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Abstract

Viral transmission plays an essential role in our understanding of and response to infectious

diseases, for example, by informing policy decisions about transportation and borders. Phy-

logenetic methods take advantage of the evolutionary relationships between the genome

sequences of viruses to infer geographical locations of unobserved ancestors from sampled

data. Here I introduce a new approach to examine the inference of ancestral locations and

predict the geographic movement of viral lineages from the known locations of samples. In

contrast to existing methods, my method accounts for differences in sampling policies among

areas, to avoid biased inference of the ancestral locations. I begin by summarizing existing

methods for ancestral state reconstruction. I then introduce an ancestral state reconstruc-

tion method that accounts for variation in sampling rate among locations and compare it

to the classic Maximum Likelihood method. I show that my method infers ancestral states

for small trees more accurately than this classic approach.

Keywords: Zoonosis,Infectious disease, Transmission , Phylogeography
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Chapter 1

Introduction

A phylogenetic tree is an acyclic graph where leaves (tips) correspond to organisms or

samples with labels, and internal nodes are unobserved and inferred. It represents the evo-

lutionary relationships among biological species or the history of viral transmission among

hosts in the epidemiological case that we focus on here. Phylogenetic trees can be recon-

structed from the evolutionary relationships between sampled viral genome sequences. In

addition to these sequences, sampled viruses may be characterized by many discrete or con-

tinuous “character states,” such as their current location or the species of host they infect.

Ancestral state reconstruction (ASR) is a fundamental method in phylogenetics for identi-

fying the character states of evolutionary ancestors. Ancestral state reconstruction methods

use the observed character states at each tip (sampled lineage) in a phylogenetic tree to

infer ancestral states consistent with the genome-wide evolutionary history.

Ancestral state reconstruction has critical applications in both micro-and macro-evolution.

For instance, ASR is used to study whether plant chemical defences are becoming stronger

over time to protect them from herbivores in the same environment and to understand co-

evolution.[1] Nextstrain, an open-source website tracking pathogen evolution, applies the

ancestral state reconstruction, in the form of the commonly used Maximum Likelihood

method first introduced by Pagel [2] discussed in more detail below, to infer viral trans-

missions of the SARS-CoV-2 pandemic [3] and to identify key introduction events among

countries and other pathogens such as influenza and Tuberculosis. This application of ASR

is an example of the much-border application of ASR to the field of phylogeography. The

aim of phylogeography in the epidemiological context is to describe the role of geographi-
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cal space on viral transmission, including the inference of viral introductions into distinct

geographical regions and to determine the origin of outbreaks.

Several ancestral state reconstruction methods have been developed over the past few

decades [4]. These methods can be broadly summarized into three categories: Maximum

Parsimony, Maximum Likelihood and Bayesian methods. The Maximum Parsimony method

minimizes the number of character state changes that explain the states (geographical loca-

tions) observed at the tips of phylogenetic trees. The Maximum Likelihood method attempts

to find one set of ancestral states that optimize the probability of observing the sampled

locations given the phylogeny. The Bayesian method infers each ancestor’s full “posterior”

probability distribution for a given set of sequences on fixed trees [5]. Regardless of the

method used, one fundamental issue of ancestral state reconstruction that has yet to be

addressed is the unequal sampling rates among locations. Intuitively if sampling bias is

unaccounted for, the more samples that are collected from a given location, the more likely

it will be that the inferred internal states will be from that location. Oversampling a region

will artificially increase its representation in the sample and cause us to infer a more signifi-

cant movement into that region (i.e. transmission to that species in the multi-species cases)

and a higher probability of remaining in that region (i.e. higher transmission rate within

that species). As an illustration, consider Figure 1.1 showing the phylogeny from Ebola se-

quences sampled through time from both humans and bats. Given the over-representation

of human samples, current ASR methods will infer the root state as human and conclude

that humans transmitted the virus to bats [6]. However, it is known that Ebola is a zoonotic

virus that spills over into humans from bats [7]. Due to the lack of viral sequences collected

from the bat, the ancestral state reconstruction result will be misleading.

It is worth mentioning that in my thesis, I will only refer to the above methods in

the ancestral state reconstruction realm. Even though Maximum Parsimony, Maximum

Likelihood and Bayesian methods also refer to phylogenetic tree reconstruction, I am only

focusing on the ancestral state reconstruction methods given a fixed “known” phylogenetic

tree.
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Extensive works have been done on characterizing the impact of sampling bias on phylo-

geographical analysis. De Maio [6] compared different ASR methods (Discrete Trait Analysis

and MultiType Tree) using an Ebola data set. Despite the higher prevalence of Ebola in

bat’s, the data set consists of 78 samples from human patients and 7 samples from bats.

They showed that current methods could give unintuitive results based on the settings: the

existing phylogeography methods would conclude that unseen human-to-human transmis-

sions cause the spreading due to sampling bias.

Magee & Scotch [8] also studied the effect of different down-sampling schemes in a

Bayesian framework on the reconstruction of the root state. They proposed two different

sampling schemes: (1) randomly downsample a certain percentage of the data irregadless

of location and (2) downsample a different percentage in each location. They found that

the correct root state can be accurately reconstructed even with a limited amount of data

(downsampled to 25%-50% of the data, regardless of downsampling schemes.); they con-

cluded that including most of the data (more than 90%) did not necessarily improve the root

reconstruction. Furthermore, if only 10% of the data were sampled, bias sampling would

result in lower reconstruction accuracy than selected 10% of the data from each region. To-

gether these results suggest that the reconstruction accuracy is more sensitive to sampling

bias than the small sample size, and hence the collection of larger, but yet biased, data sets

are unlikely to improve reconstruction accuracy.

To complement these previous findings, my coauthors and I quantify the effect of sam-

pling bias on multiple aspects of ASR (internal node states, root states, and migration

events) using a simulation approach [9]. We demonstrated that biased downsampling could

result in misleading inferences about the movement of viral lineages between locations. I

used available Ebola sequences [10]. Below is a summary of my work as it pertains to the

motivation and aims of this thesis. The data consisted of 262 tips collected from 4 counties:

Guinea, Liberia, Mali and Sierra Leone. The time-scaled tree is generated using BEAST1.0

[11]. I examined two subsampling schemes: (1): removal of 80% recent migrants (individuals

whose location differed from the inferred state of their immediate ancestor when the full

data set was used) and (2): removal of 80% samples at a specific location (Guinea or Sierra
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Leone). In this tree (Figure 1.2 panel A), the rate of movement among locations is low.

The tree (shown in Figure 1.2 panel A) exhibits monomorphic clades: nodes in the same

location are grouped. As a result of this low movement rate, the reconstruction accuracy

is high across downsampling schemes. However, downsampling results in inaccurate state

reconstruction at several individual nodes or groups of nodes relative to that found with the

complete data set (red boxes indicated in Figure 1.3 and Figure 1.4). These cases illustrate

that cross-jurisdiction disease introduction events can be inaccurately reconstructed due to

sampling bias. For example, the red box in Figure 1.3 indicates that the virus is introduced

from Liberia to Guinea, which is incorrect in the “true tree” containing the full data set in

which transmission is inferred to be from Sierra Leone to Guinea. Downsampling recent mi-

grant tips have similar but less drastic effects in this case. The ancestral state reconstruction

is accurate except at the internal nodes in the red box in Figure 1.2; after downsampling,

the introduction appears to be from Sierra Leone to Guinea, whereas the introduction event

in the true tree is from Liberia to Guinea.

Maddison et al. [12] introduced the binary state speciation and extinction (BiSSE) model

that estimates speciation, extinction and transition rates, assuming phylogenetic trees are

generated under the birth-death process. Recent work by Freyman and Hohana [13] used the

idea of BiSSE and “Stochastic Mapping” methods to accurately reconstruct ancestral states

and the location of evolutionary transitions accounting for state-dependent speciation and

extinction. Fitzjohn [14] extended the BiSSE model by considering more than two states

and, importantly for us here, including the possibility of unequal sampling rates among

types.

Notice that the aims of phylogeographic analysis are two-fold: 1) to estimate the tran-

sition (aka migration) rate between states and 2) to estimate the internal states. In the

thesis, I am infer ancestral states of the internal nodes of a fixed tree and given the fixed

migration rates between states.

In the introduction, I will summarize all the well-known methods that estimate ancestral

states and the methods that my idea comes from. I will give some illustrative examples

using these methods and discuss their advantages and weaknesses. In the next chapter, I
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will describe my approach in detail: I will combine the methods described in [12] and [13]

to account for sampling bias. In the third chapter, I will present preliminary results and

compare accuracy to the classical Maximum Likelihood method. Finally, I will discuss the

limitations of my approach and propose further directions.

1.1 Maximum Parsimony

The Maximum Parsimony method for ancestral state reconstruction aims to infer internal

states that require the minimum number of state changes in the entire phylogeny. Edwards

and Cavalli-Sforza first introduced the idea of “minimum evolution” (later called parsimony)

in 1963 [15, 16] based on Darwin’s theory of evolution (similar species are closely related).

They proposed that the most likely evolutionary tree is the one with a minimum amount of

evolution if there is no evolutionary history or fossil record. Later Farries [17, 18] and Fitch

[19] formalized the idea of Maximum Parsimony methods using mathematical equations.

There exists several heuristic methods for Parsimony reconstruction of ancestral states of

fixed trees [18,20,21] developed in the 1970’s and 80’s. More recently Miklos Csuros proposed

an alternative dynamic programming method for optimizing internal states. Here, however,

I focus on one of the former methods presented by Swofford and Maddison [21] that remains

widely used and because this algorithm exemplifies the methodology employed later in this

thesis of applying both post-traversal and pre-traversal algorithms to infer ancestral states

is later widely used in the field of ancestral state reconstruction, which I will describe in

the later sections. Consider a fixed tree with known tip states. The method first applies a

post-traversal algorithm to find the set of “downpass” states, the downpass states of internal

nodes represent the probable states of internal nodes as determined by (only) the states of

their direct descendants. Next, a pre-traversal algorithm, which moves from root to tip, is

applied to find the uppass set that each internal nodes inherits directly from their immediate

ancestors. Finally, the algorithm uses both downpass and uppass sets to infer the final state

of the internal node. The downpass and uppass sets can be calculated by the following rules:

1. We begin by performing the post-traversal algorithm. To find the downpass state

for node Nd, consider its child nodes’ downpass states M1d and M2d (tip states are

5



Figure 1.1: Misleading ancestral reconstruction due to sampling bias. Suppose
Ebola viral sequences are sampled through time among humans and bats, and if humans
have much more samples than bats, it is more likely that the most common ancestor is
inferred as human.
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Figure 1.2: Ancestral state reconstruction of Ebolavirus trees with recent mi-
grants downsampled.. Panel A: True tree with the correct internal states (Panel A).
Downsampled trees were obtained by dropping 80% of recent migrants with either the
true ancestral locations (Panel B) or ancestral locations reconstructed after downsampling
migrants (Panel C).
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Figure 1.3: Ancestral state reconstruction of Ebola virus trees with Guinea down-
sampled. Panel A: True tree with the correct internal states (Panel A). Downsampled tree
was obtained by dropping 80% of Guinea samples with true ancestral locations (Panel B).
After dropping Guinea samples, the downsampled tree with reconstructed ancestral location
(Panel C).
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Figure 1.4: Ancestral state reconstruction of Ebola virus trees with Sierra Leone
downsampled. Panel A: True tree with the correct internal states (Panel A). Downsampled
tree was obtained by dropping 80% of Sierra Leone samples with true ancestral locations
(Panel B). After dropping Sierra Leone samples, the downsampled tree with reconstructed
ancestral location (Panel C).
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considered as downpass states). If no states are shared in common (M1d ∩M2d = ∅),

assign the union to Nd (Nd = M1d∪M2d). The downpass state for Nd is an ambiguous

state, it can either be in state M1d or M2d. If child nodes share any states in common

(M1d ∩M2d ̸= ∅), assign the set of shared states to N (Nd = M1d ∩M2d).

2. We assign the downpass state as the final state for the root.

3. Next, we perform a pre-traversal algorithm. To find the uppass state for node Nu,

consider the downpass state of parent node Pd and node that shared most common

ancestor with N : Sd. The same rules apply. If no states are shared in common (Pd ∩

Sd = ∅), assign the union to Nu (Nu = Pd ∪Sd). If nodes share any states in common

(Pd ∩ Sd ̸= ∅), assign the set of shared states to Nu (Nu = Pd ∩ Sd).

4. Finally, to determine the final state of N , consider that node’s uppass state Nu and

the downpass states of its two child nodes M1d and M2d. Choose the state that has

the majority number in all three sets. If none is the majority, it remains ambiguous.

(meaning the number of state changes remains minimum regardless of this internal

state.)

Figure 1.5 is an example of using the Maximum Parsimony method to reconstruct ances-

tral states. All the internal states are assigned as white. Notice that this is consistent with

the Maximum Parsimony method: the best reconstruction is the one with the minimum

amount of state change. Here there is only one state change from white to black (node D to

tip B), which is the minimum state change of the phylogenetic tree. Due to the simplicity of

the idea that we want to reconstruct the internal states requiring the minimum amount of

state change, using Maximum Parsimony for ancestral state reconstruction can be mislead-

ing. Felsenstein used examples to show that Maximum Parsimony methods are not always

statistically consistent: even with sufficient samples, the Maximum Parsimony method does

not necessarily reconstruct a phylogenetic trees with high likelihood [20] as calculated via

a maximum likelihood approach (see below). Figure 1.5 demonstrates a second problem

with the Maximum Parsimony method. If we apply the Maximum Parsimony method to

this tree, all the internal states are inferred to be white since the most parsimonious tree
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is the one that has only a single state change on the branch from D to B. However, if

sampling rates are different between the black and white states, or it is known that the root

state is black, the Maximum Parsimony method will give misleading results. Given these

limitations of Maximum Parsimony, alternative methods, such as the Maximum Likelihood

method presented in the next section, are often preferred.

Figure 1.5: Reconstruct ancestral states using the Maximum Parsimony method.

The final states for D and E are both white. The minimum number of state changes is one.

1.2 Maximum Likelihood

The term “state” is used in many areas of mathematics. A Continuous-time Markov Chain

(CTMC) is a stochastic process in which the state of the system changes through time

according to an a series of events described by the rate matrix Q. Examples of other CTMC

in biologoy include molecular evolution models where the state refers to the four bases in

DNA (A, T, C, G) or RNA (A, U, C, G). In the model I am focusing on in the thesis, the

state often refers to discrete locations, and I model changes in location on the tree.

Maximum Likelihood methods (ML) reconstruct the internal states of phylogenetic trees

to find internal states that maximize the probability of observing the tip states given the

phylogenetic tree topology and a specific evolutionary model; in this case, the evolutionary

model refers to the transition rates between the character states. ML methods for ances-

11



tral state reconstruction used character states at the tips on a fixed tree to infer ancestral

character states. Maximum Likelihood methods were applied to genetic sequence evolution

by Felsenstein in 1981 [21] who developed a dynamic algorithm (referred to as the Felsen-

stein pruning algorithm) to estimate evolutionary trees. Pagel and Hadfield proposed the

first Maximum Likelihood method for ancestral state reconstruction for discrete character

evolution. [2, 22, 3].

Unlike Maximum Parsimony methods for ancestral state reconstruction, Maximum Like-

lihood methods consider the stochastic evolutionary process, specified by the rate of evolu-

tionary events occurring along the length of each branch in the tree. Pagel introduced a still

widely used Maximum Likelihood method for discrete character states, hereafter referred

to as the ‘classic Maximum Likelihood method’. He used matrix exponentiation to develop

a quick algorithm for estimating transition probabilities along the branches of the tree and

the likelihood of ancestral states. One weakness of the method is that Pagel assumed that

the topology of the tree that results from speciation and extinction were independent of the

state of the lineages. However, speciation rates are usually different among species or viral

variants, as mentioned above regarding the BiSSE model. Various Maximum Likelihood

methods have been developed recently, aiming for better parameter estimation and ances-

tral state reconstruction accounting for state-dependent speciation and extinction rates. For

instance, Nielsen [23] developed a Stochastic Mapping method that allowed the inference

of not only ancestral states at internal nodes but also the location of state changes along

the tree branches. Later Nielsen extended the idea to the mapping of morphological charac-

ters [23]. And importantly for us here, Freyman & Hohna recently extended the Stochastic

Character Mapping method to allow for state-dependent speciation and extinction and for

faster running time and infinite-state substitution processes [24, 13]. Freyman and Hohna’s

method is grounded in the State Speciation and Extinction family (SSE) of methods first

introduced by Maddison et al.[12]. The model assumes that the tree is complete, ultramet-

ric, rooted and only consists of binary states. Later they extended the idea to multi-state

(MUSSE) trees with unequal sampling rates and incomplete trees. [14]
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Here I will focus on the classic Maximum Likelihood method that Pagel fully describes

for discrete character state reconstruction [22]. I use the Maximum Likelihood method

proposed by Pagel because of its implementation in the widely used ape package in R for

discrete state ancestral state reconstruction. For this same reason, I will use this classic

method to quantify the utility of my new approach to compute reconstruction accuracy as

we did in the study as mentioned above [9].

The classic Maximum Likelihood method can be summarized into two steps. First, we

want to calculate the transition probability between nodes by considering the instantaneous

rate of change between different states using the Markov chain. The second step is to

calculate the likelihood of the tree given a specific set of internal nodes. The method the

defines the state of each internal node as the state that maximizes the likelihood.

Markov Process

Let P (t) be the transition probability matrix such that the element Pij(t) is the probability

of going from state i to state j in time t, including the probability of visiting other states

in between. Let P (t) be the transition matrix such that each entry is Pij(t). This transition

probability can be derived from a CTMC with constant instantaneous transition rates qij

from state i to state j. Figure 1.6 shows a binary tree (state 0 and 1) with two tips and one

root. Then the probability that a state changes from 0 to 1 over a time interval t+ dt is

P01(t+ dt) = P00(t)q01dt+ P01(t)(1 − q10)dt (1.1)

P00(t)q01dt is the probability that state 0 does not change in time interval t but does

change to state 1 in the infinitesimal time interval dt. P01(t)(1 − q10)dt is the probability

that state 0 changes in the first time interval t and does not change in the time interval dt.

Rewriting equation 1.1 in matrix form:
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P (t+ dt) =

1 − P01(t+ dt) P01(t+ dt)

P10(t+ dt) 1 − P10(t+ dt)



=

P00(t) P01(t)

P10(t) P11(t)


(1 − q01)dt q01dt

q10dt (1 − q10)dt


= P (t)(I +Qdt)

(1.2)

We can obtain a differential equation for P (t) by taking the derivative:

dP (t)
dt

= P (dt+ t) − P (t)
dt

= P (t)Q (1.3)

We can solve the differential equation:

P (t) = eQt · c (1.4)

The initial condition for the differential equation dP (t)
dt is P (0) = I (state doesn’t change

when time equals to zero). Hence we obtain the transition probability between states given

a certain amount of time t: P (t) = e(Qt).

In the simplest case, we apply CTMC on a binary state space (states 0 and 1). Then

the rate matrix Q is a two by two matrix with α, β > 0:

Q =

−α α

β −β

 (1.5)

Since P (t) = exp(Qt) is matrix exponential, we can diagonalize Q to get the expression

of P (t) using only α and β. Using linear algebra, we can find that λ1 = 0 and λ2 = −α− β

are the eigenvalues and

1

1

 and

 α

−β

 are the eigenvectors, respectively. Then we can
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diagonalize Q(t) to get P (t):

P (t) = MeΛ(t)M−1

=

1 α

1 −β

 eΛt

 β
α+β

α
α+β

1
α+β

−1
α+β



=

1 α

1 −β


1 0

0 e−(α+β)


 β

α+β
α

α+β

1
α+β

−1
α+β



=

 β
α+β + α

α+β e
−(α+β)t α

α+β − α
α+β e

−(α+β)t

β
α+β − β

α+β e
−(α+β)t α

α+β + β
α+β e

−(α+β)t



(1.6)

Maximum Likelihood of the ancestral states

Using above results we can calculate the tree’s overall likelihood and the ancestral states’

likelihood. Let T be the phylogenetic tree, a ∈ {0, 1} be the ancestral states, d be the data

observed at the tips d ∈ {0, 1}, w(a) be the prior distribution of the root state (i.e. our

prior expectation that the root has state a). Then the likelihood of the model m given the

tree T will be the sum of the likelihood of the root being in state 0 and the root being in

state 1. Expanding the sum gives:

L(m|T ) =
1∑

a=0
w(a)P (d|m, a)

=
1∑

a=0
w(a)(Pa0(t)Pa1(t))

= w(0)(P00(t)P01(t)) + w(1)(P10(t)P11(t))

(1.7)

To find the likelihood of a particular state i (i ∈ (0, 1)) of an ancestral state a, we can

assign state i to the ancestor node (here the root) and calculate the likelihood:

L(a = i,m|T ) = w(i)(Pi0(t)Pi1(t)) (1.8)

Rather than using the estimated rates α and β from the maximum likelihood of the

model for finding the ancestral state of an internal node, we want to re-estimate the rates
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α and β after fixing an internal node (or the root) to a particular state i [22]. The reason

is that assigning a state i to an internal node implies a new set of rate parameters (α and

β). By assigning a state to an internal node, we have additional information. Therefore, we

need to re-estimate rates, and the sum of two likelihoods will not necessarily equal L(m|T )

in equation (1.7).

Here I discuss three different cases. (1) The simplest example where the branch lengths

and prior probabilities of the root state are the same (t1 = t2 = 1 and w(0) = w(1) = 0.5).

(2) The branch lengths are the same but the prior probabilities of the root state are different

(t1 = t2 = 1 and w(0) = 1
5 , w(1) = 4

5). (3) The branch lengths are different but the prior

probabilities of the root state are the same (t1 = 1, t2 = 3 and w(0) = w(1) = 0.5).

For the simplest case, if the branch length equals 1 for both lineages (t1 = t2 = 1), we

can calculate the likelihood of the model given the tree as follows. Without information

about the root state, both states (0 and 1) are equally likely to be the root state. Hence

w(0) = w(1) = 0.5 Let α and β be the transition rates described above, then:

L(m|T ) = w(0)(P00(1)P01(1)) + w(1)(P10(1)P11(1))

= 1
2( β

α+ β
+ α

α+ β
e−(α+β))( α

α+ β
− α

α+ β
e−(α+β))

+ 1
2( β

α+ β
− β

α+ β
e−(α+β))( α

α+ β
+ β

α+ β
e−(α+β))

(1.9)

In order to maximize the model, we need to find values of α and β such that the

above equation yields the largest value. In this example, I used mathematical software

(Mathematica) to find the maximum likelihood of the tree and maximum estimates α̂ and

β̂. α̂ = β̂ = 3.32) yield the Maximum Likelihood solution L(m|T, α̂, β̂) = 0.25.

Furthermore, we can calculate the likelihood of ancestral states using equation (1.8):

L(a = 0,m|T ) = 1
4

L(a = 1,m|T ) = 1
4

(1.10)

Since L(a = 0) = L(a = 1) = 1
4 , we can conclude that the Maximum Likelihood method

for ancestral state reconstruction does not favor any state in this example. The result gives
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an ambiguous state. We expect this result since only two tips, and the branch lengths are

equal; we cannot distinguish the root state.

For the second case, let the prior probability be different between state 0 and 1 (w(0) =
1
5 , w(1) = 4

5), and keep the branch lengths the same. We can calculate the likelihood of the

evolutionary model using equation (1.7):

L(m|T ) = w(0)(P00(1)P01(1)) + w(1)(P10(1)P11(1))

= 1
5( β

α+ β
+ α

α+ β
e−(α+β))( α

α+ β
− α

α+ β
e−(α+β))

+ 4
5( β

α+ β
− β

α+ β
e−(α+β))( α

α+ β
+ β

α+ β
e−(α+β))

(1.11)

We can find the maximum estimates α̂ and β̂ : α̂ = β̂ = 34 and the likelihood of the

tree L(m|T, α̂, β̂) = 0.25. And the likelihood of ancestral states:

L(a = 0,m|T ) = 0.05

L(a = 1,m|T ) = 0.2
(1.12)

The likelihood of the model is not changing compared to the simplest scenario. However,

the likelihood of the ancestral state changes if we unbalance the prior distribution of the

root state. The difference is the same as the prior difference.

For the last case, let the branch lengths be different (t1 = 1, t2 = 3), and keep the

prior distribution the same. We can calculate the likelihood of the evolutionary model using

equation (1.7):

L(m|T ) = w(0)(P00(1)P01(1)) + w(1)(P10(1)P11(1))

= 1
2( β

α+ β
+ α

α+ β
e−(α+β))( α

α+ β
− α

α+ β
e−3(α+β))

+ 1
2( β

α+ β
− β

α+ β
e−(α+β))( α

α+ β
+ β

α+ β
e−3(α+β))

(1.13)
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We can find the maximum estimates α̂ and β̂ : α̂ = 0.587, β̂ = 0.311 and the likelihood

of the tree L(m|T, α̂, β̂) = 0.256. And the likelihood of ancestral states:

L(a = 0,m|T ) = 0.236

L(a = 1,m|T ) = 0.125
(1.14)

The likelihood of the model is different from the other two cases. Furthermore, the

likelihood of that the root is in state 0 is almost twice as high as the likelihood that the

root is in state 1. The intuition is that if the branch length t2 is larger than t1, there is a

greater chance to change along the branch. Then the state of that branch is less likely to

reflect the root.

Figure 1.6: Maximum Likelihood method on a small tree. The tree consists of two tips (one

from state 0 and one from state 1) and branch lengths t1 and t2.

1.3 Bayesian Methods for ancestral state reconstruction

Bayesian methods provide an interesting contrast to the fixed-tree models we have focused

on above. These methods not only reconstruct ancestral states of a single fixed tree but av-

erage over uncertainty in the reconstructing one of the phylogenetic tree. Although Bayesian

methods can be used on a fixed tree to infer ancestral states as suggested by [5], here I will
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discuss start of the art method for Bayesian phylogeography method introduced by Lemey

which accounts for phylogenetic uncertainty.

Lemey [25] introduced the Bayesian framework for phylogeographical inference on rooted

and time-scaled phylogenies with discrete states. Suppose geography can be partitioned

into a finite number of sites {Sk}(geographical locations). x = (x1, ..., xN ) at the tips of

the phylogeny F, we record locations x. Similar to the Maximum Likelihood method, let

Λ = {λjk} be a K by K infinitesimal rate matrix, then we can compute the finite transition

probability: {Pjk(t)} = P (t) = eΛt. GTR model often refers to the evolution of the DNA

or RNA sequence data, not of the geographical locations. If we consider the GTR model

(general time-reversible form) for molecular evolution [26], k(k − 1) transitions have non-

negligible probability. However, if we consider the GTR model for locations, we would expect

that many infinitesimal rates are around zero. Many zero rates would raise the issue that

many degrees of freedom fit limited data, leading to high variance estimates. Not only for

Λ but also inferences of the unobserved ancestral locations and the root xroot. Lemey [25]

circumvents this sparse data issue by using BSSVS to select a parsimonious parameterization

of Λ. BSSVS is a linear regression framework that uses potential predictors x1, ..., xp and

asks which is associated linearly with outcome Y.

Y = [x1, ..., xp]β + ϵ (1.15)

If βp differs from 0, then xp helps to predict Y. BSSVS enables simultaneously to deter-

mine which infinitesimal rates are 0 depending on the evidence of the data and efficiently

infer the ancestral locations: consider a random graph in which each of the k(k−1)
2 edges

either exist or not exist in G. Let δjk be the indicator that an edge exists connecting two

locations. Rate Λ plays a similar role to the regression coefficient in BSSVS.

Later Lemey [27] also considered the Bayesian method on continuous traits. Other meth-

ods use structured coalescent theory. De Maio [28] treated lineage states probabilistically

instead of using MCMC-based sampling. The probability of each lineage being in each state

is calculated using a set of previously described differential equations, and such an approach

allows the analysis of a large data set. Müller [29] derived an exact numerical solution of
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the structured coalescent with discrete states to clarify the assumptions used in De Maio’s

approach and develop a more refined approximation to the structured coalescent. Bayesian

methods for tree reconstruction and ancestral state reconstruction of viral genetics are pop-

ular given the sequences, and evolutionary model [30, 31].

1.4 Binary State Speciation and Extinction model (BiSSE)

Binary state speciation and extinction model (BiSSE) was introduced by Maddison et al.

[12] in 2007 to solve the aforementioned problems in classic Maximum Likelihood methods.

Character state reconstruction methods were based on a simple transition model [22], which

did not consider state speciation and extinction. This question can be solved using sister

clade analysis [32]. However, Barraclough and Nee [33] showed that sister clade analysis

could not distinguish differential speciation from differential extinction. BiSSE solves this

problem by allowing speciation and extinction rates to depend on the character state allows

us to explore how particular states of interest shape diversification and biodiversity patterns.

BiSSE calculates the probability of phylogenetic trees and observed states using a binary

state model with six parameters: instantaneous rate of speciation and extinction (for both

states 0 and 1) and instantaneous rate of character state (location) change (0 to 1 and 1

to 0). BiSSE model motivates Freyman and Hohna’s work [13] on which my I approach is

based.

The BiSSE model assumes that the complete rooted ultrametric tree with branch lengths

and state at tips is known. The general approach for the BiSSE model is to derive a set

of ODEs that calculate the probability that a lineage would evolve into the clade that is

observed through time: dDN,i(t)
dt , where N is the clade from a lineage and i is the state of

that lineage at time t. Computing the likelihoods, one needs to derive a set of ODEs. BiSSE

initializes the procedure by starting at the tips and working towards the root. When dealing

with branches at internal nodes, we multiply the probabilities of the decedent nodes at state

i and the instantaneous speciation rate to get the initial value for the ODEs. Continue the

algorithm to the tree’s root, which results in a set of k probabilities at the root representing
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probabilities of observing the phylogeny given the root being in each state. The overall

probability is the weights average of the k probabilities at the root:
∑
DR,ipi.

To take care of probability of extinction, dDN,i(t)
dt must consider lineages that arise along

the branch in the tree but go extinct before the present, which requiring a second set of

ODEs: the probability of extinction dEi(t)
dt .

While a lineage has state 0, the speciation rate is λ0, the extinction rate is µ0, and the

transition rate to state 1 is q01. Similarly, while a lineage has state 1, one can derive the

speciation rate, extinction rate and transition rate to state 0 to be λ1, µ1 and q10. The

derivation for DN,i(t) and Ei(t) are as follows:

DN,i(t) is the probability of observing lineage N at state i descending from the branch at

time t. To compute the probability at an earlier time DN,i(t+∆t), consider all the events that

can happen in a tiny interval ∆t. We have assumed that ∆t is small, and it is implausible

that two or more events could occur in the interval. There are four possible events: (1)

nothing happens; (2) a transition event from state i to state j occurs; (3) a speciation event

occurs, the right descendant goes extinct before the present; (4) a speciation event occurs,

left descendant goes extinct before the present. We can compute the difference equation for

DN,i(t+ ∆t):

DN,i(t+ ∆t) ≈ DN,i(t)

+ (1 − µi∆t)(1 − qij∆t)(1 − λi∆t)DN,i(t)︸ ︷︷ ︸
nothing happens

+ (1 − µi∆t)(qij∆t)(1 − λi∆t)DN,j(t)︸ ︷︷ ︸
state change

+ (µi∆t)(1 − qij∆t)(1 − λi∆t)0︸ ︷︷ ︸
death event

+ 2(1 − µi∆t)(1 − qij∆t)(λi∆t)Ei(t)DN,i(t)︸ ︷︷ ︸
speciation event

(1.16)

By the definition of a derivative, we will obtain the following differential equation for DNi:

d

dt
DN,i(t) = −(λ+ µ+ qij)DN,i(t) + 2λiEi(t)DN,i(t) + qijDN,j(t) (1.17)
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We can derive Ei(t) similarly, considering the four distinct events that can occur between

time t and t+ ∆t: (1) The lineage goes extinct. (2) There is no state change nor speciation

event, resulting in a single lineage going extinct before the present. (3) There is a state

change but no speciation event, resulting in a single lineage going extinct before the present.

(4) No state change occurs, but speciation occurs, resulting in both lineages going extinct

before the present. We can compute the difference equation for Ei(t+ ∆t):

Ei(t+ ∆t) ≈ Ei(t)

+ µi∆t︸ ︷︷ ︸
extinction event

+ [(1 − µi∆t)(1 − qij∆t)(1 − λi∆t)Ei(t)︸ ︷︷ ︸
no birth event nor state change, lineage goes extinct

+ (1 − µi∆t)(qij∆t)(1 − λ0∆t)Ej(t)︸ ︷︷ ︸
state change, lineage goes extinct

+ (1 − µi∆t)(1 − q01∆t)(λ0∆t)Ei(t)2]︸ ︷︷ ︸
speciation event, both lineages go extinct

(1.18)

Hence we will obtain the differential equation for Ei:

d

dt
Ei(t) = µ− (λ+ µ+ qij)Ei(t) + λE2

i (t) + qijEj(t) (1.19)

The initial condition for Ei(t) is the probability of state i being extinct at present:

Ei(0) = 0 (1.20)

The initial condition for DBNi(t) depends on the time t and its position in the phylogenetic

tree:

DN,i(t) =


1, if t = 0

λiDM,i(t)DN,i(t), if t ̸= 0 and its an internal node
(1.21)

Once we find all the D values at the root, we can calculate the overall likelihood of the tree:

L(T, S|M) =
∑
DR,ipi, where pi is the prior probability of the root state.
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1.5 Stochastic Character Mapping Method

Unlike most ancestral state reconstruction methods that only reconstruct ancestral char-

acter states at internal nodes, Stochastic Character Mapping infers the full evolutionary

history of ancestral states along the branches of a phylogeny, including the location of state

changes as well as the states at the internal nodes. Nielsen [23] first introduced the Stochas-

tic Character Mapping method using a rejection sampling approach. However, the method

has two significant limitations: first, the rejection sampling approach is inefficient for many

states, and second, unlike the BiSSE model, it assumes that speciation and extinction are

independent of the character state. Freyman & Hohna [13] extend the idea in Nielsen, de-

veloping an algorithm that does not rely on rejection sampling approaches and allows for

state-dependent diversification.

Nielsen’s standard Stochastic Character Mapping consists of three steps: First, the prob-

ability of the character states at each node is calculated from tip to root using Felsenstein’s

pruning algorithm [21]. The calculation of these state probabilities involves transition prob-

abilities which are computed using matrix exponentiation described above. Following the

tip to root (post-traversal) calculation, the states at each internal node are then sampled

from root to tip and the states chosen are used to correct the probability at subsequent

nodes analogous to the pre-traversal algorithm described for maximum parsimony above.

Finally, given the states at all internal nodes, character histories are simulated using rejec-

tion sampling methods for each tree branch. Consider a lineage that consists of two nodes:

an ancestral node assigned to state A and a descendent node assigned to state B. We can

simply simulate a realization of the CTMC chain defined by the transition model from the

ancestral state A. A new simulation is performed if the final state is not state B. The simu-

lation is repeated until a path of the chain that last visits state B is found. The simulation

is completed by estimating the waiting time between each transition. If the total simulation

time is larger than the branch length of the lineage, the simulation is complete, and we get

all the transition histories along the branch. Otherwise, a new transition is mapped on the

tree.
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Freyman & Hohna extended this Stochastic Character Mapping algorithm as follows:

they begin similarly by using post-traversal and pre-traversal algorithms to calculate ances-

tral states. However, they discretized the branches of the tree into small time intervals to

find the entire transition history avoiding the rejection sampling algorithm.

To derive a set of differential equations backwards in time, Freyman & Hohna generalized

the model by allowing cladogenetic events, where descendent lineages can inherit different

states (i.e., a state transition occurs at the moment of speciation). Similar to BiSSE, we

want to calculate two differential equations: one for the function DN,i(t) and the other for

Ei(t). Where DN,i(t) is the probability that a lineage in state i at time t evolves into the

observed clade N , and Ei(t) is the probability that a lineage in state i at time t goes extinct

before being observed or sampled.

For DN,i(t) backward in time, there are four possible events: (1) nothing happens; (2) a

transition event from state i to state j occurs; (3) a speciation event occurs, right descendant

goes extinct before the present; (4) a speciation event occurs, left descendant goes extinct

before the present. We can compute the difference equation for DN,i(t+ ∆t):

DN,i(t+ ∆t) = DN,i(t)

+ [−(
∑

j

∑
k

λijk +
∑
j ̸=i

Qij + µi)DN,i(t)︸ ︷︷ ︸
nothing happens

+
∑
j ̸=i

QijDN,j(t)

︸ ︷︷ ︸
state change

+
∑

j

∑
k

λijk(DN,k(t)Ej(t) +DN,j(t)Ek(t))]∆t

︸ ︷︷ ︸
speciation event, one of the lineages go extinct

+O(∆t2)

(1.22)

Similarly, we can consider five possible extinction events: (1) The lineage goes extinct.

(2) There is no state change nor speciation event, resulting in a single lineage going extinct

before the present. (3) There is a state change but no speciation event, resulting in a single

lineage going extinct before the present. (4) There is a speciation event, giving birth to
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a left descendent lineage in state j and a right descendent lineage in state k, and both

lineages go extinct before the present. (5) There is a speciation event, giving birth to a left

descendent lineage in state k and a right descendent lineage in state j, and both lineages

go extinct before the present. The difference from the BiSSE model is the extension by

allowing cladogenetic events that result in events four and five being treated distinctively.

We can compute the difference equation for Ei(t+ ∆t):

Ei(t+ ∆t) = Ei(t)

+ [µi∆t︸ ︷︷ ︸
lineage goes extinct within the interval ∆t

− ((
∑

j

∑
k

λijk +
∑
j ̸=i

Qij + µi)Ei(t))∆t︸ ︷︷ ︸
lineage eventually goes extinct

+
∑
j ̸=i

QijEj(t)∆t

︸ ︷︷ ︸
state change and eventually goes extinct

+
∑

j

∑
k

λijkEj(t)Ek(t)∆t]

︸ ︷︷ ︸
speciation event and eventually all lineages go extinct

+O(∆t2)

(1.23)

The initial conditions are the same as described in the BiSSE model.

For the set of differential equations forward in time, we want to compute D(t− ∆t) and

E(t− ∆t). For DN,j(t) forward in time, there are four possible events: (1) nothing happens.

(2) with probability DN,j(t), the lineage was in state j, and then a state changed to state

i. (3) with probability DN,j(t) the lineage was in state j, and then speciation event occurs,

giving birth to a left descendent lineage in state i and a right descendent lineage in state

k but goes extinct before the present. (4) with probability DN,j(t) the lineage was in state

j and then speciation event occurs, giving birth to a left descendent lineage in state k and

a right descendent lineage in state i but goes extinct before the present. We can write the
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difference equation for Dk(t− ∆t):

DN,i(t− ∆t) = DN,i(t)+

[−(
∑

j

∑
k

λijk +
∑
j ̸=i

Qij + µi)DN,i(t)

+
∑
j ̸=i

QjiDN,j(t)

+
∑

j

∑
k

λjikDN,j(t)Ek(t− ∆t)

+
∑

j

∑
k

λjkiDN,j(t)Ek(t− ∆t)]∆t

+O(∆t2)

(1.24)

However, we don’t know Ek(t − ∆t), so instead we want to approximate the equation

by using Ek(t) for Ek(t+ ∆t), this will give the following approximation:

DN,i(t− ∆t) ≈ DN,i(t)+

[−(
∑

j

∑
k

λijk +
∑
j ̸=i

Qij + µi)DN,i(t)

+
∑
j ̸=i

QjiDN,j(t)

+
∑

j

∑
k

λjikDN,j(t)Ek(t)

+
∑

j

∑
k

λjkiDN,j(t)Ek(t)]∆t

(1.25)

For Ei(t) forward in time again, there are five possible events: (1) lineage goes extinct.

(2) nothing happens in the interval ∆t, but the lineage goes extinct before the present.

(3) state changes but goes extinct before the present. (4) lineage speciates, giving birth

to the left descendent lineage in state k and the right descendent lineage in state j, and

both lineages go extinct before the present. (5) lineage speciates, giving birth to the left

descendent lineage in state j and the right descendent lineage in state k, and both lineages
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go extinct before the present. We can write the difference equation for Ei(t− ∆t):

Ei(t− ∆t) = Ei(t)−

[µi

− (
∑

j

∑
k

λijk +
∑
j ̸=i

Qij + µi)Ei(t)

+
∑
j ̸=i

QijEj(t− ∆t)

+
∑

j

∑
k

λijkEj(t− ∆t)Ek(t− ∆t)]∆t

(1.26)

Again we do not know Ej(t − ∆t), we approximate Ej(t − ∆t) by Ej(t), this will give

the following approximation:

Ei(t− ∆t) = Ei(t)−

[µi

− (
∑

j

∑
k

λijk +
∑
j ̸=i

Qij + µi)Ei(t)

+
∑
j ̸=i

QijEj(t)

+
∑

j

∑
k

λijkEj(t)Ek(t)]∆t

(1.27)

In order to avoid using the rejection sampling algorithm, the branches are discretized

into small time intervals. Using the post-traversal algorithm, we can calculate DN,i in each

small time interval. Assign LN (t) = DN (t) as the backward states probabilities for this

time interval. Once the state probabilities are calculated along all time intervals and root,

we calculate the root states using root frequencies: pi = πiDR,i(t)∑
πiDR,i(t)

, where πi is the prior

distribution of the character state of the root. Then states are drawn from the root to the tip

for every short time interval saved in the first step. In order to calculate the ancestral state

characters for each time interval, we multiply the probability of DN (t) from the forward

algorithm by LN (t): DN (t) · LN (t). Since we are calculating the ancestral states on every
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short time interval to find the full transition history, the rejection sampling algorithm is

unnecessary.

I have summarized three major categories of ancestral state reconstruction method

(Maximum Parsimony, Maximum Likelihood and Bayesian) and two methods that are im-

portant to my approach accounting for sampling bias (BiSSE and Stochastic Character

Mapping). In the following chapters I will introduce ancestral state reconstruction method

that accounting for sampling bias.
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Chapter 2

Methods

2.1 Inference accounting for sampling bias

I begin by generalizing the ancestral state reconstruction method proposed by Freyman and

Hohna [13] to allow for the sampling of lineages through time and state-dependent sampling.

I consider a rooted binary phylogenetic tree with the known tree topology and character

states at the tips. I assume binary states, but extending the method to multi-character states

is straightforward. As we are primarily interested in the effect of state-dependent sampling

(i.e., sampling bias) on ancestral state reconstruction, we will focus on the case of a neutral

binary character. Specifically, the character has no impact on the speciation or extinction

rate. The method provided is easily extended to the non-neutral case, as illustrated by the

original development of the model [13].

I assume that the tree results from a birth-death Markov process with sampling through

time, as in the case of sampling pathogen sequences during an ongoing epidemic. Lineages

speciate at rate λ, go extinct rate µ and sampled at maximal rate ψ. To impose state-

dependent sampling, let fi be the probability of sampling at state i such that lineages of

type i are sampled at rate fi ∗ψ ((note that
∑

i fi = 1)). Finally, lineages transition between

states at a given rate such that qij is the transition rate from state i to state j. I extend the

method proposed by [13] by considering sampling rate ψ and the probability of sampling

at state i.

As with the non-neutral characters considered by Freyman and Hohna, state-dependent

sampling will impact both the state of the sampled nodes and the tree’s topology. I first

29



perform a post-traversal algorithm to account for tip states and topology on ancestral

state reconstruction. Moving from the tips to the root, we calculate the probability of

observing the descendants of each internal node. Once reaching the root, we perform a pre-

traversal algorithm, moving from the root towards the tips and calculating the probability

of observing each internal node given its ancestors.

Let DBNi(t) be the probability that a lineage N in state i at time t gives rise to the

observed descendants. Furthermore, let Ei be the probability that a lineage of type i at time

t has no observed decedents between time t and the present day. In contrast, measuring t

forward in time from the root (t = 0) to the present day (t = T ), let DF Ni be the probability

that a lineage N in state i at time t arose from its ancestors. Finally, we represent the

ancestral state reconstruction of node N with the probability ANi, the probability that

node N was in state i given both the observed tip states and tree topology.

Backwards in time differential equation

To derive the initial value problem for DBNi, there are five different events (Figure 2.1,

top panel. (1) There is no state change or speciation. (2) There is a stage change but no

speciation. (3) No state change occurs, but speciation occurs, giving birth to the left and

right lineage. Only the left lineage survives or gets sampled. (4) No state change occurs, but

speciation occurs, giving birth to the left and right lineage. Only the right lineage survives

or gets sampled. (5) The lineage gets sampled. Then the sum of these five probabilities will

equal to DBNi:

DBNi(t+ ∆t) ≈ DBNi(t)

+ (1 − µ∆t)(1 − ψ∆t) [(1 − qij∆t)(1 − λ∆t)DBNi(t)︸ ︷︷ ︸
nothing happens

+ (qij∆t)(1 − λ∆t)DBNj(t)︸ ︷︷ ︸
state change

+ 2(1 − qij∆t)(λ∆t)Ei(t)DBNi]︸ ︷︷ ︸
speciation event, one of the lineages go extinct

+ (µ∆t) · 0 + (ψ∆t) · 0 +O(∆t2)

(2.1)
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By the definition of a derivative, we will obtain the following differential equation for

DBNi:
d

dt
DBNi(t) = −(λ+ µ+ ψ + qij)DBNi(t) + 2λEiDBNi(t) + qijDBNj

We can derive the initial value problem for the probability Ei similarly, considering the

five different events (Figure 2.1, bottom panel) that can occur between time t and t+ ∆t:

(1) The lineage goes extinct. (2) There is no state change or speciation event. (3) There is

a state change but no speciation event. (4) There is no state change, but speciation occurs.

(5) The lineage goes extinct, not being observed. Then:

Ei(t+ ∆t) ≈ Ei(t)

+ µ∆t︸︷︷︸
lineage goes extinct within the interval ∆t

+ (1 − µ∆t)(1 − qij∆t)(1 − λ∆t)(1 − ψ∆t)Ei(t)︸ ︷︷ ︸
lineage eventually goes extinct

+ (1 − µ∆t)(qij∆t)(1 − λ∆t)(1 − ψ∆t)Ej(t)︸ ︷︷ ︸
state change

+ (1 − µ∆t)(1 − qij∆t)(λ∆t)(1 − ψ∆t)E2
i (t)︸ ︷︷ ︸

speciation event, both lineages go extinct

+O(∆t2)

(2.2)

Hence we will obtain the differential equation for Ei:

d

dt
Ei(t) = µ− (λ+ µ+ ψ + qij)Ei(t) + λE2

i (t) + qijEj(t)

Initial conditions

The initial condition for Ei(t) is the probability an extant lineage is unsampled (since we

are not forcing to sample all the lineage or any percentage of the lineage at present day):

Ei(0) = 1
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Figure 2.1: Different events that can occur in a short time interval ∆t Top panel:
speciation events. (1) There is no state change or speciation. (2) There is a stage change
but no speciation. (3) No state change, but speciation occurs, giving birth to left and
right lineages. Only left the lineage survives or gets sampled. (4) No state change, but
speciation occurs, giving birth to left and right lineages. Only the right lineage survives
or gets sampled. (5) The lineage goes extinct, with zero probability of being observed.
Bottom panel: extinction events. (1) The lineage goes extinct. (2) There is no state change
or speciation event. (3) There is a state change but no speciation event. (4) There is no
state change, but speciation occurs. (5) lineage goes extinct, not being observed.

The initial condition for DBNi(t) depends on the time t and its position in the phyloge-

netic tree:

DBNi(t) =


ψfi, if its a tip

λDBMi(t)DBSi(t), if its an internal node
(2.3)

Where M and S are the descendants of internal node N .

Forwards in time differential equation

We can similarly derive the forward-in-time differential equations. We are considering the

events between time t and time t+ ∆t, where t is measured from the roots to the tips.

DF Ni(t− ∆t) = DF Ni(t)

− [(−∆t(λ+ µ+ ψ + qij)DF Ni(t)

+ 2λ∆tDF Ni(t)Ei(t) + qij∆tDF Nj(t) + µ∆t · 0 + ψ∆t · 0 +O(∆t2))]

(2.4)
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Hence we will obtain the differential equation for DF Ni(t):

d

dt
DF Ni(t) = −(−(λ+ µ+ ψ + qij)DF Ni(t) + 2λDF Ni(t)Ei(t) + qijDF Nj(t))

The initial condition for the forward differential equation is the ancestral probability of

state i:

DF Ni(t) = ANi

The ancestral state reconstruction probability of the root ARooti for each state i is

weighted by the prior probability of state i and DBNi:

ARooti = DBNiπi∑
j DBNiπj

The ancestral state reconstruction probability of state i for internal node N is the

forward probability DF Ni times backward probability DBNi:

ANi = DBNi ·DF Ni

The reconstruction ancestral state i is the one with the highest ANi value (maxiANi).

However, there are two computational problems when I try to implement my algorithm.

First, I use a recursive algorithm to find backward probabilities DBNi. However, if there are

more than twenty tips, my recursive algorithm takes too long to execute. The long running

time is because of finding DBNi for an internal state N . We need DBMi and DBSi from its

descendent states. The recursion re-iterates DBMi and DBSi again, which has already been

calculated. I implemented this way because, in order to find DBNi if N is not a tip, we need

to know DBMi and DBSi for the initial condition. However, it is hard to track these values.

Therefore as the recursive algorithm moves along the tree to the root, the running time for

finding a single DBNi gets longer and longer. Second, tracking the initial condition for the

forward differential equation is difficult. Since the initial condition for the forwards in time

equation DF Ni is the probability of the ancestral state AMi, my current algorithm cannot

track which internal state M is the ancestor of the state N that I am trying to calculate
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DF Ni. These two problems cause me not to be able to generate more trees with more tips

than the current examples to make general conclusions.

Here I test my approach using simulated phylogenetic trees. The phylogenetic trees are

generated using the birth-death-sampling model. Once the proper tree is generated, the

actual internal node states are masked, so only the typologies and tips of the trees are used.

The accuracy of my method and the classic Maximum Likelihood method is calculated.

2.2 Simulation Approach

We wrote a birth-death-sampling simulation tool, a continuous-time Markov process that

describes the viral transmission in a population through time. We are simulating a birth-

death-sampling process with two locations (location 0 and 1), and there is a transition rate

(q01 = q10) from one location to another. Let N be the number of living individuals at the

current time. A birth event increases the number of living individuals by one (N → N + 1)

at rate λ. A death event decreases the number of living individuals by one (N → N − 1) at

the rate µ. A sampling event at rate ψ does not change the number of living individuals but

indicates at what time t the individual gets sampled. This node will appear in the phylogeny.

We will record the location and branch length of the root whenever an individual is sampled.

To emphasize sampling bias, in the simulation, I assume that transition rates, birth rates

and death rates are the same in both locations (q01 = q10, λ0 = λ1, µ0 = µ1). The sampling

rates are different between locations (ψ0 ̸= ψ1). The simulation model will generate a shared

distance matrix. If we generate k tips after a simulation, then the shared distance matrix

M is a k by k symmetric matrix where the diagonal entry Mii is the distance from tip i to

the root, and the off-diagonal entry Mij is the common branch length shared with tip i and

tip j. Hence it is the distance from their most common ancestor (MRCA) to the root. Using

the shared distance matrix, we can draw the phylogenetic tree by converting the matrix to

Newick format.

Newick format represents a tree using branch lengths which do not measure how far apart

between tips, but it is easier to visualize and plot the tree than the shared distance matrix.

The Maximum Likelihood method in the ape package in R can only use Newick format
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trees as inputs, whereas my approach requires using shared distance matrices as inputs.

Since my method was originally developed on the shared distance matrix. An encoding is

needed to convert the distance matrix format to the Newick format in order to compare my

method to the classic Maximum Likelihood method. I implemented a recursive algorithm

to convert the format. (1) If dim(M) = 1, we can easily convert to the Newick format (by

adding a “:”). (2) If dim(M) = 2, this indicates that these two nodes are coming from the

same branch (have the same MRCA), we can group them in Newick format: “(:,:)”. (3)

If dim(M) > 2, break the shared distance matrix into two smaller matrices (M1,M2) by

subtracting the minimum value of the matrix. At least one row (column) will be zero with

all entries except the diagonal element. Then apply the algorithm to both smaller matrices

and also add group them together by adding “(:M1) ,:M2)”.

2.3 Accuracy Calculation

To quantitatively compare my approach to the classic Maximum Likelihood method, I

compute the absolute accuracy and relative accuracy of the ancestral state reconstruction

using each method as described in [9]. Given the true tree T , let ci be the location of internal

node i in T , where ci = 1 if node i is in location 0 and ci = 0 if its in location 1. Let ĉi be

the likelihood of node i being in location 0 as inferred by the ancestral state reconstruction

method (my approach and the classic Maximum Likelihood method). I define the absolute

accuracy of a method for node i as ai = 1 − |ci − ĉi| and aµ as the average over all interval

nodes ai. Whereas the absolute accuracy compares the reconstructed states to the ‘true’

values, the relative accuracy compares the absolute accuracy of the reconstruction to an

“expected accuracy” under a null model. The intuition of this null model is that if the

sampling rates are known and they are constant through time, then we would expect the

likelihood of character states at each internal node should be close to the sampling rates.

We are not using other methods (eg. Maximum Parsimony) as null models since they do not

take sampling rates into account. Suppose that the fraction of the tips that are in state 0 is

given by f0 then the expected accuracy of node i under the null model is ei = 1 − |ĉi − f0|
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and eµ is the expected accuracy averaged over all internal nodes of the reconstructed tree.

I then compute the relative mean reconstruction accuracy of the tree as rµ = aµ − eµ.
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Chapter 3

Results

I will examine three scenarios for my approach and compare them to the classic Maximum

Likelihood method: (1) A conceptual example where there are more human samples than

bats. (2) Two simulation examples. One has similar sampling rates in both locations, and one

has different sampling rates in different locations. (3) Simulate multiple trees and summarize

absolute and relative accuracy as a dot plot.

Figure 3.1 is a conceptual example that I constructed to demonstrate the difference

between my approach and the classic Maximum Likelihood method. The tree consists of

four tips; I assumed three samples were from humans and one from bats and try to infer

ancestral character states using my method and the classic Maximum Likelihood method.

This conceptual example does not take branch lengths into account, and that depending

on the sampling and evolutionary rates within humans vs bats, the branch length would be

different in examples from real data. For the parameters described in the method, I assumed

that the probability of sampling humans is twice as high as the probability of sampling bats

(fhuman = 2fbat), while other parameters were the same. My method (Figure 3.1, left panel)

infers that the root state is bats, and bats transmit the Ebola virus to humans. In contrast,

the classic Maximum Likelihood method infers that all internal nodes are humans, and the

inaccurate inferences lead to a false conclusion that humans transmit the Ebola virus to

bats.

In addition to the conceptual example, I tested my approach using simulated trees de-

scribed in the method. Figure 3.2 and 3.3 are the ancestral state reconstructions between my

approach and the classic Maximum Likelihood method with similar and different sampling
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Bat
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SpeciesSpeciesSpeciesSpeciesSpecies
Bat

Figure 3.1: Ancestral state reconstruction of Ebolavirus tree using my approach
and Maximum Likelihood Left panel: ASR accounting for sampling bias. Right panel:
ASR using Maximum Likelihood.

rates, respectively. In Figure 3.2, parameters are the same except for the maximal sampling

rate ψi and state-dependent sampling rate fi. In specific: ψ2 = 1.2 · ψ1 and f2 = 1.2 · f1

(hence location 2 samples 1.2 times more than location 1). My approach and the classic

Maximum Likelihood method give similar inferences to the true tree on the left panel.

Furthermore, both methods "correctly" reconstruct all the internal states (with higher

than 50% probability). However, my method infers ancestral states more accurately than

the classical method. For instance, my method predicts that the probability of the root

state at location 0 is 56%, whereas the classical method suggests the probability is 52%.

38



The classic Maximum Likelihood approach’s absolute and relative accuracy are 0.9289

and 0.3579, respectively. My approach’s absolute and relative accuracy are 0.9389 and

0.3797, respectively. My method has higher absolute and relative accuracy than the Maxi-

mum Likelihood approach.

Figure 3.3 demonstrates that my method has higher reconstruction accuracy than the

classic Maximum Likelihood method if the sampling rates among locations are different.

Similar to Figure 3.2, parameters are the same except for the maximal sampling rate ψi

and state-dependent sampling rate fi. In specific: ψ2 = 2 ·ψ1 and f2 = 2 · f1 (hence location

2 samples 2 times more than location 1). In Figure 3.3, the classic Maximum Likelihood

method incorrectly infers two internal node states as location 0, but they are location 1,

whereas my approach correctly reconstructs these internal nodes. The classic Maximum

Likelihood approach’s absolute and relative accuracy are 0.71109 and 0.04, respectively. My

approach’s absolute and relative accuracy are 0.9016 and 0.3032, respectively. This suggests

that my method has higher reconstruction accuracy when we consider sampling rate than

the classic Maximum Likelihood method.

In addition to examples shown in Figure 3.2 and 3.3, six additional trees (refer in Ap-

pendix) are generated under two different schemes using simulation to compute absolute and

relative reconstruction accuracy: three trees have similar sampling rates in both locations,

and three trees have different sampling rates in both locations. Similarly to the previous

simulated trees, parameters are the same except for the maximal sampling rate ψi and state-

dependent sampling rate fi. For similar sampling rate in both locations, ψ2 = 1.2 · ψ1 and

f2 = 1.2 ·f1. For different sampling rate in both locations, ψ2 = 1.7 ·ψ1 and f2 = 1.7 ·f1. The

absolute and relative accuracy are calculated and plotted in Figure 3.4. The mean values for

both absolute and relative accuracy are higher for my approach than the classic Maximum

Likelihood method. For the absolute accuracy on the left panel in Figure 3.4, the absolute

accuracy rate for similar sampling rates is similar for both schemes, whereas, for different

sampling rates, they are quite different. The mean accuracy rate for the classic Maximum

Likelihood approach is around 0.65, and for my approach is around 0.75. On the other

hand, the relative accuracy on the right panel has different mean relative accuracy between
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my approach and the classic approach on both similar and different sampling rates. For

similar sampling rates, the mean relative accuracy for my approach is 0.4 and for the classic

approach is 0.1. For different sampling rates, the mean relative accuracy for my approach

is 0.3, whereas for the classic approach is near 0.

My approach has higher absolute and relative accuracy in most trees than the classic

Maximum Likelihood method. However, one tree from a similar sampling rate scheme has

lower absolute and relative accuracy using my approach than the classic method.
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Figure 3.2: Ancestral state reconstruction of the simulated tree using my ap-
proach and the classic Maximum Likelihood with similar sampling rate Left panel:
True tree with the correct internal states. Middle panel: Ancestral state reconstruction using
the classic Maximum Likelihood method. Left panel: Ancestral state reconstruction using
my approach.
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Figure 3.3: Ancestral state reconstruction of the simulated tree using my ap-
proach and the classic Maximum Likelihood with different sampling rates Left
panel: True tree with the correct internal states. Middle panel: Ancestral state reconstruc-
tion using the classic Maximum Likelihood method. Left panel: Ancestral state reconstruc-
tion using my approach.
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Figure 3.4: Absolute accuracy and relative accuracy box plot Left panel: Absolute
accuracy plot for my approach (blue) and the classic Maximum Likelihood approach (red).
Left panel: Relative accuracy plot for my approach (blue) and the classic Maximum Likeli-
hood approach (red)
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Chapter 4

Discussion

Here I proposed a new method that accounts for sampling bias when inferring ancestral

states on a fixed simulated phylogenetic tree and then presents a comparison of the results

with the classic Maximum Likelihood method. I have shown that if the sampling rates are

similar in both locations, the reconstruction accuracy is the same for my method, where sam-

pling bias is taken into account, and the classic Maximum Likelihood method. Furthermore,

if sampling bias exists (one location is sampled more than the other), my approach correctly

identifies the true internal states with a higher probability. In contrast, the classic approach

favours the up-weighted location, causing inaccurate ancestral state reconstruction. Here

I demonstrate that my approach has higher ancestral state reconstruction accuracy than

the classic method for small phylogenetic trees and has the potential to more accurately

reconstruct ancestral states in large trees with more than 500 tips) with sampling bias.

Ancestral state reconstruction that accounts for sampling bias can be applied in many

fields of biology. In viral genetics, we can reconstruct the viral transmission among loca-

tions more accurately and identify the key introduction event. For example, over ten million

public COVID-19 sequences are available on GISAID [34]. However, computational time to

generate trees using sequences is expensive, so it is impossible to include all the sequences

and reconstruct ancestral states. A concession must be made to generate a tree with a

limited number of viral sequences. My method will become helpful in ancestral state recon-

struction after the tree has been reconstructed. Developed in a likelihood framework, future

implementations of my method should be applicable for inferring ancestral states for large

data sets such as this, but the results here also demonstrate that it is informative when the
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sequences are limited. Different sampling and viral sequencing policies between areas can

cause bias in phylogeographical inference, including the inference of ancestral locations. For

example, undersampling virus genomes can lead to underestimating the number of introduc-

tions and distorting overall rates and trends in viral transmission. My method can account

for sampling bias and give accurate reconstruction. In the macro-evolutionary context, my

method can more accurately reconstruct the evolutionary history of focal characters (e.g.,

reproductive system) shaped by sampling biases central to addressing long-standing evolu-

tionary questions.

My model has some limitations. First, I only simulated the evolution of a binary char-

acter with the same speciation and extinction rate. My method can, however, be easily

generalized to the multi-location case with different speciation and extinction rates. I pre-

dict that the results will be consistent with the two-state case; locations with lower sampling

rates will be overrepresented in the classic approach and accurately modelled using my ap-

proach. Second, I only compare my method with a single alternative inference approach,

Pagel’s Maximum Likelihood approach, leaving out comparisons with the other approaches

highlighted in the introduction. My future work will compare my model’s accuracy with

other methods, such as the Bayesian methods [31], where the sampling bias issue is also

considered or described. Third, my method has only been applied to simulated trees. In the

future, I will apply my method to real data sets. For instance, the Ebola data set described

in the introduction where three major locations can be considered (Sierra Leone, Guinea

and Liberia). In addition, I will also apply the method to SARS-CoV-2 trees: Figure A.7

is a phylogenetic tree consisting of a data set collected from Peru cities over the past year

(sequences are available on Nextstrain [3], a public data set tracking real-time pathogen

evolution). The phylogenetic tree is obtained by using BEAST [35, 36].

Furthermore, I only tested my results using trees with fewer than 20 tips because the al-

gorithm implemented was computationally expensive due to one recursive algorithm. Specif-

ically, it was challenging to implement an efficient algorithm that tracks the probability at

nodes in the forward direction (pre-traversal algorithm). I will explore other people’s work,

such as Freyman and Hohna [13], who used a similar method. I will also attempt the dynamic
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algorithm described by Felsenstein [21] to reduce the running time. I will also attempt to ex-

tend my method by making sampling rates time-dependent. In my current model, sampling

rates are constant throughout time. However, the area may have different data collection

and sequencing protocols. For instance, for SARS-CoV-2, different countries have different

restriction policies and testing protocols over time. Different sampling rates over time will

highly affect ancestral state reconstruction accuracy.

In conclusion, my method has better ancestral state reconstruction accuracy than the

classical Maximum Likelihood method on small trees and can be applied to real-world

problems to discover the transmission of outbreaks and disease dynamics.
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A. True Tree B. Classic ML Method C. Accounting for Sampling Bias
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Figure A.1: This is the first of 3 simulated trees with a similar rate to which we tested
the model. Left panel: True tree with the correct internal states. Middle panel: Ancestral
state reconstruction using the classic Maximum Likelihood method. Right panel: Ancestral
state reconstruction using my approach accounting for sampling bias. Similar to Figure 3.2,
ψ2 = 1.2ψ1 and f2 = 1.2f1. The colour indicates different locations. The pie chart indicates
the probability of the ancestral states.
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A. True Tree B. Classic ML Method C. Accounting for Sampling Bias
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Figure A.2: This is the second of 3 simulated trees with a similar rate in which we tested
the model. Left panel: True tree with the correct internal states. Middle panel: Ancestral
state reconstruction using the classic Maximum Likelihood method. Right panel: Ancestral
state reconstruction using my approach accounting for sampling bias. Similar to Figure 3.2,
ψ2 = 1.2ψ1 and f2 = 1.2f1. The colour indicates different locations. The pie chart indicates
the probability of the ancestral states.
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A. True Tree B. Classic ML Method C. Accounting for Sampling Bias
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Figure A.3: This is the third of 3 simulated trees with a similar rate in which we tested
the model. Left panel: True tree with the correct internal states. Middle panel: Ancestral
state reconstruction using the classic Maximum Likelihood method. Right panel: Ancestral
state reconstruction using my approach accounting for sampling bias. Similar to Figure 3.2,
ψ2 = 1.2ψ1 and f2 = 1.2f1. The colour indicates different locations. The pie chart indicates
the probability of the ancestral states.
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A. True Tree B. Classic ML Method C. Accounting for Sampling Bias
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Figure A.4: This is the first of 3 simulated trees with different rates in which we tested
the model. Left panel: True tree with the correct internal states. Middle panel: Ancestral
state reconstruction using the classic Maximum Likelihood method. Right panel: Ancestral
state reconstruction using my approach accounting for sampling bias. Similar to Figure 3.3,
ψ2 = 1.7ψ1 and f2 = 1.7f1. The colour indicates different locations. The pie chart indicates
the probability of the ancestral states.
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A. True Tree B. Classic ML Method C. Accounting for Sampling Bias
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Figure A.5: This is the second of 3 simulated trees with different rates in which we tested
the model. Left panel: True tree with the correct internal states. Middle panel: Ancestral
state reconstruction using the classic Maximum Likelihood method. Right panel: Ancestral
state reconstruction using my approach accounting for sampling bias. Similar to Figure 3.3,
ψ2 = 1.7ψ1 and f2 = 1.7f1. The colour indicates different locations. The pie chart indicates
the probability of the ancestral states.
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A. True Tree B. Classic ML Method C. Accounting for Sampling Bias
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Figure A.6: This is the third of 3 simulated trees with different rates in which we tested
the model. Left panel: True tree with the correct internal states. Middle panel: Ancestral
state reconstruction using the classic Maximum Likelihood method. Right panel: Ancestral
state reconstruction using my approach accounting for sampling bias. Similar to Figure 3.3,
ψ2 = 1.7ψ1 and f2 = 1.7f1. The colour indicates different locations. The pie chart indicates
the probability of the ancestral states.
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Figure A.7: Peru time-scaled tree from Nextstarin.
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