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Abstract

Analyzing and detecting Border Gateway Protocol (BGP) anomalies caused by evolving
ransomware cyber attacks are topics of great interest in cyber security. Various anomaly
detection approaches such as time series and historical-based analysis, statistical valida-
tion, reachability checks, and supervised machine learning have been applied to collected
datasets. Supervised and semi-supervised machine learning techniques rely on label and un-
labeled data that contain regular and anomalous events. They are publicly available from
BGP collection sites such as Réseaux IP Européens (RIPE) and Route Views.
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Chapter 1

Introduction

In this Chapter, the motivation of the thesis research topic is given followed by an overview
of the Border Gateway Protocol (BGP), machine learning approaches, and the topic of
anomaly detection. It also includes a summary of the research contributions, a list and
description of the publications emanating from this work, and the roadmap of the thesis.

1.1 Motivation

The Internet has been highly susceptible to failures and attacks that greatly affect its per-
formance. Over the past years, frequent cases of complex and challenging threats have been
encountered. BGP is an incremental path vector Internet routing protocol that manages
network reachability information and optimally routes data between Autonomous Systems
(ASes). While BGP is a simple and flexible routing protocol, implementing routing poli-
cies is a complex and error-prone task [7, 8]. BGP also lacks security mechanisms to verify
legitimate route updates. Therefore, it is prone to anomalies that impede successful deliv-
ery of reachability messages and may generate a large volume of update messages. Several
modifications have been proposed to improve BGP security [9, 10]. BGP anomalies in-
clude worms (Slammer [11, 12], Nimda [13, 14], and Code Red I [15]), ransomware attacks
(WannaCrypt [16], WestRock [17, 18]), routing misconfigurations [19], Internet Protocol
(IP) prefix hijacks [20], and link failures [21] (Moscow blackout [22, 23], Pakistani power
outage [24]).

Ransomware attacks, first introduced in 1996 [25], have rapidly evolved and become
more popular among attackers due to:

• availability of digital currency and powerful cryptography (asymmetric encryption)
methods,

• difficulty to detect new ransomware variants, and

• attractiveness of the business model that offers sophisticated tools and high revenues
for affiliates to get the maximum benefit.
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Between 2014 and 2015, ransomware victims reported more than USD $18 million in
losses [26]. During 2020, after the beginning of the COVID-19 pandemic, more than 2,400
cases of ransomware attacks were identified with losses of more that USD $21.9 million [27].
In 2021, rectifying the impact of recent ransomware attacks in an organization had an av-
erage cost of USD $1.4 millions [28]. Typical steps followed during a ransomware attack
include distribution of the of the attack (phishing emails, compromised websites), infection
of the victim’s host, communication to an encryption-key server, search for important files
to encrypt in the victim’s host, encryption of data (moving and renaming targeted files
before and after successful encryption), and ransom demand (locking the host’s screen and
demanding payment). Recommended protection strategies consist of [26, 29]:

• raising awareness among users,

• implementing regular backup in dedicated devices with no access to the Internet,

• performing system updates regularly,

• disabling threatening or weak services/processes,

• limiting administrative permissions,

• establishing spam and web filtering rules to prevent ransomware from reaching the
network and hosts, and

• restricting the number of available files shared in a network.

Most detection techniques scan hosts to identify suspicious processes or monitor for com-
promising websites. However, a more global detection technique may rely on detecting
ransomware attacks while they are being spread through the Internet and, hence, prevent
various organizations from being affected. Therefore, studying BGP anomalies cause dur-
ing periods of ransomware attacks that occur worldwide may enable the development of
effective detection techniques at a global level.

Machine learning algorithms [30, 31, 32, 33] have been used to address a variety of
engineering and scientific problems. They may be used to classify data using a feature
matrix where its rows and columns correspond to data points and feature values, respec-
tively. By extracting relevant features, machine learning approaches help build generalized
classification models and improve their performance. Machine learning algorithms are clas-
sified as supervised, unsupervised, and semi-supervised. In supervised algorithms, labeled
data are employed during training. Unsupervised algorithms are used to cluster (group)
unlabeled data into various categories based on similarity of features. Semi-supervised [34]
algorithms are trained using a combination of labeled and unlabeled data to improve data
classification and clustering. BGP anomalies [35, 6] have been classified using various super-
vised machine learning algorithms such as support vector machine [36], Recurrent Neural

2



Networks (RNNs) [31], Bidirectional Recurrent Neural Networks (Bi-RNNs) [31], Broad
Learning System (BLS) [4, 37], and Gradient Boosting Decision Trees (GBDT) [38, 39, 40].
Implementing semi-supervised machine learning algorithms may improve the classification
and detection of BGP anomalies when using routing records available from various sites
such as Réseaux IP Européens (RIPE) [41] and Route Views [42].

1.2 Border Gateway Protocol (BGP)

The Internet consists of numerous ASes that encompass routers (peers) within a single
technical administration implementing a unified routing policy. ASes use BGP to exchange
network reachability information. This path-vector routing protocol was introduced in
1989 [43, 44] and was first deployed in 1994. The current version of BGP (BGP-4) has
been in use since 2006 [1]. BGP-4 enables Classless Inter-Domain Routing (CIDR) by offer-
ing mechanisms such as support for advertising a set of destinations as an IP prefix, routes
aggregation, incremental updates, and changes to local routing policies without the need to
reset BGP connections.

BGP routers are classified as internal and external peers [1]. Internal peers are part of the
same AS and use Interior Gateway Protocol (IGP) to exchange routing information. Exter-
nal peers reside in distinct ASes and use Exterior Gateway Protocol (EGP) for exchanging
routing information. Internal BGP (IBGP) and External BGP (EBGP) protocols define con-
nections between internal and external peers, respectively. Reliable router-to-router BGP
communication is established using Transport Control Protocol (TCP) sessions (port 179).
Routing information advertised by a local BGP peer is stored in Routing Information Bases
(RIB). They consist of three sections: Adj-RIB-In containing unprocessed routing infor-
mation, Loc-RIB having selected routing information based on applied local policies, and
Adj-RIB-Out storing routes for advertisement to specific peers using update messages. BGP
routers exchange four types of messages: open, keepalive, update, and notification. An open
message sent after establishing a TCP connection and upon confirmation of its receipt, is
followed by a keepalive message. Routing advertisements and withdrawals are exchanged be-
tween BGP peers using update messages. When an error condition is detected, a notification
message is sent and the BGP connection is closed.

1.3 Machine Learning Approaches

The interdisciplinary field of Artificial Intelligence (AI) emerged in 1950s aiming to explore
automating intellectual tasks performed by humans [45]. During its early stage, AI was
conceived as a comprehensive set of rules that allowed the knowledge manipulation. This
concept of AI was embodied in the dominant paradigm of symbolic AI between 1950s and
1980s. A drawback of this paradigm was its intractability when solving fuzzy problems that
required complex sets of rules for data processing using classical programming. Machine
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Learning (ML) arose as a new paradigm to symbolic AI, where data and expected outputs
were used to train a system in order to generate a set of rules for tasks automation. ML
has become a subfield of AI starting in late 1990s. It has gained popularity due to faster
hardware and availability of larger datasets [46] (big data).

In machine learning, statistics is applied to large datasets by using computers to estimate
functions that lead to descriptive and predictive models [47, 31]. ML algorithms rely on
experience E with respect to a task T and performance measure P [48]. Based on the
process employed in a machine learning system to transform an example or collection of
features, a tasks T is defined as [31]:

Classification: A category k is specified for a given input x by using a function f :
Rn −→ {1, . . . , k}. A numeric value of f is assigned to the output y.

Classification with missing inputs: Not all elements of input x are provided and a set
of functions accounts for various subsets of the input with missing values.

Regression: Its goal is to predict a numerical value given an input.

Transcription: An unstructured representation of a data type are transcribed into
discrete textual form.

Machine translation: A sequence of symbols is converted to another language.

Structured prediction: Predicted are relationships between elements within a data
structure.

Anomaly detection: Unusual or atypical events are identified or flagged.

Synthesis and sampling: Generated are new examples similar to the input.

Imputation of missing values: Predicted are missing values of an example x ∈ Rn.

Denoising: Predicted is a clean value x ∈ Rn given its corrupted form x̃ ∈ Rn.

Density estimation or probability mass function estimation: A probability density func-
tion or probability mass function is inferred for a continuous or discrete input, re-
spectively. The structure of the probability distribution is implicitly captured by the
machine learning algorithm.

Depending on the type of task T to be solved, employed performance measures P include
accuracy, precision, sensitivity, F-Score, mean absolute error, and mean squared error. The
experience E of a machine learning algorithm is related to the input data used during the
training process. Machine learning algorithms are broadly categorized as supervised and
unsupervised based on experience E. The process to generate machine learning models
typically consist of training, validation, and testing phases while datasets are partitioned
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to create subsets used in each phase [49]. During the training phase, the training dataset
is employed to fit a selected machine learning algorithm and its hyperparameters. The
validation phase is used to evaluate various machine learning models in order to select the
set of hyperparameters leading to the best performance. After fine-tuning hyperparameters,
the generalization of the best generated machine learning model is evaluated using a testing
dataset that contains unobserved samples.

1.3.1 Supervised Machine Learning

Supervised machine learning algorithms are trained using datasets that contain labels (tar-
gets) associated with each data point. The task of developed supervised machine learning
models is to predict the correct label of a data point during the validation and test processes.
A predicted label y is provided by a resident expert in order to instruct the algorithm [31].

Classification, structured prediction, and regression tasks are traditionally solved using
supervised machine learning. Performance of classification and structured prediction tasks
is based on their ability to correctly predict classes or values. Performance metrics include
accuracy, confusion matrix, precision, sensitivity (recall), F-Score, and Area Under Receiver
Operating Characteristics Curve (AU-ROC). Regression tasks have continuous outputs and,
hence, require performance evaluation based on the difference between predicted values and
ground truth. These performance metrics include mean absolute error, mean squared error,
root mean squared error, and R2 coefficient.

1.3.2 Unsupervised Machine Learning

Unsupervised machine learning algorithms only contain features that are used to learn
properties of the data correlations without providing a target y. The task of unsupervised
machine learning models is to find similarities, patterns, and probability distributions by
inferring an underlying structure from the input [31, 34]. These algorithms are typically used
for dimensionality reduction and clustering (division of data in clusters of similar examples).

Denoising, synthesis, denisity estimation, and anomaly detection tasks are usually solved
employing unsupervised machine learning. When employing clustering algorithms to solve
these tasks, performance is commonly evaluated based on the silhouette, completeness,
homogeneity, adjusted mutual information, adjusted Rand score, V-measure, and contin-
gency matrix [47]. Performance of dimensionality reduction algorithms is evaluated based
on reconstruction errors while performance of algorithms used for anomaly detection are
evaluated using mass-volume [50] and excess-mass [51] curves.

1.3.3 Semi-Supervised Machine Learning

Semi-supervised machine learning algorithms may be employed where labeled data are
scarce due to expensive or difficult labeling. Data clustering and classification tasks are
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combined to extract relevant information and predict labels. Most semi-supervised learning
algorithms rely on explicitly or implicitly satisfying one or more assumptions [34]:

Smoothness assumption: Labels y and y′ should be identical for two samples x and x′

that are close in the input space.

Low-density assumption: The decision boundary should not pass through high-density
areas in the input space.

Manifold assumption: Data points on the same low-dimensional manifold should have
identical labels.

Semi-supervised approaches may be classified as inductive (boosting, cluster-then-label,
manifolds algorithms) and transductive (graph-based algorithms). In inductive approaches,
a classifier is constructed to generate predictions by using the unlabelled data during the
training process. Transductive approaches rely on using connections between data points
and, thus, result in graph-based approaches that consist of three steps: graph construction,
graph weighting, and inference (assigning labels to the unlabelled data points).

1.4 Anomaly Detection

The anomaly detection task identifies data patterns that do not conform with a well-defined
expected behavior [52]. Depending on the application, these patterns are referred to as
anomalies, outliers, discordant observations, aberrations, surprises, peculiarities, or con-
taminants. Anomalies and outliers are the most commonly and interchangeably used terms.
Anomaly detection was first studied by the statistics community in the 19th century. It is
of interest to a wide range of application domains such as cybersecurity intrusion detection,
fraud detection, industrial fault or damage detection, medical and public health diagno-
sis, text data, and event detection in sensor networks. Analysis of detected anomalies may
help improve applications and the decision making process in the onset of critical incidents.
Some of the most common challenges in anomaly detection include defining the region of
expected behavior, adaptation of ever-evolving anomalous activity, maintain an updated
notion of expected behavior in a particular domain, applicability of developed techniques
across domains, lack of labeled data for training or validating models, and presence of
noise. Anomaly detection techniques may be supervised, unsupervised, or semi-supervised
depending on the availability of labeled data. They may produce labels or scores (ranked
list) during the testing process. Unlike labeled-based anomaly detection techniques, score-
based techniques allow defining thresholds to select anomalous data points of interest. In
the score-based techniques, data points are assigned a score (ranked) based on their likeli-
hood of being anomalous. Type and number of attributes, relationship between data points,
and nature or type of anomalies are relevant aspects to consider when developing anomaly
detection techniques. They are explained in the following paragraphs.
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Development of anomaly detection techniques rely on the type and number of attributes
of input data points and their relationships. Types of attributes are binary, categorical,
or continuous. Binary attributes are defined as: 0 (attribute is absent) or 1 (attribute is
present). Categorical attributes (qualitative) consist of symbols (ordinal) or names (nomi-
nal) that determine the category, code, or state of the data point [53]. Continuous attributes
(quantitative) are numerical values that are typically discretized and categorized into a fi-
nite number of intervals [54]. A data point may be univariate or multivariate consisting of
a single or multiple attributes, respectively. Multivariate data points may contain the same
or a mix of attribute types.

Based on the relationship between data points, input data may be sequential, spatial,
or graph data. Sequential data consist of linearly ordered data points such as time-series
data. Spatial data contain information about the location of an instance with respect to its
neighbors (vehicular traffic, geolocation). Graph data represent data points as vertices and
their connections as edges [52].

The nature or type of anomalies is another important aspect of developing anomaly
detection techniques. Anomalies may be categorized as point, contextual, or collective. Point
anomalies consider a single data point as anomalous with respect to the other data points.
Due to its simplicity, anomaly detection is mainly focused on point anomalies. Contextual
(conditional) anomalies define a data point as anomalous with respect to its relationships
with other data points (specific conditions) [55, 56, 57]. Detection of these anomalies is
based on contextual (environmental or extrinsic) and behavioral (indicator or intrinsic)
attributes. Detection of contextual anomalies is commonly employed for time-series data.
Collective anomalies refer to a collection of data points that are anomalous with respect to
other data points when they occur together. Anomalies in sequential, spatial, and graph data
have been considered as collective. Collective anomalies only occur in datasets containing
related data points while point anomalies may occur in any dataset [52]. In this study, we
analyze collective anomalies that occur during the periods of ransomware attacks.

1.4.1 Anomaly Detection in Communication Networks

Anomaly detection in communication networks is referred to as intrusion detection. Its
most frequent challenges are computation efficiency to handle large input data, online
analysis for data streaming, and a high false alarm rate. Intrusion Detection Systems
(IDSs) [7, 52, 58, 59] are used to identify and classify malicious activities and may be
host-based or network-based. Host-based systems protect the host (endpoint) by monitor-
ing operating system files and processes. Network-based systems monitor incoming network
traffic (IP addresses, service ports, protocols) by analyzing flows of packets or by inspecting
packet headers. Their role is to enhance security by identifying suspicious events in the
observed network traffic. Detecting malicious network intrusions may be signature-based or
anomaly-based. In cybersecurity, signatures are used to define patterns of malicious attacks
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on a host or network based on the bytes sequence of a file in the network traffic, unautho-
rized activities in a host or network (software execution, network or directory access), or
unexpected use of network privileges [60]. Anomalies in network traffic are sudden devia-
tions from an expected (regular) behavior that may be caused by network intrusions or by
changes in the network elements (misconfigurations, infrastructure failures) [61]. Signature-
based intrusion techniques [62] rely on known events that follow certain rules and patterns
while anomaly-based intrusion detection techniques [63, 64] rely on detecting deviations
from an expected behavior. Anomaly-based intrusion detection may use classification, clus-
tering, statistical, or information theoretic techniques [52].

1.4.1.1 Classification

Classification-based anomaly detection techniques [52] consist of training phase and testing
phases. Depending on the labels of the training data points, classification-based techniques
may be one-way or multi-way. In one-way classification, a boundary is defined to encompass
the regular data points while data points outside this boundary are classified as anomalous.
Multi-way classification may be employed when data points are labeled based on multiple
regular or anomalous classes.

The computational complexity of classification-based techniques heavily depends on the
classification algorithms. The training phase requires longer time than the testing phase
because a classifier needs to be first generated while the testing phase employs the derived
classifier. Even though data classification using these techniques have a short testing time,
their performance relies on the accuracy of available labels and do not have the capability
to generate scores.

1.4.1.2 Clustering

Clustering-based anomaly detection techniques may be developed using unsupervised or
semi-supervised machine learning [52]. Depending on the data input, anomalies may be
detected based on: their location with respect to a cluster, their proximity to the nearest
cluster centroid, or the size and sparsity of the cluster. When using their location, data
points that do not belong to a cluster are labeled as anomalous. In the case of proximity,
data points are first clustered and the anomaly score is then generated based on the distance
to their nearest cluster centroid. The size and sparsity of a cluster are used to label data
points as anomalous based on a defined threshold.

Computational complexity of clustering-based techniques is quadratic if the pairwise
distances are calculated for all data points while heuristic algorithms offer linear complexity.
Advantages of these techniques include adaptation to various data types and short testing
times because the number of clusters is relatively small. Disadvantages of these techniques
include: ineffectiveness of employed clustering algorithms, lack of optimization, forming
small clusters with anomalous data points, and high computational complexity.
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1.4.1.3 Statistics

Statistical anomaly detection techniques consider anomalies as observations that are not
generated by the used statistical model and, hence, are partially or fully irrelevant [52, 33].
Therefore, these techniques assume that regular and anomalous data points are located in
the high and low probability regions, respectively. Statistical models may be developed by
using parametric or non-parametric techniques [65]. In parametric techniques, anomalies
may be detected based on the score of a given data point x by calculating the inverse of
a probability density function f(x,Θ), where Θ is estimated from the data. Other para-
metric techniques may rely on the rejection of the null hypothesis H0 in order to declare a
data point x as anomalous. Gaussian and regression models as well as mixture of paramet-
ric distributions are examples of these techniques. In contrast, non-parametric techniques
determine a statistical model based on the given data instead of assuming knowledge of
the underlying distribution. Typically used non-parametric techniques are histograms and
kernel function.

Computational complexity of statistical anomaly detection techniques depends on the
statistical models. When employing exponential parametric distributions (Gaussian, Pois-
son, multimodal), computational complexity is usually linear with respect to the data size
and number of attributes. If using distributions based on iterative estimation techniques
(mixture models, hidden Markov models) linear computational complexity in each itera-
tion may also be exhibited albeit with slow convergence [52]. In the case of kernel-based
techniques, computational complexity may be quadratic with respect to the data size. Sta-
tistical techniques may provide feasible solutions as long as the assumed underlying data
distributions hold true. However, assumed statistical distributions may not hold true and
constructing hypothesis tests for some distributions may be nontrivial, especially for high-
dimensional datasets. These techniques may also be employed for unsupervised anomaly
detection if the estimation of the distribution proves robust. Generated scores may be used
during the evaluation of a given data point because they are associated with confidence
intervals.

1.4.1.4 Information Theory

Information theoretic anomaly detection techniques employ various measures such as Kol-
mogorov complexity, entropy, and relative entropy in order to analyze the information con-
tent of a dataset [52, 33]. They assume that irregularities in the information content are in-
troduced by anomalies in the data. Basic information theoretic techniques have exponential
time complexity while some proposed approximate techniques have linear time complexity.
These techniques may be used for unsupervised anomaly detection and without assuming
the underlying statistical distribution of the data. However, anomaly scores may be dif-
ficult to associate with a data point during testing. Performance of information theoretic
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techniques highly depends on the selected measure and the size of sequential and spatial
datasets.

1.5 Related Work

Network Intrusion Detection Systems (NIDSs) rely on misuse, anomaly, or hybrid detection
techniques [66, 62]. Misuse approaches compare network traffic to a set of rules or patterns
while anomaly detection relies on deviations of traffic from regular behavior. Hybrid detec-
tion techniques combine the two to improve detection of known attacks while decreasing the
high false positive rates for unknown deviations from a regular behavior. Machine learning
algorithms are used for misuse detection by capturing properties of known attacks or to
detect anomalies that exploit new vulnerabilities (also known as a zero-day attacks).

Various NIDSs [67, 68] have been proposed to address a dynamically changing land-
scape of cyber threats. They employ diverse deep learning algorithms [63, 66, 69, 70, 71]
such as convolutional neural networks, RNNs [72], deep belief networks, multilayer percep-
trons [73], autoencoders [74], and Stacked Non-symmetric Deep Auto-encoder (NDAE) [75]
that demonstrated promising results for anomaly detection. An example is a neural network
model with four hidden layers yielding high accuracy [76]. Conventional machine learning
algorithms (J48, naïve Bayes, naïve Bayes Tree, Random Forests, Random Tree, Multi-
Layer Perception, and SVM) have also been evaluated [77, 66, 78, 79]. Their performance
when classifying anomalies and intrusions has been evaluated [80, 59] using datasets such as
BGP [41, 81], NSL-KDD [82], and Canadian Institute for Cybersecurity Intrusion Detection
System (CICIDS) datasets [83].

Algorithms that have a short training time are important for network intrusion detection
systems in order to adequately prevent the onset of malicious attacks. This enables system
administrators to effectively and timely remove affected network elements. Training time for
deep neural networks may be reduced by selecting appropriate features and parameters while
maintaining high accuracy [84]. Combination of supervised learning and feature selection
algorithms is employed to develop novel intrusion detection solutions that reduce the high
false alarm rate by classifying previously unobserved network traffic patterns [85]. Reported
results demonstrate that the proposed anomaly-based IDS employing a neural network with
a wrapper feature selection outperforms other models.

1.6 Research Contributions

The main contributions of this thesis are:

• Development of a database engine to store BGP routing records that en-
ables analyzing routing information:
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Our past analysis of BGP datasets [86] considers only changes in BGP update mes-
sages. However, publicly available BGP routing records include BGP open, update,
keepalive, and notification messages. They also include the TCP connection state of a
peer based on the BGP finite state machine (Idle, Connect, Active, OpenSent, Open-
Confirm, Established). Including the remaining BGP messages and the TCP connec-
tion state of peers may improve anomaly detection using machine learning algorithms.
Hence, we have developed a BGP Relational Database (BGP-RDB) to store BGP open,
update, notification, and keepalive messages as well as changes of the TCP connection
state captured from RIPE and Route Views data collection sites. Available data in
Multi-threaded Routing Toolkit (MRT) format are first parsed to American Standard
Code for Information Interchange (ASCII) and stored into Yet Another Markup Lan-
guage (YAML) files using the mrtparse [87] Python module. An ingestion engine has
also been developed based on the sqlite3 [88] Python module to insert data into the
database tables. The database has been developed with the goal to be implemented
in real-time anomaly detection systems. The research contribution of developing a
database engine to store BGP routing records consists of:

– Analyzing the protocol to derive a relational database model
– Defining relationships between tables based on primary and foreign keys
– Specifying the primary keys of lookup and detail tables using unique integer

value based on specifications of the BGP messages
– Configuring primary keys of core and list tables to be unique integer values auto-

generated when inserting new data entries
– Downloading BGP routing records from RIPE and Route Views collection sites

using HTTP commands available in the Requests Python module
– Transforming BGP routing records in MRT format to ASCII and storing them

in YAML files using the publicly available mrtparser tool
– Developing an ingestion engine to initialize the BGP-RDB database tables based

on the sqlite3 Python module
– Processing data contained in the generated YAML files and adding new data

entries in the BGP-RDB database

• Implementation and comparison of supervised and semi-supervised ma-
chine learning algorithms for detecting ransomware attacks using BGP
routing records:

Identifying BGP anomalies caused by ransomware attacks is of great interest in cy-
bersecurity. We classify BGP anomalies caused by WannaCrypt (May 12, 2017) and
WestRock (January 23, 2021) ransomware attacks. The WannaCrypt ransomware at-
tack has been one of the most critical attacks because it targets hosts with the legacy
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operating system Microsoft Windows 7. In 2017, this ransomware attack impacted
users from various industries worldwide, being the healthcare and manufacturing in-
dustries the most affected. The WestRock ransomware attack recently impacted a
specific manufacturing company with several locations worldwide. In early 2021, this
ransomware attack affected not only the targeted systems, but also impacted the
company’s supply chain and production levels. We generate datasets using publicly
available BGP routing records during the periods of WannaCrypt and WestRock ran-
somware attacks from the RIPE [41] and Route Views [42] data collection sites. Data
classification is performed using supervised and semi-supervised machine learning.
Employed are deep learning and fast machine learning supervised algorithms: RNNs,
Bi-RNNs, BLS and its extensions, eXtreme Gradient Boosting (XGBoost), Light Gra-
dient Boosting Machine (LightGBM), and Categorical Boosting (CatBoost). In the
case of semi-supervised machine learning, Isolation Forest (iForest) unsupervised ma-
chine learning algorithm is first employed during the labeling process to identify reg-
ular data within the anomalous periods (label refinement) while classification is per-
formed using supervised algorithms: RNNs, BLS and its extensions, XGBoost, Light-
GBM, and CATBoost. We compare classification performance based on training time,
accuracy, F-Score, precision, sensitivity, and confusion matrix. The research contribu-
tion of implementing and comparing supervised and semi-supervised machine learning
algorithms for detecting ransomware attacks using BGP routing records consists of:

– Identifying the start and end time of the WannaCrypt and WestRock ransomware
attacks

– Downloading BGP routing records from RIPE and Route Views collection sites
that capture two days prior and two days after the attacks as well as the periods
of the attacks

– Transforming the raw BGP data from MRT format to ASCII using the zebra-
dump-parser tool

– Extracting 37 features using the C# tool to generate datasets based on trans-
formed data

– Performing label refinement by implementing the iForest unsupervised machine
learning algorithm to detect regular data points with the anomalous periods

– Implementing the deep learning and fast machine learning supervised algorithms

– Partitioning datasets into training and testing subsets

– Fine tuning parameters to generate machine learning models

– Evaluating classification performance of supervised and semi-supervised machine
learning techniques based on training time, accuracy, F-Score, precision, sensi-
tivity (recall), and confusion matrix

12



1.7 Research Publications

I have co-authored 1 journal and 7 conference publications. An additional paper is un-
der review by the IEEE Communications Magazine. Listed are the publications and their
abstracts. (Note: Conference publications [3] and [5] emanated from a separate research
project.)

1.7.1 Journal Publications

[1] Z. Li, A. L. Gonzalez Rios, and Lj. Trajković, “Machine learning for detecting the We-
stRock ransomware attack using BGP routing records,” IEEE Commun. Mag., submitted
for publication.

Border Gateway Protocol (BGP) enables the Internet data routing. BGP anomalies may
affect the Internet connectivity and cause routing disconnections, route flaps, and oscilla-
tions. Hence, detection of anomalous BGP routing dynamics is a topic of great interest in cy-
bersecurity. Various anomaly and intrusion detection approaches based on machine learning
have been employed to analyze BGP update messages collected from Réseaux IP Eropeéns
and Route Views. In this paper, we survey machine learning algorithms for detecting BGP
anomalies and intrusions. Gradient boosting decision trees and deep learning algorithms
are evaluated by creating models using collected datasets that contain ransomware events.
Furthermore, a BGP anomaly detection tool BGPGuard has been developed to integrate
various stages of the anomaly detection process.

[2] Z. Li, A. L. Gonzalez Rios, and Lj. Trajković, “Machine learning for detecting anoma-
lies and intrusions in communication networks,” IEEE J. Sel. Areas Commun., vol. 39, no.
7, pp. 2254–2264, July 2021.

Cyber attacks are becoming more sophisticated and, hence, more difficult to detect.
Using efficient and effective machine learning techniques to detect network anomalies and
intrusions is an important aspect of cybersecurity. A variety of machine learning models
have been employed to help detect malicious intentions of network users. In this paper, we
evaluate performance of recurrent neural networks (Long Short-Term Memory and Gated
Recurrent Unit) and Broad Learning System with its extensions to classify known network
intrusions. We propose two BLS-based algorithms with and without incremental learning.
The algorithms may be used to develop generalized models by using various subsets of input
data and expanding the network structure. The models are trained and tested using Border
Gateway Protocol routing records as well as network connection records from the NSL-KDD
and Canadian Institute of Cybersecurity datasets. Performance of the models is evaluated
based on selected features, accuracy, F-Score, and training time.
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1.7.2 Conference Publications

[3] H. K. Takhar,A. L. Gonzalez Rios, and Lj. Trajković, “Comparison of virtual network
embedding algorithms for data center networks,” in Proc. IEEE Int. Symp. Circuit Syst.,
Austin, Texas, USA, May 2022, pp. 1660–1664 (virtual).

Software defined networks are a new Internet architecture paradigm that allows co-
existence of heterogeneous network architectures. They optimize network management (main-
tenance, operability, effective content delivery) by provisioning a centralized network intel-
ligence. Virtual Network Embedding (VNE) algorithms improve scalability and utilization
of physical resources in Data Center Networks (DCNs). In this paper, we implement various
DCN topologies and evaluate performance of VNE algorithms using the VNE-Sim simula-
tor. We compare performance by implementing both server-centric and switch-centric DCN
topologies.

[4] Z. Li, A. L. Gonzalez Rios, and Lj. Trajković, “Classifying denial of service attacks
using fast machine learning algorithms,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
Melbourne, Australia, Oct. 2021, pp. 1221–1226 (virtual).

Denial of service attacks are harmful cyberattacks that diminish Internet resources and
services. Hence, detecting these cyberattacks is a topic of great interest in cybersecurity.
Using traditional machine learning approaches in intrusion detection systems requires long
training time and has high computational complexity. Thus, we evaluate performance of fast
machine learning algorithms for training and generating models to detect denial of service
attacks in communication networks. We use synthetically generated datasets that captured
Transmission Control Protocol and User Datagram Protocol network flows in a controlled
testbed laboratory environment. Evaluated algorithms include broad learning system and
its extensions as well as XGBoost, LightGBM, and CatBoost gradient boosting decision
tree algorithms. Experiments indicate that boosting algorithms often require shorter train-
ing time and have better performance.

[5] A. L. Gonzalez Rios, K. Bekshentayeva, Maheeppartap Singh, Soroush Haeri, and Lj.
Trajković, “Virtual network embedding for switch-centric data center networks,” in Proc.
IEEE Int. Symp. Circuit Syst., Daegu, Korea, May 2021, pp 1–5 (virtual).

Advances in software defined and data center networks have enabled network virtualiza-
tion. Virtual network embedding increases resources utilization and reduces cost of network
deployment. Its performance depends on embedding algorithms and data center network
topologies. In this paper, we evaluate performance of virtual network embedding algorithms
based on acceptance ratio, revenue to cost ratio, and node and link utilizations by simulat-
ing virtual network embeddings on Spine-Leaf, Three-Tier, and Collapsed Core data center
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network topologies.

[6] Z. Li,A. L. Gonzalez Rios, and Lj. Trajković, “Detecting Internet worms, ransomware,
and blackouts using recurrent neural networks,” in Proc. IEEE Int. Conf. Syst., Man, Cy-
bern., Toronto, Canada, Oct. 2020, pp. 2165–2172.

Analyzing and detecting Border Gateway Protocol (BGP) anomalies are topics of great
interest in cybersecurity. Various anomaly detection approaches such as time series and
historical-based analysis, statistical validation, reachability checks, and machine learning
have been applied to BGP datasets. In this paper, we use BGP update messages collected
from Réseaux IP Européens and Route Views to detect BGP anomalies caused by Slam-
mer worm, WannaCrypt ransomware, and Moscow blackout by employing recurrent neural
network machine learning algorithms.

[7] A. L. Gonzalez Rios, Z. Li, K. Bekshentayeva, and Lj. Trajković, “Detection of denial
of service attacks in communication networks,” in Proc. IEEE Int. Symp. Circuits Syst.,
Seville, Spain, Oct. 2020, pp. 1–5 (virtual).

Detection of evolving cyber attacks is a challenging task for conventional network in-
trusion detection techniques. Various supervised machine learning algorithms have been
implemented in network intrusion detection systems. However, traditional algorithms re-
quire long training time and have high computational complexity. Therefore, we propose
detection of denial of service cyber attacks in communication networks by employing the
broad learning system (BLS) that requires shorter training time while achieving compara-
ble performance. Because designing effective detection systems relies on training and test
datasets that contain anomalous network traffic data, in this paper we evaluate the perfor-
mance of various BLS models by using recently generated network intrusion datasets. The
best accuracy and F-Score were often achieved using BLS with cascades while BLS with
incremental learning usually required shorter training time.

[8] Z. Li, A. L. Gonzalez Rios, G. Xu, and Lj. Trajković, “Machine learning techniques
for classifying network anomalies and intrusions,” in Proc. IEEE Int. Symp. Circuits Syst.,
Sapporo, Japan, May 2019, pp. 1–5.

Using machine learning techniques to detect network intrusions is an important topic in
cybersecurity. A variety of machine learning models have been designed to help detect ma-
licious intentions of network users. We employ two deep learning recurrent neural networks
with a variable number of hidden layers: Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU). We also evaluate the recently proposed Broad Learning System (BLS)
and its extensions. The models are trained and tested using Border Gateway Protocol
(BGP) datasets that contain routing records collected from Réseaux IP Européens (RIPE)
and BCNET as well as the NLS-KDD dataset containing network connection records. The
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algorithms are compared based on accuracy and F-Score.

[9] A. L. Gonzalez Rios, Z. Li, G. Xu, A. Diaz Alonso, and Lj. Trajković, “Detecting
network anomalies and intrusions in communication networks,” in Proc. 23rd IEEE Int.
Conf. Intell. Eng. Syst. 2019, Gödöllő, Hungary, April 2019, pp. 29–34.

Detecting anomalies and intrusions in communication networks is of great interest in
cybersecurity. In this paper, we use Support Vector Machine (SVM) and Broad Learning
System (BLS) supervised machine learning approaches to detect anomalies and intrusions
in datasets collected from packet data networks. The developed models are trained and
tested using data from the Internet routing tables, a simulated air force base network, and
an experimental testbed. These datasets contain records of both anomalous and regular
traffic data. We compare the two machine learning algorithms based on accuracy, F-Score,
and training time.

1.8 Thesis Outline

In this thesis, the motivation and the importance of using supervised and semi-supervised
machine learning algorithms to enhance detection of BGP anomalies were presented in
Chapter 1. Machine learning approaches, principles of anomaly detection and techniques
employed in communication networks applications, and survey of relevant related work
were described. A summary of the research contributions and the list of publications are
also provided.

Various BGP anomalies that affect the protocol performance are first introduced in
Chapter 2. We also describe the RIPE and Route Views collection sites as well as their
collection mechanisms. Included are the current data processing and a feature extraction
method employed to generate BGP datasets.

The BGP messages and relevant information are described in Chapter 3. The mrtparse
tool and generation of YAML files using raw data are introduced. The BGP database schema
as well as the elements of each table, tables initialization, and data ingestion mechanism
are also presented.

Ransomware attacks are defined in Chapter 4. We describe existing types of ransomware
attacks, the mechanisms used for their execution, and some of the vulnerabilities they
exploit. In particular, we provide details of WannaCrypt and WestRock, the two recent
ransomware attacks that impacted users and systems located worldwide.

BLS and its extensions with and without incremental learning (RBF-BLS, CFBLS,
CEBLS, CFEBLS), variable features BLS (VFBLS, VCFBLS), recurrent neural networks
(LSTM, GRU), extremely randomized trees, gradient boosting decision trees (XGBoost,
LightGBM, CatBoost), and isolation forest algorithms are introduced in Chapter 5.
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Experimental procedure, performance metrics, experimental results, and performance
comparison are presented in Chapter 6.

We conclude and describe the future work in Chapter 7.
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Chapter 2

Border Gateway Protocol:
Anomalies and Datasets

BGP routing data are used to analyze the Internet topology and hierarchy, infer AS rela-
tionships [89], and evaluate various intrusion and anomaly detection mechanisms [7, 90].
Data are collected using BGP trace collectors (RIPE [41] and Route Views [42]), route
servers, looking glasses, and the Internet routing registries. Various BGP data collections
may be combined to provide a more complete Internet topology [91]. The allocation and
registration of unique numbers for ASes are managed by the Regional Internet Registries
(RIRs): African Network Information Center (AFRINIC), American Registry for Internet
Numbers (ARIN), Asia-Pacific Network Information Centre (APNIC), Latin America and
Caribbean Network Information Centre (LACNIC), Réseaux IP Européens Network Coor-
dination Center (RIPE NCC).

In this Chapter, BGP anomalies are first introduced followed by a description of RIPE
and Route Views BGP data collection sites. Also presented are processing of BGP update
messages and extraction of features employed to generate BGP datasets used for supervised
anomaly detection.

2.1 BGP Anomalies

Network traffic anomalies are deviations from expected behavior [66, 7]. They affect BGP
updatemessages and, thus, result in harmful changes in the protocol’s dynamics that degrade
the Internet performance and reliability. BGP anomalies may be caused by infrastructure
failures, router misconfigurations, or network intrusions such as worms and ransomware
attacks. Infrastructure (link) failures are caused by power outages or physical damage to
network elements such as cables and routers. They cause reachability or connectivity loss be-
tween dedicated (private) connections or service provider (public) BGP peers. The Moscow
power system blackout (2005) [22, 23], Mediterranean cable break (2008) [92], and Pakistani
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power outage (2021) [93, 24] resulted in BGP link failures that affected cities in over 20
countries.

BGP anomalies may consist of single updates (invalid AS numbers, invalid or reserved
IP prefixes, prefix announced by an illegitimate AS, AS-PATH without a physical equiv-
alent) or a set of updates (longest and shortest paths, behavioral changes in BGP traffic
over time). Anomalies resulting from routers misconfigurations and hijacking attacks di-
rectly modify BGP routing configuration. Consequences of such anomalies include packet
loss, unintended paths between routers, and forwarding loops. BGP routing origin and ex-
port missconfigurations [7] may cause announcements of used (hijacking) or unused (leaked
routers) prefixes. Origin misconfigurations occur when non-owned prefixes are accidentally
announced or private ASes are not filtered. Export misconfigurations appear when BGP
policies are accidentally configured. In hijacking attacks, the attacker redirects routes from
a valid AS by claiming the ownership of a prefix or sub-prefix. BGP hijacking attacks em-
ploy Denial of Service (DoS), Distributed Denial of Service (DDoS), man-in-the-middle, and
phishing.

Network intrusions such as worms and ransomware attacks target Internet components
and do not directly modify BGP routing configuration. They result in an increased number
of prefix announcements, prefix withdrawals, implicit withdrawals, and changes in AS-Path
length and packet size. Worms are self-replicating codes that exploit systems vulnerabilities
and propagate through a network [94, 95]. They employ email applications or scan engines
to spread to various hosts and may carry other malware as their payload. While antivirus
systems may require several hours to identify worms, an Intrusion Detection System (IDS) is
capable of detecting worms faster because they use large network bandwidths. Slammer [11],
Nimda [13], and Code Red [15] are well-known worms that exploited vulnerabilities of
Structured Query Language (SQL) and Internet Information Service (IIS). Ransomware
attacks rely on advanced cryptography to lock the victim’s data until a ransom is paid.
They may be classified as: cryptoworm, Ransomware-as-a-Service (RaaS), and automated
active adversary [16].

2.2 BGP Collection Sites: RIPE and Route Views

BGP routing information is collected from peers located in various geographical locations.
BGP trace collectors receive BGP messages from their peers and periodically store the
routing updates and tables into publicly available archives. Routing tables contain numerous
entries from each peering AS indicating the preferred paths to destination prefixes at a given
time. Routing messages indicate alternative paths and backup links. BGP update messages
are available from global BGP monitoring systems such as RIPE [41] and Route Views [42].
They may be collected using Quagga [96], a suite derived from the Zebra [97] multi-server
routing software. BGP messages are stored in MRT format by the BGP trace collectors [98].
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2.2.1 RIPE

The Routing Information Service (RIS) [99] is a RIPE NCC project established in 2001 to
collect and store routing data from ASes worldwide. The main collection site is located at
NCC and consists of a route collector, database, and user interface. Remote Route Collectors
(rrcs) installed at major topologically interesting Internet points use the Quagga routing
software to collect BGP data. Routes are collected directly from the AS border routers at
the rrc or from nearby routers via multi-hop BGP peering.

The raw data are collected using state dumps while batches of updates are periodically
made available for each rrc. The Zebra [97] tool is used to collect BGP update messages
every 15 minutes before July 23, 2003 and every 5 minutes after July 23, 2003. The BGP
routing tables are stored every 8 hours. RIS currently consists of 25 rrcs: Europe (16), North
America (4), Asia (2), South America (2), and Africa (1).

2.2.2 Route Views

Route Views [42] is the University of Oregon project to collect real-time BGP routing data
from various backbone routers and locations worldwide. The publicly available data have
been used for routing analysis, AS path visualization, analysis of IPv4 address space uti-
lization, topological studies, and generation of geographic host locations. Backbone routers
(Cisco, Juniper) are configured as IPv4 or IPv6 Route-Views-like route servers and connect
as peers via multi-hop BGP sessions.

The Route Views project employs FRRouting, Quagga, and Cisco collectors. FRRouting
and Quagga collectors are based on Zebra [97]. BGP messages and routing tables are stored
in MRT format and are collected every 15 minutes and 2 hours, respectively. Data from
Cisco collectors are generated every 2 hours starting at 00:00. Routes and their attributes are
extracted using the Cisco command line interface. 31 Route Views collectors (16 FRRouting,
14 Quagga, and 1 Cisco) are distributed across 5 RIRs: ARIN (14), LACNIC (6), APNIC
(5), AFRINIC (3), and RIPE NCC (3).

2.3 BGP Datasets: Data Processing and Feature Extraction

BGP datasets are extracted from BGP update messages downloaded from RIPE [41] and
Route Views [42] collection sites. The data collected during periods of Internet anomalies
include the days of the attack (anomalous data) as well as two days prior and two days
after the attack (regular data). Employed collection sites are located near a considered
anomalous event. Each day contains data extracted from the BGP update messages [35].
These messages are first transformed from MRT to ASCII format by using the zebra-dump-
parser [100] tool written in Perl. GMT time is used for all BGP update messages in order
to synchronize RIPE and Route Views collection times. A tool written in C# [101] is then
used to generate datasets [102, 103] by extracting 37 continuous, categorical, and binary
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features classified as AS-Path and volume features, as listed in Table 2.1. Granularity of
generated datasets is based on 1-minute intervals of routing records. Definitions of each
feature are given in Table 2.2. The created datasets consist of collected data points and
extracted features.

Table 2.1: List of features extracted from BGP update messages. The features have value
types binary, categorical, or continuous and are categorized as AS-Path and volume features.

Feature Name Type Category
1 Number of announcements continuous volume
2 Number of withdrawals continuous volume
3 Number of announced NLRI prefixes continuous volume
4 Number of withdrawn NLRI prefixes continuous volume
5 Average AS-Path length categorical AS-Path
6 Maximum AS-Path length categorical AS-path
7 Average unique AS-Path length categorical AS-Path
8 Number of duplicate announcements continuous volume
9 Number of implicit withdrawals continuous volume
10 Number of duplicate withdrawals continuous volume
11 Maximum edit distance categorical AS-Path
12 Arrival rate continuous volume
13 Average edit distance categorical AS-Path
14-23 Maximum AS-Path = n, n = (11, ..., 20) binary AS-Path
24-33 Maximum edit distance = n, n = (7, ..., 16) binary AS-Path
34 Number of Interior Gateway Protocol continuous volume

(IGP) packets
35 Number of Exterior Gateway Protocol continuous volume

(EGP) packets
36 Number of incomplete packets continuous volume
37 Packet size (B) continuous volume
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Table 2.2: Definition of AS-Path and volume features extracted from BGP update messages.

Feature Name Definition
1 Number of announcements Routes available for delivery of data
2 Number of withdrawals Routes no longer reachable
3/4 Number of announced/withdrawn BGP update messages that include

NLRI prefixes announcement/withdrawal of routes
5/6/7 Average/maximum/average unique Various AS-Path lengths

AS-Path length
8/10 Number of duplicate Duplicate BGP update messages that

include announcements/withdrawals announcement/withdrawal of routes
9 Number of implicit withdrawals BGP update messages that include

announcement of routes with different
AS-Path attribute for already
announced NLRI prefixes

11/13 Maximum/average edit distance Maximum/average of edit distances of
messages per one-minute time interval

12 Arrival rate Average number of BGP update
messages arrived during one-minute
time interval

14–23/24–33 Maximum AS-Path length/edit Histograms with the most frequent
distance values of maximum AS-Path

length/edit distance
34/35/36 Number of IGP, EGP or, BGP update messages generated by

incomplete packets IGP, EGP, or unknown sources
37 Packet size Average size of received BGP update

messages in bytes
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Chapter 3

Relational Database for Border
Gateway Protocol: BGP-RDB

Routing information collected from BGP peers contains open, update, notification, and
keepalive messages. Understanding information included in the fields of BGP message types
is important not only to analyze changes in the protocol, but also to identify anomalies and
intrusions. In this Chapter, an overview of these elements is given followed by a description
of the developed BGP Relational Database (BGP-RDB).

3.1 BGP Messages

The length of a BGP message varies between 19 and 4,096 octets, where the smallest length
corresponds to a message containing only the BGP header [1]. Layout and fields lenght
(bites) of the BGP header message are shown in Fig. 3.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Marker

Length Type

Figure 3.1: Fields in a BGP header: layout and lengths (bits) [1].

3.1.1 Open Messages

A BGP peer sends an open message that contains the BGP version, peer’s AS number, hold
time, BGP identifier, and optional parameters [1]. Its minimum length including the header
is 29 octets. The current BGP version is 4 (BGP-4). An example of a BGP open message
is illustrated in Fig. 3.2.

The AS Number (ASN) of a BGP peer is a unique 16-bit or 32-bit identifier allocated
by a corresponding RIR: AFRINIC, ARIN, APNIC, LACNIC, RIPE NCC. The Internet
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version
My Autonomous Number

Hold Time
BGP Identifier

Opt. Parm. Len.
Optional Parameters (variable lenght) . . .

Figure 3.2: Layout of the open message: fields and lengths (bits) [1].

Assigned Numbers Authority (IANA) has reserved ASNs ranging between 64512 and 65534
(2-byte) or between 4200000000 and 4294967294 (4-byte) for privet use [104].

The hold time, proposed by the sender, indicates the value of the hold timer (seconds)
used to confirm that BGP peers are functional and reachable. When the hold timer reaches
zero after receiving successive BGP keepalive or update messages, the BGP connection is
closed, routes from the corresponding BGP peer are removed, and a BGP update message
indicating the withdrawn routes is sent.

The BGP identifier is a unique 32-bit value that corresponds to the IP address assigned
to a BPG peer. This value may be manually defined or assigned based on the highest
IP address available on a loopback or physical interface. A loopback interface is a logical
(software) interface configured internally in a router to emulate a physical interface [105].
It is not assigned to a physical port and, hence, is always available on a functional router.
Conversely, a physical interface corresponds to the port of a physical network connector
such as Ethernet or serial. If a physical port is unavailable or fails, the physical interface
becomes unresponsive. Therefore, loopback interface addresses are more stable and preferred
over physical interface addresses [106].

Optional parameters are used to specify capabilities [107] supported by a BGP peer.
Each parameter consists of a triplet indicating the capability type, length, and value as
shown in Fig. 3.3. A BGP notification message with the error subcode “Unsupported Op-
tional Parameter” is sent by a BGP peer if a capability is not supported.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Parm. Type Parm. Length Parameter Value (variable length) . . .

Figure 3.3: Layout of the optional parameters triplet: elements and their lengths (bits) [1].

3.1.2 Update Messages

Routing information such as advertisements or withdrawals is exchanged between BGP
peers using BGP update messages. Relationships among ASes may be described by con-
structing a graph based on BGP update messages. These messages shall include: length
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of withdrawn routes, withdrawn routes, length of path attributes, path attributes, and
Network Layer Reachability Information (NLRI) [1]. Fields are illustrated in Fig. 3.4. Ad-
vertisements of feasible routes and withdrawals of infeasible routes may be included within
a single BGP update message. The minimum length of BGP update messages is 23 octets.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Withdrawn Routes Length (2 octets)
Withdrawn Routes (variable length) . . .

Total Path Attribute Length (2 octets)
Path Attributes (variable length) . . .

Network Layer Reachability Information (variable lenght) . . .

Figure 3.4: Layout of the update message: fields and their lengths [1].

The withdrawn routes length (a 2-octet unsigned integer) indicates the number of octets
in the withdrawn routes field. The withdrawn routes field is a list of prefixes (IP addresses)
to be withdrawn. Each withdrawn route is a 2-tuple containing the prefix length (bits) and
address that includes trailing bits, as shown in Fig. 3.5. If no routes are withdrawn, the
withdrawn routes length is 0 and no withdrawn routes are included in the message.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Prefix Length
(1 octet) Prefix (variable length) . . .

Figure 3.5: Withdrawn routes field: elements of the 2-tuple and their lengths (bits) [1].

The total path attributes length field (a 2-octet unsigned integer) contains the length of
the path attributes field. If the length is 0, the BGP update message does not contain the
NLRI and path attribute fields. The path attributes field (a 3-tuples of variable lengths)
determines the type, length, and value of each attribute. The attribute type (a 2-octet field)
consists of one attribute flag and one attribute type code octet, as shown in Fig 3.6. The
high-order bit defines if the attribute is well-known (1) or optional (0). The second-high
order bit determines if an optional attribute is non-transitive (0) or transitive (1). Well-
known attributes shall have the transitive bit set to 1. The third high-order (partial) bit
indicates if the optional transitive attribute is complete (0) or partial (1). This bit is set to 0
for both well-known and optional non-transitive attributes. The fourth high-order (extended
length) bit is one octet (0) or two octets (1) in length . The lower-order four bits of the
attribute flags octet are unused and have value 0.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Attr. Flags Attr. Type Code

Figure 3.6: Attribute type: elements in the 2-octet and their lengths (bits) [1].
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The NLRI field consists of 2-tuples indicating the prefix length (bits) and address, as
indicated in Fig. 3.7. Its length is:

Update message Length− 23− Total Path Attributes Length−Withdrawn Routes Length

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Prefix Length
(1 octet) Prefix (variable length) . . .

Figure 3.7: NLRI field: elements in each 2-tuple and their lengths (bits) [1].

3.1.2.1 Path Attributes: Flags and Codes

BGP path attributes are classified into four categories: well-known mandatory, well-known
discretionary, optional transitive, and optional non-transitive [1]. Every BGP implemen-
tation recognizes all well-known attributes. All well-known mandatory attributes shall be
included in every BGP update message that contains NLRI while well-known discretionary
attributes may only be sent in a particular BGP update message. Unlike mandatory at-
tributes, optional attributes are not supported by all BGP implementations. When a BGP
update message contains unrecognized optional transitive attributes, BGP peers shall accept
the path and pass it to other peers with the partial bit always set to 1. However, unrec-
ognized optional non-transitive attributes shall be ignored and not passed to other BGP
peers.

The supported attribute type codes are [1]: ORIGIN (type code 1), AS_PATH (type
code 2), NEXT_HOP (type code 3), MULTI_EXIT_DISC (type code 4), LOCAL_PREF
(type code 5), ATOMIC_AGGREGATE (type code 6), AGGREGATOR (type code 7).
The origin of the path is defined by the well-known mandatory attribute ORIGIN and it
indicates if NLRI is interior to the origin AS (value 0), learned via the EGP protocol (value
1), or from other means (value 2).

A sequence or a set of AS path segments creates the well-known mandatory attribute
AS_PATH. Each segment is a triplet that contains the path segment type, path segment
length, and path segment value. The segment types are the AS_SET with an unordered set
of ASes (value 1) and the AS_SEQUENCE with an ordered set of ASes (value 2). The path
segment length indicates the number of ASes in the path segment while the path segment
value contains the AS numbers.

A BGP peer determines the outbound interface and immediate next-hop address based
on information provided in the well-known mandatory attribute NEXT_HOP that defines
the next IP address for forwarding packets in transit to their destination. Usually, the next
hop is defined so that packets traverse the shortest path. A recursive route lookup is used
to determine the immediate next-hop based on routing tables.
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The optional non-transitive attribute MULTI_EXIT_DISC is used when there are mul-
tiple exit or entry points to a particular neighbouring AS. It consists of a 4-octet number
(metric). A lower metric is the preferred exit point. BGP peers have mechanisms for removal
of this attribute and may be configured to alter its value received over EBPG.

A BGP peer sends to internal peers the degree of preference for advertised routes using
the well-known mandatory attribute LOCAL_PREF. This attribute shall not be included
in BGP update messages sent to external peers unless defined by BGP confederations. If
received in a BGP updatemessage from an external BGP peer, this attribute shall be ignored
except if defined by BPG confederations. A BGP confederation is a solution employed to
overcome the scaling problem caused by the BGP fully mesh requirement [108]. This solution
consists in dividing a large AS into sub-autonomous systems (sub-ASes) that are assigned
a sub-AS number from the private AS numbers in the range 64,512 to 65,535 [109].

The well-known discretionary attribute ATOMIC_AGGREGATE should be included
in a BGP update message if an AS_SET is no longer valid and some AS numbers in the
AS_PATH are excluded from the aggregated route.

Updates formed by aggregation may include the optional transitive attribute AGGRE-
GATOR. It contains the last AS number and IP address of the BPG peer that formed the
aggregate route. The specified IP address should be the same as used for the BPG Identifier
of the BPG peer.

3.1.3 Keepalive Messages

Reachability between peers is determined by periodically sending BGP keepalive messages
so that the hold timer does not expire [1]. These messages are usually sent within one
third of the hold time interval without exceeding one message per second. Repeated BGP
keepalive messages shall not be sent when the hold time interval is 0. Only the header is
included in these messages and, hence, their length is 19 octets.

3.1.4 Notification Messages

BGP notification messages, sent when an error is detected, are followed by the BGP con-
nection termination [1]. These messages contain the error code, error subcode, and data
(the reason for the notification), as shown in Fig. 3.8. Their minimum length is 21 octets
including the message header.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Error code Error subcode Data (variable length) . . .

Figure 3.8: Layout of the notification message: fields and their lengths (bits) [1].

The six error codes indicate the type of notification: message header error, open mes-
sage error, update message error, hold timer expired error, finite state machine error, and
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cease notification [1]. Message header errors may be caused by an unsynchronized con-
nection, invalid message length, or invalid message type. Open message errors result from
unsupported BGP version, invalid peer AS, invalid BGP identifier, unsupported optional
parameter, and unacceptable hold time. Sources of update message errors include malformed
attribute list, unrecognized well-known attribute, missing well-known attribute, attribute
flags error, attribute length error, invalid origin attribute, invalid NEXT_HOP attribute,
optional attribute error, invalid network field, and malformed AS_PATH.

3.1.5 BGP Finite State Machine

A BGP Finite State Machine (FSM) is used to describe the process of establishing a TCP
connection between peers [110, 2, 1]. A BGP peer initializes a TCP connection unless
configured to remain in the idle state or remain passive. In a BGP connection, the connecting
(active) side is called outgoing while the listening (passive) side is referred to as incoming.
The BGP connection happens when the outgoing side sends the first TCP Synchronize
(SYN) packet and the incoming side sends the first SYN/Acknowledge (ACK). The six
states of the BGP FSM and their transitions (events) are illustrated in Fig. 3.9.

In the initial state of the FSM (Idle), no BGP resources are allocated to a peer and all
connections are refused. Upon a ManualStart or AutomaticStart event, BGP resources for
peer connection and TCP connection with other peers are initiated. The Connect state oc-
curs while waiting for the TCP connection to be completed. If the connection is successful,
state transitions to OpenSent while an unsuccessful connection results in state transition-
ing to Active. In the Active state, a peer is awaiting and accepting TCP connections and
transitions to OpenSent state upon a successful connection. After receiving a ManualStop,
AutomaticStop, or HoldTimer_Expires event while in the OpenSent state, the FSM transi-
tions back to the Idle state. In the case of a TcpConnectionFails event, the state transitions
from OpenSent to Active. However, if a BGP open message is received, the state transitions
to OpenConfirm and peer awaits for a BGP keepalive or notification message. After any
of these messages is received, the state is updated to Established. While in the Established
state, update, notification, and keepalive messages are exchanged until transition to the Idle
state occurs due to an error or a ManualStop, AutomaticStop, or HoldTimer_Expires event.

3.2 BGP Relational Database: Data Processing and Model

Databases are files used for sorting data and are designed to rapidly and continuously insert
and access large amounts of data [111]. Their primary data structures are tables, rows, and
columns. Relational databases are employed to create links between multiple tables. Tables,
rows, and columns are usually referred to as relation, tuple, and attribute, respectively.
Links between tables are defined using logical, primary, and foreign keys:
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Figure 3.9: BGP finite state machine: states and transition conditions [2].

• Logical keys are used to search for a specific row and are typically defined using unique
strings.

• Primary keys consist of unique integer values that may be defined when creating a
table or automatically assigned by the database when adding a new row.

• Foreign keys have number values that refer to a primary key of a row in a different
table.

The primary and foreign keys are employed to generate queries that require joining multiple
(two or more) tables. Data modeling is the process of defining how data are stored in tables
and their relationships. The document containing such information is know as data model.
Common database systems include Oracle [112], MySQL [113], Microsoft SQL Server [114],
PostgreSQL [115], and SQLite [88]. In particular, SQLite system consists of a C-language
library that does not require a dedicated server and may be embedded in applications
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to provide database support. The sqlite3 module [116] is a Python database application
program interface to integrate SQLite.

3.2.1 Data Processing

Publicly available BGP data from the RIPE and Route Views collection sites are downloaded
using the dataDownload.pymodule listed in Appendix A. Raw BGP data in MRT format are
converted to ASCII and stored in YAML files by using the mrtparser [87] Python module.
The module includes an object class Reader used to first decode BGP headers in MRT format
and then to parse the BGP message. Included is also the sample script mrt2yaml.py that
has been modified to export converted MRT data to a YAML file, as listed in Appendix B.
If extracting multiple BGP dumps to the same YAML file, the string ‘- - -’ is inserted to
indicate the start of a new set of BGP messages.

3.2.2 Data Model

The developed BGP-RDB consists of core (7), lookup (7), list (7), and detail (8) tables.
An ingestion engine has been developed to include tables initialization and entries insertion
based on data in the generated YAML files. Functions used by the ingestion engine and
the implementation to store incoming data are listed in Appendix C and Appendix D,
respectively. The database schema with connections between tables is shown in Fig. 3.10.

3.2.2.1 Core Tables

The core tables of the developed BGP-RDB capture information in BGP headers, mes-
sages, and path attributes. They consists of a field indicating the primary key of each
inserted header, message, and path attribute; their timestamps; and their fields contain-
ing corresponding information. The primary key field is an integer datatype and its value
is a unique auto-generated number. Timestamps are stored in both Unix (number) and
date-time (yyyy-mm-dd hh:mm:ss) formats and, hence, data types used for these fields are
integer and date-time, respectively. Fields containing header or message details may have
text or integer data types. Fields with integer datatypes may contain foreign keys used to
join lookup, list, or detail tables. Core tables are described in Appendix E.

3.2.2.2 Lookup Tables

References to types of collected MRT files, table dumps, BGP messages, and BGP cate-
gories are stored in lookup tables. They consist of a primary key (unique integer value)
and related unique text value (type, subtype, category). These tables have one-to-many
relationships with the core tables bgp_headers, bgp_openmessates, bgp_updatemessages,
bgp_notifiactionmessages, and bgp_keepalivemessages. Fields included in lookup tables are
given in Appendix F.
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3.2.2.3 List Tables

Information contained in BGP update messages are stored in list tables. Common elements
included are the primary key (auto-generated unique integer value), the timestamp of related
BGP update message in Unix and date-time formats, and specific fields in the received BGP
update message (prefixes of withdrawn/announced routes, path attributes). Relationships
between list and core tables are one-to-many. The list tables are described in Appendix G.

3.2.2.4 Detail Tables

The detail tables are used to store different types of BGP attributes, AS_Path segments,
origin of an AS_Path, and notification messages error codes/subcodes. These tables consist
of primary key (unique integer value) used to create one-to-many relationships with core
tables and a logic key indicating the related attribute type, AS_Path origin, and message
error code/subcode. Furthermore, table bgp_attribute includes two foreign keys to create
one-to-many relationships with the lookup table bgp_attributes_category. Description of
fields in the detail tables are listed in Appendix H.
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Chapter 4

Ransomware Attacks

During ransomware, attackers employ advanced cryptography algorithms to lock victims’
data until a ransom is paid. Types of ransomware attacks include Cryptoworm, Ransomware-
as-a-Service (RaaS), and automated active adversary [16]. Cryptoworms replicate them-
selves to targeted hosts for maximum reach and impact. RaaS attacks, sold on the dark
web as distribution kits, are typically deployed via malicious spam e-mails or exploit kits.
In case of automated active adversary ransomware, the attackers scan the Internet for sys-
tems with weak protection, enter the system, and plan the attack for the maximum damage.

Ransomware attacks rely on tools and processes such as runtime packers and exploits.
Runtime packers are compressed executable-files designed to avoid detection of attacks until
they have completed their core task. Exploits (EternalBlue, Windows Event Viewer process,
CVE-2018-8453) are tools used to ensure that the attacks gain administrative privileges
by taking advantage of the vulnerabilities in an operating system. A ransomware stores
the encrypted data on the used (overwrite) or available (copy) disk sectors. During the
encryption, data are partially or fully renamed. Well-known ransomware attacks include
WannaCrypt [16], Petya [117], and Locky [118]. In this study, we collect and analyze BGP
update messages during the WannaCrypt and WestRock [17, 18] ransomware attacks from
RIPE [41] and Route Views [42] collection sites.

4.1 WannaCrypt Ransomware Attack

WannaCrypt (WannaCry) is a cryptoworm ransomware that works by gaining administra-
tive privileges and employs the EternalBlue exploit and DoublePulsar backdoor in systems
running Microsoft Windows 7 [119, 16]. It lasted from May 12, 2017 to May 15, 2017 and
infected over 230,000 computers in 150 countries. Cisco first observed requests for one of
WannaCrypt killswitch domains on May 12, 2017 at 07:24 UTC [120]. A victim’s data
files are encrypted using 128-bit Advanced Encryption Standard (AES) in Cipher Block
Chaining (CBC) mode. After the encryption is completed, data files are renamed by adding
the extension “.wncry” while the string “WannaCrypt!” is added to the combination of en-
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crypted AES key and data. Wannacrypt may copy or overwrite the data after encryption. It
uses the Volume Shadow Service (vssadmin.exe) Windows utility to delete previous versions
of the locked data. By manipulating the Windows Boot Configuration Data (bcdedi.exe),
the attack:

• prevents Windows diagnostics-and-repair feature to automatically run after a third
unsuccessful boot or

• attempts a normal boot even in case of a failed boot, shutdown, or checkpoint.

WannaCrypt flushes buffers to ensure that all encrypted data are only located in the storage
drive. It replaces the Windows desktop wallpaper with a message to inform the victim that
data have been locked and to demand a ransom. After the ransom is paid, the risk remains
that decryption of data fails.

WannaCrypt spreads throughout a network by attempting to connect to TCP port
445. After the connection is established, the ransomware scans for the Windows Server
Message Block (SMB) EternalBlue vulnerability and checks if it is already infected with the
DoublePulsar backdoor. The DoublePulsar backdoor implant tool contains a code injection
technique that employs an Asynchronous Procedure Call (APC) to execute code within
a regular trusted process [121]. EternalBlue exploits the wrong casting, wrong parsing,
and non-paged pool allocation defects of the SMB protocol as well as an address space
Address Space Layout Randomization (ASLR) bypass. Exploiting the wrong casting and
parsing defects causes buffer overflow and overwrite while the non-paged pool allocation and
ASLR allow placing the machine code (shellcode) at a predefined executable address [122].
EternalBlue then implants the DoublePulsar backdoor in the victim’s host to send the
cryptoworm payload using Dynamic Link Library (DLL) injection [119, 122]. WannaCrypt
replicates by querying for the non-existing domains:

• www[.]iuqerfsodp9ifjaposdfjhgosurijfaewrwergwea[.]com

• www[.]ifferfsodp9ifjaposdfjhgosurijfaewrwergwea[.]com.

Its replication may be prevented if the victims receive a response indicating that these
domains are registered [123].

4.2 WestRock Ransomware Attack

The WestRock Company [124] experienced a ransomware attack in late January 2021 [17,
18]. This is the second largest packaging company in USA that owns over 320 manufacturing
facilities worldwide. The ransomware attack was detected on January 23, 2021. It impacted
the company’s Information Technology (IT) and Operational Techonology (OT) systems
for over six days. While IT systems store, process, maintain, and operate data, OT systems
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monitor and control industrial processes, events, and devices. Hence, the attack caused
delays in shipments of goods and production levels. The company implemented a controlled
remediation plan that was executed in phases including systems shutdown and enhancement
of existing security measures. In this study, we assume that the ransomware attack lasted
between 1:12 UTC on January 23, 2021 and 23:59 UTC on January 29, 2021.

4.3 BGP Datasets: Data Collection and Visualization

We analyze BGP update messages captured from RIPE [41] and RouteViews [42] collec-
tion sites. Datasets are generated based on 1-minute intervals and 37 extracted features.
Anomalous behavior is often indicated by large variations of BGP volume features such
as number of BGP announcements, number of announced NLRI prefixes, and number of
interior gateway protocol packets. We assume that regular data points (class 0) correspond
to two days before and after the WannaCrypt and WestRock ransomware attacks. Data
within the window of anomalous events are initially labeled as anomalies (class 1). How-
ever, the window with anomalous data points may also contain regular events. Hence, we
use label refinement based on the iForest unsupervised learning algorithm to identify and
label regular data points within the anomalous periods. It may help better identify anoma-
lous data points and, thus, improve model performance. Majority of data points within each
window retain the same original label (anomalies) after the label refinement using iForest
algorithms. These regular data points are easier to identify using iForest because they are
detected as outliers.

We collect eight days of BGP update messages during the WannaCrypt ransmoware
attack: the days of the anomalous event as well as two days prior and two days after the
attack. We select the RIPE collector rrc04 (located in Geneva, Switzerland) that contains
20 peer ASes [125] and the Route Views collector route-views2 (located in Oregon, USA)
that has 77 peer ASes [126]. Generated datasets consist of 11,520 data points with the ran-
somware attack lasting 5,760 minutes. Examples of features that exhibit visible differences
in patterns during regular and anomalous events for the WannaCrypt BGP datasets are
shown in Fig. 4.1. Effect of several features extracted from RIPE and Route Views datasets
is visualized in scatter plots shown in Fig. 4.2. The graphs indicate spatial separation for
regular and anomalous classes. Separation into two distinct classes is more visible for Wan-
naCrypt in the Route Views dataset. Better separation of spatial patterns usually leads to
higher classification accuracy.

We collect 11 days of BGP update messages during the WestRock ransomware attack:
the days of the attacks as well as two days prior and two days after the attacks. BGP up-
date messages are downloaded from RIPE collector rrc14 (located in Palo Alto, CA, USA)
consisting of 28 peer ASes [127] and Route Views collector telxatl (located in Atlanta,
GA, USA) having 36 peer ASes [126]. Data collection sites are located near the consid-
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Figure 4.1: WannaCrypt ransomware attack RIPE (top) and Route Views (bottom): Num-
ber of BGP announcements (left) and announced NLRI prefixes (right).

Figure 4.2: WannaCrypt ransomware attack RIPE (left) and Route Views (right): Number
of announced NLRI prefixes vs. number of BGP announcements vs. average edit distance.

ered anomalous event. Generated datasets consist of 15,840 data points with ransomware
attack lasting 10,008 minutes. Examples of features extracted from regular and anomalous
events collected during the WestRock ransomware attack are shown in Fig. 4.3. The iForest
algorithm is used for label refinement of regular data points within the windows of anoma-
lous events. The patterns exhibit visible differences between regular and anomalous events
for the WestRock ransomware dataset. Effect of several features extracted from RIPE and
Route Views datasets is visualized in scatter plots shown in Fig. 4.4.
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Figure 4.3: WestRock ransomware attack RIPE (left) and Route Views (right) data collec-
tion sites: Number of duplicate announcements vs. number of implicit withdrawals vs. date.
Regular data points (class 0) are represented with circles while the anomalous data points
(class 1) are represented with stars. Labels of data points within each anomaly window are
refined using the iForest algorithm.

Figure 4.4: WestRock ransomware attack RIPE (left) and Route Views (right) data collec-
tion sites: Average unique AS-path vs. number of duplicate announcements vs. number of
implicit withdrawals.

37



Chapter 5

Supervised and Semi-Supervised
Machine Learning Algorithms

Supervised and semi-supervised machine learning techniques have been used to detect net-
work anomalies. Most approaches rely on robust supervised learning algorithms, which train
models using the given labels. Training and test of various supervised and semi-supervised
machine learning algorithms is based on first generating a matrix X that contains N in-
put data points (rows) and F features (columns). In the training phase, output matrix Y
contains assigned labels: 0 (regular) and 1 (anomalous) data points.

5.1 Recurrent Neural Networks

RNNs are deep learning networks used to process sequential data x(t) = x(1), ..., x(τ) having
τ elements of fixed or variable lengths where t represents the index in the sequence [31].
These recurrent networks share parameters during the learning process: an output is a
function of the previous time step (computation) and the same update rule applies to each
element of the sequence. Recurrent connections may be present between hidden units or
between the output and hidden units at consecutive time steps. RNNs are trained using
mini-batches of the input data (sequence) where elements of the mini-batch may be of
different lengths. They may be designed to produce an output at each time step or after
processing an entire sequence. Bidirectional RNNs (Bi-RNNs) may be employed when the
prediction depends on interpretation of past and future information. They consist of forward
and backward layers that process data starting at the beginning and at the end of the
sequence, respectively.

While traditional RNNs deal with sequential data, they do not effectively address long
data sequences. Applying the same computation at every time step of such sequences leads
to vanishing or exploding gradients thus making RNNs unable to learn long-term depen-
dencies. The vanishing gradient problem occurs when the magnitude of eigenvalues of the
weight matrix is smaller than 1 while the exploding gradient problem is caused by eigenval-
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ues having magnitudes larger than 1. Approaches used to overcome the long-term depen-
dency challenge in RNNs include: echo state networks, skipping connections through time,
removing connections, and leaky and gated units. Long-term dependencies in echo state
networks are addressed by learning only output weights while skipping connections through
time introduces recurrent connections with time delays longer that one. RNN connections
may be removed by replacing unit-length connections with longer connections. Leaky units
are hidden RNN units that consist of linear self-connections with weight close to 1. Hence,
learned past information is easily remembered over longer time steps. In contrast, gated
units update connection weights at each time step thus allowing RNNs to discard old infor-
mation when no longer significant. Long Short-Term Memory (LSTM) [128, 129] and Gated
Recurrent Unit (GRU) [130] are gated RNNs that preserve memory by updating weights
based on the previous and current time steps.

5.1.1 Long-Short Term Memory

LSTM networks are RNNs that are capable of learning long-term dependencies by con-
necting time intervals to form a continuous memory [128, 129]. Traditional RNN networks
perform poorly when they need to bridge segments of information with long time gaps.
Hence, LSTM networks were introduced to overcome long-term dependency and vanishing
gradient problems. The LSTM cell shown in Fig. 5.1 is composed of: (a) forget gate ft, (b)
input gate it, and (c) output gate ot.

Figure 5.1: Repeating module for the LSTM neural network. States ct − 1 and ct are the
previous and current cell states, respectively [3].

The forget gate discards irrelevant memories based on the cell state, the input gate
controls the information that will be updated in the LSTM cell, and the output gate functions
as a filter that controls the output. The logistic sigmoid σ and tanh are used as cell functions.
The output of the LSTM cell is connected to the output layer and the next cell. The outputs
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of the forget gate ft, input gate it, and output gate ot at time t are [131]:

ft = σ(Wifxt + bif + Uhfht−1 + bhf )

it = σ(Wiixt + bii + Uhiht−1 + bhi)

ot = σ(Wioxt + bio + Uhoht−1 + bho), (5.1)

where σ(·) is the logistic sigmoid function, xt is the current input, ht−1 is the previous
output, Wif , Uhf , Wii, Uhi, Wio, and Uho are weight matrices, and bif , bhf , bii, bhi, bio, and
bho are bias vectors. The information is stored in the cell state depending on the output it
of the input gate. The sigmoid function is used to update the cell state ct calculated as:

ct = ft ∗ ct−1 + it ∗ tanh(Wicxt + bic + Uhcht−1 + bhc), (5.2)

where ∗ denotes element-wise multiplications and the tanh function is used to calculate the
input to the next cell state. The output of the LSTM cell is:

ht = ot ∗ tanh(ct). (5.3)

5.1.2 Gated Recurrent Unit

The GRU cell is derived from LSTM and has a simpler structure, as illustrated in Fig. 5.2.
To make predictions, it employs gated mechanisms to control input and memory at the
current timestep. While an LSTM cell consists of three gates, a GRU cell contains only
reset rt and update zt gates [130]. The reset gate determines the combination of new input
information and previous memory content while the update gate defines the content stored
at the current timestep.

Figure 5.2: Repeating module for the GRU neural network [3].

The outputs of the reset gate rt and the update gate zt at time t are [131]:

rt = σ(Wirxt + bir + Uhrht−1 + bhr)

zt = σ(Wizxt + biz + Uhzht−1 + bhz), (5.4)
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where σ(·) is the logistic sigmoid function, xt is the input, ht−1 is the previous cell output,
Wir, Uhr,Wiz, and Uhz are the weight matrices, and bir, bhr, biz, and bhz are the bias vectors.
The output of the GRU cell is:

ht = (1− zt) ∗ nt + zt ∗ ht−1, (5.5)

where nt is:
nt = tanh(Winxt + bin + rt ∗ (Uhnht−1 + bhn)), (5.6)

Win and Uhn are the weight matrices, and bin and bhn are the bias vectors.

5.2 Broad Learning System

Broad learning system [4, 5] is based on the random vector functional-link neural network.
It consists of a set of n mapped features (Zn) and m enhancement nodes (Hm) that
are concatenated in a single layer feed-forward neural network to form a broad instead
of a deep network. Each group of mapped features Zi consists of n1 nodes generated by
first multiplying matrix X by randomly generated weights Wei and including randomly
generated bias βei . A mapping φ is then used to generate mapped features:

Zi = φ(XWei + βei), i = 1, 2, ..., n. (5.7)

Matrix Zi of dimension N × n1 corresponds to a single group of mapped features. The
dimension of matrixWei is F×n1. Matrix Zn of dimension N×(n1×n) is the concatenation
of generated mapped features Zi. Each enhancement nodeHj is created by first multiplying
the concatenated groups of mapped features with random weights Whj

and by adding
random bias βhj

. The dimension of Whj
is (n1 × n) ×m. A mapping ξ is then applied to

generate enhancement nodes:

Hj = ξ(ZnWhj
+ βhj

), j = 1, 2, ...,m. (5.8)

Mapped features and enhancement nodes are then concatenated to form the state matrix
Am

n .
In the training phase, the Moore-Penrose pseudo-inverse or ridge regression is used to

invert the state matrix and calculate the output weights Wm
n for the given labels Y :

Wm
n = (λI + (Am

n )TAm
n )−1(Am

n )TY , (5.9)

where λ is the regularization coefficient and I is the identity matrix whose dimension is
(n1 × n) +m. During testing, the predicted labels are calculated using the output weights.
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BLS extensions leading to improved performance include incremental learning [4], Radial
Basis Function Network BLS (RBF-BLS) [132], Cascades of Mapped Features BLS (CF-
BLS), Cascades of Enhancement Nodes BLS (CEBLS), and Cascades of Mapped Features
and Enhancement Nodes BLS (CFEBLS) [5].

Incremental BLS algorithms, illustrated in Fig. 5.3, allow increments of input data,
mapped features, and/or enhancement nodes and, thus, enable dynamical updates of BLS
models. In case of incremental input data, additional data points are used to recalculate
mapped features and enhancement nodes. The calculation is done only for the additional
data points and there is no need to include all previously considered data points. One may
also create additional mapped features by increasing their number and recalculating/up-
dating the weights of enhancement nodes. A similar approach is applied when creating new
enhancement nodes based on the existing mapped features.

Figure 5.3: Module of the BLS algorithm with increments of mapped features, enhancement
nodes, and new input data [4].

The RBF-BLS extension employs the Gaussian rather than tanh function as the en-
hancement mapping ξ:

ξ(x) = exp
(
− || x − c || 2

γ2

)
, (5.10)

where c is the central point and γ determines the width of the Gaussian distribution. If the
input data are located in a narrow region around the central point c, the RBF generates
significant non-zero responses. An RBF network with k hidden nodes relies on calculating
pseudoinverse to perform rapid training. The weight vectors of the outputHW are deduced
from:

W = (HTH)−1HTY

= H+Y ,
(5.11)
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where W = [w1, w2, ..., wk] and H = [ξ1, ξ2, ..., ξk] are matrices of output weights and
hidden nodes, respectively while H+ is the pseudoinverse of H.

The cascades of mapped features and enhancement nodes add depth to the original
architecture of BLS and may improve its performance. The connections within and between
the mapped features and enhancement nodes define the structure of BLS. In the case of
CFBLS, the first group of mapped features is based on input data and weights (5.7) while
subsequent groups (k) of mapped features are created by using the previous group (k − 1).
The groups of mapped features are formulated as:

Zk = φ(Zk−1Wek
+ βek

)

, φk(X;
{
Wei ,βei

}k

i=1), for k = 1, ..., n.
(5.12)

The cascades of these groups Zn , [Z1, ...,Zn] are used to generate the enhancement nodes{
Hj
}m

j=1. The first CEBLS enhancement node is generated from mapped features while
subsequent nodes are generated from previous nodes creating a cascade:

Hu = ξ(Hu−1Weu + βeu)

, ξu(Zn;
{
Whi

,βhi

}u

i=1), for u = 1, ...,m,
(5.13)

where Whi
and βhi

are randomly generated. The CFBLS and CEBLS architectures are
shown Fig. 5.4. The CFEBLS architecture is a combination of the two cascading approaches.
The structure of incremental CFEBLS is shown in Fig. 5.5.

Based on its broad hidden layer and the use of pseudo-inverse or ridge regression, BLS
offers shorter training time with comparable performance to deep learning networks such as
multilayer perceptron, deep belief networks, deep Boltzmann machines, and convolutional
neural networks [4]. Studies also reported comparable performance when applying BLS to
data collected from communication networks [133, 134, 135, 136, 6].

5.3 Variable Features Broad Learning System

Mapping the input data to sets of mapped features is an essential step of BLS algorithms. We
recently proposed Variable Features BLS (VFBLS) and Variable Features with Cascades
BLS (VCFBLS) algorithms [6]. The architecture of VFBLS and VCFBLS consists of a
variable number of mapped features and groups of mapped features as shown in Fig. 5.6.
The algorithms employ feature selection that enable models to be trained based on a variable
number of features extracted from the input data. The two algorithms also offer variants
with incremental learning.

The VFBLS and VCFBLS algorithms expand the BLS network by using both original
input data and subsets of input data as well as sets of groups of mapped features. They
enable developing more generalized models and, hence, prevent over-fitting and enhance

43



Figure 5.4: Modules of the CFBLS (top) and CEBLS (bottom) algorithms. Shown are
cascades of mapped features (top) and enhancement nodes (bottom) without incremental
learning [5].

their performance. Generating the best BLS and incremental BLS models is rather time-
consuming because they rely on multiple two-stage experiments: selecting features and
generating models. In contrast, VFBLS and VCFBLS models are developed using a single
experiment with integrated stages. A variable number of mapped features is used to reduce
training time because the proposed algorithms introduce additional complexity by using the
entire input dataset and by incorporating a feature selection algorithm and additional sets
of mapped features. In case of incremental learning, features are selected in each step and
ranked based on their importance. After the last step, all selected features are multiplied
with weights proportional to the size of the dataset used in each step. They are then ranked
and used for testing.

Data X and features that are selected based on a feature selection algorithm are used
as input:

Xv = F(X), v = 1, 2, ..., f, (5.14)

44



Figure 5.5: Module of the incremental CFEBLS algorithm with input data X, cascades
of mapped features, and cascades of enhancement nodes as well as increments of mapped
features, enhancement nodes, and new input data [5].

where Xv is a subset of X with a selected set of features. Note that selecting all features in
the input data to generate mapped features is a special case where Xv = X. Sets of groups
of mapped features are generated as:

Znv , [Zn1 , ...,Znf ], (5.15)

where Znv contains nv mapped features. In the case of VFBLS groups of mapped features
Znv ,Xv and nv correspond toX and n, respectively (5.7) while VCFBLS groups of mapped
features Znv are defined based on the previous group (5.12). Note that the first mapped
feature Z1 in each set is created from X1, ..., Xf . The number of mapped features and
groups of mapped features may vary in sets Zn1 , ..., Znf . The number of mapped features
in each group of a set is constant. We improve performance by including properties of the
original data and concatenating input data X and sets of mapped features to create Zt

similar to the case of random vector functional-link network [137]:

Zt = [X|Znv ]. (5.16)

The enhancement nodes are:

Hj = ξ(ZtWhj
+ βhj

), j = 1, 2, ...,m. (5.17)

The state matrix Am
t is the concatenation of Zt and Hm. The ridge regression algorithm

is then employed to compute the weights Wm
t based on Am

t and given labels Y . The error
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Figure 5.6: Modules of the VFBLS and VCFBLS algorithms with input data X, sets of
groups of mapped features with and without cascades (Zn1 , ..., Znf ), and enhancement
nodes (H1, ..., Hm) [6].

function, minimized during the training process, is defined as [4]:

E(Wm
t ) = ||Am

t W
m
t − Y ||22 + λ||Wm

t ||22, (5.18)

where λ is the sparse regularization coefficient. The term λ||Wm
t ||22 is used to control over-

fitting. The minimum of (5.18) can be found in closed-form by setting its derivative with
respect to Wm

t to 0. The output weights are defined as [30]:

Wm
t = (λI + (Am

t )TAm
t )−1(Am

t )TY . (5.19)
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The incremental versions of VFBLS and VCFBLS are illustrated in Fig. 5.7 and Fig. 5.8.
Pseudocodes for the VFBLS and VCFBLS algorithms and their incremental versions are
listed in Appendix I.

While a variety of feature selection algorithms may be employed, in our experiments we
use Extremely Randomized Trees (Extra-Trees) [138] to rank features based on importance.

5.4 Extremely Randomized Trees

Extremely randomized trees (Extra-Trees) algorithm is an improved version of the decision
tree and random forests used to select relevant features for generating subsets of the input
data. The extra-trees algorithm is faster than random forests because it randomly set the
threshold for splitting nodes. Furthermore, it introduces additional randomness by randomly
splitting nodes in order to avoid over-fitting. Features with higher importance are more
relevant for a given dataset and better capture its properties. They may have better spatial
separation and, thus, enhance the model’s performance. The Gini importance is used to
compute feature scores in a given dataset [139]:

Importance(Xc) = 1
NT

∑
T

∑
t∈T :v(st)=Xc

p(t)∆i(st, t), (5.20)

where Xc is the subset of X corresponding to one feature, NT is the number of trees, t is
the index of a node in a tree, st is the direction of the split, v(st) is a randomly generated
threshold, p(t) is the weight, and ∆i(st, t) is the decrease of the node impurity equivalent
to its importance.

5.5 Gradient Boosting Decision Trees

Boosting algorithms, a class of ensemble learning, are greedy algorithms that sequentially
include estimators (base learners) to enhance the model performance [32]. Their goal is
to minimize the loss function by including estimators that are trained based on residuals.
Residuals (the difference between the target and predicted values) are calculated in each
iteration and are used as the target values in the next iteration. The forward stage-wise
additive modeling is used to generate boosting models. The number of training iterations
is equivalent to the number of estimators because a new estimator is added to the boost-
ing model in each iteration. Boosting models employ loss functions such as squared error,
absolute error, exponential loss, or log-loss.

The Gradient Boosting Machines (GBMs) [140] are boosting algorithms that employ
functional gradient descent to minimize the loss function. The Gradient Boosting Deci-
sion Trees (GBDT) algorithm is a GBM variant that employs decision trees as estimators.
Optimized GBDT algorithms include XGBoost [38], LightGBM [39], and CatBoost [40].
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When training a GBDT model [38, 32] with K estimators using N data points, the
predicted output is:

ŷi =
K∑

k=1
fk(xi), (5.21)

where fk is the kth decision tree and xi is the ith data point. One collection sample is
represented as a row vector xi of matrix X containing input data. In the kth iteration,
predicted output is evaluated using the kth decision tree (estimator):

ŷ
(k)
i = ŷ

(k−1)
i + fk(xi), (5.22)

where ŷ(k)
i is the predicted output of the ith data point and ŷ(k−1)

i is the previously predicted
output. The goal is to minimize the objective function:

L(k) =
N∑

i=1
l(yi, ŷ

(k)
i ) + Ω(fk), (5.23)

where l(·) is the loss function, yi is the label of the ith input data point, and Ω(fk) (optional)
is the regularization term.

5.5.1 XGBoost Algorithm

GBDT algorithms may be improved by adding an L2 norm regularization term to avoid over-
fitting. For example, XGBoost [38] employs the second-order Taylor series to approximate
its objective function and a sparsity-aware algorithm to deal with the sparse data. A cache-
aware block structure is employed to generate the XGBoost model when using parallel and
distributed computing and to increase training speed. The regularization function is:

Ω(fk) = γT + 1
2λ||ω||

2, (5.24)

where γ and λ are the regularization coefficients, T is the number of leaves in the tree, and
ω are the leaf weights. The second-order Taylor series is used to approximate (5.23):

L(k) '
N∑

i=1

[
l(yi, ŷ

(k−1)
i ) + gifk(xi) + 1

2hif
2
k (xi)

]
+ Ω(fk), (5.25)

where gi = ∂l(yi,ŷ
(k−1)
i )

∂ŷ
(k−1)
i

and hi = ∂2l(yi,ŷ
(k−1)
i )

∂(ŷ(k−1)
i )2

are known and l(yi, ŷ
(k−1)
i ) is a constant.

For a known tree structure q(X), It is a set containing the indices of data points in leaf
t. Setting the derivative of (5.25) to zero gives the optimal weight ω∗t for leaf t:

ω∗t = −
∑

i∈It
gi∑

i∈It
hi + λ

. (5.26)
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The optimal solution of the objective function is:

L∗(k) = −1
2

T∑
t=1

(∑i∈It
gi)2∑

i∈It
hi + λ

+ γT. (5.27)

This optimal value is used to evaluate the quality of a tree structure q(X). The tree structure
with the lowest optimal value is selected for each iteration.

5.5.2 LightGBM Algorithm

LightGBM [39] algorithm employs Gradient-Based One-Side Sampling (GOSS) and Exclu-
sive Feature Bundling (EFB) techniques to significantly accelerate the training speed. It
achieves performance comparable to XGBoost albeit with lower memory usage.

LightGBM relies on the histogram-based algorithm to accelerate locating the best split-
ting point for each feature. Using the training data points, mutually exclusive features are
bundled to create feature histograms. GOSS involves sorting the training data points in a
descending order based on the absolute value of their gradients. Top Nt data points (subset
A) with the largest gradients are selected and random sampling of the remaining input
data points is performed to create a subset B. The dimensions of A and B depend on
predefined sampling ratios a and b, respectively. When training a LightGBM GBDT model
with a given dataset, gradients are calculated in each iteration.

In a decision tree, nodes are split based on features with the largest information gain
that depends on the variance gain Ṽj(d) for feature j computed after splitting as [39]:

Ṽj(d) = 1
N ×N j

l (d)
(
∑
xi∈Al

gi + 1− a
b

∑
xi∈Bl

gi)2

+ 1
N ×N j

r (d)
(
∑
xi∈Ar

gi + 1− a
b

∑
xi∈Br

gi)2,
(5.28)

where d is the splitting point, N is the number of data points, N j
l and N j

r are number of
input data points related to left and right child nodes, respectively, and gi is the gradient
for input data point xi. The sampling ratios a and b are used to calculate the normalization
coefficient (1 − a)/b. Al (Bl) and Ar (Br) are the subsets of A (B) for the left and right
child nodes, respectively.

LightGBM, based on the GOSS technique, utilizes leaf-wise growth approach to grow
the decision trees instead of level-wise growth used in XGBoost. Level-wise growth splits
the leaves of the same layer, which enables easy control of the model complexity. However,
it introduces unnecessary overhead because the leaves with low variance gains are also split.
Compared to level-wise tree growth, leaf-wise is a more efficient approach because it splits
the leaf that has the maximum variance gain thus reducing additional loss after a number
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of splits. Furthermore, it may lead to deeper decision trees resulting in over-fitting. Hence,
the hyper-parameter “max depth” is introduced to limit their depth.

The EFB technique combines dataset features in order to reduce the dimension of the
input data and the complexity of building the histogram from O(ndnf ) to O(ndnb), where
nd, nf , and nb are the number of data points, features, and bundles, respectively.

5.5.3 CatBoost Algorithm

The XGBoost algorithm only accepts numerical values and employs one-hot encoding to
convert categorical features to numerical values while LightGBM converts these features
to gradient statistics. Hence, CatBoost [40] is introduced to deal with categorical features.
It employs the ordered boosting algorithm and offers an effective approach (ordered target
statistic) when compared to XGBoost and LightGBM. Target statistic was used to convert
categorical to numerical features by using the values that estimate the expected labels based
on the categories while keeping the dimension of the dataset unchanged.

In the GBDT models, residuals are calculated in each iteration and are used as the
target values in the next training iteration. This leads to bias increase and prediction shift
in subsequent iterations and, thus, model over-fitting. Hence, ordered boosting was proposed
to address the prediction shift when building the decision trees during the training process.
It performs permutation and trains multiple decision trees in each iteration. Each residual
is calculated based on the target and predicted values generated by the previous decision
tree. Symmetric (oblivious) decision trees are used to avoid over-fitting and reduce the time
required to grow the tree. CatBoost offers plain and ordered boosting modes with target
statistics and ordered boosting, respectively. In each iteration, the two boosting modes have
the same asymptotic complexity for calculating gradients O(sN), updating decision trees
O(sN), and computing ordered target statistic O(NT SN), where s, N , and NT S are the
number of permutations, data points, and features using target statistics, respectively.

5.6 Isolation Forest

Isolation forests (iForests) are unsupervised algorithms used for anomaly detection [141]
that offer short execution time due to their linear complexity. They exploit that the outliers
(anomalous data points) have fewer instances and different attribute-values than inliers
(regular data points) and, hence, are easier to isolate.

iForests are ensembles of binary decision trees called Isolation Trees (iTrees). Split values
when building an iTree are randomly selected for each feature according to the range of their
values. Data points are then iteratively routed through the iTrees based on the defined split
values until a node has only one instance or all node data have the same values. Outliers
are detected based on the average path length from root to leaf. Hence, a data point is more
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likely to be an outlier when the average path length is shorter while average path lengths
for inliers are longer.

A path lenght h(x) of a given data pint x is based on the number of edges traversed
in an iTree from the root to external node. The structure of iTrees is similar to binary
search trees and, hence, estimation of the average h(x) of a dataset with N data points is
calculated as [141]:

c(N) = 2H(N − 1)− (2(N − 1/N), (5.29)

where c(N), used to normalize h(x), is the average path length of h(x) given N and H(i)
is the harmonic number estimated as ln(i) + 0.5772156649 (Euler’s constant). The score s
of a data point is:

s(x,N) = 2−
E(h(x))

c(N) , (5.30)

where E(h(x)) is the average of h(x) for a collection of iTrees. Based on obtained scores s,
a data point is considered as:

outlier: E(h(x))→ 0, s→ 1, (5.31)

inliers: E(h(x))→ N, s→ 0, (5.32)

indistinct: E(h(x))→ c(n), s→ 0.5. (5.33)
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Chapter 6

Performance Evaluation and
Experimental Results

BGP raw data captured from RIPE and Route Views data collection sites are processed
to generate datasets. The zebra-dump-parser [100] tool, one of the offered tools advertised
by RIPE, is first used to transform data from MRT to ASCII format. Features are then
extracted using our developed C# [101] tool based on format of transformed data. Gener-
ated datasets are employed to perform two-way supervised or semi-supervised classification
techniques to identify regular (0) and anomalous (1) data points using the WannaCrypt and
WestRock datasets. Eight datasets are labeled with and without employing iForest to refine
labels within the anomalous windows of the WannaCrypt and WestRock ransomware at-
tacks. Generated are models based on RNNs (LSTM, GRU), Bi-RNNs (Bi-LSTM, Bi-GRU),
BLS and its extensions, VFBLS, VCFBLS, and gradient boosting decision trees (GBDT)
(XGBoost, LightGBM, CatBoost). Models performance is compared based on training time,
accuracy, F-Score, precision, sensitivity (recall), and confusion matrix.

The experiments include cross-validation and testing. They are conducted using a su-
percomputer managed by Compute Canada [142]. The Cedar [143] cluster consists of 94,528
CPU cores. We used 64 GB memory and an Intel E5-2683 v4 Broadwell (2.1 GHz) processor
with 8 cores. Python 3.6 and libraries [144] NumPy (a scientific computing library), Py-
Torch (a Python framework for deep learning), scikit-learn (a machine learning library), and
gradient boosting frameworks (XGBoost, LightGBM, CatBoost), are used to create input
matrices and to train and test the machine learning models.

6.1 Experimental Procedure

The experimental procedure consists of the nine steps shown in Fig. 6.1:

(1) Collecting 10 and 11 days of BGP update messages for WannaCrypt and WestRock
ransomware attacks, respectively: the days of each attacks as well as two days before
and two days after each attacks;
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(2) Processing BGP raw data from RIPE and Route Views to extract 37 features;

(3) Labeling regular (0) and anomalous (1) data points based on start and end times of
the WannaCrypt (00:00 on 12.05.2017 to 23:59 on 15.05.2017) and WestRock (1:12
UTC on 23.01.2021 to 23:59 UTC on 29.01.2021) ransomware attacks;

(4) Refining labels for data points within the windows of anomalous events;

(5) Normalizing training and test datasets to have mean 0 and standard deviation 1
employing the zscore function;

(6) Partitioning data to extract subsets for training (60 % of anomalies) and testing (40 %
of anomalies);

(7) Using 10-fold cross-validation based on the time series split to train and tune param-
eters;

(8) Generating machine learning (ML) models; and

(9) Testing and evaluating generated ML models based on training time, accuracy, F-
Score, precision, sensitivity (recall), and confusion matrix.

Figure 6.1: Experimental procedure for detecting BGP anomalies caused by WannaCrypt
and WestRock ransomware attacks.

The partitioning process for training and validation datasets for the WannaCript and
WestRock 10-fold cross-validation based on the time series split is illustrated in Fig. 6.2. In
each fold, 572 (WannaCrypt) and 814 (WestRock) data points are used as the validation
dataset. In the first step (Fold 1), 580 (WannaCrypt) and 820 (WestRock) data points are
used for training. The training dataset in each subsequent fold is the concatenation of the
previous training and validation datasets.
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Figure 6.2: Time series split for the 10-fold cross-validation of the WannaCrypt (left) and
WestRock (right) training datasets. Illustrated are the generations of training (orange) and
validation (purple) datasets.

RNN and Bi-RNN models consist of one RNN and one Bi-RNN layer, respectively, and
up to three Fully-Connected (FC) layers. The generated models have 2 (LSTM2/Bi-LSTM2,
GRU2/Bi-GRU2), 3 (LSTM3/Bi-LSTM3, GRU3/Bi-GRU3), and 4 (Bi-LSTM4, Bi-GRU4)
hidden layers. The first layers in the LSTM and GRU deep learning neural network models
consist of 37 RNNs or Bi-RNNs. A model with 4 hidden layers is shown in Fig. 6.3. ReLU
is used as the RNN activation function. Parameters leading to the best performance using
WannaCrypt and WestRock datasets are listed in Table 6.1. The optimization algorithm
“Adam” [145] is selected to train the RNN and Bi-RNN models. A deep learning neural
network model with four hidden layers consisting of 37 RNNs, 64 FC1, 32 FC2, and 16 FC3

fully connected (FC) hidden nodes is shown in Fig. 6.3.

Figure 6.3: Deep learning neural network model. It consists of 37 RNNs, 64 FC1, 32 FC2,
and 16 FC3 fully connected (FC) hidden nodes.
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Table 6.1: RNNs and Bi-RNNs Parameters Leading to the Best Performance: WannaCrypt
and WestRock Datasets.

Label Collection Dataset Input No. of No. of hidden Learning
refinement site sequence epochs nodes rate

length (FC1, FC2, FC3)
RNNs

None
RIPE WannaCrypt 100 30 64, 32, 16 0.01

WestRock 160 50 80,32,16 0.001

Route Views WannaCrypt 100 30 64, 32, 16 0.1
WestRock 40 50 80,32,16 0.001

iForest
RIPE WannaCrypt 100 50 64, 32, 16 0.001

WestRock 160 50 64, 32, 16 0.001

Route Views WannaCrypt 100 50 32, 32, 16 0.001
WestRock 160 50 64, 32, 16 0.001

Bi-RNNs

None
RIPE WannaCrypt 100 30 64, 32, 16 0.01

WestRock 160 50 64, 32, 16 0.001

Route Views WannaCrypt 100 30 64, 32, 16 0.01
WestRock 160 50 64, 32, 16 0.001

iForest
RIPE WannaCrypt 100 50 32, 32, 16 0.001

WestRock 160 50 64, 32, 16 0.001

Route Views WannaCrypt 100 50 80, 32, 16 0.001
WestRock 160 50 64, 32, 16 0.001

The CFBLS, CEBLS, and CFEBLS models were implemented by modifying the origi-
nal BLS functions [136]. For the cross-validation of incremental and non-incremental BLS
models, we vary the number of mapped features (50–300), groups of mapped features (5–
20), and enhancement nodes (50–200). Parameters of the incremental BLS models when
using datasets without label refinement are: incremental learning steps = 2 (WannaCrypt
RIPE, WestRock RIPE), 3 (WannaCrypt Route Views, WestRock Route Views); enhance-
ment nodes/step = 40 (WannaCrypt RIPE, WannaCrypt Route Views, WestRock RIPE),
20 (WestRock Route Views); and data points/step = 1,260 (WannaCrypt RIPE), 840 (Wan-
naCrypt Route Views), 1,792 (WestRock RIPE), and 1,195 (WestRock Route Views). In
the case of datasets with label refinement using iForest, parameters of the incremental BLS
models are: incremental learning steps = 2 (WannaCrypt Route Views, WestRock RIPE,
WestRock Route Views), 3 (WannaCrypt RIPE); enhancement nodes/step = 40 (Wan-
naCrypt RIPE, WestRock Route Views), 20 (WannaCrypt Route Views, WestRock RIPE);
and data points/step = 1,260 (WannaCrypt Route Views), 840 (WannaCrypt RIPE), and
1,792 (WestRock RIPE, WestRock Route Views). Training parameters that generate the
best performance results are listed in Table 6.2.

In the cross-validation of VFBLS and VCFBLS models, we vary mapped features (20–
50), groups of mapped features (10–30), and enhancement nodes (50–100). In the case of
incremental VFBLS and VCFBLS models, feature weight for initial step = 0.9 and enhance-
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Table 6.2: BLS and Incremental BLS Parameters Leading to the Best Performance: Wan-
naCrypt and WestRock Datasets.

Label Collection Dataset Model Mapped Groups of Enhance-
refinement site features mapped ment

features nodes
BLS

None
RIPE WannaCrypt RBF-BLS 300 5 100

WestRock RBF-BLS 300 5 100

Route Views WannaCrypt CFBLS 50 5 200
WestRock RBF-BLS 100 10 200

iForest
RIPE WannaCrypt RBF-BLS 50 10 50

WestRock RBF-BLS 50 20 100

Route Views WannaCrypt BLS 300 20 50
WestRock RBF-BLS 300 5 200

Incremental BLS

None
RIPE WannaCrypt BLS 200 20 200

WestRock RBF-BLS 100 5 200

Route Views WannaCrypt CEBLS 100 10 200
WestRock CEBLS 100 20 200

iForest
RIPE WannaCrypt CFEBLS 50 20 50

WestRock RBF-BLS 300 20 50

Route Views WannaCrypt CEBLS 100 5 200
WestRock RBF-BLS 200 10 200

ment nodes/step = 20. When using datasets without label refinement, remaining parameters
of the incremental VFBLS are: incremental learning steps = 2 and data points/step = 315
(WannaCrypt), 448 (WannaCrypt RIPE), while remaining parameters of the incremen-
tal VCFBLS models are: incremental learning steps = 2 (WannaCrypt RIPE, WestRock
RIPE), 3 (WannaCrypt Route Views, WestRock Route Views) and data points/step = 315
(WannaCrypt RIPE), 210 (WannaCrypt Route Views), 448 (WannaCrypt RIPE), 299 (We-
stRock Route Views). In the case of datasets with label refinement, remaining parameters
of the incremental VFBLS are: incremental learning steps = 2 (WannaCrypt RIPE, Wan-
naCrypt Route Views, WestRock Route Views), 3 (WestRock RIPE) and data points/step
= 315 (WannaCrypt RIPE, WannaCrypt Route Views), 448 (WestRock Route Views), 299
(WestRock RIPE), while remaining parameters of the incremental VCFBLS models are:
incremental learning steps = 2 (WannaCrypt RIPE, WestRock RIPE, WestRock Route
Views), 3 (WannaCrypt Route Views) and data points/step = 315 (WannaCrypt RIPE),
210 (WannaCrypt Route Views), 448 (WestRock RIPE, WestRock Route Views). Training
parameters that generate the best performance results are listed in Table 6.3 and Table 6.4.

Training hyper-parameters of the GBDT models that generate the best performance
results are listed in Table 6.5. Additional hyper-parameters for GBDT algorithms are:
maximum depth in a tree = 6 (XGBoost, CatBoost), maximum number of leaves = 31
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Table 6.3: VFBLS and VCFBLS Parameters Leading to the Best Performance: WannaCrypt
and WestRock Datasets.

Label Collection Number Dataset Mapped Groups of Enhance-
Refinement site of features mapped ment

features features nodes
VFBLS

None
RIPE 37, 16, 8 WannaCrypt 40, 30, 40 20, 20, 30 100

WestRock 40, 30, 50 20, 10, 30 50

Route Views 37, 16, 8 WannaCrypt 40, 40, 40 10, 20, 30 100
WestRock 40, 30, 50 20, 20, 30 50

iForest
RIPE 37, 16, 8 WannaCrypt 40, 30, 40 20, 20, 30 100

WestRock 40, 40, 50 10, 20, 20 50

Route Views 37, 16, 8 WannaCrypt 20, 30, 50 10, 10, 20 10
WestRock 30, 30, 40 10, 20, 30 50

VCFBLS

None
RIPE 37, 16, 8 WannaCrypt 30, 30, 50 10, 10, 30 100

WestRock 20, 30, 40 10, 20, 20 50

Route Views 37, 16, 8 WannaCrypt 40, 40, 50 20, 10, 20 100
WestRock 20, 40, 50 10, 10, 30 50

iForest
RIPE 37, 16, 8 WannaCrypt 30, 30, 50 10, 10, 30 100

WestRock 40, 40, 50 20, 10, 30 50

Route Views 37, 16, 8 WannaCrypt 40, 30, 40 10, 10, 30 50
WestRock 20, 40, 50 10, 10, 30 50

(LightGBM, CatBoost), and loss function = log-loss. We implement gbtree (XGBoost), gbdt
(LightGBM), and Plain (CatBoost) boosting modes. For cross-validation of LightGBM
models, we vary the number of estimators (10–200) and learning rate (0.01–0.1).

6.2 Performance Metrics

Performance of supervised and semi-supervised classification models is evaluated based on
training time, accuracy, F-Score, precision, sensitivity (recall), and confusion matrix.

6.2.1 Confusion Matrix

The number of classified data points for each class k are analyzed and compared by using
a confusion matrix [146]. In the case of binary classification, only two classes are evaluated
and, hence, this matrix consists of True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN) as shown in Table 6.6. TP and FN indicate the number
of anomalous data points that are correctly (anomaly) and incorrectly (regular) classified,
respectively. FP and TN refer to the number of regular data points that are classified as
anomaly and regular, respectively. The confusion matrix is used to calculate other perfor-
mance metrics including accuracy, precision, and sensitivity (recall).
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Table 6.4: Incremental VFBLS and VCFBLS Parameters Leading to the Best Performance:
WannaCrypt and WestRock Datasets.

Label Collection Number Dataset Mapped Groups of Enhance-
Refinement site of features mapped ment

features features nodes
Incremental VFBLS

None
RIPE 37, 16, 8 WannaCrypt 40, 30, 50 10, 20, 30 50

WestRock 40, 30, 50 10, 10, 30 50

Route Views 37, 16, 8 WannaCrypt 30, 30, 40 10, 10, 30 100
WestRock 30, 30, 40 20, 20, 20 100

iForest
RIPE 37, 16, 8 WannaCrypt 40, 30, 50 10, 20, 30 100

WestRock 40, 40, 40 20, 20, 20 50

Route Views 37, 16, 8 WannaCrypt 30, 30, 40 10, 10, 30 100
WestRock 20, 40, 40 20, 20, 30 100

Incremental VCFBLS

None
RIPE 37, 16, 8 WannaCrypt 30, 40, 40 10, 20, 30 50

WestRock 40, 30, 50 20, 10, 30 100

Route Views 37, 16, 8 WannaCrypt 40, 40, 40 20, 20, 30 100
WestRock 20, 30, 40 20, 20, 20 50

iForest
RIPE 37, 16, 8 WannaCrypt 30, 40, 40 10, 10, 30 100

WestRock 20, 40, 50 10, 20, 30 50

Route Views 37, 16, 8 WannaCrypt 30, 30, 40 20, 10, 30 100
WestRock 30, 30, 50 20, 10, 30 100

6.2.2 Accuracy

Accuracy is used [147] to evaluate a model’s ability to correctly classify anomalous data
points. It is broadly defined as:

accuracy = Number of correct predictions

Total number of predictions
. (6.1)

If used to evaluate binary classification, then accuracy is calculated based on the number
of TP and TN with respect to predicted labels:

accuracy = TP + TN

TP + TN + FP + FN
. (6.2)

When one class has a significantly larger number of data points (imbalanced dataset) [148],
accuracy does not correctly reflect a model’s classification ability. Methods employed to bal-
ance [149] datasets include oversampling (duplicating data points from minority class) or
undersampling (removing data points from majority class).

6.2.3 Precision

Precision is a performance metric that indicates the portion of data points correctly classified
as anomalous (TP) among predicted anomalous data points (TP + FP ) [150, 151]. This

60



Table 6.5: XGBoost, LightGBM, and CatBoost Hyper-Parameters Leading to the Best
Performance: WannaCrypt and WestRock Datasets.

Label Collection Model Dataset Number of Learning
Refinement Site estimators rate

None

RIPE

XGBoost WannaCrypt 300 0.10
WestRock 100 0.01

LightGBM WannaCrypt 200 0.10
WestRock 150 0.02

CatBoost WannaCrypt 300 0.10
WestRock 100 0.01

Route Views

XGBoost WannaCrypt 300 0.10
WestRock 50 0.01

LightGBM WannaCrypt 250 0.10
WestRock 150 0.02

CatBoost WannaCrypt 200 0.05
WestRock 100 0.01

iForest

RIPE

XGBoost WannaCrypt 300 0.01
WestRock 100 0.1

LightGBM WannaCrypt 300 0.05
WestRock 100 0.05

CatBoost WannaCrypt 200 0.1
WestRock 100 0.01

Route Views

XGBoost WannaCrypt 150 0.1
WestRock 50 0.01

LightGBM WannaCrypt 300 0.05
WestRock 100 0.1

CatBoost WannaCrypt 200 0.05
WestRock 150 0.01

metric defines the reliability of a model when identifying true anomalies and is calculated
as:

precision = TP

TP + FP
. (6.3)

6.2.4 Sensitivity (Recall)

The performance metric used to measure the portion of data points correctly classified as
anomalous (TP) with respect to actual anomalous data points (TP + FN) is referred to
as sensitivity (recall) [151, 152]. This metric determines a model’s ability to predict true
anomalous data points and is defined as:

sensitivity (recall) = TP

TP + FN
. (6.4)
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Table 6.6: Confusion matrix.

Predicted class
Actual class Anomaly (positive) Regular (negative)
Anomaly (positive) TP FN
Regular (negative) FP TN

6.2.5 F-Score

During the evaluation performance of a machine learning model, the trade-off between
precision and sensitivity should be considered given that improving one metric reduces the
effectiveness of the other. A metric employed to balance this trade-off is F-Score [150]. It is
defined as the harmonic mean of precision and sensitivity:

F-Score = 2× precision× sensitivity
precision + sensitivity . (6.5)

F-Score measures a model’s ability to discriminate between correctly and incorrectly clas-
sified anomalous data points.

6.2.6 Training Time

We also consider the time required to train a machine learning algorithm (training time)
as a performance metric. Training time depends on factors such as datasets size and com-
putational complexity of employed algorithms. Algorithms having short training times are
important for decision making at the onset of malicious attacks.

6.2.7 Experimental Results

The best performance results of RNNs, Bi-RNNs, BLS and its extensions, VFBLS, VCF-
BLS, and GBDT algorithms using the WannaCrypt and WestRock ransomware are listed
in Table 6.7 and Table 6.8, respectively. The best classification model for WannaCrypt ran-
somware attack is Bi-GRU4 generated based on the Route Views data with label refinement.
In the case of WestRock ransomware attack, Bi-GRU4 model generates the best results using
RIPE data and label refinement. BLS and its extensions (incremental learning, RBF-BLS,
CEBLS, CFBLS, CFEBLS), BLS with variable features (VFBLS, VCFBLS), and GBDT
(XGBoost, LightGBM, CatBoost) models exhibit comparable performance with short train-
ing time in most cases. WannaCrypt and WestRock datasets from RIPE collection site often
generate better accuracy and F-Score. LightGBM models offer the shortest training times
albeit of lower accuracy and F-Score compared to Bi-GRU4 models. RNN and Bi-RNN
models require longer training times. Incremental VFBLS and VCFBLS models achieve
the highest sensitivity for both datasets. Incremental BLS, CEBLS, and CFEBLS generate
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high sensitivity using WannaCrypt datasets. RNN and Bi-RNN models lead to the highest
precision.

Experimental results indicate that RNN and Bi-RNN models using the WannaCrypt
and WestRock datasets achieve more balanced precision and sensitivity that lead to higher
F-Score when compared with other models. Increasing the number of hidden layers may
result in higher performance albeit longer training time. Employing Bi-RNN models often
improves classification performance because models are trained based on outputs of past
and future time steps. The implementation of Bi-RNN models consists of one forward and
one backward layer and, hence, it requires longer training time compared to RNN models.

BLS, RBF-BLS, and CFBLS models using the WannaCrypt datasets generate the best
classification performance compared to other BLS extensions. These models achieve bal-
anced precision and sensitivity albeit lower F-Score when compared to RNN and Bi-RNN
models. Incremental learning models based on increments of input data and enhancement
nodes when using the WannaCrypt datasets generate higher sensitivity and, hence, F-Score
improves. The RBF-BLS models using the WestRock datasets achieve very high sensitivity
and very low precision that lead to F-Score comparable to most RNN and Bi-RNN models.
Generating incremental learning models based on increments of input data and enhance-
ment nodes when using the WestRock datasets leads to sensitivity higher than 99.00 %
while precision is comparable to precision generated using RBF-BLS models, which results
in higher F-Score. When compared to RNN and Bi-RNN models, most BLS models based on
the incremental learning require comparable training time despite of models only requiring
dynamic update of output weights instead of retraining.

VFBLS and VCFBLS models with and without incremental learning achieve comparable
classification performance with shorter training time when compared to other BLS models.
Higher sensitivity and comparable precision are achieved when using VFBLS and VCFBLS
models with incremental learning based on increments of input data and enhancement nodes.
The increased sensitivity resulted in higher F-Score. Implementing VFBLS and VCFBLS
with incremental learning results in longer training time by a factor of approximately 2.
This increase may be due to feature selection required at each time step when adding new
input data.

Generated GBDT models using WannaCrypt and WestRock datasets achieve compa-
rable classification performance with shorter training time when compared to BLS models
with and without incremental learning. Unlike other models, the best generated results us-
ing GBDT models are based on a smaller number of features for most cases. Implementing
feature selection is an important step when generating models in order to remove redundant
information that may degrade a model’s performance. Another advantage of GBDT models
is the reduced number of parameters and hyper-parameters that need tuning in order to
improve classification performance.
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In the case of semi-supervised machine learning approach, the iForest anomaly detec-
tion unsupervised algorithm is employed to identify regular data points during anomalous
periods. However, most anomalous data points retain the same label after the refinement
and only few data points are re-labeled as regular. This semi-supervised machine learning
approach based on label refinement offers only comparable classification performance when
compared to supervised machine learning.
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Chapter 7

Conclusion and Future Work

In this thesis, we implemented and compared supervised and semi-supervised machine learn-
ing algorithms for detecting ransomware attacks using BGP routing records. In order to
enable a comprehensive analysis of routing information at the onset of Internet anomalies
and intrusions, we also developed a relational database BGP-RDB to store BGP routing
records.

Data modeling of the BGP-RDB database was based on the BGP open, update, keepalive,
and notification messages as well as the state transitions of TCP connections captured
from RIPE and Route Views data collection sites. Analysis and inclusion of BGP messages
and operational status of peers may improve anomaly detection using machine learning
algorithms. The database was developed using sqlite3 Python module in order to enable easy
integration with Python-based anomaly detection systems. Development of the BGP-RDB
database required to first understand information contained in the fields of BGP message
types as well as the type of data present in the fields (integer, datetime, text/strings). We
then defined various types of tables (core, lookup, list, detail) used to store BGP routing
records and their relationships (one-to-many).

Detection of WannaCrypt and WestRock ransomware attacks using BGP routing records
was performed using supervised and semi-supervised machine learning techniques. BGP
datasets were generated based on BGP update messages from the RIPE and Route Views
data collection sites. In the case of supervised machine learning techniques, we evaluated
performance of RNN (LSTM, GRU), Bi-RNN (Bi-LSTM, Bi-GRU), BLS and its extensions
(incremental learning, RBF-BLS, CFBLS, CEBLS, CFEBLS), BLS with variable features
(VFBLS, VCFBLS), and GBDT (XBoost, LightGBM, CatBoost) models. Semi-supervised
machine learning was implemented by using the iForest unsupervised algorithm for label
refinement of data points during the periods of anomalies while classification was based on
the supervised algorithms (RNNs, Bi-RNNs, BLS, VFBLS, VCFBLS, GBDT). Performance
evaluation was based on training time, accuracy, F-Score, precision, sensitivity (recall), and
confusion matrix. The semi-supervised technique based on label refinement only offered
comparable classification performance when compared to supervised machine learning. The
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best performance (accuracy, F-Score) was generated using WannaCrypt and WestRock BGP
update messages collected from Route Views and RIPE, respectively. Bi-GRU4 model gen-
erated the best classification performance for both datasets. Developing RNN and Bi-RNN
models with a large number of hidden layers required longer training time. Implemented
BLS models with incremental learning required only dynamic update of output weights in-
stead of retraining the model. These models often required comparable training time when
compared to RNN and Bi-RNN models. In most cases, GBDT models offered comparable
classification performance with BLS. They consisted of a small number of parameters and
hyper-parameters and, hence, required shorter training times.

Future work may include generating new features based on BGP open, keepalive, and
notification messages as well as transitions in the BGP FMS based on the developed BGP-
RDB database. The existing BGP datasets currently generated using the zebra-dump-parser
and C# tools should be re-created by querying the BGP-RDB database. Finally, the BGP-
RDB database may be integrated into real-time anomaly detection systems.

Future work for detecting BGP anomalies should explore other anomaly detection un-
supervised algorithms (local outlier factor, one-class SVM) and clustering algorithms (k-
means, density-based spatial clustering of applications with noise, Bayesian networks) for
label refinement. Of particular interest is implementation of various feature selection algo-
rithms (autoencoders, Fisher, decision trees) to be integrated with VFBLS and VCFBLS
algorithms.
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Appendix A

BGP-RDB: Data Download
Module

Listed are functions used to retrieve a single repository containing BGP routing record
from RIPE and Route Views collection sites. The function updateMessageName generates
the file name of a BGP repository based on the year (yyyy), month (mm), hour (hh), and
minute (mm) strings. Its output is a 2-tuple with the strings: updates.yyyymmdd.hhmm
and yyyy.mm. Function data_downloader_single is used to retrieve a BGP repository by
specifying the file name (updates.yyyymmdd.hhmm), date of required file (yyyy.mm), site
(RIPE or RouteViews), and name of the collector.

Listing A.1: BGP-RDA Module to Retrieve BGP Messages from RIPE and Route Views
Collection Sites.

1 """
2 @author Ana Laura Gonzalez Rios
3 @email anag@sfu .ca
4 @date June 2022
5 @version : 1.0.0
6 @description :
7 This file contains functions to download BGP repositories
8 from RIPE or Route Views collection sites.
9 @copyright Copyright (c) June 2022

10 All Rights Reserved
11
12 Python code ( version 3.10.2)
13 """
14
15 import requests
16
17 # Name of the update_message_file generation
18 def updateMessageName (year , month , day , hour , minute ):
19 # updates . YYYYMMDD .HHMM.gz , minute : 5 minutes interval
20
21 data_date = "%s.%s" % (year , month) # used for data_link in Function

data_downloader ().
22
23 update_message_file = " updates .%s%s%s.%s%s" % (year , month , day , hour ,

minute )
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24
25 return update_message_file , data_date
26
27 # Download specific file from RIPE or RouteViews
28 def data_downloader_single ( update_message_file , data_date , site ,

collector_ripe = ’rrc04 ’,collector_routeviews = ’route - views2 ’):
29
30 data_file = update_message_file
31
32 i f site == ’RIPE ’:
33 data_link = ’http :// data.ris.ripe.net /%s/%s/%s.gz’ % ( collector_ripe

, data_date , data_file )
34 print ( data_link )
35 r = requests .get(data_link , allow_redirects = True)
36 open(’%s.gz’ % ( data_file ), ’wb’).write(r. content )
37
38 i f site == ’RouteViews ’:
39 i f collector_routeviews == ’route - views2 ’: collector_routeviews = ’’
40 data_link = ’http :// archive . routeviews .org /%s/ bgpdata /%s/ UPDATES /%s.

bz2 ’ % ( collector_routeviews ,data_date , data_file )
41 print ( data_link )
42 r = requests .get(data_link , allow_redirects = True)
43 # add condition , if request is 200 then save file , otherwhise ,

return reponse code
44 open(’%s.bz2 ’ % ( data_file ), ’wb’).write(r. content )
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Appendix B

BGP-RDB: Modified mrt2yaml.py
Script

Listed is the modified script mrt2yaml.py used to convert MRT data to ASCII and generate
YAML files to be employed as input to the ingestion engine. Parsed data are first mapped
to Python ordered dictionaries and then inserted in the YAML file with indentations that
indicate lists and other dictionaries contained in parsed BGP message. MRT file to be parsed
and destination YAML file are required inputs to the main function mrt2yaml. This function
inserts parsed lines from the MRT file into the YAML file. Functions represent_ordereddict,
dict_representer, and dict_constructor are used to ensure that elements of the ordered
dictionaries are correctly formatted in the YAML file.

Listing B.1: Script mrt2yaml.py to Export Parsed MRT Data to a YAML File.
1 #!/ usr/bin/ python
2
3 import yaml
4 import sys
5 import collections
6 from mrtparse import *
7
8 def represent_ordereddict (dumper , instance ):
9 return dumper . represent_mapping (’tag:yaml.org ,2002: map ’, instance .items

())
10
11 yaml. add_representer ( collections . OrderedDict , represent_ordereddict )
12
13 def dict_representer (dumper , data):
14 return dumper . represent_dict (data. iteritems ())
15
16 def dict_constructor (loader , node):
17 return collections . OrderedDict ( loader . construct_pairs (node))
18
19 def mrt2yaml ( file_to_parse , dest_file ):
20 with open(dest_file ,’w’) as file_descriptor :
21 file_descriptor .write(’---’ + ’\n’)
22 print (’---’)
23 ord_dics = []
24 for entry in Reader ( file_to_parse ):
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25 #print(yaml.dump ([ entry.data ]) [: -1])
26 yaml.dump ([ entry.data], file_descriptor )
27 file_descriptor .write(’... ’ + ’\n’)

83



Appendix C

BGP-RDB: Ingestion Engine
Functions

Listed are functions used to initialize tables and insert data entries in core and list tables.
Initialization functions for lookup and detail tables include insertion of logic keys. Function
create_database is employed to initialize tables when creating a new BGP database. The
function may be executed by invoking ingestion.py.

Listing C.1: BGP-RDA Ingestion Engine Functions: Tables Initialization and Data Entry.
1 """
2 @author Ana Laura Gonzalez Rios
3 @email anag@sfu .ca
4 @date June 2022
5 @version : 1.0.0
6 @description :
7 This file contains methods to create DB tables for collected
8 BGP messagesas well as to insert data in tables of an
9 existing BGP database .

10
11 @copyright Copyright (c) June 2022
12 All Rights Reserved
13
14 Python code ( version 3.10.2)
15 SQLite3 commands ( version 3.28.0)
16 """
17
18 import sqlite3
19 from sqlite3 import Error
20
21 # Function to create connection with specified DB ( db_file )
22 def create_connection ( db_file ):
23 """ create a database connection to a SQLite database """
24 conn = None
25 try:
26 conn = sqlite3 . connect ( db_file )
27 print (" Successfully connected to Database ! Database version is: ",

sqlite3 . version )
28 return conn
29 except Error as e:

84



30 print (e)
31
32 # Function to create table ’mrt_types .’ If table exists , it will be first

removed .
33 def create_mrttype_table ( db_connection ):
34 cur = db_connection . cursor ()
35 cur. executescript ( ’’’
36 DROP TABLE IF EXISTS mrt_types ;
37 CREATE TABLE IF NOT EXISTS mrt_types
38 /* Table containing MRT Types */
39 (
40 id INTEGER NOT NULL PRIMARY KEY , -- Primary key to join

bgp_headers table on column ’mrt_type ’
41 type TEXT UNIQUE -- MRT Type
42 );
43 ’’’)
44 types = [(12 , ’TABLE_DUMP ’),
45 (13,’TABLE_DUMP_V2 ’),
46 (16,’BGP4MP ’),
47 (17,’BGP4MP_ET ’)]
48 cur. executemany ( ’’’INSERT INTO mrt_types (id ,type)
49 VALUES (? ,?); ’’’,types)
50 db_connection . commit ()
51
52 # Function to create table ’table_dump_subtypes .’ If table exists , it will

be first removed .
53 def create_tabledumpsubtype_table ( db_connection ):
54 cur = db_connection . cursor ()
55 cur. executescript ( ’’’
56 DROP TABLE IF EXISTS table_dump_subtypes ;
57 CREATE TABLE IF NOT EXISTS table_dump_subtypes
58 /* Table containing Table DUMP Sutbtypes */
59 (
60 id INTEGER NOT NULL PRIMARY KEY , -- Primary key to

join bgp_headers table on column ’afi ’
61 subtype TEXT UNIQUE -- Table DUMP

subtype
62 );
63 ’’’)
64 types = [(1,’AFI_IPv4 ’),
65 (2,’AFI_IPv6 ’)]
66 cur. executemany ( ’’’INSERT INTO table_dump_subtypes (id , subtype )
67 VALUES (? ,?); ’’’,types)
68 db_connection . commit ()
69
70 # Function to create table ’bgp4mp_bgp4mpet_subtypes .’ If table exists , it

will be first removed .
71 # Subtyes 6 - 11 not implemented in DB
72 def create_bgp4mpbpg4mpetsubtype_table ( db_connection ):
73 cur = db_connection . cursor ()
74 cur. executescript ( ’’’
75 DROP TABLE IF EXISTS bgp4mp_bgp4mpet_subtypes ;
76 CREATE TABLE IF NOT EXISTS bgp4mp_bgp4mpet_subtypes
77 (
78 /* Table containing BGP4MP / BGP4MP_ET Subtype */
79 id INTEGER NOT NULL PRIMARY KEY , -- Primary

key to join bgp_headers table on column ’bgp4mp_bgp4mpet_subtype ’
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80 bgp4mp_subtype TEXT UNIQUE -- BGP4MP /
BGP4MP_ET Subtype

81 );
82 ’’’)
83 types = [(0,’BGP4MP_STATE_CHANGE ’),
84 (1,’BGP4MP_MESSAGE ’),
85 (4,’BGP4MP_MESSAGE_AS4 ’),
86 (5,’BGP4MP_STATE_CHANGE_AS4 ’),
87 (6,’BGP4MP_MESSAGE_LOCAL ’),
88 (7,’BGP4MP_MESSAGE_AS4_LOCAL ’),
89 (8,’BPG4MP_MESSAGE_ADDPATH ’),
90 (9,’BGP4MP_MESSAGE_AS4_ADDPATH ’),
91 (10,’BP4MP_MESSAGE_LOCAL_ADDPATH ’),
92 (11,’BGP4MP_MESSAGE_AS4_LOCAL_ADDPATH ’)]
93 cur. executemany ( ’’’INSERT INTO bgp4mp_bgp4mpet_subtypes (id ,

bgp4mp_subtype )
94 VALUES (? ,?); ’’’,types)
95 db_connection . commit ()
96
97 # Function to create table ’bgp_attribute .’ If table exists , it will be

first removed .
98 def create_bgpattribute_table ( db_connection ):
99 cur = db_connection . cursor ()

100 cur. executescript ( ’’’
101 DROP TABLE IF EXISTS bgp_attribute ;
102 CREATE TABLE IF NOT EXISTS bgp_attribute
103 /* Table containing BGP attributes */
104 (
105 id INTEGER NOT NULL PRIMARY KEY , -- Primary key

to join table path_attributes on column ’type ’
106 attribute TEXT UNIQUE , -- BGP attribute
107 ebgp_category INTEGER , -- To join table

bgp_attributes_category on foreign key ’id’
108 ibgp_category INTEGER -- To join table

bgp_attributes_category on foreign key ’id’
109 );
110 ’’’)
111 # Implemented : ORIGIN , AS_PATH , NEXT_HOP , MULTI_EXIT_DISC , AGGREGATOR
112 # Pending to implement attributes 6, 8 - 128. Check if examples are

avalable for non - implemented attributes
113 types = [(1,’ORIGIN ’ ,1,1),
114 (2,’AS_PATH ’ ,1,1),
115 (3,’NEXT_HOP ’ ,1,1),
116 (4,’MULTI_EXIT_DISC ’ ,2,2),
117 (5,’LOCAL_PREF ’ ,2,1),
118 (6,’ATOMIC_AGGREGATE ’ ,2,2),
119 (7,’AGGREGATOR ’ ,2,2),
120 (8,’COMMUNITY ’ ,3,3),
121 (9,’ORIGINATOR_ID ’ ,4,4),
122 (10,’CLUSTER_LIST ’ ,4,4),
123 (14,’MP_REACH_NLRI ’ ,4,4),
124 (15,’MP_UNREACH_NLRI ’ ,4,4),
125 (16,’EXTENDED COMMUNITIES ’ ,3,3),
126 (17,’AS4_PATH ’ ,3,3),
127 (18,’AS4_AGGREGATOR ’ ,3,3),
128 (26,’AIGP ’ ,4,4),
129 (32,’LARGE_COMMUNITY ’ ,3,3),
130 (128 , ’ATTR_SET ’ ,3,3)]
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131 cur. executemany ( ’’’INSERT INTO bgp_attribute (id , attribute ,
ebgp_category , ibgp_category )

132 VALUES (? ,? ,? ,?); ’’’,types)
133 db_connection . commit ()
134
135 # Function to create table ’bgp_attributes_category .’ If table exists , it

will be first removed .
136 def create_bgpattributescategories_table ( db_connection ):
137 cur = db_connection . cursor ()
138 cur. executescript ( ’’’
139 DROP TABLE IF EXISTS bgp_attributes_category ;
140 CREATE TABLE IF NOT EXISTS bgp_attributes_category
141 (
142 /* Table containing categories of BGP attributes */
143 id INTEGER NOT NULL PRIMARY KEY , --

Priamry key to join bgp_attribute table on column ’ebgp_category ’ or ’
ibgp_category ’

144 attribute_category TEXT UNIQUE -- BGP
attribute category

145 );
146 ’’’)
147 types = [(1,’WELL -KNOWN MANDATORY ’),
148 (2,’WELL -KNOWN DISCRETIONARY ’),
149 (3,’OPTIONAL TRANSITIVE ’),
150 (4,’OPTIONAL NON - TRANSITIVE ’)]
151 cur. executemany ( ’’’INSERT INTO bgp_attributes_category (id ,

attribute_category )
152 VALUES (? ,?); ’’’,types)
153 db_connection . commit ()
154
155 # Function to create table ’bgp_messages .’ If table exists , it will be first

removed .
156 def create_bgpmessagestype_table ( db_connection ):
157 cur = db_connection . cursor ()
158 cur. executescript ( ’’’
159 DROP TABLE IF EXISTS bgp_messages_type ;
160 CREATE TABLE IF NOT EXISTS bgp_messages_type
161 (
162 /* Table containing BGP message types */
163 id INTEGER NOT NULL PRIMARY KEY , -- Primary key

to join bgp_messages table on column ’type ’
164 message_type TEXT UNIQUE -- BGP message

type
165 );
166 ’’’)
167 types = [(1,’OPEN ’),
168 (2,’UPDATE ’),
169 (3,’NOTIFICATION ’),
170 (4,’KEEPALIVE ’)]
171 cur. executemany ( ’’’INSERT INTO bgp_messages_type (id , message_type )
172 VALUES (? ,?); ’’’,types)
173 db_connection . commit ()
174
175 # Function to create table ’as_path_segments_type .’ If table exists , it will

be first removed .
176 def create_aspathsegmentstype_table ( db_connection ):
177 cur = db_connection . cursor ()
178 cur. executescript ( ’’’
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179 DROP TABLE IF EXISTS as_path_segments_type ;
180 CREATE TABLE IF NOT EXISTS as_path_segments_type
181 (
182 /* Table containing AS_PATH segment types */
183 id INTEGER NOT NULL PRIMARY KEY , -- Primary key

to join as_paths table on column ’segment_type ’
184 segment_type TEXT UNIQUE -- AS_PATH

segment type
185 );
186 ’’’)
187 types = [(1,’AS_SET ’),
188 (2,’AS_SEQUENCE ’)]
189 cur. executemany ( ’’’INSERT INTO as_path_segments_type (id , segment_type )
190 VALUES (? ,?); ’’’,types)
191 db_connection . commit ()
192
193 # Function to create table ’bgp_headers .’ If table exists , it will be first

removed .
194 def create_bgpheader_table ( db_connection ):
195 cur = db_connection . cursor ()
196 cur. executescript ( ’’’
197 DROP TABLE IF EXISTS bgp_headers ;
198 CREATE TABLE IF NOT EXISTS bgp_headers
199 /* Table containing headers of collected BGP message */
200 (
201 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key to join table bgp_openmessages ,
bgp_updatemessages , bgp_keepalivemessages , bgp_notificationmessages , or
bgp_statechangemessages on column ’header_id ’

202 timestamp_unix INTEGER ,
-- Time stamp of collected BGP message in Unix format

203 timestamp_date DATETIME ,
-- Time stamp of collected BGP message in yyyy -mm -dd hh:

mm:ss format
204 mrt_type INTEGER ,

-- To join table mrt_types on column ’id’
205 bgp4mp_bgp4mpet_subtype INTEGER ,

-- To join table bgp4mp_bgp4mpet_subtypes on column ’id’
206 message_length INTEGER ,

-- Length of header + BGP message
207 peer_as TEXT ,

-- AS sending the BGP message
208 local_as TEXT ,

-- AS receiving the BGP message
209 ifindex INTEGER ,

-- Interface index
210 afi INTEGER ,

-- To join table table_dump_subtypes on ’id’
211 peer_ip TEXT ,

-- IP ( prefix ) of sending AS
212 local_ip TEXT

-- IP ( prefix ) of receiving AS
213 );
214 ’’’)
215 db_connection . commit ()
216 # bgp_message_length INTEGER

-- Length of BGP message
217
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218
219 # Function to create table ’bgp_updatemessages .’ If table exists , it will be

first removed .
220 def create_bgpupdatemessages_table ( db_connection ):
221 cur = db_connection . cursor ()
222 cur. executescript ( ’’’
223 DROP TABLE IF EXISTS bgp_updatemessages ;
224 CREATE TABLE IF NOT EXISTS bgp_updatemessages
225 (
226 /* Table containing collected BGP messages */
227 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key to join tables withdawn_routes ,
announced_routes , or path_attributes on bgp_message_id

228 timestamp_unix INTEGER ,
-- Time stamp of collected BGP message in Unix format

229 timestamp_date DATETIME ,
-- Time stamp of collected BGP message in yyyy -mm -dd hh:

mm:ss format
230 header_id INTEGER ,

-- To join table bgp_headers on column ’id’
231 message_length INTEGER ,

-- BGP message length
232 type INTEGER ,

-- To join table bgp_messages_type on column ’id’
233 withdrawn_routes_length INTEGER ,

-- Length of withdrawn routes field
234 path_attribute_length INTEGER ,

-- Length of path attributes field
235 nlri_length INTEGER

-- Number of announced routes
236 );
237 ’’’)
238 db_connection . commit ()
239
240 # Function to create table ’path_attributes .’ If table exists , it will be

first removed .
241 def create_pathattributes_table ( db_connection ):
242 cur = db_connection . cursor ()
243 cur. executescript ( ’’’
244 DROP TABLE IF EXISTS path_attributes ;
245 CREATE TABLE IF NOT EXISTS path_attributes
246 (
247 /* Table containing path attributes of collected BGP UPDATE messages */
248 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key to join tables as_paths ,
aggregator_attribute , origin_pathattribute , nexthop_pathattribute , or
multiexitdisc_pathattribute on column ’path_attribute_id ’

249 timestamp_unix INTEGER ,
-- Time stamp of collected BGP message in Unix format

250 timestamp_date DATETIME ,
-- Time stamp of collected BGP message in yyyy -mm -dd hh:

mm:ss format
251 bgp_message_id INTEGER ,

-- To join table bgp_messages on column ’id’
252 flag INTEGER ,

-- Path attribute flag
253 type INTEGER ,

-- To join table bgp_attribute on column ’id’
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254 length INTEGER
-- Path attribute length

255 );
256 ’’’)
257 db_connection . commit ()
258
259 # Function to create table ’as_paths .’ If table exists , it will be first

removed .
260 def create_aspaths_table ( db_connection ):
261 cur = db_connection . cursor ()
262 cur. executescript ( ’’’
263 DROP TABLE IF EXISTS as_paths ;
264 CREATE TABLE IF NOT EXISTS as_paths
265 (
266 /* Table containing sequences or sets of ASes (route BGP message has

traversed ) of collected BGP UPDATE messages */
267 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
268 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
269 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

270 path_attribute_id INTEGER ,
-- To join table path_attributes on column ’id’

271 segment_type INTEGER ,
-- To join table as_path_segments_type on column ’id’

272 aspath_length INTEGER ,
-- Length of AS_PATH path attribute

273 as_path INTEGER
-- Sequence or set of ASes

274 );
275 ’’’)
276 db_connection . commit ()
277
278 # Function to create table ’aggregator_attributes .’ If table exists , it will

be first removed .
279 def create_aggregatorattributes_table ( db_connection ):
280 cur = db_connection . cursor ()
281 cur. executescript ( ’’’
282 DROP TABLE IF EXISTS aggregator_attributes ;
283 CREATE TABLE IF NOT EXISTS aggregator_attributes
284 /* Table containing AGGREGATOR path attribute of collected BGP UPDATE

messages */
285 (
286 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
287 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
288 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

289 path_attribute_id INTEGER ,
-- To join table path_attributes on column ’id’

290 attribute_length INTEGER ,
-- Length of the AGGREGATOR path attribute

291 as_id INTEGER ,
-- Last AS number that formed the aggregate route
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292 as_ip TEXT
-- IP/ prefix of the last AS that formed the aggregate

route
293 );
294 ’’’)
295 db_connection . commit ()
296
297 # Function to create table ’withdrawn_routes .’ If table exists , it will be

first removed .
298 def create_withdrawnroutes_table ( db_connection ):
299 cur = db_connection . cursor ()
300 cur. executescript ( ’’’
301 DROP TABLE IF EXISTS withdrawn_routes ;
302 CREATE TABLE IF NOT EXISTS withdrawn_routes
303 (
304 /* Table containing Withdrawn routes of collected BGP UPDATE messages */
305 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
306 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
307 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

308 bgp_message_id INTEGER ,
-- To join table bgp_updatemessages on column ’id’

309 prefix_length INTEGER ,
-- Length of the withdrawn routes prefix field

310 prefix TEXT
-- Withdrawn IPs ( prefixes )

311 );
312 ’’’)
313 db_connection . commit ()
314
315 # Function to create table ’announced_routes .’ If table exists , it will be

first removed .
316 def create_announcedroutes_table ( db_connection ):
317 cur = db_connection . cursor ()
318 cur. executescript ( ’’’
319 DROP TABLE IF EXISTS announced_routes ;
320 CREATE TABLE IF NOT EXISTS announced_routes
321 (
322 /* Table containing Announced routes of collected BGP UPDATE

messages */
323 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
324 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
325 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

326 bgp_message_id INTEGER ,
-- To join table bgp_messages on column ’id’

327 prefix_length INTEGER ,
-- Length of the NLRI field ( announced routes )

328 prefix TEXT
-- Announced IPs ( prefixes )

329 );
330 ’’’)
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331 db_connection . commit ()
332
333 # Function to create table ’origin_pathattribute .’ If table exists , it will

be first removed .
334 def cerate_originpathattribute_table ( db_connection ):
335 cur = db_connection . cursor ()
336 cur. executescript ( ’’’
337 DROP TABLE IF EXISTS origin_pathattribute ;
338 CREATE TABLE IF NOT EXISTS origin_pathattribute
339 (
340 /* Table containing ORIGIN path attribute of collected BGP UPDATE

messages */
341 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
342 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
343 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

344 path_attribute_id INTEGER ,
-- To join table path_attributes on column ’id’

345 attribute_length INTEGER ,
-- Length of ORIGIN path attribute

346 origin_id INTEGER
-- To join table origin_values on column ’id’

347 );
348 ’’’)
349 db_connection . commit ()
350
351 # Function to create table ’nexthop_pathattribute .’ If table exists , it will

be first removed .
352 def cerate_nexthopattribute_table ( db_connection ):
353 cur = db_connection . cursor ()
354 cur. executescript ( ’’’
355 DROP TABLE IF EXISTS nexthop_pathattribute ;
356 CREATE TABLE IF NOT EXISTS nexthop_pathattribute
357 (
358 /* Table containing NEXT_HOP path attribute of collected BGP UPDATE

messages */
359 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
360 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
361 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

362 path_attribute_id INTEGER ,
-- To join table path_attributes on column ’id’

363 attribute_length INTEGER ,
-- Length of NEXT_HOP path attribute

364 nexthop_ip TEXT
-- IP ( prefix ) of router that should be used as next hop

365 );
366 ’’’)
367 db_connection . commit ()
368
369 # Function to create table ’origin_values .’ If table exists , it will be

first removed .
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370 def cerate_originvalues_table ( db_connection ):
371 cur = db_connection . cursor ()
372 cur. executescript ( ’’’
373 DROP TABLE IF EXISTS origin_values ;
374 CREATE TABLE IF NOT EXISTS origin_values
375 (
376 /* Table containing values of ORIGIN BGP attribute */
377 id INTEGER NOT NULL PRIMARY KEY , -- Primary key to

join origin_pathattribute table on column ’origin_id ’
378 origin_value TEXT UNIQUE -- Origin of the

path information
379 );
380 ’’’)
381 types = [(0,’EGP ’),
382 (1,’IGP ’),
383 (2,’INCOMPLETE ’)]
384 cur. executemany ( ’’’INSERT INTO origin_values (id , origin_value )
385 VALUES (? ,?); ’’’,types)
386 db_connection . commit ()
387
388 # Function to create table ’multiexitdisc_pathattribute .’ If table exists ,

it will be first removed .
389 def cerate_multiexitdiscattribute_table ( db_connection ):
390 cur = db_connection . cursor ()
391 cur. executescript ( ’’’
392 DROP TABLE IF EXISTS multiexitdisc_pathattribute ;
393 CREATE TABLE IF NOT EXISTS multiexitdisc_pathattribute
394 /* Table containing MULTI_EXIT_DISC path attribute of collected BGP

UPDATE messages */
395 (
396 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
397 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
398 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

399 path_attribute_id INTEGER ,
-- To join table path_attributes on column ’id’

400 attribute_length INTEGER ,
-- Length of MULTI_EXIT_DISC path attribute

401 value INTEGER
-- Preferred value to be used when discriminating among

multiple entry/exit points to the same AS neighbor
402 );
403 ’’’)
404 db_connection . commit ()
405
406 # Function to create table ’bgp_keepalivemessages .’ If table exists , it will

be first removed .
407 def create_bgpkeepalivemessages_table ( db_connection ):
408 cur = db_connection . cursor ()
409 cur. executescript ( ’’’
410 DROP TABLE IF EXISTS bgp_keepalivemessages ;
411 CREATE TABLE IF NOT EXISTS bgp_keepalivemessages
412 /* Table containing fields included in collected BGP OPEN messages */
413 (
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414 id INTEGER NOT NULL PRIMARY KEY
AUTOINCREMENT UNIQUE , -- Primary key

415 timestamp_unix INTEGER ,
-- Time stamp of collected BGP message in Unix format

416 timestamp_date DATETIME ,
-- Time stamp of collected BGP message in yyyy -mm -dd hh:

mm:ss format
417 header_id INTEGER ,

-- To join table bgp_headers on column ’id’
418 message_length INTEGER ,

-- Length of header + BGP message
419 type INTEGER

-- To join table bgp_messages_type on column ’id’
420 );
421 ’’’)
422 db_connection . commit ()
423
424 # Function to create table ’bgp_openmessages .’ If table exists , it will be

first removed .
425 def create_bgpopenmessages_table ( db_connection ):
426 cur = db_connection . cursor ()
427 cur. executescript ( ’’’
428 DROP TABLE IF EXISTS bgp_openmessages ;
429 CREATE TABLE IF NOT EXISTS bgp_openmessages
430 /* Table containing fields included in collected BGP OPEN messages */
431 (
432 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
433 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
434 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

435 header_id INTEGER ,
-- To join table bgp_headers on column ’id’

436 message_length INTEGER ,
-- Length of BGP message

437 type INTEGER ,
-- To join table bgp_messages_type on column ’id’

438 bgp_version INTEGER ,
-- Length of MULTI_EXIT_DISC path attribute

439 local_as INTEGER ,
-- AS number of receiving router (peer)

440 holdtime INTEGER ,
-- Time between receipt of successive KEPALIVE and/or

UPDATE messages
441 bgp_id TEXT ,

-- IP of receiving router (peer)
442 optional_parameters_length TEXT

-- Length of optional parameters included in the OPEN
message

443 );
444 ’’’)
445 db_connection . commit ()
446
447 # Function to create table ’bgp_notificationmessages .’ If table exists , it

will be first removed .
448 def create_bgpnotificationmessages_table ( db_connection ):
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449 cur = db_connection . cursor ()
450 cur. executescript ( ’’’
451 DROP TABLE IF EXISTS bgp_notificationmessages ;
452 CREATE TABLE IF NOT EXISTS bgp_notificationmessages
453 /* Table containing fields included in collected BGP NOTIFICATION

messages */
454 (
455 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
456 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
457 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

458 header_id INTEGER ,
-- To join table bgp_headers on column ’id’

459 message_length INTEGER ,
-- Length of BGP message

460 type INTEGER ,
-- To join table bgp_messages_type on column ’id’

461 error_code INTEGER ,
-- To join table bgp_error_codes on column ’id’

462 error_subcode INTEGER ,
-- To join table bgp_error_subcodes on column ’id’

463 diagnosis_data TEXT
-- Addtional data included to diagnose errors

464 );
465 ’’’)
466 db_connection . commit ()
467
468 # Function to create table ’bgp_error_codes .’ If table exists , it will be

first removed .
469 def create_bgperrorcodes_table ( db_connection ):
470 cur = db_connection . cursor ()
471 cur. executescript ( ’’’
472 DROP TABLE IF EXISTS bgp_error_codes ;
473 CREATE TABLE IF NOT EXISTS bgp_error_codes
474 /* Table containing BGP error codes */
475 (
476 id INTEGER NOT NULL PRIMARY KEY , --

Primary key , to join table bgp_notificationmessages on column ’
error_code ’

477 symbolic_name TEXT --
Description of error condition

478 );
479 ’’’)
480 types = [(1,’Message Header Error ’),
481 (2,’OPEN Message Error ’),
482 (3,’UPDATE Message Error ’),
483 (4,’Hold Timer Expired ’),
484 (5,’Finite State Machine Error ’),
485 (6,’Cease ’)]
486 cur. executemany ( ’’’INSERT INTO bgp_error_codes (id , symbolic_name )
487 VALUES (? ,?); ’’’,types)
488 db_connection . commit ()
489
490 # Function to create table ’bgp_messageheader_error_subcodes .’ If table

exists , it will be first removed .
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491 def create_bgpmessageheadererrorsubcodes_table ( db_connection ):
492 cur = db_connection . cursor ()
493 cur. executescript ( ’’’
494 DROP TABLE IF EXISTS bgp_messageheader_error_subcodes ;
495 CREATE TABLE IF NOT EXISTS bgp_messageheader_error_subcodes
496 /* Table containing BGP message Header error subcodes */
497 (
498 id INTEGER NOT NULL PRIMARY KEY , --

Primary key , to join table bgp_notificationmessages on column ’
error_subcode ’

499 description TEXT --
Description of message header error subcode

500 );
501 ’’’)
502 types = [(0,’Unspecific ’),
503 (1,’Connection Not Synchronized ’),
504 (2,’Bad Message Length ’),
505 (3,’Bad Message Type ’)]
506 cur. executemany ( ’’’INSERT INTO bgp_messageheader_error_subcodes (id ,

description )
507 VALUES (? ,?); ’’’,types)
508 db_connection . commit ()
509
510 # Function to create table ’bgp_openmessage_error_subcodes .’ If table exists

, it will be first removed .
511 def create_bgpopenmessageerrorsubcodes_table ( db_connection ):
512 cur = db_connection . cursor ()
513 cur. executescript ( ’’’
514 DROP TABLE IF EXISTS bgp_openmessage_error_subcodes ;
515 CREATE TABLE IF NOT EXISTS bgp_openmessage_error_subcodes
516 /* Table containing BGP OPEN message error subcodes */
517 (
518 id INTEGER NOT NULL PRIMARY KEY , --

Primary key , to join table bgp_notificationmessages on column ’
error_subcode ’

519 description TEXT --
Description of open message error subcode

520 );
521 ’’’)
522 types = [(0,’Unspecific ’),
523 (1,’Unsupported Version Number ’),
524 (2,’Bad Peer AS’),
525 (3,’Bad BGP Identifier ’),
526 (4,’Unsupported Optional Parameter ’),
527 (5,’Authentication Failure ’),
528 (6,’Unacceptable Hold Time ’)]
529 cur. executemany ( ’’’INSERT INTO bgp_openmessage_error_subcodes (id ,

description )
530 VALUES (? ,?); ’’’,types)
531 db_connection . commit ()
532
533 # Function to create table ’bgp_updatemessage_error_subcodes .’ If table

exists , it will be first removed .
534 def create_bgpupdatemessageerrorsubcodes_table ( db_connection ):
535 cur = db_connection . cursor ()
536 cur. executescript ( ’’’
537 DROP TABLE IF EXISTS bgp_updatemessage_error_subcodes ;
538 CREATE TABLE IF NOT EXISTS bgp_updatemessage_error_subcodes
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539 /* Table containing BGP UPDATE message error subcodes */
540 (
541 id INTEGER NOT NULL PRIMARY KEY , --

Primary key , to join table bgp_notificationmessages on column ’
error_subcode ’

542 description TEXT --
Description of message header error subcode

543 );
544 ’’’)
545 types = [(0,’Unspecific ’),
546 (1,’Malformed Attribute List ’),
547 (2,’Unrecognized Well -known Attribute ’),
548 (3,’Missing Well -known Attribute ’),
549 (4,’Attribute Flags Error ’),
550 (5,’Attribute Length Error ’),
551 (6,’Invalid ORIGIN Attribute ’),
552 (7,’AS Routing Loop ’),
553 (8,’Invalid NEXT_HOP Attribute ’),
554 (9,’Optional Attribute Error ’),
555 (10,’Invalid Network Field ’),
556 (11,’Malformed AS_PATH ’)]
557 cur. executemany ( ’’’INSERT INTO bgp_updatemessage_error_subcodes (id ,

description )
558 VALUES (? ,?); ’’’,types)
559 db_connection . commit ()
560
561 # Add table for optional parameters OPEN messages ?
562
563 def create_bgpstatechangemessages_table ( db_connection ):
564 cur = db_connection . cursor ()
565 cur. executescript ( ’’’
566 DROP TABLE IF EXISTS bgp_statechangemessages ;
567 CREATE TABLE IF NOT EXISTS bgp_statechangemessages
568 /* Table containing fields old and new state in the BGP finite state

machine */
569 (
570 id INTEGER NOT NULL PRIMARY KEY

AUTOINCREMENT UNIQUE , -- Primary key
571 timestamp_unix INTEGER ,

-- Time stamp of collected BGP message in Unix format
572 timestamp_date DATETIME ,

-- Time stamp of collected BGP message in yyyy -mm -dd hh:
mm:ss format

573 header_id INTEGER ,
-- To join table bgp_headers on column ’id’

574 old_state INTEGER ,
-- Previous state in the BGP finite state machine

575 new_state INTEGER
-- New state in the BGP finite state machine

576 );
577 ’’’)
578 db_connection . commit ()
579
580 def create_bgpfinitesatemachine_table ( db_connection ):
581 cur = db_connection . cursor ()
582 cur. executescript ( ’’’
583 DROP TABLE IF EXISTS bgp_finite_state_machine ;
584 CREATE TABLE IF NOT EXISTS bgp_finite_state_machine
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585 /* Table containing description of each sate in the BGP finite state
machine */

586 (
587 id INTEGER NOT NULL PRIMARY KEY , --

Primary key , to join table bgp_statemessages on columns ’old_state ’ and
’new_state ’

588 description TEXT --
Description of states in the BGP finite state machine

589 );
590 ’’’)
591 types = [(1,’Idle ’),
592 (2,’Connect ’),
593 (3,’Active ’),
594 (4,’Open Sent ’),
595 (5,’Open Confirm ’),
596 (6,’Established ’)]
597 cur. executemany ( ’’’INSERT INTO bgp_finite_state_machine (id , description

)
598 VALUES (? ,?); ’’’,types)
599 db_connection . commit ()
600
601 # Function to insert a new row in table ’bgp_headers .’ Arugment ’

db_connection ’ must be created while argument ’entries ’ should be a list
of elements following order shown

602 # in command ’cur. execute (). Function returns the index of added row.
603 def insert_bgpheader_table ( db_connection , entries ):
604 cur = db_connection . cursor ()
605 cur. execute ( ’’’INSERT OR IGNORE INTO bgp_headers ( timestamp_unix ,

timestamp_date ,mrt_type , bgp4mp_bgp4mpet_subtype ,
606 message_length ,peer_as ,local_as ,ifindex ,afi ,peer_ip , local_ip

)
607 VALUES (? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,?); ’’’,entries )
608 last_row = cur. lastrowid
609 db_connection . commit ()
610 return last_row
611 # bgp_message_length
612
613 # Function to insert a new row in table ’bgp_updatemessages .’ Arugment ’

db_connection ’ must be created while argument ’entries ’ should be a list
of elements following order shown

614 # in command ’cur. execute ().
615 def insert_bgpupdatemessages_table ( db_connection , entries ):
616 cur = db_connection . cursor ()
617 cur. execute ( ’’’INSERT INTO bgp_updatemessages ( timestamp_unix ,

timestamp_date ,header_id , message_length ,type , withdrawn_routes_length ,
618 path_attribute_length , nlri_length ) VALUES (? ,? ,? ,? ,? ,? ,? ,?);

’’’,entries )
619 db_connection . commit ()
620
621 # Function to insert a new row in table ’path_attributes .’ Arugment ’

db_connection ’ must be created while argument ’entries ’ should be a list
of elements following order shown

622 # in command ’cur. execute (). Function returns the index of added row.
623 def insert_pathattributes_table ( db_connection , entries ):
624 cur = db_connection . cursor ()
625 cur. execute ( ’’’INSERT INTO path_attributes ( timestamp_unix ,

timestamp_date , bgp_message_id ,flag ,type ,
626 length ) VALUES (? ,? ,? ,? ,? ,?); ’’’,entries )
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627 last_row = cur. lastrowid
628 db_connection . commit ()
629 return last_row
630
631 # Function to insert a new row in table ’as_paths .’ Arugment ’db_connection ’

must be created while argument ’entries ’ should be a list of elements
following order shown

632 # in command ’cur. execute ().
633 def insert_aspaths_table ( db_connection , entries ):
634 cur = db_connection . cursor ()
635 cur. execute ( ’’’INSERT INTO as_paths ( timestamp_unix , timestamp_date ,

path_attribute_id , segment_type , aspath_length ,
636 as_path ) VALUES (? ,? ,? ,? ,? ,?); ’’’,entries )
637 db_connection . commit ()
638
639 # Function to insert a new row in table ’aggregaror_attributes .’ Arugment ’

db_connection ’ must be created while argument ’entries ’ should be a list
of elements following order shown

640 # in command ’cur. execute ().
641 def insert_aggregatorattributes_table ( db_connection , entries ):
642 cur = db_connection . cursor ()
643 cur. execute ( ’’’INSERT INTO aggregator_attributes ( timestamp_unix ,

timestamp_date , path_attribute_id , attribute_length ,as_id ,as_ip)
644 VALUES (? ,? ,? ,? ,? ,?); ’’’,entries )
645 db_connection . commit ()
646
647 # Function to insert a new row in table ’withdrawn_routes .’ Arugment ’

db_connection ’ must be created while argument ’entries ’ should be a list
of elements following order shown

648 # in command ’cur. execute ().
649 def insert_withdrawnroutes_table ( db_connection , entries ):
650 cur = db_connection . cursor ()
651 cur. execute ( ’’’INSERT INTO withdrawn_routes ( timestamp_unix ,

timestamp_date , bgp_message_id , prefix_length , prefix )
652 VALUES (? ,? ,? ,? ,?); ’’’,entries )
653 db_connection . commit ()
654
655 # Function to insert a new row in table ’announced_routes .’ Arugment ’

db_connection ’ must be created while argument ’entries ’ should be a list
of elements following order shown

656 # in command ’cur. execute ().
657 def insert_announcedroutes_table ( db_connection , entries ):
658 cur = db_connection . cursor ()
659 cur. execute ( ’’’INSERT INTO announced_routes ( timestamp_unix ,

timestamp_date , bgp_message_id , prefix_length , prefix )
660 VALUES (? ,? ,? ,? ,?); ’’’,entries )
661 db_connection . commit ()
662
663 # Function to insert a new row in table ’origin_pathattribute .’ Arugment ’

db_connection ’ must be created while argument ’entries ’ should be a list
of elements following order shown

664 # in command ’cur. execute ().
665 def insert_originpathattribute_table ( db_connection , entries ):
666 cur = db_connection . cursor ()
667 cur. execute ( ’’’INSERT INTO origin_pathattribute ( timestamp_unix ,

timestamp_date , path_attribute_id , attribute_length , origin_id )
668 VALUES (? ,? ,? ,? ,?); ’’’,entries )
669 db_connection . commit ()
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670
671 # Function to insert a new row in table ’nexthop_pathattribute .’ Arugment ’

db_connection ’ must be created while argument ’entries ’ should be a list
of elements following order shown

672 # in command ’cur. execute ().
673 def insert_nexthopattribute_table ( db_connection , entries ):
674 cur = db_connection . cursor ()
675 cur. execute ( ’’’INSERT INTO nexthop_pathattribute ( timestamp_unix ,

timestamp_date , path_attribute_id , attribute_length , nexthop_ip )
676 VALUES (? ,? ,? ,? ,?); ’’’,entries )
677 db_connection . commit ()
678
679 # Function to insert a new row in table ’multiexitdisc_pathattribute .’

Arugment ’db_connection ’ must be created while argument ’entries ’ should
be a list of elements following order

680 # shown in command ’cur. execute ().
681 def insert_multiexitdiscattribute_table ( db_connection , entries ):
682 cur = db_connection . cursor ()
683 cur. execute ( ’’’INSERT INTO multiexitdisc_pathattribute ( timestamp_unix ,

timestamp_date , path_attribute_id , attribute_length ,value)
684 VALUES (? ,? ,? ,? ,?); ’’’,entries )
685 db_connection . commit ()
686
687 def insert_bgpkeepalive_table ( db_connection , entries ):
688 cur = db_connection . cursor ()
689 cur. execute ( ’’’INSERT INTO bgp_keepalivemessages ( timestamp_unix ,

timestamp_date ,header_id , message_length ,type)
690 VALUES (? ,? ,? ,? ,?); ’’’,entries )
691 db_connection . commit ()
692
693 def insert_bgpopenmessages_table ( db_connection , entries ):
694 cur = db_connection . cursor ()
695 cur. execute ( ’’’INSERT INTO bgp_openmessages ( timestamp_unix ,

timestamp_date ,header_id , message_length ,type , bgp_version ,local_as ,
holdtime ,bgp_id , optional_parameters_length )

696 VALUES (? ,? ,? ,? ,? ,? ,? ,? ,? ,?); ’’’,entries )
697 db_connection . commit ()
698
699 def insert_bgpnotification_table ( db_connection , entries ):
700 cur = db_connection . cursor ()
701 cur. execute ( ’’’INSERT INTO bgp_notificationmessages ( timestamp_unix ,

timestamp_date ,header_id , message_length ,type ,error_code , error_subcode ,
diagnosis_data )

702 VALUES (? ,? ,? ,? ,? ,? ,? ,?); ’’’,entries )
703 db_connection . commit ()
704
705 def insert_bgpstatechangemessages_table ( db_connection , entries ):
706 cur = db_connection . cursor ()
707 cur. execute ( ’’’INSERT INTO bgp_statechangemessages ( timestamp_unix ,

timestamp_date ,header_id ,old_state , new_state )
708 VALUES (? ,? ,? ,? ,?); ’’’,entries )
709 db_connection . commit ()
710
711 # Pending :
712
713 # Function that returns the last row added in a table.
714 def last_row ( db_connection ):
715 cur = db_connection . cursor ()
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716 return cur. lastrowid
717
718 # Function that creates all required tables in the BGP database . Modify the

path according to location where DB will reside .
719 def create_database ():
720 conn = create_connection (r"/Users/ analauragonzalezrios / Documents /SFU/MSc

Thesis / Experiments / bgpsqldb .db")
721 create_mrttype_table (conn)
722 create_tabledumpsubtype_table (conn)
723 create_bgp4mpbpg4mpetsubtype_table (conn)
724 create_bgpattribute_table (conn)
725 create_bgpmessagestype_table (conn)
726 create_aspathsegmentstype_table (conn)
727 create_bgpheader_table (conn)
728 create_bgpupdatemessages_table (conn)
729 create_pathattributes_table (conn)
730 create_aspaths_table (conn)
731 create_aggregatorattributes_table (conn)
732 create_bgpattributescategories_table (conn)
733 create_withdrawnroutes_table (conn)
734 create_announcedroutes_table (conn)
735 cerate_originpathattribute_table (conn)
736 cerate_nexthopattribute_table (conn)
737 cerate_originvalues_table (conn)
738 cerate_multiexitdiscattribute_table (conn)
739 create_bgpkeepalivemessages_table (conn)
740 create_bgpopenmessages_table (conn)
741 create_bgpnotificationmessages_table (conn)
742 create_bgperrorcodes_table (conn)
743 create_bgpmessageheadererrorsubcodes_table (conn)
744 create_bgpopenmessageerrorsubcodes_table (conn)
745 create_bgpupdatemessageerrorsubcodes_table (conn)
746 create_bgpstatechangemessages_table (conn)
747 create_bgpfinitesatemachine_table (conn)
748
749
750 # Main function , invoques the crate_database () function .
751 i f __name__ == ’__main__ ’:
752 create_database ()
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Appendix D

BGP-RDB: Implementation of
Data Download and Ingestion
Engine Functions

Listed is the implementation of the ingestion engine functions used to store incoming data
in corresponding tables. Required information includes year, month, day, hour, minute,
data collection site, and collector name. Function updateMessageName generates the RIPE
or Route Views repository file name while function data_downloader_single retrieves a
BGP repository from a specified collection site and the collector. After collected MRT files
are parsed, the YAML files are generated by using function mrt2yaml. YAML file used
to insert data in the BGP-RDB is defined in the variable stream. Content of the YAML
file is iteratively assessed to insert data in corresponding tables using for loops and if-else
statements.

Listing D.1: BGP-RDA Ingestion Engine Functions: Tables Initialization and Data Entry.
1 """
2 @author Ana Laura Gonzalez Rios
3 @email anag@sfu .ca
4 @date June 2022
5 @version : 1.0.0
6 @description :
7 This file contains the implementation of functions to
8 retrieve BGP repositories , parse MRT files to YAML
9 fiels , and insert collected data in corresponding DB

10 tables .
11
12 @copyright Copyright (c) June 2022
13 All Rights Reserved
14
15 Python code ( version 3.10.2)
16 SQLite3 commands ( version 3.28.0)
17 """
18
19 from dataDownload import * # data_downloader_single
20 from mrt2yaml import mrt2yaml
21 import yaml
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22 from ingestion import *
23
24 # Information used to define URL of a RIPE repository given the collector

name , year , month , day , hour , and minute
25 collector_ripe = ’rrc04 ’
26 year = ’2003 ’
27 month = ’01’
28 day = ’01’
29 hour = ’00’
30 minute = ’00’
31 data_file_ripe = updateMessageName (year , month , day , hour , minute )[0]
32 data_date_ripe = updateMessageName (year , month , day , hour , minute )[1]
33 site = ’RIPE ’
34
35 print (’Downloading repository "%s" for month "%s"’ % ( data_file_ripe ,

data_date_ripe ))
36
37 # Collects specified repository of BGP messages from selected RIPE collector
38 data_downloader_single ( data_file_ripe , data_date_ripe , site , collector_ripe )
39
40 # Information used to define URL of a RIPE repository given the collector

name , year , month , day , hour , and minute
41 collector_routeviews = ’route - views2 ’
42 year = ’2021 ’
43 month = ’01’
44 day = ’21’
45 hour = ’01’
46 minute = ’30’
47 data_file_routeviews = updateMessageName (year , month , day , hour , minute )[0]
48 data_date_routeviews = updateMessageName (year , month , day , hour , minute )[1]
49 site = ’RouteViews ’
50
51 print (’Downloading repository "%s" for month "%s"’ % ( data_file_routeviews ,

data_date_routeviews ))
52
53 # Collects specified repository of BGP messages from selected Route Views

collector
54 data_downloader_single ( data_file_routeviews , data_date_routeviews , site ,

collector_routeviews )
55
56 # Collected BGP messages from RIPE are converted from MRT to YAML format
57 mrt2yaml ( data_file_ripe + ’.gz’,’ripe.yaml ’)
58
59 # Collected BGP messages from Route Views are converted from MRT to YAML

format
60 mrt2yaml ( data_file_routeviews + ’.bz2 ’,’routeviews .yaml ’)
61
62 # Opens YAML file containing update messages
63 stream = open(’routeviews .yaml ’)
64
65 # Loads YAML file
66 parsed_yaml_file = yaml.load(stream , Loader =yaml. FullLoader )
67 print (’YAML file loaded ’)
68
69 # Opens connection with BGP database
70 conn = create_connection (r"/Users/ analauragonzalezrios / Documents /SFU/MSc

Thesis / Experiments / bgpsqldb .db")
71
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72 for item in parsed_yaml_file :
73 timestamp_unix = l i s t (item[’timestamp ’]. keys ())[0]
74 timestamp_date = item[’timestamp ’][ timestamp_unix ]
75 mrt_type = l i s t (item[’type ’]. keys ())[0]
76 mrt_subtype = l i s t (item[’subtype ’]. keys ())[0]
77 length = item[’length ’]
78 peer_as = item[’peer_as ’]
79 local_as = item[’local_as ’]
80 ifindex = item[’ifindex ’]
81 afi = l i s t (item[’afi ’]. keys ())[0]
82 peer_ip = item[’peer_ip ’]
83 local_ip = item[’local_ip ’]
84 print ( timestamp_unix , timestamp_date ,mrt_type , mrt_subtype ,length ,peer_as ,

local_as ,ifindex ,afi ,peer_ip , local_ip )
85
86 # New entry in bgpheader_table
87 bgp_header_id = insert_bgpheader_table (conn ,( l i s t (item[’timestamp ’]. keys

())[0],
88 item[’timestamp ’][ l i s t (

item[’timestamp ’]. keys ())[0]] ,
89 l i s t (item[’type ’]. keys ()

)[0], l i s t (item[’subtype ’]. keys ())[0], item[’length ’],
90 item[’peer_as ’],item[’

local_as ’],item[’ifindex ’], l i s t (item[’afi ’]. keys ())[0],
91 item[’peer_ip ’],item[’

local_ip ’]))
92
93 # New entry in bgp_openmessages , bgp_updatemessates and related tables ,

bgp_notificationmessages , and bgp_keepalivemessages :
94 i f ( l i s t (item[’subtype ’]. keys ())[0] == 1) or ( l i s t (item[’subtype ’]. keys

())[0] == 4):
95
96 # New entry in bgp_openmessages table
97 i f l i s t (item[’bgp_message ’][’type ’]. keys ())[0] == 1:
98 insert_bgpopenmessages_table (conn ,( l i s t (item[’timestamp ’]. keys ()

)[0],
99 item[’timestamp ’][ l i s t (item[

’timestamp ’]. keys ())[0]] , bgp_header_id ,
100 item[’bgp_message ’][’length ’

], l i s t (item[’bgp_message ’][’type ’]. keys ())[0],
101 item[’bgp_message ’][’version

’],item[’bgp_message ’][’local_as ’],item[’bgp_message ’][’holdtime ’],
102 item[’bgp_message ’][’bgp_id ’

], len (item[’bgp_message ’][’optional_parameters ’])))
103
104 # New entry in bgp_updatepmessages table
105 e l i f l i s t (item[’bgp_message ’][’type ’]. keys ())[0] == 2:
106 insert_bgpupdatemessages_table (conn ,( l i s t (item[’timestamp ’]. keys

())[0],
107 item[’timestamp ’][ l i s t (

item[’timestamp ’]. keys ())[0]] , bgp_header_id ,
108 item[’bgp_message ’][’

length ’], l i s t (item[’bgp_message ’][’type ’]. keys ())[0],
109 item[’bgp_message ’][’

withdrawn_routes_length ’],
110 item[’bgp_message ’][’

path_attribute_length ’],
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111 len (item[’bgp_message ’][
’nlri ’])))

112
113 # New entries in announcedroutes_table
114 for nlri in item[’bgp_message ’][’nlri ’]:
115 #print(nlri[’ prefix_length ’])
116 insert_announcedroutes_table (conn ,( l i s t (item[’timestamp ’].

keys ())[0],
117 item[’timestamp ’][ l i s t (

item[’timestamp ’]. keys ())[0]] ,
118 bgp_header_id ,nlri[’

prefix_length ’],nlri[’prefix ’]))
119
120 # New entries in withdrawnroutes_table
121 for withdrawal in item[’bgp_message ’][’withdrawn_routes ’]:
122 insert_withdrawnroutes_table (conn ,( l i s t (item[’timestamp ’].

keys ())[0],
123 item[’timestamp ’][ l i s t (

item[’timestamp ’]. keys ())[0]] ,
124 bgp_header_id , withdrawal

[’prefix_length ’], withdrawal [’prefix ’]))
125
126 # New entries in path attributes tables
127 for path_attribute in item[’bgp_message ’][’path_attributes ’]:
128 path_attribute_id = insert_pathattributes_table (conn ,( l i s t (

item[’timestamp ’]. keys ())[0],
129 item

[’timestamp ’][ l i s t (item[’timestamp ’]. keys ())[0]] ,
130

bgp_header_id , path_attribute [’flag ’],
131 l i s t

( path_attribute [’type ’]. keys ())[0],
132

path_attribute [’length ’]))
133
134 # New entries in ORIGIN path attribute table
135 i f l i s t ( path_attribute [’type ’]. keys ())[0] == 1:
136 insert_originpathattribute_table (conn ,( l i s t (item[’

timestamp ’]. keys ())[0],
137 item[’timestamp ’

][ l i s t (item[’timestamp ’]. keys ())[0]] , path_attribute_id ,
138 path_attribute [’

length ’], l i s t ( path_attribute [’value ’]. keys ())[0]))
139
140 # New entries in AS_PATH attribute table
141 e l i f l i s t ( path_attribute [’type ’]. keys ())[0] == 2:
142 insert_aspaths_table (conn ,( l i s t (item[’timestamp ’]. keys ()

)[0], item[’timestamp ’][ l i s t (item[’timestamp ’]. keys ())[0]] ,
143 path_attribute_id , l i s t (

path_attribute [’value ’][0][ ’type ’]. keys ())[0],
144 path_attribute [’value ’][0][ ’

length ’],’,’.join( path_attribute [’value ’][0][ ’value ’])))
145
146 # New entries in NEXT_HOP attribute table
147 e l i f l i s t ( path_attribute [’type ’]. keys ())[0] == 3:
148 insert_nexthopattribute_table (conn ,( l i s t (item[’timestamp

’]. keys ())[0], item[’timestamp ’][ l i s t (item[’timestamp ’]. keys ())[0]] ,
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149 path_attribute_id ,
path_attribute [’length ’], path_attribute [’value ’]))

150
151 # New entries in MULTI_EXIT_DISC attribute table
152 e l i f l i s t ( path_attribute [’type ’]. keys ())[0] == 4:
153 insert_multiexitdiscattribute_table (conn ,( l i s t (item[’

timestamp ’]. keys ())[0], item[’timestamp ’][ l i s t (item[’timestamp ’]. keys ())
[0]] ,

154
path_attribute_id , path_attribute [’length ’], path_attribute [’value ’]))

155
156 # New entries in ATTOMIC AGGREGATE attribute (table not

implemented )
157 #elif list( path_attribute [’type ’]. keys ())[0] == 6:
158 # print(’ atomic aggegate :’, list( path_attribute [’type ’].

keys ())[0])
159
160 # New entries in AGGREGATOR attribute table
161 e l i f l i s t ( path_attribute [’type ’]. keys ())[0] == 7:
162 insert_aggregatorattributes_table (conn ,( l i s t (item[’

timestamp ’]. keys ())[0], item[’timestamp ’][ l i s t (item[’timestamp ’]. keys ())
[0]] ,

163
path_attribute_id , path_attribute [’length ’], path_attribute [’value ’][’as’
], path_attribute [’value ’][’id’]))

164
165 # New entry in bgp_notificationmessages table
166 e l i f l i s t (item[’bgp_message ’][’type ’]. keys ())[0] == 3:
167 insert_bgpnotification_table (conn ,( l i s t (item[’timestamp ’]. keys ()

)[0],
168 item[’timestamp ’][ l i s t (item[

’timestamp ’]. keys ())[0]] , bgp_header_id ,
169 item[’bgp_message ’][’length ’

], l i s t (item[’bgp_message ’][’type ’]. keys ())[0],
170 l i s t (item[’bgp_message ’][’

error_code ’]. keys ())[0], l i s t (item[’bgp_message ’][’error_subcode ’]. keys
())[0],

171 item[’bgp_message ’][’data ’])
)

172
173 # New entry in bgp_keepalivemessages table
174 e l i f l i s t (item[’bgp_message ’][’type ’]. keys ())[0] == 4:
175 insert_bgpkeepalive_table (conn ,( l i s t (item[’timestamp ’]. keys ())

[0],
176 item[’timestamp ’][ l i s t (item[’

timestamp ’]. keys ())[0]] , bgp_header_id ,
177 item[’bgp_message ’][’length ’],

l i s t (item[’bgp_message ’][’type ’]. keys ())[0]))
178
179 # New entry in bgp_statechangemessages table
180 e l i f ( l i s t (item[’subtype ’]. keys ())[0] == 0) or ( l i s t (item[’subtype ’].

keys ())[0] == 5):
181 insert_bgpstatechangemessages_table (conn ,( l i s t (item[’timestamp ’].

keys ())[0],
182 item[’timestamp ’][ l i s t (item[’timestamp ’

]. keys ())[0]] , bgp_header_id ,
183 l i s t (item[’old_state ’]. keys ())[0], l i s t (

item[’new_state ’]. keys ())[0]))
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Appendix E

BGP-RDB: Descriptions of Core
Tables

Fields with header, message, or path attribute details for each core table are described in
Table E.1 to Table E.7.

Table E.1: Table bgp_headers: Description of Fields.

Field name Data Type Description
INTEGER Primary key used to join tables bgp_openmessages,

id AUTOINCR. bgp_updatemessages, bgp_keepalivemessages,
UNIQUE bgp_notificationmessages, or bgp_statechangemessages

on column ‘header_id’
timestamp_unix INTEGER Timestamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
mrt_type INTEGER To join table mrt_types on column ‘id’
bgp4mp_bgp4mpet_ INTEGER Foreign key used to join table
subtype bgp4mp_bgp4mpet_subtypes on column ‘id’
message_length INTEGER Indicates the length of header + BGP message
peer_as TEXT AS number of peer sending the BGP message
local_as TEXT AS number of peer receiving the BGP message
ifindex INTEGER Interface index
afi INTEGER To join table table_dump_subtypes on ‘id’
peer_ip TEXT IP (prefix) of sending peer
local_ip TEXT IP (prefix) of receiving peer
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Table E.2: Table bgp_openmessages: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
header_id INTEGER Foreign key used to join table bgp_headers on

column ‘id’
message_length INTEGER Length of BGP open message
type INTEGER Foreign key used to join table bgp_messages_type on

column ‘id’
bgp_version INTEGER Length of MULTI_EXIT_DISC path attribute
local_as INTEGER AS number of receiving peer
holdtime INTEGER Time between receipt of successive keepalive/update

messages
bgp_id TEXT IP of receiving peer
optional_parameters_ TEXT Length of optional parameters included in the open
length message

Table E.3: Table bgp_updatemessages: Description of Fields.

Field name Data Type Description
INTEGER Primary key used to join tables withdawn_routes,

id AUTOINCR. announced_routes, or path_attributes
UNIQUE on ‘bgp_message_id’

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
header_id INTEGER Foreign key used to join table bgp_headers on column ‘id’
message_length INTEGER Length of BGP update message
type INTEGER Foreign key used to join table bgp_messages_type on

column ‘id’
withdrawn_routes_ INTEGER Length of withdrawn routes field
length
path_attribute_ INTEGER Length of path attributes field
length
nlri_length INTEGER Number of announced routes
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Table E.4: Table bgp_keepalivemessages: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
header_id INTEGER Foreign key used to join table bgp_headers on

column ‘id’
message_length INTEGER Length of BGP update message
type INTEGER Foreign key used to join table bgp_messages_type

on column ‘id’

Table E.5: Table bgp_notificationmessages: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
header_id INTEGER Foreign key used to join table bgp_headers on

column ‘id’
message_length INTEGER Length of BGP update message
type INTEGER Foreign key used to join table bgp_messages_type on

column ‘id’
error_code INTEGER To join table bgp_error_codes on column ‘id’
error_subcode INTEGER To join table bgp_error_subcodes

on column ‘id’
diagnosis_data TEXT Addtional data included to diagnose errors

Table E.6: Table bgp_statechangemessages: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
header_id INTEGER Foreign key used to join table bgp_headers on

column ‘id’
old_state INTEGER Foreign key to join table bgp_finite_state_manchine

that indicates the previous state in the BGP
finite state machine

new_state INTEGER Foreign key to join table bgp_finite_state_manchine
that indicates the new state in the BGP
finite state machine
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Table E.7: Table bgp_attributes: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
bgp_message_id INTEGER Foreign key used to join table bgp_updatemessages on

column ‘id’
flag INTEGER Path attribute flag
type INTEGER Foreign key used to join table bgp_attribute on column ‘id’
length INTEGER Path attribute length
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Appendix F

BGP-RDB: Descriptions of Lookup
Tables

Description of fields in lookup tables is given in Table F.1 to Table F.6.

Table F.1: Table mrt_types: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key used to join

id NOT NULL table bgp_headers on
UNIQUE column ‘mrt_type’

Indicates MRT TABLE_DUMP
type TEXT UNIQUE dump/message TABLE_DUMP_V2

type BGP4MP
BGP4MP_ET

Table F.2: Table table_dump_subtypes: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key used to join

id NOT NULL table bgp_headers on
UNIQUE column ‘afi’

subtype TEXT UNIQUE Indicates table dump AFI_IPv4
subtype AFI_IPv6
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Table F.3: Table table_v2_dump_subtypes: Description of Fields.

Field name Data Type Description Unique Value
INTEGER

id NOT NULL Primary key
UNIQUE

PEER_INDEX_TABLE
RIB_IPV4_UNICAST
RIB_IPV4_MULTICAST
RIB_IPV6_UNICAST

subtype TEXT UNIQUE Indicates table dump RIB_IPV6_MULTICAST
v2 subtype RIB_GENERIC

RIB_IPV4_UNICAST_ADDPATH
RIB_IPV4_MULTICAST_ADDPATH
RIB_IPV6_UNICAST_ADDPATH
RIB_IPV6_MULTICAST_ADDPATH
RIB_GENERIC_ADDPATH

Table F.4: Table bgp4mp_bgp4mpet_subtypes: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key

id NOT NULL to join table
UNIQUE bgp_headers

on column
‘bgp4mp_
bgp4mpet_
subtype’

BGP4MP_STATE_CHANGE
BGP4MP_MESSAGE
BGP4MP_MESSAGE_AS4

bgp4mp_subtype TEXT Indicates the BGP4MP_STATE_CHANGE_AS4
UNIQUE BGP4MP/ BGP4MP_MESSAGE_LOCAL

BGP4MP_ET BGP4MP_MESSAGE_AS4_LOCAL
subtype BPG4MP_MESSAGE_ADDPATH

BGP4MP_MESSAGE_AS4_ADDPATH
BP4MP_MESSAGE_LOCAL_ADDPATH
BGP4MP_MESSAGE_AS4_LOCAL_
ADDPATH

Table F.5: Table bgp_messages_type: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key to join

id NOT NULL table bgp_messages
UNIQUE on column ‘type’

message_type TEXT UNIQUE Indicates the BGP OPEN
message type UPDATE

NOTIFICATION
KEEPALIVE
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Table F.6: Table bgp_attributes_category: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Priamry key

id NOT NULL to join tabe
UNIQUE bgp_attribute

on column
‘ebgp_category’ or
‘ibgp_category’
Indicates the WELL-KNOWN MANDATORY

attribute_category TEXT BGP attribute WELL-KNOWN DISCRETIONARY
UNIQUE category OPTIONAL TRANSITIVE

OPTIONAL NON-TRANSITIVE
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Appendix G

BGP-RDB: Descriptions of List
Tables

Fields contained in list tables are described in Table G.1 to Table G.7.

Table G.1: Table withdrawn_routes: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
bgp_message_id INTEGER Foreign key used to join table bgp_updatemessages

on column ‘id’
prefix_length INTEGER Length of the withdrawn routes prefix field
prefix TEXT IPs (prefixes) of withdrawn routes

Table G.2: Table announced_routes: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
bgp_message_id INTEGER Foreign key used to join table bgp_updatemessages

on column ‘id’
prefix_length INTEGER Length of the NLRI field containing announced routes
prefix TEXT IPs (prefixes) of announced routes
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Table G.3: Table as_paths: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
path_attribute_id INTEGER Foreign key used to join table path_attributes

on column ‘id’
segment_type INTEGER Foreign key used to join table as_path_segments_type

on column ‘id’
aspath_length INTEGER Indicates the length of AS_PATH path attribute
as_path INTEGER Indicates the sequence or set of ASes

Table G.4: Table aggregator_attributes: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
path_attribute_id INTEGER Foreign key used to join table path_attributes

on column ‘id’
length INTEGER Indicates the length of the AGGREGATOR path attribute
as_id INTEGER Last AS number that formed the aggregate route
as_ip TEXT IP/prefix of the last AS that formed the aggregate route

Table G.5: Table origin_pathattribute: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
path_attribute_id INTEGER Foreign key used to join table path_attributes

on column ‘id’
attribute_length INTEGER Indicates the length of ORIGIN path attribute
origin_id INTEGER Foreign key used to join table origin_values on column ‘id’

115



Table G.6: Table nexthop_pathattribute: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
path_attribute_id INTEGER Foreign key used to join table path_attributes

on column ‘id’
attribute_length INTEGER Indicates the length of NEXT_HOP path attribute
nexthop_ip TEXT IP (prefix) of router that should be used as next hop

Table G.7: Table multiexitdisc_pathattribute: Description of Fields.

Field name Data Type Description
INTEGER

id AUTOINCR. Primary key
UNIQUE

timestamp_unix INTEGER Time stamp of collected BGP message in Unix format
timestamp_date DATETIME Timestamp of collected BGP message in

yyyy-mm-dd hh:mm:ss format
path_attribute_id INTEGER Foreign key used to join table path_attributes

on column ‘id’
attribute_length INTEGER Indicates the length of MULTI_EXIT_DISC

path attribute
value INTEGER Preferred value to be used when discriminating among

multiple entry/exit points to the same AS neighbor
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Appendix H

BGP-RDB: Descriptions of Detail
Tables

Descriptions of fields for detail tables are listed in Table H.1 to Table H.8.

Table H.1: Table bgp_attribute: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key to

id NOT join table
NULL path_attributes

on column ‘type’
ORIGIN
AS_PATH
NEXT_HOP
MULTI_EXIT_DISC
LOCAL_PREF
ATOMIC_AGGREGATE
AGGREGATOR

attribute TEXT Indicates the COMMUNITY
UNIQUE BGP attribute ORIGINATOR_ID

CLUSTER_LIST
MP_REACH_NLRI
MP_UNREACH_NLRI
EXTENDED COMMUNITIES
AS4_PATH
AS4_AGGREGATOR
AIGP
LARGE_COMMUNITY
ATTR_SET

ebgp_category INTEGER Foreign key used
to join table
bgp_attributes_category
on foreign key ‘id’

ibgp_category INTEGER Foreign key used
to join table
bgp_attributes_category
on foreign key ‘id’
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Table H.2: Table as_path_segments_types: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key to join table

id NOT as_paths on column
NULL ‘segment_type’

segment_type TEXT UNIQUE Indicates the AS_PATH AS_SET
segment type AS_SEQUENCE

Table H.3: Table origin_values: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key to join table

id NOT origin_pathattribute
NULL on column ‘origin_id’

segment_type TEXT UNIQUE Indicates the origin EGP
of the path IGP

INCOMPLETE

Table H.4: Table bgp_error_codes: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key to join table

id NOT bgp_notificationmessages
NULL on column ‘error_code’

Message Header Error
symbolic_name TEXT Description of OPEN Message Error

UNIQUE of the error code UPDATE Message Error
condition Hold Timer Expired

Finite State Machine Error
Cease

Table H.5: Table bgp_messageheader_error_subcodes: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key to join table

id NOT bgp_notificationmessages
NULL on column ‘error_subcode’

description TEXT Description of Unspecific
UNIQUE message header Connection Not Synchronized

error subcode Bad Message Length
Bad Message Type
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Table H.6: Table bgp_openmessage_error_subcodes: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key to join table

id NOT bgp_notificationmessages
NULL on column ‘error_subcode’

Unspecific
description TEXT Description of Unsupported Version Number

UNIQUE open message Bad BGP Identifier
error subcode Unsupported Optional Parameter

Authentication Failure
Unacceptable Hold Time

Table H.7: Table bgp_updatemessage_error_subcodes: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key to join table

id NOT bgp_notificationmessages
NULL on column ‘error_subcode’

Unspecific
Unsupported Version Number
Malformed Attribute List
Unrecognized Well-known Attribute

Description of Missing Well-known Attribute
description TEXT update message Attribute Flags Error

UNIQUE error subcode Attribute Length Error
Invalid ORIGIN Attribute
AS Routing Loop
Invalid NEXT_HOP Attribute
Optional Attribute Error
Invalid Network Field
Malformed AS_PATH

Table H.8: Table bgp_finite_state_machine: Description of Fields.

Field name Data Type Description Unique Value
INTEGER Primary key to join table

id NOT bgp_statemessages
NULL on column ‘old_state’

and ‘new_state’
description TEXT Description of states Idle

UNIQUE in the BGP finite Connect
state machine Active

Open Sent
Open Confirm
Established
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Appendix I

VFBLS and VCFBLS Algorithms:
Pseudocode

Algorithm 1 VFBLS and VCFBLS Algorithms: Pseudocode
1: procedure VFBLS and VCFBLS(training dataset X with labels Y )
2: Initialize:
3: Number of subsets v of input data
4: Number f of features to be selected in each subset
5: Subsets of input data Xv, v = (1, ..., f)
6: Sets of groups of mapped features Znv , nv = (n1, ..., nf )
7: Groups of mapped features in each set Zi, i = (k, ..., p)
8: Number of mapped features in each group
9: for each f in v do

10: Calculate feature importance and create F(X) by ranking features using a feature
selection algorithm

11: Generate subset Xv = F(X), v = 1, 2, ..., f
12: for each set Zni in Znv do
13: Initialize the set of groups of mapped features Zni

14: for each group Zi in set Zni do
15: switch Algorithm do
16: case VFBLS
17: Generate Zi based on Xv and the number of mapped features
18: case VCFBLS
19: Generate Z1 based on Xv and the number of mapped features
20: Generate subsequent groups Zi based on Zi−1

21: Insert Zi into Zni

22: end for
23: Insert Zni into Znv

24: end for
25: end for
26: Construct matrix Zt = [X|Znv ]
27: Generate enhancement nodes Hm = [H1, ...,Hm] based on Zt

28: Concatenate Zt and Hm to create the state matrix Am
t

29: Compute weights Wm
t based on Am

t and labels Y using the ridge regression algorithm
30: end procedure
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Algorithm 2 Incremental VFBLS and VCFBLS Algorithms: Pseudocode
1: procedure Incremental VFBLS and VCFBLS(training dataset X with labels Y )
2: Extract initial input subset X0 from dataset X
3: Extract initial labels subset Y0 from Y
4: Initialize:
5: Number of incremental learning steps: l
6: Number of data points per step: d
7: Number of enhancement nodes per step: e
8: Calculate feature weight vector Wi = [w0, w1, ..., wl]: w0 = X0/X; w1, ..., wl = (1− w0)/l
9: for each step in l do

10: Generate Xa based on X, X0, and d
11: Generate Ya based on Y , Y0, and d
12: Calculate feature importance and create F(Xa) by

ranking features using a feature selection algorithm
13: Generate additional mapped features Zn+1 and additional

enhancement nodes Hm+1 using Algorithm 1
14: Update Am

t

15: Update weights Wm
t

16: end for
17: Rank and select features to be used in testing based on:

selected features and their importance in each step
and the weight vector Wi

18: end procedure
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