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Abstract 

Green technologies such as fuel cells are needed to reduce greenhouse gas emissions. 

However, fuel cells can experience faults such as hydrogen crossover, where hydrogen 

leaks through the membrane, resulting in oxygen starvation. Leak faults and the ensuing 

starvation can accelerate degradation, reducing fuel cell life. This thesis develops and 

refines techniques to estimate hydrogen leak faults and oxygen starvation to help mitigate 

fault progression. Specifically, this thesis develops fault detection techniques using 

traditional artificial neural networks (ANN) as well as extreme learning machines (ELM), a 

special subset of machine learning algorithms. The thesis also develops extended Kalman 

filters (EKFs) that are used in conjunction with ANN and ELM to mitigate the effect of the 

noise. The data for the training is generated by adding input and measurement noise to a 

previously developed pseudo-2D model of the fuel cell. It was found that the ELM trained 

much more quickly than the ANN, but that the accuracy of the ANN and ELM were similar. 

The EKF model of the fuel cell agreed with the pseudo-2D model for normal fuel cells, but 

not for oxygen-starved fuel cells. Hence, when using the EKF as a prefilter for the machine 

learning algorithms, the machine learning estimate for hydrogen crossover leakage and 

oxygen starvation improved for normal fuel cells, but not for starved fuel cells. The 

disagreement between the EKF model and the pseudo-2D model likely stems from the 

failure of the EKF to account for losses due to hydrogen pumping and hydrogen crossover 

leakage, resulting in a significant reduction in accuracy for the resulting machine learning 

data. The best way to deal with this is to either account for hydrogen pumping and 

hydrogen crossover in starved fuel cells or to not use the EKF as a prefilter for voltage in 

starved fuel cells or when classifying fuel cells as normal or starved or starved. 

Keywords:  proton exchange membrane fuel cell (PEMFC); extreme learning machine 

(ELM); extended Kalman filter (EKF); hydrogen crossover; software 

simulation; machine learning 
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Chapter 1.  
 
Introduction and Thesis Outline 

1.1. Motivation for fault detection in fuel cells 

There is an urgent need to reduce greenhouse gas emissions to prevent 

catastrophic climate change. Transportation accounts for nearly a third of greenhouse 

gas emissions (GHGE) in advanced economies —  28% of GHGE in Canada in 2015 

and 29% of GHGE in the US in 2019 [1]. Hydrogen fuel cells are one of the promising 

technologies that could help us transition the transportation sector away from fossil fuels 

[2], as they directly produce electrical power (at higher efficiencies) than direct 

combustion. Compared to battery-powered electric vehicles, hydrogen fuel cell vehicles 

offer a larger energy density which translates to a longer range as well as quicker 

refueling times. Hydrogen, which can be used in fuel cells, is expected to complement a 

clean energy grid in the foreseeable future through “green credit” trading [3]. This will 

likely be helped by tremendous advances in direct solar to hydrogen using a new 

catalyst and nano-materials [4], [5]. Fuel cells are classified into high-temperature (HT-) 

(800-1000℃) solid oxide fuel cells (SOFC) and low-temperature (LT-) (<100℃) proton 

exchange membrane fuel cells (PEMFC) [6], [7]. PEMFCs typically use pure hydrogen 

fuel and are better suited for motive application [6]–[8]. Any future reference to fuel cells 

refers to the PEMFC variety.  

1.2. Faults in fuel cell 

While fuel cells offer significant advantages compared to direct combustion and 

battery electric vehicles, they nonetheless suffer from life-limiting faults that have 

hindered their widespread adoption and commercial success. 

1.2.1. Summary of hydrogen crossover 

There are two main mechanisms of hydrogen crossover – diffusive and 

convective [9], [10]. Diffusive hydrogen crossover occurs when 𝐻2 diffuses through the 

membrane from the anode to the cathode side in its atomic form rather than as protons. 
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Diffusion occurs in fuel cells when hydrogen interacts with the anode catalyst via random 

movement caused by thermal energy [11], resulting in hydrogen flowing from a region of 

high concentration (in the anode) to a region of low concentration (in the cathode). Since 

the speed of random particle movement increases with temperature, a larger 

temperature increases the rate of diffusion. Diffusive hydrogen crossover is a natural 

process in a healthy fuel cell and its contribution to overall hydrogen crossover is small 

compared to convective hydrogen crossover. Despite its low rate, diffusive hydrogen 

contributes to membrane degradation by creating microscopic pinholes [9], [11].  

Convective hydrogen crossover occurs when the microscopic pinholes are large 

enough that hydrogen can flow through them as a flow of fluid rather than relying on 

diffusion. When this type of hydrogen crossover dominates, it accelerates the growth of 

the pinholes and if left unchecked, the lifetime of the fuel cell can be severely reduced. 

This is referred to as hydrogen “leak” or “crossover” in the reminder of this thesis. While 

many faults can occur in fuel cells, hydrogen crossover [2], [7], [11] is the most 

significant life-limiting fault. Hydrogen crossover occurs when the reactants within the 

fuel cell cause its internal structure to deteriorate, allowing hydrogen to consume the 

oxygen in the air without giving up any energy. This lowers the energy output of the fuel 

cell and in extreme cases, also results in all the oxygen being consumed [11]. The 

presence of hydrogen crossover in a fuel cell is referred to as a leaky fuel cell. In 

extreme cases, this can result in a fully oxygen-starved fuel cell where hydrogen leaks 

from the fuel cell. Hydrogen crossover and oxygen starvation tend to cause premature 

failures and the acceleration of aging [12]. Hydrogen crossover causes more hydrogen 

to be used, resulting in lower fuel economy. Hydrogen leaking from the cathode outlet is 

a direct result of severe hydrogen crossover [2], resulting in a dangerous fire and 

explosion hazard [13]. Additionally, when hydrogen crossover occurs, hydrogen reacts 

with oxygen at the cathode catalyst to form water [7]. This reaction between hydrogen 

and oxygen is known as combustion regardless of the presence of a catalyst [11]. In the 

absence of a catalyst, combustion is negligible, only occurring when triggered by a spark 

[11]. 

1.2.2. Measurement and detection of hydrogen crossover 

Hydrogen crossover can be visualized as a flow of hydrogen into the cathode 

(air) channel. This flow rate is difficult, if not impossible to measure directly, considering 
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the membrane contains an extremely large number of pores that act as miniature flow 

channels. Additionally, all the hydrogen which leaks into the cathode reacts with oxygen 

in the cathode. In extreme cases, all the oxygen is consumed, resulting in oxygen 

starvation, which leads to hydrogen emissions via the cathode outlet.  

According to the literature, the main method to measure hydrogen crossover 

leakage on physical fuel cells is to control some combination of the anodic pressure or 

flow rate, cathodic flow rate, and either the fuel cell current or voltage [11], [14], [15]. 

This is done to measure some combination of the fuel cell current, hydrogen crossover 

current, fuel cell voltage, open-circuit voltage (OCV), and the cathodic air (or oxygen) 

flow rate [11], [14], [15]. Hydrogen crossover leakage can be measured in this way 

because it decreases the voltage (incl. operational voltage and OCV) [11], increases the 

hydrogen crossover current [11], and decreases the amount of oxygen in the cathode 

(leading to more vulnerability to oxygen starvation) [11]. Typically, the anode pressure or 

flow rate is tested at a high pressure to ensure hydrogen leakage occurs [11], [14], [15]. 

Hydrogen crossover measurements can also be classified into ex-situ and in-situ 

methods. Ex-situ methods refer to technologies requiring elaborate lab setups or that 

otherwise cannot be implemented in real-time. These include techniques requiring the 

removal or dismantling of the fuel cells as well as techniques requiring complicated 

simulations. The main problem with ex-situ methods is the difficulty in implementing 

them in real-time and the requirement for specialized instrumentation and personal 

needed to conduct the tests. In-situ methods are those which can be implemented in 

real-time within the fuel cell control system. These include classification methods, where 

some threshold is defined indicating that hydrogen crossover has become too severe. 

However, the main drawback of this is the inability to gauge the severity or extent of the 

hydrogen crossover fault. The in-situ methods also include regression methods, where 

the severity of hydrogen crossover is measured by determining the mole fractions of 

hydrogen and oxygen throughout the cathode. As is evident from the literature review in 

Chapter 2, there are several challenges with accurate leak measurement. The 

challenges essentially amount to elaborate lab setups for ex-situ methods and the need 

to measure hydrogen crossover indirectly using a simplified model for the fuel cell for in-

situ methods. The difficulty with fuel cell models is their tendency to not capture some of 

the more complex real-life phenomena which influence the fuel cell dynamics, which 

reduces the accuracy. 
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1.3. Thesis outline 

While there are many types of faults in fuel cells, this thesis focuses specifically 

on hydrogen crossover. The main objective is to detect hydrogen crossover early by 

predicting the extent of hydrogen crossover, the output oxygen mole fraction, and the 

output hydrogen mole fraction using only the real-world “noisy” measurements of the 

current density and voltage of the fuel cell. Essentially, the current density is the amount 

of current that flows through each unit of area and voltage is the closed-circuit voltage or 

potential difference of the fuel cell. 

This ensures the cost incurred by using fault diagnosis is minimal. However, as 

far as we know, this method is not implemented in the literature in a way compatible with 

the constraints of this thesis using only the fuel cell current and voltage. This thesis 

primarily focuses on the detection of hydrogen crossover leakage, as it is one of the 

major life-limiting faults in PEMFC [2], [7]. Another focus is the estimation of oxygen 

starvation. These objectives were achieved by building a machine-learning algorithm 

that uses the current density and (closed-circuit) voltage to diagnose and estimate the 

extent of hydrogen crossover leakage and oxygen starvation. These include the 

conventional artificial neural network (ANN) and the extreme learning machine (ELM) 

(see section 2.4 and Chapter 4). Since fuel cell data is needed to build (or train) this 

machine learning algorithm, a pseudo-2D fuel cell simulation was run to generate the 

data. An extended Kalman filter is used to filter the simulation data before using it to train 

the machine learning algorithm (section 2.5 and Chapter 3). Additionally, due to the 

complexities and differences between normal and starved fuel cell operation, it proved 

necessary to create and package several neural networks together in a structure known 

as a neural network ensemble (Chapter 4). It is worth noting that the algorithm was 

repeated using conventional neural networks and then repeated without using the EKF. 

In Chapter 2, the literature is reviewed. This includes various fuel cell models, 

fuel cell faults (particularly hydrogen crossover leakage), Kalman filtering, and machine 

learning. This chapter ends with the problem statement and a quick summary of the 

transient fuel cell simulation used in this thesis. In Chapter 3, the extended Kalman filter 

(EKF) is introduced along with the lumped (or simplified) model it uses. Several sample 

simulations are presented for various input current density waveforms to illustrate the 

general behavior of the system. In Chapter 4, the specifics of the machine learning 
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algorithms used in this paper (ELM in particular) are described in detail including the 

data generation in addition to the structure of the neural network ensemble and its parts. 

The accuracy of each neural network and the corresponding ensembles are also 

described in detail. This thesis ends with several conclusions and proposals for the 

potential continuation of the research done for this thesis (Chapter 5). For parameters 

and derivations relevant to this thesis but left out of the main body, see the appendices. 
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Chapter 2. Background and Literature Review 

This chapter provides a review of the recent literature on fuel cell modeling, 

machine learning, and Kalman filtering. This chapter also provides an overview of a 

recent fuel cell model that will be used in this thesis. These are important topics to cover 

because of their relevance to the research done in this thesis. Additionally, this chapter 

presents a simplified overview of the problem, mathematical model, and methodology for 

this thesis. 

2.1. Fuel cell summary 

A proton exchange membrane fuel cell (PEMFC), referred to as a “fuel cell” in 

this thesis, provides energy to an external system using hydrogen and oxygen as fuel 

sources [7]. Hydrogen is stored in a hydrogen tank as the fuel source whereas oxygen is 

typically taken from the air. Hydrogen fuel cells are a source of green energy because 

the reactions which occur involving hydrogen and oxygen ultimately result in water as 

the only waste product (see section 2.2.1). Since hydrogen fuel cells produce electrical 

energy, they can be the energy source of many types of systems. However, the main 

advantage of hydrogen fuel cells compared to other sources is their portability [11] and 

ability to scale to many sizes from the micro-scale [16] to the macroscopic scale [11]. 

Another advantage is their lack of moving parts, which limits the number of sources for 

fuel cell aging [11]. A typical application for fuel cells is in vehicles, where the fuel cell 

can be placed in the vehicle as effectively a miniature power plant. Fuel cells provide 

electrical energy, which is converted to physical movement via motors, etc. For example, 

they can be placed into cars, trucks, and buses. 

Fuel cells can be operated by controlling the anode pressure and flow rate, the 

cathode flow rate, and the current density, which results in some amount of fuel cell 

voltage that varies within a small range of values, ideally 0.5-1.0 volts [7]. Current 

density is the amount of current (e.g. electron flow rate) per unit area, and it increases to 

match the amount of energy the system needs, which can fluctuate wildly based on the 

energy requirements of the external system. For vehicles, this includes vehicle 

acceleration running the air conditioning, and any other process which requires energy. 

Additionally, some systems require a particular amount of voltage to operate properly, 
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and this is typically addressed by stacking fuel cells on top of each other to increase the 

voltage [7]. 

2.2. Fuel cell models 

2.2.1. Models of normal fuel cell  

A fuel cell directly generates electrical energy from hydrogen fuel without 

combustion. Within a fuel cell, the hydrogen that is stored in a fuel tank and the oxygen 

from the ambient air flow in separate channels. On the hydrogen side, known as the 

anode, hydrogen diffuses through the anode gas diffusion layer (GDL), resulting in a 

diffusion gradient, wherein the concentration of hydrogen drops along the thickness of 

the GDL [7]. At the anode catalyst, hydrogen dissociates into protons (H+) and electrons 

according to equation (2.1). The proton travels through the proton exchange membrane 

(PEM), while the electron travels through the external circuit. On the oxygen side, known 

as the cathode, the oxygen in the air diffuses through the cathode GDL. As in the anode, 

there is a similar, albeit larger, diffusion gradient at oxygen [7]. At the cathode catalyst, 

the oxygen reacts with the protons (which arrive through the PEM) and electrons (which 

arrive through the external circuit) to form water according to equation (2.2). The water 

then diffuses to the surface of the cathode GDL and exits via the cathode outlet [7]. More 

details on the concentration gradients are available in the literature [7], [8]. The anode 

and cathode reactions that occur in the normal operation of fuel cells are written as [7], 

[8], [17]: 

 Normal anode reaction: 𝐻2 → 2𝐻+ + 2𝑒− (𝐸° = +0.00 [𝑉]) (2.1) 

 Normal cathode reaction: 4𝐻+ + 4𝑒− + 𝑂2 → 2𝐻2𝑂 (𝐸° = +1.23 [𝑉]) (2.2) 

The standard potential of equations (2.1) and (2.2), 𝐸°, determines the open 

circuit voltage (OCV) or fuel cell potential and is calculated as: 

 𝑂𝐶𝑉 =  𝐸°𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝐸°𝑎𝑛𝑜𝑑𝑒 = 1.23 − 0.00 = 1.23 [𝑉] (2.3) 

Some models are based on computational fluid dynamics (CFD), which tend to 

be relatively complicated and computationally expensive, whereas others are lumped 



 8 

models, which are simpler but not as accurate. One CFD model [18] evaluated the 

performance of a PEMFC stack in terms of power consumed when using the new 

European driving cycle (NEDC). NEDC is a standard, pre-defined cyclical waveform 

used to test vehicles [18]. This waveform was applied to the current density (i.e. current 

per unit area) in addition to anode, cathode, and coolant inlet mass flow rates. This 

model used CFD to evaluate the current density, temperature, liquid saturation, water 

vapor mole fraction, and oxygen mole fraction distributions in the catalyst layer. Another 

example of CFD is a numerical model of a fuel cell [19]. Figure 2.1 shows a schematic of 

a healthy fuel cell: 

 

Figure 2.1: Simplified schematic of a healthy fuel cell. 

In Figure 2.1, 𝐻2 refers to hydrogen, 𝑂2 refers to oxygen, 𝐻2𝑂 refers to water, 𝐻+ 

refers to hydrogen ions (protons), and 𝑒− refers to electrons. 

2.2.2. Model of fuel cell with leak faults 

The objective of this research paper was to analyze various gas crossover 

effects in fuel cells, namely hydrogen crossover, and oxygen crossover. Oxygen 

crossover occurs when oxygen leaks from the cathode to the anode and reacts with the 

   

  

e- 

O2 

H2O 
H2 

H+ Normal 

Anode 

Reaction 

Normal 

Cathode 

Reaction 

Anode GDL 

Proton exchange membrane 

Anode Catalyst 

Cathode GDL 

Cathode Catalyst 

H2 + H2O  Air (O2) 



 9 

hydrogen in the anode [19]. However, the oxygen concentration is extremely small and 

often neglected as it does not degrade the fuel cell [19]. 

However, there are several different types of hydrogen crossover – diffusive and 

convective [9], [10]. Diffusive hydrogen crossover occurs when hydrogen diffuses 

through the membrane in its atomic form, 𝐻2, rather than as protons. Diffusive hydrogen 

crossover causes membrane degradation by creating microscopic pinholes [9], [11]. 

However, this type of hydrogen crossover is a natural part of the fuel cell which tends to 

be small compared to convective hydrogen crossover [10]. When the pinholes are large 

enough, convective hydrogen crossover dominates and accelerates the process of 

membrane degradation [10], [11]. Hence, in this thesis, convective hydrogen crossover 

needs to be detected, whereas diffusive hydrogen crossover is negligible in comparison. 

Owing to the motivation of this thesis, this review focuses only on leak faults. 

Specifically, hydrogen crossover leakage (not to be confused with hydrogen emissions) 

is considered. Hydrogen crossover occurs when the membrane used in fuel cells 

deteriorates, resulting in the formation of microscopic pinholes. These holes can become 

progressively larger, and allow hydrogen to leak or flow to the cathode without 

contributing to energy generation [2]. This is called hydrogen crossover and it results in 

hydrogen gas directly reacting with oxygen gas to form water. Hydrogen crossover also 

causes additional damage to the membrane in the form of membrane thinning and 

chemical degradation [11]. Assuming platinum is used as the catalyst, repeated use of 

the fuel cell leads to the formation of microscopic pinholes in the membrane, leading to 

an increased rate of hydrogen crossover leakage [11]. This is because hydrogen atoms 

flow through the pinholes. This flow of hydrogen results in the pinholes growing in size, 

accelerating the rate of catalyst deterioration and therefore, accelerating the rate of 

hydrogen crossover leakage [11]. Additionally, when hydrogen reacts with platinum, the 

hydrogen often “pulls” the platinum catalyst further into the membrane, resulting in 

platinum being deposited into the membrane as bands of platinum [11]. This deposition 

of platinum catalyst into the membrane results in a less conductive and mechanically 

weaker membrane. Hydrogen crossover is problematic because this fault wastes 

hydrogen, it lowers the threshold for oxygen starvation, and reduces the energy output of 

the fuel cell. 
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Hydrogen crossover leakage consumes oxygen near the beginning of the 

cathode flow channel, meaning less current is required to fully starve the fuel cell. When 

the fuel cell is fully starved, the voltage becomes negative (i.e. the fuel cell wastes 

energy), the oxygen concentration becomes 0 at the cathode outlet, and hydrogen 

emissions from the fuel cell begin. Hydrogen crossover can occur with or without 

hydrogen emissions and vice versa. 

As in the literature [7], [8], this thesis assumes that hydrogen crossover occurs 

near the inlets. This assumption has been justified as follows: the current density and 

reaction rates are greater near the entrance of the PEMFC flow channels and gradually 

decrease downstream [20]; as a result, more strain is placed on the membrane and 

catalyst near the entrance resulting in a greater likelihood of faults. This hydrogen 

crossover fault can model the leak as an equivalent reduction in oxygen concentration 

[7], [8]. This thesis also assumes that all combustion reactions (e.g. equations (2.2) and 

(2.4)) occur at the cathode catalyst, as the rate of combustion outside of that is negligible 

unless triggered by a spark [11]. Since sparks do not typically occur inside a fuel cell, 

they are not modeled for this thesis. One model for hydrogen crossover is described by 

Ebrahimi et al [7], where a lumped model is presented for both normal fuel cell operation 

and fully oxygen-starved fuel cell operation. This is paired with a pseudo-2D model of 

the fuel cell, which is a more detailed simulation of both normal and oxygen-starved fuel 

cell operation. 

As mentioned previously, leak faults can lead to oxygen starvation. A fuel cell is 

said to be oxygen starved when there is insufficient oxygen available to drive the 

reaction at the catalyst. When hydrogen crossover occurs, the oxygen concentration in 

the channel is reduced because some of the hydrogen directly reacts with the oxygen to 

form water (2.4). As noted earlier, owing to the diffusion gradient, the oxygen 

concentration at the catalyst is lower than the oxygen concentration in the channel. The 

fuel cell may become oxygen starved even when the oxygen concentration at the 

channel is non-zero.  While an individual fuel cell may stop “working” when starved, most 

fuel cells operate in a stack, wherein multiple fuel cells are connected in series. As such 

even if the fuel cell becomes oxygen-starved, the anode reaction (2.1) continues to 

produce protons, maintaining the flow of current. Without any oxygen, the protons 

combine with electrons at the anode to form hydrogen gas (2.5), resulting in hydrogen 

emissions where hydrogen exits the fuel cell via the cathode outlet (not to be confused 
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with hydrogen crossover leakage). This action is referred to as hydrogen pumping by 

Ebrahimi et al. [7]. It may be noted when hydrogen crossover occurs, it will usually react 

with the available oxygen. Hydrogen emission only occurs when all the available oxygen 

is consumed. Hydrogen emissions can be induced in a normal cell by reducing air flow 

or inlet oxygen concentration – this is usually prevented from occurring by the control 

system. Thus, although related, hydrogen crossover does not necessarily lead to 

hydrogen emissions and vice versa. The reactions in starved fuel cells can be 

summarised as [7], [20]:  

 (𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟) 2𝐻2 + 𝑂2 → 2𝐻2𝑂  (𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛) (2.4) 

 (𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑃𝑢𝑚𝑝𝑖𝑛𝑔) 2𝐻+ + 2𝑒− → 𝐻2 (𝐸° = +0.00 [𝑉]) (2.5) 

Where 𝐸° indicates the standard potential of each reaction. Since hydrogen 

crossover lowers the concentration of hydrogen and oxygen without providing energy, it 

results in larger fuel consumption and a decrease in energy output. If oxygen is fully 

depleted, the voltage becomes negative, meaning the fuel cell consumes energy [7]. The 

hydrogen in the exhaust (cathode outlet) is a potential hazard, as hydrogen exiting the 

cathode is extremely flammable [8], [13], [21], making hydrogen crossover detection 

more important. 

There are several models for hydrogen crossover faults, but they tend to require 

lab equipment and/or be focused on detecting whether hydrogen crossover has passed 

some arbitrarily defined threshold(s) rather than estimating the magnitude of the 

hydrogen crossover. For example, several neural networks were combined to 

differentiate between four different air stoichiometries (each having different oxygen 

concentrations) [22]. These air stoichiometries were applied to a fuel cell stack to collect 

data so that the neural network can classify which stoichiometry applies to each fuel cell. 

The neural networks constitute a model of the fuel cell (see section 2.2). However, while 

hydrogen crossover leakage may affect the oxygen concentration, only normal fuel cells 

were tested, and the classifier was unable to do any better than a rough approximation 

of the air stoichiometry in the cathode. However, the literature contains lumped fuel cell 

models which are used to detect the extent of hydrogen crossover without the need for 

classification. One such paper [2] built a lumped model for a normal fuel cell and a fully 

oxygen-starved fuel cell, though this lumped model was only there to describe some of 
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the equations the simulation employed. Essentially, hydrogen was injected into the fuel 

cell to induce hydrogen crossover so its effects on important fuel cell variables like 

current density, voltage, and oxygen or hydrogen mole fractions at the cathode outlet 

could be observed. These observations were trivially easy to make because they were 

derived from validated simulations. While this paper provides important insight into both 

normal and oxygen-starved fuel cells, it does not provide any quick fault detection 

methods for real-life fuel cells because the simulation method is relatively slow. It is 

more desirable to use a much quicker method using only a few variables with the 

remaining parameters being constant. 

Figure 2.2 illustrates the reactions of a starved fuel cell that is starved due to an 

extreme crossover leak: 

 

Figure 2.2: Simplified schematic of a fully starved fuel cell with a severe hydrogen crossover fault. 

In Figure 2.2, 𝐻2 refers to hydrogen, 𝑂2 refers to oxygen, 𝐻+ refers to hydrogen 

ions (protons), and 𝑒− refers to electrons.  
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2.2.3. Other fuel cell faults 

Fuel cells can fail due to a variety of faults. Some of the more notable faults 

include flooding [12], [17], [23], drying [12], [17], [23], stack cooling system faults [24], 

hydrogen delivery system faults [21], [24], and hydrogen crossover [2], [7], [11]. Flooding 

occurs when water floods the fuel cell flow channels and/or the membrane, which blocks 

the flow of reactants and air. Flooding tends to occur more at higher currents due to the 

increased production of water in the cathode [17]. Drying occurs when the fuel cell 

membrane dries, lowering the rate at which protons flow through the membrane. Drying 

typically occurs at temperatures above 80 degrees Celsius [17]. Flooding and drying 

both lower the energy output of the fuel cell. Flooding and drying also accelerate the 

aging process of fuel cells through the degradation of the catalyst and membrane, 

respectively [25]. Stack cooling system faults occur when the cooling system of the fuel 

cell malfunctions. This may cause the fuel cell temperature to either increase or 

decrease to suboptimal levels, decreasing fuel cell performance. This is problematic 

because it can cause problems such as drying. Hydrogen delivery system faults occur 

when the system fails to properly regulate the hydrogen pressure in the anode [24]. This 

may result in low hydrogen pressure in the anode, a higher temperature, and a lower air 

flow rate. Faults with the stack cooling system, and hydrogen delivery system, as well as 

various other faults, tend to be the result of a specific component within the system 

failing. Fuel cell faults can be repaired to slow the aging of the fuel cell and prevent 

premature failure. Hence, the early detection of faults prolongs the lifetime of the fuel cell 

and decreases the costs associated with its maintenance. 

2.2.4. Mitigation of faults 

Hydrogen crossover can be managed through the proper management of the 

other faults, the reactants, temperature, current, and voltage [2], [7], [11]. However, while 

convective hydrogen crossover can largely be managed, diffusive hydrogen crossover 

always occurs to some extent, even in healthy fuel cells [9], [10]. Flooding and drying 

can be prevented using good water management techniques. Repairing or replacing 

faulty components used for the stack cooling system, hydrogen delivery system, etc. is 

best done early to extend the fuel cell lifetime and lower the overall maintenance costs. 
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2.3. Heuristic fault detection in fuel cells 

While there has been a growing literature on modeling leaks [2], [8], [26], leak 

diagnostics rely on ex-situ tests under laboratory conditions. These tests do not always 

detect the inception of leak faults. Hence there is a need for a reliable in-situ test that 

can be integrated into every fuel cell controller for online monitoring. None the less, the 

ex-situ methods used to measure the extent of hydrogen crossover are summarized 

below. 

Ex-situ methods for measuring hydrogen crossover include electrochemical 

methods which focus on controlling the fuel cell current or voltage [11] in addition to 

methods that focus on controlling the flow rates and/or pressures in the anode and 

cathode [14], [15]. 

Methods that focus on controlling voltage or current typically result in a value for 

hydrogen crossover current, which can be used to determine the extent of hydrogen 

crossover, as an increase in hydrogen crossover causes an increase in hydrogen 

crossover current [11]. One of these methods is called linear sweep voltammetry, which 

is a method that requires the user to gradually increase the fuel cell voltage by supplying 

the anode side with humidified hydrogen and the cathode side with nitrogen. This forces 

hydrogen pumping to occur, where protons directly react with electrons to form hydrogen 

gas, which then exits through the cathode outlet. Cyclic voltammetry is identical to linear 

sweep voltammetry, except the user gradually decreases the voltage. The potential step 

method is like linear sweep voltammetry and cyclic voltammetry, except that the voltage 

is increased in large steps and not gradually. These methods also include mass 

spectrometry [11], gas chromatography [11], and the segmented current method [11]. 

Mass spectrometry requires the use of a tool called a mass spectrometer to measure the 

concentration of hydrogen in the cathode outlet. Gas chromatography is like mass 

spectrometry, except it uses a tool called a gas chromatograph rather than a mass 

spectrometer to measure the extent of hydrogen crossover. The segmented current 

method is where the hydrogen crossover current is measured at multiple areas of the 

fuel cell to observe the distribution of current throughout the fuel cell, which helps 

recover a more detailed profile of the hydrogen crossover. The segmented current 

method is invasive, as it requires significant tampering with the fuel cell, such as adding 
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many measurement devices or isolating certain sections of the fuel cell as part of a lab 

test [11]. 

Methods that focus on controlling pressure or flow rate typically involve current or 

voltage measurements [14] and in some cases, air flow measurements [15]. These 

methods include electrochemical leakage detection test (ELDT) and air flow modulation. 

ELDT involves measuring the change in open-circuit voltage (OCV) at various anodic 

pressures (or hydrogen flow rates) to detect membrane failure and the resulting 

hydrogen crossover leakage [14]. The idea is that if the hydrogen flow rate is taken to 

extremely large values, more hydrogen will flow through the fuel cell membrane due to 

hydrogen crossover, leading to a measurable drop in OCV [14]. In the context of this 

thesis, air flow modulation is a technique where only the fuel cell stack voltage and air 

flow need to be measured to detect hydrogen crossover leakage [15]. Specifically, 

keeping the anode at a constant overpressure and keeping the current constant, the air 

flow in the cathode is decreased until the fuel cell stack voltage is zero. The idea is that 

in the presence of hydrogen crossover leakage, the air flow rate increases and can be 

measured at a voltage of zero, where oxygen starvation is barely starting to occur [15]. 

This occurs because hydrogen crossover consumes some of the oxygen in the air, 

increasing the cathodic air flow rate required to keep the voltage above zero. 

The ex-situ hydrogen crossover detection methods presented in the literature 

were not applied to real-life fuel cells in real-time. Instead, the fuel cells were tested in 

non-realistic conditions and lab setups. It would be desirable for hydrogen crossover to 

be detected during the real-time operation of a fuel cell, requiring a minimal number of 

measurements that can be made at a minimal cost. Hence, the main drawbacks to the 

ex-situ methods currently used for detecting hydrogen crossover are that they require 

lab conditions to be set up, and applying them during the normal operation of a fuel cell 

in real time would be challenging [11]. 

There also exist several in-situ methods for detecting hydrogen crossover. One 

technique is to gather data and use it to build a simple model. These include statistical 

analysis [12], [27], fault tree analysis [28], a mathematical model, etc. The data can be 

generated from real fuel cells [24] or simulations of a fuel cell [2], [7]. These methods are 

either meant to detect whether a certain threshold of hydrogen crossover has been 

passed [24], [28] or to detect the extent of hydrogen crossover [29]. Neural networks 
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(reviewed in greater detail in Chapter 4) are used to “classify” or determine the 

occurrence of different faults in a fuel cell stack [22] using a large number of inputs (75 

voltages and 11 non-electrical quantities). It may be noted the classification does not 

determine the extent of faults. Simulations, though useful for fault detection, tend to 

make simplifying assumptions that do not perfectly match reality, meaning they would 

have to be paired with actual measurements from real-life fuel cells to realistically 

diagnose fuel cell faults. In other words, simulations are a great way to generate data 

that can be compared to actual fuel cells, and they can also be used to increase the 

user’s understanding of fuel cells. Additionally, another drawback of using simulations is 

that if the fuel cell model is realistic enough, it will likely require large amounts of 

computational power, which would prevent the simulation from ever being used for real-

time applications. However, the data generated by the simulations have been used in 

the literature for various in-situ techniques. 

2.4. Machine Learning based fault detection 

Machine learning is one of the promising technologies for diagnostics, particularly 

in-situ diagnostics. Compared to conventional techniques for fault detection, machine 

learning can easily be customized to detect several faults using different sets of 

available measurements and thus offers a more versatile method of diagnosing faults. 

Machine learning is a type of algorithm that “learns” patterns in existing/known data, and 

uses these patterns to make predictions on newer/unknown data [30]. When such 

algorithms are trained with enough data from normal and faulty fuel cells, the algorithms 

can classify fuel cells into normal and faulty cells, as well as estimate the number of 

faults. While there are many types of machine learning algorithms, this section is limited 

to reviewing neural network-based machine learning algorithms. The basic premise of a 

neural network is described in Bishop [31]. Figure 2.3 in section 2.4.3 provides a 

simplified schematic of a neural network. 

2.4.1. Classifiers and Regressors 

Neural networks can be categorized as classifiers or regressors [32], [33]. A 

classifier attempts to match data (or the system generating the data) to distinct groups or 
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labels [33], whereas a regressor attempts to predict quantifiable (typically continuous) 

values [32]. 

2.4.2. Types of Machine Learning 

Machine learning algorithms, which typically use neural networks, can be divided 

into supervised, unsupervised, and reinforcement learning [30]. In supervised learning, 

the data is manually split or labeled for classifiers, or into inputs and outputs for 

regressors (for example, input current density, and output voltage). This supervised data 

is used to train the machine learning algorithm which then can make future predictions 

[30]. In unsupervised learning, the machine learning algorithms themselves find patterns 

within data or inputs and outputs of the data [30]. Reinforcement learning defines a 

system that teaches the algorithm which decisions are good or bad by defining a cost 

function that awards better scores for better decisions [30]. Supervised machine learning 

largely consists of neural networks, which amount to a mathematical function typically 

involving an extremely large equation with many tunable parameters. The review 

focuses on supervised learning, as only unsupervised and reinforcement learning is not 

used in this thesis. Specifically, the conventional artificial neural network (ANN) and the 

extreme learning machine (ELM) are used in this thesis. 

2.4.3. Introduction to Neural Networks 

The following section reviews some of the more important terminologies and 

aspects of neural networks. 

Activation functions 

The basic element of the neural network is a neuron, otherwise known as a node, 

which is a simple nonlinear element. The exact input-output relation of the neuron is 

called the activation function [31], [34], and it is dependent on the type of neuron. 

Generally, it can be written as: 

 
𝑧𝑜𝑢𝑡 = 𝑓𝑎𝑐𝑡(𝑧𝑖𝑛) (2.6) 

The ideal activation function seeks to capture the inherent nonlinearity in the 

system. The activation function should also preserve continuity, (i.e. small changes to 
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the input should result in small changes to the output), and be defined for the entire set 

of possible inputs (e.g. real numbers between negative infinity and positive infinity). 

These ideal properties apply to each activation function in this thesis. However, there is 

always room to improve the activation functions through trial and error, as each 

combination of activation functions performs differently depending on the data being 

used. 

The activation functions used in this thesis are known as identity, RELU, square, 

and sigmoid. Identity simply multiplies the value by 1, leaving it unchanged. RELU sets 

the node value to 0 if it is originally less than 0, otherwise, it multiplies the node value by 

1 [31]. Square takes the square of the original node value to be the new node value. 

Sigmoid, also known as the logistic function, limits its output between 0 and 1 and 

monotonically increases as the original node value is increased [31]. The activation 

functions can be represented by the following equations, where 𝑧𝑖𝑛 is the scalar input 

representing the original value of the node and 𝑧𝑜𝑢𝑡 represents the value of the node 

after applying the activation function: 

 

𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦: 𝑧𝑜𝑢𝑡 = 𝑧𝑖𝑛,   
𝑅𝐸𝐿𝑈: 𝑧𝑜𝑢𝑡 = max(0, 𝑧𝑖𝑛), 

𝑆𝑞𝑢𝑎𝑟𝑒: 𝑧𝑜𝑢𝑡 = 𝑧𝑖𝑛
2 ,  

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑: 𝑧𝑜𝑢𝑡 ≡ 𝑠𝑖𝑔(𝑧𝑖𝑛) =
1

1 + 𝑒−𝑧𝑖𝑛
 

(2.7) 

Weights and Biases 

The neurons are arranged in layers from the neural network with the output of the 

𝑗𝑡ℎ neuron in the 𝑖𝑡ℎ layer. The first layer is known as the input layer, the last layer is 

known as the output layer, and the intermediary layers are known as the hidden layers. 

Typically, an activation function is not applied to the input layer, as this is dealt with in 

the preprocessing stage. For the input layer, 𝑧𝑜𝑢𝑡,𝑖𝑗 = 𝑧𝑖𝑛,𝑖𝑗 = 𝑥𝑗. The input to each 

neuron in a given layer is generated by adding a “bias” value to the weighted sum of the 

outputs of the neurons from the previous layer [31]. For the subsequent layers, the input 

𝑧𝑖𝑛,𝑖𝑗 is calculated by applying an offset to a weighted sum of the outputs of the previous 

layer [31]: 
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 𝑧𝑖𝑛,𝑖𝑗 = 𝑏𝑗 + ∑ 𝑤𝑗𝑘𝑧𝑜𝑢𝑡,𝑖−1𝑘
𝑘

 (2.8) 

Where 𝑏𝑗 is the bias or offset assigned to the 𝑗𝑡ℎ node of the 𝑖𝑡ℎ layer and each 

𝑤𝑗𝑘 are the weights connecting the previous layer nodes to the 𝑗𝑡ℎ node of the 𝑖𝑡ℎ layer. 

The output is calculated by applying the activation function to the input: 

 
𝑧𝑜𝑢𝑡,𝑖𝑗 = 𝑓𝑎𝑐𝑡,𝑖(𝑧𝑖𝑛,𝑖𝑗) (2.9) 

The weights and offsets collectively form the tunable parameters, which are 

computed by “training” the neural network. These weights and biases form the tunable 

parameters of the neural network that are modified throughout the training process [31]. 

They can typically be represented as matrices and their main purpose is to connect the 

neural network layers. Figure 2.3 illustrates a simple neural network: 

 

Figure 2.3: Simplified schematic of a neural network 
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Notation for describing the neural network size 

For layered neural networks with an arbitrary number of layers (see Figure 2.3), 

the number of inputs will be denoted as 𝑁𝑥, the number of outputs can be denoted as 

𝑁𝑜𝑢𝑡, and the number of nodes in each hidden layer can be denoted as 𝑁𝑧𝑘, 𝑘 being the 

hidden layer number. Hence, replacing this notation with the actual number of nodes in 

each layer, the following notation can be used to describe the neural network: 

 
𝑁𝑥 − 𝑁𝑧1 − 𝑁𝑧2 − ⋯− 𝑁𝑜𝑢𝑡 

(2.10) 

For the 3-layer neural network shown in Figure 2.3, with 𝑁𝑧 denoting the number 

of hidden layer nodes, the notation is as follows: 

 
𝑁𝑥 − 𝑁𝑧 − 𝑁𝑜𝑢𝑡 

(2.11) 

Error metrics 

Since the neural network aims to learn (or be trained) on patterns in the data, it is 

important to only use a subset of data for training [31]. The sub-set of data used to train 

the neural network is called train data. To validate the neural network, the neural 

network performance is evaluated for a different subset of the data which is referred to 

as test data or validation data. In this thesis, the train data consists of roughly 80% of the 

data, and the test data consists of the remaining 20% of the data. An important method 

for comparing result predictions to the true results is referred to as error metrics. For 

each data point, the error is defined as the difference between the output of the neural 

network and the output observed in the data. From this error, various error statistics can 

be calculated. These error statistics give insight into the accuracy of the neural network. 

The regressors and classifiers use different error metrics. For classifiers, it is useful to 

define the percentage of labels that are incorrect because each label is either correct or 

incorrect. It is also useful to define the percentage of normal fuel cell simulations falsely 

labeled as starved and vice versa. For regressors, the mean absolute error and the root 

mean square (RMS) error are useful error metrics. The mean absolute error is the 

average of the absolute error across all data. To calculate RMS error, we calculate the 

square root of the sum of the squares of the errors. The formulas for each type of error 

are as follows: 
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 𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 =
∑ |𝐸𝑘|𝑘=𝑁

𝑘=1

𝑁
, 𝐸𝑅𝑀𝑆 = √

∑ 𝐸𝑘
2𝑘=𝑁

𝑘=1

𝑁
 

𝐸𝑘 = 𝐸𝑟𝑟𝑜𝑟 𝑓𝑜𝑟 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡 𝑘, 𝑁 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 

(2.12) 

For regressors, these error metrics can collectively indicate the spread of the 

errors. To elaborate, consider that each 𝐸𝑘 = 𝐸 + 𝑤𝜎
(𝑘)

, where 𝐸 is the average 

magnitude of error and 𝑤𝜎
(𝑘)

 is random, unbiased Gaussian noise with a standard 

deviation of 𝜎. Hence, equation (2.12) can be rewritten: 

 
𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 =

∑ |𝐸 + 𝑤𝜎
(𝑘)

|𝑘=𝑁
𝑘=1

𝑁
, 𝐸𝑅𝑀𝑆 =

√∑ (𝐸 + 𝑤𝜎
(𝑘)

)
2

𝑘=𝑁
𝑘=1

𝑁
 

(2.13) 

If 𝜎 ≪ 𝐸, then 𝑤𝜎
(𝑘)

≪ 𝐸, meaning that 𝐸 + 𝑤𝜎
(𝑘)

> 0 is a safe assumption. 

Assuming there is enough data that the average of 𝑤𝜎
(𝑘)

 is 𝑤̅𝜎 = 0, equation (2.13) can 

be rewritten for small variations in error: 

 

𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 =
∑ (𝐸 + 𝑤𝜎

(𝑘)
)𝑘=𝑁

𝑘=1

𝑁
=

𝑁𝐸

𝑁
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(𝑘)𝑘=𝑁

𝑘=1

𝑁
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𝑁
= 𝐸 

𝐸𝑅𝑀𝑆 =
√

∑ (𝐸2 + 2𝐸𝑤𝜎
(𝑘)

+ (𝑤𝜎
(𝑘)

)
2
)𝑘=𝑁

𝑘=1

𝑁

= √
𝑁𝐸2

𝑁
+

2𝐸

𝑁
∑ 𝑤𝜎

(𝑘)
𝑘=𝑁

𝑘=1
+

1

𝑁
∑ (𝑤𝜎

(𝑘)
)
2𝑘=𝑁

𝑘=1

= √𝐸2 +
2𝐸

𝑁
(𝑁𝑤̅𝜎) +

1

𝑁
(𝑁𝑤𝜎

2̅̅ ̅̅ ) = √𝐸2 + 𝑤𝜎
2̅̅ ̅̅  

(2.14) 

Since the magnitude of unbiased Gaussian noise is not always 0, it is guaranteed 

that while the average noise is 𝑤̅𝜎 = 0, the average square of the noise, 𝑤𝜎
2̅̅ ̅̅ , is greater 

than 0 and increases with the standard deviation, 𝜎. Hence, when 𝜎 is small, 

𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 𝐸 ≤ √𝐸2 + 𝑤𝜎
2̅̅ ̅̅ = 𝐸𝑅𝑀𝑆 and the ratio of 

𝐸𝑅𝑀𝑆

𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒
≥ 1. Hence, we can 

conclude that when the magnitudes of the error are all roughly equal to 𝐸, then 

𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 𝐸𝑅𝑀𝑆 = 𝐸 and 
𝐸𝑅𝑀𝑆

𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒
= 1. As 𝜎 is increased to arbitrarily large 

values, the Gaussian noise starts to overshadow the average magnitude of the error, 𝐸. 
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Assuming 𝐸 ≪ 𝜎, we can assume that 𝐸𝑘 ≈ 𝑤𝜎
(𝑘)

, which implies that 𝐸 = 𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 =

𝜀 ≈ 0. Hence, 𝐸 ≪ 𝜎 implies that the error is dominated by a few extreme outliers since 

most of the errors would have to be close to 0. Hence, equation (2.12) would simplify to: 

 
𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 =

∑ |𝑤𝜎
(𝑘)

|𝑘=𝑁
𝑘=1

𝑁
=

𝑁 |𝑤𝜎
(𝑘)

|
̅̅ ̅̅ ̅̅ ̅̅

𝑁
= |𝑤𝜎

(𝑘)
|

̅̅ ̅̅ ̅̅ ̅̅
= 𝜀 ≈ 0 

𝐸𝑅𝑀𝑆 =
√∑ (𝑤𝜎

(𝑘)
)
2

𝑘=𝑁
𝑘=1

𝑁
= √

𝑁𝑤𝜎
2̅̅ ̅̅

𝑁
= √𝑤𝜎

2̅̅ ̅̅ > 0 

(2.15) 

Since 𝜀 can be made arbitrarily small, it stands to reason from equation (2.18) 

that 𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 𝜀 ≪ 𝐸𝑅𝑀𝑆. Since the formula for 𝐸𝑅𝑀𝑆 has a degree of freedom, it 

can be maximized by generating a large amount of data for which the error is close to 0 

in addition to an extreme outlier for which the square of the error will increase at a much 

larger rate than the average magnitude of the error. If we assume that the extreme 

outlier has an error with a magnitude equal to 𝐸𝑜𝑢𝑡𝑙𝑖𝑒𝑟 and that the remaining errors are 

all 0, then we get from equation (2.12) that 𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 =
𝐸𝑜𝑢𝑡𝑙𝑖𝑒𝑟

𝑁
 and 𝐸𝑅𝑀𝑆 = √𝐸𝑜𝑢𝑡𝑙𝑖𝑒𝑟

2

𝑁
=

𝐸𝑜𝑢𝑡𝑙𝑖𝑒𝑟

√𝑁
. This means that 

𝐸𝑅𝑀𝑆

𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒
= √𝑁, where 𝑁 is the number of data points, 

meaning that this ratio between 𝐸𝑅𝑀𝑆 and 𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 could theoretically vary between 

1 and infinity. The main point of including equations (2.12), (2.13), (2.14), and (2.15) in 

this thesis is to prove that the ratio of 
𝐸𝑅𝑀𝑆

𝐸𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒
 increases as the standard deviation of 

the error increases relative to the mean absolute error. 

It is desirable for the mean absolute error and RMS error to be close to each 

other. RMS errors or weighted towards larger errors. Hence, the larger the RMS error is 

compared to mean absolute errors, the more “spread out” the errors are [31]. This 

means the RMS should be roughly between 1.2 and 1.5 times larger than the mean 

absolute error, as this indicates that the extreme outliers are few and far between (i.e. 

the errors are predictable) [31]. However, if the RMS error is extremely large and the 

mean absolute error is extremely small, that means that while most data may be 

extremely accurate, there exist absurdly extreme errors scattered throughout the data 

[31]. The problem with extreme outliers is the risk of an extreme catastrophe that results 

from such an extreme error [31]. For example, self-driving vehicles are an emerging 

technology that must receive info from its environment to prevent itself from crashing 
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[35]. Self-driving vehicles are automatically controlled by a control system based on 

some combination of user inputs (like the target destination) and sensor inputs (like the 

road layout, road infrastructure, and pedestrians). This information is used by artificial 

intelligence (or neural networks) to control how the vehicle is driven (e.g. speed and 

steering wheel direction) [35]. The main problem is that if the RMS error is large, but the 

mean absolute error is small, the artificial intelligence is, by definition, going to make 

extreme errors every once in awhile. These extreme errors could include things like 

steering the vehicle into a lane of oncoming traffic (causing a serious car crash) [35]. 

The mean absolute error and RMS error metrics are much less useful for 

classifiers than the percentage of correct and incorrect classifications. This is because, 

after postprocessing, the classifiers will always predict each output layer neuron to be 

equal to 0 or 1. Since their true values are also equal to 0 or 1, every squared error is 

also equal to 0 or 1, respectively. Thus, the RMS error does not convey any information 

about how “varied” the errors are in the case of a classifier. 

Cost function 

A neural network requires a way to measure the total “error” and it typically does 

this using a quantitative function. This is known as the cost function. The cost function is 

defined by the user as a metric for measuring the accuracy of the neural network. A 

smaller cost function value means the neural network is more accurate. In this thesis, 

the sum of squared errors (SSE) is defined as the cost function for all machine learning 

algorithms, and it is defined by [31]: 

 𝑆𝑆𝐸 =
1

2
∑(𝑦𝑘

𝑝𝑟𝑒𝑑
− 𝑦𝑘

𝑡𝑟𝑢𝑒)
2

𝑘

 

𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

(2.16) 

The main idea is to find the neural network weights and biases that minimize the 

cost function. This optimization process is known as “training” the neural network. Since 

the cost function is dependent on the true values of the neural network outputs, 𝑦𝑡𝑟𝑢𝑒, a 

set of data must be collected before training the neural network. The classifier and 

regressor can both be trained using this cost function, as a larger SSE is worse than a 

smaller SSE for both classifiers and regressors. 
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Preprocessing of data 

Preprocessing is a way to prepare the input and output data used by the neural 

network and is a standard way to improve accuracy [31]. Preprocessing may be done to 

the input and output data to improve the neural network and to prevent the weights and 

biases from becoming too extreme [31]. Some examples of this include dimensionality 

reduction [31] and input normalization wherein the data is scaled to make all inputs have 

similar magnitudes [32]. These modifications may include removing “bad” data (such as 

extreme outliers), mapping data to a desirable range, etc. These modifications are 

known as preprocessing. Dimensionality reduction refers to the process of condensing 

the input and output data into fewer values. Dimensionality reduction reduces the risk 

that the neural network will overfit the data and it reduces the number of inputs the 

neural network must keep track of. For the types of machine learning algorithms 

discussed in this thesis, dimensionality reduction is the art of determining which inputs 

are the most important to consider for the neural network. Input normalization refers to 

mapping the inputs to values between 0 and 1 to minimize the likelihood that the weights 

and biases will explode to infinity or approach close to 0 [32]. 

Training 

Training refers to the act of selecting or tuning, the weights and biases of the 

neural network for the predicted output of the neural network to match the true output 

within a designated set of data, known as the training data [36], [37]. In short, the error 

must be minimized by defining a cost function to represent the average error across all 

the data [31] and setting its derivative concerning each parameter equal to 0. 

Techniques may vary, but the techniques used in this thesis are linear regression [38] 

and backpropagation [36], [37]. In linear regression, the solution is solved algebraically, 

but this technique is limited to neural networks with only the input layer and output layer. 

In backpropagation, the training is done iteratively, where the partial derivatives (i.e. 

gradients) of the cost function with respect to each weight and bias are found. After 

finding the gradients, the neural network parameters change slightly in the direction of 

the gradient such that the cost function is maximized (or the accuracy is maximized). 

Forward Propagation 

Forward propagation starts with the input data and calculates the hidden layer 

from the input layer. Then, the hidden layer is used to calculate the next layer of the 
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neural network. This continues until the output layer is calculated. Forward propagation 

for the conventional ANNs used in this thesis can all be summarized using the following 

matrix equations (see Figure 2.3, or Figure 2.4 in section 2.4.4): 

 
𝑦𝑝𝑟𝑒𝑑 = 𝑠𝑖𝑔([1, 𝑧]𝑊12), 𝑧 = 𝑓ℎ𝑖𝑑([1, 𝑥]𝑊01) 

(2.17) 

Where [1, 𝑥] and [1, 𝑧] represent the concatenation of the value “1” to the input 

layer values, 𝑥, or the hidden layer values, 𝑧. 

Back propagation 

Back propagation is used to retrieve the gradient (or derivative) of the cost 

function relative to each weight and bias. Then, the weights and biases are changed 

slightly in the direction indicated by this gradient such that the cost function will tend to 

decrease slightly [31]. This process is then repeated for as many iterations as desired. 

The backpropagation algorithm requires an optimizer to run it. 

Validation 

After training, it is important to measure the accuracy of the neural network on a 

different set of data known as “validation data”. This verification or measurement of 

accuracy is known as validation. It is important to note that the effectiveness of validation 

depends on how representative of real life the validation data is and in many cases 

including fuel cell fault diagnosis, it is difficult to capture all aspects of how the simulated 

fuel cell would respond to the simulation inputs in real life. However, this can be 

remedied by repeating the validation on a physical version of the fuel cell that is 

ultimately being simulated. 

To validate the performance of an ANN, a new set of data that is not used for 

training must be reserved. The data used for training is known as train data and the 

remaining data is known as test or validation data. The error metrics are calculated after 

the forward propagation step of the training process for both the train data and the 

validation data and then compared to each other. If the error metrics corresponding to 

the train and test data are similar, then the ANN can typically be used for new data, 

provided the train and validation data accurately reflect the patterns that occur in this 

new data.  
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Postprocessing of Data 

Postprocessing involves the calculation or transformation of the output of the 

neural network [38]. Postprocessing includes the calculation of metrics that summarize 

the neural network accuracy [38]. Another method for postprocessing is saturation, 

wherein a variable can be clipped to a minimum and maximum value. The saturation 

method can be used to ensure all results are realistic. 

2.4.4. Conventional Artificial Neural Networks (ANNs) 

A conventional ANN is a type of neural network [36], [38], often referred to as an 

ANN. The ANN is one of the most mainstream neural networks which is typically used 

because of its general-purpose nature and because it is adaptable to many types of 

data. Assuming the data is composed of a set of inputs paired with a set of outputs, one 

of the main benefits of an ANN is that training is effective even if little thought is put in 

about the nature of the data. In this section, the basic architecture is summarized. 

Additionally, the method by which to calculate the output layer from the input layer, 

called “forward propagation”, is also summarized. To create an ANN, the weights and 

biases must be optimized with respect to the cost function (see section 2.4.3). The 

method by which the weights and biases are optimized is known as “training” and the 

method by which to ensure the training succeeded is known as “validation”. The basic 

ANN architecture, forward propagation, training, and validation are summarized in this 

section. 

Basic Architecture 

The architecture of an ANN is summarized in this section. In summary, an ANN 

consists of an input layer, any number of hidden layers, and an output layer [34]. In this 

thesis, only one hidden layer is used. Figure 2.3 is an accurate schematic of an ANN if 

preprocessing, postprocessing, and information about the true output values are 

excluded. 

“I/O” can be used to represent the actual input values and actual output values (if 

known) before preprocessing. “x” can be used to represent the input values, “z” can be 

used to represent the hidden layer values, 𝑦𝑝𝑟𝑒𝑑 can be used to represent the output 

values predicted by the neural network, 𝑦𝑡𝑟𝑢𝑒 can be used to represent the actual output 
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values (if provided). 𝑊01 and 𝑊12 can be used to represent the weight and bias matrices 

and the number “1” can be used to represent the biases. 𝑓ℎ𝑖𝑑 and 𝑓𝑜𝑢𝑡 can be used to 

represent the activation function of the hidden and output layer nodes, respectively. 

Figure 2.4 illustrates the architecture of a generic conventional ANN. 

 

Figure 2.4: Architecture of a conventional ANN – Generic 

The neural network in Figure 2.4 can be expressed as an 𝑁𝑥 − 𝑁𝑧 − 𝑁𝑜𝑢𝑡 neural 

network, where 𝑁𝑥 indicates the number of input layer nodes, 𝑁𝑧 indicates the number of 

hidden layer nodes, and 𝑁𝑜𝑢𝑡 indicates the number of output layer nodes. The number of 

biases is equal to 𝑁𝑧 + 𝑁𝑜𝑢𝑡 and the number of weights excluding biases is equal to 

𝑁𝑥𝑁𝑧 + 𝑁𝑧𝑁𝑜𝑢𝑡. This means that the number of weights and biases (or trainable 

parameters) is equal to: 

 
𝑁𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 = (1 + 𝑁𝑥)𝑁𝑧 + (1 + 𝑁𝑧)𝑁𝑜𝑢𝑡 (2.18) 

Training – Backpropagation 

When training a neural network, the main objective is to minimize the error 

between the neural network predictions and the “true” values as defined in the training 
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data. This error is defined in the form of a cost function such as SSE (equation (2.16)). 

For conventional ANNs, it is possible to compute the derivative or gradient of the cost 

function with respect to each trainable weight and bias. The main idea is to find a local 

minimum for the gradient (global minimum if possible) by setting this gradient to zero. 

However, since conventional ANNs have multiple layers of weights and biases, 

optimizing the weights of a conventional ANN tends to be prohibitively difficult to do 

algebraically if it is even possible. This is the reason an iterative approach for 

conventional ANNs is preferable to an algebraic approach. All weights and biases in a 

conventional ANN are trainable [36], [37]. The process of finding this derivative for all 

training data is known as backpropagation. However, it is important to note that for 

backpropagation to be possible, the neural network predictions must be known, so 

forward propagation must be completed before backpropagation. The computed 

gradients tell the algorithm how much each weight and bias influence the value of the 

cost function or error and the gradients also tell the algorithm which direction to change 

the weights and biases to minimize the cost function. Ultimately, a conventional ANN is 

trained by cycling through all training data a pre-determined number of iterations, known 

as epochs. While it is possible to configure backpropagation to calculate the gradient 

and use it to update the weights and biases once per epoch, this update is typically done 

multiple times per epoch. The update is done after the gradient is calculated from a 

predetermined amount of data. This data is referred to as a batch, and the number of 

data points within the batch is known as the batch size. 

In this thesis, linear regression is used for the ELM and the Adam optimizer is 

used to optimize the conventional ANN. The Adam optimizer is an algorithm that 

iteratively uses forward propagation and backpropagation to gather info about the 

gradient of the cost function with respect to each trainable weight and bias [39]. More 

information about the Adam optimizer can be found in [39]. For the cost function and its 

derivative with respect to the weights and biases to be known, the true values of the 

outputs, 𝑦𝑡𝑟𝑢𝑒, must already be known from a set of data [31]. While backpropagation 

can optimize multiple layers of parameters, it has the following drawbacks: 

• It may take many iterations to train the neural network [34] 

• Due to the nonlinearity and complexity of a typical feedforward network, the 

optimum that the algorithm approaches may not be the global optimum [31] 
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• The training performance may fluctuate as the optimum is approached [34] 

Modifications to cost function – regularization 

While the SSE cost function is a good representation of error, it is also important 

to ensure that the neural network does not overfit the data or otherwise perform poorly in 

the validation stage. This can be accomplished using regularization [31]. Regularization 

is used to penalize neural networks with extreme parameters. In this thesis, the weights, 

and biases of the conventional ANNs are penalized based on the square of their 

magnitude. This penalty is scaled by a regularization constant, which can be written as 

𝜆𝑟𝑒𝑔
𝐴𝑁𝑁. In this thesis, this regularization is applied by modifying the cost function from 

equation (2.16) as follows, where (𝑤𝑏)𝑘 is used to simply represent each weight and 

bias in the neural network: 

 
𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 𝑆𝑆𝐸 =

1

2
∑ (𝑦𝑘

𝑝𝑟𝑒𝑑
− 𝑦𝑘

𝑡𝑟𝑢𝑒)
2

𝑘 (𝑜𝑢𝑡𝑝𝑢𝑡
𝑙𝑎𝑦𝑒𝑟 𝑜𝑛𝑙𝑦)

+ 𝜆𝑟𝑒𝑔
𝐴𝑁𝑁 ∑(𝑤𝑏)𝑘

2

𝑘

 

𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

(2.19) 

2.4.5. Extreme Learning Machines (ELMs) 

An ELM is a type of neural network [36], [38]. It is a special type of neural 

network that is similar to the conventional ANN, except it has additional benefits and 

drawbacks that are explained in this section. In this section, the basic architecture, 

forward propagation, training, and validation of an ELM are summarized. 

Basic Architecture 

An ELM differs from an ANN in the number of layers and in how those layers are 

connected. An ELM consists of an input layer, two hidden layers, and an output layer. 

The first hidden layer is connected to the input layer by a matrix of randomized weights 

and biases, represented as 𝑊𝑟𝑎𝑛𝑑 [36], [38]. An activation function is defined for the first 

hidden layer, referred to as 𝑓ℎ𝑖𝑑. Then, a series of activation functions are applied to 

each of the first hidden layer nodes to form the second hidden layer. These activation 

functions can be represented as 𝑓1, 𝑓2, …, and 𝑓𝑁𝑓
, assuming there are 𝑁𝑓 activation 

functions assigned to the second hidden layer [38]. The second hidden layer is 
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connected to the output layer using a weight matrix, referred to as 𝑊𝑀𝐿. The activation 

function applied to the output layer can be represented as 𝑓𝑜𝑢𝑡. The output layer values 

are postprocessed to retrieve the actual outputs. Figure 2.5 illustrates a generic ELM: 

 

Figure 2.5: Architecture of an Extreme Learning Machine (ELM) – Generic 
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The neural network in Figure 2.5 contains 𝑁𝑥 input layer nodes, 𝑁𝑧 nodes in the 

first hidden layer, 𝑁ϕ = 𝑁𝑓𝑁𝑧 nodes in the second hidden layer, and 𝑁𝑜𝑢𝑡 output layer 

nodes. The number of biases is equal to 𝑁𝑧 + 𝑁𝑜𝑢𝑡 and the number of weights excluding 

biases is equal to 𝑁𝑥𝑁𝑧 + 𝑁ϕ𝑁𝑜𝑢𝑡. However, only the weights and biases connecting the 

second hidden layer and the output layer are trainable parameters. Hence, the number 

of trainable parameters in an ELM is equal to: 

 
𝑁𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 = 𝑁𝑜𝑢𝑡 + 𝑁ϕ𝑁𝑜𝑢𝑡 = (1 + 𝑁ϕ)𝑁𝑜𝑢𝑡 (2.20) 

Forward Propagation 

As is the case for an ANN, forward propagation in an ELM starts with the input 

data and calculates the first hidden layer from the input layer. After applying the 

activation function of this hidden layer, multiple activation functions are applied to each 

node to produce the second hidden layer. Finally, the output layer is calculated from the 

second hidden layer the same way it is done for an ANN. The weights and biases 

connecting the input layer to the first hidden layer, 𝑊𝑟𝑎𝑛𝑑, are random constants with a 

standard normal distribution: 

 
𝑊𝑟𝑎𝑛𝑑 = 𝑁(𝜇 = 0, 𝜎 = 1) (𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑤𝑖𝑠𝑒 𝑡𝑜 𝑓𝑜𝑟𝑚 𝑎 𝑚𝑎𝑡𝑟𝑖𝑥) (2.21) 

As a system of equations in matrix form, forward propagation for an ELM can be 

expressed as follows (see Figure 2.5): 

 
𝑦𝑝𝑟𝑒𝑑 = 𝑓𝑜𝑢𝑡(𝜙𝑊𝑀𝐿) 

𝜙 = 𝑓Φ(𝑧) = [1, 𝑓1(𝑧1), 𝑓2(𝑧1),… , 𝑓𝑁(𝑧1), 𝑓1(𝑧2),… , 𝑓𝑁(𝑧𝑁𝑧)] 
𝑧 = 𝑓ℎ𝑖𝑑([1, 𝑥]𝑊𝑟𝑎𝑛𝑑) 

(2.22) 

Where 𝑁𝑧 is the number of nodes in the first hidden layer and N is the number of 

activation functions used for the second hidden layer. These activation functions are 

used to address the potentially complicated relationship between the inputs and outputs. 

It is largely arbitrary which activation functions are chosen for the ELM, so the technique 

called “trial and error” is a reasonable method for finding the best activation functions. 
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Training – Linear regression 

The main benefit of using an ELM instead of a conventional ANN is its near-

instantaneous training time, as it uses linear regression instead of backpropagation. This 

is possible because only the weights and biases connecting the final hidden layer to the 

output layer are trainable in the ELM [36], [37]. Hence, linear propagation is used, 

resulting in an extremely quick algorithm compared to the ANN. Since only the weights 

and biases connecting the last hidden layer to the output layer can be trained, an ELM is 

trained using linear regression [38]. Typically, regularization is used to penalize extreme 

values for the tunable parameters and it guarantees a solution for the ELM algorithm 

[31]. For the ELM, linear regression is used to find the optimal weights by first combining 

all 𝝓 generated by the dataset into a matrix called 𝜙train (see Appendix C). Then, the 

tunable parameters are optimized by setting the derivative of the cost function to 0 and 

applying regularization. This simplifies to the following: 

 

𝜙𝑚𝑜𝑑 = (𝜆𝑟𝑒𝑔
𝐸𝐿𝑀 × 𝐼 + Φtrain

𝑇 Φtrain)
−1

Φtrain
𝑇  

𝑊𝑀𝐿 = 𝜙𝑚𝑜𝑑𝑌𝑡𝑟𝑢𝑒 = 𝜙𝑚𝑜𝑑

[
 
 
 
𝑦1

𝑡𝑟𝑢𝑒

𝑦2
𝑡𝑟𝑢𝑒

…
𝑦𝑁𝑡𝑟𝑎𝑖𝑛

𝑡𝑟𝑢𝑒
]
 
 
 

 

(2.23) 

Validation 

To validate the performance of an ELM, the data must be separated into train 

and test (validation) data. Only the train data is used to tune the parameters, whereas 

the test data is used to verify the algorithm accurately predicts the output for new data 

[31]. The validation is done by calculating the error metrics for the train and test data, as 

is the case for validating an ANN. 

2.4.6. Advantages and drawbacks of an ELM compared to an ANN 

There are many advantages and drawbacks to using an ELM rather than an 

ANN. The main advantage of the ELM is the much quicker training time since an ELM is 

trained in one iteration using linear regression, but the ANN requires backpropagation, 

which is a much less efficient algorithm than linear regression [36], [37], [40]. Another 

advantage of the ELM, though minor, is that linear regression finds the true optimal 

solution for the given neural network design and training data, whereas the ANN weights 
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and biases might approach a suboptimal solution [31], [38]. This assumes the cost 

function used to represent error is the sum of the squared errors (SSE) function 

(equation (2.16)). However, there are also several disadvantages to using an ELM. The 

most significant disadvantage is that only the weights and biases connecting the final 

hidden layer and the output layer of an ELM are trainable [36], [37]. This is not the case 

for an ANN. A minor disadvantage that ELMs have is their tendency to require relatively 

large amounts of memory due to the many randomized untrainable parameters to store 

in memory in addition to an extra hidden layer [36], [37]. In a real-time fuel cell 

application, this memory requirement places constraints on the computer speed, ELM 

size, and the amount of time between input data samples, as the computation time 

would not be infinitely fast. 

2.4.7. Overview of Neural Network Ensembles 

Sometimes, a single neural network that deals with all the data is less effective 

than many specialized neural networks which combine to form the all-purpose “super” 

neural network. This all-purpose neural network is known as a neural network ensemble. 

An ensemble is a group of individually trained neural networks combined to form a larger 

neural network [41]. The output of some neural networks in the ensemble can be the 

input for another neural network in the ensemble. The approach used in this thesis is for 

an ensemble to use a classifier neural network to decide which regressor network to run 

next. 

2.4.8. Literature Review on Neural Networks used for Fuel Cells 

Various literature exists on neural networks concerning fuel cell fault diagnosis. 

In one paper [24], an ensemble of five neural networks was trained using various inputs, 

which differed for each of the neural networks. The ensemble begins with four 

conventional neural networks, labeled NN1, NN2, NN3, and NN4. Each of these neural 

networks outputs directly to the input of the fifth neural network, which combines the 

outputs of the first four neural networks to predict the presence of various faults. Looking 

at the past three time-steps for each neural network, the inputs for NN1 are the fuel cell 

voltage and current, the input for NN2 is the fuel cell temperature, the input for NN3 is 

the air flow rate, and the inputs for NN4 are the partial pressures of oxygen and 

hydrogen. The fifth neural network was trained using the Lagrange multiplier method, 
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which enforces constraints on the neural network weights and biases to maximize 

accuracy [24]. The result is an algebraic combination of the first four neural network 

outputs in the form of a matrix equation. The faults analyzed in that paper include the 

stack cooling system fault, fuel crossover (i.e. hydrogen crossover), air delivery system 

fault, or hydrogen delivery system fault [24]. NN1 to NN4 contain either three or six 

inputs (described earlier), four outputs representing each fuel cell fault, and between 

seven and thirteen hidden layer nodes each. These neural networks were trained using 

the standard backpropagation algorithm (section 2.4.4). 

In another paper [22], the air stoichiometry of various faulty fuel cells is predicted 

using an algorithm that classifies each fuel cell into one of four classifications. The air 

stoichiometry for each classification is 2.1, 4.2, 4.6, and 5.1. The main difference 

between the air stoichiometries is the oxygen concentration in the cathode, where a 

larger stoichiometry indicates a larger reactant (oxygen) concentration. Since hydrogen 

crossover leakage is assumed in this thesis to occur at the beginning of the anode and 

cathode flow channels, this paper can be reworked with little effort to directly detect 

hydrogen crossover leakage faults. Two modified ELMs were trained in a neural network 

ensemble to estimate the air stoichiometry, then they were combined to provide the final 

classification estimate to determine the type of fault the fuel cell experienced. Both 

modified ELMs, which are referred to in the paper as a kernel ELM and an online 

sequential ELM, were trained using different train and test data before being combined 

to output the ensemble prediction. The modifications to the ELMs are minor enough that 

the overall explanations of the ELM in this thesis give a rough overview of what is used 

in the paper [22]. These algorithms are described in detail in [22]. There are 300 training 

data and 154 test data used for ELM training. The result is a training accuracy of 99.7% 

and a test accuracy of 98.7%, where accuracy refers to the percentage of correct 

classifications. However, this paper only diagnoses faults for normal fuel cells. 

A dynamic model for the diagnosis of several faults is defined by Shao et al [24], 

which was simulated using MATLAB. This simulation was used to generate data for an 

ensemble of conventional artificial neural networks (see section 4.8). These neural 

networks are each limited to either one or two variable parameters as they evolve over 

the past three timesteps (i.e. three or six input nodes per neural network). Each neural 

network uses different inputs. The first uses voltage and current, the second uses 

temperature, the third uses the air flow rate in the cathode flow channel, and the fourth 
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uses the pressure of hydrogen in the anode and the partial pressure of oxygen in the 

cathode. These neural networks each have between seven and thirteen hidden layer 

nodes in addition to four output nodes. The output nodes are binary indicators of which 

fault is occurring, where “1” means the fault is occurring and “0” means it is not 

occurring. The accuracy of the ensemble was found to be 93%. However, accuracy is an 

extremely vague error metric because accuracy attempts to describe two distinct types 

of errors in one value. One type of error occurs when a fault is diagnosed but the fault is 

not present, whereas the other type of error occurs when a fault is not diagnosed, but 

the fault was occurring [12]. Hence, the stated 93% accuracy of this ensemble should be 

taken as an extremely rough approximation. The dynamic model found by Shao et al 

[24] is not capable of predicting the extent of hydrogen crossover, as it is only capable of 

declaring whether or not hydrogen crossover is occurring. 

2.5. Kalman filter based fault detection 

2.5.1. Introduction to Kalman filters 

Real input and output data are often plagued with noise due to uncertainties and 

fluctuation within measuring instruments. One way to minimize the effect of these noises 

and disturbances is to pre-filter the data. Kalman filtering is an architecture in signal 

processing used to optimally filter out noise in a system. The algorithms use the 

mathematical model of the dynamics of the system to estimate the internal variable 

(states) of the system. The system output values predicted by the Kalman filter are 

known as output estimates or output predictions. However, the output prediction does 

not always agree with the measurement, as the measurement and the inputs are not 

fully known by the user due to unknown variables and random fluctuations. The 

algorithm then calculates the output error as the difference between the predicted output 

and measurement. The algorithm then corrects the states based on the error. The 

Kalman filter uses error covariances to calculate the correction weights [23] [42] – if the 

measurements are noisy, the Kalman filter will trust them less and trust [23]. 

An extended Kalman filter (EKF) is the extension of the Kalman filter to nonlinear 

systems, where the nonlinear equations are linearized about the operating point of the 

system [43]. The main feature of an EKF is the nonlinear relationship between the state, 

input, measurements, and the state during the next time step if the model is discrete 
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[42]. Note that the relationship with the state derivative can alternatively be used to 

calculate the amount the state changes for the next iteration [42]. The main difference 

between an extended Kalman filter (EKF) and a Kalman filter is that the EKF requires 

the systems to be linearized, as the system equations are nonlinear [43]. The typical 

EKF system is summarized along with the mathematical model of the fuel cell. Filtering 

data via an EKF is a key part of data preprocessing in machine learning algorithms, as 

neural networks tend to perform worse when noise is added to the data [32]. A 

constrained extended Kalman filter (CEKF) can be used to detect fuel cell faults [42]. 

This is essentially an extended Kalman filter (EKF) that enforces inequality constraints. 

Another type of Kalman filter for nonlinear systems is the unscented Kalman filter (UKF). 

A UKF extends the EKF, by using several “sigma points” and propagates them through 

the system [44]. The central idea of the UKF is to ensure the mean and variance of the 

variables within the mathematical model used by the UKF are consistent with the mean 

and variance within the measurement [44]. This thesis will use an EKF. A Kalman filter 

becomes adaptive when certain Kalman filter constants such as the covariance matrices 

of measurement residuals are algorithmically updated to adapt to the system [44]. A 

particle filter is similar to a UKF, except data points are used (instead of “sigma points”) 

to obtain information about the probability distribution of the output [45]. Typically, the 

sample size of data points is much larger than what is used in a UKF [44], [45]. Since the 

particle filter requires more samples than a UKF, they also require more function 

evaluations. In other words, at the cost of longer simulation times, particle filters gain 

information about the true probability distribution, which may be worthwhile if the 

probability distribution is not already known. 

In this thesis, the system inputs are current density (e.g. current per unit area) 

and input reactant mole fractions (e.g. 𝐻2 at anode inlet and 𝑂2 at cathode inlet) and the 

system output (e.g. measurement) is the fuel cell voltage. The input 𝐻2 mole fraction can 

be influenced by changing the water content in the 𝐻2 directly or the anode flow rate can 

be changed. The input 𝑂2 mole fraction can be changed by supplying the fuel cell with 

pure oxygen, changing the altitude of the vehicle, and breathing on the cathode inlet 

(which increases the 𝐶𝑂2 mole fraction and decreases the 𝑂2 mole fraction). The current 

density is assumed to be directly controlled by the user, as it can be defined to have any 

arbitrary waveform. These are influenced to control the system output – fuel cell voltage. 

The system state is heavily influenced by the internal system dynamics and the system 
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inputs. Owing to the difficulty in designing the Kalman filter, a simplified “lumped” model 

of the fuel cell will be used, wherein the variation along the flow direction will also be 

ignored. This model will then be linearized to construct the extended Kalman filter.  

2.5.2. Fault detection using the Kalman filter 

Kalman filtering is typically used to help in predicting the general health of a fuel 

cell [45]–[47] as well as diagnosing specific faults. Some faults Kalman filtering has been 

used to diagnose include flooding [23], drying [23], cooling faults [48], power degradation 

[45], and oxygen starvation [49]. Note that in this thesis, diagnosing hydrogen crossover 

faults is equivalent to detecting oxygen starvation because hydrogen leaking through the 

membrane results in oxygen starvation. 

For example, flooding and drying were diagnosed in [23] by simulating and 

comparing fuel cells with differing parameters under differing conditions. Specifically, the 

Kalman filters were designed for normal fuel cells, flooded fuel cells, and fuel cells with 

the drying fault. Hence, “normal”, “dry” and “flooded” fuel cells were each defined by their 

own set of constant values for the exchange current density, mass transport constant, 

temperature, and air pressure. The Kalman filter is essentially an attempt to recreate the 

dynamics of a system using an analytical model and then combine these with 

measurements to correct for any of the errors caused by noise. The Kalman filter was 

used to assist in the fault diagnosis, where the Kalman filter was tuned to match the 

faulty data. The idea is that if the Kalman filter agrees with the measurements, then the 

fuel cell is dry or flooded. Hence, the Kalman filtering algorithm can differentiate between 

normal, dry, and flooded fuel cells. 

Cooling faults were diagnosed in [48] using fuel cell temperature as the main 

indicator of this fault. Trivially, if the temperature exceeds a certain range, a cooling fault 

is present. The Kalman filter was used to estimate the value of the estimator gain, which 

is a key part of the state observer because it drives the observer dynamics toward 

stability using feedback [48]. The main function of a state observer is to estimate the 

state variables and other variables of interest defined for the relevant system (e.g. fuel 

cell) [48]. 
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An adaptive unscented Kalman filter (adaptive UKF) was used by [44] to predict 

the fuel cell state. Predictably, the adaptive UKF performed better than the (nonadaptive) 

UKF in this paper, each implementing the same system. This is because the adaptive 

UKF in this paper converted the value of UKF constants such as the covariance matrix 

of measurement residuals to time-varying functions. 

A particle filter can be used to determine the remaining useful life (RUL) of a fuel 

cell stack by diagnosing power degradation faults [45]. These occur largely because of 

fuel cell aging [45]. As with other Kalman filtering methods, the main effect of the particle 

filter is to provide a redundant model that increases system accuracy in a way that 

provides a smooth output [45]. Here, the word “redundant” refers to the fact that multiple 

models of the system were used for the same ultimate objective. 

However, it is more desirable to determine the extent of each fuel fault than it is 

to define an arbitrary threshold that defines the system as faulty if this threshold is 

exceeded. For hydrogen crossover, this can be done by measuring or estimating the 

oxygen and hydrogen mole fractions throughout the cathode. This is because the 

presence of hydrogen or the abnormally large consumption of oxygen can be used to 

detect hydrogen crossover [7], [8]. Since measuring these values directly is highly 

inconvenient and difficult if even possible to do in real-time at a low price, it is best to use 

only the fuel cell voltage and current as inputs for the algorithm. Additionally, a Kalman 

filter is desirable for increasing the accuracy of detecting the extent of hydrogen 

crossover. A neural network is needed to predict the extent of hydrogen leakage along 

with a method to produce a large amount of data required for converting the fuel cell 

current and voltage to estimates for the extent of hydrogen crossover. To the knowledge 

of the thesis author, the method described in this paragraph is never employed in the 

literature for hydrogen crossover. 

2.6. Problem Statement 

Fuel cells are prone to faults that accelerate fuel cell aging, which eventually 

significantly degrade performance ultimately leading to complete failure. Hence, early 

fault diagnosis is important. While there are many types of faults in fuel cells, this thesis 

primarily focuses on the detection of hydrogen crossover, as it is one of the major life-

limiting faults in PEMFC [2], [7]. In addition to fuel loss (wastage), hydrogen 
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leak/crossover leads to oxygen starvation. Oxygen starvation leads to a significant 

reduction in energy output. When a significant number of cells become starved, the fuel 

cell cannot provide sufficient useful power.  

While there are already many pre-established techniques for diagnosing and 

estimating hydrogen crossover and oxygen starvation, most techniques require offline 

ex-situ testing using specialized laboratory equipment. To detect fault inception (and 

ultimately mitigate progression) it is essential to develop techniques that allow for in-situ 

fault detection using only the only current density (current per unit area) and voltage. 

Additionally, it would be ideal to detect faults on a physical fuel cell in real-time rather 

than within a lab setting. Another problem that is not accounted for my most literature is 

the fact that fuel cells are noisy systems, meaning the inputs, internal system variables, 

and outputs randomly fluctuate. These problems have each been addressed individually 

in the literature. However, to the knowledge of the author of this thesis and the SFU 

research lab they worked for, none of the literature fully addresses this problem. 

Hence, the main objective is to detect and estimate the hydrogen crossover and 

oxygen starvation early using only the fuel cell current and voltage, accounting for the 

random noise of a real-life system. This thesis uses the dynamic pseudo-2D model 

developed by Ebrahimi et al [7]. This model was previously validated using experimental 

data from Ballard Systems Incorporated. As much of the fuel cell parameters were 

considered confidential information, the model was reimplemented for a fictitious fuel 

cell. As such, while the underlying model is derived from Ebrahimi et al [7], the physical 

parameters and operating parameters are different from Ebrahimi et al [7]. This 

simulation is a precursor to a physical fuel cell, as it is cheaper and less complicated to 

set up than physical fuel cells, as a physical fuel cell would require expert supervision in 

addition to a financial cost and/or the complexity of signing legal contracts. 

The main objective of this thesis was achieved in several steps, summarized 

below: 

The first step was data collection, where a fuel cell was simulated using various 

current density waveforms with randomly selected coefficients. The amount of hydrogen 

crossover was also randomly selected, represented as an oxygen mole fraction at the 

cathode inlet with some oxygen consumed (i.e. anything less than 21% resulted from 
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hydrogen crossover leakage). This is valid because the reactants are most concentrated 

at the beginning of the flow channel, making the fuel cell more vulnerable to aging near 

the beginning of the flow channel. 10,000 simulations were run to generate the fuel cell 

voltage and the mole fractions of oxygen and hydrogen at the cathode outlet. In other 

words, the amount of oxygen consumed and the amount of hydrogen emitted, if 

applicable, are known from the simulation results. The main idea is that a nonzero 

oxygen mole fraction indicates the fuel cell is operating normally, whereas a nonzero 

hydrogen mole fraction indicates the fuel cell is starved. As in the literature, we assume 

that any hydrogen crossover occurs at the anode and cathode entrances, and we 

modeled the crossover by reducing the input oxygen concentration at the cathode 

entrance. While there exist various lab tests in the literature to estimate the extent of 

hydrogen crossover [11], it is more desirable to use only a limited amount of easily 

measurable data like voltage and current to estimate the extent of hydrogen crossover. 

Unfortunately, literature which detects the severity of hydrogen crossover with high 

accuracy using only a few easily measurable inputs is rare. One instance of literature 

where the extent of hydrogen crossover leakage was measured is a two-part research 

paper [8], [26]. In part one, a real-life fuel cell along with a lumped model were both 

constructed to estimate the hydrogen concentration at the cathode outlet in response to 

oxygen starvation in the cathode. In part two, this was extended to hydrogen crossover 

leaks to evaluate more phenomena regarding the hydrogen concentration at the cathode 

outlet. However, these research papers required elaborate lab setups, which is not 

feasible for real-life settings. 

The second step was to incorporate the EKF to simulate the uncertainty and 

fluctuations associated with the inputs, the system, and the measuring devices. Only the 

fuel cell voltage is measured, as the current density was generated as an input. 

Additionally, a lumped model of the fuel cell is defined and combined with the voltage 

measurements of the simulation to produce a smoother, more reliable representation of 

the voltage. This is accomplished using an extended Kalman filter (EKF) (Chapter 3). 

Therefore, when the simulations were run, some noise was added to the inputs and 

outputs of the pseudo-2D fuel cell simulation to imitate real-life noise. This resulted in the 

measurement voltages along with the oxygen and hydrogen mole fractions at the 

cathode outlet all being generated by the simulation. Additionally, an extended Kalman 
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filter is used to filter the voltages based on a simplified lumped model of the fuel cell 

(section 3.2) and the measurement voltage, resulting in improved accuracy. 

The third step was to use the gathered data to build a neural network ensemble 

(section 4.8). This involved building a set of extreme learning machines (ELMs) that 

collectively work together to predict the extent of hydrogen crossover using only the fuel 

cell current density and EKF-filtered voltage. This step was repeated to build an 

ensemble of conventional ANNs to verify the effectiveness of the ELM ensemble. These 

two ensembles were then replicated using the measurement voltage rather than the 

EKF-filtered voltage to verify the effectiveness of the EKF, which makes four ensembles 

in total. 

The fourth step was to report the performance of the ELM ensemble trained 

using EKF-filtered data and compare it to the performance of the other ensembles. For 

each ensemble in step three, the error metrics, and the amount of time it took to build 

the ensemble is considered. The error metrics used are known as mean absolute error 

and root mean square error (section 2.4.3 – Error metrics). These error metrics are 

compared to each other. 

The main strength of this thesis is the ability to estimate the extent of these faults 

simultaneously using only the current density and voltage. Another strength is that while 

this thesis uses fuel cell simulations to replace a physical fuel cell, the simulations are 

dynamic and include noise to simulate real-life conditions. 

2.6.1. Mathematical model of the fuel cell used in the thesis 

This thesis uses an accurate model of the fuel cell that has been developed 

elsewhere in the literature [2], [7], [50]. The salient feature of the model and its 

parameters are summarized here. More specifically, the mathematical fuel cell model 

used in this thesis and described in this section is taken from Romey and 

Vijayaraghavan [50]. The model was created by dividing the fuel cell into multiple small 

segments along the flow direction and solving each fuel cell segment. For each 

segment, the model is divided into driving and driven mode. Driving mode is referred to 

as the normal fuel cells. Driven mode fuel cells are referred to as starved (e.g. fully 

oxygen-starved). In the lumped mathematical model of the fuel cell, hydrogen crossover 
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leakage and membrane degradation are neglected, meaning the input oxygen mole 

fraction is exactly 21% plus noise as far as the EKF is concerned. 

Normal Operation of Fuel Cell 

The closed-circuit voltage is [50], [51]: 

𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑐𝑒𝑙𝑙 − 𝑉𝑜ℎ𝑚 − 𝑉𝑎𝑐𝑡,𝐷𝐿 (2.24)  

Where 𝐸𝑐𝑒𝑙𝑙 is the open-circuit voltage, 𝑉𝑜ℎ𝑚 is the ohmic or resistance voltage 

loss, and 𝑉𝑎𝑐𝑡,𝐷𝐿 is the double-layer activation voltage loss. The open-circuit voltage (OCV) 

can be calculated as follows [50], [51]: 

𝐸𝑐𝑒𝑙𝑙 = 𝐸0,𝑐𝑒𝑙𝑙 + 𝐵𝑐𝑜𝑛𝑐 𝑙𝑛 [(𝜙𝐻2,𝑒𝑓𝑓)(𝜙𝑂2,𝑒𝑓𝑓)
0.5

] (2.25) 

Where 𝐵𝑐𝑜𝑛𝑐 is the effective coefficient related to the reaction kinetics and is 

typically between 0.03 and 0.06 [52]. 𝐸0,𝑐𝑒𝑙𝑙 and 𝐵𝑐𝑜𝑛𝑐 are fuel cell constants found in 

Appendix A. 𝜙𝐻2,𝑒𝑓𝑓 and 𝜙𝑂2,𝑒𝑓𝑓 are the effective hydrogen and oxygen concentrations at 

the catalyst, respectively. Essentially, the OCV is a logarithmic curve where extremely low 

oxygen and/or hydrogen concentrations cause oxygen and/or hydrogen starvation. The 

result of either is that the OCV goes to 0 volts because although equation (2.25) suggests 

the OCV would go to negative infinity, equation (2.25) is only valid for normal fuel cells. 

However, for larger mole hydrogen and oxygen mole fractions, the OCV curve increases 

at a slow rate and remains relatively stable at a value close to 𝐸0,𝑐𝑒𝑙𝑙. Since hydrogen in 

the anode diffuses much more quickly than the oxygen in the cathode, the hydrogen 

concentration gradient in the anode is neglected in this thesis [50]: 

𝜙𝐻2,𝑒𝑓𝑓 = 𝜙𝐻2−𝑐ℎ = 𝜙𝐻2,𝐴
𝑖𝑛  (2.26) 

Note that Vijayaraghavan et al. [53] and Ebrahimi et al. [54] fail to model the effect 

of oxygen consumption at the interface between GDL and the channel. The ohmic loss, 

which is a nonlinear function [55], can be written as [50], [51], [55]: 
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𝑅𝑜ℎ𝑚 = 𝜌0 + 𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298) (2.27) 

𝑉𝑜ℎ𝑚 = 𝐽𝐴𝑓𝑐𝑅𝑜ℎ𝑚 (2.28) 

Where 𝐽 is the current density, 𝜌0, 𝜌𝐽, and 𝜌𝑇 are constants, 𝑇𝑓𝑐 is the average fuel 

cell temperature, and 𝐴𝑓𝑐 is the fuel cell area. It is assumed that the fuel cell is isothermal 

with a constant temperature equal to 𝑇𝑓𝑐 throughout the fuel cell (see Appendix A). The 

relationship between activation current density and voltage can be approximated by the 

Butler-Volmer equation [17]. Furthermore, it can be assumed that the product 

concentrations at the activation current density, 𝐽𝑎𝑐𝑡, and at the exchange current density 

for oxygen activation, 𝐽𝑂2−0, are the same [17]. After also assuming that the forward and 

reverse activation reactions are symmetric [17], the Butler-Volmer equation can be 

approximated as a hyperbolic sine function relating activation current density to activation 

voltage (equation (2.29)). To drive the current, the reaction is driven at a rate that produces 

𝐼 𝑧𝐹⁄  electrons. Energy is required to drive the reaction, and this is expressed as the 

activation overpotential [52], which is given by [50], [56]: 

𝐽𝑎𝑐𝑡 = 2𝐽𝑂2−0𝑠𝑖𝑛ℎ (
𝑉𝑎𝑐𝑡

2𝑉𝑎𝑐𝑡,0
) (2.29) 

Where 𝑉𝑎𝑐𝑡,0 is the activation voltage constant, 𝐽𝑎𝑐𝑡 is the activation current density 

and 𝐽𝑂2−0 is the exchange current density for oxygen activation. Hence: 

𝑉𝑎𝑐𝑡 = 2𝑉𝑎𝑐𝑡,0 𝑎𝑟𝑐𝑠𝑖𝑛ℎ (
𝐽𝑎𝑐𝑡

2𝐽𝑂2−0
) (2.30) 

Essentially, equations (2.29) and (2.30) illustrate that the activation voltage is 

entirely controlled by the activation current density. The hyperbolic sine function is a linear 

relationship between 𝐽𝑎𝑐𝑡 and 𝑉𝑎𝑐𝑡 at low activation current density and exponential at more 

typical current activation densities. Since 𝐽𝑎𝑐𝑡 varies between roughly 30 [
𝐴

𝑚2] and 3000 

[
𝐴

𝑚2], the activation voltage varied between roughly 0.33 volts and 0.50 volts, remaining 

essentially constant in most simulations. The double-layer effect is represented by an 
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equivalent capacitance, 𝐶𝐷𝐿, which influences the rate at which the activation voltage 

changes. 𝐶𝐷𝐿 also influences the rate at which the current in the external circuit changes. 

Keeping in mind that Afc, Vact,0, and JO2−0 are constants [50]: 

𝑉̇𝑎𝑐𝑡 =
𝐴𝑓𝑐

𝐶𝐷𝐿

(𝐽 − 𝐽𝑎𝑐𝑡) 

OR 

(2.31) 

2𝑉𝑎𝑐𝑡,0𝐶𝐷𝐿/𝐴𝑓𝑐

√4𝐽𝑂2−0
2 + (𝐽𝑎𝑐𝑡)

2

𝐽𝑎̇𝑐𝑡 + 𝐽𝑎𝑐𝑡 = 𝐽 (2.32) 

   

The effective concentration of oxygen at the cathode catalyst is largely what 

controls the reaction rate on the cathode side of the fuel cell. It affects the OCV (see 

equation (2.25)). 𝜙𝑂2,𝑒𝑓𝑓 is mostly dependent on two variables in the steady-state – input 

oxygen mole fraction (or concentration) and current density. Increasing the input oxygen 

mole fraction increases 𝜙𝑂2,𝑒𝑓𝑓, but increasing the current density decreases 𝜙𝑂2,𝑒𝑓𝑓 

because a larger current causes the reactions to occur more quickly, which consumes the 

oxygen more quickly. However, a transient equation for the effective concentration of 

oxygen at the cathode catalyst can be derived using modal analysis as a high pass filtered 

term [2], [7], [50]: 

𝜙𝑂2,𝑒𝑓𝑓 = [0.1512 × 𝜙𝑂2−𝑐ℎ +
4

𝜋

1

𝑠𝜏0 + 1
𝜙𝑂2−𝑐ℎ −

4

3𝜋

1

𝑠𝜏1 + 1
𝜙𝑂2−𝑐ℎ]

− [0.1894𝐽𝑎𝑐𝑡 +
8

𝜋2

1

𝑠𝜏0 + 1
𝐽𝑎𝑐𝑡] ×

𝐿

𝑧𝐹𝐷
 

(2.33) 

In the form of a low-pass filter, this becomes [50]: 

𝜙𝑂2,𝑒𝑓𝑓 = 0.1512 × 𝜙𝑂2−𝑐ℎ +
4

𝜋

1

𝑠𝜏0 + 1
𝜙𝑂2−𝑐ℎ −

4

3𝜋

1

𝑠𝜏0 + 1
𝜙𝑂2−𝑐ℎ

− [0.1894𝐽𝑎𝑐𝑡 +
8

𝜋2

1

𝑠𝜏0 + 1
𝐽𝑎𝑐𝑡] ×

𝐿

𝑧𝐹𝐷
 

(2.34) 

Where 𝜏0 and 𝜏1 are time constants for the first 2 modes, 𝐿 is the effective diffusion 

length, 𝑧 is the number of electrons corresponding to oxygen, 𝐹 is the Faraday constant, 
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and 𝐷 is the diffusion coefficient. Approximating [50]: 

𝜙𝑂2−𝑐ℎ = 𝜙𝑂2,𝐶
𝑖𝑛  (2.35) 

The low pass filters can be written in the time domain [50]: 

(
𝑑

𝑑𝑡
)𝜙0 = 𝜏0

−1(𝜙𝑂2−𝑐ℎ − 𝜙0) 

(
𝑑

𝑑𝑡
)𝜙1 = 𝜏1

−1(𝜙𝑂2−𝑐ℎ − 𝜙1) 

(
𝑑

𝑑𝑡
) 𝐽0 = 𝜏0

−1(𝐽𝑎𝑐𝑡 − 𝐽0) 

(
𝑑

𝑑𝑡
) 𝐽1 = 𝜏1

−1(𝐽𝑎𝑐𝑡 − 𝐽1) 

(2.36)  

This yields [50]: 

𝜙𝑂2,𝑒𝑓𝑓 = [0.1512 × 𝜙𝑂2−𝑐ℎ +
4

𝜋
𝜙0 −

4

3𝜋
𝜙1] − [0.1894𝐽𝑎𝑐𝑡 +

8

𝜋2
𝐽0] ×

𝐿

𝑧𝐹𝐷
 (2.37) 

𝜙0 and 𝜙1 are the first two modes of oxygen concentration at the cathode catalyst 

and they lag the input oxygen mole fraction at differing rates controlled by time constants 

𝜏0 and 𝜏1. Essentially, this means they track the input oxygen mole fraction, except they 

are separated from each other by a “damper” which results in the first two modes of oxygen 

concentration asymptotically approaching the input oxygen mole fraction. Similarly, 𝐽0 and 

𝐽1 are the first two modes of current density and they lag the current density, 𝐽. 𝐽𝑎𝑐𝑡 has a 

more complicated relationship with the current density (see section 3.2), but it also tracks 

the current density similarly. In the steady-state, equation (2.37) tracks perfectly with the 

input oxygen mole fraction and current density because in the steady state, 𝜙𝑂2−𝑐ℎ = 𝜙0 =

𝜙1 = 𝜙𝑂2,𝐶
𝑖𝑛  and 𝐽𝑎𝑐𝑡 = 𝐽0 = 𝐽1 = 𝐽. The main difference between transient and steady state 

for 𝜙𝑂2,𝑒𝑓𝑓 is that the effective oxygen mole fraction asymptotically approaches an 

“equilibrium” value somewhere below the input oxygen mole fraction. When this 

“equilibrium” reaches zero, the fuel cell becomes oxygen starved. Equation (2.37) 
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describes the transient rather than the steady state because transient equations capture 

reality more accurately. For convenience, the value 
𝐿

𝑧𝐹𝐷
 can be expressed as: 

𝐿

𝑧𝐹𝐷
=

𝜙𝑁𝑜𝑟𝑚𝑎𝑙

𝐽𝑙𝑖𝑚
=

0.21

𝐽𝑙𝑖𝑚
 (2.38) 

Where 𝜙𝑁𝑜𝑟𝑚𝑎𝑙 is the standard mole fraction of oxygen in the air (21%) and 𝐽𝑙𝑖𝑚 is 

the limiting current density. Essentially, this means that if there is no hydrogen crossover 

leakage, the fuel cell becomes fully oxygen starved when 𝐽 = 𝐽𝑙𝑖𝑚. 

Concentration changes along the flow direction 

It is assumed that since the fuel cell temperature, anode pressure, and cathode 

pressure are held at constant values in this thesis, the effects they and all other constant 

parameters have on the hydrogen and oxygen mole fractions throughout the fuel cell flow 

channels are automatically incorporated into equations (2.33), (2.34), (2.35), and (2.36). 

Increasing the temperature to a reasonable amount would increase the reaction rate, as 

would increasing the anode and/or cathode pressures. The total change in pressure can 

be neglected due to how tiny it is in most fuel cells [17]. 

The concentration of a gas (e.g. hydrogen or oxygen) corresponds to its partial 

pressure. The anode and cathode flow channel in the pseudo-2D fuel cell simulation can 

be split into many elements (51 in this thesis), resulting in the equations shown in Appendix 

D. Equations (D.5) and (D.6) can be approximated and simplified by treating the entire 

flow channel as one element. The change in total pressure can be neglected to simplify 

the calculations: 

𝜙𝐻2,𝐴
𝑜𝑢𝑡 = 𝑃𝐴 (1 −

𝑃𝐴 − 𝜙𝐻2,𝐴
𝑖𝑛

𝑃𝐴 − 𝐽𝐴𝑓𝑐 (2𝐹𝑁̇𝐵,𝐴)⁄ × (𝑃𝐴 − 𝜙𝐻2,𝐴
𝑖𝑛 )

) (2.39)  

and 

𝜙𝑂2,𝐶
𝑜𝑢𝑡 = 𝑚𝑎𝑥 [𝑃𝐶 (1 −

𝑃𝐶 − 𝜙𝑂2,𝐶
𝑖𝑛

𝑃𝐶 − 𝐽𝐴̅𝑓𝑐 (4𝐹𝑁̇𝐵,𝐶)⁄ × (𝑃𝐶 − 𝜙𝑂2,𝐶
𝑖𝑛 )

) , 0] (2.40) 
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Where 𝑃𝐴 is the (average) partial pressure of hydrogen throughout the cathode 

(set to 1.5 atm), 𝜙𝐻2,𝐴
𝑖𝑛  is the partial pressure of hydrogen at the anode inlet (proportional 

to the input hydrogen mole fraction), and 𝑃𝐶 is the (average) partial pressure of oxygen 

throughout the cathode (set to 1.0 atm). 𝑁̇𝐵,𝐴 is the molar flow rate of water at the 

cathode outlet, and 𝑁̇𝐵,𝐶 is the molar flowrate of oxygen at the cathode outlet. 𝐽 ̅from 

equation (2.40) is the average current density. The final fuel cell model was constructed 

by solving the fuel cell equations along the length of the fuel cell. See Appendix D for 

more information. 

2.6.2. Transient fuel cell simulation 

The fuel cell simulation used in this thesis is a continuation of the pseudo-2D 

model and lumped model found in Ebrahimi et al [7]. The simulation model used for this 

thesis was originally developed by researchers in the SFU lab run by Dr. Krishna 

Vijayaraghavan, validated in collaboration with Ballard Systems Incorporated, and then 

further developed by Wesley Romey. Note that these further developments were mostly 

related to the EKF and machine learning algorithm (esp. organizing data), so the 

relationship between current, voltage, and reactant mole fractions within the simulated 

fuel cell should be the same as before validation. The simulation was run in dynamic 

mode, as this captures the transient effects of real-life fuel cells better when the current 

density changes suddenly. The simulations also include noise to simulate real-life 

conditions. 

A set of 10,000 noisy fuel cell simulations were run with a randomized cathode 

inlet oxygen mole fraction and a randomized sinusoidal current density waveform. The 

randomized parameters that control the input current density waveform are the average, 

amplitude, frequency, and phase of the waveform (see section 3.3.1). Since the 

simulation aims to act as a real fuel cell, some noise was added to the inputs and 

measurements. All noise was unbiased and initialized using a normal probability 

distribution with various standard distributions (see Appendix B for the noise 

parameters). The software simulation of the fuel cell is pseudo-2d. The fuel cell is solved 

along the flow direction with some consideration for the directions perpendicular to the 

flow via the modal diffusion equations. In other words, some equations incorporate a 2d 

approximation for the fuel cell whereas others make a 1d approximation. This simulation 
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produced data about the fuel cell current density, voltage, and cathodic mole fractions. 

The cathode mole fractions include the oxygen mole fractions at the cathode inlet and 

outlet as well as the cathode outlet hydrogen mole fraction. These were used to train a 

set of neural networks (see section 2.4 and Chapter 4). Since the data is confidential, 

the fuel cell parameters selected for this simulation do not correspond to any specific 

fuel cell that exists in real life. We chose to use standard values for many of the fuel cell 

parameters and arbitrary values for others. See section 4.4 for more details. 

Hydrogen crossover leakage and oxygen starvation are fundamentally important 

to simulate in this thesis. To simulate this, the anode and cathode flow channels are 

broken into roughly 51 “elements”, each consisting of an oxygen mole fraction and a 

hydrogen mole fraction. There exists a bug in the simulation where these mole fractions 

can become a value slightly below zero, but it is dealt with by setting these negative 

values to 0 so they can be adequately used by the machine learning algorithm. This is 

likely a major source of error for the machine learning algorithm for fuel cells which are 

“transitioning” between normal and starved. Oxygen starvation is trivially simulated by 

allowing the oxygen mole fraction to become 0 at the cathode outlet and the hydrogen 

mole fraction to therefore increase to any value up to 1. However, the hydrogen 

crossover is not directly simulated. Instead, it is simulated by lowering the oxygen mole 

fraction at the cathode inlet, since the hydrogen crossover results in oxygen being 

consumed and is assumed to occur entirely at the beginning of the anode and cathode 

flow channels since this is where the concentration of hydrogen and oxygen is largest. 

Hydrogen crossover leakage is also assumed to be at a constant rate since the input 

hydrogen pressure and flow rate are also roughly constant. Additionally, the simulation 

assumes a constant anodic and cathodic pressure. 

This simulation assumes a fixed flow rate of gas in the anode and cathode. 

However, the flow rate of reactants is subject to noise and varies between simulations. 

The simulation also assumes the fuel cell is isothermal and its temperature is 

kept constant throughout all simulation runs. Additionally, the same fuel cell is being 

simulated each simulation run, (e.g. the constants in Appendix A pertaining to physical 

and electrical fuel cell constants apply to all simulations). The only real difference 

between the fuel cells being simulated is the condition of their membrane, which only 

influences the input oxygen mole fraction (and concentration). 
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The only information needed from the pseudo-2D fuel cell simulation by the other 

parts of this thesis is the simulation inputs (e.g. current density and input reactant mole 

fractions) and the simulation outputs (e.g. voltage and output reactant mole fractions). 

These heavily influence the internal state and output of the Kalman filter (see section 2.5 

and Chapter 3) and make up most of the data required to build the machine learning 

algorithm (see section 2.4 and Chapter 4). Ultimately, the purpose of this thesis is to 

estimate the hydrogen crossover leakage and oxygen starvation within a fuel cell using a 

machine learning algorithm, and this machine learning algorithm is built using the fuel 

cell simulations and the Kalman filter. 
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Chapter 3.  
 
Extended Kalman filters for fuel cells 

One major problem with real-life systems is the presence of random fluctuations 

in inputs and measurements. In fuel cells such fluctuations can arise unaccounted These 

random, unaccounted-for fluctuations are also known as noise [23] and in this thesis, it is 

assumed that this noise has a mean of 0 (i.e. is “unbiased”) and a normal (or Gaussian) 

probability distribution. In this thesis, this noise is dealt with by adding noise to each 

input (i.e. current density in addition to reactant mole fractions at all the fuel cell inlets) 

and each output (i.e. voltage). The magnitude of the random fluctuations simulated in 

this thesis tended to vary between 1% and 10% of the maximum value of each input and 

output (i.e. roughly 1% of the hydrogen mole fraction at the anode inlet, 1-10% of the 

input oxygen mole fraction, 1-10% of the voltage, and 1-10% of the current density). 

More details can be found in Appendix B. 

It is impossible to prevent random fluctuations in the system inputs and 

measurements from introducing uncertainty into the system outputs which the user is 

attempting to know. Hence, dealing with it requires the user to either ignore it (i.e. accept 

some amount of uncertainty) or dampen it using an algorithm such as machine learning 

(section 2.4) or Kalman filtering (section 2.5). The main problem with using a more 

simplistic algorithm such as applying a moving average is that it does not incorporate 

information about the internal system dynamics, which results in lower accuracy for real-

life systems. The main advantage of using a Kalman filter is the fact that in addition to 

incorporating information about the internal system dynamics, it also ensures the user 

output will be relatively smooth (i.e. free from random fluctuations), meaning that noise is 

dampened. This improves the quality of the output data, and this benefit is the main 

reason for using a Kalman filter rather than a simpler algorithm. 

Hence, this chapter develops an extended Kalman Filter (EKF) that can 

ultimately be used to minimize the effect of noise in other diagnostic tools. An EKF 

requires an underlying model of the physical system that would be realized by 

simplifying the previously developed controller-friendly model from the literature [7], [8]. 

This simplification is achieved by ignoring the variation along the flow direction and 
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lumping the distributed parameters into a single value. The EKF model is also linearized 

with respect to the state variables. The models for normal and starved fuel cells are both 

defined. Then, the EKF state, being made up of transient variables related to the current 

density and oxygen mole fraction, is summarized. Another dedicated section of this 

chapter summarizes the EKF inputs (current density, hydrogen mole fraction at the 

anode inlet, and oxygen mole fraction at the cathode inlet) and the EKF output (voltage). 

This chapter ends with a quick demonstration of the Kalman filter as it is run alongside 

the fuel cell simulation, delivering results from various steps and sinusoidal current 

excitations. This gives the reader a good idea of how a Kalman filter operates in 

response to the simulation for both normal and oxygen-starved fuel cells. 

3.1. Model for EKF 

The main purpose of establishing a mathematical model is to construct a lumped 

model that approximates the behavior of a fuel cell in response to the current input 

density. This section introduces the state-space model used by the extended Kalman 

filter (EKF), the EKF model itself, and the Jacobians that accompany the state-space 

model. The state-space model for an EKF is typically nonlinear and has the general 

form: 

 𝑥̇ = 𝑓(𝑥, 𝑢, 𝑤), 𝑦 = ℎ(𝑥, 𝑢, 𝑣) (3.1) 

Here, 𝑥 is the state vector, 𝑢 is the input vector, 𝑦 is the output vector and 

𝑓(x, u,w) and ℎ(𝑥, 𝑢, 𝑣) are nonlinear vector functions. The noises, 𝑤~(0, 𝑄) and 

𝑣~(0, 𝑅) are zero-mean Gaussian white noise vectors, with the covariance of 𝑄 and 𝑅, 

respectively. In this thesis, it is assumed that these noises are independent of each 

other, so 𝑄 is a 3x3 diagonal matrix and 𝑅 is a scalar (see Appendix B). For the above 

nonlinear system, the EKF with state estimates 𝑥 is designed as follows: 

 𝑥̇̂ = 𝑓(𝑥̂, 𝑢, 𝑤) + ℒ(𝑦 − ℎ(𝑥̂, 𝑢, 0)) (3.2) 

To calculate the gain ℒ, we calculate the Jacobian of the system and implement 

a matrix differential equation. Specifically: 
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𝒜 ≔

𝜕𝑓

𝜕𝑥
|
𝑥̂,𝑢,0

, ℬ ≔
𝜕𝑓

𝜕𝑢
|
𝑥̂,𝑢,0

 

  𝒞 ≔
𝜕ℎ

𝜕𝑥
|
𝑥̂,𝑢,0

,   𝐷 ≔
𝜕ℎ

𝜕𝑤
|
𝑥̂,𝑢,0

 

(3.3) 

And: 

 

𝒫̇ = 𝒜𝒫 + 𝒫𝒜𝑇 − 𝒫𝒞𝑇ℛ̅−1𝒞𝒫 + 𝒬̅ 

ℒ = 𝒫𝒞𝑇ℛ̅−1 

𝒬̅ = ℬ𝑄ℬ𝑇 

ℛ̅ = ℛ + 𝒟𝑄𝒟T 

 

(3.4) 

The linearized equation of the fuel cell system used in this thesis was derived in 

this section from the state-space model.  

In this thesis, the process noise, 𝑤, is not added to the input, 𝑢, because the EKF 

does not “know” what the process noise is. Due to the process noise being unbiased, the 

best estimate for it is 0. However, the measurement noise, 𝑣, is added to the output, 𝑦, 

because it would be a measured quantity. In other words, the measurement would 

include the noise that comes with the measurement, and the EKF would therefore not 

“know” the true output value. Therefore, the state-space model as run in a simulation for 

an EKF can be written as: 

 
𝑥̇ = 𝑓(𝑥, 𝑢) 

𝑉𝑐𝑒𝑙𝑙 = ℎ(𝑥, 𝑢) + 𝑣 
(3.5) 

All noise in this thesis is assumed to have a zero mean Gaussian (normal) 

distribution. The standard deviation corresponds to the energy of the disturbance and 

would vary between manufacturers. The actual standard deviation values chosen for the 

noise can be seen in Appendix B. 
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3.2. Lumped model used by EKF 

The derivations in this section are based on previous work in Vijayaraghavan et 

al. [53] and Ebrahimi et al. [54]. We are interested in defining a dynamic model for the 

fuel cell to calculate the hydrogen mole fraction at the anode outlet (𝜙𝐻2,𝐴
𝑜𝑢𝑡 ) and cathode 

outlet (𝜙𝐻2,𝐶
𝑜𝑢𝑡 ), the oxygen mole fraction at the cathode outlet (𝜙𝑂2,𝐶

𝑜𝑢𝑡 ) (given the fuel cell 

specification), the hydrogen mole fraction at the anode inlet (𝜙𝐻2,𝐴
𝑖𝑛 ), and the oxygen 

mole fraction at the cathode inlet (𝜙𝑂2,𝐶
𝑖𝑛 ). It is also important to calculate the fuel cell 

voltage (𝑉𝑐𝑒𝑙𝑙). 

3.2.1. EKF state, EKF inputs, and EKF outputs 

All EKF models are defined by a state 𝓍, input 𝑢, and output 𝑦. For all models 

used in this thesis, the state vector 𝓍 is defined as: 

𝑥 =

[
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5]
 
 
 
 

=

[
 
 
 
 
𝜙0

𝜙1

𝐽0
𝐽1

𝐽𝑎𝑐𝑡]
 
 
 
 

=

[
 
 
 
 
 
1𝑠𝑡  𝑚𝑜𝑑𝑒 𝑜𝑓 𝑂2 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑐𝑎𝑡ℎ𝑜𝑑𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡

2𝑛𝑑  𝑚𝑜𝑑𝑒 𝑜𝑓 𝑂2 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑐𝑎𝑡ℎ𝑜𝑑𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡

1𝑠𝑡  𝑚𝑜𝑑𝑒 𝑜𝑓 𝑐𝑢𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

2𝑛𝑑  𝑚𝑜𝑑𝑒 𝑜𝑓 𝑐𝑢𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ]

 
 
 
 
 

 (3.6) 

Additionally, an initial EKF state is defined for each simulation. The values 

associated with these initial states are summarized in Appendix B. The input vector 𝑢 is 

defined as: 

𝑢 = [𝜙𝐻2,𝐴
𝑖𝑛 , 𝜙𝑂2,𝐶

𝑖𝑛 , 𝐽]
𝑇

 (3.7) 

Where 𝜙𝐻2,𝐴
𝑖𝑛  is the hydrogen mole fraction at the anode inlet, 𝜙𝑂2,𝐶

𝑖𝑛  is the oxygen 

mole fraction at the cathode inlet, and 𝐽 is the input current density (e.g. current per unit 

area). Specifically, 𝐽 = 𝐴𝑓𝑐𝐼, where 𝐴𝑓𝑐 is the fuel cell area and 𝐼 is the total amount of 

current flowing through the fuel cell. For 𝜙𝐻2,𝐴
𝑖𝑛 , an upper bound of 99.5% is defined to 

prevent it from reaching values too close to 1. Aside from that, it is kept at a value of 

99% plus random noise, as 99% is a typical mole fraction that can be influenced by 

external factors such as changing the anode flow rate. For the EKF, the oxygen mole 

fraction in the ambient air of 21% is used because the true value of 𝜙𝑂2,𝐶
𝑖𝑛  is subject to 

uncertainty when running the Kalman filter and the amount of hydrogen crossover 



 54 

leakage is unknown. Additionally, the input oxygen mole fraction can be changed by 

external actions such as breathing on the cathode inlet (lowering the input oxygen mole 

fraction) or connecting the cathode inlet to an oxygen tank. The current density is 

defined by a sinusoidal waveform, generated using random constants. The waveform is 

set up so that only positive current densities are possible. The waveform is defined using 

the following equation: 

𝐽 = 𝐽𝑠𝑠 + 𝐽𝑎𝑚𝑝 𝑠𝑖𝑛(2𝜋𝐽𝑓𝑡 + 𝐽𝑝ℎ𝑎𝑠𝑒)  (3.8)  

The constants 𝐽𝑠𝑠, 𝐽𝑎𝑚𝑝, 𝐽𝑝ℎ𝑎𝑠𝑒 , and the logarithm of 𝐽𝑓 each has a random uniform 

random distribution within the specified ranges and was changed at the start of each 

simulation. 𝐽𝑠𝑠 is the steady-state current density, 𝐽𝑎𝑚𝑝 is the amplitude, 𝐽𝑓 is the 

frequency in Hertz, and 𝐽𝑝ℎ𝑎𝑠𝑒 is the phase angle in radians. For this thesis, we have 

limited these coefficients to 100 ≤ 𝐽𝑠𝑠 ≤ 1800 [A m2⁄ ], 0 ≤  𝐽𝑎𝑚𝑝 ≤ 0.5𝐽𝑠𝑠,  0.1 ≤ 𝐽𝑓 ≤ 10 

and  0 ≤  𝐽𝑝ℎ𝑎𝑠𝑒 ≤ 2𝜋. The EKF output is the fuel cell voltage, which is summarized in 

equation (2.24). 

The output 𝑦 = 𝑉𝑐𝑒𝑙𝑙 is simply the voltage predicted by the EKF, otherwise known 

as the EKF voltage. 

As per the operation of an EKF, a small amount of Gaussian noise is added to 

the EKF inputs 𝑢 and outputs 𝑦. The parameters which define this noise are summarized 

in Appendix B. 

3.2.2. Normal fuel cells 

This model was obtained from the fuel cell model in section 2.6.1 by ignoring the 

concentration variation along the flow direction and treating the fuel cell as a single 

segment. The system dynamics can be written as: 

𝓍̇ = ℱ(𝓍, 𝜙𝐻2,𝐴
𝑖𝑛 + 𝑤𝐻2, 𝜙𝑂2,𝐶

𝑖𝑛 + 𝑤𝑂2, 𝐽 + 𝑤𝐽) = 𝑓(𝑥, 𝑢 + 𝑤) 

𝓎 = 𝑉𝑐𝑒𝑙𝑙 + 𝑣 = ℎ(𝑥, 𝑢 + 𝑤) + 𝑣 
(3.9) 

Where: 



 55 

ℱ =

[
 
 
 
 
 
 
 
 
 
 

𝜏0
−1(𝜙𝑂2,𝐶

𝑖𝑛 + 𝑤𝑂2 − 𝜙0)

𝜏1
−1(𝜙𝑂2,𝐶

𝑖𝑛 + 𝑤𝑂2 − 𝜙1)

𝜏0
−1(𝐽𝑎𝑐𝑡 − 𝐽0)

𝜏1
−1(𝐽𝑎𝑐𝑡 − 𝐽1)

√4JO2−0
2 + Jact

2

2Vact,0𝐶𝐷𝐿/𝐴𝑓𝑐
(𝐽 + 𝑤𝐽 − 𝐽𝑎𝑐𝑡)

]
 
 
 
 
 
 
 
 
 
 

 (3.10) 

𝜏0 and 𝜏1 are the time constants of the zeroth and first modes, 𝐽𝑂2−0 is the 

exchange current density for oxygen activation, 𝑉𝑎𝑐𝑡,0 is the voltage activation constant, 

𝐶𝐷𝐿 is the double-layer capacitance, 𝐴𝑓𝑐 is the fuel cell area, 𝐽 is the input current density, 

𝑤𝐽 is the process noise added to the input current density, and 𝜙𝑂2,𝐶
𝑖𝑛  is the input oxygen 

mole fraction (e.g. at the cathode inlet). In this thesis, 𝜙𝑂2,𝐶
𝑖𝑛  is equal to the amount of 

oxygen in Earth’s atmosphere (21%) subtracted from the amount that is consumed by 

hydrogen crossover leakage at the beginning of the cathode flow channel. 𝑤𝑂2 is the 

random process noise added to the input oxygen mole fraction and it is added because it 

can be influenced by external factors such as breathing on the cathode inlet. 𝜙0, 𝜙1, 𝐽0, 

𝐽1, and 𝐽𝑎𝑐𝑡 are the system states (see section 3.2.1). From (2.27), (2.28), (2.30), and 

(2.25), the fuel cell voltage is: 

𝑉𝑐𝑒𝑙𝑙 = 𝐸0,𝑐𝑒𝑙𝑙 + 𝐵𝑐𝑜𝑛𝑐 𝑙𝑛 [𝜙𝐻2,𝐴
𝑖𝑛 (𝜙𝑂2,𝑒𝑓𝑓)

0.5
]

−𝐽𝐴𝑓𝑐 (𝜌0 + 𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298)) − 2Vact,0 × arcsinh (
Jact

2JO2−0
)
 (3.11) 

Where 𝐸0,𝑐𝑒𝑙𝑙 is the open circuit voltage (OCV) under standard operating 

conditions, 𝐵𝑐𝑜𝑛𝑐 is the proportionality constant for the concentration voltage of the fuel 

cell, 𝜙𝐻2,𝐴
𝑖𝑛  is the hydrogen mole fraction at the anode inlet, 𝜙𝑂2,𝑒𝑓𝑓 is the effective oxygen 

mole fraction at the catalyst, and 𝑇𝑓𝑐 is the average temperature of the fuel cell (assumed 

to be constant). Additionally, 𝜌0, 𝜌𝐽, and 𝜌𝑇 are the coefficients for ohmic voltage loss 
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resistance. Defining 𝑦̅ = 𝑉𝑐𝑒𝑙𝑙 − 𝐽𝐴𝑓𝑐 (𝜌0 + 𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298)): 

 𝑦̅ = 𝐸0,𝑐𝑒𝑙𝑙 + 𝐵𝑐𝑜𝑛𝑐 ln[𝜙𝐻2,𝐴
𝑖𝑛 ] + 𝐵𝑐𝑜𝑛𝑐 ln [(𝜙𝑂2,𝑒𝑓𝑓)

0.5
] − 2𝑉𝑎𝑐𝑡,0 × arcsinh (

𝐽𝑎𝑐𝑡

2JO2−0
) (3.12) 

Let: 

𝛥𝓍̇ = 𝒜𝛥𝓍 + ℬ(𝓊 + 𝑤) 

𝛥𝑦̅ = 𝒞𝛥𝓍 + 𝒟(𝓊 + 𝑤) + 𝑣 
(3.13) 

Where: 

𝓊 = [𝜙H2,𝐶
𝑖𝑛 , 𝜙𝑂2,𝐶

𝑖𝑛 , 𝐽]
𝑇
 

𝛥𝓍 = 𝛥[𝜙0, 𝜙1, 𝐽0, 𝐽1, Jact]
𝑇 

Now, the negative inverse of the equivalent activation current density time constant 

for normal fuel cells can be assigned as: 

𝜕ℱ5

𝜕𝐽𝑎𝑐𝑡
= −

4𝐽𝑂2−0
2 + 2𝐽𝑎𝑐𝑡

2 − 𝐽 × 𝐽𝑎𝑐𝑡

2𝑉𝑎𝑐𝑡,0𝐶𝐷𝐿 (𝐴𝑓𝑐√4𝐽𝑂2−0
2 + 𝐽𝑎𝑐𝑡

2 )⁄

≔ −𝜏𝑎𝑐𝑡
−1  (3.14) 

Hence: 

𝒜 =

[
 
 
 
 
 
−𝜏0

−1 0 0 0 0

0 −𝜏1
−1 0 0 0

0 0 −𝜏0
−1 0 𝜏0

−1

0 0 0 −𝜏1
−1 𝜏1

−1

0 0 0 0 −𝜏𝑎𝑐𝑡
−1 ]

 
 
 
 
 

, ℬ =

[
 
 
 
 
0 𝜏0

−1 0

0 𝜏1
−1 0

0 0 0
0 0 0
0 0 𝜏𝑎𝑐𝑡

−1 ]
 
 
 
 

 

Now from (2.24): 

𝛥𝑉𝑐𝑒𝑙𝑙 = 𝛥𝐸𝑐𝑒𝑙𝑙 − 𝛥𝑉𝑜ℎ𝑚 − 𝛥𝑉𝑎𝑐𝑡,𝐷𝐿 (3.15) 

Where 𝛥 denotes a small change in a variable, 𝐸𝑐𝑒𝑙𝑙 is the open circuit voltage, 

𝑉𝑜ℎ𝑚 is the ohmic loss, and 𝑉𝑎𝑐𝑡,𝐷𝐿 is the double-layer activation voltage. This small change 

is assumed to be small enough that the equation is linear. Now from (2.27), (2.28), (2.30), 

and (2.25): 
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𝛥𝐸𝑐𝑒𝑙𝑙 = 𝐵𝑐𝑜𝑛𝑐(𝜙𝐻2,𝐴)
−1

𝛥𝜙𝐻2,𝐴 + 0.5𝐵𝑐𝑜𝑛𝑐(𝜙𝑂2,𝑒𝑓𝑓)
−1

× 0.1512𝛥𝜙𝑂2,𝐶

+0.5𝐵𝑐𝑜𝑛𝑐(𝜙𝑂2,𝑒𝑓𝑓)
−1

{−
4

𝜋
𝛥𝜙0 +

4

3𝜋
𝛥𝜙1 − [0.1894𝛥𝐽𝑎𝑐𝑡 −

8

𝜋2
𝛥𝐽0]

𝐿

𝑧𝐹𝐷
}
 (3.16) 

𝛥𝑉𝑜ℎ𝑚 = (𝜌0 + 2𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298))𝐴𝑓𝑐𝛥𝐽 (3.17) 

𝛥𝑉𝑎𝑐𝑡,𝐷𝐿 =
2𝑉𝑎𝑐𝑡,0

√4𝐽𝑂2−0
2 + 𝐽𝑎𝑐𝑡

2

𝛥𝐽𝑎𝑐𝑡 (3.18) 

Where 𝜙𝐻2,𝐴 is the hydrogen concentration in the anode, 𝜙𝑂2,𝐶 is the oxygen 

concentration in the cathode, 𝐿 is the effective diffusion length, 𝑧 is the number of electrons 

per oxygen atom, 𝐹 is the Faraday constant, and 𝐷 is the diffusion coefficient. Now from 

equation (3.12): 

𝛥𝑦 =
𝐵𝑐𝑜𝑛𝑐

𝜙𝐻2,𝐴
𝛥𝜙𝐻2,𝐴 +

𝐵𝑐𝑜𝑛𝑐

2𝜙𝑂2,𝑒𝑓𝑓
𝛥𝜙𝑂2,𝑒𝑓𝑓 − 𝛥𝑉𝑜ℎ𝑚 −

2𝑉𝑎𝑐𝑡,0

√4𝐽𝑂2−0
2 + 𝐽𝑎𝑐𝑡

2

𝛥𝐽𝑎𝑐𝑡 (3.19) 

Where 𝑦 is the EKF output, which is fuel cell voltage. From (3.12): 

𝛥𝑦 =
𝐵𝑐𝑜𝑛𝑐

𝜙𝐻2,𝐴
𝛥𝜙𝐻2,𝐴 +

𝐵𝑐𝑜𝑛𝑐

2𝜙𝑂2,𝑒𝑓𝑓
{[0.1512 × 𝜙𝑂2−𝑐ℎ +

4

𝜋
𝜙0 −

4

3𝜋
𝜙1]

                               − [0.1894𝐽𝑎𝑐𝑡 +
8

𝜋2
𝐽0] ×

𝐿

𝑧𝐹𝐷
}

−(𝜌0 + 2𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298))𝐴𝑓𝑐𝛥𝐽 −
2𝑉𝑎𝑐𝑡,0

√4𝐽𝑂2−0
2 + 𝐽𝑎𝑐𝑡

2

𝛥𝐽𝑎𝑐𝑡

 (3.20) 

Hence: 

𝒞 =
𝐵𝑐𝑜𝑛𝑐

2𝜙𝑂2,𝑒𝑓𝑓
[
4

𝜋

4

3𝜋
−

8 𝜋2⁄ 𝐿

𝑧𝐹𝐷
0 −

0.1894𝐿

𝑧𝐹𝐷
]

−
2𝑉𝑎𝑐𝑡,0

√4𝐽𝑂2−0
2 + 𝐽𝑎𝑐𝑡

2

[0 0 0 0 1] 
(3.21) 

𝒟 = [
𝐵𝑐𝑜𝑛𝑐

𝜙𝐻2,𝐴

0.1512𝐵𝑐𝑜𝑛𝑐

2𝜙𝑂2,𝑒𝑓𝑓
−(𝜌0 + 2𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298))] (3.22) 

3.2.3. Starved fuel cells 

The starved fuel cell model does not consider hydrogen concentration in the OCV, 
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despite it being accounted for in the fuel cell simulation. Hence, for a starved fuel cell (see 

Vijayaraghavan et al. [53] and Ebrahimi et al. [54]), 𝐸𝑐𝑒𝑙𝑙 = 0 (see equation (2.25)). Most 

of the variables and constants in this section are given in section 3.2.2., and: 

𝑉𝑐𝑒𝑙𝑙 = −𝑉𝑜ℎ𝑚 − 𝑉𝑎𝑐𝑡,𝐷𝐿 (3.23) 

The ohmic loss, 𝑉𝑜ℎ𝑚, is the same as in normal fuel cells. The ohmic loss is a 

nonlinear function [55] and it can be written as [51], [55]: 

𝑅𝑜ℎ𝑚 = 𝜌0 + 𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298) (3.24) 

𝑉𝑜ℎ𝑚 = 𝐽𝐴𝑓𝑐𝑅𝑜ℎ𝑚 (3.25) 

Where 𝑅𝑜ℎ𝑚 is the resistance for ohmic voltage loss. Additionally, because there 

is only hydrogen activation, the following equations replace equations (2.30) and (2.32): 

𝑉𝑎𝑐𝑡 = 2𝑉𝑎𝑐𝑡,𝐻2−0 × 𝑎𝑟𝑐𝑠𝑖𝑛ℎ (
𝐽𝑅𝑎𝑐𝑡

2𝐽𝐻2−0
) (3.26) 

2𝑉𝑎𝑐𝑡,𝐻2−0𝐶𝐷𝐿/𝐴𝑓𝑐

√4𝐽𝐻2−0
2 + 𝐽𝑎𝑐𝑡

2

𝐽𝑎̇𝑐𝑡 + 𝐽𝑎𝑐𝑡 = 𝐽 (3.27) 

Where 𝑉𝑎𝑐𝑡,𝐻2−0 is the activation voltage constant, 𝐽𝐻2−0 is another constant used 

for the activation voltage in starved fuel cells, and 𝐽𝑅𝑎𝑐𝑡 is a current density within the fuel 

cell that depends on 𝐽. Then: 

𝒜 =

[
 
 
 
 
 
−𝜏0

−1 0 0 0 0

0 −𝜏1
−1 0 0 0

0 0 −𝜏0
−1 0 𝜏0

−1

0 0 0 −𝜏1
−1 𝜏1

−1

0 0 0 0 −𝜏𝑎𝑐𝑡𝐻2
−1 ]

 
 
 
 
 

, ℬ =

[
 
 
 
 
0 𝜏0

−1 0

0 𝜏1
−1 0

0 0 0
0 0 0
0 0 𝜏𝑎𝑐𝑡𝐻2

−1 ]
 
 
 
 

 

Where the inverse of the equivalent activation current density time constant for a 

starved fuel cell is defined by: 

𝜏𝑎𝑐𝑡𝐻2
−1 =

1

2𝑉𝑎𝑐𝑡,𝐻2−0𝐶𝐷𝐿/𝐴𝑓𝑐√4𝐽𝐻2−0
2 + 𝐽𝑎𝑐𝑡

2

× [4𝐽𝐻2−0
2 + 2𝐽𝑎𝑐𝑡

2 − 𝐽 𝐽𝑎𝑐𝑡] (3.28) 

Hence: 
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𝛥𝑦 = −(𝜌0 + 2𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298))𝐴𝑓𝑐𝛥𝐽 −
2𝑉𝑎𝑐𝑡,𝐻2−0

√4𝐽𝐻2−0
2 + 𝐽𝑎𝑐𝑡

2

𝛥𝐽𝑎𝑐𝑡 (3.29) 

𝒞 = −
2𝑉𝑎𝑐𝑡,𝐻2−0

√4𝐽𝐻2−0
2 + 𝐽𝑎𝑐𝑡

2

[0 0 0 0 1] (3.30) 

𝒟 = [0 0 −(𝜌0 + 2𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298))] (3.31) 

3.3. Simulation Results 

The EKF was evaluated using the pseudo-2D model, which is introduced in 

Vijayaraghavan et al. [53] and Ebrahimi et al [54]. In this section, hydrogen crossover 

leakage is set to 0 and the only “fault” which occurs is oxygen starvation. Several current 

density waveforms of different amplitudes were tested, including sinusoidal and step 

current waveforms. The rationale for this section is to see the effects of both the 

transient and steady state dynamics of the fuel cell in both healthy operation and 

oxygen-starved operation. Additionally, the sinusoidal and step waveforms were 

selected to show that the shape of the input current density and output voltage 

waveforms are essentially identical except for the numerical values. This section also 

shows how the EKF prediction of voltage interacts with the system in the transient vs the 

steady state. 

The oxygen mole fraction at the cathode inlet was kept at a constant 21% and 

the hydrogen mole fraction at the anode inlet was set to 99%. In this simulation, the 

oxygen was consumed at a current density of roughly 1100 A/m2. As per how an EKF 

operates, small amounts of Gaussian noise (called “process noise”) were added to the 

EKF inputs (see Table B.1 in Appendix B for the noise values). Additionally, the initial 

EKF state for the simulations in this section was set to 0 for all five EKF states (e.g. 𝑥0 =

[0,0,0,0,0]𝑇). 

3.3.1. Sinusoidal excitation 

Two sinusoidal current density waveforms were tested. The first waveform was 

𝐽𝑖𝑛𝑝𝑢𝑡 = 50 + 25 × (2𝜋𝑡) 𝐴/𝑚2, where 𝑡 refers to the time in seconds. The result is a 
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healthy fuel cell. Figure 3.1 illustrates that the EKF agrees with the pseudo-2D model at 

low current density inputs: 

 

Figure 3.1: Sinusoidal “small” excitation 

It is seen from this figure that the EKF estimate of closed-circuit voltage (dotted 

line) converges to the true closed-circuit voltage or system voltage (solid line) from the 

fuel cell simulation within roughly 1 second of simulation time. After this initial period, the 

estimates tracked the system values indicating the EKF estimate is accurate for small 

current density waveforms. 

The next current density waveform was a larger sinusoidal excitation. Namely, 

𝐽𝑖𝑛𝑝𝑢𝑡 = 1000 + 500 × (2𝜋𝑡) 𝐴/𝑚2. This waveform consumes far more energy from the 

fuel cell than the previous current density waveform, resulting in a fuel cell that fluctuated 

between healthy and partially oxygen-starved operation. Although the EKF estimate 

initially agrees with the pseudo-2D model for the larger sinusoidal excitation, a 

divergence occurred after roughly 15 seconds of simulation time, where the EKF 

estimate remained slightly greater than the system (or “true”) voltage calculated from the 

pseudo-2D simulation. This is likely because the fuel cell model used by the EKF tends 

to overestimate the voltage slightly, leading to the EKF estimating a slightly higher 

voltage than the simulation. Figure 3.2 illustrates the large sinusoidal excitation: 
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Figure 3.2: Sinusoidal “large” excitation 

In this case, the EKF estimate (dotted line) converges to the system value (solid 

line) within about 1 second. However, after 15-30 seconds the EKF begins 

overestimating the voltage. This indicates that the EKF estimate diverges from the fuel 

cell model at large currents. 

3.3.2. Step excitation 

The step excitation is characterized by two values – an initial current density 

which is held for the first 10 seconds, followed by an instantaneous transition to a new 

current density, which is held for the remainder of the simulation. The small step change 

begins with a current of 50 A/m2 for the first 10 seconds and then immediately transitions 

to 75 A/m2 until the end of the simulation. This resulted in a slight decrease in voltage, as 

expected. The EKF and pseudo-2D model agree with each other on the voltage 

response, as Figure 3.3 illustrates: 
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Figure 3.3: Small step change 

The EKF took roughly 1 second to converge to the simulation data and it reliably 

estimated voltage in line with the system voltage. Specifically, the EKF voltage stayed 

near the top of the step wave both before and after the 10-second mark. Additionally, 10 

seconds into the simulation, the current density changed instantly, and the closed-circuit 

voltage immediately changed to a lower equilibrium value. 

The next step excitation begins the simulation at an input current density of 1000 

A/m2 for the first 10 seconds followed by an instantaneous change to 1500 A/m2 which 

was held until the end of the simulation. This resulted in a large and immediate drop in 

voltage, which slowly becomes negative as more oxygen is consumed and the system 

voltage settles at its equilibrium at full starvation. The EKF initially agrees with the 

pseudo-2D model, but they quickly diverge with the EKF voltage being roughly 0.4 volts 

above the “true” voltage derived from the pseudo-2D simulation. Figure 3.4 illustrates 

this: 
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Figure 3.4: Large step change 

The EKF converged within 1s, then the EKF estimate of voltage remained in 

agreement with the simulation until about 10 seconds. The fuel cell immediately 

transitioned from healthy to starved and it progressively worsened as the simulation 

approached the end. The EKF initially agreed with the simulation as it started 

transitioning from healthy to starved, but as time progressed, the EKF greatly 

overestimated the voltage due to the starved EKF model overestimating the voltage. In 

other words, while the EKF captures the transition to starved relatively accurately, it 

overestimates the voltage severely for starved fuel cells in the steady state. 

The oxygen mole fraction in the cathode started at a steady state, but after the 

step change, the fuel cell immediately entered full starvation, gradually becoming more 

starved as more oxygen is consumed in the cathode. This is shown in Figure 3.5: 

 

Figure 3.5: Oxygen mole fraction for a large step change 
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3.3.3. Discussion 

The results show that for normal fuel cells, the oxygen mole fraction in the 

cathode is always greater than 0 everywhere in the cathode, including the inlet and 

outlet, whereas the hydrogen mole fraction in the cathode remains at 0. In the sinusoidal 

simulations, particularly the simulation with the large sinusoidal excitation, it can be 

inferred that the oxygen mole fraction in the cathode fluctuates along with the input 

current density. However, for the large step excitation, the oxygen mole fraction in the 

cathode decreases with time, as mentioned in this section. 
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Chapter 4.  
 
Machine learning-based hydrogen crossover 
diagnostics 

Detecting hydrogen crossover and oxygen starvation in the fuel cell is the main 

goal of machine learning in this thesis. To this end, this chapter provides several 

machine learning algorithms to diagnose the size of leaks using only the current input 

and the voltage response of the fuel cells. Specifically, the neural networks (or any other 

diagnostic system) need to predict the extent of hydrogen crossover in addition to the 

amount of reactant (hydrogen or oxygen) exiting the fuel cell. The extent of hydrogen 

crossover can be calculated from the three outputs of the machine learning algorithms: 

the input oxygen mole fraction, output oxygen mole fraction, and output hydrogen mole 

fraction. From these outputs, the size of the leaks can be inferred. To get a better 

understanding of machine learning performance, this chapter implements machine 

learning-based diagnostics on a fuel cell subject to noise, where the input current density 

is a sinusoidal waveform with randomized coefficients (see equation (3.8)). This current 

is paired with two voltage waveforms to train two sets of neural network ensembles: 

• Measurement voltage, obtained by adding unbiased Gaussian noise to the true 

voltage 

• An EKF-filtered voltage that combines a simplified mathematical model of the fuel 

cell with the measurement voltage (see Chapter 3) 

I aim to compare ANN and ELMs in each of these two systems. Hence, a total of 

four ensembles were tested. 

4.1. Process for deciding which algorithms to use 

This section exists to briefly summarize some of the main types of machine 

learning algorithms that could have been used for this thesis and the rationale for 

selecting the ANN and the ELM as the final options. 
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Section 2.4.2 explains the existence of 3 main types of machine learning 

algorithms – supervised, unsupervised, and reinforced. In this thesis, only supervised 

learning is useful because the inputs (current density and voltage) are required to predict 

the outputs (reactant mole fractions at the inlet and outlet of the fuel cell cathode), which 

can directly be used to calculate the hydrogen crossover leakage and oxygen starvation. 

Various supervised learning algorithms were explored. One type of algorithm that 

comes to mind is linear regression, which is a statistical algorithm equivalent to a 

conventional ANN with only the input and output layers, i.e. no hidden layer (see section 

2.4.4). The benefit to linear regression is that the formula for computing the optimal 

weights and biases is algebraic, results in the global minimum (when using the sum of 

squared errors as the cost function), and the computation time is extremely quick 

compared to that of the typical supervised machine learning algorithm (see section 2.4.5 

– Training – Linear regression). The ANN is a conventional general-purpose machine 

learning algorithm for predicting an output from a set of inputs, as described in section 

2.4.4. While it takes much longer to optimize the weights and biases, it increases the 

nonlinearity and complexity of the input-output relation, ultimately giving the algorithm 

more degrees of freedom to accurately relate the inputs and outputs to each other. Deep 

learning is a sub-type of machine learning that was considered. Deep learning is 

essentially a neural network with at least 2 hidden layers, which provides at least 3 

layers of weights and biases to train [40]. The main idea is to increase the nonlinearity 

further but at the cost of lengthening the training time. Ultimately, deep learning was not 

implemented in this thesis. The ELM is a special type of machine learning algorithm 

which is effectively a combination of the speed of linear regression and the nonlinearity 

of the ANN, where the only downside is the fact that the ELM must either have more 

nodes added to it or have fewer trainable weights and biases. It is described in section 

2.4.5. 

Another important type of machine learning algorithm that could have been 

applied to this thesis is the recurrent neural network. Essentially, recurrent neural 

networks contain negative feedback loops which allow the neural network to “remember” 

what the inputs and outputs recently were [57], [58]. The main advantages of recurrent 

neural networks are their ability to understand the idea of output continuity [57], [58]. In 

the context of this thesis, a damper would effectively be placed on the neural network to 

slow down the rate at which the neural network output changes. However, recurrent 
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neural networks typically require iterative training algorithms [57], [58]. Another 

drawback of recurrent neural networks is that it is more difficult to build this type of 

algorithm due to the complexity of the negative feedback loops, making it more prone to 

bugs and delays in implementation [57], [58]. Several examples of this include long 

short-term memory (LSTM) and gated recurrent units [57], [58]. While this was 

considered a close second option for the machine learning portion of this thesis, the 

ELM was chosen instead for its much faster training algorithm. 

The ELM was chosen as the main algorithm for the reasons described in 2.4.6. 

The ELM needed a reference point to compare to, so the ANN, being the conventional 

general-purpose algorithm, was chosen to ensure the performance of the ELM could be 

measured relative to a well-established reference algorithm. 

4.2. Summary of the machine learning process 

This section exists to summarize the process of collecting data from dynamic (or 

transient) fuel cell simulations using the data to train or build a neural network ensemble 

and validate the neural network ensemble. In short, the data collection step involves 

generating various sinusoidal current density waveforms with random coefficients 

(mean, amplitude, phase, and frequency) along with randomized reactant mole fractions 

at the anode and cathode inlets. Specifically, the hydrogen mole fraction at the anode 

inlet is set to 99% in all simulations and the oxygen mole fraction at the cathode inlet is 

set to a random value between 12% and 21% and kept at this value for the entire 

simulation. The reason the oxygen mole fraction at the cathode inlet is given a different 

value in each simulation is to simulate different levels of hydrogen crossover leakage. 

The simulations were run to collect data on the cathodic output mole fractions of oxygen 

and hydrogen along with the true voltage of the fuel cell. In simulations where the EKF 

was used, some noise was added to the EKF inputs and outputs (Table B.1), which 

include the input current density, input reactant mole fractions, and fuel cell voltage. 

After the data was collected from the simulations, it was used to train a neural network 

ensemble that can estimate the mole fractions of hydrogen and oxygen exiting the fuel 

cell using only the input current density and the voltage. The result was a fully trained 

neural network ensemble which can then be run normally. Hence, the data collection 

and training are the first two steps of the machine learning process and are briefly 

summarized in Figure 4.1: 
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Figure 4.1: Summary of data collection and neural network training 

Put simply, the process depicted in Figure 4.1 was repeated once per neural 

network ensemble for a total of four neural network ensembles. Each neural network 

ensemble was then validated. This was done by first running each ensemble normally to 

predict the cathodic output mole fractions of oxygen and hydrogen and then comparing 

them to the true mole fractions to evaluate the error metrics (section 2.4.3). Figure 4.2 

depicts the neural network ensemble validation process, which was repeated once per 

neural network ensemble: 

Data collection 

Input current 
density 

Reactant mole fractions at 
anode and cathode inlets 

True reactant mole 
fractions at cathode outlet 

Train neural 
network ensemble 

Neural network 
ensemble parameters 

Voltage 



 69 

 

Figure 4.2: Neural Network Ensemble Validation Process 

4.3. Overview of structure 

In this thesis, we aim to diagnose the magnitude or extent of hydrogen crossover 

leakage. Since there is a drastic difference between the response of a normal fuel cell 

and the response of a starved fuel cell, this diagnosis is achieved in two stages. In the 

first stage, we classify the fuel cell as normal or starved using classifiers. For normal 

cells, the second stage determines the oxygen concentration using a regressor, while for 

starved cells, the second stage estimates the leak magnitude and hydrogen emission 

using a different regressor. This architecture, containing one 1st stage and two 2nd 

stages, is referred to as an ensemble. As discussed earlier, the thesis focuses on 

comparing a conventional ANN to an ELM. A literature review and terminology related to 

ANN and ELM have been provided in sections 2.4.4 and 2.4.5 respectively. 

The inputs of the ensemble networks consist of a 0.19-second sample of the 

current input and voltage response sampled at 100 Hz. This corresponds to 20 samples 
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of current density and 20 samples of voltage for a total of 40 ensemble inputs. The first 

stage of the ensemble classifies the fuel cell as normal or starved. Since there are only 

two possible classifications, there is only one output for each classifier – “0” indicates a 

starved fuel cell and “1” indicates a normal fuel cell. The second stage of a starved fuel 

cell predicts the extent of hydrogen crossover. This is conveyed through the cathodic 

oxygen and hydrogen mole fractions. The oxygen mole fraction of the air entering and 

exiting the cathode are two of the regressor outputs, and the hydrogen mole fraction of 

air exiting the cathode is the remaining regressor output. 

The performance of each ensemble and its component neural networks are 

evaluated based on the accuracy metric defined in section 2.4.3 and the training speed. 

The neural network architectures in this thesis were chosen to balance efficiency with 

accuracy. The speed at which the neural networks train and the accuracy of the 

corresponding ensembles were evaluated and compared to each other to determine 

their performance. Details of the neural network constants used in this thesis are 

provided in Appendix C.  

All conventional ANNs use the RELU activation function for their hidden layer. 

The output layer activation function of each conventional ANN is the sigmoid function. 

For all ELMs the activation function for the first hidden layer is RELU. The second layer 

has three activation functions (𝑁𝑓 = 3) consisting of the sigmoid, identity, and square 

activation functions. The output activation function for each ELM used in this thesis is the 

identity function. Using 𝑡 as a dummy variable, 𝑓𝑜𝑢𝑡(𝑡) = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦(𝑡) = 𝑡. 

4.4. Data generation for machine learning 

The data needed for machine learning algorithms are generated using a 

previously validated high-fidelity model of the fuel cell proposed in Vijayaraghavan et al 

[2] and Ebrahimi et al [7]. This model takes the physical parameters of the fuel cell along 

with the inlet oxygen at the cathode, hydrogen concentration at the anode, and desired 

load current to determine the output voltage of the fuel cell. As mentioned in sections 

2.2.2 and 2.6, leaks are modeled as an equivalent reduction in oxygen concentration. 

Since the amount of hydrogen crossover leakage is unknown, the inlet concentration of 

oxygen is treated as an unknown parameter that would be estimated by the machine 
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learning algorithms. When leaks occur, the fuel cell may become oxygen starved 

wherein hydrogen pumping begins to occur. 

The main objective of these simulations is to collect data for the machine learning 

algorithm. Specifically, the input current density values were randomly generated 

sinusoidal waveforms, and the (cathodic) input oxygen mole fraction is a baseline 

parameter whose value was randomized for each simulation. The fuel cell voltage was 

generated by the simulation. The cathodic mole fractions for oxygen and hydrogen were 

generated by the simulation for the regressor outputs, and the operation mode of the 

simulation (normal or starved) was generated based on whether hydrogen or oxygen is 

exiting the cathode. If hydrogen is exiting the cathode, then the fuel cell being simulated 

is running in starved operation, otherwise, it is in normal operation. For simplicity, the 

operation mode of each simulation is determined based entirely on the output cathodic 

mole fractions during the last timestep. Additionally, each simulation consists of 

constants that remain unchanged between simulation runs, many of which can be 

modified to simulate different fuel cells, different operating conditions, different 

environments, etc. The fuel cell parameters were selected such that it does not refer to 

any specific fuel cell, so all data used to train and validate the machine learning 

algorithms in this thesis come from this simulation. The values of these constants were 

selected to ensure the parameters describe a realistic fuel cell and can be found in 

Appendix A. Note that for all simulations run in Chapter 4, each simulation was initialized 

using an EKF state of 𝑥0 = [21%, 21%, 𝐽𝑠𝑠, 𝐽𝑠𝑠, 𝐽𝑠𝑠]
𝑇. 

4.4.1. Summary of important simulation settings 

The simulation settings in this section were shared by all simulations run in this 

thesis. In total, 10,000 simulations with noise added to the inputs and outputs of the 

simulation were run. The time step for each simulation was set to 0.001 seconds and the 

simulation length was set to 0.25 seconds per simulation. The remaining simulation and 

fuel cell parameters along with the less important variables can be found in Appendix A. 

Table 4.1 summarizes these important parameters: 

Table 4.1: Simulation settings applicable to all simulations 

Parameter Meaning Value 
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Number of 

simulations 

A simulation is characterized 

by a unique set of input 

values (see equation (3.6)) 

10,000 

Time step (𝑑𝑡) Self-explanatory 0.001 [𝑠𝑒𝑐] 

Simulation length Amount of time each 

simulation is run 

0.25 [𝑠𝑒𝑐] 

4.4.2. Simulation data preprocessing 

After generating the data for the neural networks, the data must be reorganized 

and formatted for the neural network. First, the initial time of each simulation is pruned 

from the data to give the EKF time to stabilize within the simulation. This was done for all 

simulations including those that do not use the EKF to keep the data preprocessing 

consistent and simple. The simulation time was 0.25 seconds per simulation, of which 

0.05 seconds were cut off from the beginning. This leaves a window size of 0.20 

seconds. The original sampling time (or time step) from the simulations is 0.001 seconds 

(see Table 4.1). However, the machine learning algorithm only samples these inputs 

once per 0.01 seconds, as it is undesirable to have a neural network with too many 

inputs. This sampling period is referred to as stride, defined to be 0.01 seconds. This 

sets the number of inputs to 0.20 0.01⁄ = 20 sets of inputs, or 40 inputs in total. The 

number of neural network inputs was chosen to balance simplicity, algorithm speed, and 

accuracy. This portion of the preprocessing can be explained in Figure 4.3: 
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Figure 4.3: Data preprocessing for neural network data. 

The parameters used for preprocessing (see Figure 4.3) can be summarized in 

Table 4.2: 

Table 4.2: Simulation parameters related to data preprocessing 

Parameter Meaning / Purpose Value 

Sampling Time 

for Simulation 

Amount of time between measurements in the 

pseudo-2d software simulation (i.e. time step) 

0.001 [𝑠𝑒𝑐] 

Initial Time to 

Cut Off 

Since the simulation parameters are initialized 

using a steady state approximation, a small 

initial amount of time is needed to ensure a 

clean transition to a dynamic simulation. 

0.05 [𝑠𝑒𝑐] 

Window Size Amount of time each machine learning data 

point lasts for. 

0.2 [𝑠𝑒𝑐] 

Stride The amount of time that passes before 

generating a new data point. 

0.01 [𝑠𝑒𝑐] 

Simulation 

Length 

The actual amount of time each fuel cell is 

simulated before changing their conditions 

0.25 [𝑠𝑒𝑐] 

The parameters from Table 4.2 were selected to find an appropriate balance 

between accuracy and real-life simulation time (i.e. the amount of time it took to run the 

simulation). The sampling time was selected to be 0.001 seconds because selecting a 

lower time would have caused the simulations to take too long but selecting a larger time 

would have made the simulations less accurate. The “initial time to cut off” was selected 

at 0.05 seconds because the EKF almost always converged to an equilibrium with the 

system before then. The window size was selected to be 0.2 seconds because that is 

the entire simulation time subtracting the initial 0.05 seconds that were cut off. The 

reason this value exists is that it is possible to split each simulation into multiple 

datapoints, but this possibility was not taken advantage of because it ended up not being 

necessary to add extra complexity to the machine learning algorithm. The stride was set 

to 0.01 seconds because while it is important to minimize the number of inputs for the 

machine learning algorithms, it is also important to improve the accuracy of the machine 

learning algorithms using more data. Additionally, having more inputs helps the machine 

learning algorithms to “average out” the random noise from the inputs and 

measurements. The simulation length (not to be confused with how long it took to run 
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each simulation in real life) was selected to be 0.25 seconds (on the low end) because it 

made it easy to run a large number of simulations. Additionally, the primary concern was 

to simulate the transient dynamics of the fuel cell rather than the steady-state dynamics, 

hence it was a good idea to use extremely short simulations. 

Normalization 

This section summarizes the normalization process for all neural networks used 

in this thesis. The input current density is normalized, meaning it is remapped to the 

range between 0 and 1. The minimum input current density is taken to be 0, so this 

amounts to dividing every input current density by the largest current density that occurs 

in the simulation data. This normalization is done to ensure every input ranges roughly 

between 0 and 1. Since the fuel cell voltage remains in the same order of magnitude, it 

does not need to be preprocessed. Since the cathodic mole fractions are already 

between 0 and 1, they are not normalized either. 

Preprocessing of Cathodic Mole Fractions 

This section summarizes the preprocessing of the cathodic oxygen and hydrogen 

mole fractions used in the neural network data. This section applies to all neural network 

data and neural networks in this thesis. While the input and output cathodic mole 

fractions change throughout the simulation, only their average value throughout the last 

0.2 seconds of the simulation is considered. This average is calculated for the output 

oxygen and hydrogen mole fractions. However, for the input oxygen mole fraction, the 

average value assigned during the simulation (e.g. a random number between 12% and 

21%) is taken to be the average. 

4.4.3. Sample Simulation Results 

The purpose of this section is to show the general relationship between inputs 

and outputs in the form of a plot for both normal and starved fuel cells. The hydrogen 

mole fraction at the anode inlet and the oxygen mole fraction at the cathode inlet are 

treated as constants in this section since the noise added to them was not included in 

any of the neural networks trained in this thesis. The results in this section are discussed 

in section 4.4.4. Several simulations were run to illustrate the fuel cell behavior in 

response to various current density waveforms. The input current was a sine wave with 
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noise added to simulate the real-life noise associated with a fuel cell. Resulting from this 

was a sinusoidal voltage waveform. The output reactant mole fractions also reacted to 

the current density similarly, though smaller currents have a smaller influence on this. 

The normal and starved fuel cell simulations shown in this section were chosen to have 

a high-amplitude current density waveform to give a rough idea of the effect the input 

current density and fuel cell voltage have on the output oxygen and hydrogen mole 

fractions. Note that in many simulations, the current density remained roughly constant 

throughout the entire simulation. Figure 4.4 shows a typical normal fuel cell simulation. 

Specifically, the input oxygen mole fraction is 16.48% and the input current density is a 

sine wave with the formula 𝐽 = 259 + 53 × 𝑠𝑖𝑛(2𝜋 × 2.159𝑡 + 1.495) [𝐴/𝑚2]: 

 

Figure 4.4: Sample noisy simulation results for a normal fuel cell (16.48% O2, 2.159 Hz) 

In Figure 4.4, the plot for fuel cell voltage is split into three parts. The EKF 

voltage, measurement voltage (from the measurement noise), and the actual voltage are 

shown, where the simulation voltage is generated by the pseudo-2D model of the fuel 
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cell and the measurement voltage is generated by adding noise to the pseudo-2D 

voltage. The EKF voltage is the EKF estimate of the voltage based on the measurement 

voltage and the lumped EKF model of the fuel cell presented in section 3.2. Similarly, the 

results for a noisy starved fuel cell simulation are represented in Figure 4.5: 

 

Figure 4.5: Sample noisy starved fuel cell simulation results (14.70% O2, 1.930 Hz) 

Here, the input oxygen mole fraction is 14.70% and the input current density is 

defined by the formula 𝐽 = 1593 + 574 × sin(2𝜋 × 1.930𝑡 + 2.078) [𝐴/𝑚2]. To clarify, the 

fuel cell voltage is shown on the top right of Figure 4.5, where the EKF voltage is roughly 

a smoother, offset version of the simulation voltage. It consistently overestimates the 

simulation voltage by roughly 0.4 volts in the simulation shown in Figure 4.5. This is 

consistent with the finding of the EKF design in Chapter 3. Figure 4.6 depicts the 

measurement voltage error relative to the simulation voltage for this simulation: 
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Figure 4.6: Sample noisy simulation results for a normal fuel cell 

The results in this section are discussed in section 4.4.4. 

4.4.4. Discussion of sample simulation results 

The current densities and input oxygen mole fractions were randomly generated 

and independent of each other. The random generation of input current density including 

the range of possible values is described by equation (3.8). The range of current density 

values in the simulations run for this thesis was between 31.8 A/m2 and 2668 A/m2. The 

range for the input oxygen mole fraction was between 0.12 and 0.21 for all simulations. 

Since the simulations were each only 0.25 seconds long, most of the current densities 

remained relatively constant. The simulations shown in section 4.4.3 were intentionally 

chosen because their high frequency, and high amplitude input current densities allowed 

the transient nature of the simulation to show more effectively than the other simulations. 

Additionally, the input oxygen mole fractions for each simulation were intentionally 

chosen to be roughly equal to each other to emphasize the relationship between the 

input current density and the other values plotted in section 4.4.3. However, in the 

majority of simulations used throughout this chapter, the current densities remained 

relatively constant and the noise was generally small compared to the actual currents, as 

shown in Figure 4.4 and Figure 4.5. 

The fuel cell voltage refers to the simulation (or true) voltage, measurement 

voltage, and EKF voltage. The true voltage represents the voltage of the simulated fuel 

cell generated by the pseudo-2D simulation. Due to the uncertainty introduced by flaws 
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in the system model and measurement instrument uncertainty, the true voltage is 

unknown. The measurement voltage represents what the measurement would be if 

Gaussian noise with a standard deviation of 0.01 volts were added to the simulation 

voltage each time step, and the EKF voltage represents the prediction of the voltage 

made by the EKF after combining the measurement voltage with the lumped EKF model 

of the fuel cell. Predictably, the measurement and EKF voltages are influenced by the 

input current density and input oxygen mole fraction in the same way as each other, 

meaning they increase and decrease together by approximately the same amount. 

Specifically, an increase in input current results in a decrease in fuel cell voltage and 

vice versa for the ranges of input current density used in the transient simulations. The 

measurement and EKF voltage are roughly equal to the simulation voltage for the 

simulations of normal fuel cells and the measurement voltage is roughly equal to the 

simulation voltage for starved fuel cell simulations. However, the EKF voltage was much 

greater than the simulation voltage for noisy starved fuel cell simulations. For example, 

Figure 4.5 shows the EKF voltage remaining roughly 0.4 volts above the simulation and 

measured voltages, though it does take several milliseconds for the EKF to settle into 

this consistent offset from the simulation voltage. The shape of the EKF voltage is 

roughly the same as the simulation voltage because it rises and falls roughly the same 

amount in reaction to the input current density. It is worth noting that while the voltages 

tended toward more negative values for larger current densities, not all voltages for 

starved fuel cells were negative.  

The EKF greatly overestimates the simulation voltage in starved mode due to 

differences between the pseudo-2D fuel cell simulation and the lumped EKF model (see 

section 3.1 and section 3.2). This is likely because membrane degradation, hydrogen 

crossover leakage, and reactant concentration are not modeled by the EKF (see section 

3.2.3), whereas these are modeled by the pseudo-2D fuel cell simulations. Most notably, 

the hydrogen concentration is not modeled by the EKF for starved fuel cells. Since 

increased hydrogen concentration in the anode results in an increase in the speed of 

hydrogen pumping (equation (2.5)), hydrogen pumping is ignored by the EKF model. 

Hydrogen pumping is problematic because is consumes energy (leading to a reduced 

voltage) and consumes fuel [17]. Additionally, hydrogen crossover wastefully consumes 

some of the oxygen due to hydrogen crossover (equation (2.4)), which effectively causes 

the flow channel to become oxygen-starved at an earlier point [17]. This earlier 
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starvation is problematic because it decreases the amount of oxygen fuel available to 

generate energy and it increases the area in which hydrogen pumping can occur. These 

losses due to hydrogen pumping and extra oxygen consumption are significant, as seen 

by the results in sections 3.3 and 4.4.3. These losses are the reason that there is initially 

a large amount of agreement between the lumped model and simulation as the fuel cell 

initially enters starvation, but the disagreement only becomes a problem in the steady 

state. 

Since the voltages predicted by the simulation measurements are much more 

negative than the voltages predicted by the EKF model, the EKF provides much less 

separation between the voltages of starved and healthy simulations. Because of this, the 

accuracy of the classifiers suffers when using the EKF. Additionally, the accuracy of the 

starved fuel cell regressors suffers when using the EKF because the EKF does not 

account for hydrogen concentration effects or hydrogen crossover effects, resulting in 

the EKF naturally “blurring” out the influence that hydrogen pumping losses and 

hydrogen crossover leakage have on the voltage of a starved fuel cell. This “blurring” 

occurs because while the voltage measurements attempt to guide the EKF in the proper 

direction, the lumped model the EKF is based on consistently overestimates the voltage 

by a large margin, resulting in a “tug-of-war”. This is almost certainly the reason that the 

EKF decreases the accuracy of the starved fuel cell regressors, even though the EKF 

voltage keeps roughly the same shape as the measurement voltage (see section 4.4.3). 

However, the EKF increases the accuracy of the normal fuel cell regressor because the 

EKF and pseudo-2D fuel cell simulation agree with each other a lot better. 

The input oxygen mole fraction represents the size of the hydrogen crossover 

leakage at the beginning of the flow channel (see section 2.2). Though not shown in 

section 4.4.3, increasing the input oxygen mole fraction also increases the fuel cell 

voltage because increasing the concentration of oxygen also increases the reaction rate 

in the cathode. In summary, a lower input oxygen mole fraction indicates a larger leak 

rate because the hydrogen reacts with oxygen to form water without giving energy to the 

fuel cell, meaning the fuel cell is leakier and becomes starved at a smaller current 

density. In other words, a larger concentration of oxygen in the cathode means a larger 

current density is required for the fuel cell to be starved, which drastically reduces the 

voltage of the fuel cell. 
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Increasing the input current density decreases the output oxygen mole fraction in 

normal fuel cells and increases the output hydrogen mole fraction in starved fuel cells. 

This occurs because a larger input current density drives up the rate at which oxygen is 

consumed in the cathode, which brings the fuel cell closer to full starvation. In starved 

fuel cells, hydrogen pumping occurs at a larger rate (see section 2.2). Increasing the 

input oxygen mole fraction causes the output oxygen mole fraction to increase for 

normal fuel cells and it causes the hydrogen mole fraction to decrease when in starved 

operation. This is because, ignoring the hydrogen crossover that represents a decreased 

input oxygen mole fraction, more oxygen being supplied to the system at the input 

means more oxygen must be consumed before the fuel cell becomes starved. 

The output oxygen and hydrogen mole fractions are based on the software 

simulation of the fuel cell rather than a lumped model, and these outputs were strongly 

influenced by the input oxygen mole fraction and the input current density. The output 

oxygen mole fraction is always 0 for starved fuel cells and the output hydrogen mole 

fraction is always 0 for normal fuel cells. The output oxygen mole fraction is always 

greater than 0 for the normal fuel cell simulations, whereas the output hydrogen mole 

fraction is always greater than 0 for the starved fuel cell simulations. However, some 

simulations transitioned between the two modes, so the fuel cell mode is chosen based 

on whether more oxygen exits the cathode than hydrogen (see equation (4.2) in section 

4.4.6). If this is the case, then the fuel cell is classified as “normal”. Otherwise, it is 

classified as “starved”. This definition allows all simulations to be clearly labeled as 

either “normal” or “starved”. 

It is worth noting that in 651 (or 6.51%) of the simulations, the output hydrogen 

mole fraction was slightly less than 0 and the output oxygen mole fraction was equal to 

0. Additionally, there were exactly three (or 0.03%) simulations where the hydrogen mole 

fraction at the anode outlet is less than 0, as the fuel cell was extreme enough into 

oxygen starvation that hydrogen starvation in the anode also occurs due to the extreme 

amount of hydrogen pumping. These negative reactant mole fractions occur due to 

unresolved bugs that will be corrected by researchers in the future. These cause some 

simulations to have both output oxygen and output hydrogen mole fractions in the 

cathode to be equal to 0, resulting in a loss of information from the negative hydrogen 

mole fractions, which tends to increase the error associated with the machine learning 
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results (sections 4.5, 4.6, 4.7,4.8, and 4.9). These simulations were categorized as 

“starved” simulations for the machine learning algorithm and its results. 

4.4.5. Simulation data used for neural networks 

While noiseless simulations seem ideal at first, real fuel cell data are subject to 

noise. Hence, it is ultimately desirable for the neural network to be accurate for a noisy 

system. This can be achieved either by directly training the machine learning algorithms 

using noisy data (where the algorithm would “learn” to ignore the noise) or by 

incorporating a pre-filter (i.e. a Kalman filter). Given a highly accurate pre-filter, it is 

hypothesized that a machine learning algorithm with a pre-filter would outperform a non-

filtered algorithm. However, while the preliminary EKF model developed in this thesis 

using a lumped model is accurate for normal fuel cells, it lacks the required accuracy for 

starved fuel cells. Nonetheless, it is possible to train machine learning algorithms on the 

output of the EKF. 

Therefore, all neural networks in this thesis use the input current density and the 

corresponding fuel cell voltage at 20 uniformly distributed time steps as their inputs. The 

input and output mole fractions for oxygen and hydrogen in the cathode are also used. 

Note that the amount of hydrogen entering the cathode is negligible. Two sets of voltage 

data (measurement and EKF) are calculated from the simulation and paired with the 

current density data to generate all neural network data in this thesis. The noisy 

simulations are used to generate noisy current density waveforms along with the 

corresponding voltages and reactant concentrations (for oxygen and hydrogen). Hence, 

the two sets of data used to train each neural network in this thesis can be summarized 

as follows: 

• Noisy input current density, measurement voltage, true cathodic mole fractions 

• Noisy input current density, EKF voltage, true cathodic mole fractions 

4.4.6. Neural network data preprocessing 

Normalizing the neural network inputs 

In this thesis, the input layer is normalized so the range of each current density is 

mapped to values between 0 and 1, whereas the voltage values remain close enough to 

this range that normalization is not important. 
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Calculating the cathodic reactant mole fractions 

The cathodic mole fractions are already normalized by default, as they are 

already bounded between 0 and 1. As a safeguard against invalid simulation results, all 

cathodic mole fractions are saturated between 0 and 1. In other words, mole fractions 

below 0 are set to 0, and mole fractions above 1 are set to 1. 

Calculating the fuel cell mode 

It is important to define what a “normal” or “starved” fuel cell is. In this thesis, the 

cathodic output mole fractions for hydrogen and oxygen are averaged based on the last 

0.2 seconds of the simulation. There exist 20 mole fraction values from the last 0.2 

seconds of each simulation, as shown in Figure 4.3 (section 4.4.2). These averaged 

mole fractions define the output oxygen mole fraction, 𝜙𝑂2,𝐶
𝑜𝑢𝑡 , and the output hydrogen 

mole fraction, 𝜙𝐻2,𝐶
𝑜𝑢𝑡 . This averaging is summarized by equation (4.1): 

𝜙𝑂2,𝐶
𝑜𝑢𝑡 = ∑ (𝜙𝑂2,𝐶

𝑜𝑢𝑡 )
𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑛𝑛

, 𝜙𝐻2,𝐶
𝑜𝑢𝑡 = ∑ (𝜙𝐻2,𝐶

𝑜𝑢𝑡 )
𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑛𝑛

 (4.1) 

This averaging algorithm is done to minimize the uncertainty caused by noise. 

The main drawback of this approach is that if the fuel cell current changes drastically 

within 0.2 seconds, there will be a small delay of up to 0.2 seconds before the algorithm 

detects changes in the health of the fuel cell. Additionally, extreme fluctuations in high-

frequency current signals may result in the predicted changes in fuel health being 

dampened due to equation (4.1). After these cathodic output hydrogen and oxygen mole 

fractions are calculated by equation (4.1), they are compared to each other. If 𝜙𝑂2,𝐶
𝑜𝑢𝑡  is 

greater than 𝜙𝐻2,𝐶
𝑜𝑢𝑡 , then the fuel cell is defined as “normal”. Otherwise, it is defined as 

“starved”. Equation (4.2) summarizes the preprocessing done to calculate the output 

cathodic mole fractions of hydrogen and oxygen: 

𝐼𝑓 𝜙𝑂2,𝐶
𝑜𝑢𝑡 > 𝜙𝐻2,𝐶

𝑜𝑢𝑡 → 𝐹𝐶 𝑀𝑜𝑑𝑒 = Normal 

𝐸𝑙𝑠𝑒: 𝐹𝐶 𝑀𝑜𝑑𝑒 = 𝐿𝑒𝑎𝑘𝑦 
(4.2) 

At each time step within the simulation, only one of 𝜙𝑂2,𝐶
𝑜𝑢𝑡  and 𝜙𝐻2,𝐶

𝑜𝑢𝑡  can be 

greater than 0, but over many time steps, the fuel cell may transition between “normal” 

and “starved”. Hence, in some simulations, 𝜙𝑂2,𝐶
𝑜𝑢𝑡  and 𝜙𝐻2,𝐶

𝑜𝑢𝑡  will both be greater than 0. 
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Collectively, equations (4.1) and (4.2) summarize the preprocessing done to compute 

the classifier outputs. 

4.5. First stage classifier 

The objective of the first stage is to classify the fuel cell as either normal or 

starved. This is different from classifying fuel cells as healthy or leaky. This is because a 

healthy fuel cell only has a negligible amount of hydrogen crossover leakage, so the 

expected amount of oxygen enters the fuel cell. However, many fuel cells are leaky (i.e. 

have a noticeable or severe hydrogen crossover fault) yet are not fully oxygen starved 

because the input current density is sufficiently low. These fuel cells are classified as 

“normal” since hydrogen does not leak out of the fuel cell. The fuel cells are classified as 

“starved” when hydrogen exits the fuel cell rather than oxygen. As mentioned earlier in 

Chapter 4, the only variables whose values are known are the current density and 

voltage, so they are first preprocessed (section 4.4.2) and then used to classify the fuel 

cell. In total, there are two sets of input data used to create two distinct pairs of ANN and 

ELM classifiers – measurement and EKF data (see section 4.4.5). In summary, this 

section aims to evaluate the classifier architecture for the ANN and ELM and summarize 

its accuracy. 

4.5.1. Notes about Classifier Training 

It is worth noting that when training any classifier in this thesis, the neural 

network classifier ends up being a decimal. The error metric used for training is the sum 

of squared errors, also known as the cost function (see section 2.4.3). The goal of this 

cost function is to get this decimal value to be as close to 0 or 1 as possible, depending 

on whether the cell is starved or normal. However, in post-processing, this decimal is 

rounded to 0 or 1 depending on which is closer, and these are the final classifications for 

the classifier. 
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4.5.2. Classifier ANN Architecture and Results 

Architecture 

According to the notation used in section 2.4.4, the classifier is a 40-10-1 neural 

network. The input layer includes the current density and voltage values within the last 

20 timesteps of the simulation (0.2 seconds total). There is one output node that 

indicates the fuel cell mode of operation (normal or starved). From equation (2.18), the 

total number of weights and biases, or trainable parameters, is equal to 421. Each 

classifier ANN is trained with 80% of the 10,000 data points in the simulation data, which 

is equal to 8000 data points. Since 8000 is much greater than 421, it is safe to assume 

that this classifier is not overfitting the data. The ANN uses the RELU activation function 

for its hidden layer and the sigmoid activation function for its output layer (section 2.4.3 – 

Activation functions). Figure 4.7 summarizes the structure of every classifier ANN in this 

thesis: 

 

Figure 4.7: Classifier ANN used for this thesis. 

See section 2.4.4 and Figure 2.4 for more information on what the symbols of 

Figure 4.7 refer to. 
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Results 

As mentioned in section 4.4.5, two sets of data were used to train the various 

neural networks which appear in this thesis. Specifically, one classifier ANN per set of 

data (two total) was trained. In summary, these sets of data include the measurement 

data and the EKF data. As mentioned in section 4.5.2, there were 10,000 noisy 

simulations, split into 8000 train data and 2000 test data, which were used for both the 

measurement data and the EKF data. The only difference between the measurement 

and EKF data is the voltage used (e.g. measurement voltage vs EKF voltage). For each 

set of data, roughly half of the simulations were for normal fuel cells and the other half 

were for starved fuel cells. 

The ANN classifiers took 1091 seconds and 1138 seconds for the measurement 

data and EKF data, respectively. In other words, the amount of time it took to train each 

ANN classifier was roughly the same. This makes sense because the structure of the 

neural networks used for each dataset was identical. The error metrics used for all 

classifiers in this thesis include the percentage of each type of simulation (normal or 

starved) labeled incorrectly, as there are only two possible classifications (see section 

4.5). Table 4.3 summarizes the results for these error metrics: 

Table 4.3: Classifier ANN Error Metrics 

Dataset Measurement EKF 

Amount of time to train 1091 sec 1138 sec 

Test Data Labeled Incorrectly (%) 

Normal Fuel Cell 

Simulations Only 

1.887 % 2.468 % 

Starved Fuel Cell 

Simulations Only 

1.913 % 3.242 % 

All Simulations 1.900 % 2.850 % 
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Train Data Labeled Incorrectly (%) 

Normal Fuel Cell 

Simulations Only 

1.398 % 1.681 % 

Starved Fuel Cell 

Simulations Only 

2.041 % 1.964 % 

All Simulations 1.725 % 1.825 % 

It is clear from Table 4.3 that the train data performed significantly better than the 

test data for the ANN classifiers. The reason for this discrepancy may lie in “outlier” 

simulations, which may have patterns in the current, voltage, and cathodic mole fraction 

data that differ from the typical simulations. Some possible outliers include the roughly 

6.5% of simulations where the hydrogen mole fraction at the cathode outlet was 

negative, as these were corrected to 0 to ensure the mole fractions are realistic. Other 

outlier simulations may include those in which the simulation repeatedly transitioned 

between normal and fully starved due to a high frequency and high amplitude current 

density waveform. Essentially, there is a high chance that the neural network is better 

trained to deal with the typical simulations but is poorly trained for certain “outlier” 

simulations. However, random chance is also a common reason for the train and test 

data to perform differently from each other, as there is a large amount of fluctuation in 

the performance of the test data relative to the train data. 

However, the measurement ANN classifier outperformed the EKF ANN classifier. 

This is likely because the EKF model for starved fuel cells is erroneous, as discussed in 

section 4.4.4. Another possible reason is random chance, as the training performance of 

each neural network in terms of the cost function before postprocessing was similar. 

It is worthwhile to give an overview of how well the neural network performed 

during the training process. Since the ANNs are relatively small, the cost function (sum 

of squared errors) plateaued relatively quickly, meaning it is safe to assume the 

performance of the neural network is unlikely to get much better with the current set of 

test and train data if training were to continue. This applies to both ANN classifiers. 
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For the measurement ANN classifier, the cost function (equation (2.19)) reached 

its best value at 0.0151 for the train data and 0.0161 for the test data (plot not shown), 

which implies a good amount of generalization. This cost function was calculated before 

postprocessing (e.g. where the output node was rounded to 0 or 1). Figure 4.8 illustrates 

the cost function value as it evolved throughout the training process, where an epoch 

represents the number of times each simulation was used to change the value of the 

trainable parameters, and the y axis is the natural logarithm of the average sum of 

squared errors: 

 

Figure 4.8: Classifier ANN for measurement data used for this thesis. 

It is clear from Figure 4.8 that fluctuations in classifier performance between 

epochs were increasingly common as the performance plateaued. This fluctuation is 

typical when training an ANN [39]. For the EKF classifier, the best sum of squared errors 

before preprocessing is 0.0143 for the train data and 0.0230 for the test data (plot not 

shown). Figure 4.9 shows the training process for the EKF ANN classifier: 
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Figure 4.9: Classifier ANN for EKF data used for this thesis. 

While the training data reached better error metrics for the EKF ANN than the 

measurement ANN, the test data performed more poorly, as shown in Table 4.3. One 

possible reason for the EKF decreasing the performance of the classifiers is the large 

discrepancy between the fuel cell simulation and the lumped EKF model of the fuel cell 

for starved fuel cells in the steady state (see section 4.4.5). 

4.5.3. Classifier ELM Architecture and Results 

Architecture 

Each ELM in this thesis uses 𝑁𝑓 = 3 activation functions (e.g. sigmoid, identity, 

and square – see equation (2.7)) to calculate Φ, and 𝑁𝑥 = 40 input layer nodes. Hence, 

according to equation (2.20), the classifier ELM is a 40 − 𝑁𝑧 − 3𝑁𝑧 − 1 neural network 

where 𝑁𝑧 is an unknown integer which can be changed to alter the number of trainable 

parameters. The number of trainable parameters was selected to be as close as 

possible to that of the classifier ANNs. Combining equations (2.18) and (2.20), the result 

was 𝑁𝑧 = 140, resulting in a 40 − 140 − 420 − 1 neural network. According to equation 

(2.20), the total number of trainable parameters for the ELM classifier is equal to 421. 

Each classifier ELM was trained with 80% of the 10,000 data points in the simulation 

data, which is equal to 8000 data points. Since 8000 is much greater than 421 and due 
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to regularization (see Appendix C), it is safe to assume that the chances of overfitting 

are extremely minimal. Since the set of weights and biases connecting the input layer to 

the first hidden layer were randomly generated, they were excluded from the training 

process (see section 2.4.5). The weights between each layer are represented as 

matrices 𝑊𝑟𝑎𝑛𝑑 and 𝑊𝑀𝐿 in Figure 4.10. The functions 𝑓1, 𝑓2, and 𝑓3 are the activation 

functions used in the second hidden layer (see equation (2.22)), where 𝑁𝑓 = 3 and 𝑁𝑧 =

140. The number “1” that occurs inside some nodes represents the identity function. In 

Figure 4.10, 𝜙 represents the values returned by the activation functions 𝑓1, 𝑓2, and 𝑓3. 

The remaining symbology is explained in section 4.5.2. Figure 4.10 summarizes the 

structure of every ELM in this thesis: 
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Figure 4.10: Classifier Extreme Learning Machine (ELM) used for this thesis. 

It is worth noting that due to the method by which the ELM is trained, the output 

layer activation function must have a well-defined inverse, as this is needed to complete 

the linear regression. Since the correct classification outputs of each node are all either 
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0 or 1, the sigmoid function cannot be used without modifying the classifier outputs 

because the inverse sigmoid function of 0 is negative infinity and the inverse sigmoid 

function of 1 is infinity (see equation (2.7) for the sigmoid function). Hence, the identity 

function is used instead of the sigmoid function for the output layer. 

Results 

This section is structured similarly to section 4.5.2 – Results. The data used for 

this section is identical to that used for section 4.5.2. The ANN classifiers took 0.317 

seconds for the measurement data and 0.241 seconds for the EKF data. The error 

metrics and the data used for each classifier are the same as in section 4.5.2, though 

the values associated with these error metrics are different. As in section 4.5.2, there 

exists a measurement and EKF classifier. Table 4.4 summarizes the error metrics for the 

ELM classifiers: 

Table 4.4: Classifier ELM Error Metrics 

Dataset Measurement EKF 

Amount of time to train 0.317 sec 0.241 sec 

Test Data Labeled Incorrectly (%) 

Normal Fuel Cell 

Simulations Only 

1.233 % 1.833 % 

Starved Fuel Cell 

Simulations Only 

3.603 % 2.063 % 

All Simulations 2.450 % 1.950 % 

Train Data Labeled Incorrectly (%) 

Normal Fuel Cell 

Simulations Only 

0.882 % 1.895 % 
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Starved Fuel Cell 

Simulations Only 

2.281 % 2.202 % 

All Simulations 1.588 % 2.050 % 

The mean squared errors for the measurement ELM classifier are 0.0120 for the 

train data and 0.0188 for the test data. The mean squared errors for the EKF extreme 

learning machine classifier are 0.0156 for the train data and 0.0150 for the test data. As 

in section 4.5.2, these are accurately reflected by the error metrics in Table 4.4. As 

shown in Table 4.4, the error metrics for the train data are much better than for the test 

data when trained using measurement data, but the train and test data performed 

similarly to each other when trained using the EKF data. While the difference in 

performance between the measurement and EKF extreme learning machines may be 

due to random chance, it may also be due to outlier simulations, which differ from the 

typical simulation. The measurement ELM classifier performed better than the EKF ELM 

classifier, but this trend is reversed for starved fuel cells. In other words, the EKF 

decreased the performance of machine learning for starved fuel cells due to the 

differences between the pseudo-2D fuel cell simulation and the lumped EKF model for 

starved fuel cell simulations in the steady state (Chapter 3). 

Using the test data error metrics as a guideline, the relative performance of the 

ELM and ANN classifiers was mixed. For the EKF classifiers, the ELM consistently 

outperformed the ANN. However, for the measurement classifiers, the ELM 

outperformed the ANN for normal fuel cells, but the ANN outperformed the ELM for the 

starved fuel cells, meaning their performances are roughly the same. Table 4.5 

illustrates the performance of the ELM classifiers relative to the ANN classifiers based 

on the error metrics in Table 4.3 and Table 4.4, where a number larger than 1 indicates 

the ELM classifier is performing better than the ANN classifier: 

Table 4.5: Error metrics of ELM classifiers relative to ANN classifiers (test data only) 

Dataset Measurement EKF 

Test Data Labeled Incorrectly: [ELM classifier] / [ANN classifier] 
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Normal Fuel Cell 

Simulations Only 

0.653 0.743 

Starved Fuel Cell 

Simulations Only 

1.883 0.636 

All Simulations 1.289 0.684 

Train Data Labeled Incorrectly: [ELM classifier] / [ANN classifier] 

Normal Fuel Cell 

Simulations Only 

0.631 1.127 

Starved Fuel Cell 

Simulations Only 

1.118 1.121 

All Simulations 0.921 1.123 

In terms of training speed, the ELM classifiers greatly outperformed the ANN 

classifiers since the ELM classifiers only need one iteration (or “epoch”) to train, whereas 

the ANN classifiers used 100,000 epochs to train. It took roughly 20 minutes to train 

each ANN classifier (Table 4.3), but it took less than one second to train each ELM 

classifier (Table 4.4). This is because, for the ELM, the training time only includes the 

linear regression calculations illustrated in equations (2.22) and (2.23), but for the ANN, 

training requires forward propagation and backpropagation to be repeated a total of 

100,000 times (once per epoch) for each data point (see sections 2.4.3 and 2.4.4). 

4.6. Second stage regressor for normal fuel cells 

The second stage regressor for normal fuel cells is referred to in this thesis as a 

“normal regressor”. The second stage regressors all have the cathodic mole fractions as 

their outputs. Specifically, the input and output cathodic oxygen mole fractions in 

addition to the output hydrogen mole fraction are used as the neural network outputs. 

Aside from the outputs, the architecture of each regressor is identical to that of the 
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classifiers in section 4.5. For the normal regressors, there are 4041 train data and 1010 

test data, which makes 5051 data in total. 

4.6.1. Regressor ANN Architecture and Results 

Architecture 

The architecture is identical to the architecture shown in section 4.5.2 except for 

the number of output layer nodes. The ANN regressor is a 40-10-3 neural network and 

according to equation (2.18), the total number of trainable parameters is equal to 443. 

Additionally, the same datasets used to train the conventional ANN classifiers are also 

used to train the conventional ANN regressors (section 4.5.2). Using the same 

symbology as described in section 4.5.2, Figure 4.11 shows the full architecture of each 

regressor ANN in this thesis: 

 

Figure 4.11: Regressor ANN used for this thesis. 

Though it is known that the output hydrogen mole fraction is equal to 0 for almost 

all normal fuel cells, it is still possible for a slight amount of hydrogen to temporarily 
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fuel cell transitioning between normal and starved operation (see equations (4.1) and 

(4.2)). 

Results 

The most important results are the error metrics for the final neural network. The 

error metrics used for regressors are different from those used for the classifiers in this 

thesis (see section 2.4.3 – Error metrics). Since each output is continuous and can 

theoretically vary between 0 and 1, the mean absolute error and root mean square 

(RMS) error are used (see equation (2.12)) to summarize the performance of each 

regressor. 

Since the output hydrogen mole fraction is 0 for normal fuel cells, it was not 

analyzed in this section. The ANN regressors took 754 seconds for the measurement 

data and 671 seconds for the EKF data. Though these should theoretically take the 

same amount of time to train, some variation is expected due to unknown factors such 

as background processes being run by the computer that is unrelated to this thesis. 

According to the results, the RMS error was always slightly greater than the 

mean absolute error when predicting the oxygen mole fractions at the cathode inlet and 

outlet, indicating that the errors came primarily from the typical simulation rather than 

from extreme outliers. However, the RMS error for the output hydrogen mole fraction is 

much greater than the mean absolute error since most simulations estimated an output 

hydrogen mole fraction of exactly 0. The results for the train and test data are nearly 

identical across the board, implying the neural network is generalizable to new data from 

the simulated fuel cells. Notably, the normal regressor trained using EKF data 

outperformed the normal regressor trained using measurement data. This is because the 

EKF model agrees with the pseudo-2D fuel cell simulation for normal fuel cells and the 

EKF reduces the amount of noise in the voltage measurements. Table 4.6 illustrates 

these results: 

Table 4.6: ANN regressor error metrics for normal fuel cells 

Dataset Measurement EKF 

Amount of time to train 754 sec 671 sec 
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Input oxygen mole fraction 

Mean absolute error 

(train data) 

0.00828 0.00685 

Mean absolute error 

(test data) 

0.00865 0.00708 

RMS error (train data) 0.01062 0.00882 

RMS error (test data) 0.01106 0.00928 

Output oxygen mole fraction 

Mean absolute error 

(train data) 

0.00667 0.00378 

Mean absolute error 

(test data) 

0.00677 0.00372 

RMS error (train data) 0.00887 0.00507 

RMS error (test data) 0.00919 0.00504 

Output hydrogen mole fraction 

Mean absolute error 

(train data) 

0.00026 0.00028 

Mean absolute error 

(test data) 

0.00026 0.00026 

RMS error (train data) 0.00099 0.00088 
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RMS error (test data) 0.00110 0.00080 

It is worth noting that since the hydrogen mole fraction at the cathode outlet is 

expected to be 0 for normal fuel cells, it may be considered in future work to define a 

“transition” mode for fuel cell operation, where during the simulation, the fuel cell emits 

both hydrogen and oxygen within a small window of time. The training history of these 

regressors for each epoch can be visualized using the natural logarithm of the cost 

function as the error metric (see equation (2.19)). Figure 4.12 illustrates this for the 

normal regressor trained using measurement data: 

 

Figure 4.12: Normal regressor ANN for measurement data used for this thesis 

As can be seen from Figure 4.12, the cost function appeared to plateau at first, 

but at around epoch 30,000, it found a new plateau. This illustrates that it may be 

possible to keep training each ANN classifier and regressor to improve the results 

further. Figure 4.13 illustrates the training history of the normal regressor ANN trained 

using EKF data: 
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Figure 4.13: Normal regressor ANN for EKF data used for this thesis 

Figure 4.13 shows that the normal ANN regressor for EKF data immediately 

plateaued at a better value than the normal ANN regressor for measurement data 

starting at around epoch 20,000. 

4.6.2. Regressor ELM Architecture and Results 

Architecture 

The architecture is identical to the architecture shown in section 4.5.3 except for 

the number of nodes in each layer. According to equation (2.20), the regressor ELMs are 

40 − 𝑁𝑧 − 3𝑁𝑧 − 3 neural networks. Setting the number of trainable parameters in 

equations (2.18) and (2.20) equal to each other, the best integer value for 𝑁𝑧 is 𝑁𝑧 = 49, 

resulting in a 40 − 49 − 147 − 3 neural network with 444 trainable parameters according 

to equation (2.20). Using the same symbology as described in section 4.5.3, Figure 4.14 

shows the full architecture of each regressor ANN in this thesis: 
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Figure 4.14: Regressor Extreme Learning Machine (ELM) used for this thesis. 

The data used to train each regressor were the same as for the ELM classifier in 

section 4.5.3, though only the normal fuel cell simulations were used to train the ELM 
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fuel cell simulations were trained using the starved fuel cell data. As with the normal 

regressor ANNs, there are 4041 train data and 1010 test data (5051 data in total). 4041 

is much greater than the 444 trainable parameters in this neural network, so overfitting 

should not be an issue. 

Results 

This results section is identical to that of section 4.6.1 except for the numerical 

values of each error metric. The other difference is that the training was done in one 

iteration, meaning the training history plots like those shown in Figure 4.12 do not exist 

for the ELM regressors. The training times were almost instantaneous at 0.064 seconds 

for the measurement data and 0.027 seconds for the EKF data. The RMS error is 

considerably greater than the mean absolute error when predicting the oxygen mole 

fraction at the cathode inlet and outlet. However, the RMS error compared to the mean 

absolute error is more extreme for the test data than the train data because of two 

extreme outliers in the predicted input and output oxygen mole fractions, which each 

overestimate the mole fraction by a margin of at least 10%. The RMS error greatly 

exceeds the mean absolute error when predicting the hydrogen mole fraction at the 

cathode outlet since most simulations correctly predict this to be 0. The results for the 

train and test data are generally similar, implying the neural network is likely 

generalizable to new data from the simulated fuel cells. Additionally, the normal EKF 

regressor outperformed the normal measurement regressor by a considerable margin for 

the same reasons as for the normal ANN regressors. The error metrics and training 

times are summarized in Table 4.7: 

Table 4.7: ELM regressor error metrics for normal fuel cells 

Dataset Measurement EKF 

Amount of time to train 0.064 sec 0.027 sec 

Input oxygen mole fraction 

Mean absolute error 

(train data) 

0.00945 0.00783 
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Mean absolute error 

(test data) 

0.01061 0.00855 

RMS error (train data) 0.01216 0.01029 

RMS error (test data) 0.01432 0.01452 

Output oxygen mole fraction 

Mean absolute error 

(train data) 

0.00674 0.00486 

Mean absolute error 

(test data) 

0.00734 0.00526 

RMS error (train data) 0.00848 0.00625 

RMS error (test data) 0.00939 0.00927 

Output hydrogen mole fraction 

Mean absolute error 

(train data) 

0.00016 0.00018 

Mean absolute error 

(test data) 

0.00027 0.00022 

RMS error (train data) 0.00061 0.00063 

RMS error (test data) 0.00116 0.00090 

Compared to the normal ANN regressors, the normal ELM regressors performed 

somewhat worse, but not by a definitive margin (see Table 4.6 and Table 4.7). The 

difference in performance may be due to the choice of activation functions for the 
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second hidden layer being suboptimal, as more testing for this can be done. This 

difference in performance may also have partly to do with random chance. However, the 

ELM regressors were much quicker to train than the ANN regressors. 

4.7. Second stage regressor for starved fuel cells 

The second stage regressor for starved fuel cells is referred to as a “starved 

regressor” in this thesis. The architecture of the regressors used for starved fuel cells is 

identical to that described in section 4.6, so only the results are discussed here. The 

output oxygen mole fraction is always 0 or extremely close to 0 in the starved fuel cell 

simulations, so it was not plotted in this section. Instead, the input oxygen mole fraction 

and the output hydrogen mole fraction were plotted. For the regressors in this section, 

there are 3960 train data and 989 test data, or 4949 data in total. 

4.7.1. Regressor ANN Results 

The results and data used for the regressor ANNs have an identical format to 

section 4.6.1, though the output hydrogen mole fraction is shown rather than the output 

oxygen mole fraction. The training times were 756 seconds for the measurement ANN 

regressor and 788 seconds for the EKF ANN regressor. The RMS error is somewhat 

larger than the mean absolute error when predicting the oxygen mole fraction at the 

cathode inlet and the hydrogen mole fraction at the cathode outlet for the measurement 

ANN, as there are no extreme outliers in the train or test data. However, for the starved 

EKF ANN regressor, there are two extreme outliers in the test data for output hydrogen 

mole fraction. One of these outliers predicts an input oxygen mole fraction of roughly 

40% and the other predicts 70% when the true value is near 20% in each case. The 

RMS error greatly exceeds the mean absolute error when predicting the oxygen mole 

fraction at the cathode outlet because most simulations correctly predict an output 

oxygen mole fraction of 0, meaning that the error is entirely based on a small fraction of 

the simulations. The train and test data have similar performances, implying the neural 

network is likely able to generalize to new data. However, using the EKF as a prefilter for 

voltage decreases the performance of the starved regressors due to extreme differences 

between the voltage predicted by the EKF and the measurement voltage (see Figure 4.5 

in section 4.4.3). The training times and error metrics can be summarized in Table 4.8: 
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Table 4.8: ANN regressor error metrics for starved fuel cells 

Dataset Measurement EKF 

Amount of time to train 756 sec 788 sec 

Input oxygen mole fraction 

Mean absolute error 

(train data) 

0.00503 0.01315 

Mean absolute error 

(test data) 

0.00540 0.01474 

RMS error (train data) 0.00725 0.01662 

RMS error (test data) 0.00784 0.02559 

Output oxygen mole fraction 

Mean absolute error 

(train data) 

0.00030 0.00047 

Mean absolute error 

(test data) 

0.00033 0.00046 

RMS error (train data) 0.00117 0.00132 

RMS error (test data) 0.00134 0.00137 

Output hydrogen mole fraction 

Mean absolute error 

(train data) 

0.00528 0.01833 
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Mean absolute error 

(test data) 

0.00563 0.02010 

RMS error (train data) 0.00770 0.02242 

RMS error (test data) 0.00840 0.02613 

The value of the regularized cost function (equation (2.19)) evolved throughout 

the 100,000 epochs of neural network training. For the starved ANN regressor trained 

using measurement data, the cost function quickly found a value to a plateau and slightly 

improved on it, as shown in Figure 4.15: 

 

Figure 4.15: Starved ANN regressor for measurement data used for this thesis 

For the starved EKF ANN regressor, a suboptimal plateau was found, and it 

slowly improved. It is likely the neural network would have kept improving given more 

epochs of training, but it is less effective to use the EKF to train starved fuel cells due to 

the errors in the lumped EKF model. Additionally, the increase in fluctuation intensity 

near the end hints at a decreasing ability to further improve the training results. Figure 

4.16 illustrates this: 
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Figure 4.16: Starved ANN regressor for EKF data used for this thesis 

4.7.2. Regressor ELM Results 

The results and data used for the regressor ELMs have an identical format to 

section 4.6.2, though the output hydrogen mole fraction is shown rather than the output 

oxygen mole fraction. The training times were 0.027 seconds for the starved 

measurement ELM regressor and 0.065 seconds for the starved EKF ELM regressor. 

The RMS errors are considerably larger than the mean absolute errors when predicting 

the cathodic input oxygen and output hydrogen mole fractions, as the errors occur due to 

the typical data point. The RMS error is much larger than the mean absolute error when 

predicting the output oxygen mole fraction. These trends occur for the same reasons as 

for the starved ANN regressors. The train and test data error metrics have similar 

performances, indicating the neural networks are likely generalizable. However, the 

starved measurement ELM regressor greatly outperforms the starved EKF ELM 

regressor for the same reasons as for the starved ANN regressors. The training times 

and error metrics can be summarized in Table 4.9: 

Table 4.9: ELM regressor error metrics for starved fuel cells 

Dataset Measurement EKF 
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Amount of time to train 0.027 sec 0.065 sec 

Input oxygen mole fraction 

Mean absolute error 

(train data) 

0.00508 0.01738 

Mean absolute error 

(test data) 

0.00527 0.01832 

RMS error (train data) 0.00756 0.02098 

RMS error (test data) 0.00826 0.02223 

Output oxygen mole fraction 

Mean absolute error 

(train data) 

0.00025 0.00028 

Mean absolute error 

(test data) 

0.00027 0.00031 

RMS error (train data) 0.00080 0.00080 

RMS error (test data) 0.00090 0.00103 

Output hydrogen mole fraction 

Mean absolute error 

(train data) 

0.00450 0.02319 

Mean absolute error 

(test data) 

0.00470 0.02427 
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RMS error (train data) 0.00679 0.02792 

RMS error (test data) 0.00760 0.02937 

The performance of the starved ANN regressors compared to the starved ELM 

regressors are mixed. The ELM regressors perform better at predicting output oxygen 

mole fraction, but that is usually equal to 0. However, it sometimes increased to at most 

2% because some simulations transitioned between normal and starved operation. 

However, the results are mixed when predicting the hydrogen mole fraction at the 

cathode outlet or the oxygen mole fraction at the cathode inlet (see Table 4.8 and Table 

4.9). 

4.8. Neural Network Ensembles  

As mentioned previously in Chapter 4, the mole fractions of reactants in the 

cathode are unknown to the user, so they need to be estimated using known variables 

(i.e. current density and voltage). In this section, the classifiers and regressors were 

combined to form several ensembles to predict the cathodic mole fractions from the 

inputs and outputs of all simulations run in section 4.4. In other words, the predicted 

cathodic mole fractions are compared to the true cathodic mole fractions to calculate the 

error statistics (e.g. mean absolute error and RMS error). In this section, these 

ensembles are first summarized and then validated. The validation was accomplished by 

predicting the cathodic mole fractions using each ensemble and comparing them to the 

true cathodic mole fractions calculated in the simulations. 

4.8.1. Neural Network Ensembles – Summary 

Neural network ensembles are built by combining multiple neural networks. In 

this thesis, the architecture of these neural networks can be seen in sections 4.5, 4.6, 

and 4.7. The inputs for each neural network in the ensemble are identical and the 

outputs of each ensemble are the cathodic mole fractions (same as the output of the 

regressors), which reveal the extent of hydrogen crossover. In this thesis, an ensemble 

for each set of neural networks (trained in sections 4.5, 4.6, and 4.7) was constructed, 

each consisting of a classifier and two regressors. The main purpose of these 
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ensembles is to first classify the simulations as normal operation or starved operation, 

then select the correct regressor (normal or starved) to compute the extent of hydrogen 

crossover. These ensembles differ from each other in terms of the type of neural 

networks used (conventional ANN or ELM), and in terms of the data used to train them 

(measurement or EKF data). This makes a total of four ensembles. Figure 4.17 

illustrates the basic structure of each neural network ensemble used in this thesis: 

 

Figure 4.17: Schematic of Neural Network Ensemble 

4.8.2. Validation of Neural Network Ensembles – Results 

After training the neural network ensemble, it must be validated, meaning the 

accuracy of its predictions of reactant mole fraction must be evaluated against the true 

reactant mole fractions (taken from the fuel cell simulation). Each neural network 

ensemble can find the cathodic mole fractions using only the input current density and 

voltage of the fuel cell. After training the neural networks in each of the neural network 

ensembles, the algorithm depicted in Figure 4.2 was run. The difference between the 

true cathodic mole fractions and the cathodic mole fractions predicted using the 
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algorithm depicted in Figure 4.2 is considered for the error metrics used in this section 

(i.e. mean absolute error and the RMS error). These error metrics are summarized and 

discussed in this section for each of the ensembles (see section 4.8.1). 

General trends 

In this section, the train and test data were merged in the error metrics. The 

classifier error metrics describe the percentage of simulations incorrectly classified as 

either normal or starved. These error metrics match closely to those in section 4.5 since 

the same data were used for both. However, the other relevant error metrics in this 

section are the mean absolute error and the RMS error, which summarize how accurate 

the neural network ensembles are at predicting the cathodic mole fractions correctly. 

Additionally, each ensemble is better at correctly classifying normal fuel cells than 

starved fuel cells. There is a large chance this occurred due to chance. 

The main trend to notice is that the error metrics of each ensemble tend to be 

more extreme than those of each regressor from sections 4.6 and 4.7. Considering only 

the simulations which are correctly classified as either normal or starved, the error 

metrics should roughly match those in sections 4.6 and 4.7, respectively. It turns out that 

the 1-3% of simulations that wrongly classify the fuel cell mode of operation have 

significantly worse error metrics than the remaining simulations. Since this only 

constitutes roughly 2% of simulations in total (section 4.5), the impact of these wrongly 

classified simulations is significant for the output oxygen and hydrogen mole fraction 

predictions, but minor for the input oxygen mole fraction prediction. 

One likely reason for this difference across all ensembles is the fact that the input 

oxygen mole fraction had a similar range within the normal and starved fuel cell 

simulations, where the input oxygen mole fraction varied between 12% and 21%. 

However, there was a massive difference in the output oxygen and hydrogen mole 

fractions between the normal and starved fuel cells. For normal fuel cells, the output 

hydrogen mole fraction tended to be 0%, but the output oxygen mole fraction was 

greater than 0 with a maximum of roughly 20%. For starved fuel cells, the output 

hydrogen mole fraction was greater than 0 with a maximum of roughly 35%, but the 

output oxygen mole fraction tended to be 0%. This is likely one of the more important 

reasons why the error metrics are worse for the ensembles when predicting the output 
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oxygen and hydrogen mole fractions than when predicting the input oxygen mole 

fraction. 

Except for output oxygen mole fraction prediction in starved fuel simulations and 

output hydrogen mole fraction prediction in normal fuel cell simulations, the RMS error is 

only moderately (i.e. less than 2 times) larger than the mean absolute error. This 

indicates that the error metrics describing each ensemble describe the typical simulation 

more than the outlier simulations. However, the error metrics are still worse than the 

ones found in sections 4.6 and 4.7 due to the roughly 2% of simulations that were 

classified wrongly. Although the error metrics for output oxygen mole fraction in starved 

fuel cell simulations and the error metrics for output hydrogen mole fraction in normal 

fuel cell simulations have increased drastically due to the incorrectly classified 

simulations, the error metrics for these within each ensemble remain small relative to the 

other error metrics. 

For the measurement ensembles, the input oxygen mole fraction is predicted 

more accurately for starved fuel cells than for normal fuel cells. However, for the EKF 

ensembles, the reverse is true. This is due to the improvements the EKF brings to the 

accuracy of the normal neural networks and the inaccuracies of the lumped EKF model 

for starved fuel cells. The difference in accuracy is roughly by a factor of 2 for both mean 

absolute error and RMS error. The exception is the difference in accuracy for the 

measurement ANN ensemble, where the difference in accuracy is a factor of 1.6 for 

mean absolute error and a factor of 1.4 for RMS error. 

ANN Ensemble Validation Results 

This section summarizes the results for the ANN ensembles. Specifically, the 

error metrics for each cathodic mole fraction are summarized. The general trends in the 

results of each ensemble are summarized in section 4.8.2 – General trends. Table 4.10 

summarizes the error metrics for the measurement ANN ensemble: 

Table 4.10: Measurement ANN ensemble error metrics 

Dataset Normal Fuel Cells Starved Fuel Cells 

Data labeled incorrectly (%) 1.498 % 2.016 % 
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Oxygen mole fraction at cathode inlet 

Mean absolute error 0.00859 0.00536 

RMS error 0.01107 0.00810 

Oxygen mole fraction at cathode outlet 

Mean absolute error 0.00895 0.00070 

RMS error 0.01187 0.00393 

Hydrogen mole fraction at cathode outlet 

Mean absolute error 0.00096 0.02206 

RMS error 0.00616 0.03288 

Similarly, Table 4.11 summarizes the error metrics of the EKF ANN ensemble: 

Table 4.11: EKF ANN ensemble error metrics 

Dataset Normal Fuel Cells Starved Fuel Cells 

Data labeled incorrectly (%) 1.842 % 2.213 % 

Oxygen mole fraction at cathode inlet 

Mean absolute error 0.00720 0.01368 

RMS error 0.00948 0.01906 

Oxygen mole fraction at cathode outlet 
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Mean absolute error 0.00676 0.00079 

RMS error 0.00947 0.00361 

Hydrogen mole fraction at cathode outlet 

Mean absolute error 0.00088 0.02965 

RMS error 0.00539 0.03960 

To compare each of the ANN ensembles to each other, the RMS error metrics 

from Table 4.10, and Table 4.11 can be directly compared to each other. These 

ensembles classified the fuel cells with similar accuracy. For normal fuel cells, the EKF 

ANN ensemble consistently outperformed the measurement ANN ensemble, but for 

starved fuel cells, the opposite is true. However, the error metrics for output oxygen mole 

fraction in starved fuel cell simulations were similar between the ensembles shown in 

Table 4.10, and Table 4.11. 

ELM Ensemble Validation Results 

This section summarizes the results for the ELM ensembles. The general trends 

in the results of each ensemble are summarized in section 4.8.2 – General trends. Table 

4.12 summarizes the error metrics for the measurement ELM ensemble: 

Table 4.12: Measurement ELM ensemble error metrics 

Dataset Normal fuel cells Starved fuel cells 

Data labeled incorrectly (%) 0.951 % 2.549 % 

Oxygen mole fraction at cathode inlet 

Mean absolute error 0.01007 0.00523 

RMS error 0.01707 0.00806 
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Oxygen mole fraction at cathode outlet 

Mean absolute error 0.00902 0.00063 

RMS error 0.01460 0.00306 

Hydrogen mole fraction at cathode outlet 

Mean absolute error 0.00103 0.02176 

RMS error 0.00642 0.03272 

Similarly, Table 4.13 summarizes the error metrics of the EKF ELM ensemble: 

Table 4.13: EKF ELM ensemble error metrics 

Dataset Normal fuel cells Starved fuel cells 

Data labeled incorrectly (%) 1.883 % 2.174 % 

Oxygen mole fraction at cathode inlet 

Mean absolute error 0.00809 0.01783 

RMS error 0.01103 0.02152 

Oxygen mole fraction at cathode outlet 

Mean absolute error 0.00731 0.00075 

RMS error 0.01014 0.00330 

Hydrogen mole fraction at cathode outlet 
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Mean absolute error 0.00091 0.03294 

RMS error 0.00562 0.04252 

To compare each of the ELM ensembles to each other, the RMS error metrics 

from Table 4.12 and Table 4.13 can be directly compared to each other. The 

measurement ELM ensemble classifies fuel cells more accurately than the EKF ELM 

ensemble. The measurement ELM ensemble is more accurate than the EKF ELM 

ensemble for normal fuel cells but less accurate for starved fuel cells. For starved fuel 

cells, the accuracy in detecting output oxygen mole fraction is roughly the same between 

the measurement and EKF ensembles. The ANN ensembles tend to have similar 

accuracy to the ELM ensembles when classifying fuel cells as normal or starved (see 

Table 4.10, Table 4.11, Table 4.12, and Table 4.13). For normal fuel cells, the ANN 

ensembles slightly outperformed the ELM ensembles, but for starved fuel cells, the 

results are mixed. The measurement ANN and ELM ensembles have similar error 

metrics across the board. However, the EKF ANN ensemble outperformed the EKF ELM 

ensemble for starved fuel cells when predicting the input oxygen mole fraction and the 

output hydrogen mole fraction. The error metrics are similar for starved fuel cells 

between the EKF ANN and EKF ELM ensembles when predicting the output oxygen 

mole fraction. 

4.9. Discussion and review of simulation results 

In this section, the most important conclusions made for the results in sections 

4.4, 4.5, 4.6, 4.7, and 4.8 are restated and discussed. 

4.9.1. Review of simulation results 

In section 4.4, a summary of the variables, baseline parameters that changed 

between simulations, and important simulation settings are presented (see Appendix A 

for a summary of the simulation constants). This section then summarizes how the data 

is preprocessed, followed by showing a sample of simulation results representative of 

normal and starved fuel cell simulations. The input and output generation for the current 

density, voltage (pseudo-2D simulation, measurement, and EKF), and the general 
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patterns for cathodic mole fractions for hydrogen and oxygen are summarized by each of 

the two sample simulations. 

In sections 4.5, 4.6, and 4.7, the architecture of the classifiers and regressors are 

defined, and their error metrics are summarized. As mentioned in these sections, there 

are two identically structured conventional ANN classifiers, each trained using a different 

dataset (measurement or EKF). There are also two identically structured ELM classifiers, 

each trained using a different dataset. Similarly, for the normal simulations, there are two 

identically structured ANN regressors and two identically structured ELM regressors. 

The same set of regressor architectures is used to build four starved regressors, where 

the only difference between them is the data used to train them. In summary, these 

sections illustrate the following: 

• ELMs train much more quickly than conventional ANNs. 

• The ANNs likely cannot be significantly improved by further training, though there 

is room for slight improvements if training is prolonged. However, the ELMs have 

already reached the optimal solution, given their architectures and train data. 

• The classifiers and regressors tended to perform slightly better on the train data 

than the test data when using the mean absolute error and RMS error as the way 

to measure accuracy. 

• The measurement classifiers and starved measurement regressors outperformed 

the EKF classifiers and starved EKF regressors, respectively. This is likely due to 

the lumped EKF model of the fuel cell being inaccurate for extremely starved fuel 

cells. However, the normal EKF regressors outperformed the normal 

measurement regressors. 

• Mean absolute error and RMS error are the error metrics used to measure the 

accuracy of each regressor in this thesis. Ideally, the mean absolute error is 

slightly less than the RMS error, indicating that the outliers are few and not very 

extreme. However, if the RMS error is much larger than the mean absolute error, 

then the error is mostly due to extreme outliers. The RMS error of most 

regressors in sections 4.6 and 4.7 tended to remain less than double the mean 

absolute error, meaning the error metrics of the regressors are representative of 
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the average fuel cell simulation except for in a few cases. The regressors with an 

RMS error more than twice the mean absolute error were all either for output 

oxygen mole fraction in starved simulations or for output hydrogen mole fraction 

in normal simulations since these mole fractions were typically correctly predicted 

to be 0. 

In section 4.8, the architecture of each neural network ensemble is summarized 

and defined. In summary, there are a total of four neural network ensembles built in this 

thesis, each consisting of a classifier, a normal regressor, and a starved regressor. Each 

of these was trained with either measurement data or EKF data. The neural network 

ensembles were then validated using the process shown in Figure 4.2 (section 4.2). 

Most importantly, the error metrics for the validated ELMs are compared for each of the 

cathodic mole fractions for both normal and starved fuel cell simulations. The key 

findings from this section are as follows: 

• The error metrics associated with each ensemble (section 4.8) are slightly or 

moderately more extreme than those associated with each regressor individually 

(sections 4.6 and 4.7). 

• The classification error metrics within each ensemble agree with the classifier 

error metrics in section 4.5. 

• The errors associated with each ensemble are mostly caused by the typical 

simulations rather than the outlier simulations. 

• Each ensemble can classify normal fuel cells more accurately than starved fuel 

cells. 

• For the measurement ensembles, the input oxygen mole fraction is predicted 

more accurately for starved fuel cells than for normal fuel cells. However, the 

reverse is true for the EKF ensembles. 

• The EKF ensembles outperform the measurement ensembles for normal fuel 

cells, but the reverse tends to be true for the starved fuel cells. 

• The ANN ensembles and ELM ensembles have similar error metrics to each 

other. 
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• In terms of accuracy, there is no clear winner between the ANN and ELM. 

• In terms of accuracy, there is no clear winner between using EKF data and 

measurement data to train the ensemble. 
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Chapter 5.  
 
Concluding Remarks and Future Work 

5.1. Conclusions 

In conclusion, the neural networks are collectively able to predict the cathodic 

mole fractions for hydrogen and oxygen using only the current density and voltage of the 

fuel cell. In this thesis, the voltage can either be measured or EKF-filtered, and the 

neural network can either be an extreme learning machine (ELM) or an artificial neural 

network (ANN). The fuel cell can be in either normal or starved operation. Put simply, if 

hydrogen is exiting the cathode, the fuel cell is starved, but if oxygen is exiting the 

cathode and not hydrogen, the fuel cell is normal (see equations (4.1) and (4.2) for a 

more detailed explanation). Though the EKF is accurate for normal fuel cells, the EKF 

has a large error in starved, so in the future, the EKF for starved fuel cells will be 

improved. As mentioned in section 4.4.4, the EKF model for starved fuel cells severely 

overestimated the voltage because it failed to consider the losses from hydrogen 

pumping and hydrogen crossover leakage. Effectively, this means that while the EKF 

was beneficial for the normal fuel cells, it severely decreased the accuracy of the 

classifier and starved fuel cell regressor. 

The key contribution of this thesis is the creation of a machine learning algorithm 

that uses only the current density and open-circuit voltage of a fuel cell to diagnose and 

estimate the hydrogen crossover leakage faults and oxygen starvation of a fuel cell. This 

is useful because these faults result in an aging fuel cell which eventually stops 

operating as intended. This was accomplished: 

• Using a dynamic pseudo-2D fuel cell simulation 

• Using an EKF as a prefilter to the machine learning input data to improve data 

quality 

• By adding noise to the simulation inputs (current density and input reactant mole 

fractions) and to the (open circuit) voltage to simulate real-life uncertainty in fuel 

cells 
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As far as the author of this thesis is aware, the literature does not implement a 

machine learning algorithm that uses only current density and voltage to diagnose and 

estimate hydrogen crossover leakage and oxygen starvation in a fuel cell using the 

techniques described in this section. See section 2.6 for more details. 

5.2. Implementation 

To implement this thesis on a real fuel cell, the reader would begin by 

determining the parameters of the physical fuel cell. Next, they would create a simulation 

of a fuel cell or use a physical fuel cell to replace the simulation. They will also have to 

either use the lumped fuel cell model defined in Chapter 3 and section 2.5 to be used by 

an EKF. Alternatively, they can define their own lumped model. The values for all the 

parameters vary depending on the fuel cell, but some of the more important parameters 

used in this thesis for the fuel cell EKF and simulation are defined in Appendix A and 

Appendix B. Additionally, they will need to build a machine learning algorithm. The thesis 

author recommends using the Keras library in Python to build the neural network. See 

section 2.4 and Chapter 4 for more information. The machine learning parameters 

should be chosen based on the user’s needs, but the more important parameters used 

in this thesis for machine learning are defined in Appendix C. Another fundamentally 

important task the user must complete is to manually format the data from the simulation 

and EKF so it can be used to train the machine learning algorithms. The minimum 

amount of data needed for this is the current or current density, voltage, and reactant 

mole fractions at the cathode inlet and outlet. However, it is recommended that all the 

simulation data including fuel cell constants be saved in an organized place to make it 

easier to determine which fuel cell parameters were used to train the machine learning 

algorithm. 

5.3. Limitations 

This thesis only looks at a single fuel cell with a single anode flow channel and a 

single cathode flow channel. In real life, there are many different fuel cell designs in 

terms of the number of fuel cells in a stack to generate more voltage, differing flow 

channel design, and differing fuel cell parameters [17]. However, these limitations could 

be addressed in various ways. The variation in fuel cell parameters can be incorporated 
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by training a new machine learning algorithm for each fuel cell that is used. The differing 

flow channel design (incl. the number of flow channels) can always be incorporated into 

the fuel cell simulation and EKF. To repeat this thesis on a fuel cell stack, the formula for 

closed-circuit voltage and each component of it in equation (2.24) could be modified by 

simulating many fuel cells and combining the simulations, but if one were to instead 

assume the fuel cells in the stack are essentially the same, then it should be possible to 

use this assumption to simplify the simulation [17]. 

Another limitation is the assumption that the hydrogen crossover leakage occurs 

entirely at the anode and cathode flow channel inlets. However, in real fuel cells, this is 

not necessarily the case. If this is not the case, then the simulation can easily address 

this by dividing the flow channel into many parts or elements (ex. 51 elements as is the 

case in this thesis), defining an amount of oxygen to remove at each element there the 

hydrogen crossover leakage is not negligible. Moving a hydrogen crossover leakage 

closer to the anode and cathode flow channel outlets would likely change the voltage 

and output mole fractions in nonlinear ways and it would ultimately require some 

combination of literature review and experimentation to study the impact of where the 

hydrogen crossover leakage occurs. 

5.4. Future Work 

The following are recommended as possible future work based on this thesis: 

• Improving the pseudo-2D simulation and lumped (or EKF) model, particularly 

concerning the discrepancy between the EKF and fuel cell simulation for starved 

fuel cells in the steady state. Specifically, researchers need to account for losses 

due to increased hydrogen mole fraction in the anode in addition to hydrogen 

crossover in starved fuel cells. 

• Simulating higher reactant (air) flow rates. This will be to test the effects of 

supplying more oxygen to the system as a way to mitigate oxygen starvation. 

• Improve the accuracy of the Kalman filter by replacing the EKF input oxygen 

mole fraction with the machine learning prediction of it. Currently, the EKF 

assumes the input oxygen mole fraction is 21% plus noise, but this ignores 

hydrogen crossover leakage, leading to potential errors. It would be preferable to 
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input the input oxygen mole fraction as predicted by a pre-made machine 

learning algorithm. This way, hydrogen crossover leakage is incorporated into the 

Kalman filtering inputs. 

• Improving the ANN and ELM by experimenting with the parameters. See section 

5.5 for more details. 

 

The following could be implemented on a longer horizon: 

• Adding the hydrogen mole fraction at the anode inlet to the neural network 

ensemble outputs. While it would improve accuracy, this addition is not 

fundamentally important due to the small effect this has on the overall fuel cell 

dynamics, though this is partly due to the anodic pressure being held constant. 

• Diagnosing fuel cell faults aside from hydrogen crossover leakage or oxygen 

starvation. Examples include flooding, drying, stack cooling system faults, and 

hydrogen delivery system faults (see section 2.2.3). 

• Correcting the fuel cell simulation bugs which cause the reactant mole fractions 

to dip below 0% 

5.5. Recommendations 

Recognizing that no work is perfect, the following improvements are 

recommended: 

• One of the most important recommendations for future work on this thesis is to 

either account for the effects of hydrogen pumping and hydrogen crossover in 

the EKF model of the fuel cell for starved fuel cells or to only use the EKF as a 

prefilter for normal fuel cells. See section 4.4.4 for a more detailed explanation of 

the problems with the EKF model for starved fuel cells. 

• Finding better activation functions for the ELM (see Figure 4.10 in section 4.5.3). 

Here, a “better” activation function refers to any activation function which results 

in a lower RMS error and a lower mean absolute error. This is mostly a matter of 
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trial and error to test many different combinations of activation functions until a 

combination happens to improve the results. This can also be applied to the 

neural network structure and parameters (see Appendix C). 

• Trying new machine learning algorithms, such as recurrent neural networks. Note 

that these types of neural networks are more complicated to set up and it is 

typically better to use the conventional ANN unless the user is an expert in 

machine learning. 

• Generating more data from simulations. 

Improving data quality (i.e. improving the accuracy of the data concerning how 

real-life fuel cells behave). The data is fairly high quality already except for the 

discrepancy between the EKF model and the simulation for starved fuel cells in the 

steady state. 
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Appendix A. Fuel cell model 

The fuel cell model from the literature [7], [8] and the relevant constants and 

baseline parameters are summarized in this section. 

Fuel cell constants 

The constants in this section are shared by all simulations in this thesis. The fuel 

cell constants which remained identical between simulations are summarized in this 

section. The universal constants include the universal gas constant (8.3145 [
J

K×mol
]) [7] 

and the Faraday constant (96485.33 [
C

mol
]) [7]. The room temperature is defined as 298 

degrees Kelvin [7]. The fuel cell constants include various electrical constants such as 

the value of 𝐸𝑐𝑒𝑙𝑙 under standard concentration and temperature, the proportionality 

constant for the concentration voltage, the coefficients for ohmic voltage loss resistance, 

the exchange current density, the double layer capacitance, and the number of electrons 

per oxygen atom. The limitation current and limitation current density, as defined in the 

simulation, is defined for a cathodic input oxygen mole fraction of 21% (standard value) 

as 5 A or 100 A/m2, respectively. Table A.1 summarizes the electrical fuel cell constants 

common between all simulations in this thesis: 

Table A.1: Electrical fuel cell constants applicable to all simulations 

Term Meaning Value 

Vact,0 Activation voltage constant 

for normal fuel cells 

0.0178 [V] 

𝐸0,𝑐𝑒𝑙𝑙 𝐸𝑐𝑒𝑙𝑙 under standard 

operating conditions 

(standard concentration and 

temperature) 

1.2271 [V] [59] 

𝐵𝑐𝑜𝑛𝑐 Proportionality constant for 

𝐸𝑐𝑜𝑛𝑐 

𝐵𝑐𝑜𝑛𝑐 = 0.05 [V] [7] 
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𝜌0, 𝜌𝐽 , 𝜌𝑇 Coefficients for ohmic voltage 

loss resistance, 𝑅𝑜ℎ𝑚 

𝜌0 = 0.006 [Ω] 

𝜌𝐽 = 4 ∗ 10−5 [Ω/A] 

𝜌𝑇 = 5 ∗ 10−5 [Ω/K] 

𝐽𝑂2−0 Exchange current density for 

oxygen activation 

Using an arbitrary value: 

0.005 [A] 

𝐶𝑑𝑏𝑙 = 𝐶𝐷𝐿 Double layer capacitance (per 

cell) 

4.8 [F] [59] 

𝑧 Number of electrons per 𝑂2 

atom 

4 

𝐼lim Limitation current 𝐼𝑙𝑖𝑚 = 𝐴𝑓𝑐𝐽lim = 1500 [A] 

𝐽lim Limitation current density 𝐽lim = 30000 [A/m2] 

The non-electrical fuel cell constants include the flow channel length, fuel cell 

area, effective diffusion coefficient, operating pressure in the anode and cathode, 

average fuel cell temperature, time constant for oxygen, and carbon dioxide mole 

fraction at the cathode inlet. In this thesis, it is assumed that the hydrogen and water 

mole fractions at the cathode inlet are both equal to 0. Additionally, the time constants 

for the zeroth and first modes, 𝜏0 and 𝜏1, are important to note (see section 3.2). Table 

A.2 summarizes all non-electrical fuel cell constants common to every simulation: 

Table A.2: Non-electrical fuel cell constants applicable to all simulations 

Term Meaning Value 

𝐿 Effective diffusion length Combining equation (2.38) and the 

equation for 𝜏0 in Table A.2: 

𝐷 =
24

𝜋
𝐿2, 𝐷 =

𝐽𝑙𝑖𝑚𝐿

0.21 × 𝑧𝐹
 

𝐿 =
𝐽𝑙𝑖𝑚𝜋

5.04 × 𝑧𝐹
= 0.048453 [m] 
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𝐷 Diffusion coefficient From equation (2.38): 

𝐷 =
𝐽𝑙𝑖𝑚𝐿

0.21 × 𝑧𝐹
= 0.08541 [m2/s] 

𝐴𝑓𝑐 Area of fuel cell 𝐴𝑓𝑐 = 0.05 [m2] 

𝑃𝑎 Operating pressure in the 

anode in atmospheres 

𝑃𝑎 = 1.5 [atm] 

𝑃𝑐 Operating pressure at the 

cathode in atmospheres 
𝑃𝑐 = 1.0 [atm] 

𝑇𝑓𝑐 Average fuel cell temperature 𝑇𝑓𝑐 = 341.5 [K] 

𝜏flux,O2
 The time constant for oxygen 𝜏flux,O2

= 6 [sec] 

𝜙𝐶𝑂2𝑐
𝑖𝑛  Carbon dioxide mole fraction in 

the cathode inlet 

400 ∗ 10−6 [60] 

𝜙𝐻2𝑐
𝑖𝑛  Hydrogen mole fraction in the 

cathode inlet 

0 

𝜙𝐻2𝑂𝑐
𝑖𝑛  Water mole fraction of the air 

entering the cathode inlet 

0 

𝜏0, 𝜏1 The time constant of the zeroth 

mode (𝜏0) and the first mode 

(𝜏1) 

𝜏0 =
4𝐿2

𝐷𝜋
=

1

𝜏flux,O2

=
1

6
 

𝜏1 =
4𝐿2

9𝐷𝜋
=

9

𝜏flux,O2

= 1.5 

Several constants only apply to starved fuel cells. In starved mode, 𝐽𝐻2−0 and 

𝑉𝑎𝑐𝑡,𝐻2−0 are used as constants to calculate the activation voltage. See section 3.2.3 for 

more details. Table A.3 summarizes these constants: 

Table A.3: Constants used for starved fuel cells only 

Term Meaning Value 

𝐽𝐻2−0 Constant used for 𝑉𝑎𝑐𝑡 Constant. In the transient fuel cell simulations: 

𝐽𝐻2−0 = 100 [A/m2] [2], [7] 
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𝑉𝑎𝑐𝑡,𝐻2−0 Activation voltage 

constant 

Constant. Using a value similar to the value used 

in [7]: 

𝑉𝑎𝑐𝑡
(𝑛𝑒𝑔𝐻)

=
𝑅

𝐹
= 86.173 × 10−6 [V/K] 

Other baseline parameters and variables 

Each simulation consists of variables and baseline parameters whose values 

depend on randomized parameters. When the input oxygen mole fraction is 21%, they 

are equal to the limitation current and limitation current density, respectively. The 

nitrogen mole fraction at the cathode inlet can be derived from the other input cathode 

mole fractions. To calculate this mole fraction, the humidity must be known and the 

hydrogen mole fraction in the air must be known. In this thesis, the ambient humidity is 

neglected (𝜙𝐻2𝑂𝑐
𝑖𝑛 ≈ 0) and the hydrogen in the cathode inlet can be neglected due to the 

extremely low concentration of hydrogen in the ambient air (𝜙𝐻2𝑐
𝑖𝑛 ≈ 0). The impurities in 

the anode are assumed to be water and the water mole fraction at the anode inlet can 

be calculated from the hydrogen mole fraction at the anode inlet. The resistance for 

ohmic voltage loss, 𝑅𝑜ℎ𝑚, depends on various fuel cell constants (see Table A.1 and 

Table A.2) and the input current density. Table A.4 summarizes the baseline parameters 

which change between simulations, excluding the EKF states: 

Table A.4: Baseline parameters and variables 

Term Meaning Value 

𝜙𝑁2𝑐
𝑖𝑛  Input nitrogen mole fraction in 

the cathode (air is almost 

entirely made of oxygen and 

nitrogen [6]) 

𝜙𝑁2𝑐
𝑖𝑛 = 1 − 𝜙𝑂2𝑐

𝑖𝑛 − 𝜙𝐶𝑂2𝑐
𝑖𝑛 − 𝜙𝐻2𝑂𝑐

𝑖𝑛 − 𝜙𝐻2𝑐
𝑖𝑛

= 0.9996 − 𝜙𝑂2𝑐
𝑖𝑛  

𝜙𝐻2𝑂𝑎
𝑖𝑛  Water mole fraction in the 

anode inlet 

𝜙𝐻2𝑂𝑎
𝑖𝑛 = 1 − 𝜙𝐻2𝑎

𝑖𝑛  

𝑅𝑜ℎ𝑚 Resistance for ohmic voltage 

loss 

Refer to equation (2.27) 

𝑅𝑙𝑜ℎ𝑚 Linearized electrical resistance 

in EKF 

𝜌0 + 2𝜌𝐽𝐽𝐴𝑓𝑐 + 𝜌𝑇(𝑇𝑓𝑐 − 298) 
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Appendix B. Extended Kalman Filter Parameters 

This section exists to summarize some of the more important parameters used 

for the EKF in Chapter 3 and Chapter 4. The EKF inputs evolve independently of the 

other EKF inputs, the EKF state, and the EKF outputs. This is because the EKF inputs 

“drive” the system. These include the hydrogen mole fraction at the anode inlet (𝜙𝐻2,𝐴
𝑖𝑛 ), 

the oxygen mole fraction at the cathode inlet (𝜙𝑂2,𝐶
𝑖𝑛 ), and the current density (𝐽). 𝜙𝐻2,𝐴

𝑖𝑛  

simulates the presence of impurities in the anode inlet. For the EKF, 𝜙𝑂2,𝐶
𝑖𝑛  excludes the 

oxygen that reacts with hydrogen near the beginning of the fuel cell cathode flow 

channel due to hydrogen leaking through the membrane (see Figure 2.2). For simplicity, 

the inputs are assumed to be independent of each other, so 𝑄 is a diagonal matrix. 

Additionally, since there is only one EKF output, the measurement noise matrix, 𝑅, is 

simply the variance of the measurement noise. Additionally, an initial EKF state 𝑥0 must 

be defined for each simulation. Regarding Chapter 3, these parameters are summarized 

in Table B.1: 

Table B.1: EKF Parameters for Chapter 3. 

Term Meaning Value 

𝑥0 Initial EKF state vector 𝑥0 = [0,0,0,0,0]𝑇 

𝑤 Standard deviation of process noise (applied to 

EKF input vector, 𝑢) 𝜎𝑤 = [

𝜎𝐻2

𝜎𝑂2

𝜎𝐽

] = [
0.01
0.021

4 [A/m2]
] 

𝑄 Process noise matrix 
𝑄 = [

0.012 0 0
0 0.0212 0
0 0 42

] 

𝑣 Standard deviation of measurement noise 

(applied to EKF measurement, 𝑦) 

𝜎𝑣 = 0.1 [V] 

𝑅 Measurement noise matrix 𝑅 = 𝜎𝑣
2 = 0.12 

In Chapter 4, the initial state 𝑥0 is found by setting 𝑥̇ = 0 (ignoring noise), which 

can be obtained by setting equation (3.10) to the zero vector. This returns 𝑥0 =

[0.21,0.21, 𝐽, 𝐽, 𝐽]𝑇, where 𝐽 is assumed to be the average current density, e.g. 𝐽 = 𝐽𝑠𝑠 (see 

equation (3.8)). The EKF parameters for Chapter 4 are summarized in Table B.2: 
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Table B.2: EKF Parameters for Chapter 4. 

Term Meaning Value 

𝑥0 Initial EKF state vector 𝑥0 = [0.21,0.21, 𝐽𝑠𝑠, 𝐽𝑠𝑠, 𝐽𝑠𝑠]
𝑇 

𝑤 Standard deviation of process noise (applied to 

EKF input vector, 𝑢) 𝜎𝑤 = [

𝜎𝐻2

𝜎𝑂2

𝜎𝐽

] = [
0.01
0.002

10 [A/m2]
] 

𝑄 Process noise matrix 
𝑄 = [

0.012 0 0
0 0.0022 0
0 0 102

] 

𝑣 Standard deviation of measurement noise 

(applied to EKF measurement, 𝑦) 

𝜎𝑣 = 0.01 [V] 

𝑅 Measurement noise matrix 𝑅 = 𝜎𝑣
2 = 0.012 
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Appendix C. Important machine learning 
parameters and variables 

The structure of the ELM and ANN can be found in Figure 4.7 (section 4.5.2) and 

Figure 4.10 (section 4.5.3) in this thesis. The important ELM and ANN parameters and 

variables are summarized in Table C.: 

Table C.1: Important ELM and ANN Parameters and Variables 

Parameter / 

Variable 

Meaning / Purpose Value 

Cost 

Function 

The function is 

minimized with respect 

to the trainable 

parameters. 

See equation (2.19) for the ANNs and 

(2.16) for the ELMs. 

Training and 

Testing 

Dataset 

Indices 

The testing and training 

data are randomly 

shuffled, and their 

indices are saved to 

lists. 

This amounts to two random lists of 

integers. Each integer represents a unique 

input-output pair and is randomly assigned 

to exactly one of these datasets. 80% of the 

data is marked as training data and 20% is 

marked as testing data. 

Number of 

Nodes in 

Each Layer 

See Figure 4.7, Figure 

4.10, Figure 4.11, and 

Figure 4.14. 

Using the notation denoted in section 2.4.3 

– Notation for describing the neural network 

size, the neural networks have the following 

number of nodes in each layer: 

• ANN classifiers: 40 − 10 − 1 

• ANN regressors: 40 − 10 − 3 

• ELM classifiers: 40 − 140 − 420 − 1 

• ELM regressors: 40 − 49 − 147 − 3 

ANNs only 

𝜆𝑟𝑒𝑔
𝐴𝑁𝑁 (ANN 

regularization 

constant) 

Essentially, a small penalty is 

applied based on the square of 

each weight and bias. 

𝜆𝑟𝑒𝑔
𝐴𝑁𝑁 = 10−12 
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Number of 

Epochs – 

ANN only 

This is the number of times the 

algorithm cycles through all 

training data when optimizing 

the weights and biases. 

100,000 

Batch Size – 

ANN only 

This is the number of data 

points the algorithm calculates 

the cost function for before 

updating its weights and biases. 

500 

ELMs only 

𝑊𝑟𝑎𝑛𝑑 

(random 

weights and 

biases) 

See Figure 4.10. This is a matrix of random 

constants with a standard normal 

distribution. 

𝜆𝑟𝑒𝑔
𝐸𝐿𝑀 (ELM 

regularization 

constant) 

This is used to prevent 

overfitting and guarantee a 

solution to the ELM algorithm. 

𝜆𝑟𝑒𝑔
𝐸𝐿𝑀 = 0.001 

𝑊𝑀𝐿 (most 

likely 

weights) 

This is the matrix of optimal 

ELM weights and biases are 

calculated from the regression 

algorithm to minimize the cost 

function. 

See equation (2.23). 

𝜙train  This matrix stores the values of 

the ELM functions for all training 

data. 

𝜙train = [

𝜙1

𝜙2

…
𝜙𝑁𝑡𝑟𝑎𝑖𝑛

], 

𝑁𝑡𝑟𝑎𝑖𝑛 = 𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎 
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Appendix D. Mole fractions of oxygen and 
hydrogen in a fuel cell 

Consider a mixture of two species ‘A’ and ‘B’, with respective mole fractions 𝜒𝐴 

and (1 − 𝜒𝐴). Let the total molar flow be 𝑁 ̇ . Hence: 

𝑁𝐴̇ = 𝜒𝐴𝑁̇ 

𝑁𝐵̇ = (1 − 𝜒𝐴)𝑁̇ 
(D.1) 

Hence: 

𝑁̇𝐴

𝑁̇𝐵

=
𝜒𝐴

1 − 𝜒𝐴
 (D.2) 

Suppose Δ𝑁̇𝐴 of species A is removed from the stream we find that the new mole 

fraction of A, 𝜒𝐴
′ , is given by: 

𝜒𝐴
′

1 − 𝜒𝐴
′ =

𝑁̇𝐴 − 𝛥𝑁̇𝐴

𝑁̇𝐵

=
𝜒𝐴

1 − 𝜒𝐴
−

𝛥𝑁̇𝐴

𝑁̇𝐵

 (D.3) 

Hence: 

𝜒𝐴
′ = 1 −

1 − 𝜒𝐴

1 − 𝛥𝑁̇𝐴 𝑁̇𝐵⁄ × (1 − 𝜒𝐴)
 (D.4) 

 

Neglecting the change in total pressure: 

𝜙𝐻2,𝐴
𝑖+1 = 𝑃𝐴 (1 −

𝑃𝐴 − 𝜙𝐻2,𝐴
𝑖

𝑃𝐴 − (𝐽𝑖𝐴𝑒𝑙𝑒
𝑖 ) (2𝐹𝑁̇𝐻2𝑂)⁄ × (𝑃𝐴 − 𝜙𝐻2,𝐴

𝑖 )
) (D.5) 

 

The concentration of a gaseous species corresponds to its partial pressure, and: 

𝜙𝑂2,𝐶
𝑖+1 = 𝑚𝑎𝑥 [𝑃𝐶 (1 −

𝑃𝐶 − 𝜙𝑂2,𝐶
𝑖

𝑃𝐶 − (𝐽𝑖𝐴𝑒𝑙𝑒
𝑖 ) (4𝐹𝑁̇𝑂2,𝐶̅̅ ̅̅ ̅̅ )⁄ × (𝑃𝐶 − 𝜙𝑂2,𝐶

𝑖 )
) , 0] (D.6) 

 


