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Abstract

This report proposes a complete framework to model the operation of a defined benefit
pension plan, which contains a Canadian economic scenario generator, a stochastic mortal-
ity model, an administrative cost model, and an asset optimization procedure. We suggest
the use of economic capital-based measures and expected utility-based measures to quan-
tify the solvency and welfare of the plan. The economic capital-based measure is based
on the value-at-risk and expected shortfall measures over three-year and 50-year horizons.
Members’ expected utility is compared through certainty equivalent consumptions. Using
simulated results from the framework, we find a feedback loop in the asset allocation, the
valuation rate, and the funded ratio: the funded ratio influences the asset allocation, and
these asset weights affect the valuation rate used to discount the actuarial liability which,
in turn, impacts the funded ratio.

Keywords: Defined Benefit Pension Plan; Economic Scenario Generator; Asset Optimiza-
tion; Pension Plan Valuation; Stochastic Simulation; Economic Capital; Expected Utility.
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Chapter 1

Introduction

Most occupational pension plans can be characterized as defined benefit (DB) pension
plans or defined contribution (DC) pension plans.1 DB plans provide members with pension
payments or a lump sum retirement benefit, which are determined by a formula based on
the member’s salary and years of service. In DC plans, on the other hand, members pay
contributions into a fund, and the fund earns investment income. The members receive the
fund value after retirement. They can use the fund value to buy an annuity, or they can
continue investing and withdraw savings from the fund.

This report focuses on the operation of a DB plan. In the real world, the operation of
this type of pension plan depends on the outcomes of many random variables. The interest
rate, inflation rate, and asset returns are always changing, which impact the pension plan’s
actuarial liability and fund value. Longevity risk is an increasing concern nowadays as
populations tend to live longer, and the pension fund surplus could be negatively impacted
if the pension payments last longer than expected. Administration costs change with fund
size—which is random—because economies of scale exist in large plans. Last but not least,
asset allocation plays a critical role in pension plan operation. The asset allocation impacts
the fund return, and further impacts the surplus of the fund and the contribution rate that
members and sponsors need to pay every year.

To account for all the random pieces, we propose a general framework to model the
operation of a DB plan. This complete framework allows for simulating the operation of
the plan in the real world by using realistic stochastic models for the key assumptions,
which include (1) an economic scenario generator (ESG) that generates future inflation
rates, interest rates, and rates of return on various assets based on Canadian economy, (2) a
stochastic mortality model considering future mortality improvements, (3) an administrative
cost model reflecting economies of scale, and (4) an asset portfolio optimization procedure
based on utility maximization.

1Note that nowadays, there are some other hybrid plans between DB and DC plans, such as cash balance
plans, target benefit plans, underpin plans, collective DC plans, and notional DC plans.
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An ESG is used to generate the joint future behaviour of the Canadian economy; it
extends the model proposed by Bégin (2021). In the ESG, the monetary policy is the primary
driver. Regime variables are constructed based on the monetary policy. The price inflation,
wage inflation, and the dividend yield are modelled by autoregressive models with regime-
dependent long-run mean levels. A generalized autoregressive conditional heteroskedasticity
(GARCH) model is applied to the short rate, stock index returns, total private equity
returns, investment grade corporate bond yields, and high yield corporate bond yields to
capture the changes in volatility over time.

A stochastic mortality model is used to project plan membership. Death is modelled as
a random variable generated from a Bernoulli distribution. The parameter of the Bernoulli
distribution is the mortality rate in the CPM 2014 Male Mortality Table with the CPM
Improvement Scale B provided by Canadian Institute of Actuaries (CIA, 2014). This model
considers mortality improvement trends in the future.

The administrative costs of the pension plan are modelled by a traditional cost function
proposed by Bikker et al. (2012) that reflects economies of scale. The function considers the
number of members, service quality, pension plan complexity, pension fund type, number
of pension plans offered, and the country.

We apply a utility-based method to form optimal portfolios, similar to the method
proposed by Warren (2019). The utility function is based on the funded ratio and is param-
eterized for relatively high risk aversion in relation to deficits. It also attaches a relatively
modest value to surpluses. The optimal allocation is found by maximizing the expected
utility of the funded ratio.

The main objective of this report is to quantify solvency and welfare arising from DB
plan operation by using a complete framework; these measures are useful to assess the
performance of the plan in a straightforward way. Through the simulated realizations of
economic, financial, and mortality variables, we get distributions of pension plan quantities
such as the portfolio weights, the funded ratio, the contribution rate, and so on. The infor-
mation contained in these distributions is then summarized into one-dimensional metrics.

One way to determine solvency and welfare is to understand the extent of plan gains and
losses and compute risk measures of the present value of the profit stream—similar to the
process used by banks and insurers to understand their risk. This yields so-called economic
capital metrics, generally speaking. Economic capital is the capital that shareholders should
invest in the company to limit the probability of default up to a certain level (i.e., the one
used to determine the risk measure). It is a key part of the supervisory approach in banking
and insurance. Basel (2009) recommended an economic capital framework for banks and
supervisors in the supervisory review process of Basel II. The latter framework requires to
calculate economic capital, which is measured as the amount of capital that a bank needs
in order to absorb unexpected losses. In insurance, economic capital is part of the Solvency
II regime in Europe for capital requirement. Also, economic capital can be used to satisfy
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the regulatory requirement of Own Risk and Solvency Assessments (ORSA) in Canada and
US to project future capital needs.

In the pension context, Porteous et al. (2012) applied the Solvency II framework to
compute economic capital under a value-at-risk (VaR) measure for a DB plan. Andrews
et al. (2019) updated the work of Porteous et al. (2012) and calculated both VaR and
expected shortfall (ES) measures. Andrews et al. (2022) further analyzed the impact of the
choice of time horizon and asset allocation on economic capital of DB plans.

The expected utility framework is another approach to measure welfare. Expected utility
theory is a classical decision-making approach, which can be used for welfare comparison.
von Neumann and Morgenstern (1947) first stated the axioms supporting expected utility
theory. They proved that, under certain conditions, individuals are guaranteed to have
a real-valued utility function and that their preferences are consistent with maximizing
expected utility. In the pension context, expected utility theory has been used to determine
the optimal funding strategy. For example, Josa-Fombellida et al. (2018) optimized the
asset portfolio by maximizing the expected utility of the fund surplus over a finite planning
horizon in a DB plan, and Cairns et al. (2006) maximized the expected utility of the
members’ final replacement ratio to find the optimal asset allocation in DC plans.

Following the work of Andrews et al. (2022), we apply economic capital-based measures
to evaluate the solvency and welfare of the plan, which summarize the distributions of the
funded ratio, the fund return, and the asset allocation into a single number. The economic
capital-based measures include the VaR and ES measures at confidence levels of 50%, 90%,
and 99.5% over a three-year and a 50-year horizon. In addition, we apply an expected
utility-based measure to calculate the welfare of the plan members, which summarizes the
distribution of the contribution rate, the salary and the wage inflation. We further compute
certainty equivalent consumptions (CECs) for each member to compare the expected utility
in a more meaningful way.

The pension plan operation is projected through Monte Carlo simulation. Nested stochas-
tic projections are used for optimizing asset allocation, requiring ESG scenarios (i.e., inner
loop) that are based on current economic conditions throughout each path (i.e., outer loop).
Outer loop scenarios are first generated to project the asset returns through the projection
period. Inner loop scenarios are then generated at each node along the outer loop paths, us-
ing the economic conditions generated by the outer loops as the starting point. This nested
simulation exercise has a high computational cost; we therefore perform the simulations by
using the heterogeneous computer cluster Cedar, part of the Digital Research Alliance of
Canada, running multiple parallel jobs simultaneously.

We obtain several key results by using the proposed framework with an initial funded
ratio of 1, an initial valuation rate of 6%, and a reference funded ratio of 0.9. We find a
U-shape relationship between the initial funded ratio and the optimal total stock index
weight when we only allow for the investment in the total stock index and the investment
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grade bond portfolio in our fund. The optimal total stock index weight is lowest when the
initial funded ratio is near 1.1. When the initial funded ratio deviates from 1.1, the optimal
total stock index weight increases. This kind of U-shape relationship is consistent with the
findings of Warren (2019).

Because of this U-shape relationship, we also observe possible oscillations in the evolu-
tion of the asset allocation, the valuation rate, and the funded ratio in early years. These
three quantities impact each other in the framework: the funded ratio influences the as-
set allocation, these asset weights affect the valuation rate used to discount the actuarial
liability which, in turn, impacts the funded ratio. The oscillations occur in the first ten
years because the initial asset allocation, the valuation rate, and the funded ratio have not
reached their steady states yet. In the long term, the distributions of the optimal asset
allocation weights become stable with a significant allocation to the investment grade bond
portfolio. Under the optimal asset allocation, the distributions of the funded ratio and the
contribution rate are stable in the long term as well.

Based on the solvency and welfare metrics introduced above, we find that the economic
capital results are worse at high confidence levels for the 50-year horizon than those for the
three-year horizon. We also consider some alternative inputs to our model and find that the
CECs are impacted in a different way than the economic capital measures in some cases.
When we increase the reference funded ratio, increase the initial valuation rate, or remove
private equity from the available assets, the economic capital measures change at the 90th

and 99.5th confidence levels. The CECs also change slightly. On the other hand, when we
decrease the initial valuation rate or change the smoothing factor—the percentage of the
funding shortfall used to calculate the adjustment to the contributions—both the economic
capital results and CECs are significantly impacted.

This report is organized as follows. Chapter 2 introduces a realistic ESG model and
explains some results about the economic variables. In Chapter 3, we describe the complete
framework for simulating the operation of a DB plan. The solvency and welfare metrics are
discussed and applied to the framework in Chapter 4. In Chapter 5, we summarize the key
findings from the simulation in the base case using the assumptions described in Chapter
3, and Chapter 6 verifies the robustness of the base case results. Concluding remarks are
provided in Chapter 7.
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Chapter 2

Economic and financial framework

A realistic ESG is an important component needed to study pension plan operation because
assets and liabilities depend on future inflation rates, interest rates, and the rates of return
on various assets. An ESG generates a range of realistic outcomes for economic variables
over the long run, which helps us better understand the pension plan dynamics.

The first comprehensive ESG used in the actuarial literature is the Wilkie (1986) model.
It uses a cascade structure to model four related variables: the inflation rate, the dividend
yield, the long-term interest rate, and equity returns. The inflation rate is modelled by an
autoregressive process, and it is the primary driver for the other variables. The dividend
yield is a function of the inflation rate described by an autoregressive process. The long-term
interest rate and equity returns both consider the dividend yield and the inflation rate in
their respective models.

Over the years, various extensions of the Wilkie model have been proposed. For instance,
Wilkie (1995) added models for a wage index, short-term interest rates, property prices,
index-linked stock yields, and currency exchange rates. Huber (1997) further reviewed and
critiqued the assumption of the Wilkie model. Sahin et al. (2008) revisited the Wilkie model
and suggested most of the model parameters are not stable. Zhang et al. (2018) recently
updated the Wilkie model for the US economy.

More complex ESGs were proposed in recent years as well. Ahlgrim et al. (2005) used a
two-factor Hull and White (1994) model for interest rates and applied a regime-switching
process to equity returns. Bégin (2021) proposed an ESG based on observable regime-
switching dynamics and observable dynamic variances.

We use an economic and financial framework for the purpose of modelling the future
joint behaviour of the Canadian economy that extends the ESG proposed by Bégin (2021).
Our implementation includes a model for monetary policy, price inflation, wage inflation,
short rate, forward rates, dividend yield, stock index returns, total private equity returns,
investment grade corporate bond yields, and high yield corporate bond yields.

Our ESG is based on a cascade structure. The monetary policy is the primary driver
and impacts all the other economic and financial variables. Regime variables are constructed
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upon the monetary policy. The price inflation, wage inflation, and the dividend yield are
modelled by autoregressive models with regime-dependent long-run mean levels. Besides, a
GARCH model is added to the short rate, stock index returns, total private equity returns,
investment grade corporate bond yields, and the high yield corporate bond yields to capture
the changes in volatility over time. Each variable is modelled on a monthly basis. The
following sections introduce each variable’s model, how to convert variables to annual rates,
how to simulate series, and the forecasting results.

2.1 Monetary policy

Monetary policy is modelled by a discrete-time Markov chain with three states: a tightening
or upward stage (u), a status quo stage (s), and an accommodating or downward stage (d).
The observed states of the Markov chain at integer times t, mt, are inferred from a reference
rate fixed by the central bank:

mt =


u if ∃ t′ ∈ [t− 3, t] and t′′ ∈ [t, t+ 3] such that Rt −Rt′ > 0 and Rt′′ −Rt > 0
d if ∃ t′ ∈ [t− 3, t] and t′′ ∈ [t, t+ 3] such that Rt −Rt′ < 0 and Rt′′ −Rt < 0
s otherwise

,

where Rt is the policy rate at time t. The transition matrix of this Markov chain is associated
with the transition probabilities from one state to another:

Π =


puu pus 0
psu pss psd

0 pds pdd

 =


puu 1− puu 0
psu 1− psu − psd psd

0 1− pdd pdd

 ,
where 0 ≤ puu, psu, psd, pdd ≤ 1. The “=” sign holds because the summation of row proba-
bilities equals 1. Therefore, mt given mt−1 can be generated as follows:

mt =


u if U ≤ pmt−1u

d if pmt−1u < U ≤ pmt−1u + pmt−1s

s if pmt−1u + pmt−1s ≤ U
,

where U is a uniform random variable generated over (0,1).

2.2 Price inflation

Price inflation impacts the projected administrative and investment costs in the pension
plan. It is modelled by an autoregressive model of order one, AR(1), with a regime-dependent
long-run mean level:

qt = µq,mt + aq(qt−1 − µq,mt) + σqεq,t, εq,t ∼ N (0, 1),
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where µq,mt is the regime-dependent long-run mean level of the price inflation, aq is the
parameter that governs the strength of the mean reversion, and σq is the standard deviation
of price inflation. As usual for an AR(1) model, |aq| < 1.

2.3 Wage inflation

Wage inflation is considered in our ESG since it drives future salary increases. Similar to
price inflation, wage inflation is modelled by an AR(1) model with a regime-dependent
long-run mean level as follows:

wt = µw,mt + aw(wt−1 − µw,mt) + σwεw,t, εw,t ∼ N (0, 1),

where µw,mt , aw, and σw are defined similarly to the price inflation parameters.
Besides, we adopt a correlation between εq,t and εw,t to capture the underlying relation-

ship between price inflation and wage inflation innovations; that is, Corr(εq,t, εw,t) = ρq,w.

2.4 Short rate

The risk-free interest rates are important in our ESG since the liability discount rate and
the rates of return on risk-free government bonds are constructed based on them. The risk-
free interest rates are modelled as a short rate model with a term structure component
constructed on top. We illustrate the short rate model and term structure model in this
section and the next section, respectively.

A transformation function is applied to the short rates in advance to allow for negative
interest rates. In fact, there are different views on whether to allow for negative interest rates
in the short rate model. For instance, the Vasicek (1977) model allowed for negative rates
while Cox et al. (1985) proposed a model with strictly positive rates. Similar issue exists in
the ESG literature. Wilkie (1986, 1995) applied a logarithmic transform to the real interest
rates, forcing them to remain positive. On the other hand, negative rates were allowed in
the model proposed by Ahlgrim et al. (2005). Bégin (2021) combined these two views, by
relying on the transformation function proposed by Engle et al. (2017). Specifically, a linear
transform is applied to higher short rates and a logarithmic transform is applied to lower
short rates. Then the transformed short rates are modelled by an AR(1) model with a
regime-dependent long-run average and conditional heteroscedasticity. The transformation
function is:

r̃t ≡ Tr(rt) =
{
rt if rt > r̄

cr,0 + cr,1 log(rt − cr) if rt ≤ r̄
,

where rt is the short rate at time t, r̄ is the threshold for the transformation, cr is the
minimum short rate assumed by the model, cr,0 = r̄− (r̄− cr) log(r̄− cr), and cr,1 = r̄− cr.
In this case, short rates can be negative when cr < 0. In the present report, we let cr = 0
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and r̄ = 0.005. The transformed short rate dynamics are given by:

r̃t = µr,mt + ar(r̃t−1 − µr,mt) + σr,tεr,t, εr,t ∼ N (0, 1),

σ2
r,t+1 = σ2

r + αr
(
(σr,tεr,t − σr,tγr)2 − σ2

r (1 + γ2
r )
)

+ βr(σ2
r,t − σ2

r ),

where µr,mt and ar are interpreted similarly to µq,mt and aq, respectively. Moreover, σ2
r,t

is the time-t conditional variance of the transformed short rate and is modelled by a
GARCH process, where σ2

r is the unconditional variance, and αr, γr and βr are the reac-
tion, asymmetry, and persistence parameters, respectively. As usual for a GARCH model,
βr + αr(1 + γ2

r ) < 1, and αr, βr > 0.
To capture the relationship between price inflation, wage inflation and the transformed

short rate, we assume correlations between εq,t, εw,t, and εr,t; that is Corr(εq,t, εr,t) = ρq,r,
and Corr(εw,t, εr,t) = ρw,r.

Finally, we convert r̃t into rt:

rt =
{
r̃t if r̃t > 0.005
e(r̃t−cr,0)/cr,1 if r̃t ≤ 0.005

.

2.5 Forward rates

Forward rates are used to model the rest of the term structure. Let fi,t be the forward rate
observed at time t for a contract starting at t+ τi−1 and ending at maturity t+ τi:

fi,t = τiri,t − τi−1ri−1,t
τi − τi−1

, i ∈ {1, 2, ..., 7}, (2.1)

where ri,t is the yield of the ith zero-coupon bond with maturity of τi years. Zero-coupon
bonds with eight different maturities are used here. The yield of the bond with the shortest
maturity is assumed to be the short rate, which implies r0,t = rt, and τ0 is 0.25 years.
The other tenors considered are one, two, three, five, seven, 10, and 20 years, denoted by
maturities from τ1 to τ7 years.

A similar transformation to what is applied to the short rate is used for forward rates:

f̃i,t ≡ Tf (fi,t) =
{
fi,t if fi,t > f̄

cf,0 + cf,1 log(fi,t − cf ) if fi,t ≤ f̄
,

where f̄ is the threshold for the transformation, cf is the minimum forward rate assumed
by the model, cf,0 = f̄ − (f̄ − cf ) log(f̄ − cf ), and cf,1 = f̄ − cf . Here we let f̄ = 0.005, and
cf = 0.

Litterman and Scheinkman (1991) argued that the yield curve’s total variation was
explained by a level component, a slope component, and a curvature component. Building
on this idea, Bégin (2021) used the slope and the curvature as observable factors to explain
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the term structure, because the level component is already considered as a part of short
rate model. This report follows a similar logic. We let the spread over the transformed short
rate r̃t be generated by the observable slope and curvature:

f̃ff t − 1117r̃t = µµµf +AAAfFFF t + ΣΣΣfεεεf,t, εεεf,t ∼ N7(0007, III7),

where f̃ff t = [f̃1,t f̃2,t ... f̃7,t]>, and 1117 is a seven-dimensional vector of ones. The vector
µµµf = [µf1 µf2 ... µf7 ]>, is a seven-dimensional vector of average spread levels. The vec-
tor εεεf,t = [εf1,t εf2,t ... εf7,t]>, is a seven-dimensional vector of error terms. The matrix
ΣΣΣf is a 7 × 7 diagonal matrix that contains the standard deviations of the measurement
errors:

ΣΣΣf =


σf1 0 · · · 0
0 σf2 · · · 0
...

... . . . ...
0 0 · · · σf7

 .

Note that the error terms are independent. The distribution N7(0007, III7) is a seven-dimensional
multivariate normal distribution with mean 0007 and variance III7, which is the 7× 7 identity
matrix. The matrix AAAf is a 7× 2 matrix given by:

AAAf =


af1,1 af1,2

af2,1 af2,2
...

...
af7,1 af7,2

 .

The time-t values of the observable slope factor F1,t and the observable curvature factor
F2,t are calculated as below:

F1,t ≡ f̃7,t − f̃1,t,

F2,t ≡ f̃1,t + f̃7,t − 2f̃3,t.

Then, we model these two observable factors through a two-dimensional autoregressive
model:

FFF t = µµµF +AAAF (FFF t−1 −µµµF ) + ΣΣΣFεεεF,t, εεεF,t ∼ N2(0002, III2),

whereFFF t = [F1,t F2,t]> and µµµF = [µF1 µF2 ]>, which contains the long-run mean parameters.
Matrices AAAF and ΣΣΣF are 2× 2 diagonal matrices containing the autoregressive parameters
and the variance parameters:

AAAF =
[
AF1 0

0 AF2

]
and ΣΣΣF =

[
σF1 0
0 σF2

]
.

9



Furthermore, we convert f̃i,t into fi,t using the following transformation:

fi,t =
{
f̃i,t if f̃i,t > 0.005
e(f̃i,t−cf,0)/cf,1 if f̃i,t ≤ 0.005

.

Finally, we obtain the risk-free interest rate term structure by inverting Equation (2.1):

ri,t = fi,t × (τi − τi−1) + τi−1ri−1,t
τi

, i ∈ {1, 2, ..., 7}.

2.6 Dividend yield

Similar to the inflation rate, the logarithm of the dividend yield is modelled by an AR(1)
model with a regime-dependent long-run mean:

log(dt) = log(µd,mt) + ad
(

log(dt−1)− log(µd,mt)
)

+ σdεd,t, εd,t ∼ N (0, 1),

where µd,mt , ad, and σd have similar definitions to the inflation rate parameters.
As with the price inflation, wage inflation and the short rate, we assume correlations

between εq,t, εw,t, εr,t, and εd,t as well; that is, Corr(εq,t, εd,t) = ρq,d, Corr(εw,t, εd,t) = ρw,d,
and Corr(εr,t, εd,t) = ρr,d.

2.7 Stock index returns

The (ex-dividend) stock index returns are modelled by a regime-switching model using ob-
servable monetary regimes to capture the changing nature of the average return. A GARCH
structure is added to capture the changing nature of volatility:

yt = rt
12 + µy,mt + σy,tεy,t, εy,t ∼ N (0, 1),

σ2
y,t+1 = σ2

y + αy
(
(σy,tεy,t − σy,tγy)2 − σ2

y(1 + γ2
y)
)

+ βy(σ2
y,t − σ2

y),

where µy,mt is the regime-dependent average monthly excess return, and σ2
y,t is the time-

t conditional variance of the monthly return. The conditional variance is modelled by a
GARCH model, where σ2

y , αy, γy and βy have similar explanations and restrictions as the
parameters of the short rate.

2.8 Total private equity returns

Similar to (ex-dividend) stock index returns, total private equity returns are modelled by a
regime-switching model with a GARCH structure for the variance:

pt = rt
12 + µp,mt + σp,tεp,t, εp,t ∼ N (0, 1),
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σ2
p,t+1 = σ2

p + αp
(
(σp,tεp,t − σp,tγp)2 − σ2

p(1 + γ2
p)
)

+ βp(σ2
p,t − σ2

p),

where µp,mt and σ2
p,t are analogous to µy,mt and σ2

y,t. The parameters σ2
p, αp, γp, and βp are

interpreted similarly to those of the short rate.
We also assume a correlation between εy,t and εp,t to reflect the relationship between

the stock index returns and total private equity returns; that is, Corr(εy,t, εp,t) = ρy,p.

2.9 Investment grade corporate bond yield

To study the dynamics of the investment grade corporate bond yield, we model its spread
over the long-term zero-coupon bond yield. The yield of a seven-year zero-coupon bond,
r5,t, is assumed to be the approximate average yield of the long-term zero-coupon bond.
Similar to forward rates, we transform the spread as:

ĩt ≡ Ti(it − r5,t) =
{
it − r5,t if it − r5,t > ī− r̄5

ci,0 + ci,1 log(it − r5,t − ci) if it − r5,t ≤ ī− r̄5
,

where ci,0, ci,1, and ci have a similar definition to those used for transformed forward rates,
ī− r̄5 = 0.005, and ci = 0.

The transformed excess yield ĩt is modelled with a regime-dependent long-run mean and
conditional heteroscedasticity:

ĩt = µi,mt + ai(̃it−1 − µi,mt) + σi,tεi,t, εi,t ∼ N (0, 1),

σ2
i,t+1 = σ2

i + αi
(
(σi,tεi,t − σi,tγi)2 − σ2

i (1 + γ2
i )
)

+ βi(σ2
i,t − σ2

i ),

where µi,mt is the regime-dependent average excess yield, σ2
i,t, σ2

i , αi, γi, and βi have similar
meanings to the parameters used in the short rate.

Finally, we convert ĩt to it, we apply the following transformation:

it =
{
ĩt + r5,t if ĩt > 0.005
e(̃it−ci,0)/ci,1 + r5,t if ĩt ≤ 0.005

.

As the relationship between stock index returns and total private equity returns, we in-
troduce correlations between εy,t, εp,t, and εi,t; that is, Corr(εy,t, εi,t) = ρy,i, and Corr(εp,t, εi,t) =
ρp,i.

2.10 High yield corporate bond yield

The high yield corporate bond is modelled in the same way as the investment grade corporate
bond. A similar transform is applied for the spread over the investment grade corporate bond
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yield:

h̃t ≡ Th(ht − it) =
{
ht − it if ht − it > h̄− ī
ch,0 + ch,1 log(ht − it − ch) if ht − it ≤ h̄− ī

,

where ch,0, ch,1, and ch are interpreted similarly to the parameters used for transformed
forward rates, h̄− ī = 0.005, and ch = 0.

Identically, the transformed spread h̃t is modelled based on a regime-dependent long-run
average and conditional heteroscedasticity:

h̃t = µh,mt + ah(h̃t−1 − µh,mt) + σh,tεh,t, εh,t ∼ N (0, 1),

σ2
h,t+1 = σ2

h + αh
(
(σh,tεh,t − σh,tγh)2 − σ2

h(1 + γ2
h)
)

+ βh(σ2
h,t − σ2

h),

where the AR(1) parameters and GARCH parameters are interpreted as those in the in-
vestment grade corporate bond yield.

The high yield corporate bond yield ht is then converted from h̃t as follows:

ht =
{
h̃t + it if h̃t > 0.005
e(h̃t−ch,0)/ch,1 + it if h̃t ≤ 0.005

.

Correlations between εy,t, εp,t, εi,t, and εh,t are considered in the same way to catch
the underlying relationships; that is Corr(εy,t, εh,t) = ρy,h, Corr(εp,t, εh,t) = ρp,h, and
Corr(εi,t, εh,t) = ρi,h.

2.11 Conversion to annual rates

Recall that our ESG is modelled on a monthly basis, while our pension plan is projected
yearly. In order to use inflation rates and interest rates in our pension plan operation, we
convert them into annual rates. We also construct the annual rates of return for cash, the
long-term risk-free government bond portfolio, the total stock index, the total private equity,
the investment grade, and the high yield corporate bond portfolio based on the economic
variables generated from our ESG. These asset returns are then used to project our pension
fund performance. This section shows how to convert monthly rates into annual rates and
how to derive various asset returns.

All the rates modelled from our ESG are continuously compounded rate, so we add all
the monthly rates in a year to get the annual rates. We convert the monthly price inflation
qt and monthly wage inflation wt into annual rates Qi and Wi:

Qi =
T+12i−1∑

t=T+12(i−1)
qt,

Wi =
T+12i−1∑

t=T+12(i−1)
wt,
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where i refers to the ith year after the observed sample, which finishes at time T . The
conversion will happen after simulation, which we will discuss later in Section 2.12.

The risk-free interest rates are annualized rates even though they are modelled on a
monthly basis. So we pick the risk free interest rate, rk,t, at the end of each year, to obtain
the annual risk-free interest rate Rk,i:

Rk,i = rk,T+12i, k ∈ {1, 2, ..., 7}.

We derive the year-i return of cash R(C)
i based on the short rate, which is calculated by

summing up monthly short rates, rt
12 , in the year:

R
(C)
i =

T+12i−1∑
t=T+12(i−1)

rt
12 .

We assume that the long-term risk-free government bond portfolio comprises zero-
coupon bonds with increasing maturities from one to ten years. The year-i return of the
long-term risk-free government bond portfolio R(RF )

i is computed as follows:

R
(RF )
i = log


10∑
τ=1

exp(−rτ−1,T+12i(τ − 1))
10∑
τ=1

exp(−rτ,T+12(i−1)τ)

 .
The denominator in the logarithm above calculates the price of the portfolio at year i− 1,
and the numerator computes the price of the same portfolio at year i. Thus, it represents
the annual return of the portfolio at year i.

The total stock index returns are constructed based on the (ex-dividend) stock index
returns and dividend yield. So, the year-i total stock index return R(S)

i is

R
(S)
i =

T+12i−1∑
t=T+12(i−1)

log
(
eyt + dt

12

)
.

Similar to the inflation rate, the year-i total private equity return R(P )
i is

R
(P )
i =

T+12i−1∑
t=T+12(i−1)

pt,

meaning that the annual rate R(P )
i is the summation of the monthly rate pt in the ith year

after the last observed time T .
We assume the investment grade corporate bond portfolio consists of investment grade

corporate bonds with maturities from one to ten years, and the investment grade corporate
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bond yield modelled from our ESG, it, is the average yield. The annual return of investment
grade corporate bond portfolio R(IG)

i is

R
(IG)
i = log


10∑
τ=1

exp(−iT+12i(τ − 1))
10∑
τ=1

exp(−iT+12(i−1)τ)

 .

Similar to R
(RF )
i , the denominator in the logarithm function represents the price of the

portfolio at year i− 1, and the numerator indicates the price of the same portfolio at year
i.

We obtain the year-i return of the high yield corporate bond portfolio R(HY)
i in a similar

way:

R
(HY)
i = log


10∑
τ=1

exp(−hT+12i(τ − 1))
10∑
τ=1

exp(−hT+12(i−1)τ)

 .
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Figure 2.1: The 5th, 50th, and 95th percentiles of price inflation, wage inflation,
5-year interest rate, and 20-year interest rate.

2.12 Simulation and forecast

First, we introduce the data used to fit the ESG. The time period of the data is from
February 1998 to June 2021. The Bank of Canada policy rate, obtained from Bloomberg,
is selected as the policy rate in the monetary policy model. The price inflation is based on
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non-seasonally adjusted monthly consumer price index, which is extracted from Statistics
Canada. The total hourly remuneration for Canada extracted from Bloomberg is used for
the wage inflation model. The three-month zero-coupon bond risk-free yields from the Bank
of Canada’s website is used for the short rate model, and the one-, two-, three-, five-, seven-,
10-, and 20-year zero-coupon risk-free yields from the Bank of Canada’s website are used
for the forward rates model. The dividend yield is constructed from dividends paid out on
the stocks and level of the S&P/TSX Composite index, which is obtained from Compustat.
The stock index returns are based on the S&P/TSX Composite index from Compustat. The
total private equity returns are based on Thomson Reuters private equity buyout index in
Canadian dollars extracted from Bloomberg. At last, the investment grade and the high
yield corporate bond yield are the yield on S&P Canada investment grade corporate bond
index and S&P Canada high yield corporate bond index from Refinitiv Eikon, respectively.
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Figure 2.2: The 5th, 50th, and 95th percentiles of annual returns for cash, the
long-term government bond portfolio, the total stock index, the total private
equity, the investment grade, and the high yield corporate bond portfolio.
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The parameters are estimated via Bayesian inference. Parameter samples are generated
from the posterior distribution based on non-informative priors and Markov chain Monte
Carlo (MCMC) scheme with the adaptive Metropolis algorithm of Haario et al. (2001).
Bégin (2021) illustrates details of the estimation methodology.2

We forecast the economic series from July 1, 2021 by using the ESG. We pick 10,000 sets
of parameters from the MCMC sample, and generate 10,000 sets of inflation rates, interest
rates, and asset returns (one path for each parameter set). Figure 2.1 illustrates the 90%
confidence intervals of price inflation, wage inflation, five-, and 20-year interest rates. Price
and wage inflation are stable over the years. The interest rates increase in the first several
years, and become stable later.
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Figure 2.3: The mean and standard deviation of annual returns for cash, the
long-term government bond portfolio, the total stock index, the total private
equity, the investment grade, and the high yield corporate bond portfolio.

Figure 2.2 shows the 5th, 50th, and 95th percentiles of annual returns for cash, the long-
term government bond portfolio, the total stock index, the private equity, the investment
grade, and the high yield corporate bond portfolio. We find that the returns for cash, the long

2The estimation of the parameters and the generation of the parameter samples were not part of this
project.
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term government bond portfolio, the investment grade, and the high yield corporate bond
portfolio start low at the beginning and increase over the time until they are stable. For the
total stock index returns and the total private equity returns, they are stable throughout the
projection. The private equity has the highest median return as well as the widest range in
return. On the opposite, cash has the lowest median return and the narrowest distribution.
Similar conclusion can be reached with Figure 2.3, which shows the mean and standard
deviation term structure of these asset returns. We find that cash has the lowest mean and
standard deviation of return among six assets. Mean and variance of long-term government
bond portfolio return is higher than that of cash, but lower than that of investment grade
bond portfolio. High yield bond portfolio has higher mean and variance than investment
grade bond portfolio, but lower than total stock index. Private equity has the highest mean
and highest variance of return.
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Chapter 3

Pension plan operation

This chapter describes the operation of an open-group DB plan over the course of 50 years.
We describe the plan provisions and the models for the plan membership, the administra-
tive costs, and the salaries. We outline key features of the pension plan valuation process,
including the assumptions and methods used as well as the main outputs produced. Finally,
we describe the process for selecting the optimal investment strategy of the pension fund.

3.1 Plan provisions

The pension plan provisions, which are chosen by the sponsor when setting up the plan, are
summarized below:

• Benefit: 2% of final salary for each year of service.

• Normal retirement age: 65 years old.

• Frequency of pension payments: annually in advance.

• Pre-retirement death and termination benefits: none.

3.2 Membership model

In our hypothetical open pension plan, we aim to construct a stable membership. For sim-
plicity, we assume all members in our plan are male. Mortality and longevity modelling
plays a critical role in pension plan operation since the pension fund surplus will be im-
paired if pension payments last longer than expected. In the actuarial literature, various
mortality models were introduced to cope with mortality and longevity risk. Lee and Carter
(1992) proposed the well-known Lee-Carter model which contained a mortality reduction
factor. Renshaw and Haberman (2006) extended the Lee-Carter model to include a cohort
effect in the mortality reduction factor. Cairns et al. (2006) introduced a two-factor model
considering a slower mortality improvement rate for higher ages.
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We take a different approach: we use a deterministic table to project expected mortal-
ity and then add randomness to account for idiosyncratic mortality experience. Expected
mortality follows the CPM 2014 Male Mortality Table with CPM Improvement Scale B
provided by Canadian Institute of Actuaries (CIA, 2014). CPM 2014 is a table for base
Canadian pensioners’ mortality for the year 2014 which was developed by CIA using the
combined experience of Canadian public and private sector plans in calendar years 1999
to 2008. CPM Improvement Scale B considers mortality improvement trends in the future,
based on the observed trends in Canadian mortality experience since 1967. The scale pro-
vides improvement rates by age that decrease linearly in the years 2012–2030 and ultimate
rates for all years after 2030. Therefore, the expected mortality rates for years past 2014
are

qyx = q2014
x

y∏
t=2015

(1− Itx),

where qyx is the probability that a person aged x at the beginning of calendar year y will die
before reaching the end of the calendar year, and Iyx is the improvement rate in mortality
for persons aged x at the start of calendar year y−1 to those aged x at the start of calendar
year y. The expected survival rates are then calculated as follows:

tp
y
x =

t−1∏
j=0

py+j
x+j =

t−1∏
j=0

(1− qy+j
x+j),

where tpyx is the probability that a person aged x at the beginning of calendar year y survives
t more years.

Individual deaths are then modelled as Bernoulli random variables. Thus, the random
variable D(x, y), which is the number of deaths from a group of n members aged x in
calendar year y, has a binomial distribution with parameters n and qyx:

D(x, y) ∼ Bin(n, qyx).

Equipped with a mortality model, we are ready to project plan membership. At the
start of the projection (time 0), the plan contains members from age 25 to age 115. We
assume there are 100 members aged 25. The number of members at each subsequence age
decreases following the pattern of expected survival rates. The number of members aged
x at time 0 is b100 x−25p

2021
25 e, x ∈ {25, 26, ..., 115}, where b·e represents rounding to the

closest integer.3 Note that 115 is the age at which the mortality table ends.
Starting at time 1, 100 new employees aged 25 are added to the pension plan each

year. Figure 3.1 shows the evolution of plan membership. We assume that active members
do not withdraw from the plan before retirement, so that post-retirement mortality is the

3We use the mortality rates applicable to year 2021 for all ages for this purpose.
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Figure 3.1: Structure of the membership.

only decrement. The membership will be close to stable over the projection period because
members who die will be replaced by the new members aged 25. If each member had the
same expected mortality, the expected number of members in the plan would be unchanged.
However, since expected mortality is improving each year, the members who enter later will
have lower expected mortality than those who enter earlier. As a result, the number of
members in the plan will be approximately stable with slight increases.

Let e be the time when a member is first valued under our pension plan projections (the
so-called “starting time”), and let x be the starting age of the member at time e. Specifically,
for members already in the plan at time 0, e = 0, and x is the age of these members at
time 0. For new entrants, e and x are the time and age when they enter the plan. We can
classify plan members into different groups according to the combination of starting time
and starting age. Let L(x, e, j) be the population in force at integer time e + j among the
group of members with starting age x and starting time e. We define L(x, e, j) to be zero
when the members have not yet entered the plan; that is, j < 0. For j = 0,

L(x, e, 0) =


100 if e > 0, x = 25
b100 x−25p

2021
25 e if e = 0, x ∈ {25, 26, ..., 115}

0 otherwise
.

Otherwise, L(x, e, j) follows a binomial distribution:

L(x, e, j) ∼ Bin(L(x, e, j − 1), 1− q2021+e+j−1
x+j−1 ), j ≥ 1.

The quantity q2021+e+j−1
x+j−1 is the expected mortality rate applicable in year 2021 + e+ j − 1

for a member aged x+ j − 1 at that time.
Let Lr(x, e, j) denote the number of retired members at time e+ j among the group of

members with starting age x and starting time e:

Lr(x, e, j) =
{
L(x, e, j) if x+ j ≥ NRA
0 otherwise

,
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where NRA is the normal retirement age. Let Lt denote the population of the plan at time
t:

Lt =
115∑
x=25
L(x, 0, t) +

50∑
e=1
L(25, e, t− e),

where the first summation represents the number of members in the plan at the beginning
of the projection who still in force at time t, and the second summation represents the
number of new entrants who are still inforce at time t. Figure 3.2 shows the distribution
of the population under 10,000 simulations, which is stable and increases slightly over the
time due to mortality improvements.
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Figure 3.2: The 5th, 25th, 50th, 75th and 95th percentiles of the population based
on 10,000 simulations.

Similary, let Lrt denote the retired population of the plan at time t:

Lrt =
115∑
x=25
Lr(x, 0, t) +

50∑
e=1
Lr(25, e, t− e).

We assume all members start working at age 25 and will not withdraw from the plan,
so the members of the same age have the same service at each valuation. If the members
have not retired yet, the service is the number of years that have passed since age 25. If the
members have retired, the service is 40 years. Let s(x, e, j) denote the years of service of a
member with starting age x and starting time e at time e+ j:

s(x, e, j) =
{
x+ j − 25 if x+ j < NRA
40 otherwise

.

3.3 Administrative cost model

The administrative costs of a pension plan include all of a pension fund’s operating expenses
except investment costs. Past research on administrative costs suggests economies of scale
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exist in pension funds (e.g., Mitchell and Andrews, 1981; James et al., 2001; Bikker and
De Dreu, 2009). Bikker et al. (2012) found the administrative costs vary with pension fund
size, pension plan complexity, service quality, and plan maturity (proxied by percentage
of active members) in Australia, Netherlands, Canada, and United States. More recently,
Alserda et al. (2018) showed economies of scale for the vast majority of pension fund sizes
in the Netherlands.

In our pension plan projections, we use a traditional cost function proposed by Bikker
et al. (2012) to explain administrative costs. The function considers the number of members,
service quality, pension plan complexity, pension fund types, number of pension plans offered
and the country. Let ACt denote the administrative cost of the pension plan at time t. We
generalize the administrative cost function as follows:

log (ACt f) = α+ β logLt + λ
Lrt
Lt
,

where f is the foreign exchange rate at which one Canadian dollar will be exchanged for
Euros since the administrative cost function was measured in Euros in Bikker et al. (2012).
The parameter α is a constant that contains the intercept and the factors of service quality,
pension scheme complexity, pension fund types, the number of pension plans offered, and
the country. The variable Lt is the number of participants at time t, which is the main
driver of administrative costs. The parameter β measures economies of scale. If β is less
than one, economies of scale exist. The values of the parameters are shown in Table 3.1.

Parameters Value
α 5.1935
- Intercept 7.035
- Service quality -0.0063
- Complexity -0.0152
- Single pension plan offered -0.129
- Corporate pension fund -0.092
- Canadian pension fund -1.599
β 0.945
λ -0.003
f 1.45

Table 3.1: Administrative cost model parameters.

Figure 3.3 illustrates administrative costs per member as the number of members in-
creases. We find that administrative costs per member decrease as the number of members
increases. Economies of scale exist in the model because β is less than one.
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Figure 3.3: Administrative costs per member

3.4 Salary model

We assume that members begin employment at age 25 with a starting salary of $40,000 at
time 0. Their salary increases with wage inflation and merit increases of 0.5% each year.
The salary becomes zero when members retire from the plan. The salary of a member with
starting age x and starting time e at time e+ j, S(x, e, j), is given by

S(x, e, j) =


40000 (1 + 0.5%)(x+j−25) if e+ j = 0 and x+ j < NRA

40000 (1 + 0.5%)(x+j−25)
j∏

z=1
eWe+z if e+ j > 0 and x+ j < NRA

0 otherwise

,

where We+z is the wage inflation at time e+ z derived from our ESG.
Hence, the total payroll at time t, St, can be defined as:

St =
NRA−1∑
x=25

S(x, 0, t)L(x, 0, t) +
50∑
e=1

S(25, e, t− e)L(25, e, t− e).

3.5 Pension plan valuation

In a DB plan, the employee’s pension benefit is set in advance. The sponsor and the em-
ployees contribute to the pension fund every year based on the current funding level and
the cost of future benefits. In our projections, we value the plan every year to determine
the appropriate contribution level.

3.5.1 Valuation assumptions

First, we illustrate the assumptions used in the pension plan valuation, which include the
various salary assumptions, the valuation rate, and the mortality rate.
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We take the actuary’s assumed salary scale to match the model described in Section 3.4.
Members start working at age 25, with a starting salary of $40,000. The salary grows with
wage inflation (from the ESG) and merit increases of 0.5% every year.

The valuation rate is set based on the expected long-term return of the asset portfolio
using the asset allocation from the previous year. Suppose the pension fund invests in
four assets: a long-term government bond portfolio, the stock index, private equity, and an
investment grade bond portfolio, respectively. Let πi,t, i ∈ {1, 2, 3, 4}, denote the proportion
of these four assets at time t. The valuation rate at time t, gt, is defined by:

gt = π1,t−1 R̄
(RF ) + π2,t−1 R̄

(S) + π3,t−1 R̄
(P ) + π4,t−1 R̄

(IG)

where
n∑
i=1

πi,t = 1, and g0 = 6%. The initial valuation rate, g0, is set based on the expected

long-term return of the pension fund. The factors R̄(RF ), R̄(S), R̄(P ), and R̄(IG) are the
expected long-term returns of the long-term government bond portfolio, the stock index,
private equity and the investment grade bond portfolio, respectively. Let vt denote the
corresponding discount factor, and then

vt = 1
1 + gt

.

The assumed mortality rates in each valuation match the expected mortality under the
model described in Section 3.2. That is, rates follow the CPM 2014 Male Mortality Table
with CPM Improvement Scale B.

3.5.2 Valuation method

We use the projected unit credit (PUC) method to value the actuarial liability and normal
cost. Under the PUC method, expected future salary increases are considered in the benefits.
The projected pension payments are based on projected final salary, which is defined as the
salary in the last year before retirement. Let FS(x, e) denote the final salary of members
with starting age x and starting time e:

FS(x, e) =
{
S(x, e,NRA− 1− x) if x < NRA
40000 (1 + 0.5%)(NRA−1−25) e−(x−NRA+1)W̄ if x ≥ NRA

,

where W̄ is the long-term wage inflation rate generated by our ESG. For members who have
already retired at time 0, we assume the final salary is based on the current starting salary
with merit increases for 39 years adjusted by wage inflation.

The pension plan is valued as a closed group. In other words, we only consider existing
members at the valuation date, and do not consider the future new entrants. The actuarial
liability of the plan is calculated as the sum of the expected present values of all the accrued
benefits as of the valuation date. The normal cost is the difference between the expected
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present value of the actuarial liability in the next year and the current actuarial liability.
The actuarial liability and normal cost are the same for members of the same group who
have the same starting age and starting time.

Let AL(x, e, j) be the actuarial liability of a member in the group with starting age x
and starting time e, given the member is still alive at time e+ j, then

AL(x, e, j) =

115−x∑
z=max(j,NRA−x)

0.02 s(x, e, j)FS(x, e) zp2021+e
x vz−je+j

jp
2021+e
x

.

Note that the years of service, s(x, e, j), are based on the member’s past service since we
consider only the accrued benefit in the valuation.

The actuarial liability of the pension plan is the sum of the actuarial liabilities in all the
groups. Let ALt be the actuarial liability of the pension plan at time t given as follows:

ALt =
115∑
x=25

AL(x, 0, t)L(x, 0, t) +
50∑
e=1

AL(25, e, t− e)L(25, e, t− e).

Let NC(x, e, j) be the normal cost of a member in the group with starting age x and
starting time e, at time e+ j. So

NC(x, e, j) =
{
p2021+e+j
x+j ÃL(x, e, j + 1) ve+j −AL(x, e, j) if x+ j < NRA

0 if x+ j ≥ NRA
,

where ÃL(x, e, j+ 1) indicates the actuarial liability in the next year, but discounted at the
current valuation rate; that is,

ÃL(x, e, j + 1) =

115−x∑
z=max(j+1,NRA−x)

0.02 s(x, e, j + 1)FS(x, e) zp2021+e
x vz−j−1

e+j

j+1p
2021+e
x

.

The normal cost of the plan is calculated by adding all the normal costs in all groups.
Let NCt be the normal cost of the pension plan at time t:

NCt =
115∑
x=25

NC(x, 0, t)L(x, 0, t) +
50∑
e=1

NC(25, e, t− e)L(25, e, t− e).

3.5.3 Funded ratio and contribution requirement

The funded ratio of the pension plan is the ratio of the fund value to the actuarial liability.
Let FRt and Ft be the funded ratio and fund asset value of the pension plan at time t, so

FRt = Ft
ALt

.
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The plan is said to have a surplus if the funded ratio is larger than one.
Contributions are added to the fund at the beginning of each year to make the funding

level be sufficient to pay future pension payments. Let Ct be the contribution to the pension
plan at time t. Then

Ct = NCt + κ (ALt − Ft),

where we set κ = 0.2. The difference between the actuarial liability and the fund value is
the funding shortfall of the plan. Therefore, the contribution equals the normal cost plus
an adjustment which is 20% of the funding shortfall.4 We add the adjustment to smooth
the contribution through the projection period.

3.6 The pension fund

3.6.1 Recursive formula for the fund value

In the pension fund, the initial injection equals the actuarial liability at time 0; that is,
AL0. The fund is invested in the financial market by the sponsor. Contributions are added
to the fund, and pension payments and administrative costs are deducted from the fund at
the beginning of the year. Let B(x, e, j) be the pension payment for a member with starting
age x and starting time e at time e+ j, then

B(x, e, j) =
{

0.02 s(x, e, j)FS(x, e) if x+ j ≥ NRA
0 otherwise

.

Let Bt denote the total pension payments made from the pension fund at time t, which
is defined as the sum of the pension payments in each group:

Bt =
115∑
x=25

B(x, 0, t)Lr(x, 0, t) +
50∑
e=1

B(25, e, t− e)Lr(25, e, t− e).

Let Rt be the fund return at time t. The recursive formula for the fund value Ft at
integer time t is then:

Ft =
{
AL0, at t = 0
(Ft−1 + Ct−1 −Bt−1 −ACt−1) eRt , at t > 0

. (3.1)

4In Canada, this adjustment is called a “special payment” when positive. Note that the adjustment is
negative when the plan has a surplus; this corresponds to a contribution reduction relative to the normal cost.
We do not place any constraints on Ct, so it is possible to have Ct < 0, which corresponds to contribution
refunds or withdrawals.
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3.6.2 The sponsor’s asset allocation

The pension fund is invested in the financial market in order to receive enough return to pay
for the future pension payments. There will be a deficit if the fund value is lower than the
actuarial liability, so the investment strategy is an important concern for the fund sponsor.

Warren (2019) suggested to use a reference-dependent utility function to measure the
sponsor’s preference over different funded ratios and find the optimal asset allocation of
the DB pension fund by maximizing the expected utility in three years’ time. The utility
function was based on the prospect theory of Kahneman and Tversky (1979) and Tversky
and Kahneman (1992), where the utility was determined based on gains and losses relative
to a reference point, with losses being penalized more than gains.

We apply the utility function used by Warren (2019) to our pension plan. The utility
function is a ratio-based reference-dependent utility function, and is parameterized for rel-
atively high risk aversion in relation to deficits, while attaching a relatively modest value
to surpluses. Let Ut be the utility of the funded ratio at time t:

Ut =


γ
(
( FRtFR∗t

)α − 1
)
, if FRt > FR∗t

λ
(
( FRtFR∗t

)β − 1
)
, if FRt < FR∗t

0, if FRt = FR∗t

, (3.2)

where

FR∗t = 0.9,

γ = 1,

λ = 4.5,

α = 0.11,

β = 0.88.

The variable FR∗t is the reference funded ratio at time t, which is set to be 0.9. In effect,
we assume that the sponsor can bear small losses. Parameters α and β are the curvature
parameters on surpluses and deficits, respectively, and parameters γ and λ are corresponding
weighting parameters. Figure 3.4 shows the utility of the sponsor over funded ratios from
0.5 to 2. There is a high penalty when the fund fails to meet the target, reflecting the fact
that the sponsor prefers to avoid deficits more than gaining surpluses. The parameters are
same as those used in Warren (2019) except for the parameter α. The lower α we chose
decreases the curvature beyond the reference funded ratio.
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Figure 3.4: The sponsor’s utility over different funded ratios.

3.6.3 Optimal asset allocation

The pension fund is assumed to invest in four assets: a long-term government bond portfolio,
the stock index, private equity, and an investment grade bond portfolio. At time t, we aim
to find the optimal allocation among these four assets by maximizing the expected utility
of the sponsor three years hence; that is, at time t+ 3. In order to avoid too much volatility
in the asset portfolio, we perform the optimization once every three years.

Recall that πi,t, for i ∈ {1, 2, 3, 4}, denotes the proportion of the long-term government
bond portfolio, stock index, private equity, and the investment grade bond portfolio we
invest in at time t, respectively. The fund return at time t is then defined by

Rt = π1,t−1R
(RF )
t + π2,t−1R

(S)
t + π3,t−1R

(P )
t + π4,t−1R

(IG)
t ,

where
4∑
i=1

πi,t = 1. The variables R(RF )
t , R

(S)
t , R

(P )
t , and R(IG)

t are the time-t returns of the
long-term government bond portfolio, stock index, private equity, and the investment grade
bond portfolio generated from our ESG, respectively.

To perform the optimization that updates the asset allocation at time t, we use nested
stochastic projections. First, we simulate 10,000 outer loop paths for the asset returns
through the period of projection. Along each of these paths, we perform the optimization
every three years. The points where the optimization is done are referred to as “node”. At
each node, we simulate 10,000 distinct paths of asset returns for three years using the ESG;
we call these the inner loop. We calculate the utility for each inner loop path at the end
of the third year based on the node’s state, and estimate the expected utility by taking
the average of the utilities across the 10,000 distinct inner loop paths emanating from each
node. The optimal asset allocation at time t along a single outer loop path, πi,t, can be
defined as follows:

arg max
πi,t

E[Ut+3] = arg max
πi,t

10000∑
p=1

Up,t+3

10000 ,
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where Up,t+3 is the utility at time t+ 3 along inner loop path p. Note that in the inner loop
simulation, the fund value and actuarial liability are calculated based on the valuation rate
at time t and the mortality rate assumed in the valuation; that is, the valuation rate and
the mortality rate are deterministic. Specifically, the valuation rate is based on the asset
allocation at time t − 1. The optimal asset allocation along each outer loop path is found
by using the NlcOptim package in R, which is created for the optimization of nonlinear,
constrained objectives.
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Chapter 4

Solvency and welfare metrics

The plan sponsor and members are two different groups of stakeholders with divergent
needs and concerns. To evaluate the performance of a given pension plan, we need some
solvency and welfare metrics relevant to each group of stakeholders mentioned above (i.e.,
the plan sponsor and members, respectively). In this chapter, we introduce an economic
capital-based measure for the plan sponsor, and an expected utility-based measure for the
plan members.

4.1 Economic capital-based measure

Economic capital is a risk measure related to capital. Porteous and Tapadar (2005) defined
economic capital as the amount of capital required to support the risks a financial service
firm is running on an economic or market value basis over a specified time horizon with a
prescribed probability. As stated in Porteous and Tapadar (2005), a financial service firm can
use economic capital in its operations in many ways, such as checking its capital adequacy,
validating its regulatory capital requirements, defining its risk appetite, forecasting economic
capital requirements for business planning, and deriving actual rates of return on economic
capital as a risk adjusted performance measure.

In banking, economic capital calculation is involved in the second pillars of Basel II
and Basel III. Basel II is a supervisory approach which has three pillars; those are, (1)
the minimum capital requirements, (2) supervisory review, and (3) market discipline. Basel
III further strengthens the capital adequacy requirement of Basel II. The second pillar—
supervisory review—is intended to ensure that banks have adequate capital to support
all their business’s risks, and encourages banks to develop and use better risk management
techniques to monitor and manage their risks (see Basel, 2006, for more details). Basel (2009)
recommends economic capital frameworks for banks and supervisors in the supervisory
review process. As mentioned in Basel (2009), economic capital is measured as an amount
of capital that a bank needs to absorb unexpected losses over a certain time horizon at a
given confidence level. The risk measure, time horizon, and confidence level of economic
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capital measures are not prescribed by regulation. Basel (2009) points out that the VaR
and ES are the most widely used risk measures. The choice of confidence level is related to
banks’ target rating, and most banks use a time horizon of one year for economic capital
calculation according to a survey done in 2007 (IFRI Foundation and CRO Forum, 2007).

Closer to our pension content, in insurance, the concept of economic capital is involved
in the first pillar of Solvency II in Europe. Solvency II is a supervisory approach similar to
Basel II with three pillars: (1) quantitative capital requirements, (2) qualitative supervisory
review, and (3) market discipline (Asadi and Al Janabi, 2020). The quantitative capital re-
quirements include solvency capital requirements and minimum capital requirements. The
solvency capital requirement is the amount of capital that can cover economic capital based
on a one-year VaR measure at the 99.5th confidence level, which is valued on a market
consistent basis. The minimum capital requirement is lower than the solvency capital re-
quirement, which is measured at the 85th confidence level. It is the trigger amount of the
ultimate supervisory intervention (see Solvency II, 2009, for more details). In Canada and
the US, economic capital can be used in fulfilling the regulatory requirement of insurers’
ORSA. ORSA requires insurers to assess their risk exposure and project future capital needs
under normal and stressed environments. Insurers can use their own model, which could
include economic capital models, to perform this assessment (Farr et al., 2016).

4.1.1 Economic capital in the pension context

The concept of economic capital has been applied to pension plans in the literature by a
few researchers. Porteous et al. (2012) proposed a definition of economic capital for DB
plans and applied the Solvency II framework to compute a VaR measure for a UK DB
plan. Andrews et al. (2019) updated the work of Porteous et al. (2012) and compared the
economic capital of UK DB plans with that of US pension plans by using both the VaR
and ES measures for run-off horizons. Andrews et al. (2022) further analyzed the impact of
the choice of time horizon and asset allocation on the economic capital of these plans.

We use the following definition of economic capital as stated by Andrews et al. (2022):

Definition 1. The economic capital of a pension scheme is the proportion by which its
existing assets would need to be augmented in order to meet net benefit obligations with
a prescribed degree of confidence. A pension scheme’s net benefit obligations are all obli-
gations in respect of current scheme members, including future service, and net of future
contributions to the scheme (Andrews et al., 2022).

In other words, economic capital is the amount of additional assets needed to ensure the
solvency of the pension fund, which is consistent with the definition of economic capital in
finance and insurance.
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4.1.2 Calculation method

We follow the risk measure framework proposed by Andrews et al. (2022) to calculate the
economic capital. We start by calculating the present value of “future profit” (PVFP) of
the pension plan over a horizon of T years. Let Pt denote the additional surplus emerging
in the pension fund at integer time t, and let Xt denote the net cash flow of the pension
plan at time t. Let It−1,t denote the accumulation factor from time t − 1 to time t, based
on the annual random return on the fund assets, Rt, such that

It−1,t = eRt . (4.1)

Then,

Pt =
{
F0 −AL0 at t = 0
(ALt−1 −Xt−1) It−1,t −ALt at t > 0

, (4.2)

where
Xt = Bt +ACt − Ct.

The PVFP of the pension plan over a horizon of T years, V0,T , is defined by

V0,T =
T∑
t=0

PtD0,t, (4.3)

where D0,t is the discount factor from time 0 to time t. That is,

D0,t =
t∏

s=1
I−1
s−1,s =

t∏
s=1

e−Rs , for s > 0 and (4.4)

D0,0 = 1. (4.5)

From Equations (4.1) and (4.4), we can derive that

It−1,tD0,t = It−1,t

t∏
s=1

I−1
s−1,s

=
t−1∏
s=1

I−1
s−1,s

= D0,t−1.

(4.6)

Based on Equations (4.5) and (4.6), we can then combine Equations (4.2) and (4.3) to
find that the actuarial liabilities over a horizon of T − 1 years cancel out:

V0,T = F0 −
T−1∑
t=0

XtD0,t −ALT D0,T . (4.7)
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Note that when V0,T is negative, the absolute value of V0,T is the amount of excess assets
needed by the pension plan. To let V0,T be comparable across pension plans with different
asset and liability scales, we denote the standardized PVFP by V ∗0,T :

V ∗0,T = V0,T
F0

. (4.8)

So, V ∗0,T can be interpreted as the proportion by which the initial fund assets, F0, must
be augmented in order to meet net benefit obligations.

Because V ∗0,T is a random variable that depends on future projections, we adopt two
common risk measures to understand the economic capital risk of the pension plans under
study: VaR and ES.

VaR can be interpreted as the worst loss over a target horizon that will not be exceeded
with a given confidence level (Jorion, 2006). As mentioned in Linsmeier and Pearson (2000),
VaR began to be used in late 1980s to measure the risks of trading portfolios. In 1994, J.P.
Morgan established a market standard for VaR, which promoted its growth. VaR is now
widely used by financial institutions, nonfinancial corporations, institutional investors, and
regulators.

Let VaRp be the VaR of V ∗0,T at confidence level (1− p). Then,

P [V ∗0,T ≤ VaRp] = p,

where VaRp indicates the proportion of additional initial assets required at time 0 for the
pension plan to meet its net benefit obligations at a confidence level (1− p).

ES is defined as the conditional expectation of losses beyond the VaR level. ES is pro-
posed as an alternative risk measure to VaR as it considers tail risk beyond VaR, and it is
a coherent measure, unlike VaR (Yamai and Yoshiba, 2005).

Let ES of V ∗0,T , ESp, be the expected value of all standardized losses that are worse than
or the same as VaRp for a given confidence level (1− p). Then,

ESp = E[V ∗0,T |V ∗0,T ≤ VaRp].

4.2 Expected utility-based measure

In the expected utility framework, a utility function reflects the preference of individuals and
assigns a value to a payoff or consumption amount. Individuals’ preferences are typically
consistent with maximizing their expected utility. Expected utility theory facilitates our
understanding of risk and uncertainty. Trowbridge (1989) pointed out that utility theory
can be seen as the philosophical basis for risk management in insurance.
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4.2.1 Consumption function

Before calculating our utility-based measure, we first need to define the amount of annual
consumption for plan members. We assume that the sponsor and active members each bear
half of the annual pension fund contributions. The overall contribution rate of the pension
plan at time t, CRt, is defined by the ratio of the dollar contributions divided as the total
payroll:

CRt = Ct
St
.

The time-t contribution rate of the members is therefore given by 1
2CRt. The dollar contri-

bution for each active member is obtained by multiplying the contribution rate and their
salary in the given year. Let c(x, e, j) be the dollar contribution of active members with
starting age x and starting time e at time e+ j:

c(x, e, j) = 1
2 CRe+j S(x, e, j).

For active members, we further define their consumption in a given year as the difference
between their salary and contribution at that time. For retired members, their consumption
is the pension payment they receive. Let Consumption(x, e, j) denote the consumption at
time e+ j of a member with starting age x and starting time e, so

Consumption(x, e, j) =
{
S(x, e, j)− c(x, e, j) if x+ j < NRA
B(x, e, j) if x+ j ≥ NRA

,

where NRA is the normal retirement age. The above consumption is in nominal terms
because it is measured in dollars and does not consider the impact of price inflation. We
can deflate consumption by price inflation to make consumption comparable (i.e., expressed
in real terms). If Consumption′(x, e, j) is the inflation-adjusted consumption, then

Consumption′(x, e, j) = Consumption(x, e, j) e−
∑e+j

i=0 Qi ,

where Q0 = 0 by construction. Recall that variable Qi is the ith year price inflation.

4.2.2 Expected discounted utility

For each member, the expected discounted utility is calculated as the average value of the
total discounted utility coming from our simulation. Recall that we simulate 10,000 outer
loop paths that represent 10,000 possible future paths of pension plan outcomes, including
salaries, contributions, and benefit payments. We calculate the total discounted utility along
each of these paths by adding up the discounted utility of consumption in each future year
along a given path, considering members’ subjective time preference and survival probability
over the specific period.
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Let u(·) be the members’ utility function, and let U(x, e) denote the total discounted
utility of consumption over the period [0, T ] for a member with starting age x and starting
time e. Then the expected discounted utility for such a member is given by the following
equation:

E[U(x, e)] = E

[
T∑
t=0

βt u(Consumption′(x, e, t− e)) t−ep̂2021+e
x

]
,

where
t−ep̂

2021+e
x = L(x, e, t− e)

L(x, e, 0) .

Parameter β represents members’ subjective time preference for the utility and is set to
e−0.02 in this report. The variable t−ep̂

2021+e
x stands for the realized member’s survival

probability.
We choose a power utility function with constant relative risk aversion; that is,

u(χ) = χ1−γ

1− γ , γ ≥ 0, γ 6= 1, (4.9)

where χ is consumption and γ represents the constant relative risk aversion level. Here, we
let γ = 5.

4.2.3 Certainty equivalent consumption

To compare the expected discounted utility across different pension plans in a more mean-
ingful way, we adopt the concept of CEC. CEC is defined by the condition that the member
is indifferent between receiving a stream of variable consumption or fixed amount of CEC
over the period (Denuit et al., 1999). The CEC for a member with starting age x and
starting time e, CEC(x, e), is obtained by solving the following equation:

E[U(x, e)] =
T∑
t=0

βt u(CEC(x, e)) t−ep2021+e
x , (4.10)

where the variable t−ep2021+e
x is the expected survival probability derived from the mortality

table used in Section 3.2.
By combining Equations (4.9) and (4.10), we obtain a closed-form expression for the

CEC(x, e):

E[U(x, e)] =
T∑
t=0

βt
(CEC(x, e))1−γ

1− γ t−ep
2021+e
x

= CEC(x, e)1−γ

1− γ

T∑
t=0

βt t−ep
2021+e
x
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⇒ CEC(x, e) =

(1− γ) E[U(x, e)]
T∑
t=0

βt t−ep
2021+e
x


1

1−γ

.
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Chapter 5

Simulation study: Base case

We conduct a simulation study to evaluate the performance of our stylized pension plan
based on the economic and financial framework presented in Chapter 2. This chapter
presents the key findings from the simulated results regarding the evolution of the pension
plan and the sponsor’s and members’ solvency and welfare metrics introduced in Chapter
4.

5.1 Simulated results

In the simulation study, as mentioned in Section 3.6.3, we generate 10,000 outer loop paths of
the asset return, price inflation, and wage inflation scenarios based on the ESG. In addition,
we generate 10,000 inner loop paths every three years along each outer loop scenario to
obtain the optimal asset allocation.

5.1.1 Initial funded ratio and asset allocation

To understand the asset allocation dynamics, we first study the relationship between the
initial funded ratio and the asset allocation. To simplify, we only allow for investment in a
risky asset (i.e., the total stock index), and a less risky asset (i.e, the investment grade bond
portfolio) in our fund for now. The other assumptions and features remain the same. Figure
5.1 plots the optimal weight of the total stock index under different initial funded ratios
based on a single path at time 0. The plot is U-shaped; the optimal total stock index weight
is lowest when the initial funded ratio is near 1.13. At this initial funded ratio, investing
more assets in the investment grade bond portfolio should allow the plan to reach a decent
funded ratio three years hence with a low probability of losses (or funded ratio less than 0.9).
When the initial funded ratio is lower than 1.13, we need to invest more in the risky assets
to increase the probability of gains over the next three years. On the other hand, when the
initial funded ratio is higher than 1.13, the fund is less likely to fall below the target in the
next three years, so the plan can invest more in the total stock index to increase its utility.
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Figure 5.1: Total stock index weight for different initial funded ratios.
Notes: We assume the fund is invested only in the total stock index and the investment grade bond portfolio.
The other assumptions and features remain the same.

5.1.2 Evolution of the asset allocation, valuation rate, and funded ratio

To study the evolution of our pension plan, we plot funnels of doubt for the asset allocation,
the valuation rate, the funded ratio, the normal cost rate, and the contribution rate in
Figure 5.2. Panels A to D of Figure 5.2 show the distribution of asset weights over the
50 year horizon. Given an initial funded ratio of 1, an initial valuation rate of 6%, and a
reference funded ratio of 0.9, the initial optimal asset allocation has a high proportion in the
investment grade bond portfolio because more weight in the less risky asset increases the
probability that the funded ratio exceeds the target. The variability of the asset allocation
distribution becomes larger starting in year 3 because the optimal asset allocation changes
as a function of the various economic scenarios simulated at that time, unlike the time-0
allocation that depends only on current (known) values. Asset allocations change sharply
after year 3; this is caused by a feedback effect between the asset allocation, the valuation
rate, and the funded ratio, which will be discussed in detail in the next section.

In the long run, most of the assets are allocated to the investment grade bond portfolio,
followed by the total stock index and private equity. Few assets are allocated to the long-
term government bond portfolio, all in all. Because the plan sponsor is risk averse, more
assets are allocated to the less risky assets to help to secure a safe fund in the long run.
Recall from Figure 2.2 that the investment grade bond portfolio has an expected return
that is higher than that of the long-term government bond portfolio; their 5th percentile
are similar, however. The investment grade bond portfolio can help the plan sponsor seek
higher returns without increasing risk too much. So, the investment grade bond portfolio is
preferred to the long-term government bond portfolio, generally speaking. The total stock
index has higher weight than private equity, which is consistent with the fact that private
equity has a higher average return but is more volatile than the total stock index.

Panel E of Figure 5.2 shows the evolution of the distribution of the valuation rate. As
mentioned in Section 3.5.1, the valuation rate is set to the weighted average of the expected
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Figure 5.2: The 5th, 25th, 50th, 75th and 95th percentiles of the asset allocation,
the valuation rate, the funded ratio, the normal cost rate, and the contribution
rate over the projection period.
Notes: The red dashed lines show the 5th and 95th percentiles, the blue dashed lines show the 25th and 75th

percentiles, and the black solid line shows the median of the asset allocation, the valuation rate, the funded
ratio, the normal cost rate, and the contribution rate.
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long-term asset returns based on the previous year’s asset weights. So, the evolution of the
valuation rate is consistent with the evolution of the asset weights. The distribution of the
valuation rate changes significantly in the first ten years and then becomes stable in the
long run.

Panel F of Figure 5.2 shows the evolution of the distribution of the funded ratio. The
median of the funded ratio increases gradually over the projection period despite the first
several years exhibiting an oscillatory behaviour. As time passes, the median funded ra-
tio will be around one and reaches a stable state, together with the asset allocation and
valuation rate.

The distribution of the funded ratio has low dispersion in the first three years. The
funded ratio’s dispersion only comes from the uncertainty in asset returns during this period
because the asset weights remain constant in the simulation over the first three years. After
year 3, the asset allocation varies for each scenario based on the different valuation rates
and funded ratios, so the dispersion of the funded ratio becomes larger.

5.1.3 Oscillations and feedback in the asset allocation, valuation rate, and
funded ratio

The feedback loop in the asset allocation, the valuation rate, and the funded ratio mentioned
earlier can be described as follows. The funded ratio influences the asset allocation in the
optimization. The asset weights affect the valuation rate used to discount the actuarial
liability which, in turn, impacts the funded ratio. The feedback loop occurs at the beginning
of our pension plan’s operation; during this time, the asset allocation, the valuation rate,
and the funded ratio transition together from their initial values to their steady states.

We can further understand the feedback mechanism by looking at the outcomes of a
single scenario. Figure 5.3 shows the asset allocation, the valuation rates, and the funded
ratio from a single path of the simulation. Based on the initial settings, the investment grade
bond portfolio has a higher weight. At time 1, the valuation rate decreases based on the
previous year’s asset allocation. The lower valuation rate increases the actuarial liability,
which reduces the funded ratio. The funded ratio remains at a low level in the next two years
because the portfolio will not be optimized during that time, so the asset allocation and
valuation rate will remain unchanged. At time 3, a higher weight is allocated to the risky
asset according to Figure 5.1 because the funded ratio is lower than the time-0 level. So,
the total stock index and private equity weights increase, and the investment grade bond
portfolio weight decreases. Then, the feedback occurs again, but the valuation rate, the
funded ratio, and the asset weights change in the opposite direction. In general, as shown
in Panels A to F of Figure 5.2, after about three of these feedback loops, the valuation rate,
the asset allocation, and the funded ratio reach their steady states, and their medians stay
stable in the long run.
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Figure 5.3: The asset allocation, the valuation rate, and the funded ratio in first
ten years of a single path.
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5.1.4 Evolution of normal cost rate and contribution rate

Panels G and H of Figure 5.2 show the distributions of the normal cost rate and the
contribution rate. Similar to the asset allocation, the valuation rate, and the funded ratio,
the normal cost rate and the contribution rate both change sharply in the first ten years.

Changes in the normal cost rate are caused by changes in the valuation rate. Similar
to the contribution rate, the normal cost rate is the ratio of the normal cost to the total
salary. The normal cost measures the difference between the expected present value of next
year’s actuarial liability and the current actuarial liability. If the valuation rate decreases,
the actuarial liability increases which, in turn, increases the normal cost (and vice versa).
After ten years, the normal cost rate becomes stable because the valuation rate also becomes
stable.

The contribution rate is related to the normal cost rate and the funded ratio because the
contribution is the sum of the normal cost and an adjustment for any funding shortfalls. If
there is a deficit in the fund, our smoothing mechanism increases the contributions. So, in
the first ten years, we see the contribution rates behaving similar to the normal cost rates
but are higher than the normal cost rates. After ten years, the contribution rate decreases
because the funded ratio increases.

5.2 Simulated results of solvency and welfare metrics

Table 5.1 shows results for the economic capital-based measures, which include the proba-
bility of running a deficit at years 3 and 50, and the economic capital based on VaR and ES
measures at the 50th, 90th, and 99.5th confidence levels for three-year and 50-year horizons.
The economic capital measures for a three-year horizon are much worse than those for the
50-year horizon at the 50th and 90th confidence level because of the generally low funded
ratio at year 3. This is consistent with the 97% probability of running a deficit at year 3
and the 39% probability of running a deficit at year 50. The economic capital measures at
the 99.5th confidence level are better at the three-year horizon than those at the 50-year
horizon because the dispersion of funded ratio is higher after 50 years than after three years.
In other words, we expect more extreme funded ratios in the long run.

Table 5.1: Economic capital-based measure results for the base case.

50th confidence level 90th confidence level 99.5th confidence level
Base case P [V ∗

0,T ≤ 0] VaR ES VaR ES VaR ES
Three-year
horizon

0.92 −0.09 −0.16 −0.20 −0.27 −0.38 −0.43

50-year horizon 0.48 0.00 −0.07 −0.10 −0.24 −0.55 −1.47

Notes: This table reports the probability of the initial fund assets being insufficient, as well as the VaR and
ES of V ∗0,T at the 50th, 90th, and 99.5th confidence levels, for both three-year and 50-year horizons.
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Figure 5.4 shows the CECs for the existing members at time 0 across different ages, which
are calculated based on their (remaining) whole life consumption. The CECs decrease with
age: younger members work longer and enjoy more years of wage inflation (net of price
inflation), meaning their final salary and pension payments should be higher in real terms
because wage inflation tends to be higher than price inflation. The younger members are
therefore expected to have higher consumption when they retire, which contributes to their
higher CEC values. For the retired members, the older (retired) members have lower pension
payments because they retired earlier and their final salary was lower at that time. So, the
CECs decrease with age for retired members.

Table 5.2 reports the CECs of members aged 25, 45, 65, and 85 for the base case.
The bottom row of the table shows the average consumption of these members in their
remaining lifetime. These values are calculated based on the member’s median contribution
rate in the long term, which is 15%, the long-term average price inflation rate, and the
long-term average wage inflation rate. In general, the CEC values make sense because they
are close to the average consumption levels. In fact, a CEC of $38,281 for a member aged
25 means that the member’s expected discounted utility of receiving a stream of salary (net
of contribution) or pension payment is equivalent to that of receiving a fixed amount of
$38,281 in real terms in each year during his remaining lifetime.
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Figure 5.4: Certainty equivalent consumptions of existing members at time 0 for
different ages.

Table 5.2: Certainty equivalent consumption and average consumption for mem-
bers of different ages.

Age 25 45 65 85
Certainty equivalent consumption 38,281 35,872 28,552 19,745
Average consumption 40,071 32,971 23,742 16,228

Notes: The average consumption is based on the member’s (remaining) whole life consumption and calculated
by applying the member’s contribution rate of 15%, the long-term average price inflation rate, and the long-
term average wage inflation rate.
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Chapter 6

Simulation study: Robustness tests

To test the robustness of our pension plan modelling, we change some of the assumptions
and redo the simulations. This chapter describes the different robustness tests and shows
the results. When analyzing the results, we focus on the changes in the solvency and welfare
metrics; that is, the economic capital-based measures and the CECs.

6.1 Factors impacting the solvency and welfare metrics

First, to analyze the changes in solvency and welfare metrics more concisely, we list the
factors that might influence solvency and welfare metrics in our robustness tests.

Economic capital depends on the funded ratio, fund returns, and asset allocation. Recall
from Equation (4.7), the PVFP of the pension plan is expressed as

V0,T = F0 −
T−1∑
t=0

XtD0,t −ALT D0,T . (6.1)

The first two terms on the right side of the equation are the present value of the end-of-
horizon fund value. We can derive this result by multiplying the accumulation factor from
time 0 to time T , I0,T , with these two terms:

(
F0 −

T−1∑
t=0

XtD0,t

)
I0,T =

(
F0 −X0D0,0 −

T−1∑
t=1

XtD0,t

)
T∏
t=1

It−1,t

=
(
I0,1 (F0 −X0D0,0)− I0,1

T−1∑
t=1

XtD0,t

)
T∏
t=2

It−1,t. (6.2)

Recall from Equation (4.4) that we can derive the following relationship:

Is,tDs,T = Is,t

T∏
z=s+1

I−1
z−1,z
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=
T∏

z=t+1
I−1
z−1,z

= Dt,T . (6.3)

Using Equations (6.3) and (3.1), and the fact that Dt,t = 1 in Equation (6.2), then we get

(
I0,1 (F0 −X0D0,0)− I0,1

T−1∑
t=1

XtD0,t

)
T∏
t=2

It−1,t

=
(
I0,1 (F0 −X0)− I0,1

T−1∑
t=1

XtD0,t

)
T∏
t=2

It−1,t

=
(
F1 −

T−1∑
t=1

XtD1,t

)
T∏
t=2

It−1,t

=
(
F1 −X1D1,1 −

T−1∑
t=2

XtD1,t

)
T∏
t=2

It−1,t

=
(
I1,2 (F1 −X1)− I1,2

T−1∑
t=2

XtD1,t

)
T∏
t=3

It−1,t

=
(
F2 −

T−1∑
t=2

XtD2,t

)
T∏
t=3

It−1,t

= · · ·

= (FT−1 −XT−1) IT−1,T

= FT .

So, the standardized PVFP can be expressed as

V ∗0,T = V0,T
F0

= FT /I0,T −ALT D0,T
F0

= FT −ALT
F0

D0,T

= (FRT − 1) ALT
F0

D0,T . (6.4)

Because the initial fund value is known, the standardized PVFP is determined by the funded
ratio at time T , the actuarial liability at time T , and the discount factor between time 0
and time T . With a higher funded ratio at the end of the horizon, the standardized PVFP
increases, which can improve the economic capital results. The actuarial liability at time T ,
ALT , is impacted by the valuation rate at that time, which depends on the asset allocation.
The discount factor, D0,T , is based on the fund return. When the funded ratio is less than
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1, the standardized PVFP and economic capital results are improved as the ALT and D0,T

decrease.
The CEC is determined by the expected discounted utility of consumption. High ex-

pected discounted utility leads to high CECs. For active members, the consumption is
related to the contribution rate. A low contribution rate increases the consumption, and
further increases the expected discounted utility. Since the power utility function is concave,
the utility increases more slowly as the consumption increases. So, an increase from a lower
consumption level leads to a more substantial increase in utility than the same increase
from a higher consumption level. In other words, a decrease in the contribution rate at a
high percentile—e.g., the 95th percentile—increases utility more than the same decrease in
the contribution rate at a low percentile—e.g., the 5th percentile.

For retired members, consumption equals the pension payment, so, their CECs change
with the pension payment. In our robustness tests, the CECs for a given cohort of retired
members do not change because none of our tests change the assumptions regarding salary
and years of service. So, the payments received after retirement will not change from one
robustness test to the next.

The description of each case and the analysis of the changes in solvency and welfare
metrics are provided in the following sections. Because the asset allocation determines the
fund return and greatly impacts the funded ratio and contribution rate, which further
influence the solvency and welfare metrics, we start by analyzing the changes to the asset
allocation process in the following sections. Afterwards, we consider changes to the plan
membership and plan design.

6.2 Change in the asset optimization frequency

6.2.1 Description

In this robustness test, we change the frequency of the asset optimization from every three
years to the following:

Case 1. Optimize asset mix every year.

Case 2. Optimize asset mix every six years.

Case 3. Optimize asset mix only once, at time 0; that is, have a static asset mix.

In the base case, the asset mix is optimized every three years. If we optimize the portfolio
more frequently, the fund performs better, but it also becomes more volatile. If we optimize
the portfolio less frequently, the fund is more stable but performs worse.
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6.2.2 Impact on asset allocation

Figure 6.1 shows the asset allocation results under the base case and different optimization
frequencies. When we increase the optimization frequency, the median asset weights are
more volatile in the first 10 years because the optimization occurs more frequently, and the
fund has not yet reached its steady state value. The total stock index and private equity
weights increase and the investment grade bond portfolio weight decrease slightly. The range
of the total stock index and private equity weights increases when the asset allocation is
changed frequently.

By contract, when we decrease the asset optimization frequency, the median asset
weights become more stable in the first 10 years. The median asset allocation stays nearly
unchanged in the long term. The range of total stock index and private equity weights also
tends to decreases in this case.

Under static optimization, the asset allocation stays constant at the initial allocation.
The total stock index and investment grade bond portfolio weights are higher than those of
the base case.
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Figure 6.1: Asset allocations for different asset optimization frequencies.
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6.2.3 Impact on economic capital

Table 6.1 reports economic capital results for different optimization frequencies. We find
that, when we increase the optimization frequency, the economic capital measures at the
three-year horizon deteriorate. Panel (b) of Figure 6.2 shows the funded ratio distributions
when we increase the optimization frequency. The median funded ratio at year 3 is lower
than that of the base case, which also worsens the economic capital at year 3. The lower
funded ratio is mainly caused by the oscillations of asset allocation in the first several years.
For the 50-year horizon, economic capital is generally improved except for the VaR at the
99.5th confidence level. The VaR is worse because the higher total stock index and private
equity weights leads to lower fund returns in the left tail. However, because of more frequent
optimization, the asset allocation can be adjusted quickly when the funded ratio is low, so
the extreme scenarios are improved, leading to better ES at the 99.5th confidence level.

Table 6.1: Economic capital results for different asset optimization frequencies.

Panel A: Three-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,3 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.92 -0.09 -0.16 -0.20 -0.27 -0.38 -0.43
Case 1 0.82 -0.16 -0.28 -0.35 -0.44 -0.60 -0.66
Case 2 0.92 -0.09 -0.16 -0.20 -0.27 -0.38 -0.43
Case 3 0.92 -0.09 -0.16 -0.20 -0.27 -0.38 -0.43
Panel B: 50-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,50 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.48 0.00 -0.07 -0.10 -0.24 -0.55 -1.47
Case 1 0.46 0.00 -0.07 -0.09 -0.24 -0.63 -1.30
Case 2 0.49 0.00 -0.08 -0.10 -0.26 -0.58 -1.63
Case 3 0.52 0.00 -0.08 -0.12 -0.24 -0.51 -0.67

As we decrease the optimization frequency in Case 2, economic capital is unchanged for
the three-year horizon because the asset allocation is the same as in the base case at year 3.
Economic capital measures for the 50-year horizon deteriorate, however. Because the asset
allocation is changed only every six years in this case, it cannot adjust immediately when
the funded ratio is low, making the economic capital worse at high confidence levels.

Economic capital measures under static optimization yield similar results to the base
case. Yet, we see an improvement at the 99.5th confidence level for a 50-year horizon when
compared to the base case. Panel (d) of Figure 6.2 shows the funded ratio results under
static optimization. The volatility in the funded ratio decreased and the tail of the funded
ratio is improved, which increases the economic capital overall.
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Figure 6.2: Funded ratios for different asset optimization frequencies.

6.2.4 Impact on certainty equivalent consumptions

Figure 6.3 compares CECs for Case 1, 2, and 3, against the base case. The dashed line
in the figure represents the base case CEC, and the solid line represents the CECs of the
robustness cases.

For active members, the CECs decrease when we increase the optimization frequency.
The funded ratio allows for a wider range of values because of higher allocations to the total
stock index and private equity, which translates to wider range for the contribution rate.
The contribution rate becomes higher in the right tail of the distribution, making utility
much worse. Therefore, the expected utility and CECs decrease.

On the other hand, the CECs increase when we decrease the optimization frequency.
The funded ratio falls in a narrower range, on account of lower volatility of fund return
due to less allocation to the total stock index and private equity. This also results in a less
volatile contribution rate. Compared to the base case, contribution rates are lower in the
right tail of the distribution, yielding higher utility overall. Therefore, the expected utility
and CECs also increase.

The CECs increase under the static optimization. The funded ratio has a much narrower
range than that of the base case because of the constant asset allocation, leading to a much
narrower range for the contribution rates. Similar to Case 2, the expected utility and CECs
increase because contribution rates are lower in the right tail of the distribution.
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Figure 6.3: Certainty equivalent consumptions for different asset optimization
frequencies.

6.3 Change in the reference funded ratio in the asset opti-
mization

6.3.1 Description

In this robustness test, we change the reference funded ratio in the utility function of
Equation (3.2) from 0.9 to 1:

Case 4. Increase the reference funded ratio from 0.9 to 1.

We set the reference funded ratio to 0.9 in the base case because we assumed that the
sponsor can bear small losses. We increase the reference funded ratio to one to test the
performance of the pension plan when the sponsor is more risk averse and does not want
to bear small losses.

6.3.2 Impact on asset allocation

Figure 6.4 shows the base case asset allocation results and the results when increasing the
reference funded ratio. Based on the higher reference funded ratio of 1, the plan allocates
a higher proportion of its assets to the total stock index and private equity to increase the
funded ratio and the corresponding utility. The median asset weights become more volatile,
with wider oscillations in the first 30 years because the initial asset allocations are far from
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the asset weights reached in the steady state. This is because the feedback in the asset
allocation, valuation rate, and funded ratio becomes stronger in this case.
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Figure 6.4: Asset allocations when increasing the reference funded ratio.

6.3.3 Impact on economic capital

From Table 6.2, we find that the Case 4 economic capital measures are improved for the
three-year horizon at the 50th and 90th confidence level, but are worse at the 99.5th confi-
dence level. Figure 6.5 shows the funded ratio results when increasing the reference funded
ratio. Compared to the base case, the median funded ratio at year 3 is higher because of
the higher total stock index and private equity weights in the asset portfolio. However, the
significant allocation to the total stock index and private equity also increases the volatility
of the funded ratio. The funded ratio is lower at high confidence levels, meaning that the
economic capital is lower at the 99.5th confidence level.

Table 6.2: Economic capital results when increasing the reference funded ratio.

Panel A: Three-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,3 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.92 -0.09 -0.16 -0.20 -0.27 -0.38 -0.43
Case 4 0.07 0.22 0.11 0.04 -0.09 -0.38 -0.54
Panel B: 50-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,50 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.48 0.00 -0.07 -0.10 -0.24 -0.55 -1.47
Case 4 0.42 0.00 -0.07 -0.04 -0.30 -1.19 -2.98
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Similarly, for the 50-year horizon, the probability of insufficient initial fund assets de-
creases, but the economic capital measures deteriorate at the 90th confidence level for ES
and the 99.5th confidence level for both VaR and ES. As mentioned above, more invest-
ments in the total stock index and private equity improve the median funded ratio but also
increases the volatility of the funded ratio, which makes the economic capital worse at high
confidence levels.
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Figure 6.5: Funded ratios when increasing the reference funded ratio.

6.3.4 Impact on certainty equivalent consumptions

As shown in Figure 6.6, the CECs increase slightly for active members when increasing the
reference funded ratio. This result is explained by higher funded ratios, which lead to lower
contribution rates in Case 4. The lower contribution rate increases consumption. Therefore,
the expected utility increases, which contributes to the higher CECs.
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Figure 6.6: Certainty equivalent consumptions when increasing the reference
funded ratio.
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6.4 Change in the initial valuation rate

6.4.1 Description

In this robustness test, we change the initial valuation rate of 6% to:

Case 5. An initial valuation rate of 9%.

Case 6. An initial valuation rate of 3%.

In the base case, the initial valuation rate of 6% is an approximation to the long-term
weighted average return on the fund assets. When the initial valuation rate deviates from
the long-term weighted average return, the asset weights and funded ratio might be affected.
Therefore, we increase and decrease the initial valuation rate, respectively.

6.4.2 Impact on asset allocation

Figure 6.7 shows the asset allocations for different initial valuation rates. In general, both
Cases 5 and 6 have similar long term asset allocations when compared to the base case.
When the initial valuation rate is set to 9%, the total stock index and private equity weights
are higher at the beginning to let the fund return match as much as possible the valuation
rate. In later years, the asset weights are generally closer to those of the base case.

Similarly, when we decrease the initial valuation rate to 3%, the initial asset allocation
tends to be highly concentrated in the investment grade bond portfolio. Asset weights then
approach to those in the base case in the long run.

6.4.3 Impact on economic capital

From Table 6.3, we find that when we increase the initial valuation rate, the economic capital
for three-year horizon deteriorates for confidence levels higher than the 50th percentile. Panel
(b) of Figure 6.8 shows the distribution of funded ratios when the initial valuation rate is
set to 9%. At year 3, the volatility of the funded ratio is higher than that of the base
case because more assets are invested in the total stock index and private equity. So, the
economic capital measures tend to become worse at high confidence levels. For the 50-year
horizon, the economic capital is worse for levels higher than the 90th confidence level. The
funded ratio is similar to the base case in the long term, while the higher total stock index
and private equity weights in the early years increase the volatility of the fund return.
The fund return is lower at high confidence levels. According to Equation (6.4), lower fund
returns increase the discount factor, which decrease the economic capital measures at high
confidence levels.

When we decrease the initial valuation rate to 3%, the economic capital metrics are
improved for both the three-year and 50-year horizons. Panel (c) of Figure 6.8 shows the
distribution of the funded ratios when the initial valuation rate is decreased. The funded
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Figure 6.7: Asset allocations when changing the initial valuation rate.
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Table 6.3: Economic capital results when changing the initial valuation rate.

Panel A: Three-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,3 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.92 -0.09 -0.16 -0.20 -0.27 -0.38 -0.43
Case 5 0.72 -0.08 -0.23 -0.32 -0.47 -0.82 -0.99
Case 6 0.01 0.13 0.10 0.07 0.05 0.00 -0.03
Panel B: 50-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,50 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.48 0.00 -0.07 -0.10 -0.24 -0.55 -1.47
Case 5 0.48 0.00 -0.09 -0.09 -0.33 -1.10 -2.78
Case 6 0.47 0.00 -0.05 -0.07 -0.16 -0.37 -0.70

ratio at year 3 tends to be greater than 1 because the median valuation rate increases based
on the initial asset allocation which, in turn, decreases the actuarial liabilities of the plan.
The high funded ratio implies increases in the economic capital for the three-year horizon.
The economic capital measures are also improved for the 50-year horizon because of the
high fund returns in the early years, which decrease the discount factor.

6.4.4 Impact on certainty equivalent consumptions

Panels (a) and (b) of Figure 6.9 compare the CECs obtained with initial valuation rates of
9% and 3%, respectively, to that of the base case. For active members, the CECs increase
when the initial valuation rate is 3%, and decrease when the initial valuation rate is 9%.

For an initial valuation rate of 9%, the CECs decrease slightly because of the low funded
ratio in the early years that increases the contribution rate. Comparing Panels (a) and (b) of
Figure 6.8, we find that the funded ratio is lower than that of the base case when the initial
valuation rate is 9% from year 4 to 20. Because the valuation rate decreases as the total
stock index and private equity weights decrease in the early years, the actuarial liabilities
increase, which leads to a lower funded ratio in the early years.

For an initial valuation rate of 3%, the CECs increase because of the lower contribution
rate in the first several years as a result of the high funded ratio.

6.5 Change in the available asset classes

6.5.1 Description

We remove some of the asset classes from the portfolio in three additional robustness tests,
which are described as follows:

Case 7. Remove the long-term government bond portfolio from available assets.
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Figure 6.8: Funded ratios when changing the initial valuation rate.
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Figure 6.9:Certainty equivalent consumptions when changing the initial valuation
rate.
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Case 8. Remove private equity from available assets.

Case 9. Remove both the long-term government bond portfolio and private equity from
available assets.

In the base case, we invest in four asset classes which include a long-term government
bond portfolio, the total stock index, private equity, and an investment grade bond portfolio.
The number and types of assets available might affect the fund return, and hence the
solvency and welfare metrics.

6.5.2 Impact on asset allocation

Figure 6.10 compares the asset allocation after removing some asset classes from the invest-
ment universe to that of the base case. The investment grade bond portfolio weight increases
when we remove the long-term government bond portfolio. Both the investment grade bond
portfolio weight and the total stock index weight increase when we remove private equity
or when we remove both the long-term government bond portfolio and private equity.

6.5.3 Impact on economic capital

From Table 6.4, we find that the economic capital measures deteriorate when we reduce the
number of asset classes in the portfolio because it leads to less potential for diversification.
If we have more asset classes, the weak performance of one asset can be balanced out by the
good performance of another asset, which reduces the risk of having extremely low funded
ratios. Because we have fewer asset classes in these robustness cases, we observe extremely
low funded ratios, which deteriorate the economic capital results.

Table 6.4: Economic capital results when changing asset classes.

Panel A: Three-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,3 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.92 -0.09 -0.16 -0.20 -0.27 -0.38 -0.43
Case 7 0.92 -0.10 -0.17 -0.20 -0.27 -0.38 -0.43
Case 8 0.94 -0.11 -0.18 -0.22 -0.28 -0.39 -0.46
Case 9 0.94 -0.11 -0.18 -0.22 -0.28 -0.40 -0.46
Panel B: 50-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,50 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.48 0.00 -0.07 -0.10 -0.24 -0.55 -1.47
Case 7 0.49 0.00 -0.07 -0.09 -0.24 -0.56 -1.56
Case 8 0.49 0.00 -0.10 -0.12 -0.31 -0.83 -1.88
Case 9 0.50 0.00 -0.09 -0.11 -0.30 -0.83 -1.89
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Figure 6.10: Asset allocations when changing asset classes.
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6.5.4 Impact on certainty equivalent consumptions

Panel (a) of Figure 6.10 compares the CECs obtained by removing the long-term government
bond portfolio to those of the base case. For active members, the CECs increase because the
long-term government bond portfolio has the lowest average return among the four available
assets, so the funded ratio increases when we remove this asset, on average, which causes
the CECs to increase.

Panel (b) of Figure 6.10 shows decreasing CECs when removing private equity. Private
equity has the highest average return among the four available assets, so the funded ratio
decreases when we remove private equity, on average, which causes the CECs to decrease.

Panel (c) of Figure 6.11 reports the CECs obtained by removing both the long-term
government bond portfolio and private equity. Because it is hard to see the difference of
CECs in the Panel (c), we further list the CECs of the members aged 25, 45, 65, and 85
for the Cases 7, 8, and 9, as well as the base case in Table 6.5. We find the CECs slightly
increase for active members in this case. The change is not obvious as the positive effect on
CECs from removing the long-term government bond portfolio almost offsets the negative
impact of removing private equity.
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Figure 6.11: Certainty equivalent consumptions when changing asset classes.
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Table 6.5: Certainty equivalent consumptions when changing asset classes.

Age 25 45 65 85

Base case 38,281 35,872 28,552 19,745
Case 7 38,815 36,099 28,552 19,745
Case 8 37,931 35,684 28,552 19,745
Case 9 38,478 35,928 28,552 19,745

6.6 Membership size

6.6.1 Description

We increase the number of plan members in these robustness tests, which are summarized
via the following two cases:

Case 10. Increase the population by 100%.

Case 11. Increase the population by 300%.

The plan population might impact the administrative costs because of economies of
scale. So, we increase the size of the membership to test the effect of economies of scale on
the pension plan operation.

6.6.2 Impact

The economic capital and CEC results are nearly unchanged when increasing the population
by 100% and 300%. This is because the administrative costs are very small when compared
with the fund value. In fact, the administrative cost is around 0.1% of initial fund assets.
So, the potential for economies of scale has little impact on the plan.

6.7 Change in the smoothing factor κκκ

6.7.1 Description

We change the value of the smoothing factor κ in two robustness tests as follows.

Case 12. Change κ from 0.2 to 0.1.

Case 13. Change κ from 0.2 to 0.5.

Different smoothing factors κ result in different levels of adjustments in the contribu-
tions, which further impacts the fund level. Surpluses and deficits are spread out over 5
years in the base case, 10 years in Case 12, and 2 years in Case 13.
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6.7.2 Impact on asset allocation

Figure 6.12 shows the asset allocations when the smoothing factor κ is changed. When κ

decreases to 0.1, the allocation to the total stock index and private equity increases. Panel
(b) of Figure 6.13 shows the evolution of funded ratios when κ equals 0.1. The funded
ratio increases quickly in later years. The adjustment in the contribution decreases because
κ is small. When the fund is in surplus in later years, the contribution increases as the
adjustment decreases, so the fund value and funded ratio increase. The high funded ratio
further increases the total stock index and private equity weights since, when the funded
ratio is high, more investment in these assets can help the fund achieve higher return without
much risk of falling into a deficit.
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Figure 6.12: Asset allocations when changing the smoothing factor κ.

When κ is set to 0.5, the allocation to the total stock index and private equity decreases.
Panel (c) of Figure 6.13 shows the evolution of the funded ratio distribution when κ equals
0.5. For similar reasons, the funded ratio becomes closer to 1. The adjustment in the con-
tribution increases because κ is large, leading to a decrease in contributions. So, the fund
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value and funded ratio also decreases, which further decreases the total stock index and
private equity weights.

6.7.3 Impact on economic capital

From Table 6.6, we find that, when κ equals 0.1, the economic capital measures deteriorate
at the 99.5th confidence level for the three-year horizon and deteriorate for levels above
the 50th confidence level for the 50-year horizon. As shown in Panel (b) of Figure 6.13, the
funded ratio is lower at high confidence levels than the funded ratio in the base case because
more investments in the total stock index and private equity increase the dispersion of the
funded ratio. The small smoothing factor also impacts the improvement in the funded ratios
when the plan is in deficit. So, the left tail of the funded ratio distribution becomes fatter,
which worsen the economic capital measures at high confidence levels.

When κ equals 0.5, the economic capital measures for the three-year horizon are im-
proved because a higher κ increases the contribution in year 3, which increases the funded
ratio. For the 50-year horizon, the economic capital measures are also improved for levels
above the 50th confidence level. As shown in Panel (c) of Figure 6.13, the funded ratio
dispersion decreases because of higher allocations to the investment grade bond portfolio.
The funded ratio also increases when the plan is in deficit because of the large smoothing
factor. This implies a thinner left tail in the funded ratio distribution, which improves the
economic capital measures at higher confidence levels.

Table 6.6: Economic capital results when changing the smoothing factor κκκ.

Panel A: Three-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,3 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.92 -0.09 -0.16 -0.20 -0.27 -0.38 -0.43
Case 12 0.84 -0.07 -0.15 -0.20 -0.27 -0.40 -0.47
Case 13 0.93 -0.08 -0.13 -0.17 -0.21 -0.29 -0.33
Panel B: 50-year horizon

50th confidence level 90th confidence level 99.5th confidence level
Cases P [V ∗

0,50 ≤ 0] VaR ES VaR ES VaR ES
Base case 0.48 0.00 -0.07 -0.10 -0.24 -0.55 -1.47
Case 12 0.40 0.01 -0.15 -0.10 -0.65 -2.56 -5.95
Case 13 0.51 0.00 -0.06 -0.10 -0.18 -0.37 -0.47

6.7.4 Impact on certainty equivalent consumptions

Figure 6.14 reports the CECs for the case when κ is set to 0.1 and 0.5. The CECs of active
members increase when κ equals 0.1 and decrease when κ equals 0.5.
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Figure 6.13: Funded ratios when changing the smoothing factor κ.

When κ equals 0.1, the funded ratio is higher than that of the base case in the long
term, and the contribution rate is lower, thus improving the active members’ CECs. When
κ equals 0.5, on the other hand, the funded ratio decreases significantly at the 75th and 95th

percentiles, leading to a higher contribution rate, which ultimately decreases CECs.
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Figure 6.14: Certainty equivalent consumptions when changing the smoothing
factor κ.
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Chapter 7

Concluding remarks

This report proposed a complete framework to model the operation of a DB plan, accounting
for all random pieces. The framework included a realistic ESG, a stochastic mortality model,
a dynamic administrative cost model, and an asset portfolio optimization procedure. The
ESG was used to generate economic variables for the Canadian economy. The deaths were
modelled through Bernoulli distributions, where the parameters were taken from the CIA
mortality table that considered mortality improvements over time. The administrative costs
were modelled by a traditional cost function that reflected economies of scale. The optimal
asset allocation was based on maximizing the expected utility of the funded ratio, where
the utility function put a high penalty on deficits and assigned a relatively modest value to
surpluses.

To quantify solvency and welfare under the DB plan and condense our simulation results
into one-dimensional metrics, we applied two types of measures—economic capital-based
measures and expected utility-based measures—to the pension plan. The economic capital-
based measures included the VaR and ES measures at 50th, 90th, and 99.5th confidence levels
over three-year and 50-year horizons. In addition, the CECs were calculated for comparing
members’ expected utility of consumption.

From the simulations, we observed a U-shape relationship between the initial funded
ratio and the optimal total stock index weight, leading to oscillations in the evolution of the
asset allocation, the valuation rate, and the funded ratio in early years. In the long term,
the distributions of all quantities of interest were stable.

In terms of the solvency and welfare metrics results, the economic capital measures were
worse at high confidence levels for the 50-year horizon than those obtained for a three-year
horizon. We also found that when increasing the reference funded ratio, increasing the initial
valuation rate, and excluding private equity from the asset portfolio, the economic capital
measures changed at the 90th and 99.5th confidence levels while the CECs only changed
slightly. The economic capital results and CECs were both impacted by lowering the initial
valuation rate and by changing the smoothing factor.
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The solvency and welfare metrics tend to be more meaningful when compared across
pension plans with different designs. For example, when a pension plan merges, the pension
plan’s features such as the benefit, the plan’s membership, and the fund’s relative size may
change. As a result, the pension plan’s operation and profit will be impacted after the
merger which influence the stakeholders’ welfare. To quantify the impact of mergers on the
stakeholders, we can compute and compare the measures before and after the merger by
using the framework and metrics introduced in this report.

In future research, the proposed framework can be extended. In all our tests, the mem-
bership is stable over time. We could change the membership according to that of an existing
pension plan and include deferred vested members who are no longer accruing benefits but
have not started drawing a pension. This extension would allow us to study the operation
of a real pension plan as well as its solvency and welfare. Another idea for future research
would be to consider alternative utility functions, such as a power utility function based
on fund surplus in the asset portfolio optimization procedure. Another avenue for future
research is to consider adding more asset classes to our economic scenario generator and
making them available to the pension plan.
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