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Abstract

The advancement of Neural Radiance Fields (NeRF) has largely boosted the visual qual-
ity of human avatar constructed from RGB inputs. However, existing works either need
per-subject training, and thus, cannot generalize to novel subjects (i.e. subject-specific),
or can only reproduce the seen human poses contained within the inputs and cannot ren-
der novel poses (i.e. non-animatable). To this end, we propose the Subject-Agnostic and
Animatable Neural Radiance Fields (SAgA-NeRF) for human avatar modeling from sparse-
view videos, which can generalize to novel subjects and poses at the same time. To handle
challenges posed by the task, we propose two main techniques, namely pose-based input
frame selection, and a novel feature fusion on a parametric human body model. We compare
SAgA-NeRF with existing subject-agnostic or animatable works, and show comparable re-
sults for both seen and novel poses. We also justify our design choices by showing that our
proposed components outperform naive baselines.

Keywords: 3D human body modeling; 3D feature learning; Differentiable rendering; Neural
Radiance Fields

iii



Dedication

To my parents, grandparents, and siblings.

iv



Acknowledgements

In the name of Allah, most Merciful and Compassionate. I would like to begin by praising
Allah, to Whom all praise belongs. Only through His will, was I given the strength, knowl-
edge, ability, and opportunity to undertake and complete this graduate program and thesis.
These are, but a fraction, of His innumerable blessings.

I would also like to express my gratitude and sincere thanks to my senior supervisor,
Dr. Ping Tan, for guiding me through my time at SFU, and making sure I prioritize my
well-being over all else during these challenging times of the pandemic.

I am also extremely grateful to my co-author, Ziqian Bai, without whom this research
would not have made such great progress; and to other co-authors, Zhaopeng Cui, Boming
Zhao, Yinda Zhang, and Boxin Xi.

Most importantly, I am indebted to my family - my parents, grandparents, siblings, and
uncles, for their unconditional love and support, without which, this endeavour would not
have been possible.

v



Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Neural Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Parametric Human Body Model: SMPL . . . . . . . . . . . . . . . . . . . . 4
1.3 NeRF-Based Human Rendering . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Animatable Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Subject-Agnostic Rendering . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Motivation for our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Formulation of the Problem 11
2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Using Visual Cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Radiance Field Decoding and Rendering . . . . . . . . . . . . . . . . . . . . 14
2.4 Summary of Our Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Method 16
3.1 SMPL+D Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Pose-based Input Frame Selection . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Feature Extraction and Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Decoding Features and Volumetric Rendering . . . . . . . . . . . . . . . . . 23

vi



4 Experimental Results 26
4.1 Comparison Against Neural Human Performer . . . . . . . . . . . . . . . . 26
4.2 Comparison with Animatable Methods . . . . . . . . . . . . . . . . . . . . . 27
4.3 Ablation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 32

Bibliography 33

vii



List of Tables

Table 4.1 Quantitative Comparison of our two settings against the one setting of
NHP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 4.2 Quantitative comparison against animatable methods [30], [29], and [44]. 29
Table 4.3 Ablation: Quantitative Comparison . . . . . . . . . . . . . . . . . . . 31

viii



List of Figures

Figure 1.1 Overview of NeRF [26] method. (a) 3D points are sampled along
camera rays from the target camera view. The coordinates and view
direction are used as 5D inputs to the MLP, which (b) predicts color
and density. (c) Differentiable volumetric rendering is used to calcu-
late pixel color for each ray, and (d) the pixel color compared with
corresponding pixel from the ground truth image to calculate loss
and optimize. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 3.1 Overview of the rendering pipeline (Stage 2). This stage is
after the SMPL+D optimization of the SMPL human shape (Section
3.1). The rendering pipeline, given inputs: (a) a sparse-view video
of an arbitrary human with SMPL+D models (i.e. human poses),
(b) a target human pose with SMPL+D model, and (c) a target
camera view, generates an image, from the target camera view, of
the arbitrary human in the target pose. . . . . . . . . . . . . . . . . 18

Figure 3.2 Overview of the feature extraction and fusion. Pixel-aligned
features are extracted for each SMPL vertex for each frame. These
features, along with a vertex visibility mask, and vertex-normal and
view-direction angle difference, to perform a "pseudo 3D reconstruc-
tion" by fusing the features across input views. The view-fused fea-
tures, along with per-vertex localized target and input poses are used
to fuse the features across input frames/poses through an attention
module [40]. The outputs are per-vertex features which contains the
body shape and appearance information of the target pose. . . . . . 22

ix



Figure 3.3 Overview of the decoding and volumetric rendering compo-
nent. Given aggregated features from the feature fusion component
attached to target pose on SMPL+D model, and the target view, we:
(1) shoot a ray for each pixel in the image, then (2) sample query
points along the ray, then (3) for each query point we find the nearest
neighbours, gather information, and feed through PointNet [32] to
get color and density, then finally (4) for each ray, integrate color and
density for all query points along the ray using volumetric rendering
to obtain the pixel color. . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.1 Qualitative comparison against NHP [18]. . . . . . . . . . . . . . . 28
Figure 4.2 Qualitative comparison against animatable method [44]. . . . . . . 30
Figure 4.3 Ablation: Qualitative Comparison . . . . . . . . . . . . . . . . . . . 31

x



Chapter 1

Introduction

1.1 Neural Rendering

Tewari et al. [39] define Neural Rendering as, "Deep image or video generation approaches
that enable explicit or implicit control of scene properties such as illumination, camera pa-
rameters, pose, geometry, appearance, and semantic structure." Recently, Neural Rendering
has made huge leaps in the field of novel view synthesis, which is the problem of rendering
a scene from a novel camera view given some images of the scene. Classically, novel view
synthesis has been performed using Image-based rendering (IBR) methods [9, 5]. These
are optimization-based methods that perform 3D reconstruction of the scene and warp the
observations onto the novel view image plane. Recently, Neural Rendering methods have
been proposed for novel view synthesis and have shown better results compared to classi-
cal methods. Neural Rendering methods combine classic computer graphics with learnable
components in the form of neural networks. Recently, Neural Radiance Fields (NeRF) [26],
a Neural Rendering method, has achieved impressive results on photo-realistic novel view
synthesis, and has sparked a lot of interest in Neural Rendering, with researchers proposing
adaptations for solving various related problems. In this section, we will look into NeRF in
detail, as well as some general trends of NeRF-related research.

As a direct prelude to NeRF, Neural Rendering methods had been proposed to define
an implicit surface representation. Occupancy Networks [25] was proposed to predict bi-
nary occupancy given a 3D point co-ordinate and object encoding. IM-Net [7] was similarly
proposed to predict binary occupancy, and also showed that the model could also be used
to generate new shapes. DeepSDF [27] was proposed to regress a signed distance func-
tion instead of binary occupancy, and took in as input, similar to IM-Net and Occupancy
Networks, a latent code and 3D point to predict the signed distance. The signed distance
would be positive if the point is outside the shape, and negative if inside, and therefore, the
shape’s surface would be the zero-level-set of the learned function. Pixel-Aligned Implicit
Function for High-Resolution Clothed Human Digitization (PIFu) [34] showed that Neural
Rendering methods could learn highly detailed implicit models. This was achieved by gener-
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Figure 1.1: Overview of NeRF [26] method. (a) 3D points are sampled along camera rays
from the target camera view. The coordinates and view direction are used as 5D inputs to
the MLP, which (b) predicts color and density. (c) Differentiable volumetric rendering is used
to calculate pixel color for each ray, and (d) the pixel color compared with corresponding
pixel from the ground truth image to calculate loss and optimize.

ating a 3D-encoding for the input image (such that each pixel has a feature representation),
and then using the pixel-aligned feature along with different depth values to predict binary
occupancy for the human model. Another encoder, conditioned with the output from the
previous geometry feature encoder, is used to generate another set of pixel-aligned feature
representations to then also predict the RGB values at different depths, so that the model
can be reconstructed with texture. All these methods have a common major disadvantage,
that they need ground truth meshes in order to be trained. This is because rendering an
image from the 3D representations learned by these methods requires a ray marching al-
gorithm, and the algorithm used by these methods is the Marching Cubes [23] method.
Since the Marching Cubes method is not differentiable, the gradient of the rendered value
with respect to the input image can not be calculated through back-propagation. Hence,
these methods can not be trained directly on the images, and the ground truth meshes
are required so that the loss can be back-propagated after the occupancy/SDF has been
predicted.

NeRF [26] was then proposed by Mildenhall et al. which uses principles from classical
volume rendering [16] to render the color of any ray passing through the scene. The for-
mulation of volume rendering used by NeRF is differentiable, and therefore, can be trained
directly on images, no longer requiring ground truth meshes. This work sparked huge in-
terest in Neural Rendering methods as it showed excellent results and potential, despite
it’s simplicity. Figure 1.1 shows a simplified overview of the NeRF method, and we discuss
some details below.

NeRF proposed using a 5D-vector valued function to represent a continuous scene. Given
a 3D point x = (x, y, z) and the 2D camera-viewing direction v = (θ, ϕ), NeRF outputs
an RGB color c = (r, g, b) and volume density σ at that 3D co-ordinate. A Multilayer
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Perceptron (MLP) FΘ is used to learn and approximate the 5D-vector valued function such
that FΘ(x, v) = (c, σ). NeRF uses some simple yet effective tricks. The density is predicted
only as a function of the input co-ordinate x, whereas the color c is predicted using both, the
co-ordinate x and viewing direction v. This helps keep the learned representation multi-view
consistent while allowing for view-dependent specularities. Furthermore, positional encoding
is used to map the inputs xyzθϕ to a higher frequency so as to avoid bias towards learning
lower frequency functions. Finally, once color and density have been predicted, volume
rendering for each camera ray is used to calculate color of the pixel using the predicted
color and density of sampled points along the ray. The output pixel color can be compared
with the pixel color from the ground truth image to calculate the loss and optimize the
learned representation.

NeRF has since been adapted to solve various related problems, as well as to solve some
of the disadvantages of vanilla-NeRF. Some disadvantages are that it is slow in training as
well as rendering, it can only represent static scenes, and it has to be trained per-scene (not
generalizable to other scenes).

To speed up NeRF, some of the following works were proposed:

• KiloNeRF [33], which uses thousands of tiny MLPs to represent parts of scene so that
the model does not have to query a deep MLP millions of times.

• Automatic Integration [19], which introduces learning volume integral to speed up
rendering.

• Learned Initializations for Optimizing Coordinate-Based Neural Representations [38],
which speeds up training by using learned initializations.

Some works were proposed to model dynamic scenes. Nerfies [28] and D-NeRF [31] use
a second MLP to apply a deformation.

Generalizable NeRF methods were also proposed. IBRNet [41] is one of the most im-
portant of such methods. For a 3D query point, it aggregates features from nearby camera
views from the given image set. This is done by first projecting the point onto the selected
views and extracting pixel-aligned features, image view direction, and pixel color, and then
using an MLP to aggregate the information and predict a color and density feature. The
density features of all points along a ray are then fed into a ray transformer module to
predict the densities for each sample.

We use a NeRF-based approach for our goal of rendering, from a target camera view,
an arbitrary human in an arbitrary human pose. We first discuss works done in the field of
NeRF-based human avatar rendering, their formulations, and their advantages and disad-
vantages in Section 1.3. We then discuss the motivation for our work and define the problem
further in Section 1.4.
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1.2 Parametric Human Body Model: SMPL

In order to make this thesis self contained, before discussing NeRF-based human avatar
rendering, it is important to discuss parametric human body models, as they greatly help
with such methods. This is because rendering human body is a very specific task, and
not as general as rendering any scene, and therefore a model with fixed topology can help
create a more tractable formulation of the problem as well as boost learning, since it would
help introduce strong priors. Furthermore, most human avatar rendering methods focus on
making the model animatable. This extra goal would mean introducing an input to the
formulation that explains the desired target human pose, and therefore, using a parametric
human body model that takes into account human pose as a parameter can greatly simplify
the problem formulation.

We will specifically discuss the work on SMPL: A skinned multi-person linear model [22],
which is the moset widely used parametric human body model in the computer vision
community. The idea of SMPL is to have a template human body model, that can deform
to form a model that represents some human in some pose. SMPL uses a mesh representation
with fixed topology. The motivation behind SMPL is to have human body models that are
fast to render, easy to deploy, and compatible with existing rendering engines. SMPL is
a learned body model, and learns from data: the rest pose template T, blend weights W,
pose-dependent blend shapes P, identity-dependent blend shapes S, and a regressor J from
vertices to joint locations. SMPL is a statistical parametric human body model that uses
two parameters to represent and encode a body model:

1. Shape parameter β, which is a 10-D scalar valued vector, that encodes the shape of
the person.

2. Pose parameter, which is a 23 × 3 + 3 = 72-D vector. It denotes in axis-angle repre-
sentation, the relative rotation of each of the 23 joints with respect to it’s parent joint
in the kinematic tree (23 × 3) as well as the root orientation (+3).

A model of some person with shape parameters β in some pose with pose parameters θ

is constructed in three stages. For our discussion and purposes, an overview of these stages
without calculation details is more than sufficient. The stages are:

1. Deformation of template model T in rest pose to model of person in rest pose Ti using
the shape parameters of the person β, and learned identity-dependent blend shapes
S done by a linear function BS . Regression of joints location J of the person in rest
pose is also performed at this stage using learned regressor J :

Ti = T + BS(β; S) (1.1)

J = J (Ti) (1.2)
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2. Further deformation of Ti to explain for the pose-dependent deformations (such as soft-
tissue motion). This is done using linear function BP given learned pose-dependent
blend shapes P, and gives us the model of the person Tp in rest pose with pose-
dependent deformations:

Tp = Ti + Bp(θ; P) (1.3)

3. Lastly, the joints are transformed according to the pose θ, and all the vertices of the
model are transformed accordingly. This is done by using learned blend weights W,
which explain how much each vertex is affected by the movement of each joint, so that
a weighted sum of the transformation of each joint can be calculated for each vertex.
This is done by function W to give the final model M :

M = W (Tp, J, θ; W) (1.4)

The SMPL model has shown to be very useful for NeRF-based human avatar rendering
as shown by works discussed in Section 1.3.

1.3 NeRF-Based Human Rendering

Novel view synthesis of human avatars has mostly been done using traditional techniques
that rely on using complicated equipment such as depth sensors [8, 10] or a dense array
of cameras [36, 13] to perform reconstruction of the human body, making the process not
widely applicable. We narrow the scope of the problem to image-based rendering, where the
goal is to perform novel view synthesis given a fixed set of multi-view images to help widen
the scope of application.

Recently, great progress has been made on using deep neural networks (DNNs) to render
photo-realistic images by works such as NeRF [26] and IBR-Net [41] among many others, as
discussed in Section 1.1. However, these methods are designed for generic scenes, and there-
fore don’t leverage strong human priors. Pixel-Aligned Implicit Function for High-Resolution
Clothed Human Digitization (PIFu) [34] is a Neural Rendering method (discussed in Sec-
tion 1.1) that shows detailed rendering of human subjects, but this work also does not
leverage human priors and only performs novel view synthesis for a static human pose,
which has little practical application. A lot of methods build on top of NeRF but specialize
to human subjects so as to render human subjects, and most of them use SMPL [22] as
a strong human prior to aid in their learning, as well as to make animation of the human
model tractable. Below, we will discuss two categories of work done in this field: animatable
rendering, and subject agnostic rendering.

1.3.1 Animatable Rendering

The goal of animatable rendering is, given:
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1. a fixed set of Nt multi-view images of a human, {Ic
t |c = 1, 2, ..., Nc, t = 1, 2, ..., Nt}

where Nc is the number of views, of a human,

2. a target human pose Ptar, and

3. a novel target camera view ctar,

the method needs to render the human in the target pose from the target camera view.
Animatable NeRF-based human rendering methods propose conditioning NeRF on an

extra human pose parameter to control the rendering [29, 21, 42, 44, 30]. Below we discuss
three important works in this category: Animatable NeRF [29], Neural Body [30], and
Structured Local Radiance Fields for Human Avatar Modeling [44].

Animatable NeRF [29] renders a novel view of a human model in a target pose, by
leveraging SMPL as human body prior and using deformations to canonical pose (which in
this case is a T-pose). For a sampled query 3D point, blend weights are initialized using
the SMPL model of the target pose, and a neural blend weight field (which is a learnable
MLP) is used to predict blend weights offset. With the final blend weights, the query point
is transformed to canonical space. The transformed co-ordinates along with the viewing
direction, are fed into a NeRF module to predict the color and density. In essence, the
model learns the canonical space for the human subject and predicts the color and density
in canonical space, making the problem tractable. However, the approach raises a major
issue; pose-dependent deformations (such as soft-tissue motion, wrinkles in clothing and
shading) are not taken into account. This is because the method only learns the canonical
space, and uses essentially, the same color and densities for the target pose. This can make
the animation look very unrealistic.

Neural Body [30] also uses SMPL as the human body prior, but utilizes a very different
approach overall. Neural Body attaches a learnable latent code to each vertex of the SMPL
model for a subject. Given the target pose Ptar, the SMPL model is first transformed
according to the pose. The 3D bounding box is then divided into small voxels with voxel
size of 5mm × 5mm × 5mm. The latent code of each voxel is then set as the mean of the
latent codes of vertices in the voxel. A Sparse Convolutional Network [12] is then used to
transform these latent codes to obtain a new latent code volume. For any sampled query
point, the latent code is obtained from the latent code volume using trilinear interpolation.
The interpolated latent code, along with the SMPL pose parameter 3D co-ordinates, and
view direction are passed into MLPs to predict color and density. This method improves
greatly upon Animatable-NeRF, as it allows for pose-dependent deformations implicitly
through the interpolation of a latent code from the latent code volume, as well as through
using the pose parameters as input to the final MLPs. However, Neural body is still limited
in it’s animation capacity due to the fact spatial changes of the latent code are still not
being modelled (The 3D convolution can not model spatial changes).
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Structured Local Radiance Fields for Human Avatar Modeling (SLRF) [44], to our best
knowledge, is the current state-of-the-art method in this category. SLRF also uses SMPL
as the human body prior, and proposes a new formulation for solving the problem. It first
defines N nodes on the SMPL model using farthest point sampling. Each node also has
an associated blend skinning weight vector as it has been directly sampled from the SMPL
model, and therefore can be transformed to any pose given SMPL pose parameter θ. SLRF
also assigns a residual translation ∆n

(t)
i to the node that varies according to to time. This

helps model loose clothing. A conditional variational auto-encoder (cVAE) [37] attached to
each of these nodes, takes in as input the timestamp and SMPL pose parameters to predict
the residual translation, which is then added to the node’s original co-ordinates. Given a
sampled query point for which color and density are required, the local coordinate of the
point with respect to each node is calculated and a tiny MLP attached to each node takes
in the corresponding local coordinate to predict a feature vector. Feature vectors from all
nodes are blended using to the node blend weights from the SMPL model. The aggregated
feature vector is then finally passed through an MLP to predict the color and density of
the sampled point. In essence, tiny MLPs are used to learn local radiance fields, while loose
clothing has also been implicitly taken into account for by predicting a residual translation
for the nodes. Although SLRF produces highly detailed images, one major drawback is
that the performance depends on pose variance in the data due to the learned cVAE on
timestamps. This also means that if animation poses and variation are very different from
training poses and variations, the results would not be plausible as shown in the paper
itself [44].

However, similar to original NeRF, these methods are usually subject-specific. They
require training the model for each subject separately, thus need expensive retraining when
new subjects need to be rendered. Unlike existing works, our animatable method is subject-
agnostic. Once trained, our model can be apply to arbitrary subjects on-the-fly without
extra training steps.

1.3.2 Subject-Agnostic Rendering

To our knowledge, two works have been proposed to adapt NeRF to render human images
in a subject-agnostic way: Neural Human Performer [18] and GP-NeRf [6]. These methods
train a single model on large scale datasets and apply it to arbitrary novel subjects with-
out retraining. To enable the subject-agnostic property, these methods explicitly take in
observation images as inputs, based on which, output images are synthesized.

The problem is formulated as follows; given:

1. a multi-view sequence of Nt timesteps of a human, {Ic
t |c = 1, 2, ..., Nc, t = 1, 2, ..., Nt}

where Nc is the number of views, of an arbitrary human, and

2. a novel target camera view ctar,

7



the goal is to synthesize {Ictar
t |t = 1, 2, ..., Nt}, a novel view video from the target view.

This can thus, be exploited to transform a video into a full 360 degree free-viewpoint video.
Neural Human Performer (NHP) [18] tackles the problem by using a sparse set (Nc =3

or 4) of multi-view cameras as the given views for the sequence {Ic
t |c = 1, 2, ..., Nc, t =

1, 2, ..., Nt}. Frames from the sequence are explicitly used as inputs to the pipeline so as
to enable the subject-agnostic property, for the pipeline to "know" which human subject
to render. The goal is to learn to use observations across input timesteps and views, to
perform the novel view-synthesis. To make the problem tractable, only three timesteps
{t − 20, t, t + 20} are used as inputs to render timestep t. NHP has two main components;
construction of time-augmented features {sc|c = 1, 2, ..., Nc}, and exploiting these multi-
view features to predict color and density of a query point x. A skeletal feature bank is first
calculated by projecting the SMPL model Mi at each timestep i to the image plane, and
extracting pixel-aligned features {P c

t |c = 1, 2, ..., Nc, t = 1, 2, ..., Nt}. To synthesise novel
view at timestep t, timesteps {t − 20, t, t + 20} are used as inputs to the pipeline, and a
transformer module [40] is used to aggregate pixel-aligned features across input timesteps
{P c

t |c = 1, 2, ..., Nc, t = t − 20, t, t + 20} to construct time-augmented features {sc|c =
1, 2, ..., Nc}. Given a query point x, pixel aligned features {P c

x|c = 1, 2, ..., Nc} are sampled
by projecting the point to the multi-view images at required timestep t. For the query
point, features from the time-augmented features are also sampled to form the featureset
{P ′c

x|c = 1, 2, ..., Nc}. Another transformer module takes in these two feature sets ({P c
x}

and {P ′c
x}), and aggregates across views to form a single feature vector per-vertex, which

is then used as input to a NeRF module to predict color and density. Results produced by
NHP are very smoothed out since it lacks any usage of geometry information.

Geometry-Guided Progressive NeRF (GP-NeRF) [6] is a very recent method, released
during the time of writing this thesis. The code and results have not yet been made pub-
lic and therefore, comparison with GP-NeRF is currently not possible. For the sake of
completeness, we will discuss the formulation proposed by GP-NeRF. GP-NeRF, unlike
NHP [18], only takes in one multi-view timestep t as input to the pipeline to render a novel-
view of timestep t. A learnable latent code is attached to each smpl vertex v, that would
help encode geometry. Each vertex from the SMPL model Mt in the pose at timestep t,
is projected to each camera view and pixel-aligned features are extracted at the projected
location. The pixel-aligned features {P c

v |c = 1, 2, ..., Nc} for a vertex v are fed into an atten-
tion module [40] as key and value with the vertex’s learned latent code Qv as the query to
aggregate the features across the multiple input views. A denser geometry feature volume
F̃ is obtained by using a Sparse Convolution Network [12] similar to Neural Body [30].
Given a query point x, a feature vector is sampled from the feature volume F̃ (x), as well
as pixel-aligned features {P c

x|c = 1, 2, ..., Nc} from input multi-view images by projecting
the query point to each image plane. The mean vector and variance vector of {P c

x} along
with F̃ (x) are passed into an MLP that predicts density at the query point. To predict
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color, the pixel-aligned features {P c
x} along with its mean and variance vectors are passed

into an MLP that predicts the color at the query point. GP-NeRF shows improvement over
NHP [18], and validates and justifies all its design choices.

As seen from the works, the typical way of leveraging input images is using pixel-aligned
features [34], which is associating image features to an arbitrary 3D query point by projecting
the query to the image plane and sampling features with bilinear interpolation. However,
pixel-aligned features can only be obtained when an image of the rendered human pose is
given as part of the input images. Thus, these methods cannot render novel human poses, of
which an observation image is not available, making animation infeasible. By contrast, our
method has specific designs to inference images of unobserved target poses from observations
of limited poses, leading to an animatable human avatar.

1.4 Motivation for our work

Rendering realistic human avatars continues to be of great interest to researchers. It enables
numerous downstream applications such as immersive telepresence in AR/VR, virtual try-
on, game modeling, movie production, etc.

Recently, Neural Radiance Fields (NeRF) [26] has achieved impressive results on photo-
realistic novel view synthesis. Efforts have been made in adapting NeRF to rendering human
subjects [30, 21, 18, 29, 42, 44, 6]. However, two problems are raised by naively adapting
NeRF to human subjects:

1. The model would have to be trained for one subject specifically (i.e, not subject-
agnostic). Every novel subject would require retraining a new model, which is ex-
pensive in both time, and storage.

2. The model will not be able to support novel human poses. The model can only generate
images of human poses observed in input images, we thus cannot animate the human
subject with arbitrary poses (i.e, not animatable), as it is infeasible to include all
possible poses inside inputs.

As discussed in Section 1.3, prior works have been proposed to achieve either subject-
agnostic [18, 6] or animatable [21, 29, 42, 44] human avatar NeRF-based rendering.

However, no works have been proposed to address both issues and maintain the prop-
erties of animatable and subject-agnostic simultaneously, which would greatly reduce the
additional steps required to render a new human body. Moreover, it is nontrivial to design
such a method. Firstly, in order to make the method animatable, implicit features need be
attached and driven by the body poses, which further requires an accurate shape estimation.
This is easy for subject-specific methods that learn the specific body shape during training,
but not for subject-agnostic methods that need to estimate body shape during inference.
Moreover, in order to make the method subject-agnostic, the method should also learn to
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aggregate the features from input images in a generalizable way. This is relatively easy for
the task of novel view synthesis for seen poses as pixel-aligned features can be calculated,
but hard for unseen poses.

In this work, we propose a novel subject-agnostic and animatable neural radiance
fields (SAgA-NeRF) pipeline for human avatar from sparse-view videos by taking SMPL [22]
models as priors. Given sparse-view video sequences of an arbitrary human body, our method
can render the human body in novel views and arbitrary poses. In order to get an accurate
body shape, we adopt the SMPL+D representation, which are optimized according to the
input body masks. Moreover, in order to fuse the features from input images better, we
design a novel feature fusion module. Specifically, we first fuse the multi-view features, and
then attention-based fusion across timesteps according to input and target poses. Lastly, a
new input frames selection method is proposed to select appropriate input frames from the
video dynamically with respect to the target human pose.

The contributions are summarized as follows. At first, to the best of our knowledge, we
propose the first method that is able to learn subject-agnostic and animatable neural
radiance fields of human bodies from sparse view input. Moreover, we solve the challenges
to fulfill this goal by adopting several novel techniques. We compare our method with
subject-agnostic as well as animatable methods. The experiments show that our method
performs at a similar level for the same task, as well as when both capabilities of our
model together (subject-agnostic and animatable) are compared against the one capability
of the comparison method (subject-agnostic or animatable). We also verify and justify our
proposed components by performing ablation studies, in which our method outperforms
naive baselines.
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Chapter 2

Formulation of the Problem

For our formulation, we take inspiration from Neural Rendering methods discussed in Sec-
tion 1.1 and NeRF-based human rendering methods discussed in Section 1.3. NeRF [26]
introduces an image-based novel-view synthesis Nueral Rendering method that we adopt
for our rendering, and IBRNet [41] and PIFu [34] show the efficacy of using pixel-aligned
features and multi-view input images to achieve scene generalizability / subject-agnosticism.
The existing subject-agnostic methods [18, 6] discussed show efficacy of using attention mod-
ules [40] to aggregate features. Animation methods discussed in Section 1.3 have less of an
impact on our formulation, as their formulation are based on subject-specific learning, such
as learning the canonical pose [29] or subject-specific latent code [30], or subject-specific
embeddings and node offsets [44].

In this chapter, we will formulate a high-level overview of the problem, and required
components, and also compare how our formulation has to be non-trivially different than
the discussed subject-agnostic methods [18, 6].
Problem definition: We aim to design a method to learn subject agnostic and animatable
neural radiance fields for human avatar rendering. Given:

1. a fixed set of Nt multi-view images of a human, {Cc
t |c = 1, 2, ..., Nc, t = 1, 2, ..., Nt}

where Nc is the number of views, of an arbitrary human,

2. a target human pose Ptar, and

3. a novel target camera view ctar,

the method needs to render the arbitrary human in the target pose from the target camera
view, without having the need to retrain the model on the subject.

We assume that SMPL poses and body shape for all frames are available so that the
SMPL model for each frame can be obtained. The parameters can be easily obtained using
the OpenPose tool [4], and can be further optimized using EasyMoCap [1]. Furthermore,
our method also proposes using an improved optimization, namely SMPL+D, which we
discuss in detail in Chapter 3. The formulation in this chapter focuses on the rendering
pipeline, after obtaining and optimizing the parameters.
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We break down the formulation into three components: Inputs, Using visual cues, and
radiance field decoding and rendering. We provide a high-level overview of the formulation
(detail of the designs are discussed in Chapter 3: Method). We also compare our formulation
with existing subject-agnostic methods: NHP [18], and GP-NeRF [6], to show that our
formulation is non-trivially different

2.1 Inputs

Our formulation: Since our method is subject-agnostic, multi-view frames are required
as input {Ic

t |c = 1, 2, ..., Nc, t = 1, 2, ..., N ′
t} where Nc is the number of views of the input

frames, and N ′
t is the number of frames/timesteps being used as input. This subset is

selected from the given sequence/image set {I}. This selection is for the pipeline to "know"
which subject to render and to extract appropriate visual cues. Since our method is also
animatable and the target human pose is not part of the input frames, the input frames
need to be selected appropriately based on the target pose Ptar, so as to make sure that
appropriate visual cues can be extracted. A selection module I can be design to select
appropriate frames:

{Ic
t } = I(Ptar, {I}) (2.1)

Such a selection method is non-trivial to design (details in Chapter 3).
In contrast, it is very trivial for the non-animatable subject-agnostic methods to select

input frames as seen from their formulations below.
NHP [18] formulation: To render a novel view of time-step i, NHP selects the set {i −
20, i, i + 20} as inputs:

{Ic
t ; i} = {Ic

i−20, Ic
i , Ic

i+20|c = 1, 2, ..., Nc} (2.2)

GP-NeRF [6] formulation: To render a novel view of time-step i, GP-NeRF select just
the time-step i as input:

{Ic
t ; i} = {Ic

i |c = 1, 2, ..., Nc} (2.3)

2.2 Using Visual Cues

Our formulation: Visual cues from the input images have to be extracted and used. The
cues can be represented by pixel-aligned features {F c

t,v} for each vertex v by projecting
each vertex to each input frame t and each camera-view c. These can be extracted by using
a feature extractor F to calculate 3D-feature maps for each image, then projecting each
vertex v to each image plane and sampling feature vectors from the feature maps for each
of the projected locations {πc

t,v}:

{F c
t,v} = S(F({Ic

t }), {πc
t,v}) (2.4)
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where S represents the sampling. The visual cues are now across multiple frames and views,
and hence need to be generalized. Each input frame t is a different pose Pt, and each view
is from an input camera c. Therefore the generalization G on the features needs to be
performed based on the collection of input cameras {c}, input poses {Pt}, and target pose
Ptar, so as to construct per-vertex features {Ftar,v} to infer body shape and appearance
under the target pose:

{Ftar,v} = G({F c
t,v}, {c}, {Pt}, Ptar) (2.5)

In contrast, NHP [18] and GP-NeRF [6] do not have to deal with the extra target pose
input, which simplifies their formulation. Both methods further simplify their formulation
of the generalization by not using any camera view information, whereas our formulation
recognizes the importance of this information to help boost the generalizability of our model
to various inputs, and uses it while constructing the final per-vertex features {Ftar,v} by
calculating and using a vertex visibility mask (details in Chapter 3).
NHP [18] formulation: NHP similarly samples per-vertex image features {F c

t,v}, but uses
a different and very coarse generalization. It takes into account the query point x during
the generalization, so as to obtain a fused vector Fx that encodes shape and appearance at
the query point. The query point is used to get pixel-aligned features for the query point
at time-step i (the time-step being rendered). This is possible for NHP as the target time-
step is part of the input frames. The generalization therefore, only utilizes the per-vertex
features, and query point x:

Fx = G({F c
t,v}, x) (2.6)

NHP’s formulation of this problem is a very simplified one, and does not utilize any geom-
etry, camera, and human pose information.
GP-NeRF [6] formulation: GP-NeRF similarly samples per-vertex image features {F c

t,v},
but uses a different generalization approach more in-line with it’s goal of non-animatable
novel-view synthesis. It uses a learned per-vertex v latent code {Qv} that encodes geometry
to perform generalization, but like NHP, GP-NeRF still does not utilize camera view infor-
mation. Like our formulation, GP-NeRF does not utilize the query point at this stage, but
at the next stage. Their generalization therefore, only utilizes the per-vertex image features
{F c

t,v} and latent code {Qv}:

{Ftar,v} = G({F c
t,v}, {Qv}) (2.7)

GP-NeRF, like NHP, does not have to deal with any pose information as it is non-animatable.
It does not also utilize the camera view information and is only geometry guided through
the latent codes.
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2.3 Radiance Field Decoding and Rendering

This part is trivial, based on the generalization output from previous component, the gen-
eralized feature has to be decoded to color and density and rendering is done using the
differentiable renderer proposed by NeRF [26].
Our formulation: Finally, given a 3D query point x, target novel camera view ctar and per-
SMPL-vertex v features {Ftar,v} that explain body shape and appearance under the target
pose, appropriate features needs to be collected from nearby features (collection process
represented by A). An MLP (represented by N ) can be used to predict color c and density
σ based on the sampled features.

(c, σ) = N (A({Ftar,v}, x)) (2.8)

For each ray, the pixel color for an image from camera view ctar can be rendered using the
differentiable volume rendering module from NeRF once color and density for all sampled
points along the ray have been predicted.
NHP [18] formulation: Since NHP has already generalized multi-view multi-timestep
features using query point x, and has obtained a single query vector, a NeRF [26] module
is used to predict the color c and density σ:

(c, σ) = N (Fx, ctar) (2.9)

GP-NeRF [6] formulation: Similar to our formulation, GP-NeRF aggregates from near
the query point x from features obtained by the generalization. It however, splits the density
prediction and appearance prediction by separate components (D and C respectively). The
density prediction module utilizes the aggregated feature (using module A), and the ap-
pearance prediction module uses only query point x. The query point is used to extract the
pixel-aligned features from the multi-view input frame at time-step i (the same time-step
being rendered).

σ = D(A({Ftar,v}, x)) (2.10)

c = C(x) (2.11)

2.4 Summary of Our Formulation

Our formulation, as discussed has three components. We first select input frames for the
pipeline from the given image set:

{Ic
t } = I(Ptar, {I}). (2.12)
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We then extract per-SMPL-vertex features and generalize across input views and frames/human
poses:

{F c
t,v} = S(F({Ic

t }), {πc
t,v}), (2.13)

{Ftar,v} = G({F c
t,v}, {c}, {Pt}, Ptar). (2.14)

We finally predict appearance and density for each given query point:

(c, σ) = N (A({Ftar,v}, x), x, ctar). (2.15)
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Chapter 3

Method

As discussed, our main goal is to create the first NeRF-based method for human avatar
rendering, that is subject-agnostic, as well as animatable. Given the following inputs:

1. multi-view video of an arbitrary human performance,

2. a target human pose, and

3. a target camera view,

our goal is to render, from the given camera view, the human in the target pose. As a subject-
agnostic method, our pipeline would need to take in input frames {Ic

t |c = 1, 2, ..., Nc, t =
1, 2, ..., N ′

t} where Nc is the number of views of the input frames, and N ′
t is the number of

frames/timesteps being used as input. These input frames serve as a reference, to "know"
which human to render, such as in Neural Human Performer [18]. The visual cues from these
input images need to be appropriately "fused", to serve as a starting point for rendering the
required avatar, in the required target human pose. A tractable way of using visual cues
is having features anchored to a human body prior, which is also very useful to establish
correspondence between images and perform the fusion. For the prior, we use SMPL [22],
which we further optimize for better geometry.

We propose a two-stage pipeline which achieves the target goal. The first stage is the
SMPL+D optimization to optimize the SMPL geometry for a given subject (Section
3.1). The second stage is the rendering pipeline which has three main components:

1. Posed-based input frame selection to select appropriate input frames that would
help cover the visual cues needed to render the avatar in the target pose (Section 3.2),

2. Per-vertex feature extraction and fusion from the input images into a single
feature for each SMPL vertex, based on localized pose and angle difference between
each SMPL vertex’s normal and the frame’s camera view direction (Section 3.3), and

3. Decoding features and volumetric rendering, where a feature for each query
point in the radiance fields is interpolated using the nearest SMPL vertices in the
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target pose, and then decoded to a color and density, followed by volumetric rendering
to get the output image. (Section 3.4).

Figure 3.1 shows an overview of our rendering pipeline (Stage 2).
In this chapter, we will discuss each of the four components (SMPL+D optimization

and the three components of the Rendering Pipeline) in detail. To make the pipeline easy
to follow, each of the three components of the rendering pipeline will have a short summary
discussing the input(s) and outputs(s), and linking to the formulation of the solution from
Chapter 2.

3.1 SMPL+D Optimization

Inspired by previous Inspired by previous works [18, 30], we adopt the SMPL model [22] as
a body prior to establish coarse correspondences across frames. However, the fitted SMPL
shapes are usually inaccurate and not well aligned with images due to the limited model
capacity. We alleviate this issue by adding per-vertex 3D offsets on the template shape
(i.e, SMPL+D [2] formulation), which are optimized according to masks of frames. The
implementation of our SMPL+D Optimization is inspired by EasyMoCap [1].
Parameterization: The SMPL+D model has the following parameters. For parameters
shared by all frames, we have SMPL shape coefficients β, and per-vertex 3-D offset δ added
on the template. For per-frame parameters, we have SMPL pose Pi, global rotation Ri ∈
SO(3), and translation ti for frame i. Thus, the world coordinates of mesh vertices v and
joints J can be computed as the following

v = RiV(β, δ, Pi) + ti (3.1)

J = RiJ (V(β, δ, Pi)) + ti, (3.2)

where V is the articulated SMPL+D model and J is the linear joint regressor. Given
calibrated camera c, We can project the vertices and the joints of frame i to the image
plane by the mapping Πc : R3 → R2

Πc(x) = KcRcx + tc, (3.3)

where Kc is the camera intrinsic and (Rc, tc) is the camera extrinsic.
Optimization Stages and Objectives: Following EasyMoCap [1], the parameters are
optimized in a multi-stage manner.

1. The SMPL shape coefficients β is determined by bone length of triangulated 3D
keypoints.

2. Only the global rotations Ri ∈ SO(3) and translations ti are optimized in this stage
using 3D keypoint loss (L2 loss between triangulated 3D keypoints and predicted
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Figure 3.1: Overview of the rendering pipeline (Stage 2). This stage is after the
SMPL+D optimization of the SMPL human shape (Section 3.1). The rendering pipeline,
given inputs: (a) a sparse-view video of an arbitrary human with SMPL+D models (i.e.
human poses), (b) a target human pose with SMPL+D model, and (c) a target camera
view, generates an image, from the target camera view, of the arbitrary human in the
target pose.
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joints), temporal smoothness on joints, temporal smoothness on poses, and L2 regu-
larization on poses.

3. The SMPL poses Pi are added to the parameters being optimized (Ri and ti), and
the same losses as previous stage are used to optimize the parameters.

4. The SMPL shape coefficients β and per-vertex 3-D offset δ are added to the parameters
being optimized. The parameters are optimized in this stage using 2D keypoint loss
(multi-view reprojection loss between 2D keypoints and projected joints), temporal
smoothness on joints, temporal smoothness on poses, L2 regularization on poses, and
Mask loss (inspired by [17]).

The mask loss is the additional loss, and the per-vertex offset is the additional parameter
we have added to the EasyMoCap optimization. The mask loss is inspired by Silhouette Con-
sistency and Silhouette Coverage energy terms from [17]. The mask loss penalizes for points
projected to the image plane that lie outside the foreground mask (Silhouette Consistency),
and pulls points near the mask boundary towards the boundary (Silhouette Coverage). Fur-
thermore, mask loss also includes an energy term to promote laplacian smoothing for the
mesh, and also adds an As-Rigid-As Possible Regularization Loss (ARAP loss) [15].
Optimization Solver: For the optimization, similar to EasyMoCap [1], we use the LBFGS
optimizer [20].

Despite the simplicity of this modification, our experiments demonstrate good improve-
ments from it, indicating the necessity of incorporating mask-derived SMPL+D shapes for
subject-agnostic methods.

3.2 Pose-based Input Frame Selection

To make our method subject-agnostic, we need to make the subject video an explicit input of
our method. However, the input video usually has hundreds or thousands of frames, making
it intractable to feed all frames into modern deep neural networks. To address this issue, a
common practice is to select a subset of frames as network inputs to reduce computational
cost (we denote this process as Input Frame Selection). Existing non-animatable method [18]
uses the frame corresponding to target pose and its neighbor frames as network inputs to
cover enough visual cues of target pose. Unlike NHP [18], our method also focuses on
novel pose synthesis, and the frame corresponding to target pose would not exist under our
problem setting. Therefore, we need to carefully select a limited number of input frames
{Ic

t |c = 1, 2, ..., Nc, t = 1, 2, ..., N ′
t} while covering enough visual cues at the same time.

More specifically, we select Nc = 3 cameras and N ′
t = 4 frames as inputs. To solve this

problem of selecting appropriate input frames, we propose our novel pose-based input frames
selection, which uses the target pose Ptar to select the four frames from the given video.
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Since the goal is to cover enough visual cues to render the human in the target pose,
a tractable way to manage that is to select input frames, such that each input timestep t

has at least some part of it’s human pose Pt be similar to the same part of the target pose.
To this end, we divide the body into four parts: left hand plus torso, right hand plus torso,
left leg plus torso and right leg plus torso. For each body part p, given the SMPL pose Pt

for each timestep t in the given sequence, and the target SMPL pose Ptar, we calculate the
mean joint angle difference dp of the set of joints in that part Jp = {j∀j ∈ p} as such:

dp,t = 1
|Jp|

∑
j∈Jp

(||ϑ(Pt,j × (Ptar,j)−1)||), (3.4)

where ϑ denotes conversion of a rotation matrix to axis angle.
One timestep is selected for each body part p with minimum dp, without replace-

ment, and therefore, a total of four unique frames are selected, each with three uniformly-
distributed views for a total of 12 input images.
Summary: This module of the rendering pipeline follows from the formulation of selecting
inputs discussed in Section 2.1:

{Ic
t } = I(Ptar, {I}), (3.5)

where I denotes the module. The inputs to this module are:

1. a multi-view image/sequence set {I} of an arbitrary human, and

2. a target human pose Ptar.

The output is the set of selected frames {Ic
t } to be used as explicit inputs to the next

module in order to provide enough visual cues to render the human in the target pose. The
frames are selected by finding frames closes in pose to the target pose, by dividing the body
into four parts and finding one frame closest to each body part for a total of four 3-view
frames (12 images).

3.3 Feature Extraction and Fusion

Given the selected input frames {Ic
t } and the fitted SMPL+D shapes that are aligned to

input images, the next task is to collect visual cues from these inputs and infer the body
shape and appearance under the target pose. To this end, we split the task into 2 sub-tasks:
view fusion, and attention-based pose fusion. Figure 3.2 shows a detailed overview of the
component.

In view fusion, the high-level idea is to perform a "psuedo" sparse-view 3D reconstruction
on each frame by fusing image features from different camera views. For each frame t, we
first extract image features with a backbone ResNet [14], then project SMPL+D vertices
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onto image planes and sample pixel aligned features [18, 43, 34] with bilinear interpolation.
The feature is denoted as F c

t,v, which is anchored on SMPL+D vertex v, and sampled
from camera c. Then, we develop a module to fuse the multi-view features {F c

t,v}Nc
c=1 into

one feature vector F ′′
t,v per-vertex. To better gather information from different views, we

consider the following 2 intuitions:
View direction relative to body surface: Intuitively, if a camera is directly facing the
body surface (i.e. view direction is parallel to surface normal), then its image likely contains
more visual cues of the surface than another image whose camera is looking from the side
(i.e. view direction is orthogonal to surface normal). To take this information into account,
for each SMPL+D vertex v, we compute θc

t,v the camera view direction relative to vertex
normal, for which we adopt the relative view direction formulation in IBRNet [41].
Body occlusions: The articulated structure leads to complex body occlusions. If the body
surface is occluded from one camera, then we should not take information from the image
of this camera. To make our model occlusion aware, we compute the visibility Vc

t,v for each
vertex v under every camera view c by z-buffer testing.

Given the view direction relative to normal θc
t,v, the visibility Vc

t,v, and the multi-view
feature F c

t,v of each SMPL+D vertex v, we concatenate them and use a MLP ϕ1 followed
with weighted sum to fuse across views, where the weighted sum is based on learned weights
produced by a fully connected layer ϕ2. More specifically, we have

F ′c
t,v = ϕ1

(
concat

(
F c

t,v, θc
t,v, Vc

t,v

))
(3.6)

F ′′
t,v =

Nc∑
c=1

(
F ′c

t,v ◦ σ
(
ϕ2

(
F ′c

t,v

)))
, (3.7)

where σ is softmax across the view dimension, and ◦ is element-wise multiplication.
After getting view-fused features F ′′

t,v, we use the attention-based pose fusion to infer
the body shape and appearance under the target pose. Since our target pose is not directly
corresponded to any frame t, we have to extract target pose information from view-fused
features F ′′

t,v. Intuitively, if one frame has a more similar pose to the target one, then this
frame likely contains more target pose information. Thus, we could use body poses as a
good reference to determine how much contributions each frame should give to the target
pose rendering. To implement this idea, we adopt multi-head attention [40] F = Ω (Q, K, V )
with localized poses [35] as query Q = Q(Ltar,v) and key K = K(Lt,v), where Q and K are
learnable embedding functions, Lt,v is localized pose for frame t, and Ltar,v is localized pose
for target. To get the value V , we apply another learnable embedding function V on the
view-fused features F ′′

t,v as V = V(F ′′
t,v). Finally, the attention output Ftar,v = Ω (Q, K, V )

is a fused feature anchored on SMPL+D vertex v, which contains the body shape and
appearance information of the target pose.
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Figure 3.2: Overview of the feature extraction and fusion. Pixel-aligned features
are extracted for each SMPL vertex for each frame. These features, along with a vertex
visibility mask, and vertex-normal and view-direction angle difference, to perform a "pseudo
3D reconstruction" by fusing the features across input views. The view-fused features, along
with per-vertex localized target and input poses are used to fuse the features across input
frames/poses through an attention module [40]. The outputs are per-vertex features which
contains the body shape and appearance information of the target pose.
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Summary: This module of the rendering pipeline follows from the formulation of using
visual cues discussed in Section 2.2. We first extract pixel-aligned per-vertex v features
{F c

t,v} for the SMPL+D models for all input images {Ic
t }:

{F c
t,v} = S(F({Ic

t }), {πc
t,v}), (3.8)

where F denotes a feature map extractor (we use ResNet [14]) from images, and S denotes
sampling of features for all projected points {πc

t,v} of SMPL+D vertices on to respective
image planes.

The multi-view multi-pose features are then fused into single feature vectors that encode
the appearance and geometry of each vertex under the target pose:

{Ftar,v} = G({F c
t,v}, {c}, {Pt}, Ptar), (3.9)

where G denotes the whole fusion process. The fusion process utilizes camera view infor-
mation for the input images ({c}) to perform multi-view fusion, and uses the poses for
the input frames {Pt}, and the target pose Ptar to perform pose fusion. The camera-view
information is utilized by calculating a vertex visibility mask and view direction relative to
body surface before performing the multi-view fusion. The multi-pose fusion is done using
an attention-based module with target pose as query, input poses as key, and pixel-aligned
features as value.

The inputs to this module are:

1. input images {Ic
t } selected using pose-based input frames selection (Section 3.2),

2. camera-view information {c}) for all input images,

3. human poses {Pt} for all input frames t, and

4. target human pose Ptar.

The output is per-vertex features {Ftar,v} on the SMPL+D target model, that encode the
appearance and geometry of the vertex under the target pose.

3.4 Decoding Features and Volumetric Rendering

Given features Ftar,v on each target pose SMPL+D vertex v, we now decode it to a radiance
field. Given a query point x ∈ R3, we first find its 20-nearest-neighbor SMPL+D vertices
{N}, gather the features {Ftar,v∀v ∈ N}, and compute the vertex-to-query vector y = x−v.
Inspired by [3], we compute the distance d = ||y||2 and cosine c = cos(y, n) as the rotation-
invariant spatial features, where n is the vertex normal. These 3 per-vertex quantities (Ftar,v,
d, c) are then passed through a PointNet [32] style network to predict the color and density
of x. The colors and densities of all query points are then used by volumetric rendering as
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in NeRF [24] to obtain the final output image. L2-norm loss is used as supervision during
training. Figure 3.3 provides a detailed overview of the component.
Summary: This module of the rendering pipeline follows from the formulation of radiance
field decoding and rendering, discussed in Section 2.3:

(c, σ) = N (A({Ftar,v}, x)). (3.10)

A denotes the collection of features given a 3D query point x. We collect features by
gathering the fused features from the previous module as well as some rotation invariant
features for 20 vertices nearest to the query point. N denotes the decoding module. We use
a PointNet [32] to decode the 20 unordered feature sets to a color and density for the query
point.

For each sampled query point, the inputs to this module are:

1. the fused features from the feature extraction and fusion module (Section ??),

2. the query point x.

The outputs then, are the color c = (r, g, b) and density σ at that query point.
Finally, for each ray, the pixel color for an image from camera view ctar can be rendered

using the differentiable volume rendering module from NeRF once color and density for all
sampled points along the ray have been predicted. This forms the final rendered image of
the given human under target pose and target camera view.
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Figure 3.3: Overview of the decoding and volumetric rendering component. Given
aggregated features from the feature fusion component attached to target pose on SMPL+D
model, and the target view, we: (1) shoot a ray for each pixel in the image, then (2) sample
query points along the ray, then (3) for each query point we find the nearest neighbours,
gather information, and feed through PointNet [32] to get color and density, then finally (4)
for each ray, integrate color and density for all query points along the ray using volumetric
rendering to obtain the pixel color.
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Chapter 4

Experimental Results

Our method is the first NeRF-based subject-agnostic and animatable human rendering
method, and so utilizes different settings that help us show proof as concept as well as com-
pare against existing methods that are either subject-agnostic or animatable. We perform
our training and testing on the ZJUMoCap dataset [11, 30].

We first compare with a recent state-of-the-art subject-agnostic novel view synthesis
method, Neural Human Performer (NHP) [18]. The comparison with NHP is the most
relevant comparison that we make. For completeness, we also chose to evaluate against
animatable methods, although at this stage we do still expect subject-specific models to
create more detailed renderings.

Furthermore, we perform and report ablation studies to study the effect of and validate
our design choices. The results show that our design choices are effective and justified.

For our quantitative analysis, we calculate and report the peak-signal-to-noise-ratio
(PSNR) and structural similarity (SSIM).

4.1 Comparison Against Neural Human Performer

Neural Human Performer (NHP) [18] is a very recent method for subject-agnostic human
avatar rendering. NHP is close behind [6] - the current state-of-the-art (SOTA) subject-
agnostic method - in terms of performance. Comparison with [6] is not currently possible,
as it was announced while this thesis was being wrapped up, and the results and code have
also not yet been publicly made available.

The goal is for our pipeline to perform at a similar or higher level to NHP, while also
being animatable. We use the pre-trained model provided by [18] to obtain results on their
method. NHP is trained on 7 subjects, leaving out subjects 387, 393, and 394 for testing.
For comparison, we use the same split of subjects.

We compare two settings of model against NHP, namely ours-seen and ours-unseen.
ours-seen includes the frame with target human poses as part of the selected input frames,
and therefore performs the same task as NHP, which is novel-view synthesis. ours-unseen
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NHP-Seen Ours-Seen NHP-Seen Ours-Unseen
PSNR 25.93 26.12 25.93 25.31
SSIM 0.9041 0.9147 0.9041 0.9008

Table 4.1: Quantitative Comparison of our two settings against the one setting of NHP.

reserves the first 300 frames of each sequence as candidate input frames, while poses from the
remaining frames are rendered. Comparison with ours-unseen provides a direct comparison
of our method’s goal task (subject-agnostic and animatable) with NHP’s task of subject-
agnostic novel-view synthesis.

Table 4.1 shows the average quantitative results obtained for NHP, ours-seen, and
ours-unseen on the test subjects.

Quantitatively, our method outperforms NHP on the same task as NHP, and delivers
very similar performance when the target human pose is not part of the selected input
frames (animatable).

Figure 4.1 shows qualitative comparison against NHP. Our method clearly outperforms
NHP on the same task as can be seen by comparing against ours-seen, and also shows
strengths against NHP in the comparison with ours-unseen, as it renders better shape and
details overall, and mostly better color as well.

The comparison against NHP is the most relevant comparison for our task. Our model
has not only outperformed NHP on the same task but also shown that our subject-agnostic
method can produce at least equally good results on unseen human poses, a task which NHP
can not even handle. This shows that the boundaries of what subject-agnostic methods are
capable of, can be pushed further.

4.2 Comparison with Animatable Methods

For the sake of completeness, we also perform comparison with methods that are animatable
but subject-specific, i.e, they need to be trained on a per-subject basis. At this stage, we
do expect subject-specific methods to create more detailed renderings simply due to their
nature of being trained on one specific subject; this is especially true if our model has
not seen the testing subject at all during training. We compare against three methods;
Structured Local Radiance Fields for Human Avatar Modeling (SLRF) [44], Animatable
Nerf (AN) [29], Neural Body (NB) [30]. The numbers for all three methods are obtained
from [44]. Similar to [44], we report numbers for two subjects, subject 387 and subject 392.
The three comparison methods obtain numbers by first training the model on the first 300
frames of the video sequence of each subject and then tested by rendering the seen and
unseen poses. We train our model on the remaining 8 subjects of the dataset, and test on
the same two testing subjects mentioned, such that the testing subjects are completely new
subject for our model during testing. For comparison against the "seen" poses setting of
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GT Ours-Seen NHP Ours-Unseen

Figure 4.1: Qualitative comparison against NHP [18].
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ID Pose Type PSNR SSIM
NB AN SLRF Ours NB AN SLRF Ours

387 Seen 25.79 24.38 28.32 26.28 0.928 0.903 0.953 0.925
Unseen 21.60 21.29 23.61 24.14 0.870 0.860 0.905 0.901

392 Seen 29.44 27.43 30.79 29.16 0.946 0.919 0.958 0.940
Unseen 25.76 24.59 26.74 27.34 0.909 0.889 0.927 0.928

Table 4.2: Quantitative comparison against animatable methods [30], [29], and [44].

animatable methods, we use the same setting as ours-seen (Section 4.1) so the pose is
"seen". For comparison against the "unseen" poses setting of animatable methods, we use
the same setting as ours-unseen (Section 4.1). This means that the 4 selected input frames
will likely contain poses very different to the target pose. Furthermore, not training our
method on the test subjects shows proof-of-concept of our animatable method working in
a subject-agnostic manner.

Table 4.2 shows our quantitative results against the animatable subject-specific methods.
The PSNR and SSIM measures show that quantitatively, our method performs at a similar
level to these methods, while not having been trained on either of the two subjects.

Figure 4.2 shows our qualitative results against [44] for the unseen poses setting. The
qualitative results shed some more light on the comparison, and as expected, show that
SLRF produces more detailed images (the PSNR and SSIM are not too sensitive to smooth-
ing in images). However, our method produces results close behind in terms of quality while
not having seen the subjects at all during training. This is a strong proof-of-concept of
our model, and shows potential of subject-agnostic methods being able to properly handle
animation as well.

4.3 Ablation Experiments

We also investigate the effectiveness of our design choices. We claim that our main compo-
nents and contributions that enable us to achieve our goals are the SMPL+D optimization,
pose-based input frames selection, and pose-driven feature fusion across input frames using
multi-head attention. We verify all of these design choices by training and testing variants
of our model. The variants we test are:

1. our pipeline without SMPL+D optimization (NoSD),

2. our pipeline without pose-based input frame selection, in which we select 4 input
frames (2 of them close to the frame being rendered, and the other 2 random) from
the candidate range during training, and 20 random input frames from the candidate
range during testing (NoFS),

3. our pipeline with multi-head attention replaced with mean pooling (AvgP), and
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GT Ours SLRF

Figure 4.2: Qualitative comparison against animatable method [44].
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ID PSNR SSIM
NoFS MaxP AvgP NoSD Ours NoFS MaxP AvgP NoSD Ours

387 23.72 24.24 23.84 23.47 24.14 0.898 0.900 0.899 0.894 0.901
392 26.92 27.23 27.16 26.80 27.34 0.909 0.928 0.927 0.922 0.928

Table 4.3: Ablation: Quantitative Comparison

GT Ours MaxP AvgP NoFS NoSD

Figure 4.3: Ablation: Qualitative Comparison

4. our pipeline with multi-head attention replaced with max pooling (MaxP).

All tests are done on unseen subjects and unseen human poses.
Table 4.3 shows quantitative comparison of SAgA-NeRF (Ours) against the variants.

SAgA-NeRF outperforms all variants but shows similar level of performance to MaxP
and AvgP. Further qualitative analysis in Figure 4.3 shows that our model’s fusion is
justified over MaxP and AvgP as it creates more detailed wrinkles, such that the wrinkles
don’t appear smoothed out, and have better shading around them making them look more
realistic. The qualitative comparison also clearly shows that our pose-based input frame
selection and SMPL+D optimization are justified design choices.

31



Chapter 5

Conclusion

We present SAgA-NeRF, which is, to the best of our knowledge, the first method that
is able to learn subject-agnostic and animatable neural radiance fields of human bodies
from sparse view input. We propose and verify techniques to solve the challenges posed
by the task of achieving our goal, with our main contributions being the pose-based input
frame selection, and view and pose-based feature fusion anchored on a parametric body
model. Our comparison against subject-agnostic method NHP [18] shows that SAgA-NeRF
is capable of pushing the boundaries of subject-agnostic methods by not only rendering
better images, but by also being pose-driven, hence increasing the range of its application.
Comparison against subject-specific animatable methods also show great potential of having
animation being performed on-the-fly without having to retrain the model on a new subject.
In our testing on the ZJU-MoCap setting, our primary comparison against NHP shows that
we achieve greatly improved performance in subject-agnostic/generalizable human avatar
rendering, and provide a starting benchmark for subject-agnostic and animatable methods.
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