 3.7.

Definition 1 (Query Template). A query template, denoted by Q : [f(A), C1, C2, · · ·Cd],
represents a collection of queries of the following form1:

SELECT f(A) FROM table
WHERE x1 ≤ C1 ≤ y1 and · · · and xd ≤ Cd ≤ yd

where f , A, and Ci(i ∈ [1, d]) are called aggregation function, aggregation attribute, and
condition attributes, respectively, and xi, yi are in the data domain of Ci for each i ∈ [1, d].

For example, if a user wants to explore the relationship between product sales and
customer ages, she can specify a query template like [SUM(sale), age].

For ease of presentation, we assume that f = SUM in later text and discuss the extension
to other aggregation functions in Appendix 3.7. Moreover, we assume that the data domain
of each Ci is dom(Ci) = {1, 2, · · · , |dom(Ci)|}2, and abbreviate a range query as SUM(x1 :
y1, x2 : y2, · · · , xd : yd).

1Note that this form of queries subsumes those with other forms of range conditions, e.g., “C = x”,
“C ≥ x”, “x ≤ C < y”. This work focuses on single-table queries, but it is straightforward to extend
AQP++ to handle foreign key joins using a similar idea from [47]. We defer other complex join queries to
future work.

2If Ci does not have a natural ordering (e.g., country), we use an alphabetical ordering.

16



Figure 3.1: A geometric illustration of the 2-D case.

In AggPre literature [91, 61, 84, 71, 111], people often precompute a prefix cube (P-Cube)
(or its variations) to answer range queries.

Definition 2 (Prefix Cube). Given a query template Q : [SUM(A), C1, C2, · · ·Cd], the prefix
cube consists of the answers to all the queries of the following form:

SUM(1 : y1, 1 : y2, · · · , 1 : yd),

where yi ∈ dom(Ci) and i ∈ [1, d].

Each answer is called a cell in the cube. A nice property about P-Cube is that for any
range query in Q, its answer can be computed from no more than 2d cells. For example,
consider a 1D range query: SUM(3 : 5). The answer for this query can be obtained from 2
cells, i.e., SUM(1 : 5) − SUM(1 : 2). For a 2D range query, the answer can be obtained from at
most 4 cells. There is a geometric illustration in Figure 3.1.

However, it is often expensive to precompute the entire P-Cube (with ∏︁d
i=1 |dom(Ci)|

cells). Thus, we precompute a blocked prefix cube (BP-Cube) [91] consisting of a small portion
of the cells.

Definition 3 (Blocked Prefix Cube). Given a query template Q, let dom(Ci)small denote a
subset of dom(Ci) for each i ∈ [1, d]. The blocked prefix cube consists of the answers to all
the queries of the following form:

SUM(1 : y1, 1 : y2, · · · , 1 : yd),

where yi ∈ dom(Ci)small and i ∈ [1, d].

BP-Cube reduces the number of cells to be precomputed from ∏︁d
i=1 |dom(Ci)| to∏︁d

i=1 |dom(Ci)small|. For example, consider a 2D query template Q : [SUM(A), C1, C2],
where dom(C1) = {1, 2, · · · , 15} and dom(C2) = {1, 2, · · · , 8}. The full P-Cube contains
15 ∗ 8 = 120 cells, i.e., SUM(1 : y1, 1 : y2) for all y1 ∈ [1, 15] and y2 ∈ [1, 8]. Suppose
dom(C1)small = {5, 10, 15} and dom(C2)small = {4, 8}. Then the BP-Cube only contains
3 ∗ 2 = 6 cells, i.e., SUM(1 : y1, 1 : y2) for all y1 ∈ {5, 10, 15} and y2 ∈ {4, 8}.
Aggregate Identification. We now start defining the aggregate-identification problem.
Let P denote a BP-Cube, i.e.,

P =
{︁

SUM(1 : y1, 1 : y2, · · · , 1 : yd) |

for all yi ∈ dom(Ci)small and i ∈ [1, d]
}︁
. (3.1)

17



Note that although only P is precomputed, due to the properties of the BP-Cube, we can
assume that the answers to all the queries in P+ are available.

P+ = P ∪ {ϕ} ∪
{︂

SUM(x1 + 1 : y1, x2 + 1 : y2, · · · , xd + 1 : yd) |

for all xi, yi ∈ dom(Ci)small and i ∈ [1, d]
}︂
. (3.2)

For example, suppose dom(C1)small = {4, 6}. Then, we have P = {SUM(1 : 4), SUM(1 : 6)},
and P+ = {SUM(1 : 4), SUM(1 : 6), SUM(5 : 6), ϕ}, where SUM(5 : 6) can be obtained from
SUM(1 : 6) − SUM(1 : 4) and ϕ is an empty query with an always-false condition.

Given a user query q and a sample S, for each pre ∈ P+, AQP++ can return an ap-
proximate answer along with a confidence interval (see Section 3.4.2 for more detail about
this). For example, suppose q : SUM(1 : 4). Imagine AQP++ leverages the precomputed query
pre : SUM(2 : 4) and returns 1000 ± 5 (confidence level: 95%). This result indicates that the
true answer of q is in the range of [995, 1005] with 95% probability. The larger the width
of the confidence interval, the less accurate the approximate answer. For this reason, we
define the query error of q w.r.t. pre, denoted by error(q, pre), as half the width of the
confidence interval. For the above example, the confidence interval has the width of 10,
thus error(q, pre) = 5.

Once a BP-Cube P is precomputed, since any value in P+ can be leveraged to answer
a user query, we aim to select the best one with the minimum query error. We denote the
minimum query error w.r.t. P by error(q, P ) = minpre∈P+ error(q, pre). Problem 1 formally
defines the problem.

Problem 1 (Aggregate Identification). Given a user query q, a sample S, and a BP-Cube
P , the goal of aggregate identification is to identify the best value in P+ such that the query
error is minimized:

arg min
pre∈P +

error(q, pre)

Consider a 1D example. Given a user query q : SUM(2 : 5) and a BP-Cube P = {SUM(1 :
4), SUM(1 : 6)}, there are four precomputed values in P+ = {SUM(1 : 4), SUM(1 : 6), SUM(5 :
6), ϕ}. The aggregate-identification problem aims to identify the best value among the four
values and use it to estimate the answer to q.
Aggregate Precomputation. Next, we define the aggregate-precomputation problem.
Given a space budget, we want to find the best BP-Cube that satisfies the space budget. Let
|P | denote the number of cells in a BP-Cube P and k denote a threshold bounding |P |. Given
a threshold k, there are a lot of different ways to construct a BP-Cube such that |P | ≤ k.
For example, suppose k = 6 and d = 2. The shapes of BP-Cubes can be 1 × 6, 2 × 3, 3 × 2 or
6 × 1. For each possible shape, e.g., 2 × 3, a BP-Cube can be constructed by choosing any 2
values from dom(C1) and any 3 values from dom(C2).

To decide which one is the best, we define query-template error to quantify the benefit
of each BP-Cube and return the one with the minimum query-template error. Given a query

18



template Q and a BP-Cube P , since a user might issue any query in Q, we define the query-
template error w.r.t P as error(Q,P ) = maxq∈Q error(q, P ), which is the maximum query
error over all possible user queries. We choose this error metric because it is more beneficial
to reduce the errors of highly inaccurate queries rather than the ones who have already
gotten very accurate results. Certainly, there are many other ways to define a query-template
error. In the experiments, we show that our aggregate-precomputation approach, which is
designed to optimize the maximum error, can also significantly reduce other types of errors,
such as average error and median error. Problem 2 defines the aggregate-precomputation
problem.

Problem 2 (Aggregate Precomputation). Given a query template Q, a sample S, and a
threshold k, the goal of aggregate precomputation is to determine the best BP-Cube P such
that |P | ≤ k and the query-template error is minimized:

arg min
P

error(Q,P ) s.t. |P | ≤ k

Consider a 1D example. Given a threshold k = 2 and a query template Q : [SUM(A), C1],
where dom(C1) = {1, 2, · · · , 5}, the aggregate-precomputation problem aims to determine
the best BP-Cube P = {SUM(1 : t1), SUM(1 : t2)} with the two values t1 and t2 chosen from
dom(C1) such that error(Q,P ) is minimized. For multiple-dimensional cases, the problem
becomes even more challenging because we also need to determine the shape of the best
BP-Cube, e.g., 2 × 3 or 3 × 2.

3.4 From AQP to AQP++

In this section, we first provide some background knowledge about AQP and then present
the AQP++ framework.

3.4.1 Sampling-based AQP

AQP’s mathematical foundations are built on the sampling and estimation theories [73].
Result Estimation. Given a large relational table D and a random sample S of the table,
for certain aggregation queries q, their answers can be estimated based on the sample, i.e.,

q(D) ≈ q̂(S), (3.3)

or simply q ≈ q̂ if the context is clear. The supported aggregation queries are of this form:

SELECT f(A) FROM D WHERE Condition.

Please note that Condition can be any function that takes a record as input and returns
True or False (e.g., age > 30 and country = "USA", tweet like "%sigmod%").

19



Note that f cannot be an arbitrary aggregation function (e.g., min, max). Typical ag-
gregation functions include AVG, SUM, COUNT, and VAR. A recent paper shows that
some kinds of User Defined Functions (UDFs) can be supported as well [46].
Confidence Interval. Along with an estimated result, AQP often returns a confidence in-
terval to quantify the estimation uncertainty. The confidence interval is an interval estimate
of the true value. For example, a 95% confidence interval q̂ ± ϵ means that the true value
is within this range with 95% probability. In AQP, there are two kinds of approaches to
computing a confidence interval. The first one is an analytical approach, aiming to derive a
closed-form confidence interval often based on the Central Limit Theorem. The limitation
of this approach is the lack of generality. Each query has its own form of confidence interval.
Example 2 shows how to compute the closed-form confidence interval for a SUM query.

Example 2. Suppose we want to use AQP to estimate the answer along with the confidence
interval for the following query:

q(D) = SELECT SUM(A) FROM D WHERE C ≥ 0

To facilitate the calculation, we first rewrite it as follows:

q(D) = SELECT SUM(A · cond(C ≥ 0)) FROM D

where cond(C ≥ 0) returns 1 if C ≥ 0 holds; 0, otherwise.
For ease of presentation, we denote A · cond(C ≥ 0) by A’, the table size |D| by N , and

the sample size |S| by n. Then, we can obtain the estimated answer to q:

q̂(S) = SELECT N · SUM(A′)
n FROM S

Based on the Central Limit Theorem, we can derive that the closed-form confidence
interval of the query is q̂ ± ϵ, where

ϵ = SELECT λ ·N
√︂

VAR(A′)
n FROM S

Here λ is a parameter determined by a confidence level. For example, λ = 1.96 for a
95% confidence interval and λ = 2.576 for a 99% confidence interval.

It may be very hard to get a closed-form confidence interval for more complex queries.
Thus AQP often computes an empirical confidence interval using bootstrap. The approach
generates a set of resamples, S1,S2, · · · ,Sm, of the original sample S, and estimates the
query answer using each resample. The obtained answers, q̂(S1), q̂(S2), · · · , q̂(Sm), form an
estimate of the distribution of q(D), from which we can compute a confidence interval. This
is a more general approach, but a naive implementation will suffer from high computational
cost because it needs to generate m resamples and then run queries on each resamples.
Some sophisticated approaches were proposed to overcome the limitation [138, 177].

20



3.4.2 AQP++ Framework

The AQP++ framework is tailored to connect AQP with AggPre for interactive analytics. In
this section, we first answer two fundamental questions about AQP++: (1) How does AQP++
estimate a query result? (2) How does AQP++ compute a confidence interval?

Result Estimation

Unlike AQP that uses a sample to directly estimate the answer to a user query (see Equa-
tion 3.3), AQP++ seeks to use a sample to estimate the difference of the query result from
a pre-computed aggregate value. Let q denote a user query and pre denote a precomputed
aggregate query.

q: SELECT f(A) FROM D WHERE Condition1

pre: SELECT f(A) FROM D WHERE Condition2

AQP++ estimates the difference of their query results as follows:

q(D) − pre(D) ≈ q̂(S) − preˆ (S)

Since pre(D) has been precomputed (i.e., a constant), we have

q(D) ≈ pre(D) +
(︁
q̂(S) − preˆ (S)

)︁
(3.4)

To compute Equation 3.4, AQP++ first employs AQP (Equation 3.3) to estimate the user
query’s answer q̂(S), and then estimate the precomputed query’s answer preˆ (S). Finally, it
plugs the two values into Equation 3.4 to obtain the final estimated answer.

Example 3. This example illustrates how to use AQP++ to estimate the answer to the
same query as Example 2:

q(D) = SELECT SUM(A) FROM D WHERE C ≥ 0

Suppose the following aggregate query has been precomputed:

pre(D) = SELECT SUM(A) FROM D WHERE C > 0

AQP++ first uses AQP (Equation 3.3) to estimate the answers to q and pre, respectively.

q̂(S) = SELECT N · SUM(A·cond(C≥0))
n FROM S

preˆ (S) = SELECT N · SUM(A·cond(C>0))
n FROM S

Then, it plugs pre(D), q̂(S), and preˆ (S) into Equation 3.4 to get the estimated answer
to q.

Unification. AQP++ connects AQP with AggPre using Equation 3.4. Interestingly, the equa-
tion shows that AQP and AggPre are only the special cases of AQP++ when no aggregate is
precomputed, and all aggregates are precomputed, respectively.

21



1. AQP++ subsumes AQP. Define ϕ as an empty query, whose condition is always false.

ϕ = SELECT SUM(A) FROM D WHERE False3.

Suppose no aggregate is precomputed, i.e., pre = ϕ. In this case, we have pre(D) =
preˆ (S) = 0. Thus, Equation 3.4 is reduced to q(D) ≈ q̂(S), which returns the same
result as AQP.

2. AQP++ subsumes AggPre. Suppose all aggregates are precomputed, i.e., pre = q. In this
case, we have preˆ (S) = q̂(S). Thus, Equation 3.4 is reduced to q(D) ≈ pre(D), which
returns the same result as AggPre.

Generality. The AQP++ framework is very general. Firstly, it works for any aggregate
function that AQP can support such as SUM, COUNT, AVG, and VAR, and some UDFs
(see Lemma 1). This can be easily proved based on Equation 3.4 because q(D) only depends
on pre(D), q̂(S), and preˆ (S), where pre(D) has been precomputed, and q̂(S) and preˆ (S)
can be obtained using AQP (since AQP can support their aggregation function).

Lemma 1. For any aggregation function f , if AQP can answer the queries of the form:
SELECT f(A) FROM D WHERE Condition, AQP++ can answer the queries as well.

Proof. The proofs to the lemmas and theorems of this work can be found in Appendix A.1.

Furthermore, for any aggregate function, if AQP has an unbiased estimator, AQP++’s
estimator is also unbiased.

Lemma 2. For any aggregation function f , if AQP can unbiasedly estimate the queries of
the form: SELECT f(A) FROM D WHERE Condition, the answers that AQP++ returns are
also unbiased.

Lastly, AQP++ can be easily extended to support many existing optimization techniques
that were proposed for AQP, such as stratified sampling [43, 62, 50, 63, 64, 153, 47, 83] and
auxiliary indices [62, 78]. These optimization techniques aim to improve the estimation
quality of Equation 3.3. Since Equation 3.4 is obtained by treating Equation 3.3 as a black
box, the optimization techniques work for AQP++ as well. For example, consider stratified
sampling optimization. Unlike uniform sampling, where each row has the same probability
of being sampled, stratified sampling divides data into a set of subgroups and tends to apply
a higher sampling rate to smaller subgroups. This was shown to be an effective sampling
approach for skewed group-size distributions. Let Sop be a stratified sample of data. Then,
we have an optimized AQP++ framework:

q(D) ≈ pre(D) +
(︁
q̂(Sop) − preˆ (Sop)

)︁
, (3.5)

3Note that AQP++ also works when q and pre have different aggregation functions.

22



where q̂(Sop) and preˆ (Sop) apply AQP to the stratified sample to estimate the answers to q
and pre, respectively.

Confidence Interval

Like AQP, AQP++ also has two kinds of approaches to compute a confidence interval for an
estimated answer. The analytical one needs to manually calculate a closed-form confidence
interval for each query type. Example 4 illustrates how to compute a confidence interval for
a SUM query.

Example 4. Continuing Example 3, suppose we want to compute a confidence interval for
pre(D)+

(︁
q̂(S)−preˆ (S)

)︁
. Since pre(D) is a constant, we only need to compute the confidence

interval for q̂(S) − preˆ (S), i.e.,

SELECT N · SUM(A·cond(C=0))
n FROM S.

Following the idea of Example 2, we obtain the confidence interval q̂ ± ϵ, where

ϵ = SELECT λ ·N
√︂

VAR(A·cond(C=0))
n FROM S.

When it is hard to derive closed-form confidence intervals for more complex queries,
AQP++ can use the bootstrap to compute their empirical confidence intervals. It first gen-
erates a set of resamples, S1,S2, · · · ,Sm. Then, for each resample Si (i ∈ [1,m]), it computes
pre(D)+

(︁
q̂(Si)−preˆ (Si)

)︁
. Please note that this step is different from AQP (which computes

q̂(Si) instead). The computed results form an estimate of the distribution of q(D), from
which we derive a confidence interval.
Back of the envelope analysis. We investigate why AQP++ may produce more accurate
answers (i.e., tighter confidence intervals) compared to AQP. One may be tempted to think
this is impossible because AQP++ has to estimate two random variables and then get their
difference, which should have introduced more error than AQP, which only needs to estimate
one. However, this analysis ignores the correlation between the two random variables. For
AQP++, the variance of its estimator (involving two random variables) is:

Var
(︂
q̂ − preˆ

)︂
= Var(q̂) + Var(preˆ ) − 2Cov(q̂, preˆ )

For AQP, the variance of its estimator is Var(q̂). By comparing them, we can see that if
Var(preˆ ) < 2Cov(q̂, preˆ ), AQP++ can have a smaller variance than AQP. That is, AQP++
tends to return a more accurate result in this situation. To further elaborate on the situation,
we know that Cov(q̂, preˆ ) depends on the degree of the correlation between a user query
result and a pre-computed aggregate. If they are highly correlated, Cov(q̂, preˆ ) becomes very
large, thus AQP++ is more likely to return a more accurate answer. We also validate this
interesting phenomenon in the experiments.

23



Figure 3.2: An illustration of P , P+, and P− for the 1D case.

3.5 Aggregate Identification

With the new AQP++ framework, we now study the two problems defined in Section 4.2.
This section studies the aggregate-identification problem. We first consider a simplified
problem setting and present an optimal solution. We then extend the solution to the general
setting.

3.5.1 Optimal Solution

We assume that (1) Q is one-dimensional (i.e., [SUM(A), C]); (2) A and C are independent.
For ease of presentation, we denote a relational table by D = [a1, a2, · · · , aN ], which is a list
of attribute values of A ordered by C. Since A and C are independent, the list can be thought
of as being randomly shuffled. Each user query is denoted by SUM(x : y) = ∑︁

x≤i≤y ai. We
denote a BP-Cube by P = {SUM(1 : t) = ∑︁

1≤i≤t ai for all t ∈ dom(C)small}, and we call
each t ∈ dom(C)small a partition point.

Given a user query q, to identify the best aggregate value for q, the brute-force ap-
proach needs to compute the query error w.r.t every pre ∈ P+ and return the one with the
minimum error. Since |P+| can be very large, this approach is prohibitively expensive. The
key observation of our approach is that a user query can benefit more from a correlated
aggregate query than an uncorrelated one. For example, consider a user query SUM(4 : 10).
Suppose both SUM(4 : 9) and SUM(1 : 3) have been precomputed. Without the need to
compute the actual query error w.r.t them, we can immediately deduce that SUM(4 : 9) is

24



preferable because it is highly correlated to the user query while SUM(1 : 3) tells us nothing
about the user query.

Based on this observation, given a user query SUM(x : y), we can prove that only five
aggregate values in P+ need to be considered. We call them candidate aggregate values,
denoted by

P− =
{︁

SUM(lx + 1 : ly), SUM(lx + 1 : hy),
SUM(hx + 1 : ly),SUM(hx + 1 : hy)

}︁
∪

{︁
ϕ

}︁
, (3.6)

where lx (hx) is the first partition point that is lower (higher) than x; ly (hy) is the first
partition point that is lower (higher) than y. Intuitively, x falls between partition points lx
and hx, and y falls between partition points ly and hy. Based on the four partition points,
we find the four most correlated aggregate queries to the user query. We also add ϕ into
P− to handle some special cases, e.g., x and y fall between the same two partition points
(i.e., lx = ly). Lemma 3 proves the correctness of this solution.

Lemma 3. Given D = [a1, · · · , aN ], a query template Q, and a BP-Cube P , we have:

min
pre∈P +

error(q, pre) = min
pre∈P −

error(q, pre).

For example, consider the BP-Cube P and the available aggregate values P+ in Figure 3.2.
Given a user query q = SUM(4 : 10), we want to identify the best value from P+ for the
query. Based on Lemma 3, we only need to consider five values. To get the five values, we
can see that x = 4 falls between the precomputed points of 3 and 6, thus lx = 3 and hx = 6;
y = 10 falls between the precomputed points of 9 and 12, thus lx = 9 and hx = 12. Based
on Equation 3.6, we obtain P− = {SUM(4 : 9),SUM(4 : 12), SUM(7 : 9), SUM(7 : 12), ϕ}.

3.5.2 Aggregate-Identification Approach

Lemma 3 significantly reduces the number of aggregate values that need to be considered for
answering a user query. While we can only prove its correctness under certain assumptions,
it inspires us to develop an efficient heuristic approach for the general setting.

The key idea of our approach is to quickly identify a small number of candidate aggregate
values from P+ and then examine which one is the best among them. Similarly, we denote
the candidate aggregate values by P−. Equation 3.6 shows the computation of P− for the
1D case. We now extend it to the d-dimensional case. Given a user query q = SUM(x1 :
y1, x2 : y2, · · · , xd : yd), suppose that for each i ∈ [1, d], xi falls between lxi and hxi , and yi
falls between lyi and hyi . We define P− w.r.t q as

P− =
{︂

SUM(u1 + 1 : v1, u2 + 1 : v2, · · · , ud + 1 : vd)

| ui ∈ {lxi
, hxi

}, vi ∈ {lyi
, hyi

} for each i ∈ [1, d]
}︂

∪
{︂
ϕ

}︂
(3.7)

25



Figure 3.3: An illustration of P− for the 2D case.

For example, consider a 2D BP-Cube in Figure 3.3. The first dimension has the partition
points of dom(C1)small = {1, 5, 10, 15, 20, 25}; the second dimension has the partition points
of dom(C2)small = {1, 4, 8, 12, 16, 20}. Given a user query q = SUM(8 : 18, 7 : 14), for the first
dimension C1, we can see that x1 = 8 falls between 5 and 10, thus lx1 = 5 and hx1 = 10;
y1 = 18 falls between 15 and 20, thus ly1 = 15 and hy1 = 20. Similarly, for the second
dimension, we have lx2 = 4 and hx2 = 8 for x2 = 7; we have ly2 = 12 and hy2 = 16 for
y2 = 14. Based on Equation 3.7, we obtain P− consisting of the 17 aggregate values shown
on the right side of the figure.

The size of P− is independent of the BP-Cube size. For each dimension, there are four
possible cases, i.e., {lxi , hxi} × {lyi , hyi}. Thus, we have |P−| = 4d + 1. For example, |P−| =
41 + 1 = 5 for the 1D case and |P−| = 42 + 1 = 17 for the 2D case. Furthermore, we can
quickly identify P−. Let ki = |dom(Ci)small|. Every dimension only needs O(log ki) time to
search for the partition points, thus all dimensions need O(∑︁i log(ki)) = O(log k) time. To
generate 4d + 1 queries based on the partition points, we need O(4d) time. Thus, the total
time complexity is O(log k + 4d).

Once P− is obtained, we then need to decide which one in P− should be finally identified.
We adopt a subsampling based approach. The idea is to create a subsample of S, and use the
subsample to estimate the query error w.r.t. each aggregate value in P−. Specifically, given
a user query, for each precomputed aggregate value pre ∈ P−, we compute the confidence
interval of the user query w.r.t. pre and select the one with the smallest confidence interval.
The subsampling rate is a parameter that can balance the trade-off between the effectiveness
and efficiency of aggregate identification. In the experiments, we set it to less than 1

4d to
ensure that the overhead added is smaller than the actual query processing time.

26



3.6 Aggregate Precomputation

We now study the aggregate-precomputation problem. There are two major challenges.
One is how to determine the BP-Cube’s shape. That is, given a threshold k, we need to
assign a number ki to each dimension such that ∏︁d

i=1 ki ≤ k. The total number of possible
assignments can be quite large. The other challenge is how to decide which ki points should
be chosen from dom(Ci) for each i ∈ [1, d]. Again, there are a large number of different
choices,

(︁|dom(Ci)|
ki

)︁
, and a brute-force approach does not work.

In this section, we first explore the 1-dimensional case and then extend it to multidi-
mensional cases.

3.6.1 One-Dimensional Query Template

For the one-dimensional case, since the BP-Cube’s shape has only one possibility, the only
challenge left is how to choose the best k points, 1 ≤ t1 < t2 < · · · < tk = |dom(C)|, from
dom(C) such that the query-template error is minimized4. The most natural idea, called
equal-partition scheme, is to partition dom(C) into k equal parts. But, this idea ignores two
important factors.

• Data Distribution. If C does not follow a uniform distribution (i.e., some values appear
more frequently than others), the equal-partition scheme is often not feasible. This is,
we cannot use range queries with conditions over C to partition A equally. For example,
consider the relational table (with attributes A and C) in Figure 3.4(a). The only way
to partition the data is shown in the figure, which is not an equal-partition scheme.

• Attribute Correlation. If A and C are correlated when sorting A by C, this process is not
equivalent to a random shuffle of A. Thus, the variances of different parts of A may differ
greatly. For example, consider the relational table in Figure 3.4(b). When 1 ≤ C ≤ 4, A is
always equal to 0; when 5 ≤ C ≤ 8, A follows a normal distribution with a large variance.
Since a larger variance leads to a higher query error, it might be better to choose more
points from the second half of A rather than adopt an equal-partition scheme.

In the following, we first make some assumptions about data distribution and attribute
correlation and prove that the equal-partition scheme is optimal under these assumptions.
Then, we relax the assumptions and propose an adaptive approach for the general setting.

4We compute the sum of all the values in each aggregation attribute because these sum values are
independent of condition attributes and can be reused across query templates. Therefore, we assume tk =
|dom(C)|

27



Figure 3.4: (a) The equal-partition scheme is not feasible; (b) The equal-partition scheme
is not optimal.

Optimal Partition Scheme

We assume that (1) C has no duplicate values; (2) A and C are independent. The first (resp.
second) assumption removes the impact of the data distribution of C (resp. the correlation
between attributes A and C) on the optimal partition scheme. Similar to Section 3.5.1, we
denote a relational table by D = {a1, a2, · · · , aN}, which is the list of attribute values of A
ordered by C. Assumption 1 suggests that any sub-list of D can be precomputed (without
being constrained by the skewed distribution of C); Assumption 2 means that D can be
thought of as being randomly shuffled.

We can prove that the equal-partition scheme is optimal under Assumptions 1 and 2.
The corresponding BP-Cube is denoted by5

Peq = {SUM(1 : i
k
N) | i = 1, 2, · · · k}.

The proof’s basic idea is that in Lemma 4, we compute the query-template error, error(Q,Peq),
w.r.t. the equal-partition scheme; in Lemma 5, we prove that for any other partition scheme,
the resulting query-template error cannot be smaller than error(Q,Peq). Hence, Peq is op-
timal since it has the minimum query-template error.

Lemma 4. Given D = {a1, a2, · · · , aN}, a query template Q, and a threshold k, the query-
template error of Q w.r.t Peq is

error(Q,Peq) = λN

√︃
σ2

eq

n
,

where σ2
eq = 1

kE[D2] − 1
k2 (E[D])2.

5Here, we assume N%k = 0. Otherwise, we will choose ⌈ i
k
N⌉ for i ∈ [1, N%k], and ⌊ i

k
N⌋ for i ∈ (N%k, k]. The

proof can be extended to this case.

28



Figure 3.5: An illustration for notations of Lx, L̄x, Ly, and L̄y

Lemma 4 indicates that the query-template error decreases at a rate of O( 1√
k
). This

is a fascinating result because it shows that the query-template error can be dramatically
reduced with only a small k (i.e., the BP-Cube size). For example, if k = 100, the error can
be reduced by about ten times.

Lemma 5 proves that error(Q,Peq) is minimum.

Lemma 5. Given D = {a1, a2, · · · , aN}, a query template Q, and a threshold k, if P ̸= Peq,
then error(Q,P ) ≥ error(Q,Peq).

It is easy to prove Theorem 1 based on Lemmas 4 and 5.

Theorem 1. Given D = {a1, a2, · · · , aN}, a query template Q, and a threshold k, Peq is
an optimal BP-Cube.

For example, suppose D = {a1, a2, · · · , a12} and k = 4. Based on Theorem 1, we obtain
the optimal BP-Cube Peq = {SUM(1 : 3),SUM(1 : 6),SUM(1 : 9), SUM(1 : 12)}.

An Adaptive Approach Based on Hill Climbing

The optimal partition scheme requires two assumptions which may not hold in practice.
In this section, we propose a hill-climbing-based algorithm that can adaptively adjust the
partition scheme based on the actual data distribution and attribute correlation.
Algorithm Overview. The algorithm starts with an initial BP-Cube and then attempts to
improve it by moving a single partition point from one place to another. If the change leads
to a better BP-Cube, the change is made, and the iterative process is repeated; otherwise, the
algorithm is terminated. To make the algorithm work, we need to address three problems:
(1) how to find an initial BP-Cube; (2) how to evaluate the effectiveness of a BP-Cube (in
order to know whether the change leads to a better BP-Cube); (3) how to adjust a BP-Cube
(i.e., decide which partition point should be moved away and where it should move to).
(1) Initialization. A poor initialization may not only hurt the efficiency of an optimization
algorithm but also lead to a local optimum that is far from the global optimum. We use
Peq as an initialization because (1) it has been proven to be optimal in some situations, and
(2) it avoids ending up with a solution that is even worse than the naive equal partitioning.

29



However, Peq may not always be feasible (due to the skewed distribution of C). If a partition
point (in Peq) is not feasible, we will choose its closest feasible point to replace it. For
example, in Figure 3.4(a), since the middle point (4th point) is not feasible, its closest
feasible partition point (6th point) will be chosen. Accordingly, the initial BP-Cube is P =
{SUM(1 : 2), SUM(1 : 3)}.
(2) Evaluation. The most naive way to evaluate the effectiveness of a BP-Cube is to adopt
query-template error because this is the ultimate optimization objective. But, when the
assumption that A and C are independent does not hold, we have not found an efficient
way to compute it without enumerating

(︁|dom(C)|+1
2

)︁
possible user queries. To address this

challenge, we seek to find an upper bound of query-template error. It turns out that the
upper bound can not only be efficiently computed (in linear time) but also lead to a robust
solution (since it bounds the worst case).

Recall that the query-template error is defined as error(Q,P ) = maxq∈Q error(q, P ).We
first give the upper bound of error(q, P ), and then we present an efficient linear algorithm
to compute the upper bound of error(Q,P ).

To get the upper bound of error(q, P ), consider a user query q = SUM(x : y) in
Figure 3.5. The red dots are the partition points near x or y. We can see that the middle
part of q has been precomputed, so we only need to estimate Lx+Ly. For Lx, since Lx+ L̄x

has been precomputed, we can estimate Lx in two ways. One is to directly estimate Lx, and
the other is to estimate the complement L̄x. We try both ways and choose the one with a
smaller error, i.e., min

{︁
λN√
n

·
√︁

Var(ALx), λN√
n

·
√︂

Var(AL̄x
)
}︁
, where ALx = A·cond(C ∈ Lx) and

AL̄x
= A ·cond(C ∈ L̄x). Similarly, for Ly, the estimation error is min

{︁
λN√
n

·
√︂

Var(ALy ), λN√
n

·√︂
Var(AL̄y

)
}︁
. We obtain the upper bound of error(q, P ) by adding them up.

Lemma 6. Given D, a query template Q, and a BP-Cube P , for any q ∈ Q, we have
error(q, P ) ≤

λN√
n

·min
{︁√

Var(ALx ),
√

Var(AL̄x
)
}︁

+ λN√
n

·min
{︁√

Var(ALy ),
√︁

Var(AL̄y
)
}︁
.

To get the upper bound of error(Q,P ), we first compute errori =
λN√
n

min
{︁√︂

Var(ALi),
√︂

Var(AL̄i
)
}︁

for every point i ∈ [1, N ], and then pick up two
points i1, i2 ∈ [1, N ] where errori1 has the maximum error and errori2 has the second max-
imum error. Note that all of these can be computed in linear time. Based on Lemma 6, we
can deduce that error(Q,P ) cannot be larger than errorup(Q,P ) = errori1 + errori2 . Our
hill-climbing algorithm uses the upper bound, errorup(Q,P ), to evaluate the effectiveness
of a BP-Cube P .
(3) Adjustment. To adjust the current BP-Cube, we try to move a single partition point
from one place to another. The heuristic is to move the partition point to either i1 or
i2. This is because the goal is to reduce errorup(Q,P ) and moving to i1 (or i2) is very
likely to reduce errorup(Q,P ). To decide which partition point should be moved away,

30



Figure 3.6: An illustration of the binary search algorithm to search for the BP-Cube’s shape
k1 × k2 (suppose k = 500).

we want to find the one such that moving it away will have the least chance to increase
errorup(Q,P ). Imagine a partition point t is moved away. Only the points between the two
partition points nearby t may have a larger errori. Thus, the chance that errorup(Q,P ) will
increase depends on the maximum error among the changed points. For example, suppose
P = {SUM(1 : 3),SUM(1 : 6),SUM(1 : 9),SUM(1 : 12)}. There are four partition points: 3,
6, 9, and 12. If the partition point t = 6 is moved away, only the points in (3, 9) may have
a larger errori; for the others, errori stays unchanged. We compute the maximum errori

among the changed points, i.e., maxi∈(3,9) errori (after moving 6). Similarly, we compute the
maximum error for the other three partition points, i.e., maxi∈(1,6) errori (after moving 3),
maxi∈(6,12) errori (after moving 9), maxi∈(9,12) (after moving 12). Suppose maxi∈(6,12) errori

is minimal among the four values. Then, the partition point 9 will be moved away.
(4) Stop Condition. The hill-climbing algorithm will stop when errorup(Q,P ) cannot be
decreased through the adjustment process.
Remark. Intuitively, there are two places that could cause the greedy approach to be not
optimal. First, the approach aims to optimize the upper bound of the query-template error
rather than the query-template error itself. Second, when putting a partition point to a
new position, this new position (i.e., i1 or i2) is selected heuristically, which may not be the
optimal position.

3.6.2 Multidimensional Query Template

Consider a query template, Q : [SUM(A), C1, C2, · · · , Cd]. Given a threshold k, we need
to first assign ki to each dimension Ci such that ∏︁d

i=1 ki ≤ k. Once k1, k2, · · · , kd are
determined, we apply the above hill climbing algorithm to choosing the ki partition points
in each dimension.

31



Determine the BP-Cube’s Shape. Without loss of generality, we use a 2-dimensional
query template Q : [SUM(A), C1, C2] to illustrate our idea. A naive solution is to assign
the same value to C1 and C2, i.e., k1 = k2 =

√
k. But, this ignores the fact that the data

distributions in C1 and C2 can be quite different. To better balance the values of k1 and
k2, we first plot an error profile for Q1 : [SUM(A), C1] and Q2 : [SUM(A), C2], respectively.
The error profile shows how errorup(Qi, Phc) decreases with the increase of ki for i = 1, 2,
where Phc is the BP-Cube determined by the hill-climbing algorithm. Since it is expensive
to compute every data point on the profile curves, we compute a small subset of them and
approximate the remaining ones by interpolation. The function used for the interpolation is
proportional to ∼ 1/

√
k (see Lemma 4). Once the error profiles are plotted, k1 and k2 can be

efficiently determined. For example, consider the two error profiles in Figure 3.6. Suppose
k = 500. We do a binary search on the y-axis of the error profiles. At each iteration, if
k1 · k2 < k (or k1 · k2 > k), it continues the search in the lower (or upper) half of the search
range, eliminating the other half from consideration. In the example, suppose the red line
is the current search position. Then, we obtain k1 = 10 and k2 = 20 from the error profiles.
Since k = 500 and k1 × k2 = 200 < k, it means that we have the additional budget to
enlarge k1 and k2 for getting a smaller error. Thus, the next search position is the lower
half of the search range (i.e., the blue line). The binary search repeats until k1 × k2 = k or
the search range is empty.
Putting It All Together. Given a query template Q = [SUM(A), C1, C2, · · · , Cd] and a
threshold k, the aggregate-precomputation contains two stages. The first stage determines
which BP-Cube should be precomputed, and the second stage is to precompute the BP-Cube.
Please note that the first stage is based on a sample S. It consists of two steps: (1) Determine
the BP-Cube’s shape, k1 × k2 × · · · × kd; (2) Run the hill-climbing based algorithm to get
ki partition points from each dimension (i ∈ [1, d]). In the second stage, we need to scan
the full data. Ho et al. [91] proposed an efficient algorithm to compute a BP-Cube. Since
a BP-Cube is typically several orders of magnitude smaller than the P-Cube, it incurs much
less preprocessing cost (see Appendix A.2 for a detailed cost analysis).

3.7 Extensions

Aggregation Functions. As mentioned in Section 3.4.2, AQP++ has an estimator (Equa-
tion 3.5) that works for any aggregation function that AQP can support. Each aggregation
function, however, may require a different way to construct a precomputed aggregate query
set. In this work, we propose an aggregate-precomputation technique for SUM queries.
The technique can be extended to COUNT and AVG with small changes. For COUNT
queries, we add a virtual attribute to the table with all the values equal to 1. Any COUNT
query can be rewritten as a SUM query on the virtual attribute. For AVG queries, since
AVG(A) = SUM(A)

COUNT(A) , to construct a BP-Cube for it, we need to consider the accuracy of

32



both SUM(A) and COUNT(A). We employ a simple heuristic approach [64] to combine
them together, α · SUM(A) + (1 − α) · COUNT(A), where α ∈ [0, 1] (α = 0.5 by default).
Given an AVG query template [AVG(A), C1, · · · , Cd], we add a virtual attribute A′ to the
table with each value equal to α ·A+(1−α), and then apply the aggregate-precomputation
technique to [SUM(A′), C1, · · · , Cd] to determine the BP-Cube that need to be precomputed.

For holistic aggregation functions such as median and percentile, BP-Cubes cannot sup-
port them well. The main reason is that their query answers cannot be easily combined.
For instance, it is easy to add the answers to SUM(1 : 5) and SUM(6 : 10) to get the
answer to SUM(1 : 10), but such idea will not work for median or percentile. If there is
a sophisticated method to handle precomputed percentile results (like BP-Cubes for SUM),
one can still benefit from AQP++ by using bootstrap to compute the confidence interval of
q − pre and using Equation 3.4 to get the estimation. In the future, we will explore other
forms of cubes to handle holistic aggregation functions.
Group-by Queries. We now discuss how to extend AQP++ to support group-by queries.
We can treat group-by attributes as condition attributes in the aggregate pre-computation
stage and then apply the same hill-climbing algorithm to generate BP-Cubes. For example,
suppose a user wants to run queries in the following form:

SELECT SUM(sales) FROM table
WHERE age GROUP BY country

The user can specify a query template [SUM(sale), age, country], and then use our algorithm
to generate a BP-Cube for the template.

In the aggregate identification stage, given a group-by query, e.g.,

SELECT SUM(sales) FROM table
WHERE 19<age<31 GROUP BY country

we need to identify a precomputed aggregate value for each group. One idea is to apply our
aggregate-identification approach to each group one by one. However, this may be costly
when the number of groups is large. To make this process more efficient, we can adopt a
heuristic approach, where we consider all groups as the same and only apply our approach
to the following query (which is obtained by removing the group-by clause from the user
query):

SELECT SUM(sales) FROM table WHERE 19<age<31.

Suppose the identified range condition is “20<age<30”. Then, we use it for all groups, and
construct the following query

SELECT SUM(sales) FROM table
WHERE 20<age<30 GROUP BY country,

33



where we can identify a precomputed aggregate for each group.
For both stages, it is clear to see that the proposed extension may not be the most

effective solution to enable AQP++ to support group-by queries. For example, in the aggre-
gate pre-computation stage, it ignores the fact that country is a categorical attribute, and
its range condition can only use an equal sign, i.e., “country = x”. We will explore these
opportunities and further enhance the extension to group-by queries in future work.
Data Updates. When the underlying data is updated, AQP++ does not only need to
update sample data (like AQP), but also needs to maintain precomputed query results.
The latter is essentially a materialized view maintenance problem. Many techniques have
been proposed to solve the problem [70]. In particular, for SUM, COUNT, AVG queries,
their query results can be maintained more efficiently due to the availability of incremental
algorithms. Furthermore, since AQP++ only needs to maintain a BP-Cube, it incurs much
less maintenance cost than AggPre.

There are many interesting problems in this space, such as how to develop an incremental
hill-climbing algorithm, how to achieve a better trade-off between maintenance cost, query
response time, and answer quality, and how to combine stale prefix cubes with data updates
to answer queries. However, addressing these problems is beyond the scope of this work.
We will systematically study these problems in future work and propose a comprehensive
solution to data updates.
Multiple Query Templates. The work studies how to decide which BP-Cube should be
precomputed for a single query template. When multiple query templates are given, we need
to decide how to allocate the space budget to each query template. Suppose there are two
query templates Q1 : [SUM(A1), C1, C2] and Q2 : [SUM(A2), C3], and the space budget is
k. A simple approach is to allocate k/2 to each one. To better balance the allocation, we
can adopt a similar idea with the binary-search algorithm in Section 3.6.2, which tunes the
space-budget allocation iteratively. In the beginning, both Q1 and Q2 will be allocated to
have the space budget of k/2. Then, we use error profile curves to estimate which query
template has a larger error, e.g., Q1 has a larger error. In this situation, Q1 needs more space
budget. We adjust the allocation by assigning the budget of 3k/4 to Q1 and the budget of
1/k to Q1. The iterative process will continue until the search range is empty.
Space Allocation. In AQP++, part of the space is used for sampling while the other part is
used for storing BP-Cubes. One natural question is how to allocate this budget between the
two to achieve the best performance given a fixed budget. We adopted a simple approach in
this work. This approach is based on the observation that sample size significantly impacts
query response time, but the size of BP-Cubes does not. Therefore, we can first select the
maximum sample size that meets the user’s requirement for response time (e.g., less than
0.5 s) and then use the remaining space for storing BP-Cubes. In the future, we will study
how to leverage query workloads to develop a more sophisticated approach.

34



3.8 Experimental Results

We conduct extensive experiments to evaluate AQP++. The experiments aim to answer three
major questions. (1) When does AQP++ give more accurate answers than AQP? (2) How
does AQP++ compare with AQP and AggPre in terms of preprocessing cost, response time,
and answer quality? (3) How well does the hill climbing based approach perform compared
to the equal-partition scheme?

3.8.1 Experiment Setup

Experimental Settings. We implemented AQP and AQP++ using DBX, a commercial
OLAP system with column-store indexes supported. The code was written in C++, com-
piled using Visual Studio 2015, and connected to DBX through ODBC. The experiments
were run on a Windows machine with an Intel Core 8 i7-6700 3.40GHz processor, 16GB of
RAM, and 1TB HDD.
Datasets. We conducted experiments on three datasets. (1) TPCD-Skew is a synthetic
dataset generated from the TPCD-Skew benchmark [67]. We generated 100GB data with
the skew parameter z = 2 and ran queries on the lineitem table, which contains 600 mil-
lion rows. (2) BigBench is a synthetic dataset generated from the Big Data Benchmark [1].
We generated 100GB of data and ran queries on the UserVisits table, which contains 752
million rows. (3) TLCTrip is a real-world dataset from the NYC Taxi and Limousine Com-
mission [3]. We used the yellow car data from 2009 to 2016, which is of size 200GB and
contains 1400 million rows.
Sampling. It is worth noting that AQP++ is a general framework that can connect any AQP
engine with AggPre no matter which sampling approach the AQP engine adopts. To allow for
a clear comparison between the cores of AQP and AQP++ frameworks (i.e., Equation 3.3 vs.
Equation 3.4), we assume that both AQP and AQP++ only use a uniform sample by default.
Specifically, we create a uniform sample from the full table and store the sample in DBX
as a table (sample rate = 0.05% by default). To answer queries, the sample will be used by
AQP and AQP++. To evaluate the performance of AQP++ on other forms of samples, we
implemented another two sampling approaches, measure-biased sampling [78] and stratified
sampling [47], used by the state-of-the-art AQP systems, and compared AQP with AQP++
on these samples.
Error Metrics. We adopted relative error to quantify query accuracy because it is easy
to interpret. For an approximate query result q̂ ± ϵ, where ϵ is half the width of the 95%
confidence interval, the relative error of the query is defined as ϵ

q , where q is the true answer
of the query. Given a collection of queries, when we say median (or average) error, it refers
to the median (or average) value of the relative errors of the queries in the collection.

35



Table 3.1: Comparison of the overall performance (TPCD-Skew 100GB, k=50000, 0.05%
uniform sample).

Preprocessing Cost Response Answer Quality
Space Time Time Avg Err. Mdn Err.

AQP 51.2 MB 4.3 min 0.60 sec 2.67% 2.48%
AggPre > 10 TB > 1 day < 0.01 sec 0.00% 0.00%
AQP++ 51.9 MB 11.7 min 0.67 sec 0.27% 0.19%

3.8.2 Overall Performance

Table 3.1 compares the overall performance (preprocessing cost, query response time, and
answer quality) of AQP++ with alternatives on the TPCD-Skew dataset. We randomly gen-
erated 1000 queries using the template of [SUM(l_extendedprice), l_orderkey, l_suppkey],
where the query selectivity is between 0.5% − 5%.

Suppose the latency requirement is 1 second. We first examine whether the state-of-the-
art OLAP solutions can meet the requirement. We first chose a commercial (M)OLAP sys-
tem and created a data cube with l_extendedprice as the measure attribute and l_orderkey
and l_suppkey as the dimension attributes. The cube has a hierarchy structure of “l_suppkey
→l_orderkey”. We ran the 1000 queries over the cube and found that the cube size was
around 4GB and the average query response time was more than 10 seconds, which is far
from interactive. The reason is that the two dimensions, ⟨l_orderkey, l_suppkey⟩, have a
large number of distinct values (i.e., 377 million), thus a range query still needs to scan a
lot of cells in the cube. In addition, we tested the time of directly executing queries in DBX.
DBX needed an average response time of 6 seconds and a maximum response time of 35
seconds to run all the queries, which did not meet the latency requirement either.

We now evaluate the performance of AQP, AggPre, and AQP++. AQP used a uniform
sample to answer queries (sample rate = 0.05%); AggPre precomputed the complete P-Cube
using the algorithm in [91]. In the lineitem table, l_orderkey and l_suppkey have 1.5 × 108

and 7.5 × 104 distinct values, respectively, so there are 1.1 × 1013 cells in P-Cube. Clearly,
AQP and AggPre represented two extreme cases of AQP++, where one did not precompute
any aggregate, and the other precomputed all possible aggregates. For AQP++, we used the
same sample as AQP and precomputed a BP-Cube of size k = 50, 000.

Table 3.1 compared its performance with AQP and AggPre. We can see that all of them
met the latency requirement (< 1 sec), but they were quite different in terms of prepro-
cessing cost and answer quality. AQP++ spent orders of magnitude less preprocessing time
and space than AggPre since it only needs to precompute a small BP-Cube rather than the
complete P-Cube. In comparison with AQP, AQP++ reduced the average error by 10× and
the median error by 13× for almost the same preprocessing space and about 7.4 minutes
more preprocessing time. Furthermore, the overhead added to the AQP++’s response time
(due to the aggregate-identification step) is negligible. This is because the response time

36



 0

 4

 8

 12

 16

 20

 1  2  3  4  5  6  7  8  9  10

Ti
m

e 
(m

in
)

# of dimensions

AQP
AQP++

 0

 0.5

 1

 1.5

 2

 2.5

 1  2  3  4  5  6  7  8  9  10

Ti
m

e 
(s

ec
)

# of dimensions

AQP
AQP++

 0%

 1%

 2%

 3%

 4%

 1  2  3  4  5  6  7  8  9  10

M
ed

ia
n 

Er
ro

r

# of dimensions

AQP
AQP++

(a) Preprocessing Time (b) Response Time
(c) Answer Quality

Figure 3.7: Comparison of AQP and AQP++ by varying # of dimensions (TPCD-Skew
100GB, k=50000, 0.05% uniform sample).

was dominated by the I/O time for reading data from the sample table, and the added CPU
time was relatively very small.

To further compare AQP and AQP++, we set the sample rate of AQP to 4% such that it
can reach approximately the same average error as AQP++. We call it AQP(large). Compared
to AQP++, the AQP(large)’s sample size was about 80× larger, which significantly increased
the preprocessing time and space. Furthermore, due to the sample size increase, its query
response time was more than 1 second, which violated the latency requirement.

We implemented APA+ [97] and compared its performance with AQP++. Since our query
template was 2-dimensional, we assumed that 1-dimensional facts (i.e., a set of statistics
defined by APA+) are available in the system for each query. To process a query, APA+
first gets the related facts and then combines them with a sample to estimate the answer
to the query. We used the gurobi library to solve the quadratic programming problem in
APA+ such that it can minimize the estimation error. The experimental result showed that
APA+ achieved a median error of 1.69% while the median error for AQP++ was only 0.19%.
The reason is that APA+ does not use BP-Cubes for result estimation, while AQP++ can
identify the best BP-Cube to precompute and use it for result estimation.

3.8.3 Detailed Performance

In this section, we evaluate the performance of AQP++ by varying the number of dimen-
sions and the set of condition attributes, aiming to gain a deeper understanding of various
trade-offs. We also examine the effectiveness of the hill climbing algorithm for aggregate
precomputation. If not specified, we use the same dataset and queries as the previous sec-
tion and set the sample rate to 0.05%, k=50000, and the number of dimensions to 2 by
default.
Number of Dimensions. We compare the preprocessing time, response time, and answer
quality of AQP and AQP++ by varying the number of dimensions. We chose ten columns
from the lineitem table and constructed ten query templates accordingly:

[SUM (l_extendedprice), l_orderkey],

37



[SUM (l_extendedprice), l_orderkey, l_partkey],
· · ·
[SUM (l_extendedprice), l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity,

l_discount, l_tax, l_shipdate, l_commitdate, l_receiptdate],
where each of them has a different number of dimensions. We compared AQP with AQP++
w.r.t. each query template, and reported the result in Figure 3.7.

Figure 3.7(a) compares the preprocessing time of AQP and AQP++. Since AQP only needs
to create a random sample, the number of dimensions had no impact on its preprocessing
time. In comparison, AQP++ requires a little more preprocessing time when the number
of dimensions increases since it needs to generate an error profile for each dimension. The
larger the number of dimensions, the more time is spent generating error profiles.

Figure 3.7(b) shows how the response time changed w.r.t. the number of dimensions.
To identify the best-precomputed aggregate value, AQP++ first generates 4d + 1 candidate
values and then uses a subsample to estimate which will lead to the smallest error. As the
number of dimensions increased, the number of candidate values increased exponentially.
However, we can see from the figure that the difference between the response times of AQP
and AQP++ did not increase exponentially. This is because if the number of candidate values
is increased by four times, AQP++ will decrease the subsampling rate by four times as well,
which helps to reduce the aggregate-identification time.

Figure 3.7(c) compares the answer quality between AQP and AQP++ in terms of median
error. The figure shows that the median error of AQP++ got bigger as the number of
dimensions increased. This is because that the space budget k = 50000 was fixed. If there
is only one dimension, this dimension can be assigned a budget of 50000 partition points,
but if there are two dimensions, each dimension (on average) can only be assigned a budget
of

√
50000 = 224 partition points, which is less effective than 1D. Nevertheless, as shown

in Figure 3.7(c), AQP++ outperformed AQP by 12.8× for 2D. As the number of dimensions
increased, the improvement of AQP++ over AQP decreased. The result indicates that AQP++
can scale up to 10 dimensions but is hard to scale to a very large number of dimensions
(e.g., 20) due to the limitation of prefix cubes.
Hill Climbing. We evaluate the adjustment approach of our hill climbing algorithm. Recall
that our approach considers all partition points at each iteration and picks the best one to
move. One may ask why not only consider the four partition points next to i1 and i2. We
compared the two adjustment approaches.

As discussed in Section 3.6, an equal partitioning scheme is ineffective when attributes
are highly correlated. Thus, we picked up two attributes, l_shipdate and l_commitdate,
that strongly correlate with l_extendedprice, and constructed the query template: [SUM

(l_extendedprice), l_shipdate, l_commitdate]. Figure 3.8 compares the upper bound of
the query template error of Hill Climb (global) and Hill Climb (local) on each dimension, where
the former used our adjustment approach while the latter adopted the alternative. We set

38



 0

 2

 4

 6

 8

 10

 12

 0  40  80  120  160  200Er
ro

r 
U

pp
er

 B
ou

nd
 (

*1
09

)

# of Iterations

hill climb (global)
hill climb (local)

 0

 2

 4

 6

 8

 10

 12

 0  40  80  120  160  200Er
ro

r 
U

pp
er

 B
ou

nd
 (

*1
09

)

# of Iterations

hill climb (global)
hill climb (local)

(a) l_shipdate (b) l_commitdate

Figure 3.8: Evaluation of adjustment approach of hill climbing (TPCD-Skew 100GB, k1 =
200, k2 = 200, and 0.05% sample).

 0%

 1%

 2%

 3%

 4%

Q1 Q2 Q3 Q4 Q5 Q6

M
ed

ia
n 

Er
ro

r

Query Templates

AQP
AQP++

Figure 3.9: Evaluation of the changes of the set of condition attributes in user queries. Note
that only Q3 has a precomputed BP-Cube (TPCD-Skew 100GB, k=50000, 0.05% sample).

k1 = k2 = 200. We can see that Hill Climb (local) converged to a local optimum with less than
ten iterations while Hill Climb (global) can continue the iterative process and finally reach
a much better result. The reason is that Hill Climb (local) only considers the four partition
points next to i1 and i2. The algorithm will stop if moving them away cannot lead to a
better solution.
Changes of Condition Attributes. In exploratory workloads, a user may frequently
change the set of condition attributes in her queries. We discuss how AQP++ handles this
situation below.

Suppose a user may issue a collection of queries generated from the three query tem-
plates: Q1 : [SUM(A), C1], Q2 : [SUM(A), C1, C2], Q3 : [SUM(A), C1, C2, C3], but only Q2 has a
precomputed BP-Cube P2. We next show how AQP++ can use P2 to answer the queries from
Q1 and Q3.

If a user query q is from Q1, we can rewrite q as an equivalent query q′ from Q2 where
q′ does not enforce any restriction on C2, thus AQP++ can still use P2 to answer q. For

39



example, consider q : [SUM(A), 1 : 2]. It can be rewritten as q′ : [SUM(A), 1 : 2, 1 : |dom(C2)|]
(where C2 can be any value in its domain), and then be processed by AQP++ using P2.

If a user query q is from Q3, we can consider P2 as a 3-dimensional BP-Cube P ′
2. For

example, suppose the shape of P2 is k1 ×k2. Then, it can be seen as a 3-dimensional BP-Cube
P ′

2 with the shape of k1 × k2 × 1. Thus, AQP++ can still use P2 to answer q.
To evaluate this approach, we constructed six query templates Q1 :

[SUM(A), C1], · · · , Q6 : [SUM(A), C1, C2, C3, C4, C5, C6] on the TPCD-Skew dataset,
where A is l_extendedprice, and C1, C2, · · · , C6 are l_orderkey, l_partkey, l_suppkey,
l_linenumber, l_quantity, l_discount, respectively. We assumed that only Q3 had a
precomputed BP-Cube (with size k = 50000). We randomly generated 1000 queries from
each query template with the selectivity of 0.5%-5%. Figure 3.9 compares the median error
of AQP and AQP++ for these queries w.r.t. each Qi (i ∈ [1, 6]). We can see that AQP++
kept outperforming AQP when changing the set of condition attributes from Q3 to Q1 or
from Q3 to Q6, but with the improvement being smaller as more changes are made. An
interesting future work is to study how to detect this situation and how to trigger the
computation of more suitable BP-Cubes in an automatic way.

3.8.4 Evaluation With Other Sampling Methods

The previous experiments validate the effectiveness of AQP++ on uniform samples. In this
section, we implement two other sampling approaches used by the state-of-the-art AQP
systems [78, 47] and examine the performance of AQP++ on these samples.
AQP (measure-biased) vs. AQP++ (measure-biased). Measure-biased sampling se-
lects each record with a probability proportional to the value in the measure attribute.
That is, the larger the value in the measure attribute, the more likely the record will
appear in the sample. This has shown be to a very effective sampling approach to miti-
gate the negative impact of outliers on estimated answers. We randomly generated 1000
queries with the selectivity of 0.5% − 5% using the default template. Since measure-biased
sampling is designed for handling outliers, we only chose the queries that can cover (at
least) one outlier, where a value is defined as an outlier if l_extendedprice is larger than
median(l_extendedprice) + 3 ∗ SD(l_extendedprice). We created a 0.05% measure-biased sample
of the dataset, leading to a sample of size |S| = 0.3 million, and then compared AQP with
AQP++ on the sample by varying BP-Cube size from k=1000 to k=10,000. Figure 3.10(a)
plots the median error. We can see that with a very small BP-Cube (e.g., k=5000), AQP++
reduced the median error of AQP by 3.3×, which validated the effectiveness of AQP++ for
measure-biased sampling.
AQP (stratified) vs. AQP++ (stratified). Stratified sampling divides data into differ-
ent groups and then applies a different sampling ratio to each group. The sampling ratio
of each group is disproportional to its group size. This is to ensure that there are enough
records being sampled from small groups. Since stratified sampling is designed for opti-

40



 0%

 1%

 2%

 3%

 4%

 5%

 0  2000  4000  6000  8000  10000

M
ed

ia
n 

Er
ro

r

(a) BP-Cube Size (k)

AQP (measure-biased)
AQP++ (measure-biased)

 0%

 2%

 4%

 6%

 8%

<N,F> <A,F> <R,F> <N,O>

M
ed

ia
n 

Er
ro

r

(b) Group-by Key

AQP (stratified)
AQP++ (stratified)

Figure 3.10: Comparing AQP++ with AQP using measure-based sampling and stratified
sampling (TPCD-Skew 100GB).

mizing group-by queries, we randomly generated 1000 group-by queries of the following
form:

SELECT SUM(l_extendedprice) FROM lineitem
WHERE l_orderkey, l_suppkey
GROUP BY l_returnflag, l_linestatus,

where the selectivity of each query is between 0.5% - 5%. We then created a 0.05% stratified
sample of the dataset w.r.t. the group-by attributes, l_returnflag and l_linestatus, leading
to a sample of size |S| = 0.3 million. AQP used the sample to estimate the answers to
the group-by queries; AQP++ used the same sample along with a small BP-Cube of size
k = 50, 000 to estimate the answers. Figure 3.10(b) reports the median error w.r.t. each
group. We can see that AQP++ achieved 3 × −4× more accurate answers than AQP, which
validated the effectiveness of AQP++ for stratified sampling. Interestingly, both AQP++ and
AQP returned true answers for the group-by key of “<N,F>” because the group size was
very small and all its records were included into the sample due to the use of stratified
sampling.

3.8.5 Evaluation on More Datasets

We compared the performance of AQP++ and AQP on two other datasets, BigBench and
TLCTrip.

For the BigBench dataset, we want to examine the performance of AQP++ for different
BP-Cube size. We created a 0.05% uniform sample of the dataset, and randomly generated
1000 queries using the template of [SUM (adRevenue), visitDate, duration, sourceIP] with
the selectivity of 0.5%-5%. Figure 3.11(a) compares the median error of AQP++ and AQP
by varying k. We can see that even with a small BP-Cube, AQP++ can still outperform AQP
by a lot. For example, when k = 50, 000, AQP++ reduced the median error by 3.8×. As k
grows, AQP++ can achieve better and better performance, finally reached a median error
of 0.60% when k = 100, 000.

41



 0%

 1%

 2%

 3%

 4%

 20000 40000 60000 80000 100000

M
ed

ia
n 

Er
ro

r

(a) BP-Cube Size (k)

AQP
AQP++

 0%

 1%

 2%

 3%

 4%

 1  2  3  4  5  6  7  8  9  10

M
ed

ia
n 

Er
ro

r

# of Dimentions

AQP
AQP++

(a) BigBench (b) TLCTrip

Figure 3.11: Comparing AQP++ with AQP on the BigBench (100 GB) and TLCTrip (200GB)
datasets.

For the TLCTrip dataset, we want to examine the performance of AQP++
for different number of dimensions. We chose ten columns from the table, and
constructed ten query templates accordingly: [SUM (Distance), Pickup_Date], · · · ,
[SUM (Distance),Pickup_Date, Pickup_Time,vendor_name,Fare_Amt,Rate_Code, Pas-
senger_Count, Dropoff_Date, Dropoff_Time, surcharge, Tip_Amt]. We created a 0.1%
uniform sample of the dataset; for each query template, we randomly generated 1000 queries
with the selectivity of 0.5%-5%, and precomputed a BP-Cube of size k = 300, 000 for it. Fig-
ure 3.11(b) compares the median error of AQP++ and AQP w.r.t. each query template.
Similar to Figure 3.7(c), we found that AQP++ significantly outperformed AQP when the
number of dimensions is small and marginally improved the median error of AQP when the
number of dimensions was increased to 10.

3.9 Conclusion

In this work, we studied how to enable database systems to answer aggregation queries
within interactive response times. We found that the two separate ideas for interactive
analytics, AQP and AggPre, can be connected together using the AQP++ framework. We
presented the unification and generality of the framework, and demonstrated (analytically
and empirically) why AQP++ can return a more accurate answer than AQP. After that, an
in-depth study of the framework was conducted for range queries. In the study, we formally
defined the aggregate-identification and aggregate-precomputation problems, and proposed
both optimal solutions (under certain assumptions) as well as effective heuristic approaches
(for general settings). We implemented AQP++ on a commercial OLAP system, and eval-
uated them on three datasets. Experimental results showed that AQP++ can improve the
answer quality of AQP by up to 10× and reduce the preprocessing cost (both time and
space) of AggPre by several orders of magnitude.

42



Our work is a first attempt to provide a general framework to connect AQP and AggPre
together. Since both AQP and AggPre have been extensively studied in the past, we believe
there are many future research directions to explore. First, various techniques have been
proposed to optimize AQP (e.g., workload-driven sample creation) as well as AggPre (e.g.,
cube approximation). It would be interesting to revisit these techniques under the AQP++
framework. Second, there are some aggregation functions that AQP cannot handle well, such
as min and max. However, they are easy for AggPre. Since AQP++ connects AQP with Ag-
gPre, it would be interesting to explore whether AQP++ can be extended to support these
aggregation functions. Third, it might be hard for some users to decide which query tem-
plates should be specified. Thus, user-guided query template design is another interesting
topic to explore.

43



Chapter 4

SamComb: Combining Different
Types of Samplers

In Chapter 3, we have presented AQP++. It combines samples with cubes (that store pre-
computed aggregations). One issue with AQP++ is that it suffers from the limitation of
cubes. More specifically, cubes only support range queries, and cubes still suffer from the
curse of dimensionality. On the other hand, we observed that the sample is a general data
summary. It supports more types of queries and does not suffer from the curse of dimension-
ality. Then, one question is can we improve the estimation quality by combining different
types of samples?

In this chapter, we present SamComb, a bandit-based sampler combination framework
that combines different types of samplers. Given a set of samplers, a budget, and a query,
SamComb can automatically decide how much budget should be allocated to each sampler
so that the combined estimation achieves the highest accuracy.

4.1 Motivation

The quality of sample-based estimations highly dependent on two important factors si-
multaneously (which will be elaborated in Section 4.2.1): i) how data is sampled, i.e., a
sampling distribution which specifies how likely a tuple is drawn into the sample, and ii)
the underlying data distribution in the population where we want to calculate parameters.
One size does not fit all. Various samplers are proposed in the literature [103, 102, 78, 50]
with different sampling distributions. For example, a uniform sampler draws a sample from
the population where each tuple has the same probability to be selected [90], a stratified
sampler draws a sample so that the tuples in each group have the same probability to appear
in the sample [50, 103], and a measure-biased sampler draws a sample so that the tuples
with large measure values have a higher probability to be selected [78]. While the sampling
distribution has to be specified before the sample is drawn, ii) is decided at the “estimation
time”.

44



SELECT SUM(A) FROM table WHERE B > 10

For example, the above query specifies that we want to focus on the population with B >

10 and estimate SUM(A). Thus, the distribution of A in that particular population and how
well it matches the sampling distribution decide the estimation accuracy. Therefore, there
is no single sampler that works well in all cases.

In this work, we investigate how to combine multiple samplers of the same population to
estimate population parameters. Given k different samplers, a sample budget, an aggregation
function (i.e., COUNT, SUM, AVG), and a predicate specifying the population to be focused on
(e.g., B > 10), we study how to allocate the budget to each sampler, so that the combined
estimation using k samplers achieves the highest accuracy. For ease of presentation, we
use SQL queries (e.g., in the example above) to represent population parameters to be
estimated. Similar to existing work [47, 78], we assume each sampler precomputes a large
sample, thus they can efficiently draw a sample with given budget by sequentially scanning
the data.
Exploitation vs Exploration. We prove that the optimal budget allocation strategy is
to allocate all the budget to the best sampler. The next questions is how to identify the
best sampler. One may design some heuristic rules by leveraging the query information.
Unfortunately, it is insufficient to identify the best sampler by only looking into the query,
due the following two reasons.

Firstly, a query could satisfy multiples rules, and resulting in multiple samplers chosen by
different rules. For example, consider the following two rules: 1) Rule 1: If a query contains
A in the aggregate function, then choose the measure-biased sampler over A column. 2) Rule
2: If a query contains B = b in the predicate, where b is a constant, then choose a stratified
sampler over B column. Consider a query:

SELECT SUM(price * (1 - tax)) WHERE country = ’USA’

The measure-biased sampler over price and tax column, and the stratified sampler over
country both satisfy the rules. Hence it is still unknown which sampler should be chosen.

Secondly, even we have a rule-based approach that returns a single sampler, the best
sampler still can be different for different data. For example, consider a query:

SELECT SUM(price) FROM table WHERE itemid < 100

If all tuples satisfy itemid < 100, then the measure-biased sampler over price column is
known as the best sampler. However, if all the tuples whose itemid < 100 have a very
small price, then the measure-biased sampler could perform worse than a uniform sampler,
since the tuples that contributes to the answer most are those with small price, and are
assigned with a small probability by the sampler.

The above two reasons suggests that it is unknown which sampler is the best w.r.t. a
given query before scanning the whole data. To address this issue, we allocate a certain

45



amount of sampling budget to each sampler (i.e., draw samples of certain size using each
sampler) in an adaptive way, and assess which sampler is the best using their samples. The
identified one is called the empirically best sampler, which may or may not be the truly best
sampler. During this process, we need to balance the exploitation vs exploration trade-off,
that is, to exploit the the empirically best sampler or explore a different sampler which
could be the truly best sampler.
SamComb Framework. To solve this challenge, we propose SamComb, a bandit-based sam-
pler combination framework. It models sampler combination problem as multi-armed bandit
(MAB) problem [49, 156, 117], which is a principled way to balance the exploitation vs ex-
ploration trade-off. SamComb is an iterative framework. At each iteration, it assesses which
sampler is the best, then uses an MAB-based approach to decide which sampler to select,
and finally allocates a small budget to the sampler. The iteration will continue until the
budget is exhausted. Finally, SamComb uses the budget allocated to each sampler to estimate
the answer to the query, respectively, and computes a weighted average of these estimated
answers as the final answer. Comparing to approaches that select one best sample, the
select-then-combine framework of SamComb can fully leverage all the samples and does not
waste any budget used for exploration.

The approaches developed for MAB have a guarantee that most budget will be allocated
to the best arm. However, it is not clear whether they are still applicable to our problem,
since the two problems have different optimization objectives. MAB aims to maximize a
linear sum of the reward from each arm and it only involves sample size (i.e., pull times) as
variable, while our problem aims to minimize a complex function of the variance from each
sampler: it is not linearly additive as MAB, and it involves both sample size and weight.
We propose effective solutions and justify our solutions both analytically and empirically.

Firstly, we discuss how to model our problem as an MAB problem and then justify this
modeling by showing that their objective functions share some common properties.

Secondly, to solve our budget allocation problem, we extend two well-known MAB ap-
proaches [49], ϵt-greedy and Upper Confidence Bound (UCB). We prove that both approaches
can guarantee that the allocated budget to each sub-optimal sampler is at most O(lnn),
where n is the total budget.

Thirdly, we discuss how to combine the estimation from each sampler into the final
estimation. We propose two approaches and prove the optimality of both approaches.

Finally, we conduct extensive experiments to evaluate SamComb using both synthetic and
real-world datasets. The results validate the effectiveness of our approaches empirically.
We also apply SamComb to applications like selectivity estimation, and demonstrate the
advantages of combining multiple samplers. We see this work as an initial step towards
building a principled federated framework to address the one-size-does-not-fit-all challenge
in online aggregation, approximate query processing, and cardinality estimation.

In summary, we make the following contributions:

46



Id Price Country

1 150 USA

2 10 CA

3 0.1 USA

4 350 USA

5 50 CA

6 3 USA

7 650 CA

8 0.5 USA

9 900 USA

10 85 USA

… … …

1M 0.2 CA

Full Table
Id Price Country Probability

1 150 USA 1e-6

3 0.1 USA 1e-6

… … … …

Id Price Country Probability

9 900 USA 0.018

7 650 CA 0.013

… … … …

Id Price Country Probability

2 10 CA 2.5e-6

4 350 USA 6.25e-7

… … … …

A sample drawn by uniform sampler

A sample drawn by measured-biased 
sampler

A sample drawn by stratified sampler

Figure 4.1: An illustration of different samplers.

1. We propose a novel idea that combines different samplers to enhance sample-based esti-
mation. We formally define the sampler combination problem. To the best of our knowl-
edge, we are the first to study this problem.

2. We model our problem as a multi-armed bandit problem, and propose SamComb, a bandit-
based sampler combination framework to solve the problem.

3. We propose two budget allocation approaches based on existing MAB strategies, and two
weight allocation approaches to combine the estimated answers from multiple samplers
into the final answer. We prove theoretical guarantees for these approaches.

4. We evaluate SamComb on both synthetic and real-world datasets. The results show that
SamComb can effectively combine multiple samplers and achieve a higher estimation ac-
curacy compared to baselines.

4.2 Problem Formalization

In this section, we first define the concept of sampler and then formalize the sampler com-
bination problem.

47



We focus on the population parameters that can be expressed in the following form of
SQL queries:

SELECT f(A) FROM table

WHERE Predicate (B1, B2, ...)

where f is SUM, COUNT, or AVG. For ease of presentation, we mainly consider f = SUM, since
COUNT is a special case of SUM and AVG is the ratio of SUM to COUNT. We also discuss how
to support other aggregate functions such as PERCENTILE in Section 4.6.

4.2.1 Sampler

There are different sampling methods (uniform, measure-biased, and stratified sampling).
We find that each of them can be seen as a special case of weighted sampling. Thus, we define
sampler as weighted sampling. Given a table T with N tuples, a sampler draws a weighted
sample from T such that the probability of each tuple being selected is proportional to its
weight. Definition 4 presents a formal definition.

Definition 4 (Sampler). Given a table T with N tuples, each tuple ti ∈ T is associated
with a probability pi, where 0 < pi ≤ 1 and ∑︁N

i=1 pi = 1. A sampler S can draw a weighted
sample S with replacement of any given sample size from T , where each tuple ti ∈ T has a
probability of pi to be sampled.

If the context is clear, we represent a sampler by its probability of selecting each tuple,
i.e., {p1, p2, · · · , pN}. The only difference among different sampling methods is how to com-
pute pi (for all i ∈ [1, N ]). Note that one can certainly obtain other samplers by computing
pi differently. Our system supports them as well.

• Uniform Sampler: A uniform sampler selects each tuple with the same probability, i.e.,
pi = 1

N .

• Measure-biased Sampler: Given a measure column, a measure-biased sampler selects each
tuple with probability proportional to the measure value, i.e., pi = mi∑︁N

i=1 mi

, where mi is
the measure value for tuple i.

• Stratified Sampler: Given a stratified column G, the table is divided into |dom(G)| groups,
where |dom(G)| is the domain size of G (i.e., the number of distinct values in G). A
stratified sampler selects each group with equal probability. For each tuple i, let Gi be
the group that contains tuple i, then we have pi = 1

|dom(G)||Gi| .

Example 5 illustrates how each sampler computes pi.

Example 5. Consider the example in Figure 4.1. The full table has 1M tuples. A uniform
sampler selects each tuple with equal probability 1

1M = 1e-6. Now, consider a measure-biased

48



sampler on Price column. Suppose the total measure of price is 150 + 10 + ...+ 0.2 = 50000,
then the probability of selecting tuple t is computed as t.price

50000 . E.g., the probability of selecting
tuple 9 is 900

50000 = 0.018. Finally we consider a stratified sampler on Country column. It has
2 strata: USA and CA, where USA has 0.8M tuples and CA has 0.2M tuples. Hence, for
the tuples whose country is USA we have pi = 1

2∗0.8M = 6.25e-7, and for the tuples whose
country is CA we have pi = 1

2∗0.2M = 2.5e-6.

Answer Estimation. Given a query q and a weighted sample S, let q(S) denote the
estimated answer based on S. Hansen-Hurwitz (HH) estimator [88] can be directly applied
to estimate the answer to an SUM query when the query has no predicate (e.g., q:SELECT

SUM(Price) FROM table). See Equation (4.1) below.

q(S) = 1
|S|

|S|∑︂
i=1

yi
pi
, (4.1)

where yi is the aggregate value (e.g., ti[Price]) of tuple i.
The HH estimator can be easily extended to support predicates through query rewriting.

The main idea is to rewrite a with-predicate query as an equivalent without-predicate
query. E.g., query SELECT SUM(Price) From table WHERE Predicate can be rewritten
as: SELECT SUM(CASE WHEN Predicate THEN Price ELSE 0 END) FROM table. Then, we
generalize the yi

pi
to di: di = 0 if the tuple does not satisfy the predicate, otherwise di = yi

pi
.

Estimation Quality. A common approach to measure the estimation quality are confidence
intervals, which bound the real result with high probability. To compute the confidence
interval, we first define sampler quality.

Definition 5 (Sampler Quality). Given a sampler {p1, p2, · · · , pN} and a SUM query, we
define a discrete distribution Dq w.r.t. query q (abbreviated as D if the context is clear) that
takes value di with probability pi for each i ∈ [1, N ]. Define sampler quality by var(D), which
is computed as

var(D) =
N∑︂
i=1

pi ·
(︂
di − mean(D)

)︂2
, (4.2)

where mean(D) = ∑︁N
i=1 pi · di.

Intuitively, the sampler quality measures how good a sampler is for answering a given
query. It is the variance of the HH estimator with a sample of 1 tuple drawn from the
sampler. Hence, after drawing the same size of samples, the sampler with a higher quality
(lower variance) will result in a better estimator.

As each tuple is drawn independently, the variance of the estimator over a sample of
size S can be expressed as var(D)

|S| . Based on the central limit theorem (CLT), the confidence

49



interval is computed as

CI = q(S) ± λ

√︄
var(D)

|S|
(4.3)

where λ is a constant number related to the confidence level. For example, λ = 1.96 means
the true value lies in the confidence interval with the probability of 95%.

The larger the width of the confidence interval (i.e., λ
√︃

var(D)
|S| ), the lower quality the

estimated answer. Given a query, we prefer a sampler with var(D) as small as possible.
Thus, var(D) is named sampler quality in Definition 5.

For simplicity, let var(q(S)) = var(D)
|S| be the variance of q(S). Then, the confidence

interval can also be denoted by

CI = q(S) ± λ
√︂

var(q(S)) (4.4)

Sampler Implementation. Each sampler exposes an interface that takes a sample budget
ni as input and returns a sample of size ni. To save sampling time, we assume that each
sampler has precomputed a large sample stored on disk in the offline stage. This is achieved
by applying the approach in Appendix B of Sample + Seek [78]. During query time, it
sequentially scans ni tuples from the precomputed sample to get a sample of size ni, or
directly computes the aggregate on a sample by issuing a range query with predicate row_id

BETWEEN a AND b.

4.2.2 Sampler Combination Problem

Problem Definition. Suppose the total sample budget is n. The sampler combination
problem is to study how to allocate the total budget to each sampler such that the com-
bined estimator performs the best. Specifically, given a query q, we draw a sample Si with
size ni from sampler Si, such that ∑︁k

i=1 ni = n. For each sample Si, we can get an unbi-
ased estimator of the query result, i.e., q(Si). Then we combine k estimators into the final
estimator. Let ψ be the set of drawn samples, i.e., ψ = {S1, S2, ..., Sk}. We denote their
combined estimator as q(ψ), which is computed as follows:

q(ψ) =
k∑︂
i=1

wi · q(Si), (4.5)

where wi is the weight for each estimator q(Si) and is constrained by ∑︁k
i=1wi = 1. Note

that we may allocate no budget to a sampler. In this case we remove its sample from ψ.

50



The variance of the combined estimator is computed as 1:

var
(︂
q(ψ)

)︂
=

k∑︂
i=1

w2
i · var(q(Si)) =

k∑︂
i=1

w2
i · var(Di)

ni
(4.6)

Recall that our goal is to minimize the estimation error (confidence interval) using
the combined estimator. Since the confidence interval can be computed from variance (see
Section 4.2.1), our goal is equivalent to minimize the variance of the combined estimator.

We call this problem the sampler combination problem, as formalized in Problem 3.

Problem 3 (Sampler Combination). Given a set of k samplers, a query q, and a total
budget n, the goal of the sampler combination problem is to decide the sample size ni for
each sampler such that the combined estimator has the minimized variance:

arg min
n1,...,nk,w1,...,wk

k∑︂
i=1

w2
i · var(Di)

ni

subject to
k∑︂
i=1

ni = n

ni ≥ 0, for all i ∈ [1, k]
k∑︂
i=1

wi = 1

(4.7)

4.3 Sampler Combination Framework

In this section, we discuss how to solve the sampler combination problem and present the
sampler combination framework.

4.3.1 Optimal Weight Allocation

The sampler combination problem consists of two sub-problems:

1. Budget Allocation. How should we decide the sample size ni for each sampler?

2. Weight Allocation. How should we decide the weight wi for each estimator?

1Note that each sampler draws sample independently.

51



Let us first consider the second problem by assuming n1, n2, · · · , nk have been decided.
The problem can be formalized as follows:

arg min
w1,w2,...,wk

k∑︂
i=1

w2
i

var(Di)
ni

subject to
k∑︂
i=1

wi = 1,

where n1, n2, · · · , nk are constant values.
By applying Lagrange’s method of multipliers[53], we can get the optimal weight al-

location: wi =
ni

var(Di)∑︁k

j=1
nj

var(Dj )
. By incorporating the optimal weight into Equation (4.7), the

sampler combination problem is reduced as follows:

arg min
n1,...,nk

1∑︁k
i=1

ni
var(Di)

subject to
k∑︂
i=1

ni = n

ni ≥ 0, for all i ∈ [1, k]

(4.8)

Thus, the key to solve the sampler combination problem is how to solve the budget allocation
problem.

4.3.2 Exploration and Exploitation Trade-off

We first propose the optimal solution to the budget allocation problem and prove its op-
timality. However, please note that this solution cannot be achieved in practice, hence we
call it ideal solution. We then explain the reason and find an interesting trade-off between
the exploration and exploitation to develop a practical solution.

Ideal Solution. Given a query, different samplers produce estimators with different qual-
ities. Intuitively, allocating more budget to a ‘good’ sampler will lead to a more accurate
combined estimator. This intuition inspires us to consider an extreme case which allocates
all the budget to the ‘best’ sampler.

Specifically, we use var(Di) (see Definition 5) to measure how ‘good’ a sampler is. The
smaller var(Di) is, the better the sampler is. Let Si∗ denote the best sampler, i.e., i∗ =
arg mini∈[1,k] var(Di).

The ideal solution allocates all the budget to Si∗ and allocates zero budget to Si (for
i ̸= i∗). That is, for each i ∈ [1, n], we have:

ni =

⎧⎨⎩n, if i = i∗

0, otherwise

52



Optimality. We then prove that the ideal solution is the optimal solution of the budget
allocation problem (formalized in Equation (4.8)), as shown in Lemma 7.

Lemma 7. Given a set of k samplers, a query q, and a total budget n, the optimal budget
allocation is to allocate all the budget n to the best sampler Si∗.

Proof. All the proofs in this work can be found in Appendix B.

Exploration vs. Exploitation. Although we get the optimal solution of the budget allo-
cation problem, this solution is impractical. The reason is that it requires the knowledge of
the best sampler in advance, while computing each sampler quality var(Di) requires scan-
ning the full data and against the purpose the sampling. To solve this problem, we develop
a framework to approach the ideal solution, and it can allocate most of the budget to the
best sampler without knowing which sampler is the best. More specifically, we use a sample
to estimate var(Di) and define empirical best sampler as the sampler with the highest esti-
mated sampler quality. In this way, the sample budget can be allocated with two different
purposes: i) Exploration: it is allocated to estimate each sampler quality in order to find
the best sampler; ii) Exploitation: it is allocated to the empirical best sampler in order to
enhance the combined estimator.

There is an interesting trade-off between exploration and exploitation. When allocating
more budget to explore sampler quality, it is more likely to find the true best sampler. How-
ever, there will be less budget left for the empirical best sampler to enhance the combined
estimator. On the other hand, when allocating less budget to explore sampler quality, it is
more likely to estimate sampler quality incorrectly and regard a bad sampler as the best
sampler. As a result, most of the budget could be allocated to this bad sampler.

4.3.3 Model as Multi-Armed Bandit

The well-known Multi-Armed Bandit (MAB) problem also faces the exploration and ex-
ploitation trade-off [156]. One natural question is that can we borrow some ideas from
MAB to solve our problem? In this subsection, we first introduce some background about
MAB and then present how to model our problem as MAB. Finally, we justify why this
modeling makes sense.
Background. MAB is a classical reinforcement learning problem that studies the explo-
ration and exploitation trade-off. Consider a slot machine with k arms. A player needs to
decide which arm to pull at each round. If arm i is pulled, it will return a random reward,
usually in [0, 1], from an unknown reward distribution Di specific to arm i. The goal of the
player is to maximize the total reward, or minimize the regret (will be defined later), in n

rounds.
Let µi = E[Di] and µ∗ = maxi∈1...k{µi}. Clearly, the optimal strategy is to always pull

the arm with the highest expected reward. However, since we do not know the best arm

53



in advance, there exists a ‘regret’ of the actual pulling strategy compared to the optimal
strategy. The regret over n rounds, denoted by Rn, is defined as the difference of the total
rewards achieved by the optimal pulling strategy and by the actual pulling strategy, i.e.,

Rn = µ∗ · n−
n∑︂
t=1

µIt , (4.9)

where It is the chosen arm in round t. The expected regret is E[Rn] = µ∗ · n−
∑︁n
t=1 E[µIt ].

We denote ∆i = µ∗ −µi by the reward gap between an arm i and the best arm, and rewrite
E[Rn] in terms of ∆i:

E[Rn] =
k∑︂
i=1

(︂
∆i · E[Ti(n)]

)︂
, (4.10)

where Ti(n) is the number of times that an arm i is pulled over n rounds, and clearly, they
satisfy ∑︁k

i=1 Ti(n) = n.
The goal is to find a pulling strategy to minimize E[Rn]. For a given arm i, if it is

an optimal arm, i.e., µ∗ = µi, then we have ∆i = 0, thus no matter how many times the
optimal arm is pulled, there is no impact on E[Rn]. Thus, only the number of times that each
sub-optimal arm is pulled will affect E(Rn). There are several pulling strategies proposed
in the MAB literature [156]. They provide good theoretical guarantees. When using these
strategies, the number of times that each sub-optimal arm is pulled can be upper-bounded
by O(lnn).

Modeling. We next discuss how to model the sampler combination problem as MAB. Each
sampler can be regarded as an arm in MAB. At each round, we need to pick up one sampler
and draw a small sample from it. This can be thought of as picking up an arm and pulling
it to get a random reward.

The key difference between the two problems is the definition of the regret (i.e., the
objective function). For MAB, as shown in Equation (4.9), the regret is a linear combination
of the observed random reward of each round. For our problem, the regret measures the
difference of the estimator variances between an allocation strategy and the optimal strategy
(i.e., allocating all the budget to the best sampler), which is defined as

Rn = 1∑︁k
i=1

ni
var(Di)

− var(Di∗)
n

, (4.11)

where i∗ is the index of the best sampler, ni is the size allocated to sampler Si, and n is the
total sample size.

Justification. Although our problem has a different objective function than the MAB
problem (Equation (4.9) vs. Equation (4.11)), the two objective functions share two common

54



properties, which make it possible to apply MAB-based approaches to solve our problem.
First, their optimal solutions are the same, i.e., allocating all the budget to the best sampler
(or arm), which lead to zero regret.

Property 1. The optimal solution to the sampler combination (or MAB) problem is to
allocate all the sampling (pulling) budget to the best sampler (or arm).

In reality, however, the optimal solution of sampler combination problem cannot be
achieved since the best sampler is unknown. This is similar to MAB setting where the arm
quality is unknown and needs to be estimated from each pull. It inspires us to solve the
problem in an iterative framework similar to MAB: explore the sampler quality and exploit
budgets to the empirically best sampler.

We also interestingly observe that for both objective functions, the optimal action is
independent of what actions have been taken in the previous iterations. That is, it is always
optimal to choose the best sampler (or arm) at every individual iteration, regardless of
which samplers were chosen in the previous iterations.

Property 2. At each iteration, the optimal action for the sampler combination (or MAB)
problem is to choose the best sampler (or arm), which is independent of historical actions.

This property implies that MAB and SamComb follows the same principal to take action
in each iteration: choose the best one in each iteration. Therefore, if we apply an MAB-like
strategy, the action it takes may also lead us to its guarantee: most budgets are allocated
to the best sampler, which can help achieve our goal.

4.3.4 Framework

Since our problem and MAB shares the same goal, i.e., choose the best sampler (arm) as
many times as possible. Thus, it makes sense to model our problem as MAB. To this end,
we propose SamComb, an MAB-based sampler combination framework.

We first introduce the existing MAB framework. Initially, the framework pulls each arm
once, to get an initial estimation of the arm quality. After that, it decides which arm to pull
in an iterative scheme. The fundamental challenge is how to balance the exploration and
exploitation trade-off. Well-known strategies, such as ϵ-greedy and UCB [49], are proposed
to handle the trade-off systematically, and guarantee that the best arm is pulled as many
times as possible.

The framework of SamComb is shown in Figure 4.2. It is an iterative framework based
on MAB, and consists of three phases:

1. Initialization Phase: In the initialization phase, SamComb draws an initial batch of tuples
from each sampler, to get an initial estimation of sampler quality.

55



initial initial initial

𝑆!
Initialization 

Phase

Allocation 
Phase

selected

Combination
Phase

𝑆" 𝑆#

𝑞 𝑆 =	𝑤! ⋅ 𝑞 𝑆! + 𝑤" ⋅ 𝑞 𝑆" …+ 𝑤# ⋅ 𝑞 𝑆#

selected

…

…

unselected unselected

unselected unselected

selectedunselectedunselected

… …

selected unselected unselected

Figure 4.2: The SamComb Framework

2. Allocation Phase: In the allocation phase, at each iteration, SamComb decides which sam-
pler to select in order to achieve the best trade-off between exploration and exploitation
and then draws a small batch of tuples from it. We extend the ϵ-greedy and UCB strate-
gies from MAB and prove their theoretical guarantees in Section 4.4. The allocation
phase stops once the budget is exhausted.

3. Combination Phase: After the allocation phase, suppose each sampler is allocated a sam-
ple of ni tuples such that ∑︁k

i=1 ni = n. In the combination phase, SamComb computes an
estimator q(Si) from each sampler and combines them (by computing a weighted average)
into the final estimator. We propose two weight allocation approaches in Section 4.5.

4.4 Allocation Phase

We first present the ϵt-greedy strategy in Section 4.4.1 and then the Lower Confidence
Bound (LCB) strategy in Section 4.4.2. We prove that both strategies can guarantee that
the allocated sample size to any sub-optimal sampler is at most O(lnn), where n is the
total sampling budget.

4.4.1 ϵt-greedy

ϵt-greedy [49] is a simple but powerful approach in MAB. It controls the exploration and
exploitation trade-off through a parameter ϵt: at each iteration t, it pulls a random arm

56



with a probability of ϵt (exploration), and pulls the empirical best arm with a probability
of 1 − ϵt (exploitation).

A simple approach is to set ϵt to a fixed value, i.e., keeping the same trade-off at every
iteration. However, it contradicts the intuition that we should explore more in early itera-
tions to look for the best arm and then exploit more in later iterations once the empirical
best arm is more likely to be the true best arm.

A more sophisticated approach is proposed to address this issue [49]. It progressively
decreases ϵt as iteration t increases. I.e., ϵt = min{1, ck

d2t}, where t refers to the t-th iteration,
k is the number of arms, and c and d are user-specified parameters. It is proved that when
c > 5, and d is upper-bounded by the reward gap between the best arm and the second
best arm (i.e., 0 < d ≤ mini:µi<µ∗{∆i}, where ∆i is the reward gap between the best arm
and arm i), ϵt-greedy achieves a logarithmic regret [49]. It is much better than the strategy
of using a fixed ϵ.

We extend the ϵt-greedy strategy to solve our problem. Algorithm 1 shows the pseudo-
code. The main challenges are i) how to identify the empirical best sampler, and ii) how to
prove the theoretical guarantee of our ϵt-greedy strategy.
Empirical Best Sampler. We start with the first challenge. At each iteration, we need
to identify the empirical best sampler, which requires estimating the sampler quality. In
MAB, the arm quality is estimated by averaging the random reward for each pull of the
arm. However, directly applying this approach does not work. This is because MAB only
pulls the arm once in each iteration to get an estimation (i.e., the random reward), but
the sampler quality is a variance and cannot be estimated using a single tuple. To get
multiple tuples, one may consider reusing tuples from previous iterations. Unfortunately,
this approach loses the independence of the estimations between different iterations, which
makes Hoeffding’s inequality fail and lose the guarantee provided by MAB. To solve the
above issue, we propose a batch-based approach: for each iteration, we pull a batch of tuples
to estimate the sampler quality, then we average the estimations of different iterations to
get the final estimation. In this way, we can estimate the sampler quality in each iteration,
and also preserve the independence between iterations.

Let ∆S denote a batch of tuples randomly drawn from sampler S. The estimated sampler
quality using ∆S is computed as 2:

S.batchEst = 1
|∆S| − 1 ·

|∆S|∑︂
i=1

(yi
pi

− q(∆S))2 (4.12)

Note that ∆S could be empty if the current budget is not allocated to the sampler. In this
case, S.batchEst is set to 0.

2See Theorem 4.2.3 in [154]. Note that it needs to be multiplied by n to get our estimator.

57



Algorithm 1: ϵt-greedy strategy
Input : A set of samplers Ψ = {S1,S2, · · · ,Sk}, budget n, batch size b, parameters c and d
Output: A set of samples ψ = {S1, S2, · · · , Sk}

1 # Initialization Phase
2 for each sampler S in Ψ do
3 ∆S: Draw a batch of b tuples from S ;
4 S.batchEst = 1

|∆S|−1 ·
∑︁|∆S|

i=1 ( yi

pi
− q(∆S))2 ;

5 S.batchEstSum = S.batchEst ;
6 S.batchNum = 1;
7 S.sample = ∆S
8 end
9 # Allocation Phase

10 for t = 1 to n/b do
11 ϵt = min{1, ck

d2t } ;
12 if rand() > ϵt then
13 S∗ = arg minS∈Ψ

S.batchEstSum
S.batchNum ;

14 end
15 else
16 S∗ = a random sampler from Ψ;
17 end
18 ∆S: Draw a batch of b tuples from S∗ ;
19 S∗.batchEst = 1

|∆S|−1 ·
∑︁|∆S|

i=1 ( yi

pi
− q(∆S))2 ;

20 S∗.batchEstSum + = S∗.batchEst ;
21 S∗.batchNum += 1;
22 S∗.sample + = ∆S ;
23 end
24 ψ = {S.sample | for each S ∈ Ψ} ;
25 return ψ

After getting an estimation of the sampler quality from each batch, we then average
them to get the final estimation. The sampler with the minimal average value is identified
as the empirical best sampler at the t-th iteration, i.e.,

S∗ = arg min
S∈Ψ

∑︁t
i=0 S.batchEsti
S.batchNum

,

where batchNum is the total number of batches that have been allocated to this sampler
after t iterations.
Theoretical Guarantee. We theoretically analyze how well our ϵt-greedy strategy works
compared to the optimal allocation strategy, which allocates all the budget to the best
sampler. In MAB, ϵt-greedy is proved to have a logarithmic regret bound, and a sub-optimal
arm is pulled at most O(lnn), given a total pulling times of n. We find that a similar
theoretical guarantee also holds in our problem. Similar to MAB, the theoretical guarantee
requires the estimation from each batch bounded. We use ui to denote the bound, which is

58



computed as ui = maxj∈1...N{( yj

pij
)2} − minj∈1...N{( yj

pij
)2}. I.e.,

0 ≤ S.batchEst ≤ ui

In Lemma 8, we prove that the budget allocated to a sub-optimal sampler is bounded
by O(lnn), given a total budget n, when c > 5 and 0 < d ≤ mini ̸=i∗ ∆i

ui
, where ∆i is the

quality gap between the best sampler and sampler i.

Lemma 8. Given a total budget n, if ϵt-greedy is running with parameters c > 5 and
0 < d ≤ mini ̸=i∗ ∆i

ui
, then the budget allocated to any sub-optimal sampler is at most O(lnn).

4.4.2 LCB

We propose the Lower Confidence Bound (LCB) strategy in this section. It is inspired by
the Upper Confidence Bound (UCB) [49] strategy in MAB.

UCB does not only estimate arm quality but also its confidence bound, where the
confidence bound represents the uncertainty of the estimation. The key idea of UCB is
to be optimistic about the uncertainty of the estimation. More specifically, it pulls the arm
with the highest upper confidence bound of the estimation of arm quality, i.e., the arm with
the highest quality in the optimistic case. For the selected arm, there exists two cases: 1) if
it is the best arm, then this is exactly what we want; 2) if it is not the best sampler, then
pulling it will increase our confidence on its sampler-quality estimation (i.e., decreasing the
size of the confidence bound). As a result, it is less likely to be selected in future. Hence,
UCB decreases the probability of pulling a sub-optimal arm, and exploits more and more
on the best arm as iteration increases. It has been proved that UCB achieves a logarithmic
bound on regret [49].

We extend UCB to our problem. Since the smaller the var(D), the better the sampler
quality, we propose a strategy named Lower Confidence Bound (LCB). Similar to the reason
described in Section 4.4.1, we cannot directly apply UCB and we need to preserve the
independence between estimations of each iteration, hence we also adopt a batch-based
approach rather than drawing a single tuple in each iteration. The pseudo code is shown
in Algorithm 2. LCB shares a similar idea with UCB: at each iteration, it estimates the
sampler quality and computes the confidence bound of the estimation. Then, it allocates
the budget to the sampler with the lowest lower confidence bound, i.e., the sampler with
the highest quality in the optimistic case. LCB faces two new challenges: 1) how to compute
the lower confidence bound of the estimation of sampler quality? 2) can we derive a similar
theoretical guarantee like Lemma 8 for LCB?
Lower Confidence Bound. We start with the first challenge. Essentially, the confidence
interval measures how far a random variable is from its expectation, which could be com-
puted from concentration inequalities. For UCB, it regards each random reward as a random

59



Algorithm 2: LCB strategy
Input : A set of samplers Ψ = {S1,S2, · · · ,Sk}, budget n, batch size b, bound ui

Output: A set of samples ψ = {S1, S2, · · · , Sk}
1 # Initialization Phase is the same as Algorithm 1
2 # Allocation Phase
3 for t = 1 to n/b do
4 S∗ = arg minSi

Si.batchEstSum
Si.batchNum − ui

√︂
ln t

Si.batchNum
5 ∆S: Draw a batch of b tuples from S∗ ;
6 S∗.batchEst = 1

|∆S|−1 ·
∑︁|∆S|

i=1 ( yi

pi
− q(∆S))2 ;

7 S∗.batchEstSum + = S∗.batchEst ;
8 S∗.batchNum += 1;
9 S∗.sample + = ∆S ;

10 end
11 ψ = {S.sample | for each S ∈ Ψ} ;
12 return ψ

variable and applies Hoeffding inequality, as stated in Lemma 9, to compute the confidence
interval.

Lemma 9 (Hoeffding Inequality). Let X1, . . . , Xn be independent random variables bounded
by the interval [ai, bi]: ai ≤ Xi ≤ bi. Let X = 1

n

∑︁n
i=1Xi, then Hoeffding Bound states that:

Pr(|X − E[X]| ≥ λ) ≤ 2exp(− 2n2λ2∑︁n
i=1(bi − ai)2 ) (4.13)

In Lemma 9, (X−λ,X+λ) represents the confidence interval, and 2exp(− 2n2λ2∑︁n

i=1(bi−ai)2 )
refers to the confidence level. To extend UCB to LCB, we also adapt the Hoeffding in-
equality. Note that Hoeffding inequality requires the random variables to be bounded and
independent from each other. Hence, we estimate the sampler quality for each batch, as de-
scribed in Section 4.4.1, and regard that estimation (i.e., S.batchEst) as a random variable.
Each random variable is bounded by the interval of [0, ui]. We then use the average of all
random variables as the final estimation of the sampler quality, and denote it by varˆ (D)t,
i.e.,

varˆ (D)t =
∑︁t
i=1 S.batchEsti
S.batchNum

Next we compute the confidence interval of varˆ (D)t by applying Hoeffding inequality.
The variable number n in Hoeffding inequality (Equation (4.13)) is our batch number, i.e.,
S.batchNum. We use σt to represent the confidence level at iteration t, and replace λt with σt

in Equation (4.13). Then the confidence interval is λt = ui

√︃
ln 2

σt
2S.batchNumt

. I.e.3,

Pr

⎛⎝|varˆ (D)t − var(D)| ≥ ui

√︄
ln 2

σt

2S.batchNumt

⎞⎠ ≤ σt (4.14)

3Note that varˆ (D)t is an unbiased estimator and we have E[varˆ (D)t] = var(D).

60



Algorithm 3: AdaptiveLCB strategy
Input : Sampler set Ψ = {S1,S2, · · · ,Sk}, budget n, batch size b
Output: A set of samples ψ = {S1, S2, · · · , Sk}

1 Insert “ui = Si.batchEst” between Line 1 and 2 in Algorithm 2
2 Insert “ui∗ = max(ui∗ ,S∗.batchEst)” between Line 9 and Line 10 in Algorithm 2

We set σt to 2
t2 to make ∑︁

σt converged. Hence we compute the lower confidence bound
of each sampler S at iteration t as follows:

lcbt = varˆ (D)t − ui

√︃
ln t

S.batchNumt
(4.15)

It satisfies:
Pr (lcbt ≥ var(D)) ≤ σt (4.16)

That is, with high probability, the lower confidence bound is no larger than the real sampler
quality.
Theoretical Guarantee. We discuss how to address the second challenge, i.e., what the-
oretical guarantee can we get for LCB? In MAB problem, UCB strategy is proved to pull a
sub-optimal sampler at most O(lnn) times, and achieve a logarithmic regret. We find that
a similar bound also holds for LCB. In Lemma 10, we show that the budget allocated to a
sub-optimal sampler is bounded by O(lnn).

Lemma 10. Given a total budget n, if applying the LCB strategy, the budget allocated to
any sub-optimal sampler is at most O(lnn).

AdaptiveLCB. In LCB, we need ui, which is the bound of the sampler-quality estimation
from each batch, such that the Hoeffding inequality can be applied and the theoretical
analysis holds. However, ui could be very large. When the budget is limited, a large ui may
make LCB spend too much budget on exploration, thus decreasing the overall performance.

To solve this issue, we propose a variation of LCB named AdaptiveLCB. Instead of using a
large ui that can bound all possible estimations from each batch (both historical and future
estimation), we set ui adaptively such that it can bound all the historical estimations. More
specifically, we record the current maximal value of the sampler-quality estimation in each
iteration, and set it to ui. Algorithm 3 shows the pseudo code of AdaptiveLCB. We only need
to add two lines of code into Algorithm 2.

Example 6 illustrates how AdaptiveLCB works.

Example 6. Suppose we have two samplers S1 and S2, and the batch size is 100. We first
draw a batch of 100 tuples from each sampler, and use it to estimate the sampler quality.
Suppose the estimated quality for S1 and S2 are 10000 and 20000, respectively. Since ui is
the adaptive bound of the sampler-quality estimation, u1 and u2 are initialized as 10000 and
20000, respectively.

61



In the first iteration, the lower confidence bound for S1 and S2 are 10000−10000
√︂

ln 1
1 =

10000 and 20000 − 20000
√︂

ln 1
1 = 20000, respectively (see Equation (4.15)). Hence, S1 is

the current empirical best sampler. We draw a batch of 100 tuples from S1 and use it to
compute a sampler-quality estimation. Suppose it is 50000. Then the average sampler-quality
estimation of S1 is updated as 10000+50000

2 = 30000 and u1 is updated as max{u1, 50000} =
50000.

In the second iteration, the lower confidence bound for S1 and S2 are 30000−50000
√︂

ln 2
2 =

565 and 20000 − 20000
√︂

ln 2
1 = 3349, respectively. S1 is still the empirical best sampler, thus

we allocate a batch to S1.
Repeat the iterative process until the budget is exhausted.

4.5 Combination Phase

Once the budget is exhausted, the allocation phase is finished. Now SamComb enters the
combination phase. Let ψ = {S1, S2, · · · , Sk} denote the sample set derived from our allo-
cation strategy (ϵ-greedy or LCB). The goal of the combination phase is to assign a weight
to each sampler such that the variance, var(q(ψ)), of the combined estimator is minimized.

Section 4.3.1 presents the optimal solution to this weight allocation problem. However,
the optimal weight requires knowing var(Di) (for each i ∈ [1, k]), which is not available in
reality. One straightforward solution is to estimate var(Di) using the allocated sample and
then apply this optimal weight allocation. We call such approach pseudo-optimal allocation,
where the weight is computed as follows:

wi = ni/varˆ (Di)∑︁k
j=1 nj/varˆ (Dj)

, (4.17)

where varˆ (Di) is an estimation of var(Di) based on Si.
Let ψ∗ denote the sample set derived from the optimal budget allocation strategy, i.e.,

allocating all the budget to the best sampler. Let var(q(ψ∗)) denote the corresponding
variance. We use the following formula to measure the gap of SamComb to the optimal
strategy:

gap(q(ψ)) = var(q(ψ)) − var(q(ψ∗))
var(q(ψ∗)) (4.18)

Lemma 11 proves that SamComb is asymptotically optimal under the pseudo-optimal
allocation, when varˆ (Di) = var(Di) for each i ∈ [1, k].

Lemma 11. Under the assumption that varˆ (Di) = var(Di) for each i ∈ [1, k], our framework
SamComb, which uses ϵ-greedy or LCB for budget allocation and uses the pseudo-optimal
allocation strategy for weight allocation, is asymptotically optimal.

We next explore an alternative weight allocation strategy to relax the assumption in
Lemma 11. Obviously, a good sampler should receive a higher weight than a bad one. Thus,

62



the key challenge is how to find an alternative way to assess sampler quality. We observe
that after the budget allocation phase , the better the sampler, the larger sample size it
tends to receive, since this is what our budget allocation strategy tries to optimize for. Thus,
the received sample size is an indirect way to assess sampler quality. Based on this idea, we
propose proportional-to-size allocation,

wi = ni∑︁k
i=1 ni

, (4.19)

where ni is the sample size received by the sampler i after the budget allocation phase.
Lemma 12 proves that SamComb is asymptotically optimal under the proportional-to-size

allocation.

Lemma 12. Our framework SamComb, which uses ϵ-greedy or LCB for budget allocation
and uses the proportional-to-size allocation strategy for weight allocation, is asymptotically
optimal.

We experimentally compare the two weight allocation strategies and find that they have
similar performance. Since the proportional-to-size allocation provides a nice theoretical
guarantee, SamComb uses it by default.

4.6 Extensions

In this section, we discuss how to extend our framework to support other aggregate func-
tions, group-by queries, and data updates.
Other Aggregate Functions. Previously we mainly discussed SUM-like query. Actually
SamComb can be extended to support more aggregate functions, such as MIN, MAX and
PERCENTILE query.

We first introduce how to estimate the answer using a single sampler. Suppose a tuple
is sampled with a probability of 0.1, then it approximately represents 10 such tuples in
the population. In this way, we can “reconstructed” the population and issue the original
query over the “reconstructed” population to get an estimation. This idea is similar to
the plug-in approach in [122]. Note that the “reconstructed” usually happened virtually.
For many aggregation functions we do not need to actually rebuild the population. Take
q-percentile (e.g., q = 0.9 represents the 90-th percentile) query as an example. As each
tuple t in the sample represents 1/pt tuples in the “reconstructed” population, where pt is
drawn probability of tuple t, we denote its weight as 1/pt. Then we sort the sampled tuples
by their values, and accumulating the weights. The q-percentile query can be estimated as
the largest value when the accumulated weights is no larger than q multiply by the total
weights.

63



Now we discuss the case of multiple samplers. To be supported by SamComb, the aggre-
gate function needs to specify: 1) how to allocate the budget in each iteration and 2) how
to combine the results from multiple samplers.

For the first question, since most aggregate functions can not compute the confidence
bound easily or efficiently, we adopt the ϵ-greedy strategy by default. To compare samplers’
qualities, by default we compare the selectivity in their sample. One may also use different
approaches for different functions. E.g., for MAX query, we can simply compare the max value
in the sample (exclude the tuples which do not satisfy the predicate), since the sampler with
a larger max value definitely makes a better estimation.

For the second question, since linear combination (by wi) does not work for all the
aggregate functions, a similar idea of reconstructing the population can be applied to the
general case. For example, to process a median query, we can reconstruct multiple popu-
lations from different samplers, and then merge them and choose the median value of the
merged reconstructed population.
Group-by Queries. To process group-by query, we will maintain the related information
for each group and apply previously discussed approaches to estimate each group. Then,
the left question is how to select the sampler in each iteration. To answer this question,
we consider minimizing the max error among groups. For SUM-like queries, we use the
estimator variance to measure the group error and select the sampler that has the highest
quality for the group with the max error. For other aggregate queries (e.g., percentile), we
use # of tuples to measure the group error. Let g be the group with the minimal tuples, we
then select the sampler that are more likely to contain tuples in g.
Data Update. In this work we focused on insert-only update, like many existing works [131].
When data is updated, SamComb will maintain the pre-computed samples. Let DΘ be the
stale data, SΘ be the stale sample created by a sampler S, and D∆ be inserted data, re-
spectively. Now, the goal is to maintain SΘ such that it is equivalent to a sample with the
same size drawn by S from DΘ ∪ D∆. To make the maintenance efficient, the high level
idea is to replace some tuples in SΘ with a sample drawn from D∆. I.e., the new sample
consists of two parts: the kept tuples in SΘ, denoted as S′

Θ; and the drawn sample from D∆,
denoted as S∆. For example, a uniform sampler draws each tuple with probability pi = 1

N .
In sample SΘ, each tuple is drawn with probability 1

NΘ
. After data is updated, each tuple

should be drawn with probability 1
NΘ+N∆

. Hence, we keep each tuple in SΘ with probability
NΘ

NΘ+N∆
to get S′

Θ, and draw each tuple in D∆ with probability 1
NΘ+N∆

to get S∆. Finally,
the updated sample is S′

Θ ∪ S∆.

4.7 Experiment

We evaluate SamComb using both synthetic and real datasets. The experiments aim to
answer the following questions:

64



• What should be the best setting for SamComb?

• Is it necessary to combine multiple samplers?

• Is bandit-based better than heuristic-based?

• How does SamComb perform in various settings?

4.7.1 Experimental Setup

Datasets. 1) TPCS is a synthetic dataset generated from a variation of the TPC-H bench-
mark [67]. We set parameters skewness z = 2 and scale s = 1, and focused on the lineitem
table, which contains 6 million rows and 16 columns. We also generated a larger dataset us-
ing scale s = 10 to test the end-to-end performance. 2) Loan [2] is a real-world peer-to-peer
loan dataset. It concatenated historical loans from Prosper and Lending Club from 2013
to 2018. The dataset contains 3 million rows and 18 columns with a wide variety of data
distributions.
Samplers. We created a uniform sampler, a stratified sampler on l_returnflag, and a
measure-biased sampler on l_extendedprice for TPCS dataset, and created a uniform sam-
pler, a stratified sampler on grade, and a measure-biased sampler on principal_balance

for Loan dataset. Note that a few tuples may have a very large value and thus be selected
too many times by the measure-biased sampler, hence we will binnizate the measure column
before computing the sampling probability.
Queries. The population parameters that we aim to estimate are in the
form of SELECT SUM(A) FROM table WHERE Condition(B1) and Condition(B2), ...,

Condition(Bk). The query selectivity is between 0.1% and 1% of the population. For each
query, the aggregation column A and each condition column Bi are randomly selected, and
the number of condition columns is a random number between 1 and 5. Condition(Bi)

is in the form of x ≤ Bi ≤ y and Bi = x for numerical column and categorical column,
respectively. Obviously, if there is no difference between sampler qualities, then there is no
need to decide which sampler to select. Thus, we generated two groups of queries based on
the quality gap, named Small Gap Query and Large Gap Query, where each group has 50
queries. For Small Gap Query and Large Gap Query, the ratio of the quality of the second
best sampler and the best sampler are smaller than 1.5, and larger than 1.5, respectively.
Error Metric. We used relative error to measure estimation quality. Suppose the true query
result is q and the estimated result is q̂, then the error is computed as | q̂−qq |. To reduce the
randomness of estimation, we run each query over 5 different samples and compute the
average error. Given a set of queries, we reported their 90th percentile average error. If the
error is 2%, it means that 90% of queries have an average error (of 5 runs) smaller than 2%.
Implementation and Settings. We implemented SamComb in Java. The budget was set to
144,000 by default, which was 5% of Loan and 2.5% of TPCS, respectively. The experiments

65



0% 40% 80%
Budget

0%

10%

20%

30%

40%

E
rr
o
r

AdaptiveLcb
Eps
Lcb

(a) TPCS, Small Gap

0% 40% 80%
Budget

0%

10%

20%

30%

40%

50%

E
rr
o
r

AdaptiveLcb
Eps
Lcb

(b) TPCS, Large Gap

0% 40% 80%
Budget

0%
10%
20%
30%
40%
50%
60%
70%

E
rr
o
r

AdaptiveLcb
Eps
Lcb

(c) Loan, Small Gap

0% 40% 80%
Budget

0%

10%

20%

30%

40%

50%

E
rr
o
r

AdaptiveLcb
Eps
Lcb

(d) Loan, Large Gap

Figure 4.3: ϵ-greedy vs LCB vs AdaptiveLCB

Sampler
0%

2%

4%

6%

8%

E
rr
o
r

MB SF UF

(a) TPCS, U
Sampler

0%

2%

4%

6%

8%

10%

E
rr
o
r

MB SF UF

(b) TPCS, S
Sampler

0%

4%

8%

12%

16%

20%

E
rr
o
r

MB SF UF

(c) TPCS, M
Sampler

0%

2%

4%

6%

8%

E
rr
o
r

MB SF UF

(d) Loan, U
Sampler

0%

2%

4%

6%

8%

E
rr
o
r

MB SF UF

(e) Loan, S
Sampler

0%

4%

8%

12%

16%

E
rr
o
r

MB SF UF

(f) Loan, M

Figure 4.4: Justification for Sampler Combination

were conducted on a MacBook Pro with an Intel Core i5 2.3GHz, 16GB RAM, and 250GB
SSD.

4.7.2 Evaluation of Our Approach

In this section, we evaluate SamComb under different settings. The goal is to find the best
setting for SamComb. Note that ϵ-greedy has a parameter C but LCB does not. Thus, we
first find the best parameter for ϵ-greedy, and then compare ϵ-greedy with two LCB-based
approaches.
Parameter Selection for ϵ-greedy. Recall that ϵt = min{1, ck

d2t}, where c and d are user
given parameters [49]. For simplicity, let C = ck

d2 . As C increases, ϵ-greedy does more and
more explorations.

We vary the parameter C to see how it affects the performance. The result is shown in
Figure 4.5. We can observe that a small C usually works well. There are two reasons. First,
if the sampler quality is very different from each other, then it is easy to distinguish them
using a few explorations, thus a small C is preferred. Second, if the sampler quality is close
to each other, choosing any sampler will not affect the performance much, thus a small C
is also good. Based on this observation, we choose C = 10 for ϵ-greedy by default.
Comparing ϵ-greedy, LCB, and AdaptiveLCB. We compare ϵ-greedy, LCB, and Adap-
tiveLCB, aiming to find the best budget allocation strategy for SamComb. For a fair com-
parison, we randomly set the parameter for ϵ-greedy. The comparison results on the two
datasets are shown in Figure 4.3. We have three observations. Firstly, LCB performed much
worse than ϵ-greedy and AdaptiveLCB. This is because that LCB had a large bound and needed
more sample to reduce the bound. It also shows that AdaptiveLCB got a good bound to auto-
matically balance the exploration and exploitation trade-off. Secondly, there is a larger gap

66



0 100 200 300
Parameter C

0%
1%
2%
3%
4%
5%
6%

E
rr
o
r

Eps

(a) TPCS

0 100 200 300
Parameter C

0%
1%
2%
3%
4%
5%
6%

E
rr
o
r

Eps

(b) Loan

Figure 4.5: Parameter Selection for ϵ-greedy

10 100 1k 3k
Batch Size (Log Scale)

0%

2%

4%

6%

8%

E
rr
o
r

AdaptiveLcb
Eps

(a) Error

10 100 1k 3k
Batch Size (Log Scale)

0

1

2

3

4

5

T
im

e
(S
e
c
o
n
d
s
)

AdaptiveLcb
Eps

(b) Latency

Figure 4.6: Varying Batch Size

between different strategies when handling Large Gap queries than Small Gap queries. The
underlying reason is that when samplers have similar qualities, the difference of selecting a
different sampler is not big. Thirdly, AdaptiveLCB and ϵ-greedy had a similar performance and
there is no clear winner. In TPCS, ϵ-greedy performs better in the beginning then AdaptiveLCB
outperforms as budget increases. In Loan, AdaptiveLCB is slightly better.

In summary, AdaptiveLCB and ϵ-greedy outperformed LCB. Since AdaptiveLCB does not
need to tune the parameter, AdaptiveLCB is chosen as the default strategy.
Varying Batch Size. SamComb draws a batch of tuples from a sampler in each iteration.
In this experiment, we vary the batch size from 10 to 10000, and evaluate its impact on
error and latency. The result is shown in Figure 4.6.

From Figure 4.6a, we can observe that the error is relative stable when the batch size
is not very big. Although a small batch may be less accurate for estimating the sampler
quality in each iteration, it also leads to more iterations, which is good for allocating more
budgets to the best sampler. As a result, the error is relative stable.

Figure 4.6b shows that the latency could be very high for a small batch size, but it
will keep stable when the batch size is above a threshold. This is because SamComb issues
a query for each batch, and a small batch size will lead to many batches, causing a big

67



0% 40% 80%
InitSize

0%

2%

4%

6%

8%

10%

E
rr
o
r

AdaptiveLCB
BlinkSelection
TwoStepComb

(a) TPCS, Small Gap

0% 40% 80%
InitSize

0%

2%

4%

6%

8%

E
rr
o
r

AdaptiveLCB
BlinkSelection
TwoStepComb

(b) TPCS, Large Gap

0% 40% 80%
InitSize

0%

2%

4%

6%

8%

E
rr
o
r

AdaptiveLCB
BlinkSelection
TwoStepComb

(c) Loan, Small Gap

0% 40% 80%
InitSize

0%

1%

2%

3%

4%

5%

E
rr
o
r

AdaptiveLCB
BlinkSelection
TwoStepComb

(d) Loan, Large Gap

Figure 4.7: Comparing SamComb, TwoStepComb and BlinkSelection

overhead. When the number of bathes is small, the overhead is negligible comparing to the
query processing time, thus the latency becomes stable.

From this experiment, we can conclude that a poor setting of batch size could affects
the latency a lot, while the impact on error happened slowly. Hence, we could choose the
smallest batch size when increasing batch size does not further decrease the latency.

4.7.3 Comparison of Combination Approaches

In this section, we first justify the need for sampler combination and then compare different
combination approaches.
One Size Does Not Fit All. We test the performance of the 100 queries with each
individual sampler, and split the queries into three groups, named U, S and M group. In
the U, S, and M group, the uniform sampler, the stratified sampler, and the measure-biased
sampler performed worse than the other two samplers, respectively. We plot the performance
for different samplers over the three groups of queries, as shown in Figure 4.4.

We can see that there is no single sampler that performs well in all cases. For example, on
the Loan dataset, the stratified sampler performs much better than the other two samplers
in the U group. However, it is much worse than the others in the S group. A similar
observation can also be derived from the TPCS dataset. These results validate that one size
does not fit all for sample-based estimation, and there is a strong need to combine multiple
samplers.
Comparing with Best Sampler & Worst Sampler. For each query, there is a best
sampler and a worst sampler, which is unknown unless scanning the full data. In this
experiment, we comparing SamComb with two approaches: i) BestAlways: always choosing
the best sampler. ii) WorstAlways: always choosing the worst sampler. The purpose of this
experiment is to understand how far the estimation of SamComb is close to BestAlways and
WorstAlways. The result is shown in Figure 4.8d.

Figure 4.8d shows that the error of SamComb is close to BestAlways and is much more
accurate than WorstAlways. This is because SamComb combines multiple samplers and allo-
cates more budgets to the best sampler. We further justify this point by investigating the
allocated tuples of SamComb to the best sampler and the worst sampler for each query. It
turns out that there are 73% queries where the best sampler is allocated more than 90% of

68



the budgets, while 95% queries where the worst sampler is allocated less than 10% budget.
This result further proves that SamComb successfully allocates most budgets to the best
sampler.
Bandit-based vs Heuristic-based. We compare our bandit-based approach with two
heuristic approaches.
TwoStepComb allocates the budget in two step: it first allocates an initial budget to each
sampler and estimates their qualities, and then it allocates all the remaining budget to
the empirical best sampler, which is similar to the explore-first approach [156]. Finally, it
combines the estimation from multiple samples.
BlinkSelection is the sample selection technique used in BlinkDB [47]. It builds the error-
latency profile for each sample and chooses the one satisfying the error or latency threshold.
In our scenario, the latency is proportional to sample size (since we sequentially scan the
data) and the relationship of error and sample size is clear. That is, we only need to esti-
mate the sampler quality, then the error-budget profile can be built. Hence, BlinkSelection is
actually the same as TwoStepComb without the sample combination phase.

The performance of TwoStepComb and BlinkSelection depends on the initial budget size. We
varied this parameter in TwoStepComb and BlinkSelection, and compared them with SamComb.
Figure 4.7 shows the result. We see that SamComb outperformed TwoStepComb and BlinkSe-
lection. This is because that SamComb allocated the budget adaptively, while TwoStepComb
and BlinkSelection only used the initial estimation to decide the allocation of the remaining
budget.

One major issue of TwoStepComb and BlinkSelection is that their performance is sensitive to
the initial size. As shown in Figure 4.7, the performance of TwoStepComb and BlinkSelection
first increased then decreased. This is because that at the beginning, TwoStepComb and
BlinkSelection did not estimate the sampler quality accurately and chose a bad sampler as
the empirical best sampler. With a larger initial budget, the quality estimation became
more accurate and the probability of choosing the best sampler became larger. Hence,
the performance was improved. However, as the initial size became larger and larger, the
remaining budget became smaller and smaller. As a result, the performance of TwoStepComb
and BlinkSelection decreased and it is more like equal allocation.

The result also indicates that the initial size is hard to tune. A good setting of initial
size varies from query to query, and data to data. For example, a good initial size is around
40% and 20% of the total budget in Figure 4.7c and Figure 4.7d, respectively.

4.7.4 Evaluation in Various Settings

Support Other Aggregation Functions. We evaluate the performance of SamComb in
supporting other aggregate functions. We pick up MAX because it is a challenging one for
sample-based estimation. We used the same query workload but replaced the aggregate
function with MAX. We calculated the rank of the estimated max value and get its relative

69



0k 80k 160k
Budget

0%

10%

20%

30%

40%

E
rr
o
r

UF
UF + SF
UF + SF + MB

(a) Max Query
Sampler

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%

E
rr
o
r

SelEst(UF)
SelEst(UF+SF)
SelEst(UF+SF+MB)

(b) Sel. Estimation

0k 200k 400k 600k
Budget

0.0
0.1
0.2
0.3
0.4
0.5
0.6

T
im

e
(S
e
c
o
n
d
s
)

(c) Tuning Budget

Strategy
0%

4%

8%

12%

16%

E
rr
o
r

AdaptiveLCB
BestAlways
WorstAlways

(d) Comparing with
BestAlways and
WorstAlways

Figure 4.8: Evaluation in various settings (TPCS)

rank error based on rank_error = 1 − rank(estimate)
N , where N is the population size. The

result is shown in Figure 4.8a. We can see that SamComb can successfully combine multiple
samplers and return a much more accurate answer to MAX queries compared to using a
uniform sampler only. This is a promising result since it shows that combining multiple
samplers enables sample-based estimation to handle difficult aggregation functions more
accurately. We defer an extensive study of this direction to future work.
Selectivity Estimation. Selectivity estimation aims to estimate the percentage of the
tuples that satisfy a predicate. It is an essential step in query optimization. Sampling is a
common approach for solving this problem in existing database systems [140].

We evaluate selectivity estimation when multiple samplers are available. Selectivity es-
timation can be expressed using COUNT queries. Thus we replace the aggregation function in
our queries from SUM to COUNT. The result is shown in Figure 4.8b. We can see that adding
more samplers improves estimation accuracy. For example, adding the stratified sampler
reduces the estimation error of the uniform sampler by 22%. We also notice that adding
the measure-biased sampler improve less. This is because the measure-biased sampler is
designed to sample more from the tuples with large measure values. However, in the selec-
tivity estimation scenario, the queries are COUNT rather than SUM. Our SamComb framework
automatically figured this out without wrongly selecting the measure-biased sampler to hurt
the performance.
Tuning Budget. The budget size is a parameter used by AQP system to make the trade-off
between the latency and error. Sometimes users may have a error or latency requirement,
and want to tune the budget. This can be achieved by modeling the relationship of budget-
error or budget-latency (e.g., the Error Latency Profiles in BlinkDB). We varied the budget
and measured the latency of each query. Figure 4.8c shows the latency distribution of
all queries under different budgets. We can find a linear relationship between budget and
latency among different queries. This is because the query time is dominated by IO and the
sample is scanned sequentially, thus the time is (approximately) proportional to the number
of scanned tuples. It demonstrates that we can build a budget-latency profile to tune the
budget based on the latency requirement.

70



Table 4.1: Evaluation of maintenance cost (10% new data)

Sample Creation Sample Maintenance
Uniform 29.33 secs 2.64 secs
Measure-biased 29.81 secs 2.92 secs
Stratified 29.09 secs 2.63 secs

0k 40k 80k 120k
Budget

0%

2%

4%

6%

8%

10%

R
a
n
k
E
rr
o
r

(a) Relative Rank Error

0k 40k 80k 120k
Budget

0

20

40

60

80

T
im

e
(S
e
c
o
n
d
s
)

PostgreSQL
SamComb

(b) Time (Seconds)

Figure 4.9: Performance of 90-Percentile Queries

Data Update. We tested the overhead of SamComb for data update (insert). We used the
TPCS 1G as the original data, and took its 10% sample as the data to be inserted. The
sample size is 1% of the original data for each sampler. We tested the time of creating
an initial sample and the time of incrementally maintaining it. The result is shown in
Table 4.1. We can see that the maintenance cost is relatively small. For example, the cost
of maintaining a stratified sample is only 2.63

29.09 = 9% of the total sample creation time. This
is because that incremental maintenance only needs to scan the stale sample and the delta
table rather than the whole data.

4.7.5 End-to-end Performance

In this section, we conducted experiments on a TPCS data with scale 10 to show the end-
to-end performance of SamComb.
Compare with VerdictDB and PostgreSQL. We compare the performance of SamComb
with VerdictDB and PostgreSQL. The budget was set as 1% of the full data for SamComb and
VerdictDB. The PostgreSQL is the approach that directly issue the query in PostgreSQL over
the full data. The SamComb is built on top of PostgreSQL and each sampler is stored as
a table in PostgreSQL. In each iteration, a query with predicate row_id BETWEEN a AND b

is issued to get the statistics in the batch whose tuple id is between a and b. Then, the
statistics are used to compute the estimated sampler quality.

71



Table 4.2: End-to-end performance comparison (Budget = 1%)

Query Error Response Time
VerdictDB 2.67% 0.36 secs
SamComb 1.89% 0.44 secs
PostgreSQL 0 32.93 secs

The result is shown in Table 4.2. From Table 4.2, we can see that under the same
budget, the latency of SamComb is close to VerdictDB (but slightly slower). This is because
they both scan samples sequentially at query time. It also shows that the overhead of
SamComb is small. The reason is that the statistics used by SamComb to select a sampler
can be computed incrementally. Furthermore, comparing to regular execution in PostgreSQL,
SamComb can be round 80 times faster, since it only scans a small sample rather than the
full data.
Percentile Query. In this experiment, we test the performance of SamComb for answering
percentile queries. We choose 90th percentile, since the median percentile can handle by
uniform sample well and extreme percentile is more challenging for AQP system.

We vary the budget from 10k to 120k, and evaluate the relative rank error and time
of SamComb. The result is shown in Figure 4.9. Figure 4.9a shows that the estimation
quality of SamComb for extreme percentile is improved as more budgets are allocated. This
is because SamComb combines multiple samplers, and some samplers could draw tuples that
are important to the extreme percentile with a higher probability. From Figure 4.9b, we
can observe that the latency of SamComb scaled approximately linearly when the budget is
not very big. This is because the main cost came from the IO scan of samples, rather than
sorting the elements. Comparing to PostgreSQL whose latency is 80 seconds, SamComb can
be 80 times faster within an error 2%.

4.8 Related Work

We review the related work on sample-based estimation, which can be divided into single-
sample based and multiple-sample based.
Single Sample. Sample-based estimation has been extensively studied in both statis-
tics [154] and databases [126, 109]. To estimate a population parameter, a simple approach
is to draw a uniform sample and then use it to estimate the parameter. To improve the per-
formance, various sampling techniques have been proposed. E.g., Sample+Seek [78] applies
measure-biased sampling to improve uniform sampling. START [64] constructs an optimal
stratified sample based on a given query workload. Congressional sampling [43] constructs a
biased sample optimized for a set of group-by queries. Correlated sampling [162] constructs
correlated samples based on the join key column. The main idea of these techniques is to
increase the sampling probability for the tuples that are important to the result. There is an-

72



other work also leverages MAB for sampling [68]. Different from us, it focuses on efficiently
drawing a sample from a discrete random variable with a high degree of dependency.
Multiple Samples. There are some efforts that leverage multiple samples to improve es-
timation accuracy. E.g., BlinkDB [47] pre-computes multiple stratified samples and selects
the best one using error-latency profile. Small group sampling [50] constructs multiple small
group samples and selects samples based on group-by columns. VerdictDB [131] constructs
different types of samples, and selects a sample using a heuristic cost model. Quickr [103, 102]
applies heuristic rules to select various samplers in the sample plan and creates samples on
the fly. SPEAr [104] targets at approximate stream processing scenario and selects unifor-
m/stratified sample using heuristic rules. Bao [118] applies MAB to pick the appropriate
hint for cardinality estimation. There is other related work [161] that combines samples
from different distributions for Monte Carlo rendering. To the best of our knowledge, we
are the first to study how to dynamically select and combine samplers. We show that this
novel problem can be modeled as a MAB problem, and our solution balances the trade-off
between exploration and exploitation in a principal way with theoretical guarantee.

4.9 Conclusion

In this work, we proposed a novel bandit-based framework, named SamComb, which com-
bines multiple samplers to improve the quality of sample-based estimation. We formally
defined the sampler combination problem and justified why it can be modeled as a multi-
armed bandit problem. Our framework consists of three phases: (i) initialization phase, (ii)
allocation phase, and (iii) combination phase. For the allocation phase, we proposed two
strategies based on the well-known approaches in MAB, i.e., LCB and ϵ-greedy. We proved
that they both allocates at most O(lnn) budget to each sub-optimal sampler. For the com-
bination phase, we proposed two weight allocation strategies to combine estimators, and
proved that SamComb under the proportional-to-size allocation is asymptotically optimal.
We extensively evaluated our approaches on both synthetic and real world datasets. The
results showed that i) SamComb using the bandit-based approach (AdaptiveLCB) achieved
higher performance than heuristic-based approaches (Random, TwoStepComb and BlinkSe-
lection); ii) SamComb helped the reduce estimation error at the same sample budget (query
latency).

73



Part II

Accelerating Human Analytics by
Task-Centric API Design

74



Chapter 5

DataPrep.EDA: Task-Centric
Exploratory Data Analysis in
Python

This chapter presents DataPrep.EDA. It focuses on the exploratory data analysis (EDA)
scenario and accelerates human analytics by task-centric API design. DataPrep.EDA allows
data scientists to declaratively specify a wide range of EDA tasks in different granularity
with a single function call. In this way, they can pay more attention to deciding what task
to perform and leave the implementation details to the system.

5.1 Motivation

Python has grown to be one of the most popular programming languages in the world [36]
and is widely adopted in the data science community. For example, the Python data science
ecosystem, called PyData, is used by universities and online learning platforms to teach
data science essentials [37, 19, 12, 27]. The ecosystem contains a wide range of tools such
as Pandas for data manipulation and analysis, Matplotlib for data visualization, and Scikit-
learn for machine learning, all aimed towards simplifying different stages of the data science
pipeline.

In this work we focus on one part of the pipeline, exploratory data analysis (EDA) for
statistical modeling, the process of understanding data through data manipulation and vi-
sualization. It is an essential step in every data science project[173]. For statistical modeling,
EDA often involves routine tasks such as understanding a single variable (univariate analy-
sis), understanding the relationship between two random variables (bivariate analysis), and
understanding the impact of missing values (missing value analysis).

Currently, there are two EDA solutions in Python. Each of them provide APIs in different
granularity and have different drawbacks.

Pandas+Plotting. The first one is Pandas+Plotting, where Plotting represents a Python
plotting library, such as Matplotlib [93], Seaborn [165], and Bokeh [55]. Fundamentally, plot-

75



Table 5.1: Comparison of EDA solutions in Python.

Pandas+Plotting Pandas-profiling DataPrep.EDA
Easy to Use × ✓ ✓
Interactive Speed ✓ × ✓
Easy to Customize ✓ × ✓

A
B

C

D E

F
1. Task-Centric EDA 2. Auto-Insight 3. How-to Guide

Figure 5.1: The front-end of DataPrep.EDA

ting libraries are not designed for EDA but for plotting. Their APIs are at a very low level,
hence they are not easy to use: To complete an EDA task, a data scientist needs to think
about what plots to create, then using Pandas to manipulate the data so that it can be fed
into a plotting library to create these plots. Often there is a gap between an EDA task and
the available plots – a data scientist must write lengthy and repetitive code to bridge the
gap.

Pandas-profiling. The second one is Pandas-profiling [56]. It provides a very high level API
and allows a data scientist to generate a comprehensive profile report. The report has five
main sections: Overview, Variables, Interactions, Correlation, and Missing Values.
Its general utility makes it the most popular EDA library in Python.

While Pandas-profiling is effective for one-time profiling, it suffers from two limitations
for EDA due to its high-level API design: (i) Firstly, it does not achieve interactive speed
since generating a profile report often takes a long time. This is suffering as EDA is an
iterative process. Furthermore, the report shows information for all columns, potentially
misdirecting the user and adding processing time. (ii) Secondly, it is not easy to customize
a profile report. In a profile report, the plots are automatically generated thus it is very
likely that the user wants to fine tune the parameters of each plot (e.g., the number of bins
in a histogram). There could be hundreds of parameters associated with a profile report. It
is not easy for users to figure out what they can customize and how to customize to meet
their needs.

Table 5.1 summarizes the drawbacks of Pandas+Plotting and Pandas-profiling. The key
challenge is how to overcome the limitations of existing tools and design a new EDA system
that can achieve three design goals: easy to use, with interactive speed, and easy to cus-

76



tomize. To address this challenge, we build DataPrep.EDA, a novel task-centric EDA system
in Python. We identify a list of common EDA tasks for statistical modeling, mapping each
task to a single function call through careful API design. As a result of this task-oriented
approach, DataPrep.EDA affords many more fine-grained tasks such as univariate analysis
and correlation analysis. Figure 5.1-1 illustrates how our example user might use Dat-
aPrep.EDA to do a univariate analysis task after removing their outliers. The analyst calls
the plot(df, "price") in DataPrep.EDA, where df is a dataframe and "price" is the column
name. DataPrep.EDA detects price as a numerical variable and automatically generates
suitable statistics (e.g., max, mean, quantile) and plots (e.g., histogram, box plot), which
help the user gain a deeper understanding of the price column quickly and effectively.

With the task-centric approach, DataPrep.EDA is able to achieve all three design goals:
(i) Easy to Use. Since each EDA task is directly mapped to a single function call, users
only need to think about what tasks to work on rather than what to plot and how to
plot. To further improve usability, we design an auto-insight component to automatically
highlight possible interesting patterns in visualizations. (ii) Interactive Speed. Different from
Pandas-profiling, DataPrep.EDA supports fine-grained tasks thus it can avoid unnecessary
computation on irrelevant information. To further improve the speed, we carefully design
our data processing pipeline based on Dask, a scalable computing framework in Python.
(iii) Easy to Customize. With the task-centric API design, the parameters are grouped by
different EDA tasks and each API only contains a small number of task-related parameters,
making it much easier to customize. Besides, we implement a how-to guide component in
DataPrep.EDA to further improve the customizability.

We conduct extensive experiments to compare DataPrep.EDA with Pandas-profiling. The
performance results on 15 real-world datasets from Kaggle [22] show that i) DataPrep.EDA
responded to a fine-grained EDA task in seconds while Pandas-profiling spent several orders
of magnitude more time in creating a profile report on the same dataset; ii) if the task is to
create a profile report, DataPrep.EDA was 4 − 20× faster than Pandas-profiling. Through a
user study we show that i) real world participants of varying skill levels completed 2.05 times
more tasks on average with DataPrep.EDA than with Pandas-profiling; ii) DataPrep.EDA
helped participants answering 2.20 times more correct answers.

The following summarizes our contributions:

• We explore the limitations of existing EDA solutions in Python and propose a task-centric
framework to overcome them.

• We design a task-centric EDA API for statistical modeling, allowing to declaratively
specify an EDA task in one function call.

• We identify three challenges to implement DataPrep.EDA, and propose effective solutions
to enhance the scalability, usability, and customizability of the system.

77



EDA Task Task-Centric API Design Corresponding Stats/Plots

Overview plot(df) Dataset statistics, histogram or bar chart for each column

Univariate 
Analysis plot(df, col1) (1) N ⟶ Column statistics, histogram, KDE plot, normal Q-Q plot, box plot

(2) C ⟶ Column statistics, bar chart, pie chart, word cloud, word frequencies

Bivariate 
Analysis plot(df, col1, col2)

(1) NN ⟶ Scatter plot, hexbin plot, binned box plot
(2) NC or CN ⟶ Categorical box plot, multi-line chart
(3) CC⟶ Nested bar chart, stacked bar chart, heat map

Correlation 
Analysis

plot_correlation(df) Correlation matrix, computed with Pearson, Spearman, and KendallTau

plot_correlation(df, col1) Correlation vector, computed with Pearson, Spearman, and KendallTau

plot_correlation(df, col1, col2) Scatter plot with a regression line

Missing Value 
Analysis

plot_missing(df) Bar chart, missing spectrum plot, nullity correlation heatmap, dendrogram

plot_missing(df, col1) Histogram or bar chart that shows the impact of the missing values in col! on all other columns

plot_missing(df, col1, col2) Histogram, PDF, CDF, and box plot that show the impact of the missing values from col! on col"

Figure 5.2: A set of mapping rules between EDA tasks and corresponding stats/plots (N =
Numerical, C = Categorical)

• We conduct extensive experiments to compare DataPrep.EDA with Pandas-profiling, the
state-of-the-art EDA system in Python. The results show that DataPrep.EDA significantly
outperforms Pandas-profiling in speed, effectiveness, and user preference.

5.2 Task-Centric EDA

In this section, we first introduce common EDA tasks for statistical modeling, and then
describe our task-centric EDA API design.

5.2.1 Common EDA Tasks for Statistical Modeling

Inspired by the profile report generated by Pandas-profiling and existing work [136, 146, 54],
we identify five common EDA tasks. We will use a running example to illustrate why they
are needed in the process of statistical modeling.

Suppose a data scientist wants to build a regression model to predict house prices. The
training data consists of four features (size, year_built, city, and house_type) and the
target (price).

• Overview. At the beginning, the data scientist has no idea about what’s inside the
dataset, so she wants to get a quick overview of the entire dataset. This involves com-
puting some basic statistics and creating some simple visualizations. For example, she
may want to check the number of features, the data type of each feature (numerical or
categorical), and create a histogram for each numerical feature and a bar chart for each
categorical feature.

• Correlation Analysis. To select important features or identify redundant features, cor-
relation analysis is commonly used. It computes a correlation matrix, where each cell in
the matrix represents the correlation between two columns. A correlation matrix can
show which features are highly correlated with the target and which two features are

78



highly correlated with each other. For example, if the feature, size, is highly corre-
lated with the target, price, then knowing size will reveal a lot of information about
price, thus it is an important feature. If two features, city and house_type, are highly
correlated, then one of the features is redundant and can be removed

• Missing Value Analysis. It is more common than not for a dataset to have missing
values. The data scientist needs to create customized visualizations to understand missing
values. For example, she may create a bar chart, which depicts the amount of missing
values in each column, or a missing spectrum plot, which visualizes which rows has more
missing values.

• Univariate Analysis. Univariate analysis aims to gain a deeper understanding of a
single column. It creates various statistics and visualizations of that column. For example,
to deeply understand the feature year_built, the data scientist may want to compute
the min, max, distinct count, median, variance of year_built, and create a box plot
to examine outliers, a normal Q-Q plot to compare its distribution with the normal
distribution.

• Bivariate Analysis. Bivariate analysis is to understand the relationship between two
columns (e.g., a feature and the target). There are many visualizations to facilitate
the understanding. For example, to understand the relationship between year_built

and price, she may want to create a scatter plot to check whether they have a linear
relationship, and a hexbin plot to check the distribution of price in different year ranges.

There are certainly other EDA tasks used for statistical modeling, however we have
opted to focus on the main tasks systems such as Pandas-profiling commonly present in their
reports. This allows us to make a fair comparison between our system design approaches. In
the future we intend to address more tasks, such as time-series analysis and multi-variate
analysis (more than two variables).

5.2.2 DataPrep.EDA’s Task-Centric API Design

The goal of our API design is to enable the user to trigger an EDA task through a single
function call. We consider simplicity and consistency as the principle of API design. The
simple and consistent API makes our system more accessible in practice [57]. However,
it is challenging to design simple and consistent APIs for a variety of EDA tasks. Our
key observation is that the EDA tasks for statistical modeling tend to follow a similar
pattern [166]: start with an overview analysis and then dive into detailed analysis. Hence,
we design the API in the following form:

plot_tasktype(df, col_list, config),

79



where plot_tasktype is the function name, tasktype is a concise description of the task, the
first argument is a DataFrame, the second argument is a list of column names, and the third
argument is a dictionary of configuration parameters. If column names are not specified, the
task will be performed on all the columns in the DataFrame (overview analysis); otherwise,
it will be performed on the specified column(s) (detailed analysis). This design makes the
API extensible, i.e., it is easy to add an API for a new task.

Following this pattern, we design three functions in DataPrep.EDA to support the five
EDA tasks:
plot. We use the plot(·) function with different arguments to represent the overview task,
the univariate analysis task, and the bivariate analysis task, respectively. To understand
how to perform EDA effectively with this function, the following gives the syntax of the
function call with the intent of the data scientist:

• plot(df): “I want an overview of the dataset”

• plot(df, col1): “I want to understand col1”

• plot(df, col1, col2): “I want to understand the relationship between col1 and col2”

plot_correlation. The plot_correlation(·) function triggers the correlation analysis
task. The user can get more detailed correlation analysis results by calling plot_correlation(df,
col1) or plot_correlation(df, col1, col2).

• plot_correlation(df): “I want an overview of the correlation analysis result of the
dataset”

• plot_correlation(df, col1): “I want to understand the correlation between col1 and
the other columns”

• plot_correlation(df, col1, col2): “I want to understand the correlation between col1

and col2”

plot_missing. The plot_missing(·) function triggers the missing value analysis task. Sim-
ilar to plot_correlation(·), the user can call plot_missing(df, col1) or plot_missing(df,
col1, col2) to get more detailed analysis results.

• plot_missing(df): “I want an overview of the missing value analysis result of the
dataset”

• plot_missing(df, col1): “I want to understand the impact of removing the missing
values from col1 on other columns”

• plot_missing(df, col1, col2): “I want to understand the impact of removing the miss-
ing values from col1 on col2”

80



Config
Manager

Compute 
Module

Render 
Module

Intermediates

Config1

2

Data

3

Figure 5.3: The DataPrep.EDA system architecture

The key observation that makes task-centric EDA possible is that there are nearly
universal kinds of stats or plots that analysts employ in a given EDA task. For example,
if the user wants to perform univariate analysis on a numerical column, she will create a
histogram to check the distribution, a box plot to check the outliers, a normal Q-Q plot to
compare with the normal distribution, etc. Based on this observation, we pre-define a set
of mapping rules as shown in Figure 5.2, where each rule defines what stats/plots to create
for each EDA task. Once a function, e.g., plot(df,"price"), is called, DataPrep.EDA first
detects the data type of price, which is numerical. Based on the second row in Figure 5.2,
since col1 = N, DataPrep.EDA will automatically generate the column statistics, histogram,
KDE plot, normal Q-Q plot, and box plot of price.

The mapping rules are selected from existing literature and open-source tools in the
statistics and machine learning community. For univariate, bivariate, and correlation analy-
sis, we refer to the data-to-viz project [16], ‘Exploratory Graphs’ section in [136] and Section
4 in [146]. For overview analysis and missing value analysis, the mapping rules are derived
from the Pandas-profiling library and the Missingno library [54], respectively. DataPrep.EDA
also leverages the open-source community to keep adding and improving its rules. For ex-
ample, one user has created an issue in our GitHub repository to suggest adding violin plots
to the plot(df,x) function. As DataPrep.EDA is being used by more users, we expect to
see more suggestions like this in the future.

5.3 System Architecture

This section describes DataPrep.EDA’s front-end user experience and introduces the back-
end system architecture.

5.3.1 Front-end User Experience

To demonstrate DataPrep.EDA, we will continue our house price prediction example, using
DataPrep.EDA to assist in removing outliers from the price variable, assessing the resulting
distribution, and determining how to further customize the analysis. Figure 5.1 depicts the
steps to perform this task using Pandas and DataPrep.EDA in a Jupyter notebook. Part A
shows the required code: in line 1, the records with an outlying price value are removed (the

81



threshold is $1,400,000), and in line 2 the DataPrep.EDA function plot is called to analyze
the filtered distribution of the variable price. Part B shows the progress bar. Part C
shows the default output tab which consists of tables containing various statistics of the
column’s distribution. Note that each data visualization is output in a separate panel, and
tabs are used to navigate between panels.

• Auto-Insight. If an insight is discovered by DataPrep.EDA, a ( ! ) icon will be shown on
the top right corner of the associated plot. Part D shows an insight associated with the
histogram plot: price is normally distributed.

• How-to Guide. A how-to guide will pop up after clicking a ( ? ) icon. As shown in
Part E , it contains the information about customizing the associated plot. In this ex-
ample, the data scientist may want to create a histogram with more bins, so she can
copy the code ("hist.bins":50) in the how-to guide, paste it as a parameter to the plot
function, and increase the number of bins from 50 to 200 as shown in Part F .

5.3.2 Back-end System Architecture

The DataPrep.EDA back-end is presented in Figure 5.3, consisting of three components: 1
The Config Manager configures the system’s parameters, 2 the Compute module performs
the computations on the data, and 3 the Render module creates the visualizations and
layouts. The Config Manager is used to organize the user-defined parameters and set default
parameters in order to avoid setting and passing many parameters through the Compute and
Render modules. The separation of the Compute module and the Render module has two
benefits: First, the computations can be distributed to multiple visualizations. For example,
in plot(df, col1=N) in Figure 5.2, the column statistics, normal Q-Q plot, and box plot
all require quantiles of the distribution. Therefore, the quantiles are computed once and
distributed appropriately to each visualization. Second, the intermediate computations (see
Section 5.3.2) can be exposed to the user. This allows the user to create the visualizations
with her desired plotting library.

Config Manager

The Config Manager ( 1 in Figure 5.3) sets values for all configurable parameters in Dat-
aPrep.EDA, and stores them in a data structure, called the config, which is passed through
the rest of the system. Many components of DataPrep.EDA are configurable including which
visualizations to produce, the insight thresholds (see Section 5.3.2), and visualization cus-
tomizations such as the size of the figures. In Figure 5.3, the plot function is called with
the user specification bins=50; the Config Manager sets each bin parameter to have a value
of 50, and default values are set for parameters not specified by the user. The config is
then passed to the Compute and Render modules and referenced when needed.

82



Compute module

The Compute module takes the data and config as input, and computes the
intermediates. The intermediates are the results of all the computations on the data
that are required to generate the visualizations for the EDA task. Figure 5.3 shows exam-
ple intermediates. The first element is the count of missing values which is shown in the
Stats tab, and the next two elements are the counts and bin endpoints of the histogram.
Such statistics are ready to be fed into a visualization.

Insights are calculated in the Compute module. A data fact is classified as an insight
if its value is above a threshold (each insight has its own, user-definable threshold). For
example, in Figure 5.1 (Part B ), the distinct value count is high, so the entry in the table
is highlighted red to alert the user about this insight. DataPrep.EDA supports a variety of
insights including data quality insights (e.g., missing, infinite values), distribution shape
insights (e.g., uniformity, skewness) and whether two distributions are similar.

We developed two optimization techniques to increase performance. First, we share
computations between multiple visualizations as described in the beginning of Section 5.3.2.
Second, we leverage Dask to parallelize computations (see Section 5.4 for details).

Render module

The last system component is the Render module, which converts the intermediates into
data visualizations. There is a plethora of Python plotting libraries (e.g., Matplotlib, Seaborn,
and Bokeh), however, they provide limited or no support for customizing a plot’s layout. A
layout is the surrounding environment in which visualizations are organized and embedded.
Our layouts need to consolidate many elements including charts, tables, insights, and how-
to guides. To meet our needs, we use the library Bokeh to create the plots, and embed them
in our own HTML/JS layout.

5.4 Implementation

In this section, we introduce the detailed implementation of DataPrep.EDA’s Compute mod-
ule. We first introduce the background of Dask and discuss why we choose Dask as the
back-end engine. We then present our ideas for using Dask to optimize DataPrep.EDA.

5.4.1 Why Dask

Dask Background. Dask is an open source library providing scalable analytics in Python. It
offers similar APIs and data structures with other popular Python libraries, such as NumPy,
Pandas, and Scikit-Learn. Internally, it partitions data into chunks, and runs computations
over chunks in parallel.

83



The computations in Dask are lazy. Dask will first construct a computational graph that
expresses the relationship between tasks. Then, it optimizes the graph to reduce computa-
tions such as removing unnecessary operators. Finally, it executes the graph when an eager
operation like compute is called.
Choice of Back-end Engine. We use Dask as the back-end engine of DataPrep.EDA for
three reasons: (i) it is lightweight and fast in a single-node environment, (ii) it can scale
to a distributed cluster, and (iii) it can optimize the computations required for multiple
visualizations via lazy evaluation. We considered other engines like Spark variants [175,
41] (PySpark and Koalas) and Modin [137], but found that they were less suitable for
DataPrep.EDA than Dask. Since Spark is designed for computations on very big data (TB
to PB) in a large cluster, PySpark and Koalas are not lightweight like Dask and have a high
scheduling overhead on a single node. For Modin, most of its operations are eager, so for
each operation a separate computational graph is created. This approach does not optimize
across operations, unlike Dask’s approach. In Section 5.5.2, we further justify our choice to
use Dask experimentally.

5.4.2 Performance Optimization

Given an EDA task, e.g., plot_missing(df), we discuss how to efficiently compute its
intermediates using Dask. We observe that there are many redundant computations be-
tween visualizations. For example, as shown in Figure 5.2, plot_missing(df) creates four
visualizations (bar chart, missing spectrum plot, nullity correlation heatmap, and dendro-
gram). They share many computations, such as computing the number of rows, checking
whether a cell is missing or not. To leverage Dask to remove redundant computations, we
seek to express all the computations in a single computational graph. To implement this
idea, we can make all the computations lazy and call an eager operation at the end. In this
way, Dask will optimize the whole graph before actual computations happen.

However, there are several issues with this implementation. In the following, we will
discuss them and propose our solutions.
Dask graph fails to build. The first issue is that the rechunk function in Dask cannot
be directly incorporated into the big computational graph. This is because that its first
argument, a Dask array, requires knowing the chunk size information, i.e., the size of each
chunk in each dimension. If rechunk was put into our computational graph, an error would
be raised since the chunk size information is unknown for a delayed Dask array.

Since rechunk is needed in multiple plot functions in DataPrep.EDA, we have to address
this issue. One solution is to replace the rechunk function call in each plot function with
the code written by the low-level Dask task graph API. However, this solution has a high
engineering cost, which requires writing hundreds of lines of Dask code. It also has a high
maintenance cost compared to using the Dask built-in rechunk function.

84



Chunk Size
Precompute

Dask
Compute

Pandas
Compute

Chunk
Size

Dask Graph

Data
Inter-
mediates

Figure 5.4: Data processing pipeline in the Compute module

We propose to add an additional stage before constructing the computational graph.
In this stage, we precompute the chunk size information of the dataset and pass the pre-
computed chunk size to the Dask graph. In this way, the Dask graph can be constructed
successfully by adding one line of code.
Dask is slow on tiny data. Although putting all possible operations in the graph can fully
leverage Dask’s optimizations, it also increases the overhead caused by scheduling. When
data is large, the scheduling overhead is negligible compared to the computing overhead.
However, when data is tiny, the scheduling may be the bottleneck and using Dask is less
efficient than using Pandas.

For the nine plot functions in Figure 5.2, we observe that they all follow the same
pattern: the computational graph takes as input a DataFrame (large data) and continuously
reduces its size by aggregation, filtering, etc. Based on this observation, we separate the
computational graph into two parts: Dask Computation and Pandas Computation. In the
Dask Computation, the data is computed in Dask and the result is transformed into a
Pandas DataFrame. In the Pandas Computation, it takes the DataFrame as input and does
some further processing to generate the intermediate results, which will be used to create
visualizations.

Currently, we heuristically determine the boundary between the two parts. For example,
the computation for plot_correlation(df) is separated into two stages. In the first stage we
use Dask to compute the correlation matrix from the user input and then in the second
stage we use Pandas to transform and filter the correlation matrix. This is because for a
dataset with n rows and m columns, it is usually the case that n >> m. As a result, it
would be beneficial to let Pandas handle the correlation matrix, which has the size m×m.
Since we only need to handle nine plot functions, it is still manageable. We will investigate
how to automatically separate the two parts in the future.
Putting everything together. Figure 5.4 shows the data processing pipeline in the Com-
pute module of DataPrep.EDA. When data comes, DataPrep.EDA first precomputes the
chunk size information using Dask. After that, it constructs the computational graph using
Dask again with the precomputed chunk size filled. Then, it computes the graph. After that,

85



it transforms the computed data into Pandas and finishes the Pandas computation. In the
end, the intermediates are returned.

5.5 Experimental Evaluation

In this section, we conduct extensive experiments to evaluate the efficiency and the user
experience of DataPrep.EDA.

5.5.1 Performance Evaluation

We first evaluate the performance of DataPrep.EDA by comparing its report functionality
with Pandas-profiling. Afterwards, we conduct a self comparison, which evaluates each plot
function with different variations, in order to gain a deep understanding of the performance.
We used 15 different datasets varying in number of rows, number of columns and categori-
cal/numerical column ratio, as listed in Table 5.2. The experiments were performed on an
Ubuntu 16.04 Linux server with 64 GB memory and 8 Intel E7-4830 cores.
Comparing with Pandas-profiling. To test the general efficiency of DataPrep.EDA, we
compared the end-to-end running time of generating reports over the 15 datasets in both
tools. For Pandas-profiling, we first used read_csv from Pandas to read the data, then we
created a report in Pandas-profiling with PhiK, Recoded and Cramer’s V correlations dis-
abled (since DataPrep.EDA does not implement these correlation types). For DataPrep.EDA,
we used read_csv from Dask to read the dataset. Since it is a one-time task to create a
profiling report, loading the data using the most suitable function for each tool is reason-
able. Results are shown in Table 5.2. We observe that using DataPrep.EDA to generate
reports is 4x ∼ 20x faster compared to Pandas-profiling in general. The acceleration mainly
comes from the optimization to make the tasks into a single Dask graph so that they can
be fully parallelized. We also observe that DataPrep.EDA usually gains more performance
compared to Pandas-profiling on numerical data and data with fewer categorical columns
(driving performance on credit, basketball, and diabetes).
Self-comparison. We analyzed the running time of DataPrep.EDA’s functions to deter-
mine whether they can complete within a reasonable response time for interactivity. We
ran plot(), plot_correlation(), and plot_missing() for each column in each dataset,
and we ran the three functions for all unique pairs of columns in each dataset (limited to
categorical columns with no more than 100 unique values for plot(df, col1, col2) so
the resulting visualizations contain a reasonable amount of information). Figure 5.5 shows
the percent of total tasks for each function that finish within 0.5, 1, 2 and 5 seconds.
Note that dataset loading time is also included in the reported run times. The majority
of tasks completed within 1 second for each function except plot_missing(df, col1).
plot_missing(df, col1) is computationally intensive because it computes two frequency
distributions for each column (before and after dropping the missing values in column col1).

86



Table 5.2: Comparing DataPrep.EDA with Pandas-profiling on 15 real-world data science
datasets from Kaggle (N = Numerical, C = Categorical, PP=Pandas-profiling).

Dataset Size #Rows #Cols (N/C) PP DataPrep Faster
heart [17] 11KB 303 14 (14/0) 17.7s 2.0s 8.6×
diabetes [26] 23KB 768 9 (9/0) 28.3s 1.6s 17.7×
automobile [7] 26KB 205 26 (10/16) 38.2s 3.9s 9.8×
titanic [39] 64KB 891 12 (7/5) 17.8s 2.1s 8.5×
women [40] 500KB 8553 10 (5/5) 19.8s 2.3s 8.6×
credit [14] 2.7MB 30K 25 (25/0) 127.0s 6.1s 20.8×
solar [31] 2.8MB 33K 11 (7/4) 25.1s 2.7s 9.3×
suicide [33] 2.8MB 28K 12 (6/6) 20.6s 2.8s 7.4×
diamonds [15] 3MB 54K 11 (8/3) 28.2s 3.1s 9×
chess [11] 7.3MB 20K 16 (6/10) 23.6s 4.3s 5.5×
adult [5] 5.7MB 49K 15 (6/9) 23.2s 4.0s 5.8×
basketball [9] 9.2MB 53K 31 (21/10) 126.2s 9.9s 12.7×
conflicts [4] 13MB 34K 25 (10/15) 34.9s 8.6s 4×
rain [29] 13.5MB 142K 24 (17/7) 100.1s 11.6s 8.6×
hotel [18] 16MB 119K 32 (20/12) 83.2s 13s 6.4×

5.5.2 Experiments on Large Data

We conduct experiments to justify the choice of Dask (see Section 5.4.1) and evaluate the
scalability of DataPrep.EDA. We use the bitcoin dataset [10] which contains 4.7 million rows
and 8 columns.
Comparing Engines. We compare the time required for Dask, Modin, Koalas, and PyS-
park to compute the intermediates of plot(df). The results are shown in Figure 5.6(a).
The reason why Dask is the fastest is explained in Section 5.4.1: Modin eagerly evaluates
the computations and does not make full use of parallelization when computing multiple
visualizations, and Koalas/PySpark have a high scheduling overhead in a single-node envi-
ronment.
Varying Data Size. To evaluate the scalability of DataPrep.EDA, we compare the report
functionality of DataPrep.EDA with Pandas-profiling and vary the data size from 10 million
to 100 million rows. The data size is increased by repeated duplication. The results are shown
in Figure 5.6(b). Both DataPrep.EDA and Pandas-profiling scale linearly, but DataPrep.EDA
is around six times faster. This is because DataPrep.EDA leverages lazy evaluation to express
all the computations in a single computational graph so that the computations can be fully
parallelized by Dask.
Varying # of Nodes. To evaluate the performance of DataPrep.EDA in a cluster envi-
ronment, we run the report functionality on a cluster and vary the number of nodes. The
cluster consists of a maximum of 8 nodes, each with 64GB of memory and 16 2.0GHz E7-
4830 CPUs dedicated to the Dask workers. There are also HDFS services running on the 8
nodes for data storage; the memory for these services is not shared with the Dask workers.

87



Figure 5.5: The percentage of tasks to finish within the given time constraint.

The data is fixed at 100 million rows and stored in HDFS. We do not compare with Pandas-
profiling since it cannot run on a cluster. The result is shown in Figure 5.6(c). We can see
that DataPrep.EDA is able to run on a cluster and achieves better performance as increasing
the number of nodes. This is because adding more compute nodes can reduce the I/O cost
of reading data from HDFS. It is worth noting that the 1 worker setting in Figure 5.6(c) is
different from the single node setting in Figure 5.6(b) where the former needs to read data
from HDFS while the latter reads data from a local disk. Therefore, the 1 worker setting
took longer to process 100 million rows than the single node setting.

5.5.3 User Study

Finally, we conducted a user study to validate the usability of our tool and its utility in
supporting analytics. We focus on two questions using Pandas-profiling as a comparison
baseline: (1) For different groups of participants, how do they benefit from the task-centric
features introduced by DataPrep.EDA, and (2) Does DataPrep.EDA reduce participants’ false
discovery rate. We hypothesize that the intuitive API in DataPrep.EDA will lead participants
to complete more tasks in less time versus Pandas-profiling, and that the additional tools
provided by DataPrep.EDA will help participants to reduce their false discovery rate.
Methodology. In our study, all recruited participants used both DataPrep.EDA and Pandas-
profiling to complete two different sets of tasks in a 50 minute session with software logging:
one tool is used for one set of tasks. Afterwards, they assessed both systems in surveys.
Our study employs two datasets paired with task sets: (1) BirdStrike: 12 columns related to
bird strike damage on airplanes. The dataset compiles approximately 220, 000 strike reports
from 2, 050 USA airports and 310 foreign airports. (2) DelayedFlights: 14 columns related

88



0 5 10 15 20 25 30 35 40 45 50 55
Time (Seconds)

Dask

Modin

Koalas

PySpark

En
gi

ne

10 20 30 40 50 60 70 80 90 100
Rows (Million)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

T
im

e 
(S

ec
on

ds
)

DataPrep.EDA
Pandas-profiling

0 400 800 1,200 1,600 2,000 2,400
Time (Seconds)

8

4

2

1

#
 o

f 
N

od
es

DataPrep.EDA

(a) Comparing Engines (Single Node) (b) Varying Data Size (Single Node) (c) Varying # of Nodes

Figure 5.6: Experiments on the Bitcoin Dataset: (a) Comparing the running time of using
different engines to compute visualizations in plot(df); (b) Comparing the running time of
create_report(df) of DataPrep.EDA and Pandas-profiling by varying data size; (c) Evaluating
the running time of create_report(df) of DataPrep.EDA by varying the number of nodes.

to the causes of flight cancellations or delays. The dataset is curated by the Department of
Transportation of United States, and contains 5, 819, 079 records of cancelled flights.

We followed a within-subjects design, with all participants making use of either tool to
complete one set of tasks. We counterbalanced our allocation to account for all tool-dataset
permutations and order effects. Within each task, participants finished five sequential tasks
using one tool. As experience might influence how much an individual benefits from each
tool, we recruited both skilled and novice analysts using a pre-screen concerning knowledge
of python, data analysis, and the datasets in the study. To make sure that all participants
had base knowledge of how to use both Pandas-profiling and DataPrep.EDA, we gave partic-
ipants with two introductory videos, a cheat sheet, and API documentation.

Participants were asked to complete 5 tasks sequentially using the data analysis tool.
The tasks are designed to evaluate different functions provided by DataPrep.EDA, which
is similar to the design of existing work [52]. They cover a relatively wide spectrum of
the kinds of tasks that are frequently encountered in EDA, including gathering descriptive
multivariate statistics of one or multiple columns, identifying missing values, and finding
correlations. Though datasets have their own specific task instructions, each of the respective
items shares the same goal across both datasets. For example, the first task of both sessions
asks participants to investigate data distribution over multiple columns.

In Task 1-3, participants use the provided tool to analyze the distribution of single
or multiple columns. Participants conduct a univariate analysis in task 1 and a variate
analysis in task 2. The task 3 asked the participant to examine distribution skewness.
Task 4 examines missing values and their impact. Participants are expected to examine the
distribution of missing values to come to a conclusion. Task 5 asks users to find columns
with high correlation.

We use the fraction #correctanswers
#completedtasks to show the relative accuracy of participants, since

we noticed that a number of participants failed to finish tasks. Compared to traditional
accuracy, relative accuracy therefore may better demonstrate positive discovery rate [60].

89



novice

skilled
D

at
aP

re
p.

ED
A

novice

skilled

P
P

BirdStrike DelayedFlights

0.0 0.2 0.4 0.6 0.8 1.0
Relative Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Relative Accuracy

Figure 5.7: Relative Accuracy of DataPrep.EDA and Pandas-profiling across different skill
levels of participants in dataset BirdStrike and DelayedFlights.

Examining Participants’ Performance. We examine accuracy and completed tasks to
evaluate system performance. The average number of completed tasks per participant using
DataPrep.EDA (M:4.02, SD:1.21) was 2.05 times higher than that using Pandas-profiling
(M:1.96, SD: 2.59, t(29)=5.26, ρ < .00001). When we compared skill levels, we could de-
tect no difference (t(14)=.882998, ρ < .441499). Together, this suggests that DataPrep.EDA
generally improved participants’ efficiency in performing EDA tasks. Factoring in dataset,
we find that Pandas-profiling performs better in small datasets(M:3, SD:4.13) compared to
a more complex one (M:1.1, SD:1.20, t(14)=−3.26062, ρ < .0028). As dataset complexity
grows, Pandas-profiling fails to scale up. No participants finished all tasks, and 42% finished
at most one task using Pandas-profiling. On the other hand, 35% of DataPrep.EDA partici-
pants finished all five tasks for the delayed dataset. We did not observe a dataset difference
for DataPrep.EDA (t(14)=−0.66, ρ < .51), which suggests that it scaled well and might have
pushed participants towards an efficiency ceiling.

In terms of the number of correct answers versus ground truth, participants who used
DataPrep.EDA (M:3.72, SD:0.06) were 2.2 times more accurate compared to those us-
ing Pandas-profiling (M:1.70, SD:3.56, t(29)=2.791, ρ < .001), which suggests that Dat-
aPrep.EDA better assisted users in analyzing and reduced the risk of false discoveries. We
again found that there was no significant difference detected between datasets (t(14)=.4156,
ρ < .1299), however, as in completed tasks, we find that Pandas-profiling did a signifi-
cantly better job for small datasets and failed to guide users for larger ones (t(14)=−1.27,
ρ < .00042). These results are encouraging: DataPrep.EDA can help participants with dif-
ferent skill-levels complete many tasks with fewer errors.

As the number of completed tasks affects the amount of (in)correct answers, we used
our relative accuracy metric. The average relative accuracy of DataPrep.EDA (M: .82 , SD:
0.07) among participants was 1.5 times higher than Pandas-profiling (M: .53 , SD: 1.35).

90



Considering expertise and dataset complexity (Figure 5.7), we find that users from both
skill levels achieve similar relative accuracy in both datasets, but skilled participants did
significantly better than novice participants only for Pandas-profiling in complex datasets.
This suggests that DataPrep.EDA performed better at leveling skill differences and dataset
complexity.
Qualitative feedback. In our post-survey we also asked participants to share comments
and feedback to add context to the performance differences we observed. In our quantitative
results, participants often referenced the responsiveness and efficiency of DataPrep.EDA
(“fast and responsive”) and took issue with the speed of Pandas-profiling (“it didn’t work,
took forever to process”, "I would also like to use Pandas-profiling if the efficiency is not
the bottleneck"). We also asked how more granular information affected their performance.
Participants reflected that they felt more control (“I can find the necessary information very
quickly, and that really helps a lot for me to solve the problems and questions very quickly",
“felt like I had more control, simpler results”) and accessible (“I find all the answers I need,
and DataPrep.EDA is more easy to understand”).

5.6 Conclusion & Future Work

In this work, we proposed a task-centric EDA tool design pattern and built such a sys-
tem in Python, called DataPrep.EDA. We carefully designed the API in DataPrep.EDA,
mapping common EDA tasks in statistical modeling to corresponding stats/plots. Addi-
tionally, DataPrep.EDA provides tools for automatically generating insights and providing
guides. Through our implementation, we discussed several issues in building data processing
pipelines using Dask and presented our solutions. We conducted a performance evaluation
on 15 real-world data science datasets from Kaggle and a user study with 32 participants.
The results showed that DataPrep.EDA significantly outperformed Pandas-profiling in terms
of both speed and user experience.

We believe that task-centric EDA is a promising research direction. There are many
interesting research problems to explore in the future. Firstly, there are some other EDA
tasks for statistical modeling. For example, time-series analysis is a common EDA task in
finance (e.g., stock price analysis). It would be interesting to study how to design a task-
centric API for these tasks as well. Secondly, we notice that the speedup of DataPrep.EDA
over Pandas tends to get small when IO becomes the bottleneck. We plan to investigate how
to reduce IO cost using data compression techniques and column store. Thirdly, we plan
to leverage sampling and sketches to speed up computation. The challenges are i) how to
detect the scenarios of applying sampling/sketches; ii) how to notify users of the possible
risk of sampling/sketches in a user-friendly way.

91



Chapter 6

Conclusion & Future Direction

In this chapter, we summarize the presented approaches and discuss some possible future
directions.

6.1 Thesis Summary

In this thesis, we aim to accelerate human-in-the-loop data analytics. We observed that the
challenge exists on both machine and human sides. From the machine side, there exists a
gap between the limited hard resources and the massive volume of data. From the human
side, the gap exists between the limited human attention and the enormous details that
need to be handled to finish a task.

To accelerate machine processing, we developed two AQP systems with the same idea
of combining multiple data summaries to achieve a better trade-off between answer quality
and response time.

• AQP++. We first present AQP++, a unified framework to combine samples with pre-
computed aggregations (stored in a cube). We identified two questions in building
AQP++ (i.e., aggregate identification and aggregate precomputation) and propose both
optimal solutions (under some assumptions) and heuristic approaches (for the general
case). The experiment results show that AQP++ can improve the answer quality of
sample-based estimation by 10X, without introducing too much cost.

• SamComb. AQP++ leverages cubes to improve the estimation quality. However, cube
only supports range queries and has a high preprocessing cost. Therefore, we also study
how to combine different types of samplers. We then propose SamComb, a bandit-based
sampler combination framework. Given a budget (i.e., sample size), a query and a set
of samplers, SamComb iteratively allocates the budget and decides how much budget
should be allocated to each sampler. We propose two strategies adapted from MAB to
balance the exploration and exploitation trade-off in budget allocation. We prove both
two strategies can allocate most of the budget to the best sampler. After the budget

92



allocation, SamComb then combines all estimators from samplers by allocating different
weights. We studied two weight allocation strategies and proved that SamComb is
asymptotically optimal under the proportional-to-size weight allocation.

To accelerate human analytics, we focused on the exploratory data analysis scenario and
developed an EDA system with the idea of task-centric API design.

• DataPrep.EDA. We propose DataPrep.EDA to simplify the steps of conducting EDA
in Python. We carefully design a set of declarative APIs to map common EDA tasks
in statistical modelling to corresponding visualizations. Since each API represents a
task, users can finish an EDA task with a single function call. In this way, users can
pay attention to deciding the task to perform and leave the implementation details to
the system. Our experiment results show that DataPrep.EDA significantly outperforms
Pandas-profiling (a popular data-profiling tool in Python) in terms of both speed and
user experience.

6.2 Future Direction

Increasing Supported Queries in AQP systems. While AQP systems have been stud-
ied for decades, they have not been widely used in practice. One possible reason may relate
to their limited supported query types.

1. Scope of Supported Queries. It lacks a clear boundary between queries that an AQP
system can support and queries that the system cannot support. It seems there is
no systematic study on this problem. While the answer may be hard to know, we
may choose another direction: support as many types of queries as possible. In the
past, various synopses [73] have been proposed to support different types of queries.
To answer as many queries as possible, the combination idea of this thesis can be
applied: different synopsis can be combined to support more query types.

2. Supporting Complex Queries. It is very challenging for an AQP system to support
complex queries such as join and nested queries. Recently, there seems to be a trend
of applying advanced machine learning models in AQP. The idea is to model the data
distribution (data-driven) or query distribution (query-driven), and predicts the query
result. ML-based approaches have achieved some promising results in scenarios such as
cardinality estimation, and it shows a potential to support complex queries [174, 106].
Although it seems promising, many challenging problems are still unsolved [105]. E.g.,
how to handle the data drift problem? How to guarantee the quality of the returned
result?

ML-powered Analytics. Machine learning (ML) techniques have been successfully ap-
plied in real applications such as healthcare [81], image analysis [148] and natural language

93



processing [128]. It also brings a trend in data analytics. Gartner uses the term “augmented
analytics" to represent the approach “that automates insights using machine learning and
natural-language generation", and shows that it “marks the next wave of disruption in the
data and analytics market" [145].

One question is that if we think ML techniques can be as smart as humans, can we
leverage them to assist data analytics? In the following, we list some scenarios where ML
may be applied to help accelerate human analytics.

1. Insight Generation. DataPrep.EDA is designed for the scenario where users know what
task to perform. It is also possible that users do not have a specific task in mind
and they just want to find some interesting facts about the dataset. To accelerate
analytics in this scenario, modern BI tools can automatically recommend interesting
insights from the dataset (e.g., QuickInsight in PowerBI [79]). Although the system
can help humans explore interesting facts, the large search space makes it hard to
achieve an interactive response. One idea to accelerate insight generation is to leverage
approximate computation. If an insight does not appear in the result set, we may also
draw the same conclusion using the approximate score of the insight.

2. Explanation Generation. When users explore the data, it is very common for them to
find something unusual and then seek an explanation. E.g., why the income increase
compared to last month? To accelerate this process, existing tools can automati-
cally generate explanations of some interesting facts. For example, PowerBI has a
feature to explain fluctuations in visualization. Many efforts have also been made in
academia [114, 171]. Similar to the issue of insight generation, it is also challenging
to generate explanations for large-scale data due to the large search space. One idea
to solve this problem is to improve search efficiency. E.g., BOExplain [114] leverages
bayesian optimization to explain inference queries.

3. Natural Language Interaction. The advanced natural language processing techniques
make it possible to interact with the system in a natural language interface. Although
some BI tools allow users to ask a natural language question and return a visualization
as an answer (e.g., the ’Q & A’ feature of PowerBI), the currently supported questions
are very simple, and the support of natural language is still at an early stage. Actually,
natural language has the potential to become a unified interface for conducting data
analytics. For example, users first ask “what is interesting about the data?". Then
the system returns an insight that the average salary in a city is much higher than
in other cities. After that, the user asks “why is the average salary in city X high?".
Finally, the system receives the question and gives an explanation. In order to build
such a system, there exist many challenges that need to be solved, such as handling
the ambiguity of natural language queries, mapping the query to visual representation
and managing the dialogue system [149].

94



Bibliography

[1] Big Data Benchmark. http://amplab.cs.berkeley.edu/benchmark.

[2] Loan dataset. https://www.kaggle.com/skihikingkevin/online-p2p-lending.

[3] TLC Trip Record Data. http://www.nyc.gov/html/tlc/html/about/trip_
record_data.shtml.

[4] ACLED Asian Conflicts, 2015-2017, 2020.

[5] Adult Census Income, 2020.

[6] Alteryx: Automation that lets data speak and people think, 2020.

[7] Automobile Dataset, 2020.

[8] AutoViz: Automatically Visualize any dataset, any size with a single line of code,
2020.

[9] Basketball Players Stats per Season - 49 Leagues, 2020.

[10] Bitcoin Dataset, 2020.

[11] Chess Game Dataset (Lichess), 2020.

[12] Data science courses on edX, 2020.

[13] DataExplorer: Automate Data Exploration and Treatment, 2020.

[14] Default of Credit Card Clients Dataset, 2020.

[15] Diamonds, 2020.

[16] From Data to Viz, 2020.

[17] Heart Disease UCI, 2020.

[18] Hotel booking demand, 2020.

[19] IBM Data Science Professional Certificate, 2020.

[20] IBM SPSS Statistics: Easy-to-Use Data Analysis, 2020.

[21] JMP: Statistical Discovery From SAS, 2020.

[22] Kaggle: Your Machine Learning and Data Science Community, 2020.

95

http://amplab.cs.berkeley.edu/benchmark
https://www.kaggle.com/skihikingkevin/online-p2p-lending
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml


[23] Lux: A Python API for Intelligent Visual Discovery, 2020.

[24] Microsoft Excel: Work together on Excel spreadsheets, 2020.

[25] Microsoft Power BI: Data Visualization, 2020.

[26] Pima Indians Diabetes Database, 2020.

[27] Python for Data Science and Machine Learning Bootcamp, 2020.

[28] Qlik: Data Analytics and Data Integration Solutions, 2020.

[29] Rain in Australia, 2020.

[30] SAS: Analytics, Artificial Intelligence and Data Management, 2020.

[31] Solar Radiation Prediction, 2020.

[32] splunk: The Data-to-Everything Platform, 2020.

[33] Suicide Rates Overview 1985 to 2016, 2020.

[34] Sweetviz: an open source Python library that generates beautiful, high-density visu-
alizations to kickstart EDA (Exploratory Data Analysis) with a single line of code,
2020.

[35] Tableau: an interactive data visualization software company, 2020.

[36] The TIOBE Programming Community Index, 2020.

[37] The UC Berkeley Foundations of Data Science Course, 2020.

[38] TIBCO Spotfire Data Visualization and Analytics Software, 2020.

[39] Titanic: Machine Learning from Disaster, 2020.

[40] Top Women Chess Players, 2020.

[41] Koalas: pandas API on Apache Spark, 2021.

[42] Z. Abedjan, L. Golab, and F. Naumann. Profiling relational data: a survey. The
VLDB Journal, 24(4):557–581, 2015.

[43] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional samples for approximate
answering of group-by queries. In SIGMOD, 2000.

[44] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The aqua approximate
query answering system. In SIGMOD, 1999.

[45] C. Adams, L. Alonso, B. Atkin, J. Banning, S. Bhola, R. Buskens, M. Chen, X. Chen,
Y. Chung, Q. Jia, N. Sakharov, G. Talbot, N. Taylor, and A. Tart. Monarch: Google’s
planet-scale in-memory time series database. Proc. VLDB Endow., 13(12):3181–3194,
2020.

96



[46] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. I. Jordan, S. Madden, B. Mozafari,
and I. Stoica. Knowing when you’re wrong: building fast and reliable approximate
query processing systems. In SIGMOD, 2014.

[47] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. BlinkDB:
queries with bounded errors and bounded response times on very large data. In
EuroSys, 2013.

[48] S. Agrawa. Multi-armed bandits and reinforcement learning course, lecture 3.

[49] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002.

[50] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample selection for approximate
query processing. In SIGMOD, 2003.

[51] D. Barbará and M. Sullivan. Quasi-cubes: Exploiting approximations in multidimen-
sional databases. SIGMOD Record, 1997.

[52] L. Battle and J. Heer. Characterizing exploratory visual analysis: A literature review
and evaluation of analytic provenance in tableau. In Computer Graphics Forum,
volume 38, pages 145–159. Wiley Online Library, 2019.

[53] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic
press, 2014.

[54] A. Bilogur. Missingno: a missing data visualization suite. Journal of Open Source
Software, 3(22):547, 2018.

[55] Bokeh Development Team. Bokeh: Python library for interactive visualization, 2018.

[56] S. Brugman. Pandas-profiling: Exploratory Data Analysis for Python. https://
github.com/pandas-profiling/pandas-profiling, 2019.

[57] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, et al. Api design for machine learning
software: experiences from the scikit-learn project. arXiv preprint arXiv:1309.0238,
2013.

[58] Y. Cao and W. Fan. Data driven approximation with bounded resources. PVLDB,
10(9):973–984, 2017.

[59] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache
flink™: Stream and batch processing in a single engine. IEEE Data Eng. Bull.,
38(4):28–38, 2015.

[60] S. K. Card and J. Mackinlay. The structure of the information visualization design
space. In Proceedings of VIZ’97: Visualization Conference, Information Visualization
Symposium and Parallel Rendering Symposium, pages 92–99. IEEE, 1997.

[61] C. Y. Chan and Y. E. Ioannidis. Hierarchical prefix cubes for range-sum queries. In
VLDB, 1999.

97

https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling


[62] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. R. Narasayya. Overcoming
limitations of sampling for aggregation queries. In ICDE, 2001.

[63] S. Chaudhuri, G. Das, and V. R. Narasayya. A robust, optimization-based approach
for approximate answering of aggregate queries. In SIGMOD, 2001.

[64] S. Chaudhuri, G. Das, and V. R. Narasayya. Optimized stratified sampling for ap-
proximate query processing. ACM Trans. Database Syst., 32(2):9, 2007.

[65] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
SIGMOD Record, 1997.

[66] S. Chaudhuri, B. Ding, and S. Kandula. Approximate query processing: No silver
bullet. In SIGMOD, 2017.

[67] S. Chaudhuri and V. Narasayya. TPC-D data generation with skew. ftp.research.
microsoft.com/users/viveknar/tpcdskew.

[68] Y. Chen and Z. Ghahramani. Scalable discrete sampling as a multi-armed bandit
problem. In International Conference on Machine Learning, pages 2492–2501. PMLR,
2016.

[69] Y. Chen and K. Yi. Two-level sampling for join size estimation. In SIGMOD, 2017.

[70] R. Chirkova and J. Yang. Materialized views. Foundations and Trends in Databases,
4(4):295–405, 2012.

[71] S. Chun, C. Chung, J. Lee, and S. Lee. Dynamic update cube for range-sum queries.
In VLDB, 2001.

[72] S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries with arbitrary aggregation func-
tions using views. ACM Trans. Database Syst., 31(2):672–715, 2006.

[73] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive
data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases,
4(1-3):1–294, 2012.

[74] Z. Cui, S. K. Badam, M. A. Yalçin, and N. Elmqvist. Datasite: Proactive visual
data exploration with computation of insight-based recommendations. Information
Visualization, 18(2):251–267, 2019.

[75] Ç. Demiralp, P. J. Haas, S. Parthasarathy, and T. Pedapati. Foresight: Recommending
visual insights. arXiv preprint arXiv:1707.03877, 2017.

[76] D. Deutch, A. Gilad, T. Milo, and A. Somech. Explained: explanations for eda note-
books. Proceedings of the VLDB Endowment, 13(12):2917–2920, 2020.

[77] V. Dibia and Ç. Demiralp. Data2vis: Automatic generation of data visualizations
using sequence-to-sequence recurrent neural networks. IEEE computer graphics and
applications, 39(5):33–46, 2019.

[78] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang. Sample + Seek:
approximating aggregates with distribution precision guarantee. In SIGMOD, pages
679–694, 2016.

98

ftp.research.microsoft.com/users/viveknar/tpcdskew
ftp.research.microsoft.com/users/viveknar/tpcdskew


[79] R. Ding, S. Han, Y. Xu, H. Zhang, and D. Zhang. Quickinsights: Quick and auto-
matic discovery of insights from multi-dimensional data. In Proceedings of the 2019
International Conference on Management of Data, pages 317–332, 2019.

[80] C. E. Dyreson. Information retrieval from an incomplete data cube. In VLDB, 1996.

[81] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,
G. Corrado, S. Thrun, and J. Dean. A guide to deep learning in healthcare. Nature
medicine, 25(1):24–29, 2019.

[82] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska. Revisiting reuse for
approximate query processing. PVLDB, 10(10):1142–1153, 2017.

[83] V. Ganti, M. Lee, and R. Ramakrishnan. ICICLES: self-tuning samples for approxi-
mate query answering. In VLDB, 2000.

[84] S. Geffner, D. Agrawal, A. El Abbadi, and T. R. Smith. Relative prefix sums: An
efficient approach for querying dynamic OLAP data cubes. In ICDE, 1999.

[85] P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving
approximate query answers. In SIGMOD, 1998.

[86] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

[87] A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294,
2001.

[88] M. H. Hansen and W. N. Hurwitz. On the theory of sampling from finite populations.
The Annals of Mathematical Statistics, 14(4):333–362, 1943.

[89] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently.
In SIGMOD, 1996.

[90] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD, 1997.

[91] C. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range queries in OLAP data cubes.
In SIGMOD, 1997.

[92] K. Hu, M. A. Bakker, S. Li, T. Kraska, and C. Hidalgo. Vizml: A machine learning
approach to visualization recommendation. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, pages 1–12, 2019.

[93] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &
Engineering, 9(3):90–95, 2007.

[94] C. Jermaine. Robust estimation with sampling and approximate pre-aggregation. In
VLDB, pages 886–897, 2003.

[95] C. Jermaine and R. J. Miller. Approximate query answering in high-dimensional data
cubes. In SIGMOD, 2000.

99



[96] C. M. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate query
processing with the DBO engine. In SIGMOD, 2007.

[97] R. Jin, L. Glimcher, C. Jermaine, and G. Agrawal. New sampling-based estimators
for OLAP queries. In ICDE, 2006.

[98] S. Joshi and C. Jermaine. Materialized sample views for database approximation. In
ICDE, 2006.

[99] N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and interactive
cube exploration. In ICDE, pages 472–483, 2014.

[100] N. Kamat and A. Nandi. A session-based approach to fast-but-approximate interactive
data cube exploration. ACM Trans. Knowl. Discov. Data, 12(1):9:1–9:26, Feb. 2018.

[101] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer. Profiler: Integrated
statistical analysis and visualization for data quality assessment. In Proceedings of
the International Working Conference on Advanced Visual Interfaces, pages 547–554,
2012.

[102] S. Kandula, K. Lee, S. Chaudhuri, and M. Friedman. Experiences with approximating
queries in microsoft’s production big-data clusters. Proc. VLDB Endow., 12(12):2131–
2142, 2019.

[103] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaudhuri, and
B. Ding. Quickr: lazily approximating complex adhoc queries in bigdata clusters. In
SIGMOD, 2016.

[104] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis. Spear: Expediting stream
processing with accuracy guarantees. In 36th IEEE International Conference on Data
Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020, pages 1105–1116.
IEEE, 2020.

[105] K. Kim, J. Jung, I. Seo, W. Han, K. Choi, and J. Chong. Learned cardinality estima-
tion: An in-depth study. In Z. Ives, A. Bonifati, and A. E. Abbadi, editors, SIGMOD
’22: International Conference on Management of Data, Philadelphia, PA, USA, June
12 - 17, 2022, pages 1214–1227. ACM, 2022.

[106] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinal-
ities: Estimating correlated joins with deep learning. In 9th Biennial Conference on
Innovative Data Systems Research, CIDR 2019, Asilomar, CA, USA, January 13-16,
2019, Online Proceedings. www.cidrdb.org, 2019.

[107] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, and T. Kraska. Stale view
cleaning: Getting fresh answers from stale materialized views. PVLDB, 8(12):1370–
1381, 2015.

[108] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online aggregation via random walks.
In SIGMOD, 2016.

[109] K. Li and G. Li. Approximate query processing: what is new and where to go? Data
Science and Engineering, 3(4):379–397, 2018.

100



[110] X. Li, J. Han, Z. Yin, J. Lee, and Y. Sun. Sampling cube: a framework for statistical
olap over sampling data. In SIGMOD, 2008.

[111] W. Liang, H. Wang, and M. E. Orlowska. Range queries in dynamic OLAP data
cubes. Data Knowl. Eng., 34(1):21–38, 2000.

[112] Q. Lin, W. Ke, J.-G. Lou, H. Zhang, K. Sui, Y. Xu, Z. Zhou, B. Qiao, and D. Zhang.
Bigin4: Instant, interactive insight identification for multi-dimensional big data. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pages 547–555, 2018.

[113] Z. Liu and J. Heer. The effects of interactive latency on exploratory visual analysis.
IEEE transactions on visualization and computer graphics, 20(12):2122–2131, 2014.

[114] B. Lockhart, J. Peng, W. Wu, J. Wang, and E. Wu. Explaining inference queries with
bayesian optimization. Proc. VLDB Endow., 14(11):2576–2585, 2021.

[115] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic data visualization.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE), pages
101–112. IEEE, 2018.

[116] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presentation for visual
analysis. IEEE transactions on visualization and computer graphics, 13(6):1137–1144,
2007.

[117] A. Mahajan and D. Teneketzis. Multi-armed bandit problems. In Foundations and
Applications of Sensor Management, pages 121–151. Springer, 2008.

[118] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. Bao: Making
learned query optimization practical. In G. Li, Z. Li, S. Idreos, and D. Srivastava,
editors, SIGMOD ’21: International Conference on Management of Data, Virtual
Event, China, June 20-25, 2021, pages 1275–1288. ACM, 2021.

[119] G. Moerkotte. Small materialized aggregates: A light weight index structure for data
warehousing. In VLDB, 1998.

[120] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but verify: Optimistic visualiza-
tions of approximate queries for exploring big data. In CHI, 2017.

[121] D. Moritz, C. Wang, G. Nelson, H. Lin, A. M. Smith, B. Howe, and J. Heer. Formal-
izing visualization design knowledge as constraints: Actionable and extensible models
in draco. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2019.

[122] B. Mozafari and N. Niu. A handbook for building an approximate query engine. IEEE
Data Eng. Bull., 38(3):3–29, 2015.

[123] B. Mozafari, J. Ramnarayan, S. Menon, Y. Mahajan, S. Chakraborty, H. Bhanawat,
and K. Bachhav. Snappydata: A unified cluster for streaming, transactions and in-
teractice analytics. In CIDR, 2017.

[124] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and summary
tables in a warehouse. In SIGMOD, 1997.

101



[125] S. Nirkhiwale, A. Dobra, and C. M. Jermaine. A sampling algebra for aggregate
estimation. PVLDB, 6(14):1798–1809, 2013.

[126] F. Olken. Random Sampling from Databases. PhD thesis, University of California at
Berkeley, 1993.

[127] F. Olken and D. Rotem. Simple random sampling from relational databases. In
VLDB, 1986.

[128] D. W. Otter, J. R. Medina, and J. K. Kalita. A survey of the usages of deep learning for
natural language processing. IEEE Trans. Neural Networks Learn. Syst., 32(2):604–
624, 2021.

[129] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for large
mapreduce jobs. PVLDB, 4(11):1135–1145, 2011.

[130] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann. Data profiling
with metanome. Proceedings of the VLDB Endowment, 8(12):1860–1863, 2015.

[131] Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb: Universalizing approxi-
mate query processing. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018,
pages 1461–1476, 2018.

[132] Y. Park, A. S. Tajik, M. J. Cafarella, and B. Mozafari. Database learning: Toward a
database that becomes smarter every time. In SIGMOD, pages 587–602, 2017.

[133] J. Peng, B. Ding, J. Wang, K. Zeng, and J. Zhou. One size does not fit all: A
bandit-based sampler combination framework with theoretical guarantees. In Z. Ives,
A. Bonifati, and A. E. Abbadi, editors, SIGMOD ’22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, pages 531–544.
ACM, 2022.

[134] J. Peng, W. Wu, B. Lockhart, S. Bian, J. N. Yan, L. Xu, Z. Chi, J. M. Rzeszotarski,
and J. Wang. Dataprep.eda: Task-centric exploratory data analysis for statistical
modeling in python. In G. Li, Z. Li, S. Idreos, and D. Srivastava, editors, SIGMOD
’21: International Conference on Management of Data, Virtual Event, China, June
20-25, 2021, pages 2271–2280. ACM, 2021.

[135] J. Peng, D. Zhang, J. Wang, and J. Pei. AQP++: connecting approximate query
processing with aggregate precomputation for interactive analytics. In Proceedings
of the 2018 International Conference on Management of Data, SIGMOD Conference
2018, Houston, TX, USA, June 10-15, 2018, pages 1477–1492, 2018.

[136] R. Peng. Exploratory data analysis with R. Lulu. com, 2012.

[137] D. Petersohn, W. W. Ma, D. J. L. Lee, S. Macke, D. Xin, X. Mo, J. E. Gonzalez,
J. M. Hellerstein, A. D. Joseph, and A. G. Parameswaran. Towards scalable dataframe
systems. CoRR, abs/2001.00888, 2020.

[138] A. Pol and C. Jermaine. Relational confidence bounds are easy with the bootstrap.
In SIGMOD, pages 587–598, 2005.

102



[139] N. Potti and J. M. Patel. DAQ: A new paradigm for approximate query processing.
PVLDB, 8(9):898–909, 2015.

[140] C. Proteau. Guide to performance and tuning: Query performance and sampled
selectivity, 2004.

[141] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning system.
In VLDB, volume 1, pages 381–390, 2001.

[142] K. Rong. Improving computational and human efficiency in large-scale data analytics.
PhD thesis, Stanford University, USA, 2021.

[143] F. Rusu, C. Qin, and M. Torres. Scalable analytics model calibration with online
aggregation. IEEE Data Eng. Bull., 38(3):30–43, 2015.

[144] F. Rusu, F. Xu, L. L. Perez, M. Wu, R. Jampani, C. Jermaine, and A. Dobra. The
DBO database system. In SIGMOD, pages 1223–1226, 2008.

[145] R. Sallam, C. Howson, and C. J. Idoine. Augmented analytics is the future of data
and analytics. Gartner, Inc, 27, 2017.

[146] H. J. Seltman. Experimental design and analysis, 2012.

[147] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun, N. Yegitbasi,
H. Jin, E. Hwang, N. Shingte, and C. Berner. Presto: SQL on everything. In 35th
IEEE International Conference on Data Engineering, ICDE 2019, Macao, China,
April 8-11, 2019, pages 1802–1813. IEEE, 2019.

[148] D. Shen, G. Wu, and H.-I. Suk. Deep learning in medical image analysis. Annual
review of biomedical engineering, 19:221, 2017.

[149] L. Shen, E. Shen, Y. Luo, X. Yang, X. Hu, X. Zhang, Z. Tai, and J. Wang. To-
wards natural language interfaces for data visualization: A survey. arXiv preprint
arXiv:2109.03506, 2021.

[150] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection for multi-
dimensional datasets. In VLDB, 1998.

[151] A. Shukla, P. Deshpande, J. F. Naughton, and K. Ramasamy. Storage estimation for
multidimensional aggregates in the presence of hierarchies. In VLDB, 1996.

[152] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran. zenvisage: Effortless
visual data exploration. In Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data, 2016.

[153] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. SciBORQ: Scientific data management
with bounds on runtime and quality. In CIDR, 2011.

[154] S. Singh. Advanced Sampling Theory With Applications: How Michael"" Selected""
Amy, volume 2. Springer Science & Business Media, 2003.

[155] C. J. Skinner. Probability proportional to size (pps) sampling. Wiley StatsRef: Statis-
tics Reference Online, pages 1–5, 2014.

103



[156] A. Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in
Machine Learning, 12(1-2):1–286, 2019.

[157] M. Staniak and P. Biecek. The landscape of r packages for automated exploratory
data analysis. arXiv preprint arXiv:1904.02101, 2019.

[158] B. Tang, S. Han, M. Yiu, R. Ding, and D. Zhang. Extracting top-k insights from
multi-dimensional data. pages 1509–1524, 05 2017.

[159] N. Tierney. visdat: Visualising whole data frames. Journal of Open Source Software,
2(16):355, 2017.

[160] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis. Seedb:
Efficient data-driven visualization recommendations to support visual analytics. In
Proceedings of the VLDB Endowment International Conference on Very Large Data
Bases, volume 8, page 2182. NIH Public Access, 2015.

[161] E. Veach and L. J. Guibas. Optimally combining sampling techniques for monte
carlo rendering. In S. G. Mair and R. Cook, editors, Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, Los
Angeles, CA, USA, August 6-11, 1995, pages 419–428. ACM, 1995.

[162] D. Vengerov, A. C. Menck, M. Zaït, and S. Chakkappen. Join size estimation subject
to filter conditions. Proc. VLDB Endow., 8(12):1530–1541, 2015.

[163] J. S. Vitter and M. Wang. Approximate computation of multidimensional aggregates
of sparse data using wavelets. In SIGMOD, 1999.

[164] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo. A
sample-and-clean framework for fast and accurate query processing on dirty data. In
SIGMOD, pages 469–480, 2014.

[165] M. Waskom and the seaborn development team. mwaskom/seaborn, Sept. 2020.

[166] H. Wickham and G. Grolemund. R for data science: import, tidy, transform, visualize,
and model data. " O’Reilly Media, Inc.", 2016.

[167] K. Wongsuphasawat, Y. Liu, and J. Heer. Goals, process, and challenges of exploratory
data analysis: An interview study. CoRR, abs/1911.00568, 2019.

[168] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and J. Heer.
Voyager: Exploratory analysis via faceted browsing of visualization recommendations.
IEEE transactions on visualization and computer graphics, 22(1):649–658, 2015.

[169] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay,
B. Howe, and J. Heer. Voyager 2: Augmenting visual analysis with partial view
specifications. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, pages 2648–2659, 2017.

[170] T. Wright. Exact optimal sample allocation: More efficient than neyman. Statistics
& Probability Letters, 129:50–57, 2017.

104



[171] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries.
PVLDB, 6(8):553–564, 2013.

[172] S. Wu, B. C. Ooi, and K. Tan. Continuous sampling for online aggregation over
multiple queries. In SIGMOD, 2010.

[173] J. N. Yan, Z. Gu, and J. M. Rzeszotarski. Tessera: Discretizing data analysis workflows
on a task level. In CHI ’21: CHI Conference on Human Factors in Computing Systems,
Yokohama, Japan, May 8–13, 2021, pages 1–15. ACM, 2021.

[174] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-
stein, S. Krishnan, and I. Stoica. Deep unsupervised cardinality estimation. Proc.
VLDB Endow., 13(3):279–292, 2019.

[175] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. In E. M. Nahum and D. Xu, editors, 2nd USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA, June
22, 2010. USENIX Association, 2010.

[176] K. Zeng, S. Agarwal, and I. Stoica. iOLAP: managing uncertainty for efficient incre-
mental OLAP. In SIGMOD, 2016.

[177] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical bootstrap: a new method
for fast error estimation in approximate query processing. In SIGMOD, pages 277–
288, 2014.

105



Appendix A

Supplementary Material for
AQP++

A.1 Proofs

Proof of Lemma 1

Consider a user query q:

SELECT f(A) FROM D WHERE Condition_1,

and a precomputed aggregate query pre:

SELECT f(A) FROM D WHERE Condition_2.

If AQP supports the aggregation function f , query q and pre can be estimated using AQP,
i.e., q̂(S) and preˆ (S). Since pre(D) is a constant, AQP++ can use Equation 3.4 to get the
estimatation of q.

Proof of Lemma 2

Consider a user query q:

SELECT f(A) FROM D WHERE Condition_1,

and a precomputed aggregate query pre:

SELECT f(A) FROM D WHERE Condition_2.

106



If AQP can estimate their answers unbiasedly, then we have q(D) = E[q̂(S)] and pre(D) =
E[preˆ (S)]. Based on Equation 3.4, AQP++’s estimator returns pre(D) +

(︁
q̂(S) − preˆ (S)

)︁
.

We can prove that its expect value is equal to the true value:

E
[︂
pre(D) +

(︁
q̂(S) − preˆ (S)

)︁]︂
= E[pre(D)] +

(︁
E[q̂(S)] − E[preˆ (S)]

)︁
= pre(D) +

(︁
q(D) − pre(D)

)︁
= q(D)

Proof of Lemma 4

Consider a sequence of i.i.d values D = {a1, a2, · · · , an}. We define Dpre = {Gpre(ai) | i ∈
[1, n]}, where Gpre(ai) take ai as input and returns ai if ai satisfies the pre’s condition;
otherwise, 0. We define Dq = {Gq(ai) | i ∈ [1, n]}, where Gq(ai) take ai as input and returns
ai if ai satisfies the q’s condition; otherwise, 0. We define Dd = Dpre −Dpre = {xi − yi|xi ∈
Dpre, yi ∈ Dq, i ∈ [1, n].} Based on the confidence interval for a SUM query in Example 4,
we can deduce that error(q, pre) = λN

√︂
VAR(Dd)

n . Since VAR(Dd) = E[D2
d] − E[Dd]2, let us

compute E[D2
d] and E[Dd]2 separately.

Firstly, we will compute E[Dd]2. We have E[Dd] = E[Dpre −Dq] = E[Dpre] − E[Dq]. Since
each value in D is i.i.d, the sum of the values within any range is proportional to the length
of the range. Let α be the percentage of the values in D satisfying pre’s condition but not
q’s, β be the percentage of the values in D satisfying q’s condition but not pre’s, and γ be
the percentage of the values in D satisfying both pre’s and q’s condition. Then, we have
E[Dpre] = (α+ γ)E[D] and E[Dq] = (β + γ)E[D]. Hence,

E[Dd]2 = (α− β)2E[D]2 (A.1)

Secondly, we will compute E[D2
d]. We have Dpreq = {Gpreq(ai) | i ∈ [1, n]}, where Gpreq(ai)

take ai as input and returns ai if ai satisfies the pre’s condition as well as the q’s condition;
otherwise, 0. Similar to the idea of computing E[Dd]2, we obtain E[D2

pre] = (α + γ)E[D2],
E[D2

q ] = (β + γ)E[D2] and E[D2
preq] = γE[D2]. Hence, we can get:

E[D2
d] = (α+ β)E[D2] (A.2)

Combining Equation A.1 and Equation A.2, we can derive error(q, pre) = λN
√︂

σ2

n , where
σ2 = (α+ β)E[D2] − (α− β)2(E[D])2.

Given q, our goal is to find pre with the minimal error, which is equivalent to find the
minimal σ2. Denote the selectivity of q as θ. The following two equations always hold:

θ ≥ β (A.3)

0 ≤ α+ θ ≤ 1 (A.4)

Let us consider pre in P+ in the following three cases:

107



(1) Case 1: pre satisfies α ≥ β+ E[D2]
2E[D]2 . we will prove that σ2 −error(q, ϕ) ≥ 0, which means

ϕ ∈ P− is the optimal pre query. Actually, we have σ2 ≥ (α − β)E[D2] − (α − β)2E[D]2.
Hence, σ2 − error(q, ϕ) ≥ (α− β − θ)E[D2] − (α− β − θ)(α− β + θ)E[D]2.

Since α−β ≥ E[D2]
2E[D]2 ≥ 1

2 , and θ ≤ 1−α ≤ 1
2 (based on Equation A.4), we have α−β−θ ≥ 0.

Since α − β + θ ≤ 1 − β ≤ 1, we can get E[D2] − (α − β + θ)E[D]2 ≥ E[D2] − E[D]2 ≥ 0.
Combine it with α− β − θ ≥ 0, we can derive σ2 − error(q, ϕ) ≥ 0.

(2) Case 2: pre satisfies β ≥ α + E[D2]
2E[D]2 . We will prove that ϕ ∈ P− is the optimal pre,

i.e., σ2 − error(q, ϕ) ≥ 0. Since β ≥ α, we can get (α − β)2 ≤ β2. Besides, we also have
α+ β ≥ β. Then, we can derive σ2 = (α+ β)E[D2] − (α− β)2E[D]2 ≥ βE[D2] − β2E[D]2.

Hence, σ2 − error(q, ϕ) ≥ (β − θ)E[D2] − (β − θ)(β + θ)E[D]2.

Since we have β ≥ α+ E[D2]
2E[D]2 ≥ E[D2]

2E[D]2 and θ ≥ β (Equation A.3), we can get β + θ ≥ 2β ≥
E[D2]
E[D]2 . Hence, we have E[D2] − (β + θ)E[D]2 ≤ E[D2] − E[D]2E[D2]

E[D]2 = 0. Combine it with
β − θ ≤ 0, we could derive σ2 − error(q, ϕ) ≥ 0.

(3) Case 3: pre satisfies β < α + E[D2]
2E[D]2 and α < β + E[D2]

2E[D]2 . We will prove that a query
pre ∈ P− will have the smallest error. If regard σ2 as a quadratic function of α, then the
turn point is β + E[D2]

2E[D]2 . Since α < β + E[D2]
2E[D]2 , we can get that for a fixed β, the error

is monotonically increasing w.r.t. α. Similarly, for a fixed α, the error is monotonically
increasing w.r.t. β. Now given a query q, there are five possible positions that pre query can
be. Let x and y denote the lowest point and the highest point of q query. Let prex and prey
denote the lowest point and the highest point of pre query, respectively. Let preopt denote
the optimal pre with smallest error.

(a) position 1: prel ≥ x and preh ≤ y. In this case, alpha = 0 and β = prex − x+ y − prey.
Then the smallest β will get when prex = hx and prey = ly. Hence, preopt ∈ P−.

(b) position 2: prex < x and prey ≤ y. In this case, α = x − prex and β = y − prey. Then
the smallest α and β is got when prex = lx and prey = ly. Hence, preopt ∈ P−.

(c) position 3: prex ≥ x and prey > y. In this case, α = prey − y and β = prex − x. Then
the smallest α and β is got when prex = hx and prey = hy. Hence, preopt ∈ P−.

(d) position 4: prex < x and prey > y. In this case, β = 0 and α = x − prex + prey − y.
Then the smallest α is got when prex = lx and prey = hy. Hence, preopt ∈ P−.

(e) position 5: pre = ϕ. Since ϕ ∈ P−, we also have preopt ∈ P−.

Proof of Lemma 4

According to Lemma 4, we only need to prove

max
q∈Q

min
pre∈P −

eq

error(q, pre) = λN

√︃
σ2

eq

n
.

Let θ denote q’s selectivity.

108



(1) If θ > 1
k . In this case, there exists two points hx and ly inside query q. We will prove that

when x and y are the middle points of lxhx and lyhy, we can get maxq∈Q minpre∈P−
eq
error(q, pre) =

λN
√︂

σ2
eq

n , where σ2
eq = 1

kE[D2] − 1
k2 (E[D])2.

First we will prove that when x and y are the middle points, we have σ2
opt = σ2

eq. Actually,
there are five pre we can choose: pre = AGG(lx : hy), pre = AGG(hx : ly), pre = AGG(lx :
ly), pre = AGG(hx : hy), and pre = ϕ.

(a) If pre = AGG(lx : hy), then α = 1
k and β = 0, thus σ2 = σ2

eq.

(b) If pre = AGG(hx : ly), similar to (a) we can get σ2 = σ2
eq.

(c) If pre = AGG(lx : ly), we have α = 1
2k and β = 1

2k , hence σ2 = 1
kE[D2] ≥ σ2

eq.

(d) If pre = AGG(hx : hy), similar to (c) we can get σ2 = 1
kE[D2] ≥ σ2

eq.

(e) If pre = ϕ, we have σ2 = θE[D2] − θ2E[D]2. Since 1
k ≤ θ ≤ 1 − 1

k , we can get σ2 ≥ σ2
eq.

Hence, σ2
opt = σ2

eq.

Now we will prove that for any query q, we have σ2
opt ≤ σ2

eq. Suppose l = |hxly| and
L = |lxhy|.

(a) When θ − l ≤ 1
k , for pre = hxly, we have α = 0 and β = θ − l ≤ 1

k . Then, σ2 =
βE[D2] − β2E[D]2 ≤ σ2

eq. Hence, we can get σ2
opt ≤ σ2 ≤ σ2

eq.

(b) When θ − l > 1
k , for pre = lxhy, we have α = L − θ = l + 2

k − θ < 1
k and β = 0. Then

σ2 = αE[D2] − α2E[D]2 < σ2
eq. Hence, we can get σ2

opt ≤ σ2 < σ2
eq.

(2) If θ ≤ 1
k , we will prove that the query-template error cannot be larger than λN

√︂
σ2

eq

n .
When using ϕ to answer the query, the query’s variance is σ2 = θE[D2] − θ2(E[D])2. Since
θ ≤ 1

k and σ2 is monotonically increasing w.r.t θ, we have σ2 ≤ σ2
eq. Thus, error(q, ϕ) =

λN
√︂

σ2

n ≤ λN
√︂

σ2
eq

n . Since ϕ ∈ P−
eq, we obtain minp∈P−

eq
error(q, p) ≤ error(q, ϕ) ≤ λN

√︂
σ2

eq

n .

Proof of Lemma 5

In order to prove the lemma, we only need to construct a single bad query q′ ∈ Q such that
error(q′, P ) ≥ λN

√︂
σ2

eq

n . Since the precomputed queries are not evenly chosen, there must
exist two intervals such that the sum of their lengths is larger than 2N

k . Construct a query
q′ = SUM(x : y), where x and y are the middle points of the two intervals, respectively.
Suppose |lxhx| = 2a and |lyhy| = 2b. Then we have 1

k ≤ a + b ≤ 1 − θ and θ ≥ a + b ≥ 1
k .

There are five possible pre queries for q′:

(a) pre = AGG(lx : hy): we have β = 0 and α = a+ b. Since 1
k ≤ a+ b ≤ 1 − θ ≤ 1 − 1

k , we
have σ2 = (a+ b)E[D2] − (a+ b)2E[D]2 ≥ 1

kE[D2] − 1
k2E[D]2 = σ2

eq.

(b) pre = AGG(hx : ly): similar to (a), we have σ2 = (a+ b)E[D2] − (a+ b)2E[D]2 ≥ σ2
eq.

(c) pre = AGG(lx : ly): we have α = a and β = b. Then σ2 = (a+b)E[D2]−(a−b)2E[D]2 ≥
(a+ b)E[D2] − (a+ b)2E[D]2 > σ2

eq.

109



(d) pre = AGG(hx : hy): similar to (c), we can get σ2 ≥ σ2
eq.

(e) pre = ϕ: we have α = 0 and β = θ. Since 1
k ≤ θ ≤ 1− 1

k , we have σ2 = θE[D2]−θ2E[D]2 ≥
σ2
eq.

Now, for all five pre queries, we have σ2 ≥ σ2
eq. Hence the query error of q′ is minpre∈P− error(q′, pre) ≥

λN
√︂

σ2
eq

n .

Proof of Theorem 1

Based on Lemmas 4 and 5, we can easily deduce that the query-template error of Q w.r.t.
Peq is minimum. That is,

Peq = arg min
P

max
q=SUM(x:y)
1≤x<y≤N

error(q, P ).

Hence, Peq is an optimal BP-Cube.

Proof of Lemma 6

Due to the space limit, we just give the proof sketch. P− \ {ϕ} ⊆ P+, then error(q, P ) =
minp∈P+ error(q, p) ≤ minp∈P−\{ϕ} error(q, p). We can see that P− \ {ϕ} consists of four
precomputed queries that lead to four ways to estimate the sum. As shown in Section 3.6.1,
we can choose the pre query that leads to min

{︁
λN√
n

·
√︁

Var(ALx), λN√
n

·
√︂

Var(AL̄x
)
}︁

and

min
{︁
λN√
n

·
√︂

Var(ALy ), λN√
n

·
√︂

Var(AL̄y
)
}︁
. Then error(q, P ) would be λN√

n
·
√︁

Var(X + Y ) or
λN√
n

·
√︁

Var(X − Y ), where X = ALx if Var(ALx) ≤ Var(AL̄x
), otherwise X = AL̄x

. Y has
a similar meaning with X. Then, based on Cauchy-Schwarz inequality

√︁
Var(X ± Y ) ≤√︁

Var(X) +
√︁

Var(Y ), we can derive the lemma.

A.2 Preprocessing Cost Analysis

We analyze the time complexity of our aggregate-precomputation technique in this part.

In the first stage, we need to determine which BP-Cube needs to be precomputed. This
stage is only executed on a sample S. The total time complexity of this stage is dominated
by determining the BP-Cube’s shape because it needs to run hill climbing algorithms for
multiple times (denote the number of the times by m) in order to plot an error profile for
each dimension. The hill climbing algorithm is an iterative algorithm. Let iter denote the
number of iterations. Each iteration takes a linear time of O(n). Thus, the time complexity
of plotting a single error profile is O(m · iter ·n). Since we need to construct d error profiles,
the total time complexity is O(d · m · iter · n). Note that here n is the sample size, which
is orders of magnitude smaller than the data size. In the experiments, we set m = 20 by
default, and found that iter is on average smaller than 20.

110



In the second stage, we need to precompute the BP-Cube obtained from the first stage. Ho
et al. [91] proposed an efficient algorithm to do so. The algorithm needs to scan the full
data once to initialize a d-dimensional array of the size of ∏︁d

i=1 ki. The time complexity
of this step is O(N · log k) and the I/O cost is O(D). Next, the algorithm scans the array
for d times and the final d-dimensional array is the BP-Cube that we want to precompute.
The time complexity of this step is O(d · k). Since BP-Cube is often small, we assume that
it can be put in memory, thus this step does not involve any I/O cost. To sum up, the
total time complexity is O(N · log k+ d · k) and the total I/O cost is O(D). Since the entire
P-Cube consists of ∏︁d

i=1 |dom(Ci)| cells and a BP-Cube only contains k(≪ ∏︁d
i=1 |dom(Ci)|)

cells, AQP++ incurs much less preprocessing cost than AggPre in terms of both space usage
and running time.

111



Appendix B

Supplementary Material for
SamComb

B.1 Proof of Lemma 7

Proof. Since Si∗ is the best sampler, based on the definition of sampler quality, we have

var(Di) ≥ var(Di∗)

for all i ∈ [1, k].

By incorporating it into Equation (4.8), we derive the following:

1∑︁k
i=1

ni
var(Di)

≥ 1∑︁k
i=1

ni
var(Di∗ )

= 1
n

var(Di∗ )
.

In the above inequality, the left-hand side denotes the variance of the combined estimator
of any budget allocation strategy and the right-hand side represents the variance of the
combined estimator when allocating all the budget n to the best sampler Si∗ . We can see
the right-hand side is always smaller than or equal to the left-hand side, thus the lemma is
proved.

B.2 Proof of Lemma 8

We first prove that when t ≥ cK/d2, the probability of choosing a sub-optimal sampler Si
is at most O(1

t ).

The proof is a simple adaption of [49] and we use similar notations. Let Tj(n) be the
number of batches of sampler j at timestamp n, and let Vj,Tj(n) be the V̂ ar(Dj) with Tj(n)
chunks. Let

x0 = 1
2K

n∑︂
t=1

ϵt (B.1)

112



The probability of choosing sampler j at timestamp n is:

Pr(In = j) ≤ ϵn
K

+ (1 − ϵn
K

)Pr(V̂ j,Tj(n−1) ≤ V̂
∗
T ∗(n−1))

we have:

Pr{V̂ j,Tj(n−1) ≤ V̂
∗
T ∗(n−1)}

=Pr{V̂ j,Tj(n−1) − (Vj − ∆j

2 ) ≤ V̂
∗
T ∗(n−1) − (V ∗ + ∆j

2 )}

≤Pr{V̂ j,Tj(n−1) ≤ Vj − ∆j

2 or V̂ j,Tj(n−1) ≥ V ∗ + ∆j

2 }

=Pr{V̂ j,Tj(n−1) ≤ Vj − ∆j

2 } + Pr{V̂ j,Tj(n−1) ≥ V ∗ + ∆j

2 }

The analysis of the left term and the right term are the same. We have:

Pr{V̂ j,Tj(n) ≤ Vj − ∆j

2 }

=
n∑︂
t=1

Pr(Tj(n) = t and V̂ j,t ≤ Vj − ∆j

2 )

=
n∑︂
t=1

Pr(Tj(n) = t|V̂ j,t ≤ Vj − ∆j

2 ) · Pr(V̂ j,t ≤ Vj − ∆j

2 )

(by Hoeffding bound)

≤
n∑︂
t=1

Pr(Tj(n) = t|V̂ j,t ≤ Vj − ∆j

2 ) · e
−t∆2

j

2d2
j

≤
x0∑︂
t=1

Pr(Tj(n) = t|V̂ j,t ≤ Vj − ∆j

2 ) · e
−t∆2

j

2d2
j

+
n∑︂

t=x0+1
Pr(Tj(n) = t|V̂ j,t ≤ Vj − ∆j

2 ) · e
−t∆2

j

2d2
j

≤
x0∑︂
t=1

Pr(Tj(n) = t|V̂ j,t ≤ Vj − ∆j

2 ) +
2d2

j

∆2
j

e

−∆2
j

x0
2d2

j

(since
∞∑︂

t=x0+1
e−ct ≤ 1

c
e−cx0)

≤
x0∑︂
t=1

Pr(TRj (n) ≤ t|V̂ j,t ≤ Vj − ∆j

2 ) +
2d2

j

∆2
j

e

−∆2
j

x0
2d2

j

≤x0 · Pr(TRj (n) ≤ x0) +
2d2

j

∆2
j

e

−∆2
j

x0
2d2

j

(B.2)

113



where the last line is because each sampler is chosen at random and independent of previous
choice. Since

E[TRj (n)] = 1
K

n∑︂
t=1

ϵt (B.3)

and
V ar[TRj (n)] =

n∑︂
i=1

ϵt
K

(1 − ϵt
K

) ≤ 1
K

n∑︂
t=1

ϵt (B.4)

, by Bernstein’s equality we get:

Pr{TRj (n) ≤ x0} ≤ e−x0/5 (B.5)

Finally we lower bound x0. For n ≥ n′ = cK/d2, ϵn = cK/(d2n) and we have:

x0 = 1
2K

n∑︂
t=1

ϵt

= 1
2K

n′∑︂
t=1

ϵt + 1
2K

n∑︂
t=n′+1

ϵt

≥ n′

2K + c

d2 ln
n

n′

≥ c

d2 ln
nd2e1/2

cK

(B.6)

Combing the above equations and note that d ≤ ∆j

dj
and 1

x2 e
−x2 is monotonically decreasing

we finally get:

Pr(In = j) ≤ ϵn
K

+ 2x0e
−x0/5 +

4d2
j

∆2
j

e
−

∆2
j

x0
2d2

j

≤ c

d2n
+ 2( c

d2 ln
(n− 1)d2e1/2

cK
)( cK

(n− 1)d2e1/2 )c/(5d2)

+ 4e
d2 ( cK

(n− 1)d2e1/2 )c/2

(B.7)

As stated in [49], when c > 5, the above bound is actually O(1
t ).

After we derive the bound of the probability of selecting a sub-optimal sampler, next we
prove the expected batches allocated to it. We have:

bi,(n−1)/b = 1 + 1
K

· cK
d2 +

(n−1)/b∑︂
t=cK/d2

Pr(It = i)

≤ 1 + 1
K

· cK
d2 +

(n−1)/b∑︂
t=cK/d2

O(1
t
)

(B.8)

114



Note that ∑︁(n−1)/b
t=cK/d2 O(1

t ) ≤ O(lnn). Hence, we finally proved that the budget allocated to
a sub-optimal sampler is b · bi,(n−1)/b ≤ O(lnn).

B.3 Proof of Lemma 10

The proof is similar to [48]. It contains two parts.

First Part. In the first part, we prove that: at any time t, if the number of batches allocated
to a sub-optimal sampler Si satisfying: Si.batchNumt ≥

2u2
i ln 2

σt

∆2
i

, then lcbi,t > lcbi∗,t with a
probability at least 1 − 2σt, i.e.:

Pr(It+1 = i|Si.batchNumt ≥
2u2

i ln 2
σt

∆2
i

) ≤ 2σt, (B.9)

where It+1 is the selected sampler at timestamp t+ 1.

When Si.batchNumt ≥
2u2

i ln 2
σt

∆2
i

, i.e., ui
√︃

ln 2
σt

2Si.batchNumt
≤ ∆i

2 , we have:

lcbi,t = V̂ ar(Di)t − ui

√︄
ln 2

σt

2Si.batchNumt

≥ V̂ ar(Di)t − ∆i

2

(B.10)

Besides, with prob. at least 1 − σt, we have:

V̂ ar(Di)t ≥ V ar(Di) − ui

√︄
ln 2

σt

2Si.batchNumt

≥ V ar(Di) − ∆i

2

(B.11)

Combing Equation B.10 and Equation B.11, we could get:

lcbi,t ≥ V ar(Di) − ∆i

= V ar(Di∗)
(B.12)

with prob. at least 1 − σt.

Since V ar(Di∗) ≥ lcbi∗,t with prob. at least 1 − σt, we could finally get lcbi,t ≥ lcbi∗,t with
prob. at least (1 − σt)2 ≥ 1 − 2σt.

Second Part. Then, in the second part, we prove that:

E[Si.batchNumt] ≤
2u2

i ln 2
σt

∆2
i

+ 2
t∑︂

j=1
σj (B.13)

115



We first prove that:

E[
T−1∑︂
t=0

1(It+1 = i,Si.batchNumt <
2u2

i ln 2
σt

∆2
i

)] ≤
2u2

i ln 2
σT −1

∆2
i

(B.14)

Let us consider the contradiction case: we assume the indicator equals to 1 more than
2u2

i ln 2
σT −1

∆2
i

times. Then there must exist a time stamp τ ≤ T − 1, such that:

E[
τ∑︂
t=0

1(It+1 = i,Si.batchNumt <
2u2

i ln 2
σt

∆2
i

)] =
2u2

i ln 2
σT −1

∆2
i

(B.15)

Hence, for any t ≥ τ + 1, Si.batchNumt ≥
2u2

i ln 2
σT −1

∆2
i

. It implies Si.batchNumt ≥
2u2

i ln 2
σt

∆2
i

as
σT−1 ≤ σt. Based on the proof of the first part, the indicator will not be 1 for any time
stamp t ≥ τ + 1 with high probability, which contradicts our assumption.

Now, we can prove that:

E[Si.batchNumn]

=E[
n−1∑︂
t=0

1(It+1 = i)]

=E[
n−1∑︂
t=0

1(It+1 = i,Si.batchNumt <
2u2

i ln 2
σt

∆2
i

)]

+ E[
n−1∑︂
t=0

1(It+1 = i,Si.batchNumt ≥
2u2

i ln 2
σt

∆2
i

))]

≤
2u2

i ln 2
σn−1

∆2
i

+ E[
n−1∑︂
t=0

1(It+1 = i,Si.batchNumt ≥
2u2

i ln 2
σt

∆2
i

))]

=
2u2

i ln 2
σn−1

∆2
i

+
n−1∑︂
t=0

Pr(It+1 = i,Si.batchNumt ≥
2u2

i ln 2
σt

∆2
i

))

=
2u2

i ln 2
σn−1

∆2
i

+
n−1∑︂
t=0

Pr(It+1 = i|Si.batchNumt ≥
2u2

i ln 2
σt

∆2
i

))

· Pr(Si.batchNumt ≥
2u2

i ln 2
σt

∆2
i

))

≤
2u2

i ln 2
σn−1

∆2
i

+ 2
n−1∑︂
t=0

σt

(B.16)

To make ∑︁
σj converged, we set σj as a constant (e.g., 0.5) when j < 2 and σj = 2/j2 when

j > 2. Then, the above bound is in the order of 4u2
i lnn−1

∆2
i

+ constant, which is O(lnn).

116



B.4 Proof of Lemma 11

Under optimal weight allocation, we have:

var(q(ψ)) = 1∑︁k
i=1

ni
var(Di)

(B.17)

We first analyze the bound of var(q(ψ))
var(q(ψ∗)) . Let f(n) denotes the upper bound of the budget

allocated to all sub-optimal samplers, i.e., ∑︁
i ̸=i∗ ni ≤ f(n), we have:

var(q(ψ))
var(q(ψ∗)) =

1
ni∗

var(Di∗ ) +
∑︁

i ̸=i∗
ni

var(Di)

var(Di∗)/n
= n

ni∗ + var(Di∗) ·
∑︁
i ̸=i∗

ni
var(Di)

≤ n

n−
∑︁
i ̸=i∗ ni + var(Di∗ )

maxi{var(Di)} ·
∑︁
i ̸=i∗ ni

= n

n− (1 − var(Di∗ )
maxi{var(Di)}) ·

∑︁
i ̸=i∗ ni

≤ n

n− (1 − var(Di∗ )
maxi{var(Di)}) · f(n)

(B.18)

We then analyze the relative error of ϵ-greedy and LCB. For ϵ-greedy and LCB, f(n) is
O(lnn). Hence, we finally have:

gap(q(ψ)) = var(q(ψ))
var(q(ψ∗)) − 1

≤ O(lnn)
n− O(lnn)

, (B.19)

which shows asymptotic optimality.

B.5 Proof of Lemma 12

Under proportional-to-size allocation, we have:

var(q(ψ)) = 1
n2

k∑︂
i=1

nivar(Di) (B.20)

Let f(n) denotes the upper bound of the budget allocated to all sub-optimal samplers. Then
we have:

117



var(q(ψ))
var(q(ψ∗)) =

1
n2

∑︁k
i=1 nivar(Di)

var(Di∗)/n

=
(n−

∑︁
i ̸=i∗ ni) · var(Di∗) + ∑︁

i ̸=i∗ ni · var(Di)
n · var(Di∗)

≤
(n−

∑︁
i ̸=i∗ ni) · var(Di∗) + maxj{var(Dj)} ·

∑︁
i ̸=i∗ ni

n · var(Di∗)

=
nvar(Di∗) + (maxi var(Di) − var(Di∗)) ∑︁

i ̸=i∗ ni

n · var(Di∗)

≤ 1 + (maxi var(Di) − var(Di∗))f(n)
n · var(Di∗)

Since f(n) ≤ O(lnn), we finally have:

gap(q(ψ)) = var(q(ψ))
var(q(ψ∗)) − 1

≤ O(lnn)
n

,

(B.21)

which shows asymptotic optimality.

118


	Declaration of Committee
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Challenges
	Overview of Contributions
	Accelerating Machine Processing by Approximate Computation
	Accelerating Human Analytics by Task-Centric API Design
	Thesis Organization


	Background and Related Work
	Related Thesis
	Approximate Query Processing
	Exploratory Data Analysis

	I Accelerate Machine Processing by Approximate Computation
	AQP++: Combining Samples and Precomputed Aggregations
	Motivation
	Related Work
	Problem Formalization
	From AQP to AQP++
	Sampling-based AQP
	AQP++ Framework

	Aggregate Identification
	Optimal Solution
	Aggregate-Identification Approach

	Aggregate Precomputation
	One-Dimensional Query Template
	Multidimensional Query Template

	Extensions
	Experimental Results
	Experiment Setup
	Overall Performance
	Detailed Performance
	Evaluation With Other Sampling Methods
	Evaluation on More Datasets

	Conclusion

	SamComb: Combining Different Types of Samplers
	Motivation
	Problem Formalization
	Sampler
	Sampler Combination Problem

	Sampler Combination Framework
	Optimal Weight Allocation
	Exploration and Exploitation Trade-off
	Model as Multi-Armed Bandit
	Framework

	Allocation Phase
	εt-greedy
	LCB

	Combination Phase
	Extensions
	Experiment
	Experimental Setup
	Evaluation of Our Approach
	Comparison of Combination Approaches
	Evaluation in Various Settings
	End-to-end Performance

	Related Work
	Conclusion


	II Accelerating Human Analytics by Task-Centric API Design
	DataPrep.EDA: Task-Centric Exploratory Data Analysis in Python
	Motivation
	Task-Centric EDA
	Common EDA Tasks for Statistical Modeling
	DataPrep.EDA's Task-Centric API Design

	System Architecture
	Front-end User Experience
	Back-end System Architecture

	Implementation
	Why Dask
	Performance Optimization

	Experimental Evaluation
	Performance Evaluation
	Experiments on Large Data
	User Study

	Conclusion & Future Work

	Conclusion & Future Direction
	Thesis Summary
	Future Direction

	Bibliography
	Appendix Supplementary Material for AQP++
	Proofs
	Preprocessing Cost Analysis

	Appendix Supplementary Material for SamComb
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12



