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Abstract

This thesis contains explorations of uncertainty quantification in a variety of nonparametric
statistical settings, focusing on novel uses of uncertainty to enhance inference in ways which
may otherwise be overlooked.

The first two chapters concern the Laplace approximation for high-dimensional integrals.
This approximation is commonly used in complex models — for instance, to obtain marginal
likelihoods in hierarchical models for use in optimization. The quality of the approximation
may depend intimately on the true shape of the integrand. To assess this, we use probabilistic
numerics, recasting the approximation problem and its inherent uncertainty in the frame-
work of probability theory. We develop a diagnostic tool for the Laplace approximation and
its underlying shape assumptions with this framework. The tool is decidedly non-asymptotic
and is not intended as a full substitute for other quadrature methods. Rather, it is simply
meant to test the feasibility of the assumptions underpinning the Laplace approximation
with as little computational burden as possible.

Next, we provide a comprehensive overview of uncertainty quantification methods for den-
sity estimation. There are many methods of estimating an unknown density and constructing
“plausible” sets in which it may lie. Examples of the latter include pointwise intervals, si-
multaneous bands, or balls in a function space; and they may be frequentist or Bayesian in
interpretation. Here, we thoroughly review literature on density inference, covering a broad
spectrum of ideas ranging from theoretical to practical.

Finally, we propose a novel approach to modelling in a micro-macro situation, in which
group-level outcomes are dependent on covariates measured at the level of individuals within
groups. Although such models are perhaps underrepresented in the literature, they have ap-
plications in economics, epidemiology, and the social sciences. Our approach is an empirical
Bayesian method which jointly infers group-specific covariate densities and uses them as
predictors in a functional linear model. Unlike many similar methods, the assumptions
made on the structure of the data are minimal, allowing for better inference and a fuller
quantification of uncertainty in a wide variety of situations.

Keywords: Probabilistic numerics; multilevel modelling; nonparametric inference; uncer-
tainty quantification; functional data analysis; Density estimation
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Chapter 1

Introduction

1.1 Overview

In the broadest sense of the term, uncertainty quantification (UQ) is one of the most funda-
mental components of statistics. The very concept of statistical inference means assessing
the plausibility of an estimate or a hypothesis, establishing in some concrete sense what
our expectations of “the truth” may be, and describing the degree and nature of the er-
ror that may exist in these expectations. Although they allow for an enormous variety of
philosophies, interpretations, and methods, these principles are central to almost any type
of statistics.

However, as advances in data and technology have allowed for the development of more
complex methodology, the uncertainty inherent in various modelling tasks is not always fully
accounted for. Depending on the context, it may be taken for granted entirely. Complicated
models often rely on either simplifying assumptions or approximations of various types in
order to be computationally viable. Although these are usually necessary concessions in
models which typically provide otherwise acceptable estimation and inference in practical
applications, there are certainly cases in which a better understanding of uncertainty —
in either the data or the modelling strategy applied to it — would be beneficial. More
comprehensive UQ can provide better insights about the data-generating process and any
approximations thereof. In turn, such insights can aid assessment of our modelling strategies
and their shortcomings, possibly motivating the development of improved strategies.

This thesis comprises a collection of studies on uncertainty quantification in various
nonparametric contexts. Each chapter either discusses UQ in a context where it may be
underused, or proposes new methods of using uncertainty to better understand a given
statistical problem.

1



1.2 Organization of the thesis

In Chapter 2, we detail a diagnostic tool which uses probabilistic numerics to assess the ap-
propriateness of the Laplace approximation to high-dimensional integrals, based on the work
of Zhou [301]. The tool is based on a non-asymptotic philosophy which is designed to use
uncertainty about the shapes of high-dimensional integrands in a practical way. Chapter 3
details the diagnostic’s use in high dimensions, with discussions of the associated challenges
and an application to real state-space data. Chapter 4 is a comprehensive literature review
of nearly all known methods of uncertainty quantification for various types of probability
density estimators, originally published as a standalone paper [197]. In Chapter 5, we pro-
pose a new Bayesian method of multilevel regression which combines density inference and
functional data analysis to flexibly model group-level responses based on individual-level
predictors. The method is shown to accommodate data structures of a very general type,
fully accommodating for uncertainty in both levels of the data. We apply the method to a
variety of simulated data, showing that its theoretical generality and inferential power are
realized in practice.
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Chapter 2

Proof of concept for a probabilistic
diagnostic tool to assess Laplace
approximations

2.1 Introduction

Many statistical models assume the existence of “unseen” variables which influence the
actual observed data, but are distinct from the model parameters that are of interest for
inference. One such model is the state-space model (SSM), which has become a staple of
ecological modelling [e.g. 2, and references therein] and will serve as a motivating example
throughout this chapter and the next. Briefly, the SSM assumes that (possibly vector-valued)
data yt are observed at discrete time steps t = 1, . . . , T . At a given time t, the distribution
of yt depends on an unobserved or “hidden” state xt ∈ Rq (typically the dimensionality of
xt is the same for all t, but it may differ from the dimensionality of the yt’s). In turn, the
distribution of xt depends on the previous hidden state, xt−1. The reader may recognize
this as the structure of a hidden Markov model (HMM), although that term is typically
used when the domain of the hidden states is discrete [e.g 51]. Here, they are assumed to
be continuous and possibly multivariate.

In mathematical terms, the SSM is characterized by the joint likelihood1

px,y (x,y | θ) = p (x1 | θ)
[
T∏
t=2

p (xt | xt−1, θ)
] [

T∏
t=1

p (yt | xt, θ)
]
, (2.1)

1There are several possible formulations for the distribution of the first hidden state (the p (x1 | θ) term in
(2.1)). Some literature assumes it to depend on an “initial state” x0 which is given its own prior in turn [e.g.
205] or simply point estimated [e.g. 268]. The latter is essentially equivalent to specifying an “unconditional”
distribution for x1, another common approach [e.g. 51, 164]. Some authors omit the p (x1 | θ) term entirely,
thereby implicitly assigning x1 an “improper uniform prior” [e.g. 208, which is the formulation used in
Section 3.2]. The general model form given in (2.1) will suffice for the purposes of this chapter.
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where x = (x1, . . . , xT ) is a vector of dimension d = qT concatenating the hidden states,
y is defined analogously, and θ is a vector of model parameters. These parameters are
conceptually different from the hidden states even though both are unobserved: θ represents
the fixed effects of the model, whereas x represents random effects2.

There are a variety of methods for both frequentist and Bayesian inference with SSM’s
[e.g. 65, 268, and references therein]. In the frequentist framework, one typically wishes to
estimate θ by maximizing the marginal likelihood of the data,

py (y | θ) =
∫
Rd
px,y (x,y | θ) dx. (2.2)

Unfortunately, the necessary integral over the hidden states is d-dimensional, and as such
the marginal likelihood cannot realistically be computed — much less optimized — in most
cases. Instead, frequentist inference methods for SSM’s typically rely on approximations of
various types to obtain a suitable estimate of θ. Examples include methods based on particle
filtering, as described by Kantas et al. [149]. Another common — and less computationally
demanding [e.g. 2] — approach is use of the Laplace approximation (LA). The Laplace
approximation of the marginal likelihood is reasonably easy to compute and optimize as a
function of θ, but it is based on certain assumptions about the shape of the joint likelihood
as a function of x: namely, that it is well approximated by a d-dimensional Gaussian density.
If this assumption is not satisfied, the LA may not be suitable, and different methods for
SSM inference may need to be invoked.

The example of the SSM provides motivation for the broader goal of this chapter, which
is to develop a diagnostic tool to check the assumptions underpinning the LA. In particular,
our interest is in assessing whether or not a given function is “close enough” to the Gaussian
shape to justify using the Laplace approximation of its integral. In making this assessment,
we strive for a “middle ground” of computational effort: the diagnostic will naturally be
more complex than the LA itself, but much less expensive than a full-fledged numerical
estimate of the integral. Expanding on the work of Zhou [301], here we describe such a
diagnostic tool based on the machinery of probabilistic numerics, a burgeoning field which
exploits probability theory to tackle numerical problems. The tool is an application of
the probabilistic numerical technique of Bayesian quadrature (BQ), which allows for both
estimation and inference of unknown integrals. Unlike “conventional” BQ, however, the
actual integral value is of secondary importance, as the tool is primarily intended to capture
as much information as possible about the shape of the integrand. In keeping with the
aforementioned objective of “medium effort”, the tool is also decidedly non-asymptotic: it
is meant to deliver as much information as possible with a modest amount of computation,

2Of course, in a Bayesian setting, both model components are given priors and essentially treated in the
same way. In that case, the difference between them is more of a “philosphical” matter.
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without consideration of any type of limiting behaviour. The goal is a fast, informal method
that can be readily deployed to determine if additional modelling efforts are needed beyond
the LA.

The remainder of the chapter proceeds as follows. Section 2.2 defines the LA and estab-
lishes the notation used throughout Chapters 2–3, while Section 2.3 provides more detail
about the workings of probabilistic numerics and BQ in particular. Sections 2.4–2.5 provide
technical details about the design of our diagnostic tool, and Section 2.6 shows a low-
dimensional application. Chapter 3 of the thesis is focused on challenges, applications, and
discussion of the diagnostic in high-dimensional settings.

2.2 Framework and notation

Consider a positive function f : Rd → R>0 and its integral F =
∫
Rd f(x)dx. More rigorous

treatments of the Laplace approximation are available in, for instance, de Bruijn [62] and
Barndorff-Nielsen et al. [12], but for this exposition it suffices to assume that all second-
order partial derivatives of f exist and are continuous, and that f attains a maximum at
some point x̂ ∈ Rd. To reflect the common use case where f is a density or likelihood, x̂ is
called a mode. Let H be the Hessian of log f at x̂ and suppose that it is negative definite.
Taking a second-order Taylor expansion of log f about x̂ gives the approximation

log f(x) ≈ log f (x̂) + 1
2 (x− x̂)⊤H (x− x̂) , (2.3)

since all first-order partial derivatives of log f are equal to zero at the mode. Exponen-
tiating (2.3) gives an approximation for f in the form of (up to normalizing constants)
a Gaussian density centered at x̂ with covariance matrix −H−1. In turn, integrating this
exponentiated function (hereafter called the Gaussian approximation to f) produces the
Laplace approximation to F :

F ≈ L (f) := f (x̂)
∫
Rd

exp
[1

2 (x− x̂)⊤H (x− x̂)
]
dx

= f (x̂)
√

(2π)d det (−H−1). (2.4)

The LA has a long history of use in statistics [e.g. 178, 278]. It is exact (or “true”) if the
integrand f is itself proportional to a Gaussian density. There are other function shapes
for which this may be the case, but such instances may be thought of as “coincidence”.
Certainly, the derivation of the LA via (2.3) is based on an assumption of approximately
Gaussian shape (insofar as it assumes that the second-order Taylor series is a reasonable
approximation to log f), and as noted in Section 2.1, this assumption is our main interest.

Before proceeding to further details about the construction of the diagnostic tool, it is
worthwhile to connect these concepts to the SSM example described in Section 2.1. For
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given observations y and parameter values θ, the joint likelihood pxy (·,y | θ) takes the role
of the integrand, viewed as a function of the hidden states x ∈ Rd. In turn, one can see
from (2.2) that the marginal likelihood py (y | θ) takes the role of the integral over Rd to
be approximated by L (pxy). Note, however, that this approximation is itself a function of
y and θ, as both

x̂ = argmax
x

pxy (y,x | θ) and H = ∂2 log pxy
∂x2

∣∣∣∣
(y,x̂,θ)

may depend on these quantities. Indeed, one of the most common ways to “fit an SSM” in
the frequentist sense is to maximize L (pxy) with respect to θ (given observed y), typically
using standard numerical algorithms. Fitting the model in this way becomes a matter of
nested optimization, since in each iteration x̂ = x̂(θ,y) must be (numerically) calculated
for the current θ-value [see 165, for instance].

Implicit in the use of such methods for SSM’s is the assumption that the LA is reasonably
accurate given y and for each θ-value calculated during the optimization steps. If the shape
of pxy with respect to x is not “sufficiently Gaussian” at a given iteration, then the ultimate
estimate of θ may not be close to the actual MLE for the marginal likelihood. Therefore,
it would be desirable to check the validity of the LA at each step, using the diagnostic tool
detailed below.

2.3 Probabilistic numerics and Bayesian quadrature

Broadly speaking, probabilistic numerics is the use of probability theory, from a somewhat
Bayesian perspective, to simultaneously perform estimation and uncertainty quantification
in standard numerical problems [131]. For instance, Chkrebtii et al. [50] developed a prob-
abilistic solver for differential equations. For a given equation, they jointly modelled the
function and its derivatives with a Gaussian process prior, then sequentially conditioned on
evaluations of the true derivative to conduct posterior inference on the entire solution.

The approach briefly described above — using Gaussian process priors and finitely many
function evaluations to obtain posteriors for the functions and quantities of interest — is at
the core of many probabilistic numerical methods. In particular, it is the standard frame-
work with which Bayesian quadrature (BQ) is usually conducted [see 26, 54, and references
therein]. As the name suggests, BQ is a probabilistic analogue to standard numerical inte-
gration that uses a combination of prior belief and gathered information about a function.
The remainder of this section, in which the diagnostic for the LA is developed, will also
serve as an explanation of the mathematical machinery underpinning BQ.

Literature on BQ commonly assumes that the integral of interest is with respect to a
probability (i.e. finite) measure G on the domain [e.g 26], and a standard choice for Rd is a
d-dimensional Gaussian measure [215, 150]. Accordingly, we use an “importance weighting
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trick” [151, 96, 216] to re-express the integral of interest. Recalling the notation of Section
2.2, the integral of f over Rd is

F =
∫
Rd
f(x)dx =

∫
Rd
r(x)g(x)dx =

∫
Rd
r(x)dG(x), (2.5)

where r := f/g and g is the density of the aforementioned Gaussian measure G, the param-
eters of which will be discussed later. It is this “re-weighted” function r that is modelled
with a Gaussian process prior [151]. The mean function of the GP prior, mx

0 , is taken to be
the (similarly re-weighted) Gaussian approximation of f underpinning (2.3) and (2.4):

mx
0(x) :=

f (x̂) exp
[

1
2 (x− x̂)⊤H (x− x̂)

]
g(x) , x ∈ Rd. (2.6)

The covariance operator for the GP is a (positive-definite) kernel Cx0 on Rd × Rd, defined
in Section 2.4.2. Because integration is a linear projection, such a prior on g induces a
univariate normal prior on F with mean m0 :=

∫
Rd mx

0(x)dG(x) = L(f) and variance
C0 :=

∫
Rd

∫
Rd Cx0 (x, z)dG(x)dG(z) [e.g. 96, 131].

In what follows, let s = (s1, . . . , sn)⊤ ∈ Rn×d be a row-wise concatenation of n (trans-
posed) vectors in Rd (we will sometimes call it a “grid” of n “points” in Rd). Then, for
instance, the notation r (s) will refer to the column vector (r (s1) , . . . , r (sn))⊤ ∈ Rn, and
Cx0 (s, s) will denote the n × n matrix with (i, j)th entry Cx0 (si, sj). Using standard GP
identities [e.g. 234], one may use true function values at the interrogation points s to obtain
a posterior distribution for g (with another slight abuse of notation):

r | r(s) ∼ GP (mx
1 , C

x
1 ) , (2.7)

mx
1(x) = mx

0(x) + Cx0 (x, s)⊤ [Cx0 (s, s)]−1 (r(s) −mx
0(s)) , (2.8)

Cx1 (x, z) = Cx0 (x, z) − Cx0 (x, s)⊤ [Cx0 (s, s)]−1Cx0 (z, s). (2.9)

In turn, the posterior distribution on the integral F is [e.g. 26, or, indeed, virtually any BQ
paper]

F | r(s) ∼ N (m1, C1) , (2.10)

m1 = L(f) +
[∫

Rd
Cx0 (z, s)dG(z)

]⊤
[Cx0 (s, s)]−1 (r(s) −mx

0(s)) , (2.11)

C1 = C0 −
[∫

Rd
Cx0 (x, s)dG(x)

]⊤
[Cx0 (s, s)]−1

[∫
Rd
Cx0 (x, s)dG(x)

]
; (2.12)

where the integrals are row-wise over s:

∫
Rd
Cx0 (x, s)dG(x) =

(∫
Rd
Cx0 (x, s1) dG(x), . . . ,

∫
Rd
Cx0 (x, sn) dG(x)

)⊤
.
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It is useful to think of the posterior means and variances as their prior counterparts modified
by the addition or subtraction of some “correction term”.

The posterior (2.10) will serve as the diagnostic for the Laplace approximation. Borrow-
ing from the traditional notion of hypothesis testing, one may deem the Laplace approxi-
mation (or, perhaps more accurately, the shape assumptions motivating it) acceptable or
valid if L(f) falls within the range spanned by the (0.025, 0.975) quantiles of (2.10): the
95% “confidence interval” centered at the posterior mean. Conversely, if L(f) is outside of
this interval, the Laplace approximation would be deemed inappropriate (“rejection”), and
one could proceed to use a more involved method of estimating F .

2.4 Design decisions

In general terms, there are three major categories of “design” choices one must make in order
to conduct BQ, each of which will be explored in the following subsections. First, we must
decide where to place interrogation points s; second, a covariance kernel Cx0 must be chosen
for the GP prior; and finally, we must specify the measure G against which to integrate.
The latter two involve setting some hyperparameters that will govern the behaviour of the
Gaussian process; this will be deferred to Section 2.5.

Recall that the diagnostic is intended to quickly — and somewhat heuristically — de-
termine whether a given function f is “sufficiently Gaussian” to justify the LA for its
integral. In particular, it should expend only as much computational effort as is necessary
to reliably make this determination, with actual estimation of the integral F being a sec-
ondary goal. In this respect, its objectives are different from those of “traditional” BQ, in
which interrogation points may be chosen to minimize the posterior variance of the integral
[215, 200, 138] or the entropy of the integrand [116]; and hyperparameters may be chosen by
some goodness-of-fit criterion [26, 234] or approximately marginalized [217], with both ap-
proaches depending on the “observations” r (s). The computational costs arising from such
methods would be antithetical to the “moderately fast” nature of the diagnostic. Instead,
it should be “one-size-fits-all” so that it can be quickly applied to any suitable function. Al-
though “ad hoc” design choices are made in some BQ papers [e.g 150], the fact remains that
the usual goal is to obtain an accurate integral estimate with low uncertainty. Beyond the
issue of computation, there is a more fundamental difference between our goals and those
of “traditional” BQ, or, indeed, the usual principles of inference in a more general sense.
Typically, one may wish to maximize the power of their inference, ensuring that any true de-
viation from some null hypothesis will be found with sufficient data. In the present context,
this would mean embracing the standard BQ goal of high accuracy and low uncertainty, so
that even the smallest deviation from the LA could be rejected if there are enough well-
placed interrogation points. However, such a diagnostic would not be very useful in practice.
Hearkening back to the SSM example from Section 2.1, in all but the simplest models it
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will be known in advance that the joint likelihood is not exactly Gaussian, and the LA not
exactly met. The pertinent question is whether the joint likelihood is Gaussian enough, and
a diagnostic that answered this question in the negative for every nonlinear model would
be trivial and useless. Thus, the usual aim of high “power” is actually not desirable here:
the diagnostic should be calibrated such that it fails to reject any function which is “close
enough” to Gaussian, in a sense explained below. In this way, the design choices detailed in
the following sections target an unconventional notion of “good-enough-ness of fit”.

2.4.1 Placement of interrogation points

The selection of interrogation points (or “nodes”, as they are commonly known in the liter-
ature) is the defining feature of any quadrature method. Much has been written about the
asymptotic error rates (as the number of points n → ∞) of various quadrature methods,
and the ways in which they depend on the dimensionality of the domain d and the smooth-
ness of the integrand [e.g. 146, 26]. However, none of these considerations are relevant to the
development of a quick, one-size-fits-all tool intended to determine if a function is “Gaussian
enough” for the LA to be reasonable. Thus, the grid of interrogation points must provide
as much pertinent information as possible about the shape of f , and (particularly in high
dimensions, as explained in Chapter 3) how this shape influences the validity of the LA.
Importantly, it must do this with as small a grid as possible in order to be “medium-effort”;
in particular, the grid size must grow at a reasonable rate with respect to d. One hopes
that the goals of the diagnostic can be accomplished with less computation than it takes to
conduct a more accurate BQ.

To begin with, let s∗ = (s∗
1, . . . , s

∗
n)⊤ ∈ Rn×d be a grid of “preliminary” interrogation

points. Ostensibly the preliminary grid should not depend on any properties of the function
f , but considerations such as dimensionality can certainly inform its construction. We will
assume that the grid is a union of fully symmetric sets, as considered by Karvonen and
Särkkä [150]. Briefly, this means that if we take an arbitrary vector s∗

i from the grid, any
vector obtained via permutation or sign changes of its coordinates is also in the grid [ibid.].
We also assume that the grid contains multiples of the standard basis vectors of Rd (i.e.
points are placed “along the axes”) and that its centroid is the origin (the origin may
be included in the grid, but this is not strictly necessary). No further restrictions will be
placed on the preliminary grid, but some type of sparsity is desirable for the computational
reasons mentioned above. The sparse grid methods described by Karvonen and Särkkä [150],
or modifications thereof, are particularly useful to this end.

Now, recalling that H is negative-definite, consider the eigendecomposition −H−1 =
V DV ⊤ (where V is orthogonal and D is diagonal) and let T := V

√
D. The vectors com-

prising the actual interrogation grid s used in the diagnostic will be affine transformations
of the preliminary grid vectors: si = Ts∗

i + x̂, i = 1, . . . , n. This transformation serves three
purposes. The first is a translation so that the centroid of the grid is x̂, the mode of f .
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Since f will be a density or likelihood in most applications, it makes sense for the grid to be
oriented around the region of highest density. In contrast, a grid centered at the origin may
be “off-center” for some integrands, capturing only limited tail behaviour and certainly not
enough “shape information”. The second purpose for the transformation is a rotation, as T
maps standard basis vectors to eigenvectors of H (which are the same as those of −H−1).
Thus, by placing some of the preliminary points along the “standard axes” of Rd, we ensure
that the corresponding interrogation points are aligned along the directions in which the
“curvature” of f at the mode is most extreme3. Because H completely characterizes the
shape of f under the “null hypothesis” that it (approximately) satisfies the assumptions of
the LA, heuristically it makes sense to say that, a priori, one would expect such interroga-
tion points to contain the most pertinent “shape information”. Finally, the transformation
“stretches” its inputs in the direction of each eigenvector Vi by a factor of

√
Dii (Dii being

the eigenvalue associated with Vi). Thus, if H is such that the Gaussian approximation to f
(and, presumably, f itself) has different scales in different directions, the grid will capture
this appropriately. In summary, this transformation turns a preliminary grid of the type
stipulated above into an interrogation grid that is adapted to the contours of the Gaussian
approximation to f . In this respect, it can be assumed — a priori or “under the null hypoth-
esis” of Gaussian shape — that the grid so obtained is, in some informal sense, “optimal”
for obtaining the necessary information about f .

There is another, perhaps more intuitive interpretation of interrogation grids generated
in this way. Let X be a multivariate normal random variable with density proportional to
the Gaussian approximation to f , i.e. X ∼ N

(
x̂,−H−1). Then the ith component of the

vector V X is the ith principal component, or PC, of X, and has marginal variance equal to
Dii [142]. Thus, the affine transformation of the preliminary grid is centered at the mean
of X, aligned with its “principal axes”, and scaled according to the scales of its PC’s. For
example, recall that for i = 1, . . . , d, the preliminary grid contains points of the form ±mei,
where m > 0 and ei is the ith standard basis vector of Rd. The corresponding interrogation
points, ±m

√
DiiVi + x̂, are “m standard deviations (of the ith PC of X) away from the

mode (in the direction of that PC)”.

2.4.2 Form of covariance kernel

The covariance structure of the diagnostic will be based on the squared exponential kernel :

κ (x, z) = α−d exp
[
−∥x− z∥2

2λ2

]
, (2.13)

3This point can be formalized and made clear with some linear algebra and multivariate calculus. First
note that the second directional derivative of log f at the mode is always negative and is maximized (resp.
minimized) in the direction of the first (resp. last) eigenvector of H. Finally observe that this statement
must also be true for f itself since is always positive and its gradient is zero at x̂.
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a common choice in BQ [e.g 215, 150, 26]. The hyperparameter α controls the precision of
the GP, serving as a scaling factor for its variance and for that of its integral. It is more
common in literature to parameterize the kernel in terms of scale as opposed to precision,
replacing α−d in (2.13) with α2 [e.g. 215, 116], but the practical difference between these
choices is purely notational. The parameterization in (2.13) is the same as that used by
Chkrebtii et al. [50], and the fact that α is raised to the power of −d in (2.13) reflects their
notion that the d-dimensional kernel can be viewed as a pointwise product of d univariate
kernels. The hyperparameter λ is the length-scale, which controls the size of fluctuations
in GP values between distinct points [234]. In informal terms4, λ therefore controls the
“smoothness” of the GP.

The actual covariance function used in the diagnostic is a modification of (2.13) based
on the function of interest f . It is

Cx0 (x, z) = f (x̂)2 det
(
−H−1

)
κ
(
T−1x, T−1z

)
, (2.14)

where the transformation matrix T was defined in Section 2.4.1. Because ∥T−1x−T−1z∥2 =
(x − z)⊤ (−H) (x − z), the prior covariance of the GP at distinct points depends on the
distance between these points in a linear transformation of Euclidean space, with the trans-
formation depending on the “curvature” of log f at x̂. Equivalently, the prior GP covariance
function (2.14) is a (scaled) Mahalanobis kernel [1].

2.4.3 Choice of measure

In Section 2.3, we used an importance re-weighting trick to express F as an integral w.r.t.
a Gaussian measure G. O’Hagan [215] and Kennedy [151] considered BQ for r = f/g with
a constant GP prior mean and noted that results would be most accurate if the density
g closely approximated the shape of f , i.e. if r was roughly constant. The latter noted an
analogy with importance sampling (IS), in which F is also modelled as the integral of r
w.r.t. G and the shape of g should match that of the integrand [e.g. 297]. Although our GP
prior mean (2.6) is not constant, we still found in preliminary experiments that g had to be a
fairly good “fit” to f in order for the diagnostic to behave reasonably. Within the convenient
class of Gaussian measures, remarks by O’Hagan and Kennedy suggest that g proportional
to the Gaussian approximation to f , i.e. G = N

(
x̂,−H−1), would be a reasonable “starting

point”. The measure ultimately used for the diagnostic is a slight modification of this:

G = N
(
x̂,−γ2H−1

)
, (2.15)

4In formal terms, a GP with squared exponential covariance kernel is infinitely differentiable, in the mean
square sense, regardless of the value of λ [234]. “Smoothness” as informally used above simply means an
absence of “wiggles” at small scales in functions sampled from the GP.
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where the new hyperparameter γ > 0 controls the “spread” of G and will be discussed in
Section 2.5.

2.4.4 Invariance of diagnostic behaviour

At first glance, it may seem that these function-specific design choices are antithetical to
the intended “one-size-fits-all” nature of the diagnostic. On the contrary, our design ensures
a few kinds of advantageous “invariance”. Recall that the interrogation points are obtained
from the function-agnostic preliminary grid as si = Ts∗

i + x̂, i = 1, . . . , n. Plugging any
two interrogation points si, sj into (2.14) therefore gives Cx0 (si, sj) ∝ κ

(
s∗
i , s

∗
j

)
. Note also

that analogous results can be shown to hold for the integral terms5 in (2.11 – 2.12) and
for the prior mean interrogations mx

0 (s). Therefore, in principle the interrogations should
provide the same quality and quantity of “information” for any f . Now, recall that the
diagnostic rejects the LA for f iff it is not contained in the central 95% interval of the
integral posterior, i.e. iff L(f) /∈

(
m1 − 1.96

√
C1,m1 + 1.96

√
C1
)
. Note that

√
C1 is equal to

L(f) ∝ f (x̂)
√

det (−H−1) times a factor depending only on s∗ and the hyperparameters
(λ, α, γ) (by (2.12) and (2.14)); similarly, m1 is equal to L(f) times a factor depending only
on s∗, the hyperparameters, and the “normalized” function values f (s) /f (x̂) (by (2.6),
(2.11), and the definition of r). Thus, the necessary and sufficient condition for rejection
does not depend on the actual values of x̂, f (x̂), and det

(
−H−1): it is invariant to any

scaling of the function or affine transformation of its domain. More formally, for a fixed set
of hyperparameters, the diagnostic rejects the LA when applied to f iff it rejects the LA
when applied to any function of the form fTrans : x 7→ af (Ax+ b) with a > 0, A ∈ Rd×d

with det(A) ̸= 0, and b ∈ Rd. The only way in which f affects the result of the diagnostic
is through the relative differences between its values at the interrogation points and those
of its Gaussian approximation. Because the diagnostic seeks only to determine whether f is
“sufficiently Gaussian in shape”, this is precisely the appropriate behaviour for it to have.

Note the “standardized” design developed in Sections 2.4.1–2.4.3 is not without prece-
dent in the BQ literature. For instance, Särkkä et al. [256] adopted the idea of stochastic
decoupling from sigma-point methodology: to integrate a function r against some Gaussian
measure N (µ, P ), they placed a GP prior with the standard squared exponential covari-
ance kernel (2.13) on the function rTrans : x 7→ r

(
µ+

√
Px
)

and used a standardized set
of “unit” interrogation points. Such an approach is essentially equivalent (possibly up to
variance scaling factors) to our design; indeed, the authors made note of its invariance
to affine transformations. However, their main interest was in deriving BQ-based methods
for filtering and smoothing in nonlinear SSM’s, in which µ and P are computed for each
necessary integral according to their algorithms [256].

5To see this, note that the density g has a multiplicative factor of
√

det (−H) =
∣∣det

(
T −1)∣∣, and integrate

(2.14) w.r.t. G by substitution. This is another reason why the choice of measure (2.15) makes sense.

12



2.5 Hyperparameter calibration

It remains to select values for (λ, α, γ). As discussed above, the design of the interrogation
grid and covariance kernel serve to “standardize” the input and output scales of the GP,
so it is not necessary to consider these factors when setting the hyperparameters. Indeed,
for a given dimension d and preliminary grid s∗, the same hyperparameter values should
be used for any f to ensure the aforementioned diagnostic invariance. Recall from the
beginning of Section 2.4 that the intent is to test “good-enough-ness of fit”: the diagnostic
should reject the LA for functions with a substantially non-Gaussian shape, but should
not be so “powerful” that it rejects functions which are close enough to Gaussian. With
this in mind, we propose to set the hyperparameters in a somewhat heuristic way based
on a predetermined calibration or test function τ . Such a function should have a shape
fairly close to Gaussian in order to serve as the “edge case” for the diagnostic. Specifically,
given a preliminary grid s∗ and test function τ , the hyperparameters for the d-dimensional
diagnostic should be set such that the following conditions are met when the diagnostic is
applied to τ .

(1) The LA L(τ) should be on the boundary of the rejection region (i.e. equal to one of
the endpoints of the 95% central interval for the integral posterior); and

(2a) the discrepancy between τ and the “un-weighted” posterior GP mean, mx
1 · g, should

be as small as possible throughout the domain; or at the very least

(2b) the posterior integral mean m1 should be as close as possible to the true integral of τ .

Either version of the second condition should ensure that the diagnostic is reasonably accu-
rate when applied to τ . Of course, accurate estimation is still an ancillary goal in general,
but at the very least it should be achieved for the test function to ensure that the diagnos-
tic uses interrogations in a sensible way. Condition (2a) is the more desirable version since
it directly targets the shape of the function and also implies (2b) by design, but in high
dimensions with large interrogation grids it may only be possible to ensure that (2b) is met
(see Section 3.1). The first condition establishes τ as the “borderline” function: any function
that is “less Gaussian” will have its LA rejected, and any function “at least as Gaussian”
will not. To see this, consider the normalized posterior “correction term”6

∆(f) :=
√

det (−H)
f (x̂)

[∫
Rd
Cx0 (z, s)dG(z)

]⊤
[Cx0 (s, s)]−1 (r(s) −mx

0(s)) , (2.16)

6To avoid any possible confusion, it should be reiterated that all of the quantities in these definitions —
namely, G, r, s, mx

0 , mx
1 , C0, and C1 — technically depend on f through the constructions detailed in Sections

2.3–2.4.3. More accurate notation would reflect this explicitly, but such notation would be cumbersome.
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which, as per (2.11), is (up to the scaling factors in front) the difference between the prior
and posterior integral means when the diagnostic is applied to a function f . It can be shown
that the rejection criterion for the diagnostic is equivalent to f (x̂)

√
det (−H−1) |∆(f)| >

1.96
√
C1. Recall from Section 2.4.4 that C1 only depends on f through scaling factors f (x̂)2

and det
(
−H−1), so the rejection criteria is equivalent to |∆(f)| > ϵ, where the number ϵ > 0

depends only on s∗, λ, α, and γ. Now, to meet condition (1) for the test function τ is to have
|∆(τ)| = ϵ. Therefore, with this calibration scheme a function f will have its LA rejected iff
|∆(f)| > |∆(τ)|. Again, all that matters are the relative differences between a function and
its Gaussian approximation at the interrogation points — specifically, whether the weighted
sum of these as given by (2.16) (with the weights depending on s∗, λ, and γ) is larger in
magnitude than it is for the predetermined “borderline Gaussian” τ .

A natural choice for a test function is the density of a d-dimensional multivariate Stu-
dent’s t distribution with ν degrees of freedom, mean at the origin, and scale matrix equal
to the identity. Denote this density by τν,d, so

τν,d(x) =
Γ
(
ν+d

2

)
Γ
(
ν
2
)√

νπ

(
1 + ∥x∥2

ν

)− ν+d
2

, (2.17)

and note that it has heavier tails than a d-dimensional Gaussian density, so the LA, given
by the formula

L (τν,d) =
( 2
ν + d

) d
2 Γ

(
ν+d

2

)
Γ
(
ν
2
) , (2.18)

underestimates the true integral (which is always equal to 1). However, τν,d approaches a
standard multivariate normal density in the limit ν → ∞, and therefore L (τν,d) → 1 as
well. Therefore, for some large value of ν, the shape of τν,d may be said to be “sufficiently
Gaussian” to warrant non-rejection of the LA. Denote such a value by νd to reflect the fact
(discussed further in Section 3.1) that the specific choice of test function should depend on
the dimension d. One option that works reasonably well is to let νd be the smallest integer
such that L (τνd,d) ≥ 0.95. The densities of multivariate t variables with more than νd degrees
of freedom are close enough in shape to Gaussians that their Laplace approximations are
within 5% of the true integral value; conversely, those with lower degrees of freedom have
heavier tails and LA’s that underestimate the true integral by over 5%.

With the family of test functions established, it is now possible to discuss how one may
set the hyperparameters to satisfy the conditions listed above. First note that the precision
parameter α does not actually affect the posterior mean; as a scaling factor, it serves only
to ensure that condition (1) is met. Thus, it suffices to find good values for λ and γ, after
which α can simply be chosen to scale the posterior variance C1 such that |∆(τνd,d)| = ϵ.
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The fact that λ affects the shape of the GP mean is obvious since, as noted in Section
2.4.2, it determines the “smoothness” of functions sampled from the GP and is therefore a
“shape parameter” in some sense. What is perhaps more surprising is the effect of γ, the
scaling factor for the underlying measure G. Recall from Section 2.4.3 that G is analogous
to the proposal distribution in IS. It is well-known that the performance of an importance
sampler will be poor if the density g has lighter tails than f , and it is therefore better to
err on the side of caution by taking g to have slightly heavier tails [e.g. 297]. In our context,
this corresponds to setting γ slightly larger than 1, and in our experiments we use a value
of

γ =
√

1.5 νd + d

νd + d− 3 . (2.19)

The heuristic motivation for this choice is as follows. Consider d-dimensional random vec-
tors Y ∼ τνd,d and X ∼ g, where g = g (τνd,d) is the density corresponding to (2.15)
for the choice of function f = τνd,d. The γ-value given by (2.19) ensures that 1.5 ×
Var [Y1 | Y2 = 0, . . . , Yd = 0] = Var [X1 | X2 = 0, . . . , Xd = 0] — in words, the univariate
conditional densities (with all other coordinates fixed at the origin) of the t distribution
used for calibration have variance equal to two thirds of those of the “approximating Gaus-
sian density” g [151]. Here the analogy with IS becomes somewhat strained, as it can be
shown that any Gaussian proposal distribution will result in an importance sampler with
infinite variance when applied to a t density. In fact, taking G itself as a t distribution is
often a good choice in IS due to the heaviness of the tails [279, and references therein].
Prüher et al. [229] considered this choice of G in BQ, but noted that the kernel integrals
in (2.11–2.12) would not have closed forms. For computational convenience we will retain
our choice of a Gaussian measure, but note that, unlike IS, the posterior variance of the
integral is still guaranteed to be finite here.

2.5.1 Calibrating in two dimensions

Using these ideas, we will now demonstrate how calibration can work for the diagnostic in
d = 2 dimensions. The test function will be a bivariate t density with ν2 = 38 degrees of
freedom, as L (τ38,2) = 0.95. The preliminary interrogation grid s∗ will consist of evenly-
spaced points in a “cross-shaped” formation “on the axes” of R2:

s∗ = {(0, 0)} ∪ {±mei : m = 1, 2, 3, i = 1, 2} , (2.20)

where ei is the ith standard basis vector of R2. Such “cross-shaped grids” are appealing, at
least in low dimensions, because the number of points n scales linearly with d. Here, we
have n = 13.
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In order to heuristically understand how hyperparameter choices affect the behaviour of
the diagnostic, it will be useful to plot the difference between the test function τ38,2 and the
“un-weighted” GP posterior mean mx

1 · g for various (λ, γ)-values. Note that the “optimal”
hyperparameters will depend on the dimensionality of the domain, the specific test function
used, and the preliminary grid chosen. In particular, if one wishes to use the diagnostic in
2 dimensions with a different preliminary grid from the one considered here, it should not
necessarily be assumed that the λ value given below is suitable for the new grid.

Choosing γ according to (2.19) with d = 2 and νd = 38 results in a value of γ = 1.2734.
In this low-dimensional setting with a small interrogation grid, it is possible to crudely
approximate an analytic method to find an “optimal” λ: given the aforementioned γ-value,
we approximate the “L2 error”

∫
R2 (mx

1(x)g(x) − τ38,2(x))2 dx and its derivative w.r.t. λ
by simple Riemann sums over the grid of points {−10,−9.99,−9.98, . . . , 9.99, 10}2. This
approximate error is then minimized w.r.t. λ using the BFGS algorithm as implemented in
the fminunc function in the MATLAB Optimization Toolbox [196], resulting in a value of
λ = 4.2241.

Figure 2.1 shows results for the diagnostic applied to τ38,2 with these design choices. The
difference (mx

1 · g − τ38,2) is very small among the lines defined by the interrogation grid,
but there are deep valleys centered around the “main diagonals” of the plane and within
the boundaries of the interrogation grid. Since the heavy-tailed t density is larger than
its Gaussian approximation in these regions, it is clear that there is not much difference
between the prior and posterior GP means there. The interrogation points are too far from
these regions to exert much influence on the posterior mean there - in this respect, one may
say that the GP is failing to interpolate to these areas. A more mathematical explanation of
this behaviour can be extracted from (2.8), the definition of mx

1 . By this definition, it holds
that mx

1 (s) g (s) = f (s) for any f and any combination of hyperparameter values. However,
at any other point x, the extent to which mx

1(x) updates from the prior GP mean mx
0(x)

is determined by the “weights” Cx0 (x, s)⊤ [Cx0 (s, s)]−1. These weights tend to decrease in
magnitude as x moves away from the points in s, to an extent determined by λ and γ.
When λ is small, there is almost no prior dependence between GP values at distinct points,
so these weights are close to zero for x /∈ s. This can be seen in Figure 2.2: the posterior GP
mean is forced to equal τ38,2 at the interrogation points, but everywhere else it is virtually
unchanged from the prior mean mx

0). Thus, in this case m1 is very close to the prior value
m0 = L (τ38,2) = 0.95. In contrast, the “optimal” λ-value results in a posterior integral
estimate of m1 = 0.99095, quite close to the true value of 1. Note that in each case, the
integral of (mx

1 · g − τ38,2) (the surface in the left plot) over R2 is equal to the difference
between m1 and the true integral (in the right plot, the horizontal distance between the
peak of the bell curve and the red line). As mentioned above, α is chosen to ensure that
the test function is on the boundary between rejection and non-rejection, resulting in a
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λ = 4.2241, γ = 1.2734, α = 0.023142

Figure 2.1: Results for the diagnostic applied to the 2-dimensional test function τ38,2, with
an “optimal” λ, γ obtained from (2.19), and α set to ensure that the LA is on the boundary
of the “rejection region”. Left: the difference between the un-weighted posterior GP mean
and the true function. Right: the posterior distribution for the integral F .

posterior variance of C1 = 4.3653 × 10−4 for the “optimal” λ and 5.7369 × 10−8 for the
lower one.

The effect of γ is less easily explained than that of λ. In fact, their effects counterbalance
each other to some degree: we found that it was still possible to approximate an “optimal”
λ with the method described above even for different fixed values of γ, with lower γ-values
resulting in higher required λ-values and vice-versa. In principle, this suggests that the di-
agnostic will not be too sensitive to the use of different γ-values, since any possible negative
effect on its performance could be mitigated by adjusting λ in the opposite direction. How-
ever, there is a limit to this in practice, and γ-values that are either too low or too high
can still be problematic. With a lower value of γ = 1, it became difficult to find an optimal
λ, as the BFGS algorithm was quite sensitive to the choice of initial value. Although the
results of differently-initialized BFGS runs were not consistent with each other, they all
resulted in final λ-values over 9. At length-scales this large, the Gram matrix Cx0 (s, s) is
poorly conditioned (for instance, with s∗ given by (2.20), its reciprocal condition number is
7.7885 × 10−14 when λ = 9, as opposed to 7.1579 × 10−10 when λ = 4.2241), so numerical
stability becomes a concern. Furthermore, even with λ-values this high, the posterior inte-
gral mean m1 was around 0.986: not as close to 1 as it was with the slightly larger γ-value
and its “optimal” λ. The fact that these difficulties exist for γ = 1 is noteworthy since this
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λ = 0.0729, γ = 1.2734, α = 25.2372

Figure 2.2: Results for the diagnostic applied to τ38,2 with a low λ-value, γ obtained from
(2.19), and α set to ensure that the LA is on the boundary of the “rejection region”. Note
the spikes created by “undersmoothing”.

corresponds to using an integrating measure whose density is proportional to the Gaussian
approximation to the true function.

Concerns about numerical accuracy do not exist with an even larger γ-value, as the
corresponding optimal λ-value will be smaller and the Gram matrix will therefore be better
conditioned. However, sensitivity becomes a problem in this situation: when γ is high, even
a relatively small deviation from the optimal λ can change the diagnostic’s behaviour quite
dramatically. This will be of particular concern in higher dimensions, in which it is not
viable to approximate and optimize the L2 error numerically. In the current 2-dimensional
setting, with γ = 3, the approximately-optimal λ-value is 1.1953, and the results with these
hyperparameters (not shown) are fairly similar to those in Figure 2.1. A modest increase to
λ = 1.3 creates a noticeably different outcome, as shown in Figure 2.3. The “interpolation
valleys” seen in Figure 2.1 are slightly smaller in size, as the larger length-scale increases
dependence between distinct points in the GP, thereby allowing the interrogations to exert
more influence at faraway points. However, this slight improvement in interpolation comes
at a cost: undesirable extrapolation effects due to oversmoothing. Indeed, in all four direc-
tions just beyond the extremal interrogation points, mx

1 dips well below the true function
τ38,2. As a result, m1 = 0.98108 is farther from the true integral than it was with the hyper-
parameter values in Figure 2.1. Oversmoothing causes the weights Cx0 (x, s)⊤ [Cx0 (s, s)]−1 to
have unpredictable effects at x beyond the boundaries of the interrogation grid, depending
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λ = 1.3, γ = 3, α = 1.39

Figure 2.3: Results for the diagnostic applied to τ38,2 with a high γ-value, α set to ensure that
the LA is on the boundary of the “rejection region”, and a λ-value that is only slightly larger
than the approximate “L2 optimum” for this γ-value (which, in this case, was λ = 1.1953).
Contrast with Figure 2.1 to see the excessive sensitivity to λ caused by a high γ-value.

on the spread and density of s as well as the shape of the integrand. In some cases, the
“extrapolation valleys” seen in Figure 2.3 may be replaced by large “hills”, causing m1 to
significantly overestimate the value of F (not shown). It is now clear that the original hy-
perparameter values in Figure 2.1 provide the best “tradeoff”, balancing the interpolation
errors of undersmoothing with the extrapolation errors of oversmoothing.

2.6 Example: a banana-shaped function

In a paper on MCMC algorithms, Haario et al. [118] considered a function with “banana-
shaped” contours, defined by “twisting” one coordinate of a Gaussian density. Letting
φ (·; Σ) denote a bivariate Gaussian density with mean at the origin and covariance ma-
trix Σ, the version of the function used here is

β(x) := φ

(
x1, x2 − 1

2
(
x2

1 − 3
)

;
(

3 0
0 1

))
.

It turns out that the Laplace approximation is true for this function: L (β) =
∫
R2 β(x)dx = 1.

As discussed in Section 2.2, this may be viewed as “coincidence”, as it is clear from Figure
2.4 that β is not well-approximated by a Gaussian shape. In this way, the function β
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represents an interesting test case for the diagnostic: although its LA is technically valid,
it is not “Gaussian enough” and should therefore be rejected. Indeed, with the preliminary
interrogation grid (2.20) and corresponding (approximately) “optimal” hyperparameters
(see Figure 2.1), this is precisely what the diagnostic does, as shown in Figure 2.5. The
un-weighted GP posterior mean now accurately captures the light tails of β along the line
x2 = 0, although it does not capture the large ridges defining the “banana” shape since there
are no interrogation points along these ridges. As a result, the posterior integral estimate m1

is 0.3658 — well below the true value and the LA. Note also that there are small oscillations
between the interrogation points along the x1-axis, perhaps signifying a small amount of
oversmoothing. Finally, observe that the posterior variance is small enough to result in a
rejection of the LA, which is well above the 97.5% quantile for the posterior distribution
of F . These design choices would certainly be poor ones if accurate integral estimation
was the main goal. In this framework, however, they are clearly suitable — the shape
information captured by the diagnostic suggests that β is not Gaussian enough to justify
using the LA outright. In this type of scenario, a practitioner could subsequently employ a
different method to estimate the integral. Presumably, they would then discover that the
LA was correct all along — but not because of the quality of the Taylor approximation
(2.3) underpinning its use.
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Figure 2.4: A two-dimensional “banana-shaped” function alongside its Gaussian approxi-
mation.
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Figure 2.5: Results from applying the diagnostic to the two-dimensional banana-shaped
function, using the same design choices as in Figure 2.1. Note that the colours in the left
plot are reversed from those in Figure 2.4 for easier visualization.
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Chapter 3

The Laplace approximation
diagnostic in high dimensions:
considerations and applications

3.1 Overview

The low-dimensional LA diagnostic experiments of the previous chapter (Sections 2.5.1
and 2.6) were useful for exposition, but ultimately our main interest is in applying the
diagnostic to higher-dimensional functions. Unsurprisingly, for large dimensions d it is more
challenging to ensure that the diagnostic behaves well. Recall from Section 2.5.1 that we
found an approximately “optimal” length-scale λ by minimizing a type of L2 error associated
with the calibration function τνd,d. This required the numerical approximation of an integral
over Rd, which is not computationally feasible in high dimensions (if it was, there would
be no need for the LA or for this very diagnostic). It is also not viable to seek a closed-
form expression for the L2 error: doing so would, in turn, require an analytic expression
for the inverse of the Gram matrix Cx0 (s, s), which will be prohibitively complicated for all
but the smallest of interrogation grids. With respect to the conditions for hyperparameter
calibration listed in Section 2.5, condition (2a) can be assessed with a heuristic visual
approach for moderate dimensions d > 2: viewing a 2-dimensional “slice” of the difference
mx

1 · g − τνd,d with x3, . . . , xd all set to 0 (exploiting the symmetry of the t density and
the fact that its mode is at the origin), one can adjust λ so as to make this difference
appear as uniformly small as possible, attempting to balance issues with interpolation and
extrapolation. Unfortunately, even this approach ceases to be viable when d is large, so that
Condition (2b) is all that can be ensured. The reasons for this depend on the structure of
the preliminary grid s∗; in turn, this structure should be chosen to mitigate the challenges
that arise in high dimensions. More details on some possible choices are given below. We
found in preliminary experiments that grids of the form (2.20) — that is, those with multiple
evenly-spaced points along each axis — did not work very well when generalized to higher
dimensions. Note that, although the points along any given axis are equally spaced in such
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grids, the distances between points on different axes will be larger. We conjecture that this
variation in interrogation point distances becomes problematic in high dimensions as more
axes and points are added.

Fundamentally, the issue in high dimensions is that a function’s “shape information” —
of the type described in the preceding chapter — becomes more divorced from the value of its
integral, making it more difficult to test the notion of “sufficiently Gaussian shape to justify
the LA”. There are a few different possible causes for this. The first is a well-known “curse
of dimensionality” affecting certain high-dimensional probability density functions: most of
their mass is in the tails, far away from the high-density region directly surrounding the
mode [e.g. 39, 18]. Essentially, this happens because the neighbourhood around the mode
is of a much smaller (Lebesgue) volume than the region encompassing the tails, so that
most of the mass contributing to the integral is in a “shell” where the product of density
and volume is high [ibid.]. For instance, if X is a d-dimensional standard normal random
variable, the Gaussian annulus theorem [22, Theorem 2.9] states that, with high probability,
X will be in a spherical shell of width O(1) and distance O

(√
d
)

from the origin.
This poses an unfortunate challenge for the diagnostic: when the integrand f is a high-

dimensional density, its shape is easiest to visually assess around the mode where its values
are relatively large, but its integral (and its LA, which is the integral of the Gaussian
approximation to f) may be determined farther away where f is much smaller. For example,
consider the case d = 72 (the dimensionality of the real-data examples in Section 3.2), for
which (as explained in Section 2.5) we take the calibration function τ to be a multivariate
t density with ν72 = 25921 degrees of freedom because L (τ25921,72) = 0.95. The top plot
of Figure 3.1 shows the integral of this density — and that of its Gaussian approximation
(mx

0 · g, in the notation of Section 2.3) — over the 72-dimensional ball {x : ∥x∥ < r} as
the radius r varies. Observe that both τ and its Gaussian approximation have most of
their mass between distances 7–10 from the origin. Furthermore, the difference between
the integrals does not start to become apparent until the radius of integration is at least 8
(note that, as r → ∞, the integrals of τ and its Gaussian approximation converge to 1 and
the LA, respectively). This affirms the idea that most of the important information about
the integral (in particular, its closeness to the LA) is quite far from the mode, in a region
that authors such as Betancourt [18] call the typical set. In contrast, the region of maximal
shape difference between τ and its Gaussian approximation occurs much closer to the origin,
where there is almost no mass. This can be seen in the bottom plot of Figure 3.1, which
shows that τ differs most from its Gaussian approximation at a distance of approximately
2 from the origin. Even there, the largest difference between them is only about 0.002% of
τ ’s value at the mode. Further out in the aforementioned “typical set”, the two functions
are visually indistinguishable.

There is another interesting point to be made here about the high-dimensional diagnos-
tic. It was stated in Section 2.5 that νd, the degrees of freedom for the calibration function

24



Figure 3.1: Top: the amount of mass enclosed by τ = τ25921,72 and its Gaussian approxima-
tion over a ball of radius r centered at the origin. Bottom: the difference between τ and its
Gaussian approximation at a distance of radius r from the origin, normalized by the value
of τ at the origin.
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in d dimensions, would depend on d itself. Indeed, the Laplace approximation (2.18) for
a multivariate t density is decreasing in d for fixed ν. Thus, if νd is defined, as previously
suggested, to be the smallest integer such that L (τνd,d) ≥ 0.95, then νd is necessarily an
increasing function of d. Put another way, in higher dimensions a t density must be closer
in shape to a Gaussian for its LA to be within 5% of the true integral value. Indeed, using
this definition of νd in 72 dimensions resulted in the extremely high value ν72 = 25921. The
difference between the resulting t density and its Gaussian approximation is small enough
to be virtually invisible, but because this difference is compounded over a (typical) set of
extremely high volume, it results in a sizable difference between integrals.

In light of these ideas, our first suggested design for a high-dimensional diagnostic uses a
preliminary grid s∗ = {0} ∪

{
±

√
dei : i = 1, . . . , d

}
, where 0 denotes the origin and ei once

again denotes the ith standard basis vector of Rd. This will result in 2d + 1 interrogation
points: one at the mode, and two at distances of O

(√
d
)

away from it along each “principal
axis” (see Section 2.4.1). Per the discussion above, if a function f is assumed a priori to
have similar shape to a Gaussian density, then it is reasonable to expect this type of design
to provide the most pertinent information about its integral. As described by Särkkä et al.
[256], this choice of s∗ in BQ creates a connection with sigma-point methods, in which such
grids are used to estimate integrals for filtering and smoothing in nonlinear SSM’s [e.g. 145].
In particular, aside from the inclusion of the origin this choice of s∗ is identical to the point
set used in the cubature Kalman filter (CKF) of Arasaratnam and Haykin [5].

With this preliminary grid in d = 72 dimensions, we use τ25921,72 as our calibration
function and once again take the hyperparameter γ as in (2.19), resulting in a value of
γ = 1.2248. As alluded to above, here λ cannot be selected to visually ensure that Condition
(2a) is met as in the low-dimensional experiments of Section 2.5.1. Because the differences
between the calibration function and its Gaussian approximation are so small at the chosen
interrogation points, adjusting λ does not produce any visible change in the difference
mx

1 · g− τ25921,72 (not shown). Thus, we must rely on the weaker Condition 2(b): selecting λ
to produce a reasonable posterior integral estimate m1. We found λ = 3.7 to be a good choice
for this, giving a posterior integral mean of m1 = 0.998. Finally, α = 0.1565 is once again
chosen to ensure that the calibration curve’s LA (equal to 0.95) is on the boundary of the
rejection region. Note that, although we were unable to use shape information as directly as
we did in the low-dimensional experiments, the diagnostic’s rejection criterion still depends
solely on the “correction term” (2.16), itself a measure of deviation between a function and
its Gaussian approximation. It could be said that the high-dimensional diagnostic, as it is
configured here, determines whether a function is sufficiently Gaussian in the tails to justify
the LA.
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3.2 Example: North Sea cod modelling

This section returns to the SSM discussed at the beginning of the previous chapter (Sections
2.1 – 2.2). Recall that, given observed data y, such a model can be fit by maximizing the
Laplace-approximated marginal likelihood (integrating over hidden states x) with respect
to parameters θ. These methods are increasingly common in fisheries science, where they
are used for stock assessment: to infer population dynamics for various species of fish given
observations from surveys and commercial catches [2]. SSM’s applied to stock assessment are
often called state-space assessment models (SSAM’s) [ibid.] and serve as a natural context
to test our diagnostic: although the LA is commonly used in practice for these models,
if the joint likelihood (2.1) is not “sufficiently Gaussian” in shape, then the LA may not
be a suitable proxy for the marginal likelihood (2.2) and the resulting inferences may be
incorrect.

To investigate the performance of our diagnostic in this “real-world” setting, we use a
dataset containing multiyear measurements of cod stocks in the North Sea and fit SSAM’s
to various subsets of this data following Aeberhard et al. [2]. The observations yt are taken
on an annual basis over the span of several decades (t = 1963, . . . , 2015). Briefly, for a given
year t, yt is a vector comprising the amounts of cod of different ages observed during surveys
and commercial catches conducted that year1. The hidden state xt contains, for each age
group, the “true” abundance and fishing mortality rate for cod in that age group in year t.
Finally, θ represents a variety of “global” parameters such as scaling factors and variances.
The SSAM used here [see 208, and references therein] is highly nonlinear, with complex
dependencies between the age-specific components of xt and xt−1. For the sake of brevity
further details are omitted here, but they are available in the appendix of Aeberhard et al.
[2]. All models were fit using the stockassessment R package [208, 16], which is in turn built
on the TMB package [165].

Two SSAM’s are considered here, each corresponding to a different subset of the available
data: one fit to the data collected from 1970 to 1975 (hereafter the “1970 model”), and
another to the data from 2005–2011 (the “2005 model”). Since each hidden state xt is
of dimension 12, using these six-year “windows” results in a latent dimensionality of d =
12 × 6 = 72 for each model: fairly modest (and computationally convenient) compared to
the 636 dimensions associated with the full dataset [2], but still large enough that any non-
LA approach to marginalizing the likelihood would be far from trivial2. As stated above,

1Note that the dimensionality of yt is not constant with t, as the time ranges of the commercial catches
and surveys only partially overlap. However, “missing observations” are not a problem for either model
fitting or the diagnostic.

2We also found that, with smaller time windows, there was not sufficient data to guarantee model conver-
gence. Even six-year windows besides the ones used here typically did not converge without careful selection
of algorithm settings.
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the Laplace-approximated marginal likelihood L (pxy) is maximized numerically w.r.t. θ,
and ideally we would like to use our diagnostic at each step of this optimization to ensure
it remains accurate throughout. For simplicity in these experiments, we only apply the
diagnostic at the last optimization step, seeking to determine only for the final parameter
values θ̂ whether pxy

(
·,y | θ̂

)
is “Gaussian enough” to justify the LA.

In order to assess the performance of the diagnostic, it is desirable to have some other
estimate of the marginal likelihood py

(
y | θ̂

)
to serve as an approximate “ground truth”.

Since standard numerical integration is completely nonviable in 72 dimensions, we instead
obtain such estimates via importance sampling [e.g. 95, and references therein]. For both
models, samples were taken from a noncentral multivariate t distribution with mean x̂,
scale matrix −H−1, and 5 degrees of freedom [76]. The joint likelihoods of both models
appear to have light tails in x (see below), so this choice of importance distribution should
mitigate the risk of infinite variance in theory [297, 279]. However, because we can only
assess the tail behaviour of the models in finitely many directions, we cannot rule out the
possibility that, somewhere in the 72-dimensional space, they have a tail even heavier than
that of a t density. We conjecture that this is not the case, although the existence of such
a tail could result in a sampler with infinite variance. A more pressing concern is that poor
finite-sample performance can still occur even with theoretical guarantees. Nevertheless,
importance sampling is not the main concern here — it is intended only as a convenient, if
somewhat informal, check on the LA diagnostic.

This diagnostic is not the only way to check the LA for a SSM — the checkConsistency

function in the TMB package [165] provides another method3. It is essentially a score
test [231] for the Laplace-approximated marginal likelihood: by simulating many separate
datasets y∗ ∼ py

(
· | θ̂

)
(which can be done by simulating x∗ ∼ px, then y∗ ∼ py|x), it

constructs a test statistic to test the hypothesis Ey
[
∇θ logL (pxy)

∣∣
θ̂

]
= 0, under which the

statistic would be asymptotically χ2-distributed. Since the true marginal score function has
mean zero, a rejection of this hypothesis means that the LA is not a suitable approximation
for the marginal likelihood py. It will be useful to compare this method to our diagnos-
tic, but it should be noted that there is a key conceptual difference between them. The
checkConsistency methodology views L (pxy) and py as functions of y; with this view, it
seeks to determine whether the marginal likelihood is well approximated by the LA, and
what effects this approximation could have on the bias of the estimated θ̂. In contrast, our
diagnostic is focused on shape of the joint likelihood pxy when viewed as a function of x: in
particular, whether this shape warrants the use of the LA to fit the model for the observed
(i.e. fixed) y.

3Refer to the source code at https://github.com/kaskr/adcomp/blob/master/TMB/R/checker.R
for further detail. Notes provided by Anders Nielsen in personal correspondence also helped to inform this
discussion.
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1970 model

Figure 3.2: Results of the diagnostic applied to the 1970 SSAM. Left: IS estimates of
py
(
y | θ̂

)
at various sample sizes (black dots) with estimated 95% confidence intervals

(vertical line segments), with the Laplace approximation (blue dashed line) and the poste-
rior integral mean (red dashed line) for reference. Right: the posterior distribution for the
marginal likelihood, obtained from the diagnostic (rotated 90 degrees for ease of comparison
with IS estimates).

29



Figure 3.2 shows results (from the diagnostic, as well as the aforementioned impor-
tance sampler with differing numbers of samples) for the 1970 model. For the importance
samplers, 95% confidence intervals were obtained with a Gaussian approximation, using the
sample variance of the IS weights. The central limit theorem dictates that for a well-behaved
importance sampler, the width of these intervals should be roughly O

(
S−1/2

)
, where S is

the number of samples. The left plot of Figure 3.2 indicates that this may not be the case.
Indeed, the score test of Koopman et al. [161] rejected the hypothesis that these samplers
had finite variance. These rejections are typically the result of a few large weights, which
seemingly indicate that in a few directions the tails of pxy

(
·,y | θ̂

)
are too heavy relative to

those of the proposal density. However, further numerical evidence indicated that the tails
of the squared joint likelihood were eventually dominated by its Gaussian approximation
in those directions. In mathematical terms, at all sampled points x ∈ Rd for which the
importance weights were large, it appeared that, for sufficiently large r > 0,[

pxy
(
x̂+ rz,y | θ̂

)]2
= o (ϕ (x̂+ rz)) (3.1)

as functions of r, where ϕ is the Gaussian approximation to pxy
(
·,y | θ̂

)
and z is a unit

vector in the direction of x − x̂. Since the ratio of a Gaussian density and a Student’s
t density is certainly integrable over Rd, this provides some limited indication that the
integral defining the variance of the importance sampler [e.g. 76] may indeed be finite after
all. This is a very informal check on the validity of IS, and it does not guarantee finite-sample
stability. However, their use as a heuristic reference against which to check the diagnostic
does not seem unreasonable here.

Most of the importance samplers include the LA within their 95% confidence intervals,
suggesting it is not excessively far from the true marginal likelihood value. The fact that
most of the IS estimates are below the LA suggests that the latter is perhaps a slight
overestimate of the true value (i.e. that the tails of the joint likelihood, as a function of x,
tend to be lighter than those of its Gaussian approximation). Our diagnostic produces a
similar conclusion: the posterior integral mean is slightly lower than the LA, but not to a
degree that warrants rejection. With respect to our notion of “good-enough-ness-of-fit”, it
seems that the LA is a reasonable approximation to the marginal likelihood for this model,
at least for the parameter values θ̂.

Since the diagnostic is based on a Gaussian “confidence interval” for the integral (see
Section 2.3), its behaviour can be equivalently described in terms of “p-values”: recalling
from (2.10) that the integral posterior is F | r(s) ∼ N (m1, C1), it is straightforward to
show that the diagnostic rejects the LA iff

2
[
1 − Φ

( |m1 − L(f)|√
C1

)]
< 0.05,
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1970 model

Figure 3.3: Histograms of p-values from repeated runs (100 runs each for simulation sizes
n = 100 and n = 1000) of checkConsistency on the fitted 1970 SSAM. The “p-value”
given by the diagnostic is shown as a dashed red line on each histogram.

where Φ is the c.d.f. of a standard normal random variable, and the quantity on the left-hand
side has a natural interpretation as a sort of “p-value”. This facilitates some comparison
between the diagnostic and the checkConsistency method. Recall that the latter simulates
n separate datasets to construct a test statistic that is asymptotically χ2-distributed when
Ey
[
∇θ logL (pxy)

∣∣
θ̂

]
= 0. This test statistic induces a p-value; if this is below some threshold

(say, 0.05), we reject the hypothesis that the marginal likelihood and the LA are the same
(as functions of y). In Figure 3.3, we have performed the checkConsistency test 100 times
each for two simulation sizes (n = 100 and n = 1000) in order to see how the p-value
distribution changes with the number of simulated datasets and how it relates to the p-
value of the diagnostic. If the null hypothesis of checkConsistency is true (i.e. the LA is
the true marginal likelihood), then the p-value of the corresponding test should be uniformly
distributed over (0, 1). Although the histograms in Figure 3.3 show some deviation from
uniformity, it is not severe. The p-value associated with the diagnostic is just above 0.1,
consistent with non-rejection of the LA (see Figure 3.2). It is interesting to see from Figure
3.3 that the diagnostic and checkConsistency seem to lead to similar conclusions — that
the LA may deviate slightly from the true marginal likelihood, but not to a problematic
extent — despite the fundamental difference in the questions addressed by each method.

The results are markedly different for the 2005 model, as shown in Figure 3.4. IS stability
considerations apply here as they did for the 1970 model: Koopman et al.’s score test [161]
rejected the hypothesis of finite variance for the largest sample sizes, but (3.1) appeared to
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2005 model

Figure 3.4: Results of the diagnostic applied to the 2005 SSAM. Left: IS estimates of
py
(
y | θ̂

)
at various sample sizes (black dots) with estimated 95% confidence intervals

(vertical line segments), with the Laplace approximation (blue dashed line) and the poste-
rior integral mean (red dashed line) for reference. Right: the posterior distribution for the
marginal likelihood, obtained from the diagnostic (rotated 90 degrees for ease of comparison
with IS estimates).
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2005 model

Figure 3.5: Histograms of p-values from repeated runs (100 runs each for simulation sizes
n = 100 and n = 1000) of checkConsistency on the fitted 2005 SSAM. The “p-value”
given by the diagnostic is shown as a dashed red line on each histogram.

hold in the directions of all the largest weights, potentially indicating a finite (but quite
large) variance. All IS estimates are far lower than the LA, suggesting that the joint like-
lihood is, for the most part, substantially lighter-tailed than its Gaussian approximation.
Accordingly, the diagnostic strongly rejects the LA, which is well above the upper bound
of the posterior 95% confidence interval. Note that there is still substantial disagreement
between the diagnostic and the importance samplers as it pertains to estimation of the
true marginal likelihood. Thus, the posterior integral mean from the diagnostic should not
be taken as a high-quality estimate, but what is important is that both methods agree on
rejection of the LA.

As before, we also conduct repeated runs of checkConsistency and compare the result-
ing p-value distributions to the one associated with the diagnostic. The latter is numerically
indistinguishable from zero, and for both simulation sizes the p-value distribution is decid-
edly non-uniform. As was the case with the 1970 model, both methods appear to agree
that the LA is an unsuitable approximation to the marginal likelihood, despite asking this
question in different ways.

Differing philosophies notwithstanding, one clear advantage the diagnostic has over
checkConsistency is computation time. Using the checkConsistency replications shown
in Figures 3.3 and 3.5, as well as 100 repeated computations of the diagnostic itself, Table
3.1 shows median computation times — along with median absolute deviations — for each
method applied to each model. All computations were performed on a computer with 64
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Time (seconds) 1970 model 2005 model
checkConsistency, n = 100 2.511 ± 0.035 7.367 ± 0.136

checkConsistency, n = 1000 25.115 ± 0.152 73.584 ± 0.489
Diagnostic 0.009 ± 0.007 0.012 ± 0.0003

Table 3.1: Table showing median computation times (along with median absolute deviations)
of each method, applied to each model.

GB of RAM and eight Intel i7-6400K 4GHz CPU cores. Note that the time cost for the
diagnostic includes the evaluation of function interrogations, the eigendecomposition of the
Hessian, and the calculation of all the necessary kernel terms for BQ (the latter step was
sped up substantially using the methods of Karvonen and Särkkä [150], as explained in
Section 3.2.1). It is also interesting to note the differences in computational times between
models: across all methods, the times for the 2005 model are longer than those for the
1970 model. Presumably, this is because of the “inner” numerical optimization [165] used
to calculate the mode x̂ = x̂

(
y, θ̂

)
, which may require more iterations for the 2005 model

than the 1970 model due to differences in their respective joint likelihoods. This would also
explain why the difference is so much more pronounced for the checkConsistency runs,
which require repeated (and possibly even more demanding) inner optimizations to find
x̂ = x̂

(
y∗, θ̂

)
for each simulated dataset y∗. In any case, the diagnostic is by far the fastest

method of assessing the LA4.

3.2.1 Higher-order interrogation grids

The interrogation grids used thus far have been quite simple, consisting of O(d) preliminary
points placed along the axes of Rd in a d-dimensional “cross” shape. As noted in Section
3.1, there is precedent in the literature for the use of such simple grids [256, 5]. They seem
to be a reasonable choice here as well, allowing us to calibrate the diagnostic in such a
way that appropriate results are obtained for a variety of “toy” and real-world examples.
However, one potential drawback of such grids is that they only allow the diagnostic to use
information about a function’s shape along its “principal axes” (see Section 2.4.1). If this
is not indicative of the function’s behaviour in the rest of the domain, it is conceivable that
the diagnostic could produce misleading results. For instance, consider the d-dimensional
function

fν,d(x) =
d∏
i=1

Γ
(
ν+d

2

)
Γ
(
ν
2
)√

νπ

(
1 + x2

i

ν

)− ν+d
2

. (3.2)

4IS computation times are not shown, as these were not replicated. However, they behaved largely as
expected: computation times were roughly linear in the number of samples, and universally longer than those
for the diagnostic.
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Like the multivariate t density (2.17), this function has a mode at the origin. The functions
are equal there, as are the Hessians of their logarithms. Furthermore, they are equal along
the axes of Rd. Thus, their LA’s are the same, and the diagnostic would give the same
results for both functions using any of the “cross-shaped” interrogation grids considered
above. However, the functions differ on the rest of their domain, and their integrals are
different as a result. Whereas the integral of τν,d over Rd is equal to 1 for all (ν, d), the
integral of fν,d is

Γ
(
ν+d−1

2

)d
Γ
(
ν
2
)

Γ
(
ν+d

2

)d−1 .

In particular, for d = 72, ν = ν72 = 25921 (the values used to calibrate the 72-dimensional
diagnostic at the beginning of this chapter),

∫
R72 f25921,72(x)dx = 0.952. Thus the integral of

f25921,72 is quite a bit closer to the LA (0.95) than that of the calibration function τ25921,72,
but the diagnostic calibrated with a “cross-shaped” grid will treat both of them identically,
so that the LA is on the boundary of the rejection region for each function. One could
argue that this is undesirable: the values of f25921,72 “off the axes” are lower (and therefore,
closer to the Gaussian approximation) than those of the calibration function, causing its
integral to be closer to the LA, so perhaps the diagnostic should produce a more definitive
non-rejection for this function. For this to be possible, we must be able to capture the
differences between fν,d and τν,d, for which a higher-order interrogation grid is required.

A grid of “order” s is one whose size scales as O (ds) for some fixed power s > 1 (the
grids used throughout the chapter thus far and in Chapter 2 had s = 1). In order to
use such grids without an excessive increase in computation time (which would defeat the
purpose of the diagnostic), we use fully symmetric kernel quadrature (FSKQ), as detailed
by Karvonen and Särkkä [150]. Briefly, because the squared exponential kernel is isotropic,
using fully symmetric preliminary grids (as described in Section 2.4.1) reduces the number
of unique quadrature weights that need to be calculated, allowing for significant algebraic
and computational simplifications in BQ.

Here, we conduct a few experiments with higher-order grids, showing difficulties asso-
ciated with their use. We recalibrate the 72-dimensional diagnostic using a sparse Gauss-
Hermite grid of order 2 — the two-dimensional version of which is shown in Figure 3.6
— as the preliminary grid. Following Karvonen and Särkkä [150], we remove the origin,
as its quadrature weight tends to be a large negative value for most hyperparameter com-
binations. Furthermore, because a function is always equal to its Gaussian approximation
at the mode, the origin does not actually contribute to the diagnostic beyond its effect on
the inverted Gram matrix. We also multiply each point in the Gauss-Hermite grid by 3.6,
thereby ensuring that they are far enough away from the origin to cover the “typical set”
discussed in Section 3.1. The final preliminary grid in 72 dimensions is of size n = 10512,
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Figure 3.6: A sparse Gauss-Hermite quadrature grid of order 2 in d = 2 dimensions.

and as with the original “cross-shaped” preliminary grid (which, for reference, contained
n = 145 points) we calibrate the diagnostic using the t density τ25921,72 and taking the
hyperparameter γ = 1.2248. As before, it is not possible to calibrate with respect to Con-
dition (2a) from Section 2.5. Here, this is because of the size of the grid: the computational
simplifications of FSKQ are only applicable to the integral of the GP, not to the GP poste-
rior mean function (2.8) itself. As such, the visual calibration of Section 2.5.1 is not viable:
even though we would only need to view a 2-dimensional slice of mx

1 · g − τ25921,72, every
change to the hyperparameter λ would still necessitate the recalculation and inversion of
the 10512 × 10512 Gram matrix, which is too slow for minute visual adjustments. Instead,
we once again calibrate with respect to Conditions (1) and (2b), resulting in hyperparame-
ters (λ, α) = (3.7, 0.1349) and a posterior integral mean of m1 = 0.9945 for the calibration
function.

Applying the new calibrated diagnostic with the larger preliminary grid to the SSAM’s
from Section 3.2 reveals that the use of higher-order grids does not necessarily cause an
improvement in the diagnostic’s behaviour in practice — indeed, the opposite may occur.
The left plot of Figure 3.7 shows that, in contrast to the results in Section 3.2, this version
of the diagnostic rejects the LA for the 1970 model. Initially, this may suggest that the tails
of the joint likelihood are substantially lighter than those of its Gaussian approximation
in directions besides its “principal axes”, which would not have been observable using the
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1970 model

Figure 3.7: Results of the diagnostic with a higher-order interrogation grid applied to the
1970 SSAM. Left: the posterior distribution for the marginal likelihood, obtained from
the diagnostic. Right: the total mass contributions to the quadrature estimate made by
interrogations as a function of the distance between the corresponding preliminary points
and the origin.

smaller grid. However, this is at odds with the results of the importance samplers and
checkConsistency, both of which suggested that the LA was not very far from the true
marginal likelihood and neither of which is constrained to the use of information on the
principal axes of the joint likelihood. Furthermore, the right plot of Figure 3.7 reveals that
the largest overall contribution to the lowered integral estimate comes from the interrogation
points which are closest to the mode. This is despite the fact that there are only 144 such
points in the Gauss-Hermite grid. In contrast, the points further from the origin — of
which there are 10368 — collectively contribute a much smaller amount to the estimate. As
discussed in Section 3.1, the integral of a high-dimensional function is mainly determined
by the behaviour of its tails; ideally this would be reflected when using a preliminary grid
with most of its points far away from the origin. In light of these considerations, it seems
reasonable to conclude that this version of the diagnostic is not providing accurate inference
on the integral, or on the function shape information most pertinent to it.

The new diagnostic exhibits a different problem when applied to the 2005 model, as
seen in Figure 3.8. The left plot shows that the LA is once again definitively rejected,
although the actual integral posterior differs quite noticeably from the one in Figure 3.4.
However, as it turns out, there is one interrogation point s where the weighted difference
r(s) − mx

0(s) is far larger than it is for any of the other points. Removing this point from
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2005 model

Figure 3.8: Results of the diagnostic with a higher-order interrogation grid applied to the
2005 SSAM. Left: the posterior distribution for the marginal likelihood, obtained from the
diagnostic. Right: the same, but with a single interrogation point having been removed.

the grid, but keeping the hyperparameters fixed5, results in a surprisingly large change in
the posterior, shifting its mean from a small positive value to a larger negative value (which
is nonsensical, given that the integral is a likelihood and must therefore be nonnegative).
Although the diagnostic achieves its primary goal in both cases for this model — namely,
determining that the joint likelihood’s shape (as a function of x) is too non-Gaussian to
justify the LA — it is certainly undesirable for one interrogation point to have such a large
impact. If this were allowed, a given function’s LA could be rejected based solely on the
inclusion or exclusion of a single point at which it deviates significantly from its Gaussian
approximation, thereby rendering the diagnostic too sensitive to be useful for nontrivial
high-dimensional applications (see the discussion at the beginning of Section 2.4).

At first, the failure of the diagnostic with high-order interrogation grids seems illogical.
Intuitively, one would expect more accurate quadrature with larger grids. Indeed, several
convergence theorems in the BQ liteature suggest that the addition of more points should
be an asset [e.g 25, 150, 26]. However, these results tend to assume that the kernel and
integrating measure are fixed. Here, we change both through our calibration of the hy-
perparameters, a necessary step in fulfilling the goals of the diagnostic. In this instance,
asymptotics fail to guarantee the type of practical, finite-sample behaviour we require. De-

5Note that deleting the corresponding preliminary interrogation point did not produce a sizeable change
in the diagnostic’s behaviour when applied to the calibration function (not shown), despite not adjusting
the hyperparameters for the altered grid. Thus, there is no concern about miscalibration here.
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spite the potential shortcomings of lower-order grids, they seem to be a better choice in
terms of ensuring a usable diagnostic, unless great care is taken with higher-order grids.

The computation times for the diagnostic with the higher-order grid are predictably
higher than they were for the original diagnostic, although it is still much faster than
checkConsistency. The median time was 0.4154 seconds for the 1970 model (MAD: 0.0105
seconds) and 0.5422 seconds for the 2005 model (MAD: 0.0104 seconds). Nevertheless, given
the difficulties encountered above, the simpler CKF-style grid used in Section 3.2 seems to
be a better choice.

3.3 Discussion

In this chapter and the last, we have built on the work of Zhou [301] to develop a non-
asymptotic diagnostic tool for assessing the viability of Laplace approximations to integrals.
More specifically and accurately, the diagnostic assesses whether a function’s shape is close
enough to the Gaussian approximation that is used to motivate the LA. It does so using
the method of Bayesian quadrature, but in multiple ways it is structured differently than
a more “conventional” BQ application. Namely, we avoid design choices that would ensure
accurate, low-uncertainty estimates for the integral of a specific function, opting instead for
a “one-size-fits-all” approach: relatively simple interrogation grids intended to capture the
most pertinent information about a function’s behaviour, hyperparameters chosen heuristi-
cally using calibration functions, and a covariance structure that ensures the diagnostic is
invariant to all properties of the integrand besides its shape. More broadly, the diagnostic is
based on a notion of “good-enough-ness-of-fit” that stands in stark contrast to a more con-
ventional, power-focused approach to statistical inference. Indeed, such an approach would
render the diagnostic useless, causing it to prioritize the detection of any deviation from
Gaussian shape and likely producing rejections in almost all non-trivial applications.

As shown in this chapter, challenges arise when using the diagnostic in high dimen-
sions, although they are not insurmountable. Compared to the low-dimensional settings of
Chapter 2, it is more difficult to make conclusions about a function’s integral given limited
information about its shape — either because a high-dimensional function’s mass tends
to be far away from the regions with the most notable “shape information” (the curse of
dimensionality), or because a single direction of non-Gaussian shape (which, intuitively,
seems more likely to occur in high dimensions) can affect the diagnostic’s behaviour to
an unreasonable extent. Because of these challenges, more consideration must be given in
high-dimensional spaces when choosing the preliminary interrogation grid and setting the
hyperparameters, and the focus must be on the function’s shape in its tail regions, assumed
to correspond to its “typical set”. If this is done carefully, the diagnostic can be calibrated
to produce reasonable and useful results on real-world examples, as shown in Section 3.2.
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Given SSAM’s that had already been fit (producing parameter estimates θ̂), we applied
the diagnostic to their joint likelihoods pxy

(
·,y | θ̂

)
. While this served the purposes of

this thesis (namely, a proof-of-concept for the diagnostic itself), it ignores the fact that
the parameter estimate itself depends on the use of Laplace approximations: specifically,
that it is obtained by maximizing the LA L (pxy (·,y | θ)) with respect to θ. Given the low
computational cost of the diagnostic, it would be desirable to fold it directly into a model-
fitting workflow, checking at each iteration of numerical optimization whether or not the LA
is justified, thereby indicating if other methods need to be invoked to correct any incurred
bias in the estimated model parameters.

Despite the promising initial performance of the diagnostic, there are opportunities for
future potential improvements. The difficulties of using higher-order grids encountered in
Section 3.2.1 should be further explored, as their resolution could result in improved di-
agnostic behaviour on a wider variety of functions. The methods of choosing interrogation
points cited in the introduction of Section 2.4 may be a useful starting point to this end, but
care must be taken to modify these methods in a way that preserves the quick, “one-size-
fits-all” nature of the diagnostic. Another aspect of the diagnostic that remains unaddressed
is the prior structure: specifically, that our use of a GP prior is technically inappropriate
given that most applications involve likelihoods, which are nonnegative. It is worth investi-
gating other prior specifications proposed in the BQ literature [e.g. 116, 45], which preserve
nonnegativity of the integrand at the expense of inducing a non-analytic distribution on the
integral which must be approximated.

As a final note, we conjecture that the methods developed here may be more broadly ap-
plicable beyond the assessment of Laplace approximations. Indeed, a great deal of statistical
methods are based on an assumption that some function is well approximated by a Gaus-
sian shape, which is precisely the assumption that the diagnostic is designed to check. The
general idea of using non-asymptotic methods to diagnose the use of asymptotic methods
is one that warrants further consideration and study.
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Chapter 4

A review of uncertainty
quantification for density
estimation

This chapter is an adaptation of a standalone manuscript originally published in Statistics
Surveys [197].

4.1 Introduction

Density estimation is one of the seminal examples of nonparametric statistical modelling.
There are a litany of methods spread across decades of literature, from more “classical” ap-
proaches [223] to the most advanced modern techniques [38]. Estimation, however, is only
one piece of the puzzle: as in any statistical problem, it is desirable to also conduct inference,
providing some quantification of uncertainty in addition to single estimates. Broadly speak-
ing, uncertainty is quantified using sets of “plausible” values — for example, confidence
intervals for frequentist methods and credible intervals for Bayesian ones. Although not as
abundant as other areas in nonparametric statistics, there is a sizeable body of literature on
uncertainty quantification (UQ) for density estimation, ranging from rigorously theoretical
to extremely practical.

The following sections provide more detail on various types of “uncertainty sets”, then
outline several density estimation methods and review available literature dealing with
UQ for each one. Although some combinations of estimation and inference ideas are not
represented in the literature (in particular, a substantial gap exists between theoretical and
practical UQ developments in many cases), in principle, one could always obtain some kind
of uncertainty bounds on a density estimate, either by bootstrapping a frequentist method
or taking quantiles of MCMC output for a Bayesian one. Whether or not such bounds have
suitable coverage properties or otherwise perform adequately is another question for which
the answers are not always known. Despite some of these limitations, this chapter presents
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a comprehensive review of the work done thus far in unknown density UQ, and suggests
promising areas to extend the research or “fill in the gaps”.

4.2 Overview and notation

Let X = (X1, . . . , Xn) be a set of samples from some unknown “true density” f0. The
majority of discussion here will assume i.i.d. samples, but other data structures will also
be considered as warranted. One structure that is common enough to justify mentioning
here is the case of “noisy” observations Yi = Xi + Zi, where the errors Zi have known
distribution and the true X-values are unknown. Estimating the density of X in this case
is called deconvolution density estimation. In the present context, f̂ will denote a specific
“point” estimate (in the sense that it is a single element of a function space) of f0, such
as a MLE or posterior mean; while f will typically be used to discuss classes or function
spaces of estimators in more generality.

As mentioned in the introduction, UQ arises by considering “uncertainty sets”. Such
sets are random through their dependence on X, but for brevity the notation here does
not reflect this. As f0 is a function, there are several ways to define uncertainty sets, each
with different implications and advantages. Perhaps the most obvious examples are point-
wise intervals Cx = [L(x), U(x)], defined separately for each point x in the domain of
f0. A common special case is when the intervals are symmetric about an estimator f̂ :
Cx =

[
f̂(x) − ϵx, f̂(x) + ϵx

]
. The goal with pointwise intervals is to achieve (possibly only

approximately or asymptotically) P (f(x) ∈ Cx) ≥ 1 − α for all x ∈ Dom (f0), where 1 − α

is the usual predetermined level. The meaning of the generic placeholders P and f depends
on whether the inference is frequentist or Bayesian.

Pointwise intervals tend to be easy to implement, and also have nice theoretical proper-
ties for some (but not all) density estimation techniques. However, they are fundamentally
limited in their ability to make “global” uncertainty statements. For a given level 1 − α,
even if P (f(x) ∈ Cx) ≥ 1 − α ∀x, the stronger and perhaps more meaningful statement
P (f(x) ∈ Cx ∀x) ≥ 1 − α cannot necessarily be deduced. However, in some cases the “si-
multaneous” statement does hold, in which case the set C = {(x, y) : x ∈ Dom (f0) , y ∈ Cx}
is called a confidence or credible band. Like pointwise intervals, bands are often centered
at a specific estimator, although this need not be the case. For instance, Hall and Tit-
terington [125] proposed to construct frequentist bands for univariate densities based on
simultaneous multinomial confidence intervals for the probability masses within consecu-
tive subintervals of the domain. Classical approximation results allowed them to construct
such intervals without a specific density estimator, and they constructed the density bands
by interpolation, with modifications depending on f0 being once or twice differentiable.
Such bands are not smooth, but were shown to have suitable coverage properties and op-
timal asymptotic widths without making further assumptions or restrictions. Hengartner
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and Stark [130] devised conservative confidence bands for shape-restricted densities (either
monotonic or having ≤ k modes for known k, possibly relative to some weight function), also
obtained without an estimator. To derive their bands, they started with a confidence region
for the c.d.f F0 comprised of distributions with densities having the same shape restriction
as f0, and subsequently showed how to reduce the determination of the band for f0 to a
finite-dimensional linear program while conservatively preserving coverage probability.

If Cx has the same width for all x in a band, then it is uniform and is therefore a L∞-ball
in a suitable function space F . Thus, a uniform band is a special case of a more general
idea: using a ball C in some pseudo-metric space of functions (F , d) as an uncertainty set.
Analogously to pointwise intervals and bands, here the goal is to have P (f ∈ C) ≥ 1−α. For
choices of d such as the Hellinger or L2 distances, such sets arise in nonparametric literature
due to their satisfying theoretical properties. However, their practicality is somewhat lim-
ited: an L2-ball of functions, for instance, does not provide error bounds that can be easily
visualized or understood, short of simply plotting a large number of functions from the ball
alongside f̂ . For example, Szabó et al. [276] visualized L2-balls from an empirical Bayesian
model for nonparametric regression by sampling functions from the posterior and plotting
the 100 (1 − α) % of draws closest in the L2 sense to the posterior mean. In a discussion
of this paper, Low and Ma [187] suggested using this procedure to generate bands for the
regression function whose boundaries are simply the pointwise maxima and minima of these
closest posterior draws. Their simulations showed that the bands thus obtained performed
quite well with respect to the framework of Cai et al. [35]. Beyond the aforementioned exam-
ples and those in Section 4.4.4, discussion of these “uncertainty balls” is limited, although
Chapter 6 of Csörgo and Révész [58] contains theorems on the asymptotic distributions of
the L2-errors of several “classical” frequentist estimators (KDE’s, histograms, and certain
orthonormal basis expansions). These results could be relevant towards the construction of
confidence balls, but this seems not to have been done in practice, likely due to their limited
visual utility. On the other hand, if d is the L∞ distance, one recovers the meaningful and
easily-visualized UQ given by bands, at the expense of nice theory in some cases. As before,
for any pseudo-metric a common special case arises by taking the associated sets to be
centered at some estimator:

C(ϵ) =
{
f ∈ F : d

(
f, f̂

)
< ϵ

}
. (4.1)

In frequentist inference, uncertainty quantification relies on confidence sets of any of the
forms described above, typically obtained in practice using asymptotic arguments and/or
bootstrapping. Confidence sets are designed in view of the “ground truth” X ∼ f0: letting
P0 denote the probability law associated with f0, the goal is to achieve coverage probability
P0 (Cx ∋ f0(x)) ≥ 1 − α ∀x in the pointwise case, or P0 (C ∋ f0) ≥ 1 − α for bands or
function balls. The Bayesian approach employs credible sets instead: using Π (· | X) as
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generic notation for the posterior over a space of densities f , the sets of interest are either
pointwise intervals such that Π (f(x) ∈ Cx | X) ≥ 1 − α ∀x, or bands/balls such that
Π (f ∈ C | X) ≥ 1 − α. To facilitate validation and comparison, it is possible to view
Bayesian methods through a frequentist lens by acknowledging the existence of the “ground
truth” f0, in which case the posterior Π (· | X) is considered as a random measure due
to its dependence on X ∼ P0. This leads to a similar interpretation of credible sets as
functions of the data. It is then natural to ask if they achieve coverage in the aforementioned
frequentist sense. Put another way, can credible sets also serve as valid confidence sets? The
difficulty of answering this question for nonparametric Bayesian methods is well-known
and an active area of research; discussion of coverage therefore tends to be easier in the
frequentist paradigm.

Naturally, the best possible inference produces small sets with high coverage probability.
To this end, the concepts of honesty and adaptivity are relevant. Consider a confidence set
Cn, where the subscript n is added to emphasize limiting behaviour with respect to sample
size. The remainder of this section ignores the distinction between pointwise intervals, bands,
and balls.

In the context of density estimation, Cn is honest at level 1 − α if

lim inf
n

inf
f0∈F

P0 (Cn ∋ f0) ≥ 1 − α, (4.2)

where F is once again a suitable function space of interest [133]. In words, an honest
confidence set asymptotically achieves the desired coverage level uniformly over all possible
“ground truths”. Honesty is crucial for practical finite-sample inference: without it, it is
possible in some cases for the infimum of coverage probability over F to be zero for any n

[174].
The precise definitions and presentations underpinning the notion of adaptivity vary

throughout the nonparametric literature [e.g. 34, 100, 133]. The present discussion will
focus as narrowly as possible on material relevant to density UQ. Suppose F = ∪s∈SFs for
some ordered index set S, where for s > t it holds that Fs ⊆ Ft and the elements of Fs are
smoother than those of Ft \ Fs. Typically each subset Fs is, say, a ball in a suitable Besov
space of regularity s, with an associated minimax-optimal contraction rate rn(s) decreasing
in both n and s [101]. Following Hoffmann and Nickl [133], call Cn adaptive if there exists
L > 0 such that, for all s ∈ S and for all n large enough,

sup
f0∈Fs

E0 |Cn| ≤ Lrn(s), (4.3)

where the expectation is with respect to P0, and |Cn| is the diameter of Cn with respect
to the metric by which it is defined (typically L2 or L∞ in this context). Naturally, less
uncertainty is expected in the estimation of smoother functions. Adaptive confidence sets
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take advantage of this fact: they are optimal in the sense that, for every level of smoothness
under consideration, their “maximum” expected size contracts at the optimal rate. This is
especially useful since the actual smoothness of the true density is likely to be unknown,
and it does not have to be specified for adaptive Cn. Unfortunately, adaptivity is an elusive
goal which cannot be achieved without caveats, especially if honesty is also desired. As it
pertains to density estimation, one of the earliest results to this effect came from Low [186],
who considered pointwise inference for f0 with uniformly bounded kth derivatives. They
showed that, over this space, an honest confidence interval could achieve the worst-case
contraction rate for any f0, regardless of its true smoothness. Confidence sets in L∞ are
particularly tricky: full adaptivity over finitely many smoothness levels can only be achieved
by swapping the lim inf and inf in (4.2) (i.e. considering “dishonest" bands) [101, 133],
but Bull [29] showed that even with this modification it is still impossible to adapt over
a continuous range of smoothness levels in the white noise model. Dümbgen [68] defined
density confidence bands using a test statistic depending on the c.d.f values at order statistics
and showed some adaptivity results based on local smoothness, but they are only valid
over sets of shape-restricted (e.g. unimodal or monotonic) densities. Such difficulties are
pervasive for all types of confidence sets: to achieve honesty and adaptivity together, it is
necessary to assume additional restrictions on the smoothness classes under consideration
or the functions therein. The theory shows that L2 confidence sets are less restrictive in this
regard than confidence bands, but neither are without their difficulties. Section 8.3 of Giné
and Nickl’s textbook [101] is an excellent and comprehensive discussion of these ideas, and
the references in their notes provide further details. The authors explored adaptation theory
for the white noise model, but noted that it can be made to apply to density estimation.

Adaptivity and honesty are central to the theory of nonparametric inference, but to
many practitioners they may ultimately be less important than the aforementioned visual
aspect of UQ. Figure 4.1 shows how to graphically represent the uncertainty associated
with a density estimate by plotting multiple estimators and corresponding UQ methods,
all based on the same simulated dataset. The figure includes both frequentist and Bayesian
inference methods, and demonstrates the differences between pointwise (P.W.) intervals and
simultaneous bands (in particular, the latter are wider than the former, as one would expect
to be necessary for this stronger type of inference). The methods shown in Figure 4.1 are
among the many described in the following sections, each of which explores UQ in terms
of the concepts described above. The figure itself is discussed in more detail in Section 4.9
and Appendix A, as well as the supplementary material from the original publication of
this work [198].
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Figure 4.1: Different combinations of density estimation and UQ methods applied to the
same sample. The true density is overlaid as a red line in each plot.
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4.3 Kernel density estimators

KDE’s are one of the most used and well-studied density estimation methods, at least in the
frequentist literature. They are ubiquitous enough that their properties are arguably “com-
mon knowledge”, receiving extensive documentation in textbooks, undergraduate course
material, and review papers unto themselves [e.g. 47, whose review informs much of the
discussion in this section]. Recall that a kernel density estimate for a density on Rd is of
the form

f̂(x) = 1
nhd

n∑
i=1

K

(
x−Xi

h

)
, (4.4)

where K is some (typically symmetric) kernel function and h is a bandwidth which controls
smoothing, or bias/variance tradeoff. Asymptotic theory for estimation is typically based on
h decaying to zero in some “big-O” relationship with n that optimizes MSE, or integrated
MSE. Practical methods for obtaining h include cross-validation, plug-in methods, rules of
thumb, and bootstrapping [144]. Note that, as the estimator is little more than a sample
mean, it is equivalent to a conditional expectation with respect to the random measure Fn,
the empirical distribution function of X.

4.3.1 Pointwise inference

For pointwise inference, it is well-known that KDE’s are asymptotically normal: with f̂ as
defined in (4.4), for all x ∈ Rd it holds that√

nhd

f0(x)
∫
K2(t)dt

(
f̂(x) − E

[
f̂(x)

])
d−→ N (0, 1). (4.5)

Furthermore, the distributions for a finite collection of points are asymptotically indepen-
dent [33]. Using this fact, it follows that the endpoints for pointwise confidence intervals
should be roughly of the form f̂(x) ± z1−α/2σx, where σ2

x is the variance which is asymp-

totically equal to f0(x)
∫
K2(t)dt

nhd . In practice, intervals can be computed by estimating σx:
either by using one of its asymptotically-equivalent formulae (“plugging in” f̂ in place of
f0 [47, 123] or replacing expectations with sample averages [134, 85]) or bootstrapping
[47]. Many papers also replace the standard normal quantiles with those of bootstrap t-
statistics [e.g. 134, 120]. Such studentized or “percentile-t” confidence intervals seem to be
the most commonly-discussed in the literature, but any method of bootstrap confidence in-
terval construction should be valid — for instance, Chen [47] discussed a bootstrap interval
based entirely on the percentiles of absolute deviations. Hall and Kang [123] showed that
re-calculating the bandwidth for each bootstrap sample does not provide worthwhile im-
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provements to the accuracy of inference1, so computational difficulty is avoided by using the
same bandwidth across all replications. In the univariate case with a compactly-supported
kernel, Chen [46] considered the construction of confidence intervals based on empirical like-
lihood, a nonparametric analogue to the standard methods of profile log-likelihood ratios.
The theory is similar to the parametric case: viewing f̂(x) as a sample mean of random
variables K

(
x−Xi
h

)
/h, Chen derived a limiting chi-squared distribution for ℓ

(
E
[
f̂(x)

])
,

where ℓ is the profile empirical log-likelihood ratio. This allows for pointwise intervals of the
form {y : ℓ(y) ≤ c1−α}, where c1−α is the 1−α quantile of the χ2

1 distribution. Chen showed
that such intervals have asymptotic performance comparable to the percentile-t bootstrap
and can outperform it in simulations, especially with Bartlett correction.

Note that everything discussed thus far is based on (4.5), which is centered about
E
[
f̂
]

instead of f0. This poses a problem for inference when choosing an “optimal” band-
width minimizing (integrated) MSE or some proxy. The aforementioned intervals provide
asymptotically-correct coverage for the expectation of f̂(x); in order for this to hold for
f0(x) instead, the quantities in the numerator of (4.5) must be interchanged. This is only
possible if the ratio of bias and asymptotic standard deviation√

nhd

f0(x)
∫
K2(t)dt

(
f0(x) − E

[
f̂(x)

])
goes to zero. However, the optimal asymptotic error rate is achieved when h is set propor-
tional to some power of n such that the squared bias and variance decay at equal rates
[47, 223]. Thus, with an “optimal” bandwidth, the ratio above tends to a nonzero constant
so that confidence intervals do not have the correct coverage properties2. There are two main
ways to handle this. The first is undersmoothing, where a lower-than-optimal bandwidth is
selected. In the univariate case, Horowitz [134] suggested taking h proportional to a higher
power of n than usual, thereby allowing the squared bias to decay faster than the variance;
while Hall [120] multiplied a rule-of-thumb bandwidth by a constant c ∈ (0, 1). Chen [46]
used a version of the former when a confidence interval at only one point is desired: first
obtaining kernel estimates f0 and its second derivative at the point with approximations of
the (local) MSE-optimal bandwidths, then using these to estimate the bias. Chen suggested
simply using the optimal bandwidth in confidence interval construction when the estimated
relative bias is small, or an estimate of a coverage-optimal undersmoothing bandwidth when
it is large. Because a smaller h means higher variance, confidence intervals based on un-

1In simulations, they found that recalculating the bandwidths can provide higher coverage, but at the
expense of more conservative intervals. They showed that it doesn’t asymptotically make a difference for
compactly-supported kernels, but used the Gaussian kernel in simulations since its tails are light enough
that it is “almost compact”.

2This is one example of inference being at odds with the goal of optimal estimation. This will become a
familiar refrain in theoretical ideas discussed throughout this chapter.
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dersmoothing may be wider than one would prefer [47]. The second method is therefore to
estimate the bias term with b̂ and replace f̂ with the bias-corrected estimator f̂ − b̂. Assum-
ing a kernel of order3 r is used, the bias depends on the rth-order derivatives of f0, assuming
these are bounded and continuous [44]. These derivatives can also be estimated with kernel
methods, but require higher bandwidths for optimality than the density estimator itself;
for this reason, traditional bias correction uses an oversmoothed KDE to obtain b̂ [120, 47].
Hall [120] showed through both asymptotics and simulations that undersmoothing with a
higher-order kernel results in percentile-t bootstrap confidence intervals with smaller cov-
erage errors than those based on such “oversmoothing” bias corrections. However, Calonico
et al. [36] developed a “robust” bias correction, in which the variance estimate used in
confidence interval construction is modified to account for the correction, and showed that
it can perform as well as undersmoothing-based intervals, with more robustness to band-
width selection. Notably, their results hold when using the MSE-optimal bandwidth and
second-order kernels for both f̂ and the bias correction, which they noted to be convenient
automatic choices. While lower error rates and narrower intervals are desirable, it should
be noted that the bias-corrected centers f̂ − b̂ are not necessarily nonnegative. Also note
that the aforementioned results are based on a kernel with compact support.

Hall and Horowitz [122] devised another novel bootstrap approach. Starting with the
original KDE f̂ , they repeatedly drew “bootstrap” samples from f̂ (some papers call this
the smoothed bootstrap, e.g. [207]) and used these to create Gaussian plug-in intervals at
each point x in the domain, with some nominal confidence level 1 − β(x). They set each
β(x) to ensure that the actual coverage (as estimated with bootstrap replicates) achieved
the desired level 1 −α. Letting β̂δ be the ξ-quantile, for some low ξ, of the β(x)-values over
a fine grid of x’s with edge width δ, they took β̂ as the limit of β̂δ as δ → 0 and finally
used standard normal quantiles z1−β̂/2 to construct pointwise plug-in intervals centered at
f̂ . Their theory and simulation studies focused on nonparametric regression, and in this
case they showed asymptotic pointwise coverage of at least 1 −α at roughly (1 − ξ)100% of
points in the domain. However, they suggested that all results would translate to KDE’s as
well.

Similar ideas to those discussed above extend to situations besides a single i.i.d. sample
X. Louani [184] derived theoretical results for the case of randomly right-censored data:
when there exists another sample Y of size n, and only Zi = min {Xi, Yi} and 1 (Xi ≤ Yi)
are observed. They considered a modified KDE defined by integrating with respect to a
Kaplan-Meier estimate of the c.d.f., rather than the usual e.d.f. Fn. Relaxing some of the
conditions required for previous similar results [199, 181] (in particular, assuming only one
bounded continuous derivative of f0), Louani showed pointwise asymptotic normality for
this estimator when using a kernel of compact support. The asymptotic standard deviation is

3The order r of a kernel K is the smallest positive integer such that the rth moment of K is nonzero.
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similar to the left-side factor in (4.5), but with an extra factor of
√

1 −G(x), where G is the
c.d.f. of Y . Another theoretical extension came from Giné and Mason [99], who considered
kernel-based U-statistic estimators for the densities of functions g (X1, . . . , Xm) with m > 1.
Analogously to other results described here, they derived central limit theorems for such
estimators, noting the bias can be eliminated if the bandwidth decays appropriately in the
special case where g is additive in its arguments (see also [258] for related results). Schick and
Wefelmeyer [259] studied the case when the data is a linear process: Xi =

∑∞
s=0 asϵi−s for

zero-mean ϵs and absolutely convergent {as}. The asymptotic mean in their limiting normal
distribution is the convolution of the true density with the kernel. For a more practically-
oriented extension, Wang and Wertelecki [293] considered data observed with rounding
errors. They proposed a multi-step process to estimate the density of X: first deriving a
rough, convolution-based estimate for the c.d.f. of the non-rounded data; then using this
to generate a sample from the estimated distribution of the rounding errors; and finally
subtracting the simulated errors from the rounded data and constructing a KDE from the
resulting quantities. Because the procedure involves simulated sampling, it naturally lends
itself to bootstrap-style uncertainty quantification, which the authors showed in the form
of pointwise confidence intervals for real data.

Further results exist for deconvolution density estimation. In this case, it is common
to use a specialized kernel deconvolution density estimator, replacing the “standard” ker-
nel in (4.4) with a deconvolution kernel : the Fourier transform of the ratio between the
characteristic functions of some kernel function and the known error distribution. Fan [77]
provided asymptotic normality results for such estimators in two cases: ordinary smooth
deconvolution (where the tails of the error characteristic function decay at a polynomial
rate) and supersmooth deconvolution (where they decay exponentially). In addition to the
usual corollary of bias removal with undersmoothing, Fan also showed that the asymptotic
variance (which depends on the true unknown density of the noisy data in the ordinary
smooth case, and does not have a general expression in the supersmooth case) in the piv-
otal quantity could be replaced by a sample-dependent term: either the sum of squared
deconvolution kernel values, or their sample variance (only the former was considered for
the supersmooth case). Zhang [299] showed similar results for a similar estimator. Fan and
Liu [78] later relaxed the conditions assumed in [77] for the ordinary smooth case, allowing
the asymptotic normality results to apply to a wider variety of commonly-used error dis-
tributions. van Es and Uh [284] showed for a subset of supersmooth error densities that,
under certain conditions on the kernel, the asymptotic variance of the estimator does not
depend on the data or the true density. They noted that this allows in this case for the
construction of pointwise confidence intervals without data-dependent standardization, al-
though they do not address the issue of bias. Further asymptotic normality results with
known variances are given in van Es and Uh [283] and Uh [280] for somewhat more general
kernels and subsets of supersmooth error densities. Masry [194] generalized the classical
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results of Fan and Zhang to inference on the joint density of stationary process data based
on observations with i.i.d. additive noise. They showed asymptotic normality for various
types of mixing with both ordinary smooth and supersmooth error distributions, but only
considered undersmoothing-based bias removal and sample-based standardization for the
former. For both i.i.d. and strongly-mixing data, Zu [302] proved asymptotic normality of
the estimator when the noise is logarithmic chi-squared, a case not covered by the assump-
tions in the previous literature. The asymptotic variance in this case depends once again
on the true density of the noisy data; Zu suggested that it could be consistently estimated
by a classical KDE to facilitate construction of (biased) confidence intervals.

Returning once more to the case of an i.i.d. sample, a final extension is the adaptive
kernel density estimator implemented in Stata by Van Kerm [285]. This method starts with
a “pilot” density estimate of fixed bandwidth; its values at the sample points are used
to assign individual bandwidths to each of the kernels in (4.4), which can also be given
individual weights. These variable bandwidths reduce variance in regions where data is
sparse, and bias in regions where it is dense. As with the normal KDE, it is an easy matter
to get a plug-in estimate of standard error; this is how Van Kerm’s software implements
simple pointwise inference.

4.3.2 Simultaneous inference

Moving beyond the pointwise case, consider simultaneous UQ on the entire support or
some subset thereof. The aforementioned undersmoothing and/or bias-correction principles
still apply, and the rest of this section will largely take the application of such principles
for granted. Bickel and Rosenblatt [20] provided perhaps the first results to this effect for
univariate KDE’s, showing that, under suitable technical conditions,

P
[
An

(√
nh∫

K2(t)dt sup
x

∣∣∣∣∣ f̂(x) − Ef̂(x)√
f0(x)

∣∣∣∣∣− dn

)
< z

]
→ e−2e−z (4.6)

for suitable sequences An and dn (the latter being a function of the former), with the supre-
mum taken over a compact interval (say, [0, 1] w.l.o.g.) on which f0 is bounded away from
0. They further showed that with moderate undersmoothing, it is possible to replace Ef̂
and

√
f0 in (4.6) by f0 and

√
f̂ , respectively, thereby justifying variable-width confidence

bands f̂(x) ±
√

f̂(x)
∫
K2(t)dt
nh

(
z
An

+ dn
)

for x ∈ [0, 1], where z is such that e−2e−z = 1 − α.
Note that using a differently-scaled An, the factor of 2 in the exponent of the limiting dis-
tribution can be eliminated, thereby turning it into the c.d.f. of a standard Gumbel random
variable [e.g. 100, who derived such a result for an undersmoothed data-driven bandwidth
choice and plug-in estimator for

√
f0; see Section 4.4.4 for further details]. In either case,

the limiting probability law is of the extreme value or “double exponential” form. Rosen-
blatt [246] expanded upon Bickel and Rosenblatt’s results, slightly relaxing the conditions
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under which (4.6) holds in the univariate case and generalizing to the multivariate case.
However, their multivariate results required rather strong restrictions on the bandwidth,
differentiability of f0, and moments of K. Rio [240] gave another rather technical result on
the limiting distributions of suprema over closed subsets of (0, 1)d for d-dimensional densi-
ties. Additional generalizations of the Bickel-Rosenblatt results in the univariate case were
provided by Giné et al. [102], who gave conditions for results similar to (4.6) to hold with
a different weight function Ψ replacing the factor

(√
f0
)−1 or the supremum taken over a

data-dependent set. The same authors provided further theory to this end in a compan-
ion paper, in which they considered suprema over the whole real line [103]. Sakhanenko
[253] further modified and extended these results to multivariate densities. Using moderate
deviations principles, Mokkadem and Pelletier [201] showed that it is actually possible to
construct Bickel/Rosenblatt-style confidence bands with asymptotic coverage level equal to
1 by using separate bandwidths for the KDE’s in the mean and variance estimates (i.e. in
the quantities used to define, respectively, the centre and margins of the bands). Further
technical refinements allowed them to achieve this with narrower bands, at the expense of a
slower convergence rate. While remarkable, these results have not been applied in practice
in literature to date.

A drawback of using these asymptotics in practice is that convergence to the extreme
value distribution is known to be very slow [e.g. 119]. Thus, it may be advisable to use
bootstrapping for confidence bands. In what follows, let f∗ denote a KDE based on a
bootstrap resample of X. Hall [121] considered bands (over compact intervals) of the type{

(x, y) : 0 ≤ x ≤ 1, L̂ ≤ f̂(x) − y
√
y

≤ Û

}

where P

L̂ ≤ inf
x

f∗(x) − f̂(x)√
f̂(x)

≤ sup
x

f∗(x) − f̂(x)√
f̂(x)

≤ Û
∣∣ X

 = 1 − α.

This band is based on the “studentized” quantity
(
f̂ − Ef̂

)
/
√
Ef̂ , but differs from oth-

ers by not using any kind of estimator for the denominator. Hall found in simulations
that this interval had better coverage for Ef̂ than a bias-corrected translation had for f0,
presumably due to inaccuracy in the bias correction. Hall and Owen [124] recommended
the bootstrap to construct simultaneous confidence bands on [0, 1] with profile empirical
likelihood methods. Recalling the notation for empirical likelihood in Section 4.3.1, they
found an extreme value limiting result for supx

√
ℓ
(
E
[
f̂(x)

])
similar to (4.6), but recom-

mended using percentile bootstrap methods to find a suitable bound ĉ for a band of the
form {f : ℓ(f(x)) ≤ ĉ ∀x ∈ [0, 1]}. The technicalities and variations they considered are too
cumbersome to discuss further here; see [124] for the full details. They found their inter-
vals to be disappointingly wide when applied to real data, but suspected that this was
due to the inherent variability of the density estimation itself. Neumann [207] gave quite
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general theoretical results for uniform-width percentile bootstrap bands of the form f̂ ± t∗α,
where t∗α is the bootstrap quantile of supx |f∗ − Ef∗|. Their results are valid for multivariate
densities, suprema over all of Rd, and weakly-dependent data. Neumann used compactly-
supported kernels and the smoothed bootstrap: generating X∗ from a possibly-different
KDE based on the original sample, rather than from the empirical distribution. In a recent
paper, Cheng and Chen [48] used the debiased estimator of Calonico et al. [36] to derive
asymptotically correct bands, via the bootstrap, of either uniform width (using quantiles of
supx

∣∣∣f∗ − f̂
∣∣∣) or variable width (using quantiles of supx

∣∣∣(f∗ − f̂
)
/σ∗

∣∣∣ multiplied by σ̂(·)),
where the bootstrap density and associated variance estimates were all computed based
on the bias-correction approach. Their results extend to the multivariate case and assume
a compactly-supported f0. Their simulation study showed that their bands achieved bet-
ter coverage and narrower width than those based on the standard KDE, although some
undercoverage still occurred for small samples without undersmoothing.

Yeh [296] used the bootstrap to create a rather novel type of confidence band. Generating
a large number of KDE’s from bootstrap samples of X, they retained the 100 (1 − α) % of
them with the largest curve depth (a way of ranking functions “from the centre out” based
on some distance from a central curve, in this case the KDE f̂). Simulation studies showed
that such bands had reasonable performance compared to the asymptotic methods discussed
in this section.

As is the case for pointwise inference, for simultaneous bands there are analogous results
for deconvolution KDE’s, described by Bissantz et al. [21]. A necessary assumption for these
results is that the characteristic function of the error density decays as t−β for large |t| and
some known constant β > 0. Their asymptotic results for bands over a compact interval
are nearly equivalent to those derived from (4.6), although in the asymptotic standard
deviation they divided by an extra factor of hβ and replaced f̂ with ĝ, where the latter is
an estimate of the density g of the observed Y -values (a standard KDE suffices). However,
they noted slightly better coverage probability (especially in terms of robustness to model
misspecification) can be achieved with percentile bootstrap confidence bands of variable
width based on the quantiles of

[
f∗(x) − f̂(x)

]
/ĝ(x), where f∗ is a deconvolution estimator

from a bootstrap sample of the observed noisy data.

4.3.3 Miscellaneous

Aside from some technical considerations in the previous section, not much consideration
is given to the support of the true density. Indeed, the issue of KDE boundary bias for
f0 of restricted support is well-known and several mitigating strategies exist [e.g. 143, and
discussion therein], but this is rarely discussed in the context of uncertainty quantification.
One exception is given by Bouezmarni and Rombouts [23], who considered the gamma kernel
estimator for time series data on [0,∞). The gamma kernel has a shape parameter varying
with x and leads to an estimator (asymptotically) free of boundary bias. The authors showed
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pointwise asymptotic normality analogously to the results discussed above, based on the
behaviour of the gamma scale parameter which acts as a bandwidth. In practice, it can be
selected by cross-validation; the authors did so and constructed confidence intervals for real
data based on their asymptotic results.

This section concludes by discussing a paper on large-sample Bayesian methods by Lo
[180]. The key observation for this discussion is to recall that one can view the KDE (4.4) as
a (conditional) expectation with respect to Fn. Lo’s ideas are based on replacing Fn in this
expectation with a different random distribution F conditional on X. One such example is
the empirical distribution of a bootstrap sample; this is equivalent to a probability measure
with atoms at the sample values and weights randomly selected from {1/n, 2/n, . . . , 1}. Lo
also considered the Bayesian bootstrap, where the weights on the atoms are drawn from a
uniform Dirichlet distribution [250]. This is equivalent to a draw from the posterior when
X ∼ F , and F is given an improper Dirichlet Process prior with zero base measure. Finally,
Lo generalized this to allow for a non-zero base measure in the DP prior. They showed an
asymptotic result analogous to (4.6) for all three aforementioned KDE variants, where the
limit holds for f0-almost all X. This allowed them to use extreme value asymptotics to
derive appropriate Bayesian bands for f centred at the usual KDE f̂ . In practice one may
prefer not to do this, given the substantial developments in Bayesian computation since the
time of Lo’s paper.

4.4 Adaptive basis expansion methods

This section considers estimates for f0 of the form

f(x) =
K∑
j=1

bjBj,K(x), (4.7)

where the Bj,K ’s are a suitable set of fixed nonnegative “basis functions” for a given K. The
simplest choice is taking them to be indicator functions on disjoint subsets of the support,
in which case f is simply a histogram. Other options include Bernstein polynomials [e.g.
289, 224], B-splines [e.g. 264], and wavelets [e.g. 100]. The coefficient vector b ∈ RK is
constrained such that f is a valid density. The remainder of this section will use b̂ to denote
the coefficients associated with a specific estimator f̂ .

The dimensionality K is of particular interest, serving as a smoothing parameter that
controls the bias-variance tradeoff of the estimator. The basis functions corresponding to
higher K-values are typically “narrower”, allowing for more intricate shape detail to be
captured in estimates. For instance, taking a high K-value for the histogram corresponds to
using a larger number of narrower bins. Conversely, a value that is too high will result in a
high-variance estimator that is unacceptably noisy. In general, higher K-values are required
for larger samples to capture the true density.
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One can choose K in a data-driven way. Many theoretical results for this approach rely
on K increasing with n, usually appealing to some “big-O” conditions on its growth [e.g.
9, 100, 277]. In practice, a value could be chosen by cross-validation [171], changepoint
methods [115], or appealing to known asymptotic theory [9, who derived nice properties for
a method with K = o (n/ log n) and then simply used K = n/ log n in a simulation study]. In
the theoretical Bayesian context, Rousseau and Szabó [249] considered maximum marginal
likelihood (MML) estimates for K, marginalizing over a prior for b. Further discussion of
such ideas is beyond the scope of this chapter; see van de Wiel et al. [281] for details on
practical implementation of MML.

In the Bayesian literature, methods involving a data-driven choice of a single K-value
are often called empirical [249]. All frequentist methods discussed in this section are of
this type. On the Bayesian side, such methods contrast with hierarchical ones, which use
a suitable discrete prior on K and allow it to “vary” [249]. In general terms, the K-values
obtained with any approach will reflect what is necessary to capture the true shape of f0.
It is in this respect that these estimators are said to be “adaptive”.

4.4.1 Histograms

Perhaps the simplest of density estimators, a histogram (sometimes referred to as an em-
pirical density [237]) is piecewise constant over some division of the support into disjoint
subsets, or “bins”. In the most general form with countably many bins {Aj}, it can be
written as

f(x) =
∑
j

cj1Aj (x), (4.8)

with the constants cj chosen to ensure that the estimator is a valid density. The regularity
of a histogram is controlled by adjusting the sizes of the bins. For instance, a very common
form for the univariate case is

f̂(x) = K

n

∑
j

nj1[ j−1
K
, j

K )(x), (4.9)

where nj is the number of sample values in the interval
[
j−1
K , jK

)
and K provides the needed

regularity control. Assuming a bounded support, say [0, 1], the sum in (4.9) is over j =
1, . . . ,K and is equivalent to (4.7) using a basis of indicator functions: Bj,K = K1[ j−1

K
, j

K ).
Temporarily ignoring the notion of empirical or hierarchical approaches to K, suppose

for now that it is fixed at some arbitrary value irrespective of everything else. Then the
histogram simply becomes a problem of multinomial inference: the coefficient bj in (4.7)
is an estimate of the probability that X ∼ f0 falls in the jth bin, say pj . In this respect,
the “traditional” histogram, where b̂j = nj/n as in (4.9), is a MLE. Here the object of
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inferential interest is not necessarily f0, but rather the so-called theoretical histogram f

[269], a piecewise-constant density equal to Kpj in the jth bin. With this view, (piecewise-
constant) pointwise intervals arise by considering the single binomial proportion pj , and
simultaneous bands by considering the vector of multinomial probabilities p = (p1, . . . , pK).
Frequentist and Bayesian methods for both are well-studied; see Vermeesch [288] for some
practical applications to histograms.

Simultaneous frequentist inference

To discuss inference for f0 itself, it is necessary to return to the adaptive paradigm. Much of
the frequentist literature for histogram density UQ is theoretical and predates developments
such as the bootstrap, relying on extreme value asymptotics similar to those for KDE’s. One
of the first such papers is by Smirnov [269]. They derived a limiting result much like (4.6)
for the normalized quantity

√
nK−1 sup

x

∣∣∣f̂(x) − f0(x)
∣∣∣√

f(x)
, (4.10)

where the supremum is over a compact interval on which f0 is bounded away from 0 and
has total mass less than 1. Smirnov claimed that it was not possible to replace f in the
denominator with f0 due to the systematic difference between them dominating the error.
However, they stated that it is possible to do so by replacing the histogram with a frequency
polygon (a linear interpolation between the histogram values at the sample points) and
imposing some extra conditions on the relationship between K and n. Although Smirnov
did not provide proofs for these results, they will be shown later to be a special case of
proven results for wavelets [100]. For f0 supported on a compact interval, Révész [237] was
able to prove a somewhat modified extreme value limit for the distribution of a quantity
similar to (4.10), except f̂ can be either the traditional histogram or a frequency polygon
(with a slightly different interpolation scheme than that considered by Smirnov), f0 replaces
f in the denominator, and the supremum is taken over an interval converging to the whole
support of f0. Révész also derived a similar result with the absolute value removed from
the supremum. Further results to this effect were given by Freedman and Diaconis [87]. For
everywhere-positive densities with a unique maximum, they considered a quantity similar
to (4.10) without the absolute value (i.e. considering only the maximum positive deviation,
although they claimed their proofs can be adapted to the maximum absolute deviation),
the supremum taken over the whole real line, and the factor of f(x) in the denominator
replaced by the maximal value of f0 (a fixed constant). Their limiting results are quite
similar to those of Révész.
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The three papers just discussed allow for (using a moderate amount of algebra) the con-
struction of asymptotically correct simultaneous confidence bands for univariate densities
satisfying suitable technical conditions, provided K increases at a suitably fast rate with
respect to n (this roughly corresponds to the notion of undersmoothing discussed in Section
4.3). However, these papers did not concern themselves with the practicality of these ideas
applied to actual data. It seems reasonable to suspect that slow convergence could be an
issue which could be rectified with bootstrap methods, as was the case with KDE’s.

Pointwise frequentist inference

Consider now the issue of frequentist pointwise intervals. For the “traditional” histogram (of
the form (4.9)), Laloë and Servien [166] showed conditions on K and f0(x) for the quantity

√
nK−1 f̂(x) − f0(x)√

f0(x)
, (4.11)

to have a limiting distribution, which they proved to be a standard Gaussian when it does
exist. Their proof applied the Lindberg-Feller Central Limit Theorem to the histogram val-
ues (recall that these are scaled binomial random variables for each K). Their conditions
were more general (but also more technical) than those in many other papers: in particular,
they did not even require f0 to be continuous. Some literature provides results for non-
traditional histogram variants with non-uniform bin spacing. For univariate densities, Kim
and Van Ryzin [154] showed pointwise asymptotic normality for a histogram with randomly-
spaced bins. They required bin spacings to meet certain conditions for their results to hold;
one valid option is to fix the number of observations in each bin and determine their widths
by the spacings of the sample’s order statistics. The same authors showed analogous re-
sults for an extension to the bivariate case [153]. Another variant for the univariate case
is the maximum entropy histogram estimator (MEHE), which works by dividing the real
line into K ≤ n subintervals (with the first and Kth respectively extending to −∞ and
+∞ and f̂ having some suitable tail behaviour there) and choosing the spacing of their
boundaries to maximize entropy subject to preservation of sample means and mass in the
subintervals. Rodriguez and Van Ryzin [242] considered this estimator and a “symmetrized”
variant and showed pointwise asymptotic normality of the quantity (4.11) for both. Their
conditions on continuity and growth of the number of subintervals were slightly different for
the symmetrized version, and the limiting law does not concentrate around zero as it does
for the regular MEHE, presumably necessitating bias correction. Stadtmüller [271] consid-
ered asymptotics for yet another variant of the form (4.9), first considered by Gawronski
and Stadtmüller [88], in which the indicator functions in the summands are replaced by
the values of lattice distributions to yield a smoothed estimate. They gave a few suitable
examples: replacing 1[ j

K
, j+1

K )(x) by P (Y = j) with, say, Y ∼ Bin(K,x) for densities sup-
ported on [0, 1], or with Y ∼ Poi(Kx) for those supported on [0,∞). Note that the lattice
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distributions do not necessarily constitute probability distributions with respect to x. Thus,
density estimators of this type may not integrate to 1, although some examples presented in
[88, 271] certainly will. For these estimators, Stadtmüller [271] showed pointwise asymptotic
normality of the quantity

(
4πσ2(x)n2

Kf2
0 (x)

)1/4 (
f̂(x) − Ef̂(x)

)
,

where σ2 depends on the lattice distributions. Additionally, they showed extreme value
limiting results [somewhat similar in form to those in 20, as usual] for the supremum of this
quantity (as well as the supremum of its absolute value) over compact intervals, under some
regularity conditions on f0 and the lattice distributions. They also noted that it is possible,
as usual, to replace Ef̂ by f0 (thereby achieving correct asymptotic coverage for confidence
intervals or bands) by undersmoothing — in this case, increasing K at a higher-than-optimal
rate with respect to n.

A Bayesian approach

Recently, Rousseau and Szabó [249] discussed theory for Bayesian UQ of histogram esti-
mators, assuming univariate f0 supported on a compact interval. For this, return to the
form (4.7), with the basis functions equal to indicators for equally-spaced bins. Rousseau
and Szabó considered credible sets of the form (4.1), where d is the Hellinger distance and
f̂ is a suitable centering point such as the posterior mean. They showed that, under some
regularity conditions on f0 (it must be bounded away from zero and sufficiently smooth,
and satisfy a “general polished tail assumption” defined by the authors and briefly described
below) and the prior (a suitable K-dimensional Dirichlet for b | K, and others omitted here
for brevity), posterior credible sets of this type have arbitrarily high asymptotic frequentist
coverage if their diameter is increased by an appropriate factor. In mathematical terms, for
any ϵ ∈ (0, 1), there exists Lϵ > 0 such that

lim inf
n→∞

P0
(
C
(
Lϵ
√

log nrα
)

∋ f0
)

≥ 1 − ϵ, (4.12)

where Π (f ∈ C (rα) | X) = 1 − α.

In fact, they showed the stronger honesty result that this limit inferior holds uniformly over
a certain class of functions, and that the uninflated credible sets are also almost adaptive
over this class (save for a logarithmic factor in the diameter contraction rate). The densities
comprising this class are those in an arbitrary union of Hölder balls of equal radius and
regularities in (1/2, 1]. They must also satisfy the aforementioned general polished tail
assumption, which essentially controls their high-resolution behaviour. Further ideas of this
type will emerge in Section 4.4.4. Rousseau and Szabó’s results hold for both the empirical
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and hierarchical approaches to K. For the latter case, a geometric or Poisson prior for K
satisfies the relevant conditions. The authors noted that the “blow-up factor” of

√
log n is

unfortunate, but they believe it is necessary to prevent coverage from decaying to zero in
certain cases. Although it is quite pleasant to have such theoretical guarantees, it may be a
challenge to put them towards a practical end due to the blow-up factor. Given an MCMC
method to generate posterior simulations from this model, a credible set can be roughly
visualized by plotting the (1 − α)100% of f draws closest in Hellinger distance to f̂ , but
plotting draws from the blown-up set is another matter since we are not aware of any way
to estimate Lϵ.

Given the popularity of histograms, it is somewhat surprising that practical implemen-
tations and demonstrations of UQ for them appear so rare in the literature. For practition-
ers thorough enough to quantify errors in density estimation, it is perhaps reasonable to
conclude that histograms have been superseded by KDE’s and other methods that produce
smooth estimates. Certainly, smoothness is advantageous for interpretation, especially when
one wishes to account for uncertainty.

The following sections will contain a few more results which are applicable to histograms,
arising as special cases of other methods.

4.4.2 Bernstein polynomials

One of the earliest non-histogram methods of the type (4.7) was proposed by Vitale [289]
for densities supported on [0, 1]. They took

Bj,K = Beta (j,K − j + 1) ,

b̂j =
#
{
Xi ∈

(
j−1
K , jK

]}
n

.

The basis functions are beta densities with integer parameters (equivalently, scaled Bern-
stein polynomials), and the coefficients are equal to the proportion of sample values in each
interval

[
j−1
K , jK

)
. In this respect, Vitale’s estimator is essentially a smoothed histogram.

In fact, aside from a different scaling factor it is almost the same as the lattice-smoothed
histogram of Gawronski and Stadtmüller [88]; it therefore seems reasonable to suspect that
one could derive confidence bands from similar asymptotic arguments as Stadtmüller [271].
An equivalent way to interpret this estimator is as a mixture of beta densities.

Babu et al. [9] provided pointwise asymptotic normality results for this estimator un-
der mild conditions, from which one can presumably derive expressions for approximate
pointwise confidence intervals (subject to the usual handling of bias and variance terms).
At interior points x ∈ (0, 1), Vitale’s estimator is quite similar to the KDE: optimal MSE
behaviour occurs with K such that the asymptotic orders of variance and squared bias
match [289]. With this choice, confidence intervals — based on either plug-in or bootstrap
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methods — will not have the correct asymptotic coverage, concentrating around E
[
f̂(x)

]
instead of f0(x) [9]. “Correct” intervals could be obtained by undersmoothing, choosing a
higher-than-optimal K [asymptotic conditions in 9]. Alternatively, noting that the bias term
is a known function of the first two derivatives of f0, it may be reasonable to estimate a
bias correction with plug-in methods, again in analogy with KDE’s. Tenbusch [277] proved
analogous results for Vitale-style estimates of bivariate densities defined on triangular or
rectangular regions, with some generalizations for the latter provided by Babu and Chaubey
[8]. As they are quite similar to the univariate case, they are not repeated here. The afore-
mentioned pointwise results are valid for interior points x, but these estimators are known
to have different asymptotic behaviour at the boundaries [289, 277] and so UQ may also
work differently there.

There are methods besides Vitale’s for estimating a density with Bernstein polynomials.
For another frequentist method, take the coefficients b̂ to be MLE’s. Guan [115] claimed
pointwise asymptotic normality results for this approach, but it is not clear how to turn
these results into appropriate pointwise intervals.

Theory for Bayesian estimates of this type typically depends on the idea of viewing the
coefficients b as increments of some unknown c.d.f. F : bj = F

(
j
K

)
− F

(
j−1
K

)
(Vitale’s

estimator fits this framework for F equal to the e.d.f. of X). To that end, Petrone [224, 225]
considered a hierarchical Bayesian formulation with a discrete prior on K and a Dirichlet
Process prior on F . For practical implementation, they devised an equivalent formulation
making use of the aforementioned “mixture-of-betas” interpretation. They introduced a
vector of latent variables Y = (Y1, . . . , Yn) ∼ F , which provide “mixture labels” for the
samples conditional on K: Xi | Yi,K, F ∼ Beta (⌈KYi⌉ ,K − ⌈KYi⌉ + 1). See Petrone [225]
for more details on the properties of this construction, as well as a Gibbs sampling algorithm
for posterior inference. In principle, this formulation gives everything needed to obtain, at
the very least, pointwise credible intervals — indeed, Petrone did so in these papers. Note
that practical implementations of this model require the truncation of the prior for K

for computations to be possible. This has theoretical implications, but is not an issue in
practice provided the maximum value for K is reasonably high. Petrone and Veronese [226]
generalized these ideas for data not necessarily in [0, 1]; see Section 4.7.3 for elaboration on
this.

Following the analogous KDE ideas in Lo [180], Ghosal [97] considered an alternative
“posterior” based on a (generalized) Bayesian bootstrap approach, where it is assumed
that X ∼ F and F is a random distribution from a Dirichlet Process with base measure
α(·) +

∑
δXi . They conjectured pointwise asymptotic normality (concentrating around the

Bernstein density with coefficients from F = F0, rather than f0 itself), but could not adapt
the results in Lo [180] to prove this.
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4.4.3 B-splines

B-splines are another option for the basis functions in (4.7). They are piecewise polynomials,
characterized by a set of points in the domain called knots at which the values of the
piecewise functions and a certain number of their derivatives must match. The number of
basis functions K depends on both the number of knots and the polynomial degree chosen.
Cubic splines are the most common choice, but there are others: for instance, a Bernstein
basis of size K is a special case of B-splines of degree K−1 and no interior knots [72]. Using
interior knots allows B-splines to be sharper-peaked in general than Bernstein polynomials,
even at lower degrees. Literature about B-splines abounds; see Dias [67] for one of many
introductions.

Although there will be plenty of discussion of splines in Sections 4.5.1 and 4.6, their use
in estimators of the form (4.7) is limited in the literature. UQ for such estimators appears
limited to practically-oriented Bayesian papers, although we suspect that it may be possible
to translate some of the theory pertaining to histograms or Bernstein polynomials to this
type of basis. Note that it is necessary to normalize each B-spline so it integrates to 1,
thereby preserving the “mixture-of-basis-densities” view of (4.7). As another technical note,
here attention is restricted to compactly-supported densities and estimators.

Shen and Ghosal [264] considered the hierarchical Bayesian setup (as defined at the
beginning of Section 4.4), with K having a suitable discrete prior and b | K having a
conditional K-dimensional Dirichlet prior. Like most practically-oriented papers with a hi-
erarchical framework, they noted that the prior on K must be truncated for computation.
They gave a closed-form expression for the posterior mean of f and claimed similar expres-
sions existed for higher posterior moments, allowing them to construct approximate credible
intervals (presumably by a Gaussian-style “mean ± 2*standard deviation” approximation).
Their expression for the posterior mean is a ratio of sums, each of which has a number of
terms increasing exponentially in n for splines of degree ≥ 1. Thus, the authors suggested
randomly sampling a reasonable number of summands, say 3000, to approximate it. This
is not an issue for splines of degree 0, as many terms cancel out due to the basis functions
having non-overlapping supports. In this case, the estimator is simply a histogram and
simplicity arises at the expense of smoothness. Shen and Ghosal found in their simulation
study that the credible intervals were more appealing with cubic splines than with constant
ones, although both had some difficulty capturing some of the true density’s shape.

Edwards et al. [72] compared Petrone-style Bayesian formulations [225, although Ed-
wards et al. modified the MCMC] using both the Bernstein basis [see also 52] and B-splines
for estimating the spectral density of a stationary time series. This use case differs from
the probability density estimation considered here, but some of their ideas are nevertheless
interesting for our purposes. In addition to pointwise credible intervals, they also considered
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simultaneous bands generated from median absolute deviations:

f̂(x) ± ξαMAD[f(x)], (4.13)

where f̂ is the posterior median, the pointwise MAD’s are taken over MCMC draws, and ξα
is the 1−α-quantile (obtained via MCMC draws) of supx

(∣∣∣f(x) − f̂(x)
∣∣∣ /MAD[f(x)]

)
. In a

simulation study, they found that such bands had vastly superior coverage using B-splines
instead of the Bernstein basis. Pointwise intervals for B-splines tended to be wider, but
both these and simultaneous bands captured intricate shape details more effectively than
when the Bernstein basis was used. This is because the compact support of B-splines allows
them to more effectively capture sharp peaks. The authors noted, however, that B-splines
resulted in longer computation times than the Bernstein basis. Lopes and Dias [183] used a
semiparametric Bayesian model for densities, combining a mixture of normalized B-splines
with Dirichlet-distributed coefficients with a mixture of parametric densities. As usual, a
straightforward Gibbs sampler allowed them to obtain pointwise credible intervals from
MCMC output.

4.4.4 Orthonormal wavelets

Briefly, the idea behind estimation with orthonormal wavelets is to express a square-
integrable function f in the form

f(x) =
∑
k∈Z

∑
j∈Z

ckjψkj(x), (4.14)

where ψkj(x) = 2k/2ψ
(
2kx− j

)
for some suitable function ψ called the mother wavelet. The

mother wavelet is such that {ψkj} is an orthonormal basis of L2 (R), so that ckj =
∫
fψkj .

For most of the literature discussed in this section, it can be assumed unless otherwise
noted that the domain is indeed all of R. However, in some cases it is desirable to modify
the wavelets so that they form a basis of, say, L2 ([0, 1]), and there are multiple approaches
to this [e.g. 55].

It is often more convenient to express f as

f(x) =
∑
j∈Z

djϕk0j(x) +
∞∑

k=k0

∑
j∈Z

ckjψkj(x), (4.15)

where ϕkj(x) = 2k/2ϕ
(
2kx− j

)
for some scaling function or father wavelet ϕ such that

{ϕk0j , ψkj : j ∈ Z, k ≥ k0} is also an orthonormal basis for L2 (R). The number k0 corre-
sponds to the “coarsest” level of detail under consideration. In most literature explored
below, it is either left arbitrary or set to 0 when the domain is R. When modifying the
wavelets for use on [0, 1], the dimensionality of the basis will depend on k0 and, for some
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methods, the “regularity” of ψ [55]. In this setting, k0 may therefore be chosen to provide
an appropriate set of basis functions [e.g. 27, 43].

The simplest wavelet example is the Haar wavelet, where ϕ = 1[0,1) and ψ = 1[0,1/2) −
1[1/2,1). In general, ϕ and ψ must be selected to mutually satisfy certain functional equations.
For further detail on wavelet theory and examples, refer to Kaiser’s excellent book on the
subject [147].

In practice, to estimate a density with wavelets, one must truncate the sum over k

in the second term of (4.15) to some upper limit K. In this respect, K is a bandwidth
or “resolution”: higher values introduce thinner wavelets into the sum that capture finer
details, thereby reducing bias and increasing variance. In this respect, wavelets differ from
other basis expansion methods, in which the shapes of the basis functions themselves change
with K. As previously mentioned, the coefficients in the wavelet expansion are simply inner
products between the density and the basis functions. Thus, to obtain a point estimate f̂ ,
the natural choice is to estimate dj and ckj by their empirical versions: the sample means
of ϕk0j (X) and ψkj (X), respectively. It is now clear that density estimators based on the
Haar wavelet are simply histograms with evenly-spaced bins.

Frequentist L∞ inference

Giné and Nickl [100] derived some theoretical results for confidence bands over a compact
subinterval, taken w.l.o.g to be [0, 1], by treating certain types of wavelet estimators in a
unified framework with KDE’s. In their approach, X is split into two subsamples: one of
which is used for a data-driven bandwidth selection procedure (as always, their arguments
involved undersmoothing to ensure correct coverage), with the other used to obtain the
estimate f̂ with this bandwidth. Letting K denote the number obtained from the bandwidth
selection procedure (the details of which can be read in [100]), their framework encompasses
both

1. kernel density estimators with kernel κ(x, y) = κ(x− y) and bandwidth 2−K ; and

2. wavelet estimators in the form of (4.15) with k0 = 0, and the sum over k in the second
term truncated to K terms. To unify these estimators with KDE’s, the authors invoked
a projection kernel defined in terms of the father wavelet: κ(x, y) =

∑
k ϕ(x−k)ϕ(y−k).

For a final piece of notation, let c = supx
∫
κ2(x, y)dy. Giné and Nickl showed a result

somewhat similar to the asymptotic KDE result in (4.6): for f0 bounded away from zero on
an open interval containing [0, 1], under some technical conditions the estimators in their
framework satisfy

P

An
√n2−K

c
sup
x∈[0,1]

∣∣∣∣∣∣ f̂(x) − f0(x)√
f̂(x)

∣∣∣∣∣∣− dn

 < z

 → e−e−z (4.16)
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for suitable (known) sequences An and dn. Just as in Section 4.3.2, it is straightforward to use
this limit to get asymptotically-correct confidence bands. The authors further showed that
these bands are honest and nearly4 adaptive in a range of Hölder balls over all but a nowhere-
dense (w.r.t. the Hölder norm) subset of the function space. However, they noted that their
work is theoretically oriented and therefore cautioned against using these bands without
assessing their finite-sample performance. Furthermore, the only wavelets they showed to
fit into their framework were the Battle-Lemarié wavelets of order 1, 2, 3, and 4. The scaling
function for the Battle-Lemarié wavelet of order r is a B-spline of order r [61], so for r = 1
it reduces to the Haar wavelet.

Because (4.16) generalizes the histogram results first discussed by Smirnov [269] and the
KDE results shown by Bickel and Rosenblatt [20], statements of this type are often called
Smirnov-Bickel-Rosenblatt theorems. Bull [30] showed that a Smirnov-Bickel-Rosenblatt re-
sult holds in the white noise model using symlets and Daubechies wavelets. The Daubechies
wavelet of order r is a Haar wavelet for r = 1 and has increasing regularity for higher orders,
but unlike the Battle-Lemarié wavelet it has the advantage of being compactly supported
[30, 147]. Bull verified their results for orders 6 ≤ r ≤ 20, using bases on both R and
[0, 1]. Although the white noise model is not the focus of this review, they noted that these
results could translate to the density estimation context via some of the Gaussian process
theory in [100]. Indeed, the notion of equivalence between the white noise model and density
estimation is established [e.g. 214], but the details are beyond the scope of this chapter.

It was noted above that a Smirnov-Bickel-Rosenblatt confidence band could achieve
honesty and adaptivity under certain conditions and restrictions on the function space.
More broadly, discussion of these concepts often uses wavelet theory as a starting point,
due to the nice theoretical properties of an orthonormal basis. Hoffmann and Nickl [133]
considered another approach to ensuring the existence of adaptive and honest confidence
bands in finitely many nested Hölder balls: removing subsets of functions from the lower-
regularity ones to ensure “separation” from the smoother classes. By connecting this idea
to hypothesis tests for the smoothness of f0, they showed that, in the case of finitely many
smoothness levels, such separation conditions are necessary and sufficient for the existence
of honest and adaptive bands, and that these conditions are weaker than those imposed
by [100]. The constructive part of their argument involved a uniform band centered at an
estimator satisfying certain properties; their paper and the references therein suggested that
a wavelet estimator would be a good choice for both L2 (R) and L2 ([0, 1]). Unfortunately,
the radii of these bands depend on properties of the Hölder balls that are unlikely to be
known in practice, rendering application implausible. Nevertheless, these results are useful
to inform theoretical discussion of the behaviour of confidence sets. Bull [29] considered

4Their diameters shrink at a rate which is nearly optimal, save for the presence of an extra logarithmic
factor.
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inference on a union of Hölder balls with diameters and regularities both varying over a
continuum. The conditions they imposed on the function sets are similar to those in [100],
but somewhat weaker. Specifically, they required the densities under consideration to be
self-similar. Briefly, self-similarity is a property of a function’s wavelet expansion ensuring
that it exhibits similar regularity at both small and large scales. Note that the general
polished tail condition of [249] (see Section 4.4.1) is a generalization of this. Bull showed
that this restriction excludes only a “negligible” set of functions in both the topological and
probabilistic5 sense, and that it is necessary and sufficient to achieve honest and adaptive
confidence bands over a continuous union of Hölder balls. Refer to Sections 8.3.3 – 8.3.4
of [101] for a more in-depth discussion of the role self-similarity plays in nonparametric
inference.

Bull described a rather complex procedure to construct such a uniform band centered
at a truncated empirical wavelet estimator, using Daubechies wavelets or symlets of order
6 ≤ r ≤ 20, modified to form a basis of L2 ([0, 1]). The procedure exploits self-similarity to
estimate the true smoothness of f0. Unlike the construction of Giné and Nickl [100], it does
not require sample-splitting.

A practical approach

None of the literature discussed thus far in this section concerns itself with applications
to real data. To the extent that there have been constructive results, they have tended in
most cases to be rather complicated. For an example of somewhat more practically-oriented
material, Chernozhukov et al. [49] developed 1 − α confidence bands of the form

f̂l̂(x) ± σ̂l̂(x)
(
ĉn(α) + c′

n

)
(4.17)

over a compact subset of Rd. The subscript l̂ is a particular value of l, which is used to
denote bandwidth (l replaces the usual letter K here for more streamlined notation as in
the original paper). Much like Giné and Nickl [100], these authors cast both KDE’s and
wavelet estimators into the larger framework of estimators f̂l based on some kernel κl (note
that, unlike [100], they folded the bandwidth into the definition of the kernel). In fact, their
framework also encompasses estimators based on nonwavelet projection kernels using other
orthonormal bases such as Legendre polynomials. They considered univariate kernels and
wavelets, and extended to the multivariate case by using elementwise products. Returning
to (4.17), σ̂l is an estimate of the standard deviation of f̂l, obtained using sample mean
analogues of the relevant expectations [e.g. 85]. Letting Ln denote the space of possible

5By considering a natural prior distribution on the space of functions.
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bandwidths, ĉn(α) is an estimate of the 1 − α quantile of

sup
l∈Ln,x

∣∣∣∣∣∣∣∣
f̂l(x) − E

[
f̂l(x)

]
√

Var
[
f̂l(x)

]
∣∣∣∣∣∣∣∣ .

The authors suggested obtaining ĉn(α) by using the Gaussian multiplier bootstrap: whereas
the normal bootstrap takes repeated samples of size n from the empirical distribution of X,
this version repeatedly samples n i.i.d. standard normal variables ξ1, . . . , ξn. Subsequently,

sup
l∈Ln,x

∣∣∣∣∣ 1n
n∑
i=1

ξi
κl (Xi, x) − f̂l(x)

σ̂l(x)

∣∣∣∣∣ (4.18)

is calculated, and ĉn(α) is taken to be the 1 − α quantile of this quantity over bootstrap
replications. The numbers c′

n and l̂ are chosen based on a separate application of the Gaus-
sian multiplier bootstrap: the former is a scaled quantile of a different Gaussian multiplier
process, and the latter is based on a modified application of the popular Lepskĭı’s method
[172]. Chernozhukov, Chetverikov and Kato showed that — under some conditions on the
necessary intermediate quantities, Ln, and κl — the bands (4.17) constructed in this way
are asymptotically honest and adaptive over a range of Hölder balls, subject to global up-
per and lower bounds on the densities and a modified version of the “self-similarity” notion
mentioned previously. Furthermore, they showed that the worst-case coverage probability of
their bands converges to the nominal level at a polynomial rate, asymptotically faster than
the logarithmic rate associated with Smirnov-Bickel-Rosenblatt results. These theoretical
results hold for KDE’s with compactly-supported kernels and estimators using either com-
pact or Battle-Lemarié wavelets, with regularity conditions based on the maximal degree
of Hölder smoothness to which one wishes to adapt. In their supplementary material, the
authors conducted a small simulation study. Although most of the intermediate quantities
used to construct (4.17) must meet certain conditions (primarily in terms of their behaviour
with respect to n), they simply experimented with predetermined numerical values for their
simulations.

Frequentist L2 inference

Robins and van der Vaart [241] investigated the construction of L2 confidence sets for
conventional frequentist wavelet estimators. For a given wavelet basis6, let θ(f) denote the
expansion coefficients for an arbitrary f , and let f̂ be the usual empirical wavelet density

6Actually, Robins and van der Vaart considered general orthonormal bases, not just wavelets. However,
it seems appropriate to discuss their paper in this context, and to handwave some of the notation and
technicalities for the sake of brevity.
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estimator. Then their confidence sets are of the formf ∈ F :
∥∥∥θ(f) − θ

(
f̂
)∥∥∥

2
≤

√
τ̂K,n,θ
α

+ R̂K,n
(
θ
(
f̂
))

+ 2B̂K

 , (4.19)

where K = K(n) is a suitably-increasing bandwidth and the terms τ̂ , B̂, and R̂ are estimates
for variance, bias, and

∥∥∥θ (f0) − θ
(
f̂
)∥∥∥

2
, respectively. They used sample splitting, assuming

that the data used to calculate f̂ is independent from that used for the other terms. These
sets were shown to be honest at level 1−α, and adaptive to the fullest extent allowed by the
theory without further restrictions7. Robins and van der Vaart mainly concerned themselves
with the theoretical properties of such sets in various contexts. In practice, they may be
difficult to construct due to the (likely unknown) quantities required for the calculation of
the various terms in Equation 4.19. Bull and Nickl [31] further expanded upon the results
of Robins and van der Vaart in the L2 ([0, 1]) case, showing that honest and adaptive L2

confidence sets over a wider range of regularity classes and Sobolev ball radii are possible
by discretizing the smoothness range and using the “separation” approach from [100]. They
constructed such a set in their proofs, somewhat similar in form to (4.19). Although they
acknowledged the possibility of replacing some of the unknown terms in their construction by
certain data-driven approximations, they did not consider applications to real data. Lerasle
[173] provided a different approach to L2 confidence balls, the full intricacies of which are
omitted here. They used a model selection approach to determine the best approximation
space (they dealt more generally with projection estimators on linear subspaces of an L2

space, but for our purposes it suffices to consider the special case of wavelet estimators
where the selection is for the truncation level) and a resampling method to estimate an
L2 norm needed in the radius of the set, thereby avoiding the sample splitting needed by
some of the other literature discussed here. They showed that their confidence balls have
the same adaptation properties as in [241], and that they are additionally non-asymptotic:
they have correct coverage probability for any sample size n, not just in the limit.

Some extensions and Bayesian ideas

Lounici and Nickl [185] defined a wavelet-based deconvolution density estimator analogous
to the kernel one described in Section 4.3, based on a deconvolution kernel using Fourier
transforms of the error density and wavelet basis functions. They used concentration in-
equalities and Rademacher processes to construct a confidence band, the radius of which
is a complicated expression depending on the unknown density of the observed noisy data
(although they noted that it can be replaced by the deconvolution estimator in practice).

7For instance, if F is a Sobolev ball of regularity r, the “fullest extent” in this L2 context means adaptation
over any nested Sobolev balls of regularity s ∈ [r, 2r] [31, 101]. Recall that the L∞ context is even more
restrictive than this [101].
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Under some conditions on the bandwidth, error density, and smoothness of f , it is possible
to control the probability with which the bands cover f0 over all of R.

For another somewhat unconventional theoretical example, Kerkyacharian et al. [152]
developed an estimator for densities on homogeneous compact manifolds such as spheres.
Their estimator is based on a needlet expansion of the density, where needlets form a basis
with multiresolution properties similar to wavelets. They proposed a confidence band of
random uniform width, discussed its (limited) adaptivity, and showed that its coverage
probability can be controlled by undersmoothing.

Bayesian UQ literature for density estimators of this type is generally scarce, but some
Bayesian results for histograms by Castillo and Nickl [43] can be more easily explained with
the machinery of Haar wavelets. They used wavelet expansions of roughly the form (4.15)
with k0 = 0, the sums over j restricted to j = 0, . . . , 2k − 1 to ensure the Haar system
forms a basis of L2 ([0, 1]), and the sum over k truncated to some upper limit K. This is
equivalent to the basis function estimator (4.7) with 2K piecewise constant basis functions
instead of K. In the latter form, Castillo and Nickl placed a 2K-dimensional Dirichlet prior
on the histogram coefficients b, with K = Kn chosen as a deterministic function of n and
the assumed Hölder regularity of f0 (for regularities in the range (1/2, 1]). They proposed
credible sets C based on a “multiscale” approach:

C =

f : max
j,k

∣∣∣〈f − f̂ , ψkj
〉∣∣∣

wk
≤ Rn√

n

 , (4.20)

where the inner product is the standard one on L2 ([0, 1]), f̂ is the usual empirical wavelet
estimator of f0, wk is a sequence such that wk/

√
k → ∞ as k → ∞, and Rn is such that

Π (f ∈ C | X) = 1−α. Note that Rn can be computed explicitly due to the conjugacy of the
Dirichlet prior, since the likelihood depends only on the counts of observations in each “bin”.
Castillo and Nickl showed that the posterior over densities satisfies a sort of nonparametric
Bernstein-von Mises property, and that these sets therefore have asymptotically correct
frequentist coverage: P0 (C ∋ f0) → 1 − α as n → ∞. With a further refinement to their
definition, their L∞-diameters also contract at a nearly-optimal rate in the “big-O in P0”
sense. Unlike many of the other methods in this section, honesty and adaptivity are not
implied here as the authors did not show the asymptotics to be uniform over all f0 in some
class. Although the choice of bandwidth K depends on the regularity of the unknown f0, they
suggested that one could estimate a suitable bandwidth under a self-similarity assumption
as in [100]. The geometry of these sets does not lend itself to visualizable error bounds.
Instead, one can simulate from the posterior with MCMC, discard the 5% of function draws
with the highest values for the multiscale quantity on the left-hand side of (4.20), and plot
the remaining 95% to get a visual representation of the sets. This is the approach taken
in, for example, the simulation study of [235], who considered similar theoretical ideas for
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Bayesian UQ in the context of white noise and conjectured that they may be applicable to
densities.

4.5 Adaptive basis expansion methods for log densities

An adaptive basis expansion does not have to be applied to the density itself as in the
preceding section. Rather, it can serve as a model of the logarithm of the density, provided
normalizing constant c is incorporated:

log f(x) =
K∑
j=1

bjBj,K(x) − c, (4.21)

c = log
∫

exp

 K∑
j=1

bjBj,K(t)

 dt.

Modelling the logarithm as a sum has a few nice consequences. In particular, it allows f
to be viewed as a member of an exponential family with sufficient statistics

∑
iBj,K (Xi),

which makes it very easy to obtain an MLE f̂ by maximizing
∑
i log f (Xi) with respect to

b using (4.21) [e.g. 158]. Additionally, it is no longer necessary to constrain the coefficients.

4.5.1 Logsplines

One of the best-studied methods of this type is logspline density estimation. Assuming
the density is supported on an interval and letting L and U denote its endpoints, let
{Bj,K : j = 1, . . . ,K} be a B-spline basis with knot sequence L < t1 < . . . < tm < U

(recall Section 4.4.3). Although cubic splines are the most common choice, lower orders are
possible; in particular, using splines of “order” 1 (equivalently, degree 0) corresponds to a
histogram [275]. It is common to put some constraint on the tail behaviour of the estimate
when using cubic splines, especially (but not exclusively) when (L,U) = R, in which case
the MLE log f̂ is typically required to be linear on (L, t1] and [tm, U) [127, 158]. If the
support is a compact interval, another option is to require

(
log f̂

)′′
to be zero at L and U

to reduce variance near the endpoints [160].
Stone [275] discussed some asymptotic theory for the maximum likelihood logspline

density estimator, assuming the support is a compact interval ([0, 1] w.l.o.g.) and the knots
are equally spaced. They showed that, when K increases to ∞ with n,

f̂(x) − f(x)
ŜE
(
f̂(x)

) d−→ N (0, 1)

for all x ∈ [0, 1], where ŜE
(
f̂(x)

)
is a standard error estimate involving values of the basis

functions and derivatives of c with respect to b (actual expression omitted for brevity), and
f is the deterministic logspline density obtained by maximizing the expected (with respect
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to f0) log-likelihood. In a related technical report [274], Stone noted that this result can be
used to obtain asymptotic confidence intervals for f0, provided K increases with respect to
n at a suitable rate depending on some underlying differentiability assumptions on f0. As
in many other cases, K must increase faster than the error-optimizing rate for this, leading
to undersmoothing.

A more comprehensive and practical treatment of pointwise inference for logsplines
was given by Kooperberg and Stone [160]. They considered more involved knot placement
schemes: one that involves stepwise selection, addition, and deletion, ultimately selecting
the number of knots to optimize a generalized AIC [see 160, and references therein]; and
a free knot placement scheme where knot locations and coefficients are jointly maximized,
with the dimensionality again chosen by AIC. In either case, it is possible to estimate a
standard error for log f̂ and use it to get approximate Gaussian pointwise intervals for the
log density. By exponentiating the endpoints of these, Kooperberg and Stone obtained ap-
proximate confidence intervals for f0. The only difference between the two knot selection
procedures in this regard is the dimensionality of the gradients and Hessians required for
the standard error estimate: the free knot procedure requires more components, since it is
necessary to include derivatives with respect to knot locations. Additionally, for the step-
wise procedure (in which the knots are considered fixed), the authors considered confidence
intervals obtained via the bootstrap: either using percentile intervals, or plugging a boot-
strap estimate of the standard error into the Gaussian interval approximation. The final UQ
option they considered was a fully Bayesian approach, in which they put a hierarchical prior
on K, knot placement (conditional on K), and coefficients b (conditional on knot placement
and K). They simply took simulation quantiles from a reversible-jump MCMC procedure
as pointwise credible intervals. In their simulation study, Kooperberg and Stone found that,
for non-bootstrap methods, intervals based on the free knot procedure had higher coverage
than those based on the stepwise procedure, but all non-bootstrap frequentist approaches
consistently undercovered. Bootstrap methods based on the stepwise procedure were much
better, although the percentile bootstrap tended to overcover (i.e. the intervals were per-
haps too wide). Using a bootstrap standard error estimate with the stepwise procedure
therefore appeared to be the best option, especially due to computational savings since
fewer resamples were required than for the percentile bootstrap. They reserved analysis of
the Bayesian approach for a real dataset, where they found that the credible intervals were
much narrower than the “bootstrap standard error” confidence intervals, suggesting that the
Bayesian approach may undercover. In a different publication [159], Kooperberg and Stone
expanded somewhat on these results. There they found that the non-bootstrap frequentist
intervals could achieve appropriate coverage on average when their widths were modified
by some uniform scaling factor. Factors between 1.34 and 1.55 sufficed in their simulations
depending on the specifics of the standard error calculations, but it was not clear how well
these would generalize. They also found once again that the Bayesian intervals appeared too

70



small when applied to practical data, even with a larger prior covariance on the coefficients.
Hansen and Kooperberg [127, in rejoinder to discussions] noted their challenges with UQ in
Bayesian logspline estimation: they found it difficult to select priors that led to good point
estimates and sensible credible intervals. More broadly, some authors have expressed skep-
ticism about the usefulness of UQ for logspline density estimation, stating their view that
pointwise confidence intervals do not generally provide useful shape information [158, 195].

4.5.2 General orthonormal bases

A few theoretical Bayesian papers discussed in Section 4.4 also provided analogous results
for log density basis methods. Castillo and Nickl [43] modelled log densities with wavelets
modified to form a basis of L2 ([0, 1]) instead of L2 (R). The coefficients were given indepen-
dent and identical priors — either Gaussian, Laplace, or something heavier-tailed — with a
scale parameter depending on the Hölder regularity of log f0 (assumed to be > 1). Similarly
to their histogram approach described in Section 4.4.4, the authors used a deterministic
bandwidth choice and showed that multiscale credible sets of the form (4.20) have correct
asymptotic frequentist coverage, with near-optimal diameter contraction possible with fur-
ther refinements. The same comments about practicality made in Section 4.4.4 apply here.
In a similar vein, Rousseau and Szabó [249] considered density estimators (supported on
[0, 1]) of the form (4.21) with an orthonormal basis of L2 ([0, 1]) such that B1 ≡ 1, with the
subscript K removed since they did not consider basis functions changing with K. Among
other technical conditions omitted here for brevity, they assumed log f0 has (up to a nor-
malizing factor) an infinite series representation in terms of this basis; equivalently, that
the true density is a member of an infinite-dimensional exponential family. With a suitable
prior on b | K (a normal distribution with independent components is one example satis-
fying their conditions), the authors showed that (4.12) holds with Hellinger balls for both
empirical and hierarchical approaches to K, just as it does for the histogram model. As in
that case, honesty and near-adaptivity (up to a logarithmic factor) results hold over func-
tions in a Sobolev ball of regularity > 1/2 satisfying their general polished tail condition.
Unfortunately, their results remain difficult to put into practice due to the existence of the
“blow-up factor” in the diameter of the sets.

4.6 Roughness penalty methods

Some of the frequentist estimators considered in Sections 4.4 – 4.5 were MLE’s. In the i.i.d.
case, one chooses f̂ to maximize

n∑
i=1

log f (Xi)
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over all f in some predetermined class of possible estimators — generally those that can
be expressed in the form of (4.7) or (4.21) — so that obtaining the estimate is simply a
matter of optimizing the coefficients. In some cases it is advantageous to impose a further
restriction on f̂ to reduce variance or otherwise impose some desirable “baseline” shape
properties. In this case, instead choose f̂ to maximize

n∑
i=1

log f (Xi) − λJ(f) (4.22)

over the estimator class, where the functional J is some roughness penalty. This term forces
f̂ or log f̂ (depending on the context) to more closely resemble a function in the null space
of J to an extent controlled by the smoothing parameter λ. A common choice for J is the
integrated square of some linear differential operator: for instance, if J : f 7→

∫ (
D3 log f

)2,
then as λ → ∞, log f̂ is forced towards a quadratic shape, and therefore f̂ towards a
Gaussian [267]. For brevity, this case may be described as “penalizing [the size of] the third
derivative” [232] on the log scale.

As indicated above, roughness penalties most commonly appear in the context of basis
expansion methods, particularly spline fitting. When using splines with equally-spaced knots
that do not repeat at the endpoints [74], an integrated squared kth-order derivative penalty
can be approximated by the sum of squared kth-order differences between the coefficients.
This simpler penalty gives rise to so-called P-splines, devised by Eilers and Marx [73]. In any
case, such penalties are equivalent to quadratic forms in the basis function coefficients —
for instance, the associated matrix for the aforementioned third derivative penalty consists
of inner products between the third derivatives of the basis functions.

A Bayesian approach to roughness penalties is quite natural: it comes from viewing (4.22)
as a log-posterior, with the first and second terms respectively corresponding to likelihood
and prior. In this respect, the Bayesian methods of the previous two sections technically fit
into this framework, but the focus in this section is on literature with a stronger emphasis on
specific shape and smoothness restrictions imposed by the prior or penalty. The benefits of
expressing penalties as quadratic forms as described above is now apparent: such a penalty is
equivalent to an improper Gaussian prior on the spline coefficients (e.g. a P-spline penalty
of order k corresponds to a kth-order Gaussian random walk; see Section 5.2.2), with λ

commonly given a Gamma hyperprior [e.g. 169]. Note that this type of prior is only suitable
when modelling the log-density with basis functions — when using a basis expansion for
the density itself, care must be taken to ensure that it is nonnegative and integrates to one.
Some examples of this approach are given in Section 4.6.2.

4.6.1 Penalty methods for log-scale basis expansions

Although roughness penalty density estimators had already been developed by Good and
Gaskins [106], Silverman [267] appears to have provided some of the earliest results for the
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approximate distributions of such estimators. Letting g = log f and taking J(g) (in a slight
abuse of notation) to be the integrated square of some mth-order linear differential operator
on g, they considered the estimator ĝ := log f̂ which minimized (4.22) over all g such that

1. g has piecewise differentiable (m− 1)th derivatives,

2. J(g) < ∞, and

3.
∫
eg < ∞.

Silverman showed that, for bounded f0 on a bounded univariate domain, ĝ is asymptotically
normal under suitable conditions on the higher-order derivatives of log f0 and the rate at
which λ → 0 as a function of n and m. In principle this result could lead to some type
of pointwise confidence intervals, but Silverman did not pursue this further. The mean
and covariance functions for the limiting Gaussian process depend on eigenvalues of an
inner product space of estimators, and it is not clear how to approximate these in practice.
O’Sullivan [218] expanded further on Silverman’s original ideas for univariate densities on
compact intervals, and justified approximating ĝ by cubic B-splines with knots at order
statistics of X. They proposed to calculate λ by approximations to either a cross-validation
score or an AIC-type quantity, and penalized the second derivatives of the log-densities. For
uncertainty quantification, O’Sullivan adapted an idea from the non-parametric regression
setting [291]: treating (4.22) as a log-posterior for the coefficients b in order to obtain
“approximate Bayesian pointwise intervals”. In the density case, O’Sullivan took a second-
order Taylor series approximation of the unpenalized likelihood component

∑
log f (Xi).

This lead to an approximate Gaussian log-posterior, from which they derived pointwise
intervals on the log scale of the form

log f̂(x) ± 2
√

2
n

B(t)T
[
Ĥ + 2λΩ

]−1
B(t), (4.23)

where B(t) is a vector of basis function evaluations, Ĥ is the Hessian (with respect to
b) of the unpenalized likelihood at b̂, and Ω is the matrix of inner products associated
to the roughness penalty. Presumably, confidence intervals for f0 could be obtained by
exponentiating the above expression. O’Sullivan did not comment on the performance of
these intervals in their simulation study, but noted that they were found to have good
coverage properties in the nonparametric regression setting by Wahba [291].

There are other formulations besides the Silverman approach for density estimation with
roughness penalties. One such Bayesian approach came from Lambert and Eilers [168], who
essentially used logistic regression to produce a smoothed estimate of a histogram. Suppose
the density is supported on a bounded interval, which is partitioned into J bins. Let uj and
mj respectively denote the center of, and number of observations in, the jth bin Ij . Then
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Lambert and Eilers proposed the model

(m1, . . . ,mJ) ∼ Multinomial (n,π) , (4.24)

πj =
exp

[∑K
k=1 bkBk (uj)

]
J∑
l=1

exp
[∑K

k=1 bkBk (ul)
] , (4.25)

b−K ∼ N
(
0, (τΛ)−1

)
;

where the Bk’s are B-splines with equally-spaced knots, bK = −
∑K−1
k=1 bk for identifiability,

Λ is a matrix of finite difference coefficients encoding a P-spline penalty, and τ is a precision
parameter with a gamma hyperprior. For x ∈ Ij , one can take f(x) = πj/ℓ (Ij) as a
density estimate, where ℓ denotes the length of the interval. This penalized spline structure,
combined with a high number of reasonably narrow bins, ensures the appearance of smooth
estimates. Lambert and Eilers proposed this framework as a flexible way to handle grouped
data by dividing the support into a smaller number of “wide bins” and replacing (4.24)
with a multinomial model for wide bin counts, the probabilities for which are sums of the
corresponding fine-grid π-values. Using a modified Langevin-Hastings algorithm to generate
posterior samples, Lambert and Eilers applied this model to simulated and real data, using
a moderately-sized cubic spline basis (K = 20). Unsurprisingly, their pointwise credible
intervals (obtained from MCMC draws) exhibited higher variance when using larger “wide
bins”. In an earlier technical report, the same authors considered extensions of this model to
multivariate densities by simply using products of B-spline bases, possibly allowing different
dimensionalities and roughness penalties in each dimension [167].

4.6.2 Penalty methods for direct basis expansions

Roughness penalties can also be applied when modelling the density itself, rather than the
log density, with basis functions. Komárek et al. [156] considered such a formulation to
estimate the error density in accelerated failure time models. Rather than splines, they
used Gaussian densities at fixed locations, which they noted to be the limiting case for
B-splines as their degree tends to infinity. The number of basis functions in their model is
determined by the desired distance between their means (which serve the same purpose as
equally-spaced knots for splines), as is their standard deviation. To ensure their estimates
were valid densities, the authors used a softmax transformation to obtain the coefficients b:

bk = eak

K∑
l=1

eal

. (4.26)

For identifiability, it is necessary to fix, say, aK = 0; a few other constraints on a are
also necessary to ensure identifiability of other parameters in the failure time model. The
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roughness penalty, based on second- or third-order finite differences, is imposed directly
on a. Estimation and inference follow from similar ideas as in O’Sullivan [218]: Komárek,
Lesaffre and Hilton took a penalized maximum-likelihood estimate choosing the smoothing
parameter by an approximate cross-validation score, and used a second-order Taylor expan-
sion to obtain approximate pointwise “posterior” intervals for the density. They noted that
in a simulation study (which they did not show), this method of constructing pointwise
intervals yielded better coverage results than asymptotic methods. Komárek and Lesaffre
[155] used a Bayesian version of this construction to model the errors and random effects
in an accelerated failure time model with interval-censored data. As one might expect,
the “logistic-scale” coefficients a in (4.26) were given (aside from a single identifiability
constraint) a Gaussian prior with a (third-order) finite difference covariance structure, the
scale of which is controlled by a smoothing parameter with a diffuse Gamma prior. Spec-
ifying the model in this way leads to related closed forms for estimated survival functions
and densities of onset and event times. These functions can be simulated in an MCMC
run, leading to pointwise credible intervals and means corresponding to posterior predic-
tive functions. The simulation studyconducted by Komárek and Lesaffre [155] showed that
such credible intervals did a good job of capturing the true densities of event and onset
times, although their smoothness varied with different combinations of true random effect
and error densities. Sharef et al. [263] provided an even more flexible Bayesian approach
of this type to estimate the frailty density in a proportional hazards frailty model. They
used a mixture of normalized B-splines and an optional parametric term, constrained to
ensure the density has mean one. The authors considered the use of fixed splines, as well
as a reversible-jump MCMC procedure allowing the number and location of knots (and
therefore, of basis functions) to vary adaptively. For the latter, they put some truncated
discrete prior on the number of knots, with their locations given a discrete uniform prior
over a larger set of “candidate knots”. Conditioned on dimensionality, they expressed the
coefficients for the spline part of the model as in (4.26). They considered multiple choices
for a smoothness-imposing prior on a | K, listed below.

1. Simply taking the components of a to be i.i.d. Gaussians. The authors used this
prior with adaptive knot selection, since the latter procedure controls smoothness
automatically.

2. Taking a to be Gaussian with a covariance structure corresponding to second-order
finite differences. The authors noted that this is only guaranteed to enforce smoothness
for equally-spaced (fixed) knots.

3. Directly penalizing the second derivative of the spline mixture. This amounts to using
a log-prior that is a quadratic form in exp (a) (with an associated matrix of inner
products between B-spline second derivatives), divided by (

∑
k e

ak)2.
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In all cases, the prior for a has a scale parameter with an inverse-Gamma prior to control
smoothing.The authors applied their approach to both simulated and real data, quantifying
uncertainty with pointwise credible intervals from MCMC quantiles. Their simulation study
showed that the adaptive knot selection approach without parametric component effectively
captured the true frailty densities, although it required a sufficient quantity of data to do so
(in particular, too few data clusters lead to wide pointwise intervals that did not adequately
capture true shape information). On a real dataset with a modest number of clusters, they
compared the fixed-knot version of their model (with second derivative penalty) to the
adaptive knot procedure with different prior choices for the parametric component weight
and number of knots. They found that the adaptive version with parametric components
encouraged more smoothness in the posterior mean density and its credible intervals, to
an extent determined by the choices of priors. However, the fixed-knot version with second
derivative penalty performed best in terms of a modified Deviance Information Criterion.

This section concludes with a rather novel frequentist approach from Sardy and Tseng
[254] which is better-suited to densities that may not be smooth in the sense of piecewise
differentiability. They used estimators which are either piecewise linear between the order
statistics of X, or piecewise constant between their midpoints (equivalently, splines of de-
gree 1 or 0, respectively), and total variation as their roughness penalty. The penalty is
easily computed since their estimators ensure piecewise monotonicity, so that total varia-
tion is simply the sum of absolute differences between function values at consecutive order
statistics. The authors devised two approaches for selecting the smoothing parameter: a
universal one (depending only on sample size, not sample values) engineered to control the
behaviour of f̂ when the true density is uniform; and one based on a sparsity ℓ1 information
criterion, in which λ and f̂ are jointly estimated. They used the latter approach on real
datasets with some tied values due to rounding, and obtained 95% pointwise confidence
intervals by bootstrapping. The pointwise intervals had reasonable width and shape, and
the authors noted that they may allude to the existence of additional modes not captured
in the “point estimates” of the densities.

4.7 Random measure mixture methods

This section explores uncertainty quantification for the canonical nonparametric Bayesian
method of density estimation. In the general case, this method employs (conditional) mix-
tures of the form

f (· | G) =
∫
κ (· | θ, ϕ) dG (θ) , (4.27)

where κ is some kernel with parameters θ and ϕ, and the integral constitutes a mixture
over the domain of θ with respect to a random probability distribution G. The bulk of the
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nonparametric Bayesian literature uses infinite-dimensional discrete mixing distributions:

G (·) =
∞∑
i=1

wiδZi (·) , (4.28)

where the locations and weights of the atoms — respectively, Z and w — are random
sequences. The centrepiece of this Bayesian mixture model is the infinite-dimensional prior
on G: a “distribution on distributions”. As it pertains to density inference, the locations and
weights are usually independent, with the former distributed according to some continuous
“base measure” and the latter having a prior from one of two commonly-used broad classes.

1. Normalized random measures with independent increments, or NRMI’s [236], in which
unnormalized weights are generated from a Poisson point process [141] and subse-
quently normalized. The measure with unnormalized weights is a completely random
measure (CRM).

2. Gibbs-type random measures of type8 σ ∈ (0, 1), which are equivalent to σ-stable
Poisson-Kingman processes [104, 177]. Briefly, these arise from NRMI’s with intensity
measure corresponding to the σ-stable subordinator [98, p. 604] by conditioning the
distribution of the weights on their sum T , then mixing over an arbitrary distribution
for T [227].

Assuming independence between weights and locations, each approach is a special case of the
larger set of Poisson-Kingman models [227, 177], which are in turn a type of species sampling
model. The normalized generalized gamma (NGG) processes comprise the intersection of
these approaches [177], whereas the Pitman-Yor process [228] is an example of the second
but not the first, as noted by Favaro and Teh [81]. It is well-known that both the NGG and
Pitman-Yor processes admit the Dirichlet process as a limiting case when the parameter σ →
0 [as mentioned in 182, for instance]; many Bayesian density inference papers are specifically
devoted to so-called Dirichlet process mixtures. For the interested reader, Chapter 14 of
Ghosal and van der Vaart [98] is an excellent exploration of the relationships between such
discrete nonparametric priors.

For any of these priors on G, it is easily seen that its specification in the form (4.28)
leads to another expression equivalent to (4.27):

f (· | G) =
∞∑
i=1

wiκ (· | Zi, ϕ) . (4.29)

8Other Gibbs-type random measures are possible for different values of σ. For σ < 0, they are mixtures
(over the dimensionality) of finite-dimensional symmetric Dirichlet distributions; for σ = 0, they are mixtures
(over the concentration parameter) of Dirichlet processes [104]. However, these are not typically seen in the
density inference literature.
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Discussion of the theoretical aspects of UQ, such as asymptotic coverage probability, appears
scarce in the literature for such estimators. Instead, the focus is on practical generation of
uncertainty sets (usually pointwise credible intervals) from posterior samples obtained via
MCMC. As one might expect, difficulty arises here due to the nonparametric nature of
the quantity of interest — in particular, since the posterior distribution of G (this section
hereafter adopts the bracket notation of Gelfand and Smith [90], denoting this posterior by
[G | X]) will be infinite-dimensional. The key to most ideas for MCMC sampling of this
model is to reformulate it in a hierarchical way:

Xi ∼ κ (· | θi, ϕ) ,

θi ∼ G, (4.30)

G ∼ P (· | ψ) .

If there are additional hyperparameters ϕ and ψ, they are typically given their own inde-
pendent priors, but these are not a main focus here. The latter encodes all parameters of
the prior for G: for instance, for a Dirichlet Process prior with Gaussian base measure it
may include the concentration parameter, as well as the location and scale of said base.
Note that by the almost-sure discreteness of G, there is positive probability that θi = θj for
some i ̸= j. In this respect, the model imposes a random partitioning or clustering of the
data, where each cluster is comprised of all observations with the same θ value. With this
formulation in mind, the known MCMC strategies divide into two main groups: marginal
and conditional, depending on the way in which the infinite-dimensional parameter G is
handled. The sections below briefly explain, and discuss the UQ implications for, each of
these groups.

4.7.1 Marginal sampling methods

Marginal methods rely on integrating G out of the model and being able to obtain approx-
imate samples from [θ | X]. Algorithms for this purpose are readily available when using
the Dirichlet Process prior; see Neal [206] for a seminal review of them. In this case, it
is easy to obtain a Monte Carlo estimate of the posterior mean density (denoted here as
f (· | X), in keeping with the rest of the Bayesian notation in this section), as discussed
by Escobar and West [75]. Letting θ∗ denote the parameter for a hypothetical new obser-
vation and θ = (θ1, · · · , θn), note that f (· | θ) =

∫
f (· | θ∗) dΠ (θ∗ | θ). The integrand is

simply the kernel κ, and the distribution [θ∗ | θ] is readily available. Assuming the base
measure of the Dirichlet process is conjugate to the kernel (as in the Gaussian case, for in-
stance), this integral has an analytic closed form. From there, the Monte Carlo estimate of
f (· | X) =

∫
f (· | θ) dΠ (θ | X) is an average of the above quantity over posterior MCMC

draws of θ. By the same token, it is easy in the conjugate case to quantify uncertainty with
respect to [f (· | θ) | X]. This is essentially the approach suggested by Wang and Dunson
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[294] to find pointwise confidence intervals, although they further simplified inference by
using a greedy algorithm to find an optimal partition of the data. They noted that the
deterministic nature of their algorithm results in an underestimation of uncertainty.

Inference of this nature ether ignores or marginalizes out uncertainty in the weights of
G. For marginal samplers, this seems to be fairly standard practice when obtaining posterior
density estimates to construct credible sets. Shi et al. [266] used one of Neal’s nonconjugate
algorithms [206] and obtained posterior density draws by taking the mean of the κ (· | θi)’s
for each MCMC draw of θ [see also their R package 265, and its source code9]. This is
equivalent to taking a mixture of cluster-specific kernels, each weighted by the number of
observations in its corresponding cluster. Using kernel- and data-specific scaling and a low-
information prior, Shi et al. obtained pointwise credible intervals for simulated and real data.
Their framework can accommodate censored data, with pointwise uncertainty increasing in
the presence of censoring as expected. In their simulation studies, the credible intervals did
a good job of capturing the true densities, covering them throughout the domains for all
one-dimensional examples and at roughly 98% of domain points for their two-dimensional
example. Favaro and Teh [81] and Favaro et al. [79] devised marginal Gibbs samplers for
NRMI’s and a specific subclass of σ-stable Poisson-Kingman models, respectively. For both
classes, their density draw computations appear10 to be based on truncation, and marginal-
ization of the distribution of G given θ and the auxiliary variables of the sampler. To
elaborate, the density draws are a sum of cluster-specific kernels, each given weight propor-
tional to its (conditional) expected mass; and ten “new” kernels with parameters taken from
the prior base measure, each given weight proportional the expected total mass divided by
ten. In the latter paper, the authors showed a pointwise credible interval for the density of
a dataset of galaxy velocities, noting that the results were satisfactory and consistent with
previous work.

It could be argued that the aforementioned approaches to density inference are inher-
ently “incomplete”. Indeed, marginalizing or otherwise deterministically approximating the
random weights of G fails to account for some of the uncertainty in (4.29). If the goal is full
uncertainty quantification in this regard, the focus must be on [f (· | G) | X] if possible. As
noted by Gelfand and Kottas [89], it holds that

[θ, G | X] ∝ [θ | X] [G | θ] . (4.31)

This reveals the key to fully meaningful inference with a marginal sampler: for each MCMC
draw θb ∼ [θ | X] , b = 1, . . . , B, if it is possible to draw Gb ∼ [G | θb], then the quantities
{f (· | Gb)} constitute a posterior sample from [f (· | G) | X]. Gelfand and Kottas [89] noted

9Available at https://github.com/cran/DPWeibull.

10Based also on their source code at https://github.com/BigBayes/BNPMix.java.
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that this is easy for the Dirichlet process prior by conjugacy, since [G | θ] is a Dirichlet
process with updated parameters. Of course, in practice the infinite sum in (4.29) must be
somehow truncated to obtain actual density draws. Gelfand and Kottas did this by choosing
the number of terms to satisfy a predetermined expected error threshold, then replacing the
final weight to ensure that the truncated sum integrates to one. Kottas [163] later used this
approach in the context of survival analysis, as did Griffin [108] when comparing different
approaches to hyperpriors in the Dirichlet process model. Such methodology is not typically
used for more general random measure priors, despite relevant distributional results existing
in the literature [81, 79]. This is likely a computational matter: to directly sample the weights
w of a random measure, it is typically necessary to employ a stick-breaking process, in which
they are represented as

wi = Vi

i−1∏
j=1

(1 − Vj) (4.32)

for certain continuous random variables {Vi} on [0, 1]. It is well-known that the Dirichlet
process with concentration parameter M has a stick-breaking representation of the form
(4.32) with Vi

i.i.d.∼ Beta(1,M) [262]. However, such representations for the general classes
of random measure considered here are more recent developments, and the densities of the
Vi’s are quite complicated [83, 80].

4.7.2 Conditional samplers

In contrast to the approaches described above, conditional methods do produce posterior
samples of the weights in (4.28), allowing for “full” inference on functionals such as (4.29).
There are several ways to avoid the problem of having to sample infinitely many weights.
Early conditional samplers simply replaced G by a finite approximation, choosing the de-
terministic truncation level a priori. Discussion of such methods is deferred to Section 4.7.4;
this section focuses on alternatives that better incorporate the infinite-dimensional nature
of the model. Perhaps the most common approach to this end is to introduce some auxiliary
variables such that the full conditionals of G are finite-dimensional. This ensures that Gibbs
samplers target the correct posterior without the need for approximation, aside from the
inevitable truncation to calculate the density draws themselves.

The retrospective sampler of Papaspiliopoulos and Roberts [220] was one of the earliest
methods of this type for Dirichlet process mixtures. It involves the introduction of allocation
variables K = (K1, . . . ,Kn) such that Ki = j iff θi = Zj , with Zj as in (4.28). At each step
of the chain, first draw only max (K) := maxi {K1, . . . ,Kn} of the atoms and weights in G.
A certain condition involving auxiliary standard uniform variables and the full conditionals
of K is then checked. If the condition is met, perform a Metropolis-Hastings update of
K and resume sampling as normal; otherwise, simulate additional components of G one
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at a time (from their priors, as they represent clusters with no allocated observations)
until the condition is met. Note that the number of components is therefore variable across
iterations. The authors noted that posterior draws for any linear functional of G are equal
in distribution to a deterministic function of prior draws and the first max (K) components
from one retrospective sampling iteration. Thus, full posterior inference for f (· | G) is quite
straightforward.

Another popular approach which avoids some of the computational burden of the ret-
rospective algorithm is slice sampling, first used in this context by Walker [292]. Briefly,
Walker’s original idea involved introducing new latent variables Ui, i = 1, . . . , n such that,
with Ki again denoting the allocation variable as above, the joint likelihood for observation
i is

f (Xi, Ui,Ki = j | G) = κ (Xi | θj)1 (Ui < wj) . (4.33)

Integrating out Ki and Ui reduces this to (4.29). Furthermore, these variables ensure that
all full conditionals in the Gibbs sampler - including those for the necessary components
of G - are finite-dimensional. Numerous adaptations of the algorithm exist: for instance,
Kalli et al. [148] altered it for greater efficiency. Technical details aside, the main point
is to simulate the finitely (but randomly) many components of G needed for the other
sampler variables; this can exceed n, in which case some components will correspond to
clusters with no data allocated. Favaro and Walker [82] adapted the algorithm of Kalli
et al. to the larger class of σ-stable Poisson-Kingman models, using their stick-breaking
representation to devise a method for sampling the weights. They applied their method
with mixtures of Gaussians with common variance and means from the random measure.
Density draws were calculated by first adding together the components obtained from the
sampler, then allocating the remaining mass (which the authors noted was usually quite
small) to a Gaussian kernel with the sampled posterior variance centered at the prior mean
of the base distribution. One can then extract posterior sets from these draws in the usual
way. In the same paper discussed in Section 4.7.1, Favaro and Teh [81] considered a slice
sampler for NRMI mixtures; here they sampled the unnormalized masses of the random
measure. They showed pointwise credible intervals for the densities of some real datasets
that were reasonable in shape and variability. Their source code suggests that they used the
same formula for density draws here as they did for their aforementioned marginal samplers,
with ten additional “new” kernels as described in the previous section.

Although finite-sum approximations are always necessary for density estimation, the
approaches described above are noteworthy because the samplers themselves introduce no
truncation error; all of their full conditionals are truly finite-dimensional. This is not the case
for all papers which use conditional samplers for density inference. For instance, Barrios
et al. [13] used a conditional algorithm for NRMI’s that does not induce a finite-dimensional
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full conditional for G. Instead, they used a representation which allowed them to sample the
masses in decreasing order. This allowed them to select the number of components sampled
based on a relative error criterion, and to calculate density draws from only these (normal-
ized by the sum of the sampled masses). They obtained pointwise credible intervals for a
real dataset, demonstrating that the choice of both kernel and NRMI prior can moderately
affect the smoothness of said intervals. Argiento et al. [6] folded random truncation into a
modification of the NRMI prior itself by discarding all unnormalized weights smaller than
some threshold ϵ. The resulting random measures have finite and random dimension, and
converge in distribution to the corresponding NRMI’s as ϵ → 0. The authors recommended
fixing some small value for ϵ (it is possible to place a prior on it, but they warned that the
computational cost may be unreasonable). They derived a conditional sampling algorithm,
introduced a new class of NRMI’s with a Bessel function in the intensity measure, and ap-
plied their method to real and simulated data. Their pointwise credible intervals showed a
pleasing degree of smoothness and reasonable faithfulness to the true density of a simulated
sample. Griffin [109] proposed an adaptive truncation method based on sequential Monte
Carlo. The method involves iteratively resampling and increasing the dimension of the ap-
proximate model until a discrepancy measure falls below some threshold. Griffin applied
this approach to a variety of nonparametric models, including Dirichlet process mixtures.
Although they did not show credible intervals for densities, they did so in the context of
time series modelling, indicating that density inference is indeed possible in this framework.

4.7.3 Extensions

Feller-Dirichlet priors

This Bayesian model from Petrone and Veronese [226] generalizes the Dirichlet process
mixture model, although it also serves as an extension of Petrone’s ideas [224, 225] from
Section 4.4.2. Recall from that section that Petrone put a prior on K and introduced latent
variables Y1, . . . , Yn from a random distribution F with DP prior such that Xi | Yi,K, F ∼
Beta (⌈KYi⌉ ,K − ⌈KYi⌉ + 1). The Feller-Dirichlet prior generalizes this by replacing the
latter beta densities by some kernels gK (·;Yi), leading to a density model of the form

f (· | K,F ) =
∫
gK (·; θ) dF (θ) .

Petrone and Veronese provided several examples beyond the original Bernstein model that
are suitable for data on [0,∞) or R. For instance, take gK (·; θ) to be an inverse Gamma
density with parameters (K,Kθ) with a Gamma base measure for the prior on F , or use a
N
(
θ, σ2/K

)
density for the kernel with a Gaussian base measure. These examples illuminate

the idea that the Feller-Dirichlet prior — a “mixture of DP mixtures” — bridges the gap
between Dirichlet process mixture models and the Bernstein polynomial models explored
previously. For inference, Petrone and Veronese truncated the DP to a large finite number
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of components and used a Gibbs sampler similar to that of Ishwaran and Zarepour [140] to
obtain density estimates and pointwise credible intervals.

Extensions for non-i.i.d. data

Several extensions to the random measure density model also exist for data structures be-
sides an i.i.d. sample X, most of which are based on the Dirichlet process instead of the
more general measures. Müller and Rodriguez [203] and the references therein provide an
excellent overview of such extensions; this section details some examples for which uncer-
tainty quantification has been done in literature. In broad terms, these examples all involve
inference for a family of densities {f (· | Gt) : t ∈ T }, where the random measures are in-
dexed by some set T and share some form of dependence. In many cases, this will mean
modelling the density for a “response variable” X with associated covariate t, effectively
building yet another bridge between density estimation and nonparametric regression.

The dependent Dirichlet process (DDP) first introduced by MacEachern [189] is the
basis for many useful models. DDP mixtures are similar in construction to (4.29), except
that the weights {wtj} and locations {Ztj} may both vary with t ∈ T . For instance, De Iorio
et al. [64] considered a model for survival analysis when there are covariates ti associated
with each observation Xi. The weights do not vary with t, but the Ztj ’s correspond to
location-scale pairs with the former component equal to a linear model in t: for example,
if t = (u, v) for categorical u and continuous v, then Ztj =

(
mj , Auj , Bjv, σ

2) for j ∈ N.
Inference proceeds by reformulating the model into the conventional DP mixture framework,
replacing the top line of the hierarchy in (4.30) by

Xi | θi, ti ∼ N (θidi) (4.34)

where di is a design vector so that θidi =
(
mj +Auj +Bjv, σ

2) when θi = j and ti = (u, v).
De Iorio et al. used this so-called linear DDP to analyze the densities of log survival times
with various combinations of treatments and other factors. They showed some pointwise
credible intervals for survivor and hazard functions, and although they did not do so for
densities, it should be no more difficult. However, their inferential approach [as described
in 63] is the same as that suggested by Escobar and West [75], where the weights are
marginalized so that inference is based on [f (· | t, θ) | X] as opposed to [f (· | Gt) | X].

The above formulation is somewhat similar to the density regression model considered
by Dunson et al. [70] for modelling the density of a continuous response variable. The model
assumes a set of continuous covariates associated to each observation and a structure similar
to (4.34), except that the random measure governing the θ-value for an observation now
depends on the corresponding covariate vector t: it is a finite mixture of n i.i.d. Dirichlet
processes, with the ith weight based on the distance between t and ti. Dunson et al. used
a marginal sampler, so that posterior inference for the predictive density of a “new” obser-
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vation (given some covariate vector) was once again based only on the finite-dimensional
parameters. Draws for these densities have closed forms due to conjugacy: they are mix-
tures of cluster-specific kernels and one using posterior draws of the hyperparameters of the
base distribution. For both real and simulated data, the authors showed pointwise credible
intervals for such densities conditioned on various values for the covariates. In the latter
case, the intervals did a good job of capturing the true densities. Dunson and Park [69]
subsequently developed the kernel stick-breaking process (KSBP) to model an uncountable
collection of probability distributions (with particular focus on the density regression ap-
plication), generalizing and expanding upon some of the ideas in [70]. In this model, the
covariate-dependent distribution for an observation’s θ-value is an infinite mixture of “ba-
sis” random measures (typically either point masses or draws from a Dirichlet process) with
stick-breaking mixture weights. To induce dependence on the covariates, the beta random
variables defining the stick-breaking process are weighted by kernels evaluated at the covari-
ate value and centered at random locations with some arbitrary prior distribution. Dunson
and Park’s MCMC algorithm for pointwise UQ was a hybrid between marginal and condi-
tional: like [70], they marginalized over the basis random measures; but at the tth step of
the chain they sampled Mt mixture weights, where Mt is the highest index of an occupied
cluster across the first t iterations. The authors repeated the same simulation study as in
[70], showing that the pointwise credible intervals from the KSBP model enveloped the true
densities. Norets and Pelenis [213] explored the same simulated data model, showing how
changes in the KSBP hyperparameters affected the quality of inference.

The formulation in the preceding paragraph directly model the conditional density of
X given t by specifying a covariate-dependent random measure. Alternatively, it is possible
to first model the joint distribution of X and t as a mixture of a kernel κ (X, t | θ, ψ) =
κ (X | t, θ)κ (t | ψ) with respect to a random distribution on the product space for (θ, ψ),
then obtain the desired (conditional) density estimates by standard calculations. This ap-
proach is used by Park and Dunson [221], who put a Dirichlet process prior on the product
measure; and Wade et al. [290], who gave separate DP priors to Gθ and Gψ|θ to allow for
greater flexibility. Both used marginal samplers for inference (again, with uncertainty only
in terms of the finite-dimensional parameters), with the latter finding pointwise credible
intervals to be much narrower and more accurate than those resulting from a DP on the
product measure.

Returning to the DDP, note that it is also a suitable starting point when there are mul-
tiple sets of observations from different discrete time points, in which case the density is a
random process evolving through time. Nieto-Barajas et al. [210] used this approach in such
a context, making the atom locations independent of time but introducing dependence into
the weights through their stick-breaking construction. They achieved the latter by introduc-
ing latent variables Ytj dependent on the stick-breaking proportion Vtj , such that V(t+1)j is
in turn dependent on Ytj and the usual Dirichlet process is recovered by marginalizing out
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the Y ’s. They applied this construction in a mixed-effects model for protein activation over
time, using a partially marginalized algorithm which exploited conjugacy to sample only
atoms corresponding to clusters containing data. Müller and Rodriguez [203] showed densi-
ties with pointwise credible intervals from the same application, presumably using the same
algorithm. Gutiérrez et al. [117] used a different approach to introduce dependence in the
stick-breaking process: with random probability p having a beta prior, they sampled V(t+1)j

from its usual distribution, and set it equal to Vtj otherwise. They used slice sampling for
inference, but did not specify if their density draws incorporated any components beyond
those sampled (recall that this was the case for the Favaro-authored papers in Section 4.7.2).
Their simulation study showed that their method was much more effective than one based
on spline regression at capturing the true shape of their density, but their pointwise credible
intervals did a much better job at enveloping the true density at later time points than at
earlier ones.

Finally, there may be multiple samples X1, · · · ,Xm for which it makes sense “share in-
formation”, assigning mutually dependent densities to each sample. The hierarchical meth-
ods discussed in Müller and Rodriguez [203] and its references are perhaps the most natural
ways of doing this, but there does not appear to be existing literature which specifically con-
ducts UQ with these methods. Griffin et al. [110] developed an interesting model: starting
with p underlying i.i.d. CRM’s, the mixing distribution for each density is the normalized
sum of some sample-specific subset of the underlying measures. Griffin et al. called this the
correlated NRMI model, and implemented it with a combination of slice sampling and a
split-merge step (in which clusters are moved between the underlying measures to address
posterior multimodality). Although the main purpose of their model was assessing differ-
ences between distributions, they did show pointwise intervals for survival functions fitted
from interval-censored data; as always, it seems reasonable to assume that density inference
is possible by similar means.

4.7.4 Finite mixtures

As previously mentioned, one way around the difficulties of infinite-dimensional models
is to simply truncate the sum in (4.29) at some level N . This case leads to a vector of
weights w = (w1, . . . , wN ) on the N − 1-dimensional probability simplex. This was the ap-
proach taken by the early conditional samplers of Ishwaran and Zarepour [140] and Ishwaran
and James [139], who considered generalized Dirichlet priors on w to approximate random
measures with stick-breaking representations (namely, those for which the stick-breaking
variables Vj in (4.32) have beta distributions). For instance, to approximate a Dirichlet
process mixture with concentration parameter α, they would either give w a symmetric
Dirichlet prior with parameters α/N ; or truncate its stick-breaking representation, setting
VN = 1 to ensure the N weights summed to one. They gave asymptotic justifications (as
N grows large) for both options. With the conditional samplers devised in these papers,
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approximate posterior inference is obviously possible. Of course, extensions to the types
of data structures considered in Section 4.7.3 can also be considered. For instance, Chung
and Dunson [53] modelled covariate-dependent densities using truncated random measures
with stick-breaking weights derived from a probit model. Their structure for the weights
incorporated a variable selection component, resulting in a rather flexible density regres-
sion framework. Finucane et al. [84] conducted a meta-analysis of child nutrition data by
modelling the study-specific densities of interest with finite mixtures of normals, using pro-
bit model stick-breaking weights which incorporated individual time and location effects.
Norets and Pelenis [212] modelled the joint distribution of a response variable and covariates
with a finite Gaussian mixture, obtaining the conditional response densities with standard
calculations. Their model allows for any number of discrete variables by mapping them to
continuous latent variables. The pointwise credible intervals obtained in these papers showed
reasonably good uncertainty quantification, although the choice of a fixed finite number of
components naturally reduces their flexibility somewhat.

The focus thus far in this section has been overwhelmingly Bayesian. Frequentist ap-
proaches to mixture models do exist in the literature, but it is rare to see them consider
density UQ as it is defined here. Roeder [245] provided one rather novel exception for
mixture-of-Gaussians estimators with finitely supported mixing distributions. Given some
bandwidth h for the Gaussian kernel κ, the mixing distribution Ĝh is uniquely chosen to
optimize an asymptotically normal statistic based on sample spacings11. This statistic is
nonincreasing in h, and so it is possible to find a range of h-values such that the statistic
falls within the (α/2)- and (1 − α/2)-quantiles of the standard normal distribution. The
confidence set defined by Roeder is then the set of all estimators f

(
· | Ĝh

)
as h varies

through this range. This set is comprised entirely of finite mixtures (although the number
of components for each is random), is easy to visualize, and provides correct coverage if the
true density is assumed to be a mixture of Gaussians.

In addition to the KDE connection, it is easy to see parallels between finite mixtures
and some of the basis expansion methods discussed earlier. Indeed, even if one were to put
a prior on N (e.g. Norets and Pati [211], whose inference involved modelling conditional
densities using covariate-dependent multinomial logit mixture weights), the model would be
similar in principle to the fully Bayesian approaches in Section 4.4. Thus, beyond what has
already been explored, there is little else to discuss here. The interested reader may refer
to Chapter 22 of Gelman et al. [93] for some more details on working with models of this
type.

11Roeder noted the analogy between such estimators and KDE’s, the difference being the sample-dependent
mixing distribution used. Similar connections and generalizations were briefly explored in Section 4.3.3.
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4.8 Other methods

This section explores uncertainty quantification for an assortment of density estimation
methods for which literature is too scarce to warrant separate sections.

4.8.1 Nearest neighbour methods

This classical density estimator is closely related to the KDE and is applicable to any
density on Rd. Let k = k(n) be an integer increasing with sample size n, let ∥·∥ be some
norm on Rd (typically Euclidean, but some other norms also satisfy the required conditions
for some of the results discussed here), and for an arbitrary point x ∈ Rd let R(k, x) be
the ∥·∥-distance between x and the kth-closest value in X. Then for a kernel K, the nearest
neighbour density estimator as defined by Mack [190] is

f̂(x) = 1
R(k, x)d

n∑
i=1

K

(
x−Xi

R(k, x)

)
. (4.35)

Unless otherwise stated, all results in this section require K to equal 0 outside of the unit
∥·∥-ball. A particularly common case arises from the uniform kernel:

f̂(x) = k

nV (k, x) , (4.36)

where V (k, x) is the volume of the ∥·∥-ball centered at x with radius R(k, x). Nearly all
of the literature on NN density inference is theoretical, and closely mirrors the results
discussed previously for KDE’s12. For instance, Theorem 9.3.7 in Csörgő [59] is essentially a
Smirnov-Bickel-Rosenblatt result for univariate NN estimators. Unlike the KDE and wavelet
theorems, their formulation would lead to confidence bands over a certain random interval
defined by order statistics of the sample, but they noted that this interval converges to the
full support as n → ∞.

Moore and Yackel [202] provided what appear to be the first asymptotic normality results
for (4.35), showing that the limiting distribution could be made to center at f0 under some
conditions on its properties and the asymptotic behaviour of k. They also noted that the
asymptotic variance of the NN estimator is smaller than that of the KDE at points x where
f0(x) is small, claiming that this makes it more efficient for estimating density tails. Mack
and Rosenblatt [191] expanded on this, noting that the NN estimator can be much more
biased than the KDE in the tails, with the opposite relations holding for large values of
f0(x). These observations, combined with the non-monotonic dependence of asymptotic bias
on k, make error analysis here somewhat less straightforward than it is for the KDE.

12Unfortunately, even the drawbacks are similar: most asymptotic results relevant to inference require a
choice of k which is not optimal w.r.t. the mean square error [e.g. 59]
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Mack [190] derived slightly different asymptotic normality results than Moore and
Yackel, centering at E

[
f̂
]

instead of f0. This allows for less restrictive conditions: for in-
stance, theirs are the only results here which do not require K to vanish outside of the
unit ball. Pointwise Gaussian limits centered on f0 with some variant of usual conditions
(among others, as needed) are also available for univariate NN density estimates with non-
i.i.d. data structures, such as randomly right-censored data [199], observations from an
α-mixing sequence [179, only for the uniform kernel], or randomly left-truncated samples
[298, who actually implemented confidence intervals in practice using a plug-in estimator
of the asymptotic variance].

A technical report by Rodríguez [244] [see also 243] made an interesting connection be-
tween NN estimators of the form (4.36) and KDE’s: the former allocates the fixed mass k/n
to the random volume V (k, x), while the latter can be rewritten to show that it essentially
does the opposite, spreading a random mass over a fixed volume. This observation moti-
vated Rodríguez to view the two estimators as endpoints on a “continuum” of estimators
of the form

f̂(x) =
c
∫
K
(
x−t
µ

)
dFn(t)∫ 1

0 h
d(t)dω(t)

,

where ω is a distribution on [0, 1] with mean c, and the (possibly random) number µ and
function h meet certain technical conditions. Rodríguez showed how KDE’s and uniform NN
estimators arise as special cases and described everything in-between as “double smoothing”:
in the numerator (resp. denominator), the mass (resp. volume) given by Fn (resp. hd) is
smoothed with K (resp. ω). Rodríguez proved asymptotic normality for certain subclasses
of these estimators in this report, as did Biau et al. [19] for another variant. Both cases are
generalized NN estimators, and the results hold even using the “optimal” k(n) with given
asymptotic biases. It is possible to eliminate the bias and center at f0 with a suboptimal
kn, although the conditions for this are less restrictive here than in [202] at the expense of
stricter smoothness assumptions on f0.

4.8.2 Logistic Gaussian process estimators

This approach is usually Bayesian and involves density estimates of the form

f(x) = eg(x)∫
eg(u)du

, (4.37)

where the latent function g is given a zero-mean Gaussian process (GP) prior with hyperpa-
rameters γ governing the covariance kernel. The “logistic” transformation of g ensures that
the estimates are valid densities: nonnegative and integrating to one. Riihimäki and Vehtari
[239] explored some approaches for approximate Bayesian inference with this model with 1-
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or 2-dimensional densities. Technically, they assumed that g would be the sum of a Gaussian
process and a parametric polynomial component, but they integrated out the coefficients for
the latter so that the basis function values and hyperparameters could simply fold into the
mean and variance of the GP. Similarly to Lambert and Eilers [168] (see Section 4.6.1), Ri-
ihimäki and Vehtari discretized the model, replacing the actual data with observation counts
in a fine, equally-spaced partition of the domain. Assuming that the partition consists of J
subregions and letting m and g respectively denote the vectors of observation counts and
latent function values within each subregion, the likelihood P (m | g) is essentially the same
as (4.24 – 4.25) [168], except the B-spline values in (4.25) are replaced by the latent function
values gj for j = 1, . . . , J . In turn, the prior Π (g | γ) for the latent values is simply the
multivariate normal distribution induced by evaluating the GP prior at the center points
of the subregions. The main object of inference is then the conditional posterior of g given
the observation counts and hyperparameters (and, technically, conditioned on the chosen
partition as well),

Π (g | m, γ) ∝ P (m | g) Π (g | γ) . (4.38)

This posterior is not analytically tractable, so approximate methods must be used to em-
ploy this model in practice. As an alternative to MCMC, Riihimäki and Vehtari proposed
the use of a Laplace approximation (see Section 2.2) to Π (g | m, γ), thereby obtaining a
Gaussian distribution for g. In order to quantify uncertainty in f , samples must be drawn
from this approximate Gaussian posterior and transformed via (4.37). To this end, the au-
thors showed that importance sampling can improve performance, and rejection sampling
can also be incorporated to ensure appropriate tail behaviour if necessary. The model is
completed by putting a prior on γ, but Riihimäki and Vehtari also considered the possi-
bility of ignoring the uncertainty in these hyperparameters: marginalizing the approximate
Laplace posterior over g, maximizing it with respect to γ, and simply plugging in the re-
sulting approximate MAP point estimate for γ. They found that their method performed
(in terms of mean log predictive density, evaluated with cross-validation for real data or
w.r.t. the true distribution for simulated data) comparably with MCMC targeting the true
joint posterior of (g, γ), as well as the Dirichlet process mixture models of Griffin [108].
The pointwise credible intervals for real and simulated data provided reasonable practical
visualization for uncertainty quantification. However, one of their simulations showed that
densities with varying amounts of smoothness throughout the domain can be challenging,
as the MAP parameters needed to capture more narrow features can result in excessive
roughness elsewhere. The authors also showed how their method can extend to density
regression, modelling densities conditional on covariate values.
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4.8.3 Pólya trees

The Pólya tree (PT) prior is a Bayesian nonparametric method for constructing a random
probability measure, discussed in [170] and the first few references therein. The construction
is based on a recursive partitioning of the domain and is most easily explained when the do-
main is an interval in R. At the mth level of partitioning, the interval is split into 2m subinter-
vals. It is common to set the partition boundaries to the dyadic quantiles of some base mea-
sure G0 (i.e. G−1

0 (j/2m) , j = 0, . . . , 2m), thus “centering” the random measures drawn from
the PT prior around this base [170, 203]. Associate to each mth-level subinterval a binary
number ϵ = ϵ1 . . . ϵm ∈ {0, 1}m, and define a set of beta random variables {Yϵ : ϵ ∈ {0, 1}m}
such that the Yϵ1...ϵm−10’s are mutually independent and Yϵ1...ϵm−11 = 1 −Yϵ1...ϵm−10. Finally,
consider a random probability measure that assigns mass

m∏
j=1

Yϵ1...ϵj .

to Bϵ, where Bϵ is the subinterval associated to binary number ϵ = ϵ1 . . . ϵm. Iterating this
process over all m ∈ N results in a draw from the Pólya tree prior (so named because the
recursive partitioning defines a tree with nodes corresponding to subsets), defined by the
sequence of partitions and beta parameters. A special case for the latter gives rise to the
Dirichlet process, but they can also be tailored to almost surely produce absolutely contin-
uous distributions [e.g. 170, 204], which is obviously more appealing for density inference.

It is possible to extend this construction to d-dimensional domains, for instance by
using the construction of Hanson [129]. At the mth level, the domain is partitioned into 2md

subsets, indexed by base-2d numbers ϵ = ϵ1 . . . ϵm ∈ {0, . . . , 2d−1}m [203]. These subsets are
formed by taking Cartesian products of the subintervals used in the univariate construction,
then applying a suitable affine transformation. Probabilities are assigned to each subset in
an analogous way to the univariate case, except that for a fixed ϵ1 . . . ϵm−1, the variables{
Yϵ1...ϵm−1e, e = 0, . . . , 2d − 1

}
have a 2d-dimensional Dirichlet distribution. Literature on

multivariate PT’s rarely entails any density UQ, so the remainder of this section focuses
primarily on the univariate case.

Castillo [42] provided theoretical results for posterior inference with such priors on the
unit interval, with partition boundaries at the dyadic rationals. In particular, they showed
that, when f0 is Hölder with regularity β ∈ (0, 1] and bounded away from zero, a type of
Bernstein-von Mises result holds (i.e. the posterior weakly [43] converges in P0-probability
to a Gaussian process) when the beta parameters of the prior grow suitably fast with m.
The posterior must be centered at some estimator for f0 for this to hold: either the posterior
mean or, when the beta parameters grow suitably slowly depending on β (note that this
corresponds to “undersmoothing” of the posterior), a “canonical” estimate based on the
Haar wavelet expansion of the empirical measure. Castillo noted that this result can lead
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to similar results to some of those discussed earlier for wavelet estimators [43]: namely,
multiscale credible bands similar to (4.20) with Pólya trees should have correct frequentist
coverage.

Practical implementations of Pólya tree models involve truncating the partitioning at
some finite “terminal” level, rather than continuing it infinitely. By a well-known conjugacy
result [e.g. 204, 129], the posterior for the PT prior is simply an updated PT, with the same
partition and updated beta (or Dirichlet, in the multivariate case) parameters for the Yϵ’s.
With the aforementioned truncation, density samples from this posterior can be obtained
by allocating the mass proportion within each terminal subset either uniformly [98, chapter
3] or according to the density of the base measure [as in 129]. The resulting densities will be
discontinuous at the partition boundaries [204, 98] and are therefore perhaps not as “well-
behaved” as one may prefer. In a survival model with longitudinal data and a PT prior
on event times, Zhang et al. [300] addressed this issue by applying kernel smoothing to
the actual posterior PT draws to obtain event time densities. There are other ways around
this which change the structure of the model itself: mixing the prior over the parameters
of the base distribution [129], adding random “jitter” to the partition boundaries [219],
or mixing a kernel with respect to a PT measure [24]. Surprisingly, literature employing
such methods does not tend to address UQ for densities. On the other hand, Nieto-Barajas
and Müller [209] did so for their rubbery Pólya tree (rPT) prior, introducing dependence
amongst the Yϵ1...ϵm−10’s at level m (i.e. all “left nodes” in the tree at a given depth) through
latent variables. The construction resembles that used to introduce dependence for time-
series DDP’s by Nieto-Barajas et al. [210] as discussed in Section 4.7.3, and recovers the
usual PT prior by marginalizing over the latent variables. Conditional conjugacy allows
for an easy Gibbs sampler, which Nieto-Barajas and Müller implemented by truncating
the partitioning process at some depth (using a depth between 5–8 in all experiments)
and allocating the mass uniformly within each of the terminal subsets. Pointwise credible
intervals in their simulation study fully contained the true densities, but were not smooth.
Indeed, the rPT only “smooths” the estimates in the sense of reducing jump sizes between
masses in neighbouring partition sets. Its dependence structure addresses variability, not
continuity. Nieto-Barajas and Müller suggested mixing (either over a kernel w.r.t. a rPT
prior, or over the parameters of the rPT’s base distribution) when more smoothness is
desired, but did not attempt uncertainty quantification with such models.

A different extension of the model came from Hanson et al. [128], when each Xi is
observed at a spatial location ti. Their object of interest was the predictive density (i.e.
marginalizing over G) for a new X, and they proposed to modify the usual formula by
weighting the contribution of each observation by some distance between their locations
and that of the new X. Uncertainty was with respect to the (hyper)parameters of the PT
prior and the distance function and was quantified with MCMC output. Their pointwise
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credible intervals appeared quite smooth; it is unclear whether this is the result of an actual
procedure or merely the plotting functions used.

4.8.4 Multiscale estimators

This rather novel Bayesian approach from Canale and Dunson [38] uses multiscale mixtures
of Bernstein polynomials as estimates:

f (·) =
∞∑
s=0

2s∑
h=1

πshBeta (·;h, 2s − h+ 1) . (4.39)

The weights πsh are constructed in terms of a stochastic process defined on an infinite
binary tree. For the hth node at tree depth s (h = 1, . . . , 2s), let Ssh be the probability of
stopping at that node and Rsh be the probability (conditional on not stopping) of moving
to the right daughter of node (s, h). These probabilities define a sort of “random climb”
on the branches of the tree, which at each step either stops with some probability or else
moves on to the next depth, randomly choosing either the left or right path. The weight
πsh is then the probability of the process taking the path to node (s, h) (starting from
the root of the tree) and then stopping there. For instance, π12 = (1 − S00)R00S12, and
π23 = (1 − S00)R00 (1 − S12) (1 −R12)S23. The specification of the model is completed
with priors Ssh

i.i.d.∼ Beta (1, a) and Tsh
i.i.d.∼ Beta (b, b), where a and b can be fixed or given

their own hyperpriors.
Canale and Dunson noted that this model induces an interesting multiscale clustering

on the data: two data points may be assigned to the same tree node at some depth s,
meaning they are sufficiently similar to be clustered together at this scale; but may occupy
different nodes at a depth r > s, so that they are separated at a higher “resolution”. For
practical inference, they truncated or “pruned” to a maximum tree depth S by simply
setting the stopping probabilities SSh = 1 for all h. Using a slice sampling approach, they
devised an MCMC algorithm for inference, which alternates between two steps: assigning
each observation to a tree node (equivalently, to a “multiscale cluster”) given the πsh’s, and
updating the Ssh’s and Rsh’s given these allocations. Posterior density samples can then
be obtained by plugging these probabilities into (4.39), truncated accordingly. Although
Canale and Dunson did not show any credible intervals for densities in their paper, the
corresponding R package for this type of model implements them readily [37].

4.8.5 Shape-restricted methods

If an a priori assumption can be made about the shape of the true density f0 (for instance,
that it is monotone or unimodal), one may wish to incorporate this into estimation and
inference. A solid body of literature exists on the use of such shape constraints in non-
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parametric estimation, but only a subset of this literature specifically considers UQ for
densities.

Perhaps the best-studied shape constraint is monotonicity, in which f0 is assumed to be
non-decreasing. In the frequentist setting, the so-called Grenander estimator is the canoni-
cal choice for estimation of f0, and is also the MLE subject to the monotonicity constraint
[107]. Letting Fn denote the empirical distribution function of X, let F̂ be the least concave
majorant of Fn: the smallest concave c.d.f. such that F̂ ≥ Fn throughout the entire support
(typically assumed w.l.o.g. to be [0, 1], or [0,∞)) [112]. The Grenander estimator f̂ is then
the left derivative of F̂ , which turns out to be a step function with jumps at sample values
and f̂(x) = 0 for x ≤ 0 and x > X(n) [233]. Rao [233] derived a pointwise limiting distri-
bution for this estimator, showing that with suitable standardization it is asymptotically
equivalent to a particular functional of Brownian motion13. Groeneboom and Jongbloed
[111] leveraged this fact to derive the asymptotic distribution of a likelihood ratio test
statistic for f0 (x) when f0 has nonzero derivative in a neighbourhood of x ∈ (0,∞). The
limiting distribution is that of a different functional of Brownian motion derived by Banerjee
and Wellner [11]. The authors of that paper did not find an analytic form for this distribu-
tion, but provided estimates of its quantiles from simulation-based methods. Groeneboom
and Jongbloed used these estimated quantiles to obtain pointwise confidence intervals with
asymptotically correct coverage by inverting their likelihood ratio test. They also considered
pointwise bootstrap intervals based on a boundary-corrected kernel (under-)smoothing of
the Grenander estimator. The use of the bootstrap in this way is at least partially justified
by an asymptotic normality result for this smoothed Grenander estimator [114] (indeed,
there are a few modifications to this method that result in smooth, asymptotically normal
estimators; see also [282]). Unfortunately, the bootstrap is unsuitable for inference with
the unaltered estimator, due to the inconsistency results shown by Kosorok [162] and Sen
et al. [260] and demonstrated in practice by the latter. However, both papers showed that
consistency can be restored with a smoothed bootstrap (i.e. resampling from a modified
kernel estimate of f0, rather than from the empirical distribution). Kosorok further showed
that smoothed bootstrap methods could be used to define an L1-ball of functions centered
at f̂ with correct asymptotic coverage, based on the known asymptotic normality of the
L1-error [112]. Recall, however, that such sets are limited in visual interpretability. Uniform
confidence bands were briefly considered by Durot et al. [71], who derived a Gumbel limit-
ing distribution similar to the Smirnov-Bickel-Rosenblatt results in Section 4.4.4. However,
they believed that the technicalities required for data-driven construction of such a band
were not worth exploring further. Deng et al. [66] proposed another method to construct
pointwise intervals, based on the adaptation of an analogous method for inference in iso-

13The full details of this functional are omitted here, but its distribution is commonly known as the
Chernoff distribution, which commonly arises in shape-constrained nonparametric inference.
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tonic regression (see their manuscript for details). They suggested that their method, which
involves suitable estimates of nuisance parameters in the limiting distribution, could be
tailored to adapt to the smoothness of f0 more readily than the method of Groeneboom
and Jongbloed [111], but both methods require simulation-based estimates for quantiles of
the complicated limiting distribution.

As an alternative to frequentist inference methods based on the Grenander estimate (or
some modification thereof), Bayesian methods are also available. For instance, Martin [193]
proposed an empirical prior in which the density is modelled as a finite scale mixture of
uniform densities. The mixture weights and uniform density scales are respectively given
Dirichlet and Pareto priors, both of which are calibrated so the prior over densities is
centered at some predetermined mode. This mode (and the dimensionality of the mixture)
can either arise from a sieve MLE (i.e. the MLE over a space whose size depends on n) or
the Grenander estimate. Using simulated data and MCMC, Martin compared the pointwise
credible intervals from this model to those obtained from a Dirichlet process mixture, and
found that the empirical model resulted in higher coverage probability and shorter intervals
on average.

The second most common shape constraint explored in the literature is arguably log-
concavity, in which log f0 is assumed to be concave. As in the monotone case, frequentist
UQ for log-concave densities typically centers on the MLE f̂ . Rufibach [252] showed that
the log of f̂ is piecewise linear with breaks at sample values, and f̂ supported on the range
of X. Balabdaoui et al. [10] obtained a limiting distribution for this estimator under some
regularity conditions on f0. Much like the monotone case, the MLE for log-concave densi-
ties converges in distribution to a certain functional of Brownian motion, scaled by nuisance
parameters that depend on the value of f0 and its derivatives. Azadbakhsh et al. [7] trans-
lated these results into practical means of constructing pointwise confidence intervals. They
estimated the necessary quantiles of the limiting distribution by simulation, and considered
several methods (kernel-based and plug-in) to estimate the f0-dependent nuisance parame-
ters. The intervals thus obtained performed reasonably well in a simulation study, although
the best overall results came from standard bootstrap percentile intervals. Compared to the
bootstrap intervals, the pointwise intervals based on asymptotics generally had a somewhat
higher propensity for undercoverage in some parts of the domain, and for overcoverage (i.e.
coverage probability exceeding the desired nominal level, leading to wider intervals than
necessary) in other parts. Despite these promising empirical results, the authors cautioned
that there were no theoretical results justifying bootstrap methods for this purpose.
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Mariucci et al. [192] developed a Bayesian model for log-concave densities f :

f(x) =
ew(x)

1[a,b](x)∫ b
a e

w(u)du
,

w(x) = γ1

m∑
j=1

pj
min {θj , x− a}

θj
− γ2 (x− a) . (4.40)

The function w is piecewise linear with m break-points, where m is a predetermined number
dependent on sample size. The weights p1, . . . , pm can either be given a Dirichlet prior, or a
prior based on truncating the stick-breaking representation of the Dirichlet process (4.32).
The support [a, b] can be deterministic (based on n), empirical (a = X(1), b = X(n)), or
hierarchical (a and b−a given their own priors). Priors on γ1 ≥ 0, γ2 ∈ R, and θ1, . . . , θm ∈
[0, b − a] complete the model, and posterior density draws can be obtained from MCMC
samples of these parameters using (4.40). See Mariucci, Ray and Szabó for technical details,
as well as motivation for (4.40). Pointwise credible intervals obtained with MCMC did a
good job capturing true densities in their simulation studies, although in some cases they
underperformed somewhat around boundaries or modes. The authors also evaluated the
coverage probability of the intervals in one example, showing a tendency for undercoverage
in some parts of the domain but overall reasonable performance with increasing sample
sizes.

Similarly to [233] and [10], complicated limiting distributions have been derived for
density estimation under different shape constraints. Examples include monotonicity with
right-censored data [137], convexity [113], and s-concavity [126]. In principle these limiting
distributions could be used to derive practical UQ methods for densities as in the examples
described above, but there does not appear to be any literature directly doing so.

4.8.6 Connections to nonparametric regression

Various parts of this chapter have suggested that some uncertainty quantification ideas
from other nonparametric models could apply for density estimation. Indeed, there exist
a great deal of theoretical results showing that many such models are “equivalent” in a
sense involving asymptotic convergence of their risks [e.g. 214, 28, and references therein,
especially those by Lucien Le Cam]. Brown et al. [27] offered a practical way of leveraging
these ideas. They proposed the root-unroot algorithm to estimate a density on, say, [0, 1]
via nonparametric regression. The algorithm proceeds as follows.

1. Divide the domain, assumed w.l.o.g. to be [0, 1], into T equal subintervals.

2. For j = 1, . . . , T , let Yj =
√
Qj + 1/4, where Qj is the count of Xi’s in the jth

subinterval and the offset of 1/4 gives optimal bias and variance properties.
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3. Treat the Yj ’s as response variables and use any suitable method to fit the correspond-
ing smooth regression function m̂.

4. Take f̂ (·) = [m̂ (·)]2 /
∫

[m̂ (t)]2 dt as the density estimate.

Wang [295] used the root-unroot algorithm for Bayesian density inference, using integrated
nested Laplace approximations (INLA) for the posterior of the regression model. The details
of INLA — first given by Rue et al. [251] — are omitted here, but it suffices to note that
it uses Gaussian approximations and numerical integration to approximate the posterior,
allowing for inference without MCMC being necessary. In the above algorithm, Wang took m̂
to be the posterior mean from the INLA model. Letting γ denote the normalizing integral
in the denominator, they divided the INLA quantiles of m by γ to obtain approximate
pointwise credible intervals for f . Such intervals did an excellent job capturing true density
shapes in their simulation studies.

More broadly, one may exploit the connections described here to quantify density uncer-
tainty with any number of methods originally devised for nonparametric regression. Exam-
ples include confidence bands based on coverage of surrogate functions [94], or on relaxed
notions of coverage that still try to minimize the extent to which the band excludes the
true function but allow for nice adaptivity properties [35].

4.9 Simulation study

Recall Figure 4.1 from Section 4.2, which shows select combinations of density estimation
and UQ methods for a simulated dataset. Having described many such methods in the
preceding sections, a more thorough discussion of the figure is presented here.

The dataset X is a sample of size n = 1000 from the mixture density f0 = 0.5N
(

1
2 ,

1
49

)
+

0.5N
(

5
7 ,

1
490

)
. This is a bimodal, everywhere-positive density with almost all of its mass

contained in the interval [0, 1], and its magnitude and curvature are close to zero at the
boundaries of this interval. Thus, it “approximately satisfies” the assumptions made by
many of the UQ methods discussed here, while having a fairly interesting shape which
provides a good test for UQ methods.

The methods applied to X and shown in Figure 4.1 are as follows.

1. KDE with pointwise bias-corrected confidence intervals as in Calonico et al. [36], and
fixed-width bootstrap confidence bands based on the same bias correction [48]. The
bandwidth was selected to minimize estimated integrated MSE (instead of pointwise
MSE as in the former reference) in order to ensure a smooth estimator.

2. Adaptive basis expansion with Bernstein polynomials as in Petrone [224], with point-
wise credible intervals and credible bands based on median absolute deviations [72].
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3. Logspline estimation with stepwise knot selection [158] and exponentiated pointwise
Gaussian confidence intervals using bootstrap standard error estimates [159].

4. A Dirichlet process mixture of Gaussians with a Normal-Inverse Gamma base mea-
sure. A marginal MCMC sampler was used (see Section 4.7.1) but pointwise credible
intervals incorporated “full uncertainty” by using posterior draws of the Dirichlet
process obtained by conditional conjugacy [89].

All Bayesian methods were based on output from an appropriate MCMC sampler, and the
level for all UQ methods was taken to be 1−α = 0.95. The simulation study was conducted
with the R programming language [230], and further details can be found in Appendix A
and [198].

As noted in Section 4.2, the bands are expectedly wider than the pointwise intervals
for both estimation methods shown on the top row of Figure 4.1. Note that the confidence
sets for the KDE are not centered at the estimator due to the bias correction, and are in
fact closer to the true density. However, they still fail to fully reach the height of the main
mode. Certainly no conclusions can be made about the coverage probability of any UQ
method when it is applied to only a single dataset, but further simulations (not shown; see
[198]) suggested that this deficiency is typical for samples taken from the true density f0,
even when using pointwise instead of integrated MSE to select bandwidths. In fact, sample
sizes in the millions were necessary to attain good coverage probability at the main mode,
although the performance was much better at the smaller mode even for n = 1000. To some
degree this is to be expected as the coverage error depends on higher-order derivatives of
f0 [36], but it is infeasible to fully predict this error in practice. This leads to an important
point to be made about the difference between asymptotic and finite-sample behaviour:
although Calonico et al. [36] showed that these confidence intervals have coverage error
ultimately decaying at the optimal rate with respect to n, there are no concrete guarantees
for any finite sample size when using data-driven methods.

Recall from Section 4.3.2 that Cheng and Chen [48] provided bootstrap methods for
both fixed- and variable-width bias-corrected confidence bands for KDE’s. Here the former
was used, as the latter involves bootstrapping a quantity which can have a zero denominator
when using a compact kernel, as was the case here [198]. In contrast, the credible band used
for the Bernstein polynomial estimator has variable width (see (4.13)). However, the band
shown in the top-right plot of Figure 4.1 extends over the subinterval [0.01, 0.99], as the
band taken over all of [0, 1] was far too wide to be graphically meaningful. This is because
a sizeable proportion of MCMC draws had absolute deviations near the boundaries that
were much larger than the MAD there, so that the quantile ξα in (4.13) was very large.
In turn, the MAD was comparatively small at the boundaries because, like f0 itself, most
MCMC draws had tail values near zero. These examples demonstrate that variable-width
bands may not be an ideal choice unless f0 is bounded suitably far away from zero.
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Interpretation of the bottom row of Figure 4.1 is straightforward. The pointwise intervals
for the logspline estimator are noticeably less smooth than those for the other estimation
methods. Recall that the width of the interval (on the log scale) is determined by the
pointwise sample variance of bootstrap density estimates [159]; evidently this induces some
roughness. The pointwise credible intervals for the DP mixture are quite similar to those
for the Bernstein polynomial estimator: both are quite narrow and smooth and encompass
f0 throughout nearly the entire domain.

4.10 Conclusion

There is a vast, sprawling body of work on density uncertainty quantification, dating back
over half a century and spanning across many different methods for both estimation and
inference. Reviewing the literature — from classical approaches like KDE’s and histograms,
to the spline methods of the late twentieth century, to modern nonparametric methods —
one notices that the gap between theoretical and practical ideas seems to have widened over
time. KDE’s and related methods are extremely well-studied, with a litany of theoretical and
practical results for all relevant types of UQ. Turning the focus to the past two decades of
developments, one sees that UQ in the literature for random mixtures is entirely practical,
with almost no regard for asymptotic properties; conversely, the advanced wavelet-based
papers comprising the core of new theoretical developments often include no data studies
whatsoever. It seems natural to wonder whether it is possible to “bridge the gap”: perhaps
introducing greater theoretical justification for some of the most commonly-used practical
methods, or facilitating applications of some of the more obscure asymptotic arguments.
However, such developments may be hampered by issues intrinsic to the problems at hand,
such as the known complexities of asymptotics in nonparametric Bayesian inference [e.g. the
review of 248]. The importance of these considerations is certainly a subjective matter, and
as modern practitioners turn their focus to larger datasets and more overt “data science”
approaches, there is perhaps a case to be made that applications could provide “all the
proof we need”.

Based on the simulation study described in Section 4.9, Figure 4.1 shows finite-sample
results for a few of the methods discussed throughout this chapter. The code for these
experiments is available in the original publication’s supplementary material [198], and
there is certainly merit to further comparative analysis beyond that considered here.

Of interest for future work are extensions to frameworks beyond a single i.i.d. sample,
particularly hierarchical modelling of multiple related densities. Bayesian nonparametric
methods are emerging as a promising approach to such frameworks, and we are eager to
explore the improvements which further developments can provide.
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Chapter 5

FRODO: a novel approach to
micro-macro multilevel regression

5.1 Introduction

Hierarchically structured data is quite common in statistics, with a litany of resources
and methodology available for almost every imaginable configuration. Books such as [105]
provide comprehensive reviews on the subject of multilevel data. For the purposes of this
chapter, it will suffice to consider data organized in a two-level hierarchy. Data will be
observed from “groups”, each of which is comprised of multiple “individuals”, with variables
measured at either the group level (i.e. one measurement per group) or individual level (i.e.
one measurement for each individual within each group).

Multilevel data structures can be broadly categorized into two types: macro-micro,
in which an individual-level outcome is predicted from group-level covariates; and micro-
macro, which is the opposite [270]. Although substantial attention has been given to the
former structure (random effects models being one example of the macro-micro framework),
the micro-macro paradigm is the subject of much less discussion [86], despite the occurrence
of such datasets in health sciences [60], sociology [14], and economics [4]. Among the rel-
atively few papers on the subject is the one by Croon and van Veldhoven [57], one of the
earliest papers to devise a method specifically for micro-macro regression. The data struc-
ture they considered (hereafter described as “classical”) is as follows. Letting subscripts i
and ij denote, respectively, the ith group and the jth individual within that group, the basic
structure is

Yi = α+ βξi + βZZi + ϵi, (5.1)

Xij = ξi + νij . (5.2)

Assuming group i contains ni individuals, the observed data corresponding to that group is
{Yi, Zi, Xi1, . . . , Xini}. In words, Yi is a group-level response variable (with regression error
ϵi), Zi is a group-level scalar covariate, and the Xij ’s are individual-level measurements
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of some “latent” unobserved covariate ξi with errors νij . One can think of the model as
two “parts”: a regression part specified by (5.1), and a covariate observation part specified
by (5.2). The linearity of the regression and additivity of the covariate error justify the
“classical” moniker for this structure.

Although micro-macro modelling literature is relatively scarce, the structure implied
by (5.1–5.2) is essentially equivalent to (a version of) the much better-studied classical
measurement error model [chapter 1 of 41, and references therein]. The main difference is
conceptual: in a micro-macro model, replicate covariate measurements correspond to distinct
individuals within a group; while in a measurement error model, they are merely repeated
noise-corrupted observations of some true explanatory variable for the ith observational unit.
There is another practical difference: most measurement error literature assumes smaller
ni’s (the number of covariate measurements per group) than one tends to encounter in a
“true” micro-macro setting.

The simplest approach to modelling such data is the “naive” one: simply using the
sample means X̄i = n−1

i

∑
j Xij as proxies for the latent ξi’s. However, it is well-known [e.g.

chapter 3 of 41, and references therein] that such a failure to account for the uncertainty in
the Xij ’s biases estimates of the regression parameters. Most notably, it creates attenuation
in the estimate of β: letting β̂ denote such an estimate, we will have |β̂| < |β|, even as
the number of groups grows asymptotically. In intuitive terms, this attenuation happens
because the noise in the covariates stretches the regression line on the horizontal axis.
Thus, a plethora of both frequentist and Bayesian methods have been proposed to account
for covariate uncertainty in a way that produces less biased estimation and inference for the
regression part of the model. A comprehensive review of measurement error methodology
is beyond the scope of this chapter, but the interested reader may refer to books such as
[32, 41] or the review paper of Schennach [257].

Many real-world datasets do not obey the “classical” framework of (5.1–5.2) [e.g. Section
6.4 of 32, and references therein], and there are two ways to transcend it: by replacing the
linear terms βξi and βZZi in (5.1) with arbitrary regression functions, or by generalizing
the additive covariate structure in (5.2). There are few micro-macro modelling papers with
generalizations of either type, aside from the discrete variable methods of Bennink et al.
[14, 15]. Thus, we focus our attention here on the measurement error literature instead.
Beyond the comprehensive review sources mentioned above, the most generalized framework
which is relevant to this chapter is that of Hu and Schennach [136]. They assumed each
observational unit i only has a single covariate measurement Xi ∼ fX|ξ=ξi

, but also has
a single replicate measurement or instrumental variable Wi, assumed to provide further
information about ξi. They also allowed a very general form for the regression function in
which Y only depends on the unobserved ξ, with only some technical assumptions on the
distributions of Y | ξ, X | ξ, and ξ | W . Their assumptions on the covariate structure were
very broad, requiring only that there exists a functional M such that M

[
fX|ξ (· | ξ)

]
≡ ξ
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for all ξ. Examples of such functionals include the mode, as well as any quantile or moment.
With this framework, the authors proposed a sieve likelihood estimator for the regression
parameters and the densities of X | ξ and ξ | W . To our knowledge, there are no established
Bayesian methods that accommodate this level of generality. Sarkar et al. [255] proposed a
Bayesian model which used Dirichlet Process mixtures to achieve a great deal of flexibility
in modelling the regression function, latent covariates, and error terms; but it still assumed
an additive error structure of the form (5.2).

Neither of the aforementioned papers (or, indeed, any measurement error literature we
have seen) gives much consideration to the “unit-specific” covariate distributions fX|ξ=ξi

— specifically, to any differences between them across units. This is understandable, as
most errors-in-variables problems have no more than a single-digit number of covariate
measurements available per unit, making any such differences irrelevant. However, in an
explicitly multilevel setting, there are typically many more individuals per group [e.g. 57,
4], and it may be of interest to explicitly consider the group-specific covariate densities
in inference. We believe that the Bayesian paradigm (or, at the very least, the empirical
Bayesian paradigm) is the most natural setting in which to achieve this.

With all of the above considerations in mind, our goals in this chapter are threefold.
First, we seek to develop a(n empirical) Bayesian model with generality comparable to that
of Hu and Schennach [136]. Second, we wish to apply this model in the micro-macro mul-
tilevel setting, providing an ability to accommodate “non-classical” data structures which
we believe is sorely missing in that literature. Our final goal is to leverage the data sizes
characteristic of micro-macro situations in order to focus our inference not only on the re-
gression part of the model, but also the distributions of “individual-level” covariates within
each group.

To achieve these goals, we propose FRODO (Functional Regression On Densities of
Observations), a method which unifies density estimation and functional regression in a
joint empirical Bayesian model. Although the core idea of FRODO is a fairly straightforward
combination of well-established methods in principle, it allows for a remarkable degree of
generality in data structures, and its design proves to be far from trivial.

Before describing FRODO, we first give an overview of necessary functional data analysis
concepts in Section 5.2. We then give a general overview of the FRODO model and its
assumed data structure in Section 5.3, followed by a detailed description of its prior and
likelihood components, as well as its practical implementation. In Sections 5.4 and 5.5, we
show several simulation studies which demonstrate the potential generality of FRODO in
both the regression and covariate observation parts of a micro-macro model.
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5.2 A brief review of key functional data analysis concepts

Broadly speaking, functional data analysis (FDA) is a field of statistics in which the funda-
mental units of interest are (almost everywhere) smooth functions. A detailed overview of
the field is beyond the scope of this chapter, but the interested reader may find one in the
excellent book by Ramsay and Siverman [232]. Here we discuss only the concepts necessary
to establish notation and motivation for FRODO.

5.2.1 Scalar-on-function functional regression

As the name implies, scalar-on-function regression concerns the modelling of a real-valued
univariate (or “scalar”) response variable with predictors that are functions [232, Section
12.3]. This is achieved by using integrals in place of the sums which define scalar regres-
sion models. For example, consider a simple case in which our data are pairs {Yi, f∗

i },
i = 1, . . . , N , where Yi is a real-valued (continuous) scalar response and f∗

i is an almost
everywhere continuous function on [0, 1]. For this data, a functional linear model would be
of the form

Yi = α+
∫ 1

0
β∗(x)f∗

i (x)dx+ ϵi, (5.3)

with i.i.d. errors ϵi ∼ N (0, σY ). The coefficient function β∗ weighting the integral is analo-
gous to regression coefficients in a fully scalar regression model.

5.2.2 Basis function expansions

Because function spaces are infinite-dimensional, a core component of FDA is the represen-
tation of functions of interest in finite-dimensional spaces [232]. Typically, this is achieved
by modelling functions as linear combinations of finitely many basis functions [232, Section
3.3]. Throughout this chapter, we will use f∗ to denote a function of interest, and remove
the asterisk to denote a relevant basis function approximation f .

Several types of functional bases exist, many of which were described in Sections 4.4–
4.6. Attention here is restricted to splines, and in particular the P-splines of Eilers and
Marx [73] mentioned briefly in Section 4.6. Recall from Section 4.4 that a basis function
approximation of a function f∗ on a compact interval [a, b] has the form

f(x) =
K∑
k=1

ckBk(x). (5.4)

Here, the basis functions Bk are splines: piecewise polynomials with supports defined by a
set of equally-spaced “knots” in [a, b]. More detailed explanations of splines can be found
in [232], Eilers and Marx [73], and Section 4.4.3 and the references therein. As discussed in
Section 4.6, Eilers and Marx [73] used penalized likelihood optimization to fit the coefficients

102



c = (c1, . . . , cK), introducing a penalty based on finite differences between coefficients. Their
penalty defines the notion of P-splines and is of the form

λ
K∑

k=r+1

[
(∆rc)k−r

]2
, (5.5)

for a positive integer r, where ∆r denotes the rth-order finite difference operator and
(∆rc)k−r denotes the (k−r)th element of the (K−r)-dimensional vector (∆rc). For instance,(

∆1c
)

1
= c2 − c1,(

∆2c
)

1
= c3 − 2c2 + c1, and(

∆3c
)

1
= c4 − 3c3 + 3c2 − c1.

When the smoothing parameter λ > 0 is large, (5.5) dominates the penalized likelihood.
Eilers and Marx noted that the sum in this penalty is a good approximation to the rth

derivative of f when the knots defining the spline basis are equally spaced, especially for
large dimensionality K. Thus, for large λ the estimated f is forced to take the approximate
shape of a polynomial of degree r − 1.

Lang and Brezger [169] devised a Bayesian version of P-splines, based on the notion
that a penalized likelihood function is analogous to a posterior distribution on the log scale,
with the penalty term assuming the role of the prior (see Section 4.6). The penalty (5.5) is
the log density of an rth-order Gaussian random walk:

(∆rc)k−r ∼ N
(

0, 1√
2λ

)
(5.6)

for k = r, r + 1, . . . ,K. Lang and Brezger [169] gave the first r components of c (which
we call “free parameters” in contrast with the last K − r components, whose behaviour
is restricted by (5.6)) flat priors. However, we adopt the philosophy that such priors are
unreasonable because they give equal weight to all values, no matter how extreme [e.g. the
case study of 17], and we have also found such priors to result in extremely poor MCMC
sampling behaviour in our models. Our priors on the free parameters in the various P-spline
components of FRODO are described in Sections 5.3.2–5.3.3.

As noted by Eilers and Marx [73] (see also Section 4.6.1), one can use P-splines to
model a density f∗ by replacing f with log f in (5.4). The imposition of a polynomial
shape on log f then leads to a density estimate which is close to the exponentiation of the
corresponding polynomial. For instance, recall from Section 4.6 that using a penalty of order
r = 3 (in either the frequentist or Bayesian setting) forces log f towards a quadratic shape,
and therefore the resulting density estimate will be similar in shape to a Gaussian.
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5.3 The FRODO model

5.3.1 General overview

Having reviewed the necessary functional data analysis concepts, we are now ready to
describe the FRODO approach to micro-macro modelling. Assume the data is organized
into N groups, with the ith group containing ni individuals. In the simplest case (assumed in
the remainder of this section for ease of exposition), data ith group consists of a group-level
response variable Yi, and individual-level observations of a covariate X, (Xi1, . . . , Xini).
Although we assume real-valued Gaussian Yi’s throughout this chapter for the sake of
simplicity, in principle the following methodology could be extended to any response type
for which generalized linear modelling is possible. As in Section 5.1, the model is comprised
of both a regression part and a covariate observation part, but we assume a much greater
level of generality than in (5.1–5.2). Our only assumption for the covariate density part
is that, for the ith group, Xi := (Xi1, . . . , Xini) (where an omitted subscript means the
collection of all elements across that subscript) is an i.i.d. sample from an unobserved or
“latent” group-specific covariate density f∗

i . The regression part of the model defines the
“novel” idea at the core of FRODO: the use of these densities (technically, basis expansion
estimators thereof) as predictors in a functional linear regression. In mathematical terms,
the regression part of the model is

Yi = α+
∫
β∗(x)f∗

i (x)dx+ ϵi (5.7)

= α+ E∗
i [β∗ (X)] + ϵi, (5.8)

ϵi
i.i.d∼ N (0, σY ) ,

where E∗
i [β∗ (X)] denotes the expectation of β∗ (X) with respect to the density f∗

i . The
equivalence between (5.7) and (5.8) is the key to FRODO’s utility: by simply using densities
as predictors in a functional linear regression, the resulting model is essentially a GAM.
Thus, FRODO allows for a fully nonparametric approach to both regression functions and
covariate structures.

It must be noted that the regressor in (5.8), E∗
i [β∗ (X)], is the “expectation of the

regression function”. In general, this is not equal to β∗ (E∗
i [X]) — the “regression on the

expectations” — unless β∗ is linear. Use of the latter is perhaps more “standard” in the
measurement error literature, where it is typically assumed that the Xij ’s within each unit
i are noise-corrupted versions of some “true” covariate ξi [see 41, or any standard reference
on measurement error]. Although it is not always assumed that E∗

i [X] = ξi (e.g. the general
linear error structures described in Section 6.4 of [32], and references therein), typically the
target is estimation of β∗ (ξi), possibly marginalized over an estimate of the “posterior”
fξ|Xi

[e.g. 135, 175]. We are not aware of any literature which explicitly uses “expectations
of the regression” in the way that FRODO does.
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In the next two subsections, we detail the priors and likelihoods comprising FRODO.
Recall that we approximate β∗ and the f∗

i ’s with basis function expansions, use of which
will be denoted without asterisks. In a slight abuse of notation, we consider the model

Yi = α+
∫
β(x)fi(x)dx+ ϵi (5.9)

= α+ Ei [β (X)] + ϵi, (5.10)

as a proxy to (5.7–5.8), where β and fi are the basis function approximations to their “true”
counterparts (β∗ and f∗

i , respectively), and Ei denotes expectation w.r.t. fi.
Before exploring the details of FRODO, some final technical and notational points are

in order. We recommend standardizing the data so that default prior choices are weakly
informative [93, Sections 2.9 and 16.3]. Keeping with our convention of using omitted sub-
scripts to mean the collection of all elements across that subscript, let Y = (Y1, . . . , YN ) and
X = {X1, . . . , XN}, where Xi was defined above. In what follows, we will assume that Y
and X have both been standardized to have zero mean and unit variance. Note that for X,
this standardization is “marginal”, meaning that it is done across groups and individuals
within groups. We will overload notation and use f∗

i and fi to refer to, respectively, the
true density and its basis function approximation for the standardized version of Xi. For
technical reasons, it is necessary to assume that β and the fi’s are all defined on a common
compact interval. This will be denoted by [a, b] on the standardized scale, and when it is
necessary to speak about the domain of the covariates on the original (unstandardized)
scale, it will be denoted by [a′, b′]. Assuming X has been standardized as recommended
above, we have a =

(
a′ − X̄

)
/σ(X) and b =

(
b′ − X̄

)
/σ(X), and [a′, b′] can be chosen so

that its endpoints are (nearly) equal to the unscaled extrema of the covariates.

5.3.2 The density model

For computational convenience — and because it suffices for the ordinal covariates which are
common in real micro-macro datasets [e.g. 57, 4, 60] — the fi’s are modelled as histograms.
In practical terms, this means that they are linear combinations of constant basis functions
(see Section 4.4.1):

fi(x) =
K∑
k=1

ϕik1Ik
(x), (5.11)

where Ik is the kth equal-width subinterval [a+ (k − 1)h, a+ kh) of [a, b], 1Ik
is the indicator

function of Ik, and h = (b − a)/K is the bin width. The density coefficients ϕik are scaled
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“softmax” transformations of Gaussian random variables θik, i = 1, . . . , N, k = 1, . . . ,K:

ϕik = eθik

h
∑K
j=1 e

θij
, (5.12)

where, for all i, θi1 ≡ 0 to ensure identifiability. Equivalently, we may say that the ϕi’s are
(up to the scaling factor h) logistic normal random vectors [3].

The priors for the θ’s are chosen in order to impose useful constraints on the behaviour of
the densities. In particular, for some positive integer r we will impose an rth-order Gaussian
random walk prior on θi = (θi1, . . . , θiK) for all i. Since the logarithms of the fi’s are also
piecewise constant, this structure means that log fi is a Bayesian P-spline of degree zero,
with rth-order penalty, for all i. Recall from Section 5.2.2 that an rth-order random walk
prior on θi,

(∆rθi)k−r ∼ N (0, τi) , k ≥ r + 1 (5.13)

forces log fi towards the approximate shape of a (r − 1)th-degree polynomial when the
smoothing parameter τi is small1.

Note that (5.13) completely determines the conditional distributions of θik for k > r

given θik for k ≤ r. In the case r > 1, it remains to set the priors on the “free parameters”
θik for 2 ≤ k ≤ r: the “initial values” of the random walk. A seemingly sensible and simple
choice would be diffuse, mean-zero, independent Gaussian priors. Unfortunately, this turns
out not to be entirely suitable for FRODO. For r > 1, imposing fully independent priors on
the densities2 causes bias in the posterior mean coefficient function, β̂. For instance, if the
true β is a linear function, the magnitude of the slope of β̂ will be biased downward, just as
in the “naive” approach to modelling described in Section 5.1. In the Bayesian hierarchical
setting, this “attenuation” problem can be solved by putting priors on the covariates which
introduce dependence between them and “pool” each group’s measurements towards a latent
group-level variable. The solution here is similar.

1Henceforth, the phrase “smoothing parameter” will refer to the standard deviation of the random walk
prior (τ), instead of its precision as in Section 5.2.2 (where it was denoted by λ = τ−2/2).

2When discussing the model itself, we will typically write “the densities” to refer to the histograms fi

which are actually part of the model. When it is necessary to invoke the f∗
i ’s, we will specify them as the

“true densities”.

106



To expand on this, first note that with θi1 ≡ 0 for all i, we have

θik = log

h−1
a+kh∫

a+(k−1)h

fi(x)dx

− log

h−1
a+h∫
a

fi(x)dx

 (5.14)

≈ log f∗
i

(
a+ h

(
k − 1

2

))
− log f∗

i

(
a+ h

2

)
, (5.15)

recalling that f∗
i is the “true” density for group i.

Suppose f∗
i is that of a N (ξi, σi) random variable3. This corresponds to the limiting

case for r = 3 as τi → 0, and it can be shown that (5.15) in this case reduces to

θik ≈ h(k − 1)
σ2
i

(
ξi −

(
a+ kh

2

))
(5.16)

For r = 3, this approximation motivates our choice of priors for the “free parameters”.
For each i and k = 2, 3, we take them to be Gaussian with mean given by the right side of
(5.16) and standard deviation τi. Thus, τi controls fi’s adherence to the limiting Gaussian
shape in two respects: by controlling the free parameters’ deviations from their means, and
by scaling the random walk behaviour in (5.13).

We now set priors on ξi and σi. When the true covariate densities are Gaussian, the
structure of the data is analogous to that of the “classical” micro-macro model, with ξi

being a “latent group-level covariate” and σi controlling the level of Gaussian noise for each
group’s individual-level covariate measurements. In keeping with natural choices for that
setting, we first assign the ξi’s a N (µξ, σξ) prior. Recalling that [a′, b′] denotes the assumed
domain of the covariate densities on the original (unstandardized) scale, the mean µξ is given
a N

(
(a′b− b′a)/(a′ − b′), 15/K2) hyperprior. This corresponds to a mean-zero hyperprior

on the original covariate scale, with the empirically-determined standard deviation 15/K2

accounting for the discretization error from approximation (5.15). The scale σξ is given a
standard half-normal prior, which will be fairly uninformative if the Xij ’s have been scaled
to have unit marginal variance. It will often be reasonable that the covariate densities are
homoscedastic: σi ≡ σX for all i. A standard half-normal prior is a sensible choice in this
case. If one wishes to explicitly model heterogeneity, then each σi can be given its own
half-normal prior, perhaps sharing a common scale parameter with its own hyperprior.

Now, suppose f∗
i is instead a (shifted) Exponential (λi) density. This corresponds to the

limiting case for the random walk with r = 2, and here (5.15) reduces to

θik = −λi (k − 1)h. (5.17)

3Assuming the covariates have been standardized as recommended in Section 5.3.1, most of f∗
i ’s mass

presumably lies in [a, b], and a < ξi < b.
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Note that for an exponential density, there is no discretization error, so (5.14) and (5.15)
are equal. Thus, analogously to the r = 3 case described above, when r = 2 we assume the
“free parameters” θi2 are Gaussian with mean given by the right side of (5.17) and standard
deviation τi. A natural choice of prior for the “latent rates” λi is Gamma (αλ, αλ/µλ). The
mean µλ is given a standard half-normal prior (which should be only weakly informative if
the covariates have been standardized), while the shape parameter αλ is given a more diffuse
half-normal prior with scale 10. Note that this parameterization of the Gamma in terms of
shape and mean, rather than the more conventional shape and rate, proved computationally
advantageous.

By defining the “free parameters” in terms of latent group-level variables with their own
hyperpriors, we introduce the necessary dependence and “pooling” to prevent bias in the
regression part of the model, just as one might do in the scalar case. For any order r, the
density model is completed with priors on the smoothing parameters τi, which we take to
be exponentials with rates δ−1

i . The scales are assumed to be fixed data, chosen empirically
based on heuristics and the properties of the Xij ’s in the absence of more meaningful prior
information. Such choices place FRODO in the category of “empirical Bayesian” methods,
but we have found that sampling behaviour and posterior results can become poor when the
δi’s are not chosen carefully. If group sizes are moderate (ni’s roughly between 20 and 60)
and one doesn’t expect any of the covariate densities to deviate too seriously from the shape
implied by the rth-order random walk prior, δi = 0.1 for all i seems to be a good default
choice based on preliminary empirical results. Smaller groups tend to require smaller δi’s,
and it may also be advantageous to shrink them when the basis dimension K is very large,
especially relative to the ni’s.

Finally note that, because the densities are piecewise constant, the likelihood Xi ∼ fi

is equivalent to mi := (mi1, . . . ,miK) ∼ Multinomial (ni, ϕi), where mik is the bin count
|{j : Xij ∈ Ik}|. In summary, the model for the densities, assuming an rth-order random
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walk prior structure (for r ≤ 3), is

mi ∼ Multinomial (ni, ϕi)

ϕik = eθik

h
∑K
j=1 e

θij

θi1 ≡ 0

θi2 ∼ N (−λih, τi)

λi ∼ Gamma
(
αλ,

αλ
µλ

)
αλ ∼ Half-Normal(0, 10)

µλ ∼ Half-Normal(0, 1)


r = 2

θik ∼ N
(
h(k − 1)
σ2
i

(
ξi −

(
a+ kh

2

))
, τi

)
(k = 2, 3)

ξi ∼ N (µξ, σξ)

µξ ∼ N
(
a′b− b′a

a′ − b′ ,
15
K2

)
σξ ∼ Half-Normal(0, 1)

σX ∼ Half-Normal(0, 1)



r = 3

(∆rθi)k−r ∼ N (0, τi) , k > r

τi ∼ Exp(δ−1
i )

5.3.3 The regression model

Here we detail priors for the regression part of FRODO, the likelihood for which is defined
by (5.9–5.10). Recall that we have restricted our attention in this chapter to continuous
real-valued responses Yi with i.i.d. errors ϵi ∼ N (0, σY ), The following priors on α and
β would require only minor changes to accommodate more general response types (e.g.
different scaling may be in order to ensure plausible effect sizes in a logistic regression; see
Section 16.3 of Gelman et al. [93]), and the prior on the dispersion parameter could easily
be changed as necessary.

The error scale σY is given a half-T prior with 4 degrees of freedom and scale 1/
√

2, so
that σY has a prior mean of 1/

√
2. Recalling the assumption from Section 5.3.1 that Y has

been standardized to have unit variance, this scale (in informal terms) loosely corresponds
to a prior expectation that roughly half of the variation in the response values is due to
regression error (assuming that the errors and regressors are independent, which we do
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here). This seems to be a sensible approach for a “default” prior, unless one has prior
domain knowledge which would allow for context-specific prior beliefs about the regression
error.

Both α and β are given hierarchical priors with scales proportional to σY . This can
be shown to ensure unimodality in some penalized Bayesian regression models [222], and
we also found that it improved sampling behaviour. The intercept α is given a diffuse
N (0, 20σY ) prior.

We take the coefficient function β to be piecewise constant, with the same dimensionality
K as the densities. This is quite computationally convenient, as the integral in (5.9) then
reduces to the inner product between the coefficients of β and fi, scaled by the bin width h.
Because the functional predictors all have unit integral, adding a constant shift to β does
not change the model: for any c ∈ R, the model is identical if β and α are replaced by
β + c and α − c, respectively. Thus, we impose the identifiability constraint E [β (X)] :=∫ b
a f̂Cent(x)β(x)dx = 0, where f̂Cent is the empirical central density:

f̂Cent(x) :=
K∑
k=1

∑N
i=1mik∑K

l=1
∑N
i=1mil

1Ik
(x). (5.18)

Essentially, f̂Cent is the “marginal histogram” of all covariate data across groups. Presum-
ably, the total number of covariate observations

∑
i ni will be large enough in most data

sets to ensure that f̂Cent is reasonably “smooth”, so that it is a good approximation to
the “marginal” covariate density (i.e. marginalized across groups) for large K. Note that
we use the empirical central density mainly for computational convenience: an “inferred
central density” like N−1∑

i fi would certainly be “smoother”, but this would add needless
complexity to the gradients used in NUTS when the empirical version is sufficient to ensure
identifiability.

This constraint amounts to centering the inferred regressors Ei [β(X)]. In practice, the
constraint is achieved by defining a piecewise constant function

β0(x) :=
K∑
k=1

β0
k1Ik

(x) (5.19)

and taking β = β0 −
∫
f̂Centβ

0. In keeping with Bayesian functional regression approaches
such as [56], we put a second-order random walk prior on the coefficients of β0, with the
first coefficient set to 0 for identifiability:

β0
1 ≡ 0,

β0
2 ∼ N (0, 20hσY ) ,(

∆2β0
)
k−2

∼ N (0, τβσY ) .
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The smoothing parameter τβ controls the extent to which β deviates from the random-
walk behaviour. As τβ → 0, β is forced towards a stepwise approximation to a straight
line, and the regression model (5.9) is therefore forced towards a linear regression. In this
limiting case, the “slope” of β, h−1β0

2 , is equivalent to the regression coefficient in a scalar
linear model. Thus, using a scale factor of 20σY h in β0

2 ’s prior can be considered roughly
analogous to placing a N (0, 20σY ) prior on the coefficient in the scalar case, which should be
reasonably diffuse if the covariates have been scaled as recommended above [e.g 272, Section
25.12 of User’s Guide]. Finally, τβ is given an exponential prior with rate 2 (equivalently,
scale 0.5). In contrast to the smoothing parameters for the densities, we found that τβ did
not require a careful selection of prior scale in order to ensure good model performance.

5.3.4 Implementation

The FRODO model is implemented in the Stan programming language [40], which provides
exceptional power, flexibility, and efficiency through its use of the No-U-Turns Sampling
(NUTS) variant of Hamiltonian Monte Carlo [132]. For each of the below simulation stud-
ies, four parallel chains were run with fairly diffuse starting values, with sufficiently many
sampling iterations to ensure effective sample sizes of at least 450 for all parameters [see
93, Section 11.5]. All model runs were devoid of divergent transitions [272], and the over-
whelming majority of parameters in all simulations had R̂ values (where R̂ is a diagnostic
which helps to assess model convergence, see Vehtari et al. [287]) below 1.01, with only
a single parameter in each of the models of Sections 5.4.2 and 5.4.5 having a value very
slightly above this threshold. All of the simulation studies below were conducted using R
[230], interfacing with Stan via the RStan package [273]. More details are given in Appendix
B.

5.4 Simulation studies

As discussed in previous sections, FRODO is uniquely powerful in theory because it is
“doubly nonparametric”: it can capture arbitrary unknown structures in both the covariate
densities and the regression model. In the following subsections, we put this to the test with
a wide variety of simulated datasets. We will assess FRODO’s ability to harness location,
scale, and shape information from covariate densities and use it to recover true regression
relationships. In each study, FRODO will be compared to two simpler models:

1. a “naive” scalar regression model using only the sample means of the covariate mea-
surements (or of some suitable transformation thereof, where applicable); and

2. a “hierarchical” scalar regression model, where the form of the regression function
and covariate distributions are assumed known, with only the actual parameter values
unknown.
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More detail will be provided in the following subsections.
Because FRODO does not assume any parametric form for either the regression or

covariate parts of the model, all that is required are choices of an appropriate random walk
order r, dimensionality K, (unstandardized) density domain [a′, b′], and set of density scaling
factors δ = (δ1, . . . , δN ). These choices must be made assuming that the true data-generating
mechanisms are not known a priori. One could use subject-specific domain knowledge if it
is available. Otherwise, an “empirical Bayesian” approach based on informal inspections of
the data is acceptable, and this is the approach we will use for all simulation studies in this
chapter. Visual inspection of default histograms or KDE’s suffices to this end. From a strictly
Bayesian perspective on inference, one could argue that this data dependence in the prior
is not philosophically sound. However, an empirical Bayesian approach to nonparametric
modelling is certainly not without precedent, as discussed at the beginning of Section 4.4
[see also 248, 281]. Serra and Krivobokova [261] devised an empirical Bayesian method for
determining both the smoothing parameter and penalty order in spline fitting; our strategy
could be viewed as a crude, heuristic approximation of such a method.

5.4.1 Gaussian covariate densities, linear regression model

We begin with the “classical” structure from Section 5.1, where the individual-level mea-
surements within groups are Gaussian deviations from a latent group-level covariate, itself
Gaussian:

ξi ∼ N (0, σξ) , (5.20)

Xij ∼ N (ξi, σX) . (5.21)

The regression model is also linear:

Yi = α+ β̃ξi + ϵi, (5.22)

= α+ Ei
[
β̃X

]
+ ϵi,

ϵi ∼ N (0, σY ) . (5.23)

Note that the second line explicitly restates the regression model in the form of (5.8), with
the true regression function β∗(x) = β̃x being a line with slope β̃. Some clarification on
notation is in order here. Throughout Sections 5.4–5.5, β̃ ∈ R will denote a scalar which
determines the magnitude and sign of the true regression function β∗. In turn, recall that
the (piecewise constant) basis function approximation to β∗ is denoted as β.
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The true parameter values before standardizing4 the data as described in Section 5.3.2
are σξ = 2, σX = 3, α = 0.3, β̃ = 0.4, and σY = 0.5. The result is a dataset with moderate
amounts of noise in both the regression and the covariate measurements. The number of
groups is N = 275 and each group contains covariate samples for n = 20 individuals.

Upon inspecting the data as recommended in the introduction to this section (not
shown), we find that an assumption of roughly Gaussian density shape (corresponding
to r = 3) is reasonable for these data. Because the densities are moderately wide but
relatively close together (as the between-density variability σξ, is somewhat smaller than
the within-density variability, σX), a modest basis of size K = 10 should suffice without
substantial loss of information. For this simulated data we have mini,j Xij = −13.54922
and maxi,j Xij = 10.87845, so we extend this range slightly by the same amount in each
direction to arrive at an assumed density domain5 of [a′, b′] = [−13.67077, 11]. Finally, the
default choice of δi = 0.1 for all i recommended in Section 5.3.2 is used here.

As stated at the beginning of this section, we compare FRODO to two simpler models.
The first is simply a standard Bayesian linear regression, with (5.20) omitted and the group-
level sample covariate means X̄i treated as the “true” covariates. The second is a scalar
micro-macro Bayesian regression, implemented in the “obvious” way: namely, (5.20)–(5.23)
are assumed to be the known form of the model, with all parameters (including the latent
ξi’s) unknown and inferred. Recall that the estimate of β̃ from the “naive” model will
be smaller in magnitude than the “true” value, which the hierarchical scalar model will
presumably recover more effectively.

Figure 5.1 shows results for the regression part of the model. In the left plot, the
piecewise-constant estimator of the regression function from FRODO is shown with its
pointwise (P.W.) 95% credible interval (C.I.). Superimposed on the plot are the true re-
gression function, as well as the posterior means from the hierarchical and naive scalar
models (both of which assume a known linear form for the regression unlike FRODO, which
only controls adherence to a linear regression through τβ). Because the within-group vari-
ability is not too much larger than the across-group variability and the sample sizes are
reasonable, only a small amount of attenuation is caused by using the naive model, so the
estimated regression functions for both scalar models are entirely within the pointwise C.I.
from FRODO. However, the “slope” of the mean regression function from FRODO seems
to be closer to those of the true function and the hierarchical scalar estimate, rather than
that of the naive estimate. We can formalize this observation by considering the secant
line to the FRODO regression function which intersects it at the midpoints of the first and

4Throughout this section, all parameter values and results will be presented on the original (unstandard-
ized) scale of the given data. The standardization only occurs “internally”, during the fitting of the FRODO
model.

5Henceforth, the “assumed domain” will be stated on the unstandardized scale of the original data (i.e.
[a′, b′]), with the standardization to [a, b] left unstated.
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Figure 5.1: Results of FRODO applied to data with Gaussian covariates and a linear regres-
sion structure. Left: the regression function estimated by FRODO, alongside its pointwise
95% credible region, the true function, and posterior mean estimates from hierarchical and
naive scalar models. Right: responses Ŷi predicted by FRODO (along with 95% prediction
intervals) vs. true responses.

last bins. The slope of this line (which is roughly analogous to a notion of “slope” for the
FRODO regression function) is 0.4002, whereas the slopes of the true, hierarchical scalar,
and naive scalar regressions are 0.4, 0.4172, and 0.3678, respectively.

Another way to assess FRODO’s ability to infer the “true” regression (rather than the
incorrect one implied by the naive model) is by checking the posterior for the regression error
scale, σY . Because of the additional noise in the individual-level covariate measurements,
the naive model’s estimate for σY will be biased upward [e.g. 41, Section 3.2.1]. Indeed,
the posterior mean for this parameter from the naive scalar model is 0.5559 (95% C.I.
(0.5104, 0.6015)), while the posterior means from FRODO and the hierarchical scalar model
are 0.4944 (95% C.I. (0.4417, 0.5505)) and 0.4901 (95% C.I. (0.4363, 0.5494)), respectively.
Because the FRODO estimate is much closer to the true value of 0.5 than it is to the “naive
estimate”, we are satisfied that we have avoided the attenuation problem inherent in the
naive model. Table B.2 contains summaries of the σY posteriors for every simulation study
in this chapter.

On the right of Figure 5.1, we have plotted the posterior mean predicted responses Ŷi
against the observed responses. The shaded region is a visual representation of 95% posterior
prediction intervals (P.I.’s) for each group.

Figure 5.2 shows the estimated fi’s, along with their pointwise 95% C.I.’s, for the group
with the smallest (left) and largest (right) ξi’s, as well as the group whose ξi is closest to
the sample mean (middle). The middle and right fits are satisfactory, with the inference
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Figure 5.2: For a selection of groups (from the data with Gaussian covariates and a linear
regression structure), the FRODO estimate of the group-specific covariate density, alongside
its pointwise 95% credible regions. The true densities are superimposed as red lines, and
the actual covariate samples are shown as rug plots.

effectively capturing the true covariate densities (shown in red). The left plot shows that
there is something of a mismatch between the inferred and true densities for the group with
the lowest ξi, with the former shifted slightly too far to the right. Given that the model
appears to perform well in all other respects, this is not a significant concern, especially
since the rug plot suggests consistency with the data. We did not observe this problem in
other datasets generated with the same parameter values (not shown), and therefore assume
it is simply an unfortunate quirk of this particular data.

5.4.2 Gaussian covariate densities, nonlinear regression model

Here, we test FRODO’s ability to handle nonlinear regression functions. The covariates
adhere to the same Gaussian structure as in Section 5.4.1, but the regression model is now
quadratic:

Yi = α+ β̃
(
ξ2
i + σ2

X

)
+ ϵi

= α+ Ei
[
β̃X2

]
+ ϵi.

Because the true covariate densities all have common variance σ2
X , the difference between

Ei
[
X2] and (Ei [X])2 is constant and can therefore be absorbed into the intercept. Here,

the regression function is β∗(x) = β̃x2.
The same parameter values

(
σξ, σX , α, β̃, σY

)
= (2, 3, 0.3, 0.4, 0.5) and number of groups

N = 275 are used as in Section 5.4.1 although the data is not strictly the same as we used
a different seed for pseudorandom number generation in this study. Because the values of
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ξ2 span a wider interval than those of ξ, the “relative” level of regression error is lower than
in Section 5.4.1, since the “signal” is larger in scale than the “noise”.

As before, we compare FRODO to two scalar models, one hierarchical and one naive.
Here, however, it is assumed known in the hierarchical model that the regression is quadratic
in the latent covariates ξ, with no linear term. The naive scalar model here is a GAM rather
than a linear model, with the covariates taken to be the group-level sample means and the
unknown regression function modelled as a cubic P-spline with second-order penalty.

Because the regression function is not one-to-one, an interesting difficulty arises in this
framework when the group sizes ni are too small. On the regression side, the distributions
are unchanged if ξi is replaced with −ξi in a given group. When ni is small and the true ξi is
close to zero, the available measurements Xi may not be informative enough to distinguish
between these possibilities6. This creates multimodality in the posterior (for the hierarchi-
cal scalar model, and for FRODO to a somewhat lesser extent) with all of its associated
difficulties, including poor HMC sampling behaviour and posterior mean estimates that are
not particularly meaningful. Thus, larger group sizes are required if one wants meaningful
inference on the covariate parameters as well as the regression parameters. Here, we increase
the group size in the simulated data from the n = 20 used in Section 5.4.1 to n = 50 for all
i. The Xij ’s range from -13.76074 to 14.0043, and we expand this range by a small amount
in each direction for an assumed density domain of [−13.80644, 14.05]. As before, we find
K = 10 and δi = 0.1 ∀i to be suitable choices here.

Results for the regression part of the model are shown in Figure 5.3. At first glance, it
may appear as though the FRODO estimate of the regression function is too attenuated, as
it is closer to the estimate from the naive scalar model at the endpoints than it is to the true
function and the hierarchical scalar estimate. Note, however, that over 95% of the Xij ’s lie
within the middle six bins, and over 95% of the true latent ξi’s within the middle four. In
those regions, the FRODO estimate is quite close to the true quadratic regression function.
Towards the endpoints where the Xij ’s are very sparse, there is much less information with
which to estimate value of the regression function. This edge effect is readily seen in several
examples in this manuscript by observing that the pointwise C.I.’s for β are wider in regions
with few covariate estimates. In the linear example of Section 5.4.1, this did not create
noticeable bias in the actual posterior mean for β near the endpoints. Presumably this is
because — in somewhat informal terms — the covariates in the middle of the domain were
sufficiently informative to constrain β to a linear shape there with high posterior probability,
which results in the smoothing parameter τβ being small with high probability, which, in
turn, enforces a linear shape in β with fairly high probability throughout the rest of the
domain. In this example, we do not penalize β towards a quadratic shape — only away from

6This appears to also depend on the amount of covariate variability within the group relative to the size
of its regression error, although it is not currently clear exactly how this dependence works.
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Figure 5.3: Results of FRODO applied to data with Gaussian covariates and a quadratic
regression structure. Left: the regression function estimated by FRODO, alongside its point-
wise 95% credible region, the true function, and posterior mean estimates from hierarchical
and naive scalar models. Right: responses Ŷi predicted by FRODO (along with 95% predic-
tion intervals) vs. the true response values.

a linear shape. As such, it is not surprising that the posterior for β is biased away from the
truth near the endpoints, as neither the prior nor the likelihood are very informative there.
In principle, one could specify a third-order random walk prior for β in order to ensure a
more genuinely quadratic shape, provided one had sufficient reason a priori to assume this
was an appropriate choice. However, we argue that the second-order random walk prior used
here is more intuitive, as it is formulated in terms of deviations from a linear model. At
any rate, the heightened bias and uncertainty in the FRODO regression function near the
endpoints does not create any seriously adverse consequences for the rest of the inference.
In particular, the FRODO posterior mean for σY is 0.4715 (95% C.I. (0.3848, 0.6662)),
much closer to the true value of 0.5 than the estimate from the naive model (0.8848, 95%
C.I. (0.8150, 0.9620)), suggesting that FRODO is successfully recovering the true regression
model and not the biased naive version. The plot of estimate vs. true responses on the right
of Figure 5.3 shows an overall good fit, although there is a small amount of bias in the
estimates of the lowest responses.

Figure 5.4 shows a sample of covariate densities, once again for the group with the
smallest and largest ξi’s, and the ξi closest to the sample mean. With larger group sizes,
FRODO successfully approximates the true densities for each group shown here.
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Figure 5.4: For a selection of groups (from the data with Gaussian covariates and a quadratic
regression structure), the FRODO estimate of the group-specific covariate density, alongside
its pointwise 95% credible region. The true densities are superimposed as red lines, and the
actual covariate samples are shown as rug plots.

5.4.3 Exponential covariate densities, linear regression model

Although it is useful to model arbitrary regression functions, doing so with Gaussian covari-
ate distributions is a capability shared by many methods. In fact, authors such as Sarkar
et al. [255] have developed Bayesian methods which allow for even more general structures
of the form Xij = ξi + νij . The true advantage of FRODO lies in its ability to handle
covariates that are not based on any kind of additive error structure. To demonstrate this,
here we use an exponential covariate structure:

λi ∼ Gamma (10, 10)

Xij ∼ Exponential (λi) ;

and a linear regression model

Yi = α+ β̃λ−1
i + ϵi

= α+ Ei
[
β̃X

]
+ ϵi,

where we have not restated the distribution for the error variance since it is identical to
(5.23) for all subsequent studies.

It is worth contrasting this framework with that of Section 5.4.1. There, the true covari-
ate densities were Gaussians with equal variances, so the group-level responses depended on
their locations. With exponential covariate distributions, the linear regression model implies
responses that instead vary with the scales of the densities. This turns out to be a somewhat
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challenging type of model for FRODO, due to its treatment of β and the fi’s as piecewise
constant functions on bins of equal width. When the true densities are exponential, for
any group i it is highly probable that most of the Xij ’s will be near 0, with a few very
large measurements in the groups with small rates λi. If the dimensionality (equivalently,
the number of bins) K is taken too small, then the groups with large rates will all have
estimated fi’s with probability mass near one in the first bin, and mass near zero in the
rest. Thus, it is necessary to use a fairly large K in order to capture the differences between
these densities. However, this introduces an opposing challenge due to the sparsity of large
Xij ’s: near the right end of the domain, many of the bins will not contain any covariate
measurements, so there is little information with which to estimate the densities — and
therefore, the regression function — in that region. In summary, when the density scales
differ to this extent, the “resolution” of the data varies throughout the domain.

The use of unequal-width bins would perhaps mitigate this problem, but recall from
Section 5.2.2 that the P-spline constructions used here are predicated on an assumption of
equally-spaced “knots” (which, with splines of degree zero, are simply the bin endpoints).
Without these, the unaltered finite-difference penalties on the coefficients no longer serve as
approximations to derivatives of a suitable order. It then becomes nontrivial to penalize the
fi’s towards some predetermined “smooth” shape, although Li and Cao [176] proposed a
method of modifying the P-spline penalty in the presence of uneven knots. We do not pursue
this here, acknowledging that FRODO in its current state has slightly more difficulty using
scale information in the covariate densities than it does using location or shape information.

For this dataset (N = 200 groups, each of size n = 50), we use parameter values(
α, β̃, σY

)
= (0.1,−0.9, 0.1). A preliminary visual inspection of KDE’s or histograms (not

shown) of the covariate data — and the observation that they are all strictly positive and
highly concentrated near zero — justifies a random walk prior of order r = 2 on the densities.
In order to capture the “high-resolution” differences between covariate measurements near
zero as described above, we use a moderately large basis of size K = 20. With no reason
to suspect severe deviations from this shape we once again set δi = 0.1 for all groups. The
observed covariates range from 1.3232 × 10−4 to 16.3810. Zero is a natural choice for the
left endpoint of the assumed domain, and because there are so few large values, we simply
take the right endpoint to be the overall sample maximum 16.3810.

The regression results in the left plot of Figure 5.5 represent the most significant example
of the phenomenon discussed in Section 5.4.2; namely, the heightened uncertainty in the
regression function in regions where covariate measurements are sparse. Here, 99.73% of the
observed Xij ’s lie in the left half of the domain, while all of the latent λ−1

i ’s lie within the
first 3 bins. Thus, the pointwise 95% credible interval for β is quite narrow near zero —
where most of the covariates are concentrated — and becomes significantly wider moving
from left to right. Once again, we compare FRODO to two scalar models: a naive linear
regression using the of the X̄i’s as fixed covariates, and a hierarchical linear model in which
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Figure 5.5: Results of FRODO applied to data with exponential covariates and a linear re-
gression structure. Left: the regression function estimated by FRODO, alongside its point-
wise 95% credible region, the true function, and posterior mean estimates from hierarchical
and naive scalar models. Right: responses Ŷi predicted by FRODO (along with 95% predic-
tion intervals) vs. the true response values.

the latent λi’s are jointly inferred with the regression parameters. As in previous studies, the
estimated regression function from the hierarchical model is very close to the true function,
and the FRODO estimate approximates it quite well. Some attenuation bias occurs in the
right half of the domain, but because all of the covariate densities have such small mass
in this region, this does not seem to adversely affect the regression inference in any other
significant way. Indeed, the right plot of Figure 5.5 shows that the predicted responses
closely align with the true Yi’s.

As in previous studies, we compare inferred and true covariate densities for multiple
groups in Figure 5.6. FRODO appears to do a good job of capturing the true densities for
small, moderate, and large λi’s, although with no real deviations from the shape imposed
by the random walk prior, this is perhaps not surprising.

5.4.4 Beta covariate densities, linear regression model

In the following two sections, we demonstrate FRODO’s ability to capture regression rela-
tionships that are encapsulated in the shapes of the covariate densities, rather than their
locations or scales. Whereas the covariate densities in preceding examples were governed
by group-level latent parameters which were random themselves, here those parameters are
deterministic, allowing us to better control the range of shapes we see. In particular, for
this section we take ξ = (ξ1, . . . , ξN ) to be a mesh of equally-spaced points from 1/10 to
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Figure 5.6: For a selection of groups (from the data with exponential covariates and a linear
regression structure), the FRODO estimate of the group-specific covariate density, alongside
its pointwise 95% credible region. The true densities are superimposed as red lines, and the
actual covariate samples are shown as rug plots.

9/10, and

Xij ∼ Beta (ξi, 1 − ξi) .

The regression model is

Yi = α+ β̃ξi + ϵi

= α+ Ei
[
β̃X

]
+ ϵi.

The true densities f∗
i are bimodal for all i, with peaks at 0 and 1 and minima at 1/2. For

small i with ξi < 1 − ξi, the peak on the left is wider than the one on the right, so fi is
skewed towards 0 and Ei [X] < 1/2. The opposite is true for large i, and for i near N/2 the
densities are roughly symmetric.

For this simulation, we use N = 250 groups. Because the beta densities have relatively
low variance (for the parameter values used here, all of them have variance below 1/8), we
use relatively small groups of size ni = 15 for all i, so that the difference between the “true”
and “naive” regression functions is more pronounced7. The true regression parameters are(
α, β̃, σY

)
= (0.2, 1, 0.05).

Upon inspection of the available covariate data, one would see that all covariate measure-
ments are constrained to the unit interval, with the minimum and maximum measurements

7With large groups, the “naive” regression with group-level covariate sample means would be quite close
to the true model, making it difficult to tell which one FRODO was capturing.

121



being extremely close to 0 and 1, respectively. Thus, [a′, b′] = [0, 1] is a sensible choice
for the assumed domain. Quick visual assessment of KDE or histogram estimates for the
group-specific covariate densities reveals that they are neither Gaussian nor exponential.
This observation, combined with the strong evidence that the densities are supported only
on the unit interval, may lead one to believe that the covariates within each group are,
indeed, roughly beta-distributed. This justifies a random walk prior of order r = 1 on the
densities, for which the limiting shape is a uniform distribution. Note, however, that unlike
the examples above for which we used second- and third-order random walk priors, here the
limiting behaviour is unique, in the sense that there is only one uniform density on the cho-
sen domain. Thus, if all groups had small smoothing parameter scales δi (corresponding to a
prior assumption that no severe deviations from the limiting shape occurred), the FRODO
estimates of the covariate densities all would be nearly identical, thereby suppressing the
differences between groups and compromising the model’s ability to extract meaningful re-
gression information. With an assumed first-order random walk prior, one should therefore
expect that the covariate densities will exhibit larger deviations from the limiting shape
than they would in a situation where r > 1 was appropriate (especially since a bimodal
shape will be apparent for at least some of the groups upon preliminary visual inspection).
Thus, rather than the default δi = 0.1 used in previous examples, here we take δi = 1 for
all groups. Finally, since several groups have most of their covariate measurements near the
endpoints (necessitating bins which are narrow enough to capture differences in densities
within these regions), we use K = 12 bins: more than the 10 used in the Gaussian examples,
but less than the 20 used in Section 5.4.3 since we do not have enough covariate measure-
ments per group to support such a large number of bins (especially since “roughness”, or
deviation from the random walk shape, is penalized less severely here).

Once again, the regression component of the model is visualized in Figure 5.7, alongside
posterior mean estimates from naive and hierarchical scalar models. In contrast to previous
datasets, here there are more covariate measurements at each endpoint of the domain than
there are in the middle, leading to a slight “bulge” in the pointwise 95% credible interval
around 0.5. However, each bin is relatively well-populated with observations, compared to
the large differences in concentration seen in previous examples. It is visually obvious that
FRODO captures the true regression function and not the naive one. The plot of predicted
vs. true responses on the right of Figure 5.7 provides further confirmation that FRODO’s
regression inference is satisfactory here.

Figure 5.8 shows that FRODO has more difficulty inferring the true densities here
than for previous examples. Although the asymmetrical shapes for ξi’s near 0.1 or 0.9
are captured, the steep curvature of the true densities near the endpoints in these cases
results in them being near the edges of the model’s pointwise 95% credible intervals — if
not excluded altogether — in these regions. From the middle plot, we see that the model
imposes a somewhat excessive degree of uniformity on the nearly-symmetric densities for
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Figure 5.7: Results of FRODO applied to data with beta-distributed covariates and a lin-
ear regression structure. Left: the regression function estimated by FRODO, alongside its
pointwise 95% credible region, the true function, and posterior mean estimates from hierar-
chical and naive scalar models. Right: responses Ŷi predicted by FRODO (along with 95%
prediction intervals) vs. the true response values.

Figure 5.8: For a selection of groups (from the data with beta-distributed covariates and
linear regression structure), the FRODO estimate of the group-specific covariate density,
alongside its pointwise 95% credible region. The true densities are superimposed as red
lines, and the actual covariate samples are shown as rug plots.
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which ξi is near 0.5. These difficulties are not surprising: given the small group sizes and
the fairly large values used for K and the δi’s, neither the prior nor the likelihood make
very strong implications about the density shapes. Aside from collecting more covariate
measurements for each group (i.e. strengthening the likelihood), the only other possible
mitigation for this would be to strengthen the prior: either by using smaller δi’s to more
strictly enforce the uniform shape, or by using a smaller K to reduce the dimensionality
of the problem. However, as discussed above, both of these options would result in an
obfuscation of any information that does exist in the available covariate data. Thus, the
most prudent choice seems to be accepting that FRODO’s density inference in this example
is necessarily limited to some degree. Fortunately, this limitation does not adversely affect
any of the inference on the regression side of the model. Furthermore, despite the relative
“roughness” of the FRODO density estimates8, they are certainly improvements over, say,
“raw” histograms (corresponding to δi → ∞), for which the low amount of covariate data
would result in even less interpretable shapes.

5.4.5 Beta covariate densities, nonlinear regression model

Although the previous example shows that FRODO can extract relationships based on the
shapes of covariate densities, the regression model itself still ultimately depended only on the
means of the covariate measurements. The non-additive structure of the Xij ’s would pose
a challenge for many established multilevel methods, but it is conceivable that one could
devise a nonparametric, hierarchical Bayesian method which jointly inferred the Ei [X]’s
while using them to recover the correct regression parameters, subverting the need for full
functional regression on the densities. When the regression is not linear, this may not be the
case. Thus, in this section we combine a nonadditive covariate structure with a nonlinear
regression model to demonstrate the full generality of FRODO. Once again ξ is a mesh of
equally-spaced points, this time from 1/10 to 2, and

Xij ∼ Beta (ξi, ξi) ,

Yi = α+ β̃

(
1 + 1

2ξi + 1

)
+ ϵi

= α+ Ei

[
4β̃
(
X − 1

2

)2
]

+ ϵi. (5.24)

Here, the regression function is β∗(x) = 4β̃(x− 1/2)2. The f∗
i ’s are all symmetric: bimodal

and U-shaped for i near 1, roughly uniform for i near N/2, and peaked at 1/2 for i near N .
For positive β̃, the expected response Ei [Y ] is higher for “more bimodal” covariate densities

8Note that this is an inherent difficulty in any dataset for which the first-order random walk prior is
justified, because imposing smoothness in this case is inseparable from forcing all of the densities towards
being identical.
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and lower for “more unimodal” ones. The regression is therefore entirely dependent on the
shapes of the densities, not their locations or scales. Furthermore, because the densities are
all symmetric it holds that E∗

i [X] = 1/2 for all i. Thus, any modelling approach targeting
β (Ei [X]) (“regression on the expectaton”) will be unsuitable here9, as opposed to FRODO
with its use of “the expectation of the regression”, Ei [β (X)]. In every aspect, this partic-
ular data structure is decidedly “non-classical”, and FRODO seems uniquely well-suited to
handle such a structure.

Because the true covariate densities all have expectation equal to 1/2, the regression
function is actually not unique: indeed, when the f∗

i ’s are all symmetric Beta densities,
(5.24) is equivalent to α + E

[
4β̃X2

]
+ ϵi, up to a term which is constant with respect to

i. This does not seem to be a problem in practice, however: even when HMC chains are
explicitly initialized such that β is close to the latter form, they converge to a posterior
which is consistent with (5.24). We conjecture that the FRODO posterior concentrates
around the form of the regression function with “lowest error”: empirically, we observed
that the within-group sample means of (Xij − 1/2)2 values provide much more accurate
estimates of their population analogues than the within-group sample means of the X2

ij ’s.
For this example, we simulated a dataset with N = 250 groups, each containing n = 60

covariate measurements. The true regression parameters were
(
α, β̃, σY

)
= (0.7, 1, 0.1). As

in Section 5.4.4, the observed range of the covariate measurements provides strong evidence
that [0, 1] is a good choice for the assumed density domain. Here, the range of shapes in
preliminary histograms or KDE’s (from bimodal, to roughly uniform, to unimodal) gives
further justification for a random walk prior of order r = 1. As in the previous section, we
take δi = 1 for all i to allow a greater degree of deviation from the limiting (uniform) shape
of the prior. Because the data is highly concentrated near the endpoints for the groups
whose ξ-values are low (even moreso than in Section 5.4.4’s dataset), we use a basis of size
K = 15.

Due to the aforementioned uselessness of methods involving “regression on expectations”
here, constructing scalar models to compare with FRODO is nontrivial. We cannot use a
“naive GAM” as we did for the Gaussian quadratic model in Section 5.4.2. There, Ei

[
X2]

and (Ei [X])2 differed by a constant, but this is not the case here. Thus, the naive scalar
model we use for comparisons is somewhat contrived: a linear regression model, using the
within-group sample means of the (Xij − 1/2)2 values as covariates. As always, the hierar-
chical scalar model assumes the true forms of the regression function and covariate densities
are all known, jointly inferring the ξi’s and all regression parameters.

9In theory, one could invoke a measurement error method with more general assumptions on the covariate
structure. Recall that the frequentist approach of Hu and Schennach [136] described in Section 5.1 assumed
a general functional mapping the f∗

i ’s to the ξi’s. Although higher-order moments should be permissible
under their assumptions, the authors required a known functional. Thus, even with their level of generality
it would still be necessary to assume quadratic regression a priori.
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Figure 5.9: Results of FRODO applied to data with beta-distributed covariate data and a
quadratic regression structure. Left: the regression function estimated by FRODO, alongside
its pointwise 95% credible region, the true function, and posterior mean estimates from
hierarchical and naive scalar models. Right: responses Ŷi predicted by FRODO (along with
95% prediction intervals) vs. the true response values.

Because of the relatively large group sizes, and the fact that the quadratic form of the
regression function was assumed known in both scalar models, the naive model does not
suffer from any appreciable attenuation bias. As shown on the left of Figure 5.9, both it
and the hierarchical scalar model approximate the true regression function almost perfectly.
Some bias is apparent in the FRODO estimate, particularly near the vertex at 1/2, but its
pointwise 95% credible interval almost completely captures the true function. On the right
side of Figure 5.9, we see a moderate “clumping” of predicted responses just over 2.0, where
the variability in the actual Yi’s exceeds that of the mean predictions from FRODO. These
values correspond to groups with ξ-values near 1 (i.e. those whose true covariate densities
f∗
i are close to uniform). For this dataset, it appears that FRODO has a small amount

of difficulty capturing small shape differences between nearly-uniform densities. Note also
that a few groups have posterior 95% prediction intervals which exclude their observed
responses, although it seems reasonable to attribute this to mere random chance given the
large number of groups. In any case, the overall fit appears largely satisfactory, especially
considering that the true forms of the regression function and covariate densities are not
known a priori.

Figure 5.10 shows that FRODO roughly captures all three types of density shapes
present in this data, although some excess noise and bias is evident in the posterior es-
timates. This is particularly evident for the unimodal density in the right plot. Although
the true density is fully contained in the pointwise 95% credible interval, the posterior mean
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Figure 5.10: For a selection of groups (from the data with beta-distributed covariates and
quadratic regression structure), the FRODO estimate of the group-specific covariate density,
alongside its pointwise 95% credible region. The true densities are superimposed as red lines,
and the actual covariate samples are shown as rug plots.

is perhaps somewhat too flat. The true unimodal densities in this dataset certainly differ
more subtly from the uniform shape than the bimodal ones (contrast the true density in
the left plot of Figure 5.10 with that on the right) — since the prior on densities here is
structured only in terms of “deviations from uniformity”, this slight deficiency is not en-
tirely unexpected. As in Section 5.4.4, some of the excess noise in the density inference is
an unavoidable consequence of the larger values of K and δ necessary to capture the shapes
and fine structure of the true densities with the first-order prior.

5.5 Extended simulation study: FRODO with varying group
sizes and a group-level covariate

As a final “application” of FRODO, we recreate the simulated data considered by Croon and
van Veldhoven [57]. This is very much a “classical” model, with Gaussian covariate data and
a linear regression function much like the one considered in Section 5.4.1. However, there
are three unique features here which were absent from the “toy” examples explored above.
First (recalling the notation of (5.20–5.23)), the parameter values are

(
σξ, σX , α, β̃, σY

)
=(

1, 3, 0.3, 0.3,
√

0.35
)
: not only is the within-group variability of the Xij ’s much greater than

the between-group variability of the true ξi’s, but the regression error is also quite high,
accounting for just under 65% of the variability in the Yi’s. Overall, the amount of “signal”
in the data — at both the covariate and regression levels — is low relative to the amount of
noise. Second, there are varying group sizes, some of which are quite small: out of N = 100
groups, roughly 50% (randomly selected with probability 1/2) contain ni = 10 covariate
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Figure 5.11: Results of FRODO applied to data with Gaussian covariates, a linear regression
structure, and an additional group-level scalar covariate. Left: the regression function for
the multilevel covariate estimated by FRODO, alongside its pointwise 95% credible region,
the true function, and posterior mean estimates from hierarchical and naive scalar models.
Right: responses Ŷi predicted by FRODO (along with 95% prediction intervals) vs. the true
response values.

measurements, and the rest contain ni = 40. Finally, the actual regression model is altered
from the basic FRODO form considered thus far, with the inclusion of a “scalar” group-level
covariate Z as in (5.1):

Yi = α+ β̃ξi + βZZi + ϵi. (5.25)

The covariate values Zi are generated from a standard normal distribution, independently
of ξ, and are treated as fixed observations.

It is straightforward to extend FRODO to accommodate for Z by putting a N (0, 20σY )
prior on βZ , conditionally independent from the prior for β (which still denotes the regression
function corresponding to the group-specific densities of the Xij ’s). We use a third-order
random walk prior on the fi’s with K = 10 bins as in Section 5.4.1, since the available data
gives no reason to suspect that finer structures need to be captured. Due to the relatively
small amount of covariate measurements, we simply take the assumed domain [a′, b′] to be
the range of observed Xij-values, which in this case is [−12.0365, 11.2258]. For the groups
of size ni = 40, the default smoothing prior scale choice δi is appropriate, but with only
ni = 10 observations in the smaller groups, a tighter prior is necessary to ensure posterior
density estimates with useful shape information. Thus, we set δi = 0.05 for the small groups.
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The actual method proposed by Croon and van Veldhoven [57] for micro-macro mod-
elling is frequentist and involves a stepwise estimation procedure. An R implementation
exists [188], but here we are only interested in comparing FRODO to analogous scalar
Bayesian methods. Thus, as in the studies of Section 5.4 we compare it to both a naive
and hierarchical scalar model, trivially extended to accommodate Z with a suitable prior
placed on βZ . These results are shown in the left plot of 5.11. Note how much wider the
pointwise 95% credible interval is — particularly near the endpoints — than the one in
the similar model of Figure 5.1, owing to the higher noise and smaller amount of available
covariate data here. It appears that the posterior for FRODO has concentrated somewhere
in between the true and naive regressions. Indeed, FRODO’s posterior mean for σY is 0.5975
(95% C.I. (0.5152, 0.6945)), in contrast with 0.5856 from the hierarchical scalar model (95%
C.I. (0.5014, 0.6835)) and 0.6128 from the naive scalar model (95% C.I. (0.5332, 0.7029)).
Given that the dataset is fairly small and high in noise, it is perhaps unsurprising that
FRODO struggles more than it did in previous studies. However, this seems to be a prob-
lem of variability, not of bias: other simulated datasets with the exact same parameters,
group sizes, and number of groups resulted in FRODO estimates with differing amounts
of attenuation (not shown). Even the scalar hierarchical model proved quite variable with
other datasets, as its estimate of the regression function did not always align as closely
with the true function as it does here. Although the high degree of noise in the right plot
of Figure 5.11 may appear troubling, this is reflective of the actual amount of noise in the
data: a plot of predicted vs. actual responses from a frequentist multiple linear regression
using the true ξi’s appears similar.

The usual density plots are shown in Figure 5.12. Note that the group in the left plot
contains 40 individuals, and the other two contain only 10. It is intuitive that the smaller
groups would have wider pointwise credible intervals for their densities (on further inspec-
tion, this pattern also seemed to hold for other groups not shown here), although it is
somewhat noteworthy that the smaller δi-values for these groups do not seem to neutralize
this effect. Some bias in the model is evident, particularly in the middle plot, but overall
the inference provided by FRODO seems reasonable.

5.6 Discussion and future work

In this chapter, we have presented a new approach for micro-macro modelling which com-
bines density estimation and functional data analysis into a unified hierarchical Bayesian
framework. Although FRODO is relatively simple in principle due to its use of step func-
tions and only linear functional regression terms, it is deceptively powerful in its ability to
use these elements for approximation of generalized additive models. Beyond the generality
of the regression component of the model, FRODO is also quite flexible in terms of the
individual-level covariate structures it can accommodate. Whereas many Bayesian methods
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Figure 5.12: For a selection of groups (from the data with Gaussian covariate data, a lin-
ear regression structure, and an additional group-level covariate), the FRODO estimate of
the group-specific covariate density, alongside its pointwise 95% credible region. The true
densities are superimposed as red lines, and the actual covariate samples are shown as rug
plots.

for GAM’s with measurement error or micro-macro structure assume a Gaussian — or at the
very least, additive — error structure in the Xij ’s, FRODO has no such limitation, allowing
for covariate densities which influence the group-level regression responses through their
locations, scales, or shapes. All that is required is the selection of a suitable prior structure
for the densities, based on either prior domain knowledge, or — if this is not possible and
an empirical Bayesian approach is required — a preliminary heuristic examination of the
data. Although FRODO’s inference on the covariate densities is generally more accurate
when the true densities adhere to the specified “smooth shape” encoded in the prior, this
is not a strict requirement provided hyperparameters are chosen carefully.

The simulation studies conducted above show that the power and generality of FRODO
translate from theory to practice, providing reasonable inference for a variety of data struc-
tures. However, the potential for improvements and extensions to the model is vast. The
most immediate potential for this is in the density part of the model, as described in Sec-
tion 5.3.2. Here we have not considered rth-order random walk priors for any integer r > 3.
These would result in densities being penalized towards exponentiated polynomials of higher
degree: with an rth-order random walk prior, log fi(x) is close to a polynomial of degree
r − 1 when the smoothing parameter τi is small. Such limiting smooth shapes correspond to
generalized error distributions [286] (or folded versions thereof) with shape parameter r−1,
of which the normal, Laplace, and uniform distributions are special cases. For r > 2, the
generalized error distribution has lighter tails than a Gaussian. It is not certain how useful
such higher-order random walk priors would be in practice (i.e. how often one might expect
covariate densities to be similar to, say, an exponentiated quartic), but one challenge in
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implementing these would be determining suitable distributions for the “free parameters”
θik, 2 ≤ k ≤ r. Equivalent derivations of the type carried out for r = 2 and 3 in Section
5.3.2 would be much more complex.

There is even room for generalization within the confines of the third-order (resp. second-
order) random walk priors considered here. Although the construction in Section 5.3.2 was
explicitly tailored in terms of Gaussian (resp. exponential) distributions, in principle it
could be adapted for any densities whose logarithms are roughly quadratic (resp. linear)
in shape. Folded or truncated normal distributions may be a useful shape to accommodate
with a third-order random walk prior; one could even modify it to allow for densities f
such that log f is approximately quadratic with positive leading coefficient, not negative as
for a Gaussian. This may be useful for modelling “U-shaped” densities, such as the Beta
distributions considered in Section 5.4.4. Similarly, the second-order structure could be
generalized to allow for positively-sloped densities (i.e. “reversed” exponentials), or Laplace
densities whose logarithms are piecewise linear. Furthermore, it may be useful to combine
differing random walk orders within the same model. For instance, the example in Section
5.4.5 might have benefited if we used a third-order random walk prior for the unimodal
densities (since symmetric Beta densities are close to Gaussians in shape for large parameter
values), a first-order R.W. prior for the flatter densities, and perhaps an “inverted” third-
order R.W. prior for the U-shaped densities as suggested above.

Further investigation of the relationships between n, r, K, and δ would also be useful,
particularly how best to set the latter two in terms of the former two. Although the em-
pirical heuristic methods employed here worked well in practice, a more formal approach
might result in better performance and generalization. Appeals to asymptotics could guide
derivation of mathematical relationships between the hyperparameters: for instance, an ex-
pression for an “optimal” δi in terms of r, K, and ni, based on the “big-O” relationships
shown by Silverman [267] to guarantee convergence of penalized density estimators in the
frequentist setting. The choice of the assumed domain for the densities may also have an
effect on any such expressions.

There is also significant potential for generalizations on the regression side of the model.
The most immediate of these is the realization of our proposed extension to non-Gaussian
responses such as count or categorical data. Just as the regression part of FRODO for the
Gaussian responses considered here is nothing more than a functional linear model, allowing
for other response types is simply a matter of using functional GLM machinery.

Perhaps the most useful immediate extension to FRODO would be the incorporation
of multiple multilevel covariates. Indeed, many real-world micro-macro datasets include
several covariates measured at the individual level within groups [e.g 57, 4, 60]. Of course,
this would increase the computational complexity of FRODO, as the number of parameters
to infer grows roughly linearly in the number of multilevel covariates. Note, however, that
real-world micro-macro datasets commonly include ordinal covariates with a small number
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of levels [e.g. 4, 60]. Modelling the distributions for these covariates requires only as many
basis functions as there are levels, which would mitigate computational difficulty to some
extent in practice.

A powerful yet challenging improvement would be modelling more complex relationships
amongst covariates. For instance, Croon and van Veldhoven [57] considered a version of
the simulation study replicated in Section 5.5 where the latent and observed group-level
covariates (ξ and Z, respectively) were correlated [see also measurement error literature such
as 238]. Accounting for dependence between multilevel and “scalar” covariates in FRODO
will be highly nontrivial, especially if one wishes to maintain flexibility in the shapes of
the inferred densities. For instance, if the multilevel data is Gaussian as in Section 5.5,
the most obvious way to account for correlation between ξ and Z is to explicitly include
it in the prior for the ξi’s (see Section 5.3.2). However, we have found in practice that
the ξi’s inferred by FRODO are often poor approximations for the actual latent group
means of the Xij ’s, unless a Gaussian shape is heavily enforced on the fi’s by deliberately
taking very small δi’s. This was not a problem for the examples in Sections 5.4.1 and
5.4.2, as the posterior density estimates ended up being close enough to the true Gaussians
that there were no major difficulties in the inference. If such latent density parameters are
required more explicitly to model correlations with scalar covariates, this inaccuracy may
become problematic. The potential for dependence between distinct multilevel covariates
is arguably even more interesting. Presumably this would require regression on multiple
integrals over their joint densities. However, even with the degree-zero splines considered
here, this would result in a substantial increase in computational complexity. Indeed, the
number of coefficients required to model the joint density of d multilevel covariates for a
single group in this way is exponential in d. Therefore, some type of simplification would
likely be required to make interactions between multilevel covariates viable. See Lambert
and Eilers [167] for a discussion of multivariate density estimation with splines in the case
of a single density.

We conclude by acknowledging potential shortcomings in FRODO for which there are
likely no solutions, either due to the inherent properties of the model or the excessive com-
putational difficulty that would be required to solve them. First, one may question the
use of piecewise constant basis functions, since higher-order splines would certainly result
in smoother and better-behaved density estimates. However, recall from Section 5.3.3 that
this choice was made partially for computational convenience: it ensures that the integral
of β · fi is simply the inner product of the two functions’ coefficients. This is no longer the
case with higher-order splines, for which the integrals are more complicated expressions in-
volving products between neighbouring coefficients. Beyond the heightened complexity, we
also found in preliminary experiments that the resulting posterior geometry was extremely
difficult to navigate with NUTS. Note that these experiments modelled the densities them-
selves with higher-degree splines, requiring (among other things) a potentially costly softmax
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transformation of each θi vector. The other possibility is modelling the logarithms of the
densities with splines [e.g. 218]. These approaches are equivalent for degree-zero splines,
but with higher degrees the logarithmic approach requires approximate numerical integra-
tion to normalize the fi’s, which are exponentiated piecewise polynomials. These numerical
integrals, in turn, depend on the spline coefficients in complex ways which would likely
complicate the posterior geometry even further. Thus, unless a radically different approach
is used to fit the model, higher-order splines do not seem to be worth the effort, given the
satisfactory results obtained with piecewise constant functions and the prevalence of ordinal
covariates in real-world micro-macro data.

In earlier experiments (not shown), we found problems with bias and sampling efficiency
when the within-group covariate noise was large relative to either the regression noise or
between-group covariate scale. In the notation of the Gaussian model, problems occurred
when the ni’s were small and σX was large relative to either σξ or σY , especially when
the magnitude of the effect size β̃ was large. This problem also affected hierarchical scalar
models — suggesting that there is innate difficulty in the posteriors induced by such datasets
— but FRODO did seem slightly more sensitive to it, in the sense that some parameter
combinations were problematic for FRODO but not for a scalar model. These problems
could be mitigated with different prior choices such as a zero-avoiding prior for σY , but
these can create bias [91]. Fortunately, we suspect that the relative noise levels which tend
to create problems are unlikely to occur in practice, as they imply either extremely low-error
regression models or high-error covariate groups.

Finally, it bears repeating that FRODO only models responses in terms of expectations
of functions of covariates: any regression relationship that cannot be expressed in the form
(5.8), or some multivariate extension thereof, is incompatible with this methodology. In
particular, responses which depend on the medians or modes of densities cannot be modelled
with FRODO, requiring other methods specifically suited for those purposes [e.g. 136]. Its
current inability to model functions of expectations may also be a shortcoming. For instance,
if the data in Section 5.4.2 was modified so that the covariate densities had unequal variances
and the group-level responses were proportional to these variances, FRODO would not
be usable due to the nonconstant (Ei [X])2 term in the regression. One could potentially
augment (5.8) with an “outer function”, using terms of the form g (Ei [β (X)]) with some
unknown function g to be modelled with a basis function expansion. However, this would
likely create a litany of problems with unidentifiability.

Despite these challenges, we believe that FRODO’s power and flexibility make it a strong
addition to the field of micro-macro regression modelling, especially as improvements and
extensions are developed to handle an even broader variety of data structures.
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Chapter 6

Conclusion

In this thesis, we have presented an assortment of studies on uncertainty quantification for
several types of nonparametric statistical methods. Chapters 2 and 3 detail a probabilis-
tic numerical tool for use in state-space models. It uses Bayesian quadrature to determine
whether the assumptions underpinning the Laplace approximation are justified — whether
the likelihood of the model is “close enough” to a Gaussian shape to justify its use. The cen-
tral philosophy of “good-enough-ness-of-fit” embodied by the diagnostic is relatively novel
and unusual, but ensures that meaningful, useful results are obtained in high dimensions and
with real data, and that practical performance is not sacrificed in the name of asymptotic
guarantees.

Chapter 4 is a detailed overview of density inference methods, encompassing a full
spectrum of practical and theoretical methods for many different types of density estimator.
Several meaningful concepts in both Bayesian and frequentist nonparametric inference are
discussed and put into context, and a simulation study is shown which compares a small
assortment of the described methods.

Chapter 5 introduces FRODO, a combination of functional linear regression and density
inference for generalized additive modelling of micro-macro data. The method allows a level
of generality not often seen in comparable Bayesian literature, and was shown to provide
meaningful and accurate inference with a wide variety of simulated data sets encompassing
many types of regression and covariate structures. The potential for further improvements
to FRODO is vast, even in spite of its promising results at present.

Collectively, these chapters demonstrate that better incorporation and quantification
of uncertainty in complex situations can give rise to improved insights and powerful new
methods. Implementation of the tools detailed in this thesis — and, more broadly, the
principles motivating them — have the potential to elevate the quality of statistical inference
performed in a variety of modern contexts.
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Kernel Density Estimators. Sankhyā: The Indian Journal of Statistics, Series A, 59
(1):138–141, 1997.

[79] S. Favaro, M. Lomeli, and Y. W. Teh. On a class of σ-stable Poisson-Kingman models
and an effective marginalized sampler. Statistics and Computing, 25(1):67–78, 2015.

[80] S. Favaro, A. Lijoi, C. Nava, B. Nipoti, I. Prünster, and Y. W. Teh. On the Stick-
Breaking Representation for Homogeneous NRMIs. Bayesian Analysis, 11(3):697–724,
2016.

[81] Stefano Favaro and Yee Whye Teh. MCMC for Normalized Random Measure Mixture
Models. Statistical Science, 28(3):335–359, 2013.

[82] Stefano Favaro and Stephen G. Walker. Slice Sampling σ-Stable Poisson-Kingman
Mixture Models. Journal of Computational and Graphical Statistics, 22(4):830–847,
2013.

[83] Stefano Favaro, Maria Lomeli, Bernardo Nipoti, and Yee Whye Teh. On the stick-
breaking representation of σ-stable Poisson-Kingman models. Electronic Journal of
Statistics, 8(1):1063–1085, 2014.

[84] Mariel M. Finucane, Christopher J. Paciorek, Gretchen A. Stevens, and Majid Ezzati.
Semiparametric Bayesian Density Estimation With Disparate Data Sources: A Meta-
Analysis of Global Childhood Undernutrition. Journal of the American Statistical
Association, 110(511):889–901, 2015.

[85] Carlo V Fiorio. Confidence intervals for kernel density estimation. The Stata Journal,
4(2):168–179, 2004.

[86] Lynn Foster-Johnson and Jeffrey D. Kromrey. Predicting group-level outcome vari-
ables: An empirical comparison of analysis strategies. Behavior Research Methods, 50
(6):2461–2479, 2018.

140



[87] David Freedman and Persi Diaconis. On the Maximum Deviation Between the His-
togram and the Underlying Density. Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete, 58:139–167, 1981.

[88] W. Gawronski and U. Stadtmüller. Smoothing Histograms by Means of Lattice-and
Continuous Distributions. Metrika, 28:155–164, 1981.

[89] Alan E. Gelfand and Athanasios Kottas. A Computational Approach for Full Non-
parametric Bayesian Inference Under Dirichlet Process Mixture Models. Journal of
Computational and Graphical Statistics, 11(2):289–305, 2002.

[90] Alan E. Gelfand and Adrian F. M. Smith. Sampling-Based Approaches to Calculating
Marginal Densities. Source: Journal of the American Statistical Association, 85(410):
398–409, 1990.

[91] Andrew Gelman. Prior distributions for variance parameters in hierarchical models.
Bayesian Analysis, 1(3):515–533, 2006.

[92] Andrew Gelman and Donald B. Rubin. Inference from Iterative Simulation Using
Multiple Sequences. Statistical Science, 7(4):457 – 472, 1992.

[93] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and
Donald B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC, third edition,
2013.

[94] Christopher Genovese and Larry Wasserman. Adaptive confidence bands. The Annals
of Statistics, 36(2):875–905, 2008.

[95] John Geweke. Bayesian Inference in Econometric Models Using Monte Carlo Integra-
tion. Econometrica, 57(6):1317–1339, 1989.

[96] Zoubin Ghahramani and Carl Rasmussen. Bayesian monte carlo. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing
Systems, volume 15. MIT Press, 2002.

[97] Subhashis Ghosal. Convergence rates for density estimation with Bernstein polyno-
mials. The Annals of Statistics, 29(5):1264–1280, 2001.

[98] Subhashis Ghosal and Aad van der Vaart. Fundamentals of nonparametric Bayesian
inference. Cambridge University Press, 2017.

[99] Evarist Giné and David M. Mason. On local U-statistic processes and the estimation
of densities of functions of several sample variables. The Annals of Statistics, 35(3):
1105–1145, 2007.

[100] Evarist Giné and Richard Nickl. Confidence bands in density estimation. The Annals
of Statistics, 38(2):1122–1170, 2010.

[101] Evarist Giné and Richard Nickl. Adaptive Inference. In Mathematical Foundations of
Infinite-Dimensional Statistical Models, pages 607–666. Cambridge University Press,
Cambridge, 2015.

141



[102] Evarist Giné, Vladimir Koltchinskii, and Lyudmila Sakhanenko. Convergence in
distribution of Self-Normalized Sup-Norms of Kernel Density Estimators. In Jør-
gen Hoffmann-Jørgensen, Jon A. Wellner, and Michael B. Marcus, editors, High-
Dimensional Probability III, Progress in Probability, volume 55, pages 241–253.
Birkhäuser, Basel, 2003.

[103] Evarist Giné, Vladimir Koltchinskii, and Lyudmila Sakhanenko. Kernel density esti-
mators: convergence in distribution for weighted sup-norms. Probability Theory and
Related Fields, 130:167–198, 2004.

[104] A. Gnedin and J. Pitman. Exchangeable Gibbs partitions and Stirling triangles.
Journal of Mathematical Sciences, 138(3):5674–5685, 2006.

[105] Harvey Goldstein. Multilevel statistical models. John Wiley & Sons, fourth edition,
2010.

[106] I. J. Good and R. A. Gaskins. Nonparametric Roughness Penalties for Probability
Densities. Biometrika, 58(2):255–277, 1971.

[107] Ulf Grenander. On the theory of mortality measurement. Scandinavian Actuarial
Journal, 1956(2):125–153, 1956.

[108] J E Griffin. Default priors for density estimation with mixture models. Bayesian
Analysis, 5(1):45–64, 2010.

[109] J. E. Griffin. An adaptive truncation method for inference in Bayesian nonparametric
models. Statistics and Computing, 26:423–441, 2016.

[110] J. E. Griffin, M. Kolossiatis, and M. F. J. Steel. Comparing distributions by using
dependent normalized random-measure mixtures. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 75(3):499–529, 2013.

[111] Piet Groeneboom and Geurt Jongbloed. Nonparametric confidence intervals for mono-
tone functions. The Annals of Statistics, 43(5):2019–2054, 2015.

[112] Piet Groeneboom, Gerard Hooghiemstra, and Hendrik P. Lopuhaä. Asymptotic Nor-
mality of the L1 Error of the Grenander Estimator. The Annals of Statistics, 27(4):
1316–1347, 1999.

[113] Piet Groeneboom, Geurt Jongbloed, and Jon A. Wellner. Estimation of a convex
function: characterizations and asymptotic theory. The Annals of Statistics, 29(6):
1653–1698, 2001.

[114] Piet Groeneboom, Geurt Jongbloed, and Birgit I. Witte. Maximum smoothed likeli-
hood estimation and smoothed maximum likelihood estimation in the current status
model. The Annals of Statistics, 38(1):352–387, 2010.

[115] Zhong Guan. Efficient and robust density estimation using Bernstein type polynomi-
als. Journal of Nonparametric Statistics, 28(2):250–271, 2016.

142



[116] Tom Gunter, Michael A. Osborne, Roman Garnett, Philipp Hennig, and Stephen J.
Roberts. Sampling for inference in probabilistic models with fast bayesian quadrature.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014.

[117] Luis Gutiérrez, Ramsés H. Mena, and Matteo Ruggiero. A time dependent Bayesian
nonparametric model for air quality analysis. Computational Statistics and Data
Analysis, 95:161–175, 2016.

[118] Heikki Haario, Eero Saksman, and Johanna Tamminen. Adaptive proposal distribu-
tion for random walk Metropolis algorithm. Computational Statistics, 14:375–395,
1999.

[119] Peter Hall. On convergence rates of suprema. Probability Theory and Related Fields,
89:447–455, 1991.

[120] Peter Hall. Effect of Bias Estimation on Coverage Accuracy of Bootstrap Confidence
Intervals for a Probability Density. The Annals of Statistics, 20(2):675–694, 1992.

[121] Peter Hall. On Edgeworth Expansion and Bootstrap Confidence Bands in Nonpara-
metric Curve Estimation. Journal of the Royal Statistical Society. Series B (Method-
ological), 55(1):291–304, 1993.

[122] Peter Hall and Joel Horowitz. A simple bootstrap method for constructing nonpara-
metric confidence bands for functions. The Annals of Statistics, 41(4):1892–1921,
2013.

[123] Peter Hall and Kee-Hoon Kang. Bootstrapping nonparametric density estimators
with empirically chosen bandwidths. The Annals of Statistics, 29(5):1443–1468, 2001.

[124] Peter Hall and Art B. Owen. Empirical Likelihood Confidence Bands in Density
Estimation. Journal of Computational and Graphical Statistics, 2(3):273–289, 1993.

[125] Peter Hall and D. M. Titterington. On Confidence Bands in Nonparametric Density
Estimation and Regression. Journal of Multivariate Analysis, 27(1):228–254, 1988.

[126] Qiyang Han and Jon A. Wellner. Approximation and estimation of s-concave densities
via Rényi divergences. The Annals of Statistics, 44(3):1332–1359, 2016.

[127] Mark H. Hansen and Charles Kooperberg. Spline Adaptation in Extended Linear
Models. Statistical Science, 17(1):2–51, 2002.

[128] Timothy Hanson, Haiming Zhou, and Vanda Inácio De Carvalho. Bayesian Non-
parametric Spatially Smoothed Density Estimation. In Yichuan Zhao and Ding-Geng
Chen, editors, New Frontiers of Biostatistics and Bioinformatics, chapter 4, pages
87–105. Springer International Publishing, 2018.

[129] Timothy E. Hanson. Inference for Mixtures of Finite Polya Tree Models. Journal of
the American Statistical Association, 101(476):1548–1565, 2006.

[130] Nicolas W. Hengartner and Philip B. Stark. Finite-Sample Confidence Envelopes for
Shape-Restricted Densities. The Annals of Statistics, 23(2):525–550, 1995.

143



[131] Philipp Hennig, Michael A. Osborne, and Mark Girolami. Probabilistic numerics
and uncertainty in computations. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 471(2179), 2015.

[132] Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively
Setting Path Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning
Research, 15(1):1593–1623, 2014.

[133] Marc Hoffmann and Richard Nickl. On adaptive inerence and confidence bands. The
Annals of Statistics, 39(5):2383–2409, 2011.

[134] Joel L. Horowitz. The bootstrap. In James J. Heckman and Edward Leamer, editors,
Handbook of Econometrics, volume 5, pages 3159–3228. Elsevier, 2001.

[135] Cheng Hsiao. Consistent estimation for some nonlinear errors-in-variables models.
Journal of Econometrics, 41(1):159–185, 1989.

[136] Yingyao Hu and Susanne M. Schennach. Instrumental Variable Treatment of Non-
classical Measurement Error Models. Econometrica, 76(1):195–216, 2008.

[137] Youping Huang and Cun-Hui Zhang. Estimating a Monotone Density from Censored
Observations. The Annals of Statistics, 22(3):1256–1274, 1994.

[138] Ferenc Huszár and David Duvenaud. Optimally-weighted herding is bayesian quadra-
ture. In Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence, UAI’12, page 377–386. AUAI Press, 2012.

[139] Hemant Ishwaran and Lancelot F James. Gibbs Sampling Methods for Stick-Breaking
Priors. Journal of the American Statistical Association, 96(453):161–173, 2001.

[140] Hemant Ishwaran and Mahmoud Zarepour. Markov chain Monte Carlo in approximate
Dirichlet and beta two-parameter process hierarchical models. Biometrika, 87(2):371–
390, 2000.

[141] Lancelot F. James, Antonio Lijoi, and Igor Prünster. Posterior Analysis for Nor-
malized Random Measures with Independent Increments. Scandinavian Journal of
Statistics, 36(1):76–97, 2009.

[142] I.T. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer-
Verlag New York, second edition, 2002.

[143] M. C. Jones. Simple boundary correction for density estimation kernel. Statistics and
Computing, 3:135–146, 1993.

[144] M. C. Jones, J. S. Marron, and S. J. Sheather. A Brief Survey of Bandwidth Selection
for Density Estimation. Journal of the American Statistical Association, 91(433):
401–407, 1996.

[145] Simon Julier and Jeffrey K. Uhlmann. A General Method for Approximating Non-
linear Transformations of Probability Distributions. Technical report, University of
Oxford, 1996.

[146] Vesa Kaarnioja. Smolyak Quadrature. Master’s thesis, University of Helsinki, 2013.

144



[147] Gerald Kaiser. A Friendly Guide to Wavelets. Modern Birkhäuser Classics. Birkhäuser
Boston, 2011.

[148] Maria Kalli, Jim E. Griffin, and Stephen G. Walker. Slice sampling mixture models.
Statistics and Computing, 21:93–105, 2011.

[149] Nikolas Kantas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski, and Nico-
las Chopin. On Particle Methods for Parameter Estimation in State-Space Models.
Statistical Science, 30(3):328–351, 2015. doi: 10.1214/14-STS511.

[150] Toni Karvonen and Simo Särkkä. Fully symmetric kernel quadrature. SIAM Journal
on Scientific Computing, 40(2):697–720, 2018.

[151] Marc Kennedy. Bayesian quadrature with non-normal approximating functions.
Statistics and Computing, 8:365–375, 1998.

[152] Gerard Kerkyacharian, Richard Nickl, and Dominique Picard. Concentration inequal-
ities and confidence bands for needlet density estimators on compact homogeneous
manifolds. Probability Theory and Related Fields, 153:363–404, 2012.

[153] B. K. Kim and J. Van Ryzin. A bivariate histogram density estimator: Consistency
and asymptotic normality. Statistics & Probability Letters, 3(3):167–173, 1985.

[154] Bock Ki Kim and John Van Ryzin. On the asymptotic distribution of a histogram den-
sity estimator. In Colloquia Mathematica Societatis Janos Bolyai, 32. Nonparametric
Statistical Inference, pages 483–499, 1980.

[155] Arnošt Komárek and Emmanuel Lesaffre. Bayesian Accelerated Failure Time Model
With Multivariate Doubly Interval-Censored Data and Flexible Distributional As-
sumptions. Journal of the American Statistical Association, 103(482):523–533, 2008.

[156] Arnošt Komárek, Emmanuel Lesaffre, and Joan F. Hilton. Accelerated Failure Time
Model for Arbitrarily Censored Data With Smoothed Error Distribution. Journal of
Computational and Graphical Statistics, 14(3):726–745, 2005.

[157] Charles Kooperberg. logspline: Routines for Logspline Density Estimation, 2020. URL
https://CRAN.R-project.org/package=logspline. R package version 2.1.16.

[158] Charles Kooperberg and Charles J. Stone. A study of logspline density estimation.
Computational Statistics & Data Analysis, 12(3):327–347, 1991.

[159] Charles Kooperberg and Charles J. Stone. Confidence intervals for logspline density
estimation. In David D. Denison, Mark H. Hansen, Christopher C. Holmes, Bani
Mallick, and Bin Yu, editors, Nonlinear Estimation and Classification, pages 285–
295. Springer New York, 2003.

[160] Charles Kooperberg and Charles J. Stone. Comparison of Parametric and Bootstrap
Approaches to Obtaining Confidence Intervals for Logspline Density Estimation. Jour-
nal of Computational and Graphical Statistics, 13(1):106–122, 2004.

[161] Siem Jan Koopman, Neil Shephard, and Drew Creal. Testing the assumptions behind
importance sampling. Journal of Econometrics, 149(1):2–11, 2009.

145

https://CRAN.R-project.org/package=logspline


[162] Michael R. Kosorok. Bootstrapping the grenander estimator. In N. Balakrishnan,
Edsel A. Peña, and Mervyn J. Silvapulle, editors, Beyond Parametrics in Interdisci-
plinary Research: Festschrift in Honor of Professor Pranab K. Sen, pages 282–292.
Institute of Mathematical Statistics, 2008.

[163] Athanasios Kottas. Nonparametric Bayesian survival analysis using mixtures of
Weibull distributions. Journal of Statistical Planning and Inference, 136(3):578–596,
2006.

[164] Shinsuke Koyama, Lucia Castellanos Pérez-bolde, Cosma Rohilla Shalizi, and
Robert E. Kass. Approximate Methods for State-Space Models. Journal of the Amer-
ican Statistical Association, 105(489):170–180, 2010.

[165] Kasper Kristensen, Anders Nielsen, Casper W. Berg, Hans Skaug, and Bradley M.
Bell. TMB: Automatic differentiation and laplace approximation. Journal of Statis-
tical Software, 70(1):1–21, 2016.

[166] Thomas Laloë and Rémi Servien. A note on the asymptotic law of the histogram
without continuity assumptions. Brazilian Journal of Probability and Statistics, 30
(4):562–569, 2016.

[167] Philippe Lambert and Paul H. C. Eilers. Bayesian multi-dimensional density esti-
mation with P-splines. In John Hinde, Jochen Einbeck, and John Newell, editors,
Proceedings of the 21st International Workshop on Statistical Modelling, pages 313–
320, 2006.

[168] Philippe Lambert and Paul H. C. Eilers. Bayesian density estimation from grouped
continuous data. Computational Statistics & Data Analysis, 53(4):1388–1399, 2009.

[169] Stefan Lang and Andreas Brezger. Bayesian P-Splines. Journal of Computational and
Graphical Statistics, 13(1):183–212, 2004.

[170] Michael Lavine. Some Aspects of Polya Tree Distributions for Statistical Modelling.
The Annals of Statistics, 20(3):1222–1235, 1992.

[171] Alexandre Leblanc. A bias-reduced approach to density estimation using Bernstein
polynomials. Journal of Nonparametric Statistics, 22(4):459–475, 2010.
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Appendix A

Details of the density UQ
simulation study

A.1 Introduction

This appendix is adapted from the supplementary material of our publication “A Review of
Uncertainty Quantification for Density Estimation [198]. It contains a detailed explanation
of the methodology for the simulation study described in Section 4.9 and displayed in
Figure 4.1. The source code for this simulation study is available in its entirety at https:
//github.com/ShaunMcDonald1021/density_UQ_review_paper.

As described in Section 4.9, the data X is a sample of size 1000 from a Gaussian mixture
f0 = 0.5N

(
1
2 ,

1
49

)
+ 0.5N

(
5
7 ,

1
490

)
.

The following sections describe and implement the different UQ methods used for the sim-
ulation study, all with a nominal level of 1 − α = 0.95.

A.2 KDE methods

This section explores frequentist UQ methods based on a standard kernel density estimator.
First, we implement the pointwise bias-corrected confidence intervals of Calonico et al. [36].
In keeping with the theory of Calonico et al., we use the compactly-supported Epanechnikov
kernel. Their theory also assumes that the KDE bandwidth is selected to minimize point-
wise MSE, separately at each point. Here, we instead use a global bandwidth to minimize
integrated MSE, which ensures smooth estimates. We conjecture that the same “big-O”
asymptotics underpinning the theory for pointwise-optimal bandwidths should translate
when using the globally optimal one.

Next, we implement the simultaneous bootstrap confidence bands of Cheng and Chen [48],
using 1000 bootstrap replicates. Note that their theory assumes the true density has compact
support, and it and its gradient are equal to zero at the boundaries. Our choice of f0 does not
satisfy these assumptions, but we argue that it is sufficiently flat and low at the endpoints
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of the interval to be considered “close enough”. For consistency with the pointwise inference
described above, we continue to use the Epanechnikov kernel. Unfortunately, this means that
Cheng and Chen’s variable-width bands cannot be implemented, as they involve quantities
of the form ∣∣∣∣f∗(x) − f0(x)

σ∗(x)

∣∣∣∣ ,
where f∗ is a KDE based on a bootstrap sample and σ∗ is the usual sample estimate of
its standard deviation. The problem arises from the use of a compactly-supported kernel:
σ∗(x) can easily be zero for x near the boundaries if there are no points around there in a
given bootstrap sample. Thus, we must use Cheng and Chen’s fixed-width bands instead.

A.3 Bernstein polynomial methods

Next, we try Bayesian UQ methods based on the Bernstein polynomial model of Petrone
[224, 225]. All UQ here is based on a run of the MCMC algorithm proposed by Petrone
[225], ran for 5000 iterations and discarding the first 1000 as burn-in. Our implementation
of the algorithm can be obtained from the Github repository listed in Section A.1.

Recall from Section 4.4.2 that a truncated discrete prior must be placed on the dimension-
ality K; here we use a uniform prior over the integers {1, . . . , 150}. We chose M = 10 for
the concentration parameter of the Dirichlet process prior, which is used to induce a prior
on the coefficients of the basis expansion.

Pointwise 95% credible intervals are obtained in a straightforward way: by using the point-
wise (0.025, 0.975) quantiles of the density draws from the MCMC run. We also implement
variable-width simultaneous credible bands based on median absolute deviations (MADs)
[72]. Edwards, Meyer and Christensen applied such bands to the spectral density of a time
series, but the machinery easily translates to the (probability) density UQ context. Un-
fortunately, the simultaneous bands are quite wide relative to the other UQ methods (see
Figure 4.1). In fact, in the figure we have only taken the bands over the interval [0.01, 0.99],
as taking them over the entire interval [0, 1] renders them too wide to be visually useful.
Recall from Section 4.4.3 that these bands (obtained entirely from MCMC output) are of
the form

f̂(x) ± ξαMAD[f(x)],

where f̂ is the posterior median and ξα is the 1 − α-quantile of

sup
x

(∣∣∣f(x) − f̂(x)
∣∣∣ /MAD[f(x)]

)
.

Most density draws f have absolute deviations
∣∣∣f(x) − f̂(x)

∣∣∣ which are quite small near the
boundaries, so that the MAD is also quite small there. However, a moderate proportion of
the draws have higher tail values, and therefore ξα turns out to be fairly large.
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A.4 Logspline methods

Here we look at a logspline density estimate with the pointwise bootstrapped confidence
intervals described by Kooperberg and Stone [159, 160]. For this, we used the logspline
R package [157], which implements a stepwise knot addition/deletion algorithm to fit a
logspline density estimate. We used most of its default settings, although we did increase the
maximum number of knots to 20. This allows for consistency with the bootstrap estimates
below, for which the default setting for maximum number of knots did not always result in
convergence.

As described in Kooperberg and Stone [160], confidence intervals for f0 can be constructed
using a Gaussian approximation. First, we obtain an estimate of the standard error of log f̂
using a small number of bootstrap samples (25, in this case). With this standard error esti-
mate σ̂, the pointwise confidence intervals for f0 are of the form exp

[
log f̂(x) ± zα/2σ̂(x)

]
,

where zα/2 is the α/2-quantile of the standard normal distribution.

A.5 Dirichlet process mixture methods

The final type of UQ method considered here is based on the Dirichlet process mixture
(DPM) model, as implemented in the dirichletprocess package [247]. This package uses a
marginal sampling algorithm from Neal [206], but full UQ is possible due to the conjugacy
of the Dirichlet process, as described in Section 4.7.1.

The mixture kernel κ (· | θ) is taken to be Gaussian with location-scale parameters θ =(
µ, σ2) ∼ G, where G is a Dirichlet process prior with Normal-Inverse-Gamma base measure.

We use the package’s default choices for the base measure hyperparameters, as well as those
for the Gamma prior on the Dirichlet process concentration parameter.

Following the advice given in the dirichletprocess package documentation, we linearly trans-
form the sample to have zero mean and unit variance, as this helps with MCMC convergence.
We run the sampler for 5000 iterations, discarding the first 1000 as burn-in. Pointwise cred-
ible intervals are once again obtained from the pointwise (0.025, 0.975) quantiles of the
MCMC density draws.
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Appendix B

Details of the implementation of
FRODO in Stan

This appendix expands on the brief discussion in Section 5.3.4 regarding the Stan im-
plementation of FRODO. We explain our method of initializing HMC chains, detail the
parameter values used in the NUTS sampler, and assess the sampling behaviour of the
simulation studies in Sections 5.4–5.5. The reader may also refer to our source code at
https://github.com/ShaunMcDonald1021/FRODO.

This appendix will assume the reader is familiar with Stan, and the terminology associated
with implementation and assessment of models therein. However, references to relevant Stan
documentation are included where appropriate.

B.1 Reparameterizations

It is known that Stan’s sampling behaviour can suffer in the presence of difficult posterior
geometries: for instance, when the posterior has heavy tails or nonlinear correlations between
parameters [272, Section 25.7 of the User’s Guide and references therein]. Following standard
advice [ibid.], we use non-centered parameterizations for various parameters. Briefly, this
means restating the target distribution (i.e. the posterior) in terms of parameters which do
not have the same hierarchical dependence structures as in the original parameterization,
thereby inducing a posterior geometry more amenable to HMC. The parameters of interest
(see Sections 5.3.2–5.3.3) are then recovered as deterministic functions of the ones actually
sampled. Additionally, the error variance σY is expressed as the ratio of a half-normal
random variable and a Gamma random variable with shape parameter 2, neither of which
have the type of heavy tails which are often problematic in NUTS [272]. The full details of
the reparameterizations used are described in the comments of the source code referenced
above.
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B.2 Initialization of chains

By default, Stan initializes all parameters uniformly in the range [−2, 2] (for positive pa-
rameters, this is done on the logarithmic scale) [40]. This proved to be a problem for the
densities: the default scheme, in conjunction with the reparameterizations discussed in Sec-
tion B.1, almost always resulted in initial density estimates for which the logarithm of the
posterior was infinite. It is not known how often these were “genuine” infinities as opposed
to mere numerical overflow, but in either case the result is an inability to obtain posterior
samples.

The problem appears to be related to the random walk structure of the θi’s, which are
encoded into the Stan model through a linear transformation of “non-centered” parameters.
This transformation tends to “magnify” the variability in the default initial values to the
extent that the initial ϕi’s are severely mismatched with the likelihood of their corresponding
covariate data (see Section 5.3.2). Thus, we use a modified initialization strategy based
on preliminary frequentist estimates for the fi’s. These are obtained using P-splines and
Poisson regression models for the bin counts in each group, as proposed by Eilers and
Marx [73, Section 8]. These are then “inverse-transformed” to obtain initial values for the
parameterization used in Stan. A modest amount of randomness — Gaussian noise for the
θi’s, and Gamma-distributed initial values for the τi’s and scale components for the “free
parameter” means defined in Section 5.3.2 — is injected into the initialization to ensure
that the starting points of the HMC chains are reasonably diffuse [92].

B.3 Parameters of NUTS samplers

Sampling in Stan depends on several “parameters1” which govern the behaviour of the
NUTS algorithm. Section 15.2 of the Stan Reference Manual [272] explains these parameters,
and further details on their implications for sampling performance are discussed in the
vignette at https://mc-stan.org/misc/warnings.html.

Due to the complexity of FRODO’s posterior geometry, we found it necessary to use maxi-
mum tree depths and target Metropolis acceptance rates which were higher than the defaults
(10 and 0.8, respectively). In all of the simulation studies shown in Sections 5.4–5.5, we used
a maximum tree depth of 12. The target acceptance rate was set to 0.99, except in the stud-
ies with Gaussian covariate data, where it was set to 0.985. For each study, we ran four
NUTS chains in parallel. Each chain was run for 750 warmup iterations, then 1000 sampling
iterations.

1Not to be confused with the “parameters” whose posterior is the target of inference. In Section B.3, the
word “parameters” refers only to the “sampling parameters” discussed therein.
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Study Max. warmup time Max. sampling time Min. nEff Max. R̂
5.4.1 665.823 576.135 668.08 1.004
5.4.2 2021.06 2230.08 809.87 1.011
5.4.3 842.034 1163.82 463.62 1.005
5.4.4 572.697 483.391 655.660 1.007
5.4.5 657.588 762.475 643.639 1.010

5.5 230.505 100.251 450.481 1.009

Table B.1: Various quantities quantifying the performance and sampling behaviour of
FRODO, for each of the simulated datasets in Chapter 5.

B.4 Behaviour of simulation runs

In Table B.1, we summarize the performance of the samplers for each of the six simulation
studies in Chapter 5. Each study is denoted by the section in which it appears, and the
following information is included for each one.

1. The maximum warmup time (in seconds) for any of the four chains,

2. the maximum sampling time (in seconds) for any of the four chains,

3. the smallest estimated [287] effective sample size (nEff) for any parameter in the model,
and

4. the maximum split R̂ value for any parameter in the model [287].

Note that the reported nEff (resp. R̂) is the minimum (resp. maximum) over the actual
sampled parameters and the “true” model parameters obtained with transformations (see
Section B.1). All simulations were run on an Acer laptop with 16 GB of RAM and four
Intel i5-9300H 2.40GHz CPU cores.

In every simulation study, all parameters had effective sample sizes exceeding 450. Vehtari
et al. [287] recommend a threshold of at least 400 effective samples per parameter, so we are
confident that ours are large enough for inference to be reasonably accurate. Each of the
studies with a quadratic regression structure (Sections 5.4.2 and 5.4.5) had a single split R̂
value above the threshold of 1.01 recommended by Vehtari et al. [287]. For the Gaussian
covariate data, this maximal R̂ occurred for the value of the log posterior; and for the beta
covariate data, it occurred for one of the density smoothing parameters τi. Although split
R̂ values above 1.01 are often considered indicative of convergence problems, we are not
concerned by a single value slightly exceeding this threshold in a model with thousands of
parameters, especially since the estimated Monte Carlo standard errors [e.g. 287] for these
parameters are less than 5% of their posterior standard deviations. Trace plots for these
parameters, shown in Figure B.1, also suggest that there are not any egregious convergence
problems.

As one would expect given FRODO’s complexity, warmup and sampling are several times
slower than they are for the corresponding scalar models used in the simulation studies
(not shown). The only study whose computation time we would consider problematic is
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Figure B.1: Trace plots for simulation study parameters whose split R̂ values were above
1.01. Top: the value of the log posterior from the model in Section 5.4.2. Bottom: the density
smoothing parameter τ139 from the model in Section 5.4.5.
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Study True FRODO Hierarchical scalar model Naive scalar model
5.4.1 0.5 0.494 (0.442, 0.551) 0.490 (0.436, 0.549) 0.556 (0.510, 0.602)
5.4.2 0.5 0.472 (0.385, 0.566) 0.479 (0.414, 0.550) 0.885 (0.815, 0.962)
5.4.3 0.1 0.099 (0.069, 0.126) 0.096 (0.070, 0.122) 0.165 (0.150, 0.183)
5.4.4 0.05 0.065 (0.054, 0.077) 0.055 (0.046, 0.065) 0.089 (0.082, 0.098)
5.4.5 0.1 0.094 (0.084, 0.105) 0.099 (0.090, 0.109) 0.150 (0.137, 0.164)

5.5 0.592 0.595 (0.512, 0.695) 0.585 (0.502, 0.681) 0.614 (0.536, 0.709)

Table B.2: Posterior inference for σY (the regression error) from FRODO and the scalar
models within each simulation study. For each model, the posterior mean is reported, as is
a 95% credible interval in parentheses. The second column from the left shows the true σY .

the one from Section 5.4.2, with Gaussian covariate data and a quadratic regression struc-
ture. Including warmup and sampling, the Stan model for this study took over an hour
to run. Most of the sampling iterations for this study had larger tree depths than in the
other studies, meaning that the number of gradient evaluations involved in sampling was
roughly higher by a factor of 2 or more [272, Section 15.2 of Reference Manual]. This is
likely a consequence of posterior geometry, and the way in which the samplers adapt to it
during warmup. However, it should be noted that we deliberately used a liberal number
of warmup iterations, and chains appeared to have converged to the “typical set” [18] well
before sampling began (not shown). Note also that the smallest effective sample size is over
twice as large as the threshold of 400 recommended by Vehtari et al. [287] Therefore, rea-
sonable posterior inference with acceptable computation time could likely be achieved by
reducing the number of warmup and sampling iterations, provided the latter did not induce
problematic R̂ values.

Finally, recall from Section 5.4 that estimates of the regression variance, σY , are biased
upward in “naive” regression models, and this fact can be used to check whether or not
FRODO is recovering “true” regression relationships. For each simulation study, Table B.2
shows the true value of σY , as well as the posterior mean and 95% credible interval for this
parameter from FRODO, the hierarchical scalar model, and the naive scalar model (see
the beginning of Section 4.9). The endpoints of posterior intervals are simply 0.025- and
0.975-quantiles from the HMC samples. For each simulation study, the FRODO estimate
for σY is much closer to the true value than the estimate from the naive model.
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