
Constraint Satisfaction Problems and
friends: symmetries and algorithm design

by

Akbar Rafiey

M.Sc., Simon Fraser University, 2016
B.Sc., University of Tehran, 2013

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
School of Computing Science
Faculty of Applied Sciences

© Akbar Rafiey 2022
SIMON FRASER UNIVERSITY

Summer 2022

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Akbar Rafiey

Degree: Doctor of Philosophy

Thesis title: Constraint Satisfaction Problems and friends:
symmetries and algorithm design

Committee: Chair: Eugenia Ternovska
Associate Professor, School of Computing
Science

Andrei A. Bulatov
Supervisor
Professor, School of Computing Science

Igor Shinkar
Committee Member
Assistant Professor, School of Computing Science

Valentine Kabanets
Examiner
Professor, School of Computing Science

Monaldo Mastrolilli
External Examiner
Professor, Algorithms and Complexity Group
IDSIA-Istituto Dalle Molle di Studi sull’Intelligenza
Artificiale

ii

Abstract

The Constraint Satisfaction Problem (CSP) provides a general framework for a wide range
of combinatorial problems dealing with mappings and assignments, including satisfiability,
graph colorability, and systems of polynomial equations. Followed by seminal work of Feder
and Vardi 1993, universal algebraic techniques have been developed and quite successfully
employed in studies of CSPs from different perspectives. In this dissertation, we consider
two significant generalizations of CSPs, namely the Ideal Membership Problem (IMP) and
Valued CSP (VCSP), and study them through the lens of universal algebra.

IMP is a fundamental algorithmic problem in which we are given a real polynomial f and
an ideal I and the question is to decide whether f belongs to the ideal I. We consider a
systematic study of IMPs arising from CSPs where the type of constraints is limited to
relations from a constraint language. We show that many CSP techniques can be translated
to IMPs thus allowing us to significantly improve the methods of studying the complexity
of the IMP. We also develop universal algebraic techniques for the IMP that have been so
useful in the study of the CSP. This allows us to prove a general necessary condition for the
tractability of the IMP, and several sufficient ones. We furthermore introduce a variant of
the IMP and study its complexity. We prove several algorithmic consequences of it such as
a unifying framework to design polynomial-time algorithm to construct Gröbner Bases for
many combinatorial problems. Finally, we study applications of our results in automatability
of Sum-of-Squares (SoS) proofs and construction of Theta Bodies of combinatorial problems.

We then turn our attention to the most general optimization variant of the CSP namely,
Valued Constraint Satisfaction Problem (VCSP), which deals with both feasibility and op-
timization. We consider the Minimum Cost H-coloring problem which is an important type
of VCSP and is a natural optimization version of the classical H-coloring problem. We give
a complete classification of graphs, in terms of their polymorphisms, for which the Mini-
mum Cost H-coloring is approximable within a constant factor, and present several positive
results regarding digraphs. From a more practical point of view, VCSPs are at the core of
many machine learning and data mining tasks and in numerous number of such applica-
tions the underlying VCSPs satisfy the submodularity property. We study central topics in
machine learning, namely differential privacy and sparsification, in the context of submod-
ularity, and present several algorithmic results.

iii

Keywords: (Valued) Constraint Satisfaction Problems; Ideal Membership Problems; Poly-
morphisms; Gröbner Basis; Approximation Algorithms; Submodularity; Sparsification; Dif-
ferential Privacy

iv

Dedication

To Mohammadesmaeil and Zohreh, my parents.

v

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor Andrei A.
Bulatov for his guidance, caring, engagement, patience, and support. Andrei and I spent
countless hours meeting for the past few years on topics ranging from highly technical
discussions on our joint projects to interesting research directions, and then to broader career
and life advice. Andrei’s utter commitment to my professional and personal development
and countless hours of devotion to our work on one hand, and the freedom he gave me
in my research on the other impacted me significantly. I am grateful for all his invaluable
contributions of time and insight to make my PhD research productive and exciting. Thank
you, Andrei!

I am immensely grateful to Yuichi Yoshida and Arash Rafiey for additional mentoring
over the last few years. Working with Yuichi and learning from him had a great impact on
me. I had a lot of fun throughout our collaborations and during my internship at NII. Arash
has always been an endless source of support, and encouragement since the early days of
my academic life at SFU.

I want to further express my gratitude to Monaldo Mastrolilli, Valentine Kabanets, Igor
Shinkar, and Eugenia Ternovska for devoting their time and serving on my thesis committee.

I feel deeply indebted to the selfless love and endless support of my lovely parents,
sisters, and my brother for their consistent encouragement and understanding throughout
all my life. I am thankful to my friends, my second family, at SFU and in Vancouver who
certainly made their marks on my life and made my studies more pleasant and enjoyable.

Last but not the least, my heartfelt thanks go to my partner, my best friend and my wife
Nazanin for being the better half of me, for her unbelievable amount of love and support,
for always encouraging me, for tolerating an always-busy, always-in-a-deadline partner, and
for many fruitful discussions on my research. Thank you, Nazanin!

I would like to acknowledge the administrative and technical staff in the School of
Computing Science for their help over the past few years. I also wish to thank the Natural
Sciences and Engineering Research Council of Canada (NSERC) for their financial support
in the course of this research.

vi

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication v

Acknowledgements vi

Table of Contents vii

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Constraint Satisfaction Problems . 2
1.2 Ideal Membership Problem and CSPs . 3
1.3 Valued Constraint Satisfaction Problems . 11

1.3.1 Approximation of VCSPs and Minimum Cost H-coloring 14
1.3.2 Sparsification of VCSPs and submodularity 17
1.3.3 VCSPs under differential privacy . 19

2 Ideal Membership Problem and CSPs 23
2.1 Preliminaries . 23

2.1.1 Ideals, varieties and the Ideal Membership Problem 23
2.1.2 The ideal-CSP correspondence . 25
2.1.3 The Ideal Membership Problem . 25
2.1.4 IMP and Gröbner Bases . 26

2.2 Overview of our contributions . 29

3 Algebraic approach to IMP 38
3.1 Expanding the constraint language . 38

3.1.1 Constant relations and the search problem 38
3.1.2 Primitive positive definability . 41

vii

3.1.3 Primitive positive interpretability . 43
3.2 Polymorphisms and algebras . 46

3.2.1 Polymorphisms and a necessary condition for tractability 46
3.2.2 Algebras and a better necessary condition 47

3.3 Multi-sorted CSPs and IMP . 50
3.3.1 Multi-sorted problems . 50
3.3.2 Multi-sorted languages, pp-definability and interpretability 51
3.3.3 Multi-sorted polymorphisms . 53
3.3.4 Proof of Theorem 3.3.3 . 54
3.3.5 Proof of Theorem 3.3.7 . 56

4 Sufficient conditions for tractability of IMP 58
4.1 The dual-discriminator . 58
4.2 Semilattice polymorphisms . 62
4.3 Affine operations I: linear system in GF(p) 64
4.4 Affine operations II: CSPs over Abelian groups 67

4.4.1 Abelian groups . 67
4.4.2 PP-interpretations in Abelian groups 68
4.4.3 Constructing a system of linear equations 71
4.4.4 Solving the IMP . 74
4.4.5 Gröbner Bases for the problem over roots of unity 77

4.5 Gröbner Bases for linear system in GF(p) via conversion technique 79
4.5.1 Gröbner Basis conversion . 80
4.5.2 Expansion in a basis of p-expressions 82
4.5.3 The correctness of the conversion algorithm 85
4.5.4 Proof of Theorem 4.5.4 . 87

5 Finding membership proofs and applications 109
5.1 The IMP with indeterminate coefficients . 109

5.1.1 Sufficient conditions for tractability of χIMP 112
5.1.2 A framework for constructing d truncated Gröbner Bases 114

5.2 Finding a proof and the substitution technique 117
5.2.1 Reduction by substitution . 117
5.2.2 Applications of reduction by substitution 121

5.3 SOS proofs: bit complexity and automatability 123
5.3.1 SOS proofs on quotient ring . 124
5.3.2 Automatability on quotient ring . 125
5.3.3 Automatability and CSP-based ideals 128

5.4 Theta bodies for combinatorial ideals . 130

viii

6 Approximation of minimum cost H-coloring 136
6.1 Introduction . 136

6.1.1 Overview of our contributions . 136
6.2 Preliminaries . 138
6.3 LP for digraphs with a min-max-ordering 139
6.4 LP for digraphs with a min-ordering . 141
6.5 Approximation for digraphs with a min-ordering 143

6.5.1 Analyzing the approximation Ratio 147
6.6 Approximation for digraphs with a k-min-ordering 151
6.7 A dichotomy for graphs . 155

7 Sparsification of submodular functions 163
7.1 Introduction . 163

7.1.1 Overview of our contributions . 164
7.1.2 Related work . 166

7.2 Preliminaries . 167
7.3 Constructing a sparsifier . 168
7.4 Constructing a sparsifier under constraints 170
7.5 Applications . 172

7.5.1 Submodular function maximization with cardinality constraint . . . 172
7.5.2 Two well-known examples . 172
7.5.3 Submodular function minimization 174

7.6 Experimental results . 176
7.7 Missing proofs . 179

7.7.1 Proof of Claim 7.3.3 . 179
7.7.2 Proof of Theorem 7.4.1 . 179
7.7.3 Proof of Theorem 7.4.2 . 180
7.7.4 Proof of Theorem 7.5.2 . 181

8 Submodular optimization under privacy 183
8.1 Introduction . 183

8.1.1 Overview of our contributions . 185
8.1.2 Related work . 186

8.2 Preliminaries . 187
8.2.1 Differential privacy . 188
8.2.2 Probability distributions . 190

8.3 Differentially private continuous greedy algorithm 190
8.3.1 Approximation guarantee . 191
8.3.2 Privacy analysis . 193

8.4 Improving the query complexity . 194

ix

8.5 k-submodular function maximization . 196
8.5.1 Improving the query complexity . 198
8.5.2 Motivating examples . 198

8.6 Missing proofs from section 8.3 . 199
8.7 Missing proofs from section 8.4 . 200

8.7.1 Proof of Lemma 8.4.3 . 200
8.7.2 Proof of Theorem 8.4.4 . 202
8.7.3 Proof of Theorem 8.4.5 . 203

8.8 Missing proofs from section 8.5 . 206
8.8.1 Proof of Theorem 8.5.3 . 206
8.8.2 Proof of Theorem 8.5.6 . 207

9 Conclusion 209

Bibliography 212

x

List of Tables

Table 6.1 LP with constraint set S . 140
Table 6.2 Extension of S . 142

xi

List of Figures

Figure 1.1 Graph 2-colorability . 5

Figure 6.1 Two examples for Algorithm 3. 147
Figure 6.2 An illustration of the algorithm for k-min-ordering. 155
Figure 6.3 Illustrating the shifting process in Stage 2 of the algorithm. 160

Figure 7.1 Relative performance of the greedy method on sparsifiers. 177
Figure 7.2 Relative size of sparsifiers and relative runtime of the greedy method

on sparsifiers. 177

xii

Chapter 1

Introduction

Computational problems from many different areas involve finding an assignment of values
to a set of variables, where that assignment must satisfy some specified feasibility conditions
and perhaps optimize some specified objective function. This includes classical problems
such as graph coloring problems and integer programming, to name a few . In this thesis we
focus on a generic framework for such problems that captures their general form. Bringing
all such problems into a common framework draws attention to common aspects that they
all share, and allows a very general algebraic approach for analysing their complexity to
be developed. The primary motivation for this line of research is to understand the general
picture of complexity within this general framework, rather than to develop specialized
techniques for specific applications.

This thesis revolves around the Constraint Satisfaction Problems (CSPs). In a CSP we
are given a set of variables and a collection of constraints, and we have to decide whether the
variables can simultaneously be assigned values so that all the constraints are satisfied. This
provides a general framework for a wide range of combinatorial problems. CSPs are at the
core of many combinatorial optimization problems arising in machine learning, graph theory,
economics, game theory, to name a few. For instance, many fundamental problems such as
Minimum/Maximum Cut, Minimum Vertex Cover, Maximum Clique, and etc, are examples of
various optimization versions of CSPs.

As a consequence of these applications, CSPs and their (optimization) variants have
been the subject of extensive body of research. In particular, following the seminal works of
Schaefer 1978 [196] and Feder and Vardi 1993 [78], universal algebraic techniques have been
developed and quite successfully employed in studies of CSPs from different perspectives,
such as their approximability and complexity classifications [18]. The heart of the universal
algebraic technique is to study the high level symmetry of the solution sets. As Jeavons et
al. [121] discovered in the mid 90s, symmetries or lack thereof of combinatorial structures in
many cases determine the complexity of the corresponding computational problems. This
is a very intuitive and natural property with an elegant theory evolved around it, and
over the course of 20 years has been instrumental in resolving a number of long standing

1

open problems, most important of which is the CSP Dichotomy Conjecture by Feder and
Vardi [78] which was recently confirmed by Bulatov and Zhuk in [35, 222]. The main focus
of this thesis is to investigate and advance these techniques and theories for fundamental
problems in mathematics and theoretical computer science, namely polynomial ideal mem-
bership problem, graph coloring problems, and central topics in machine learning, namely
differential privacy and sparsification.

1.1 Constraint Satisfaction Problems

Let D be a finite set, it will often be referred to as a domain. An n-ary relation on D is
a set of n-tuples of elements from D; we use RD to denote the set of all finitary relations
on D. A constraint language is a subset of RD, and may be finite or infinite. Note that if
we order (or just name) relations in a constraint language Γ with domain D, then Γ can
be viewed as a relational structure (D;R1, R2, . . .), or equivalently as a relational database,
with universe D.

A constraint over a constraint language Γ ⊆ RD is a pair ⟨s, R⟩ with s = (x1, . . . , xk) a
list of variables of length k (not necessarily distinct), called the constraint scope, and R a
k-ary relation on D, belonging to Γ, called the constraint relation. Another common way to
denote a constraint ⟨s, R⟩ is by R(s), that is, to treat R as a predicate, and we will use both
notations interchangeably. A constraint is satisfied by a mapping φ : {x1, . . . , xk} → D if
(φ(x1), . . . , φ(xk)) ∈ R.

Definition 1.1.1 (Constraint Satisfaction Problem). The constraint satisfaction problem
over a constraint language Γ ⊆ RD, denoted CSP(Γ), is defined to be the decision problem
with instance P = (X,D,C), where X is a finite set of variables, D is the domain, and C

is a set of constraints over Γ with variables from X. The goal is to decide whether or not
there exists a solution, i.e. a mapping φ : X → D satisfying all of the constraints. We will
use Sol(P) to denote the (possibly empty) set of solutions of P.

Throughout this thesis we work with CSPs arising from a fixed constraint language e.g.,
constraint languages over a fixed domain and with relations of fixed arities. The CSP over
a fixed language can also be formulated as the homomorphism problem between relational
structures with a fixed target structure [65, 78]. Assume that we have two relational struc-
tures ∆ = (E;S1, S2, . . .) and Γ = (D;R1, R2, . . .) which are similar, i.e. they have the same
number of relations and the corresponding relations have the same arity. A homomorphism
from ∆ to Γ is a mapping φ : E → D such that, for all i, if a = (a1, a2, . . .) ∈ Si then
φ(a) = (φ(a1), φ(a2), . . .) ∈ Ri. Then CSP(Γ) is equivalent to the problem of deciding
whether a given relational structure ∆ similar to Γ has a homomorphism to Γ.

Example 1.1.2. In the k-Coloring problem we need to decide the existence of a proper
k-coloring of a given graph G. It can be stated as a CSP by treating the vertices of G

2

as variables that need to be assigned one of the k colors, and edges of G as constraints
requiring that if uv ∈ E(G) then the values of u, v satisfy the predicate ̸=k (u, v), which
is the disequality relation on the set of colors. Note that k-Coloring can also be naturally
represented in the homomorphic form: Any proper k-coloring of G is a homomorphism from
G to the complete graph on k vertices. Accordingly, one can generalize k-Coloring to H-
Coloring, where H is a fixed graph. The goal in this problem is to decide the existence of a
homomorphism from a given graph G to H.

Example 1.1.3. A constraint language for the 3-SAT problem is as follows

Γ3-SAT = {Rijk | i, j, k ∈ {0, 1}}, where Rijk = {0, 1}3 \ {(i, j, k)}.

For instance, the formula,

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x4 ∨ x5 ∨ x1) ∧ (¬x1 ∨ ¬x4 ∨ ¬x3)

corresponds to the following instance of CSP(Γ3-SAT)

R010(x1, x2, x3), R100(x4, x5, x1), R111(x1, x4, x3).

It is known [35, 222] that for any constraint language Γ (finite or infinite) on a finite set
the problem CSP(Γ) is either solvable in polynomial time or is NP-complete.

1.2 Ideal Membership Problem and CSPs

The Ideal Membership Problem. The study of polynomial ideals and algorithmic
problems related to them goes back to David Hilbert [114]. In spite of such a heritage,
methods developed in this area till these days keep finding a wide range of applications
in mathematics and computer science. In this thesis we consider the Ideal Membership
Problem (IMP for short), in which the goal is to decide whether a given polynomial belongs
to a given ideal. It underlies such proof systems as Nullstellensatz, Polynomial Calculus,
and Ideal Proof System [92].

To introduce the problem more formally, let F be a field and F[x1, x2, . . . , xn] denote
the ring of polynomials over F with indeterminates x1, . . . , xn. In this thesis F is always the
field of real or complex numbers. A set of polynomials I ⊆ F[x1, x2, . . . , xn] is said to be an
ideal if it is closed under addition and multiplications by elements from F[x1, x2, . . . , xn].
By the Hilbert Basis Theorem every ideal I has a finite generating set [113], that is, there
exists P = {f1, f2, . . . , fr} ⊆ F[x1, x2, . . . , xn] such that for every f0 ∈ F[x1, x2, . . . , xn] the
polynomial f0 belongs to I if and only if there exists a proof, that is, polynomials h1, . . . , hr

such that the identity f0 = h1f1 + · · · + hrfr holds. Such proofs will also be referred to as
ideal membership proofs. We then write I = ⟨P ⟩. The Hilbert Basis Theorem allows one

3

to state the IMP as follows: given polynomials f0, f1, . . . , fr decide whether there exists a
proof that f0 ∈ ⟨f1, . . . , fr⟩.

In many cases combinatorial or optimization problems can be encoded as collections of
polynomials, and the problem is then reduced to proving or refuting that some polynomial
vanishes at specified points or is nonnegative at those points. Polynomial proof systems can
then be applied to find a proof or a refutation of these facts. Polynomial Calculus, Nullstel-
lensatz, and the Ideal Proof System are some of the standard techniques to check for zeroes
of a polynomial, and Sum-of-Squares (SOS) allows to prove or refute the nonnegativity of a
polynomial. We may be interested in the length or degree of a proof in one of those systems.
Sometimes such proofs can also be efficiently found — such proof systems are referred to
as automatable — and in those cases we are also concerned with the complexity of finding
a proof.

The general IMP is a difficult problem and it is not even obvious whether or not it is
decidable. The decidability was established in [111, 194, 197]. Then Mayr and Meyer [164]
were the first to study the complexity of the IMP. They proved an exponential space lower
bound for the membership problem for ideals generated by polynomials with integer and
rational coefficients. Mayer [163] went on establishing an exponential space upper bound for
the IMP for ideals over Q, thus proving that such IMPs are EXPSPACE-complete. The
source of hardness here is that a proof that f0 ∈ ⟨P ⟩ may require polynomials of exponential
degree. In the cases when the degree of a proof has a linear bound in the degree of f0, the
IMP can be solved more efficiently. (There is also the issue of exponentially long coefficients
that we will mention later.)

Combinatorial ideals. By Hilbert’s Nullstellensatz, polynomial ideals can often be char-
acterized by the set of common zeroes of all the polynomials in the ideal. Such sets are
known as affine varieties and provide a link between ideals and combinatorial problems,
where an affine variety corresponds to the set of feasible solutions of a problem. Combinato-
rial problems give rise to a fairly narrow class of ideals known as combinatorial ideals. The
corresponding varieties are finite, and therefore the ideals itself are zero-dimensional and
radical. The former implies that the IMP can be decided in single-exponential time [62],
while the latter will be important later for IMP algorithms. Indeed, if the IMP is restricted
to radical ideals, it is equivalent to (negation of) the question: given f0, f1, . . . , fr does there
exists a zero of f1, . . . , fr that is not a zero of f0.

To illustrate the connection we consider the following simple example. We claim that
the graph in Figure 1.1 is 2-colorable if and only if polynomials

x(1− x), y(1− y), z(1− z), x+ y − 1, x+ z − 1, y + z − 1

4

have a common zero. Indeed, denoting the two possible colors 0 and 1, the first three
polynomials guarantee that the only zeroes this collection of polynomials can have are such
that x, y, z ∈ {0, 1}. Then the last three polynomials make sure that in every common
zero the values of x, y, z are pairwise different, and so correspond to a proper coloring of the
graph. Of course, the graph in the picture is not 2-colorable, and by the Weak Nullstellensatz
this is so if and only if the constant polynomial 1 belongs to the ideal generated by the
polynomials above. A proof of that can be easily found

1 = (−4) [x(x− 1)] + (2x− 1) ([x+ y − 1]− [y + z − 1] + [x+ z − 1]) .

x

y z

Figure 1.1: Graph 2-colorability

The special case of the IMP with f0 = 1 has been studied for combinatorial problems
in the context of lower bounds on Polynomial Calculus, Nullstellensatz proofs, and the
Ideal Proof System, see e.g. [20, 46, 91, 92]. A broader approach of using polynomials to
represent finite-domain constraints has been explored in [53, 122]. Clegg et al., [53], discuss a
propositional proof system based on a bounded degree version of Buchberger’s algorithm [30]
for finding proofs of unsatisfiability. Jefferson et al., [122] use a modified form of Buchberger’s
algorithm that can be used to achieve the same benefits as the local-consistency algorithms
which are widely used in constraint processing.

Complexity of the IMP and its applications in other proof systems. Whenever
the degree of a proof h1, . . . , hr is bounded, that is, the degree of each hi is bounded by
a constant, there is an LP or SDP program of polynomial size whose solutions are the
coefficients of the proof. If in addition the solution of the LP or SDP program can be
represented by a polynomial number of bits (thus having low bit complexity), a proof can be
efficiently found. This property also applies to SOS and provides one of the most powerful
algorithmic methods for optimization problems.

It was recently observed by O’Donnell [178] that low degree of proofs does not necessarily
implies its low bit complexity. More precisely, he presented a collection of polynomials and
a polynomial such that there are low degree proofs of nonnegativity for these polynomials,
that is, there also exists a polynomial size SDP whose solutions represent a SOS proof of
that. However, the size of those solutions are always exponential (or the proof has high bit

5

complexity), and therefore the Ellipsoid method will take exponential time to find them. It
therefore is possible that every low degree SOS proof has high bit complexity. Raghavendra
and Weitz [192] also demonstrated an example showing that this is the case even if all the
constraints in the instance are Boolean, that is, on a 2-element set.

The examples of O’Donnell and Raghavendra-Weitz indicate that it is important to
identify conditions under which low degree proofs (Nullstellensatz, Polynomial Calculus,
or SOS) exist and also have low bit complexity. Raghavendra and Weitz [192] suggested
some sufficient conditions of this kind for SOS proofs that are satisfied for a number of well
studied problems such as Matching, TSP, and others. More precisely, they formulate three
conditions that a polynomial system ought to satisfy to yield for a low bit complexity SOS
proof. Two of these conditions hold for the majority of combinatorial ideals, while the third,
the low degree of Nullstellensatz, is the only nontrivial one. Noting that Nullstellensatz
proofs are basically witnesses of ideal membership, the IMP is at the core of all the three
proof systems.

IMP and CSP. Following [122, 212, 161] every CSP can be associated with a polyno-
mial ideal. Let CSP P be given on variables x1, . . . , xn that can take values from a set
D = {0, . . . , t − 1}. The ideal I(P) of F[x1, . . . , xn] whose corresponding variety equals
the set of solutions of P is constructed as follows. First, for every xi the ideal I(P) con-
tains a domain polynomial fD(xi) whose zeroes are precisely the elements of D. Then for
every constraint R(xi1 , . . . , xik), where R is a predicate on D, the ideal I(P) contains a
polynomial fR(xi1 , . . . , xik) that interpolates R, that is, for (xi1 , . . . , xik) ∈ Dk it holds
fR(xi1 , . . . , xik) = 0 if and only if R(xi1 , . . . , xik) is true. Note that for a fixed constraint
language of fixed arity the polynomials fR have constant degree. This model generalizes a
number of constructions used in the literature to apply Nullstellensatz or SOS proof systems
to combinatorial problems, see, e.g., [20, 46, 91, 192].

The construction above also provides useful connections between the IMP and the CSP.
For instance, the CSP P is unsatisfiable if and only if the variety associated with I(P) is
empty, or equivalently, if and only if 1 ∈ I(P) (1 here denotes the polynomial of degree 0).
In this sense it is related to the standard decision version of the CSP. However, since I(P) is
radical for any instance P, the IMP reduces to verifying whether every point in the variety
of I(P) is a zero of f0. Thus, it is probably closer to the CSP Containment problem (given
two CSP instances over the same variables, decide if every solution of the first one is also
a solution of the second one), which has mainly been studied in the context of Database
theory and Conjunctive Query Containment, see, e.g., [135].

Mastrolilli in [161] initiated a study of the IMP parameterized by constraint languages.
Let IMP(Γ) be the IMP restricted to ideals produced by instances from CSP(Γ). As
was observed above, the complement of CSP(Γ) reduces to IMP(Γ), and so IMP(Γ) is
coNP-complete whenever CSP(Γ) is NP-hard. Therefore the question posed in [161] is:

6

Problem 1.2.1. For which constraint languages Γ is it possible to efficiently find a gener-
ating set for the ideal I(P), P ∈ CSP(Γ), that allows for a low bit complexity proof of ideal
membership?

Mastrolilli [161] (along with [25]) resolved this question in the case when Γ is a Boolean
language, that is, over the set {0, 1}. He proved that in this case IMP(Γ) is polynomial
time solvable, and moreover ideal membership proofs can be efficiently found, too, for any
Boolean Γ for which CSP(Γ) is polynomial time solvable. However, IMP(Γ) in [161] satisfies
two restrictions. First, the result is obtained under the assumption that Γ contains the
constant relations that allows one to fix a value of a variable. Mastrolilli called such languages
idempotent. We will show that this suffices to obtain a more general result. Second, in the
majority of cases a bound on the degree of the input polynomial f0 has to be introduced. The
IMP where the input polynomial has degree at most d will be denoted by IMPd, IMPd(Γ).
The exact result is that for any idempotent Boolean language Γ the problem IMPd(Γ) is
polynomial time solvable for any d when CSP(Γ) is polynomial time solvable, and an ideal
membership proof can be efficiently found, otherwise there is a constant d ∈ {0, 1, 2} such
that IMPd(Γ) is coNP-complete. We will reflect on the distinction between IMP and IMPd

later in the thesis, but do not go deeply into that. The case when CSP(Γ) is equivalent
to solving systems of linear equations modulo 2 was also considered in [25] fixing a gap
in [161]. There has been very little work done on IMP(Γ) beyond 2-element domains. The
only results we are aware of are [24, 26]. In [24], authors prove IMPd(Γ) is polynomial time
when Γ is on a 3-element domain and is invariant under the so-called dual-discriminator
operation. This is extended to the case where Γ is on any finite domain and is invariant
under the dual-discriminator operation [26]. Being invariant under the dual-discriminator
operation imposes very strong restrictions on the relations from Γ; we will discuss this case
in greater details in Section 4.1.

The main tool for proving the tractability of IMP(Γ) is constructing a Gröbner Basis of
the corresponding ideal. It is not hard to see that the degree of polynomials in a Gröbner
Basis of an ideal of F[x1, . . . , xn] that can occur in IMP(Γ) is only bounded by n|D|, where Γ
is over a set D. Therefore the basis and polynomials themselves can be exponentially large in
general. In fact, this is the main reason why considering IMPd(Γ) instead makes the problem
easier. For solving this problem it suffices to find a d-truncated Gröbner Basis, in which the
degree of polynomials is bounded by d, and so such a basis always has polynomial size.
Thus, the (possible) hardness of IMPd(Γ) is due to the hardness of constructing a Gröbner
Basis.

Our contributions. In this thesis we expand on [161] and [24, 25] in several ways. We
consider IMP(Γ) for languages Γ over arbitrary finite set and attempt to obtain general
results about such problems. However, we mainly focus on a slightly different problem than
Problem 1.2.1.

7

IMPd(Γ)

Input: An instance P of CSP(Γ) and polynomial f ∈ F[X] of degree at most d,
Goal: Decide if f ∈ I(P).

Note that answering whether f0 belongs to a certain ideal does not necessarily mean
finding an ideal membership proof of that. However, we will argue that, firstly, in many
applications this is the problem we need to solve and therefore our results apply. Secondly, in
Section 5.1.2 we will show that in all the known cases if the existence of an ideal membership
proof can be efficiently decided, such a proof can also be efficiently found.

In Chapter 2 we provide the necessary definitions and notion and give a fairly detailed
overview of our results. Our results are based on papers [41, 42, 43] and can be separated
into the following groups.

Expanding the constraint language. In Section 3.1 we study reductions between
IMP’s when the language Γ is enlarged in certain ways. The methods we apply are standard
in the CSP research and include adding constant relations, primitive-positive (pp-) defin-
able and pp-interpretable relations. We prove that in each case the IMP over the resulting
constraint language is polynomial time reducible to the IMP over the original language.

Theorem 1.2.2. Let Γ be a constraint language over D and Γ∗ denote Γ with added constant
relations. The problem IMP(Γ∗) is polynomial time reducible to IMP(Γ), and for any d the
problem IMPd(Γ∗) is polynomial time reducible to IMPd+|D|(|D|−1)(Γ).

Expanding a constraint language by means of pp-definitions and pp-interpretations is
at the core of the so-called algebraic approach to the CSP. This approach was first applied
to various proof systems in [6], although that work is mostly concerned with proof com-
plexity rather than computational complexity. Mastrolilli [161] ventured into pp-definability
without proving any reductions. In particular, our first reductions techniques from [161] for
projections of ideals. It will later allow us to develop further universal algebra techniques
for the IMP. The second part of the following theorem will also work towards more powerful
universal algebra methods.

Theorem 1.2.3. (1) Let Γ,∆ be constraint languages over the same set D, ∆ is finite,
and every relation from ∆ is pp-definable in Γ. Then IMP(∆) is polynomial time
reducible to IMP(Γ) and IMPd(∆) is polynomial time reducible to IMPd(Γ) for any
d.

(2) Let Γ,∆ be constraint languages, ∆ is finite, and ∆ is pp-interpretable in Γ. Then
there is a constant k such that IMPd(∆) is polynomial time reducible to IMPkd(Γ)
for any d.

8

In Section 3.3 we introduce a technique new to the IMP research, although it has been
extensively used for the CSP. This technique is multi-sorted problems in which every variable
has its own domain of values. This framework is standard for the CSP, and also works very
well for the IMP, as long as the domain of each variable can be embedded into the field of real
or complex numbers. However, many concepts such as pp-definitions, pp-interpretations,
polymorphisms have to be significantly adjusted, and several existing results have to be
reproved in this more general setting. However, in spite of this extra work, the multi-sorted
IMP may become the standard framework in this line of research.

Polymorphisms and algebras. A polymorphism of a constraint language Γ over a set
D is a multi-ary operation on D that can be viewed as a multi-dimensional symmetry of
relations from Γ. As in the case of the CSP, our reductions imply polymorphisms of Γ is
what determines the complexity of IMP(Γ). This allows us to represent IMPs through
polymorphisms and classify the complexity of IMPs according to the corresponding poly-
morphisms.

Theorem 1.2.4. Let Γ,∆ be constraint languages on a finite set D and ∆ finite and let
Pol(Γ),Pol(∆) denote the set of all polymorphisms of Γ and ∆, respectively. If Pol(Γ) ⊆
Pol(∆) then IMP(∆) [IMPd(∆)] is polynomial time reducible to IMP(Γ) [IMPd(Γ)].

In Section 3.2.2, we shall open the way to the use of a further set of powerful analytical
tools by making the final translation step, from sets of operations (e.g., polymorphisms) to
algebras. We prove that the standard features of the universal algebraic approach to the CSP
work for IMP as well. These include reductions for standard algebraic constructions such as
subalgebras, direct powers, and homomorphic images. One implication of these results is a
necessary condition for tractability of IMP(Γ) that follows from a similar one for the CSP.

Sufficient conditions for tractability. The method of classifying the complexity of
IMPs through polymorphisms has been initiated by Mastrolilli and Bharathi [24, 25, 161],
although mainly for 2-element sets and one case of finite domain. In Chapter 4, we apply this
approach to obtain several sufficient conditions for tractability of the IMP(Γ): when Γ has
a semilattice or the dual-discriminator polymorphism, or the affine polymorphism modulo a
prime number. The latter case covers all problems IMP(Γ), in which every relation from Γ
can be represented by a system of linear equations modulo a prime number. We furthermore
prove tractability of IMP(Γ) when Γ has the affine operation of an Abelian group as its
polymorphism; these types of constraint languages are considered one of the most important
types of tractable CSPs.

Theorem 1.2.5. Let Γ be a constraint language over a set D. Then if one of the following
conditions holds, IMPd(Γ) is decidable in polynomial time for any d.

9

1. Γ has the dual-discriminator polymorphism (i.e. a ternary operation g such that
g(x, y, z) = x unless y = z, in which case g(x, y, z) = y);

2. Γ has a semilattice polymorphism (i.e. a binary operation f such that f(x, x) = x,
f(x, y) = f(y, x), and f(f(x, y), z) = f(x, f(y, z)));

3. |D| = p, p prime, and Γ has an affine polymorphism modulo p (i.e. a ternary oper-
ation h(x, y, z) = x ⊖ y ⊕ z, where ⊕,⊖ are addition and subtraction modulo p, or,
equivalently, of the field GF(p)). In this case every CSP can be represented as a system
of linear equations over GF(p).

4. D is an Abelian group and the affine operation x − y + z of D is a polymorphism of
Γ.

The three polymorphisms mentioned above have played an important role in the CSP
research. For one reason they completely cover the tractable cases when |D| = 2 and there-
fore the results of [161, 25], although we used some results (on semilattice polymorphisms)
from [161]. Second, it has been observed that there are two main algorithmic approaches
to solving the CSP. The first one is based on the local consistency of the problem. CSPs
that can be solved solely by establishing some kind of local consistency are said to have
bounded width [40, 17]. The property to have bounded width is related to a rather surpris-
ing number of other seemingly unrelated properties, see e.g. [6, 208]. CSP algorithms of the
second type are based on the few subalgebras property and achieve results similar to those
of Gaussian elimination: they construct a concise representation of the set of all solutions of
a CSP [36, 118]. Problems CSP(Γ) where Γ has an affine polymorphism were pivotal in the
development of few subpowers algorithms, and, in a sense, constitute the main nontrivial
case of them. Among our results on the IMP, IMP(Γ) for Γ invariant under a semilattice or
dual-discriminator polymorphism (a special kind of majority polymorphisms) belong to the
local consistency part of the algorithmic spectrum, while those for Γ invariant with respect
to an affine operation are on the ‘few subalgebras’ part of it. It is therefore important to
observe differences in approaches to the IMP in these two cases.

The IMP with indeterminate coefficients. Chapter 5 consists of a number of appli-
cations of the techniques developed in Chapters 3 and 4. The key to those applications is an
extension of the IMP defined as follows. Given an ideal I ⊆ F[x1, . . . , xn] and a vector of ℓ
polynomials M = (g1, . . . , gℓ), the χIMP asks if there exist coefficients c = (c1, . . . , cℓ) ∈ Fℓ

such that cM = ∑ℓ
i=1 cigi belongs to the ideal I.

As with the regular IMP, χIMP can be parametrized by specifying a constraint language
Γ, in which case the resulting problem χIMP(Γ) (or χIMPd(Γ) if the degree of input
polynomials is bounded) only allows ideal produced by instances of CSP(Γ).

10

We prove that χIMPd(Γ) can be solved in polynomial time when a (d-truncated)
Gröbner Basis can be efficiently generated, and also admits the same reductions as the
IMP. This theorem allows us to show that for every Γ for which IMPd(Γ) is polynomial
time solvable, so is χIMPd(Γ). This includes constraint languages invariant under dual-
discriminator, semilattice, and affine polymorphisms.

In Section 5.1.2 we use χIMP along with the factor ring F[X]/I modulo an ideal I to
generate a basis for the factor ring consisting of monomials of degree at most d, and then
use it to construct a d-truncated Gröbner Basis for I.

Theorem 1.2.6. Let H be a class of ideals for which χIMPd is polynomial time solvable.
Then there exists a polynomial time algorithm that constructs a degree d Gröbner Basis (with
respect to a grlex) of an ideal I ∈ H, I ⊆ F[x1, . . . , xn], in time O(nd).

This makes it possible to construct d-truncated Gröbner Bases in all cases IMP(Γ) is
known to be polynomial time. Thus, it basically eliminates the gap between deciding the
existence of an ideal membership proof and finding such a proof.

Applications to SOS and Theta bodies. The problem χIMP and the results men-
tioned above can also be used to study some semialgebraic proof systems such as the SOS.
It also finds applications in the study of theta-bodies. These and other applications are
presented in Sections 5.3 and 5.4.

1.3 Valued Constraint Satisfaction Problems

There are several natural optimization versions of the CSP. Let Γ be a constraint language
over D, then one optimization version of CSP(Γ) is, for every instance P = (X,D,C) of
CSP(Γ), to find a mapping φ : X → D that maximizes (minimizes) the number of satisfied
(unsatisfied) constraints. This problem is known under the name of Max CSP (Min CSP).
For example, the most basic Boolean Max 2-CSP problem is Max Cut where Γ is the graph
containing only one edge. This line of research has received a lot of attention in the literature
and there are very strong results concerning various aspects of approximability of Max 2-CSP
and Min 2-CSP [7, 86, 100, 131, 148]. See [159] for a recent survey on this and approximation
of Max k-CSP and Min k-CSP. Another natural optimization version of the CSP(Γ) is where
not only we are interested in the existence of a satisfying assignment, but want to find the
“best satisfying assignmen”. Examples of such setting include Minimum Cost Homomorphism
[103, 187], (Weighted) Min Ones [4, 60, 129], Min Sol [124, 210], a large class of bounded
integer linear programs, retraction problems [77], Minimum Sum Coloring [13, 85, 141], and
various optimum cost chromatic partition problems [99, 120, 123, 140].

The most general optimization variant of the CSP is the Valued Constraint Satisfaction
Problem, or VCSP for short, which deals with both feasibility and optimization. A valued

11

constraint language Γ is a set of functions on a fixed domain and a VCSP instance over Γ
is given by a sum of functions from Γ with the goal to minimize the sum.

We define the VCSP formally as follows. As before, let D be a fixed finite set and
Q = Q∪{∞} denote the set of rational numbers with (positive) infinity. An r-ary weighted
relation over D is a mapping σ : Dr → Q. We write ar(σ) = r for the arity of σ. A valued
constraint language, or just a constraint language, over D is a set of weighted relations over
D. We denote by VCSP(Γ) the class of all VCSP instances in which the weighted relations
are all contained in Γ.

A valued constraint over a valued constraint language Γ and variable X is an expression
of the form σ(x) where σ is a weighted relation in Γ and x ∈ Xar(σ) is a list of variables,
called the scope of the constraint. A valued constraint is satisfied by a mapping φ : X → D

if σ(φ(x)) <∞.

Definition 1.3.1 (Valued Constraint Satisfaction Problem). An instance P of the valued
constraint satisfaction problem (VCSP) over a valued constraint language Γ is specified by
a finite set X = {x1, . . . , xn} of variables, a finite set D, and an objective function ΣP

expressed as follows:

ΣP(x1, . . . , xn) =
q∑
i=1

σi(xi), (1.1)

where each σi(xi), 1 ≤ i ≤ q, is a valued constraint from Γ. Each constraint may appear
multiple times in P. An assignment to P is a map φ : X → D. The goal is to find an
assignment that minimizes the objective function.

Note that CSPs are a special case of VCSPs with {0,∞}-valued relations with the goal to
determine the existence of a satisfying assignment. Similar to the CSPs, a valued constraint
language Γ is called tractable if VCSP(Γ′) can be solved (to optimality) in polynomial time
for every finite subset Γ′ ⊆ Γ, and Γ is called NP-hard if VCSP(Γ′) is NP-hard for some
finite Γ′ ⊆ Γ.

Example 1.3.2 (Digraph Homomorphism). Given two digraphs G = (V (G), E(G)) and
H = (V (H), E(H)), a mapping f : V (G) → V (H) is a homomorphism from G to H if f
preserves edges, that is, (u, v) ∈ E(G) implies (f(u), f(v)) ∈ E(H). The problem whether
an input digraph G admits a homomorphism to a fixed digraph H is also known as the
H-Coloring problem and has been actively studied in graph theory [105], see also [144]. For
any digraph H, let ΓH be the language that contains just the single binary cost function
σH : V (H)2 → Q defined by

σH(x, y) =

0 if (u, v) ∈ E(H),

∞ otherwise.

12

If we add all unary crisp1 functions to ΓH then the resulting VCSP is known as List
H-Coloring or List Homomorphism [105].

Fractional polymorphisms. Analogous to constraint languages, multi-dimensional sym-
metry of valued constraint languages can be associated with a set of operations, known
as the polymorphisms. The complexity of exact minimization of VCSPs is well under-
stood [136, 207], and they are formulated in terms of the existences of particular types
of fractional polymorphisms.

A function ψ : Dk → D is called a k-ary operation on D. For a weighted relation
σ : Dr → Q, we denote by Feas(σ) = {x ∈ Dm | σ(x) is finite} the feasibility relation of σ.
We will view Feas(σ) both as a relation and as a {0,∞}-valued cost function.

Definition 1.3.3 (Polymorphism). Let σ : Dr → Q be a weighted relation. We say that a k-
ary operation ψ : Dk → D is a polymorphism of σ if, for any a1, . . . , ak ∈ Feas(σ) we have
that ψ(a1, . . . , ak) ∈ Feas(σ). Here, by ψ(a1, . . . , ak) we understand the component-wise
action of ψ, that is, if ai = (ai1, . . . , air) then

ψ(a1, . . . , ak) = (ψ(a1
1, . . . , a

k
1), . . . , ψ(a1

r , . . . , a
k
r))

For a valued constraint language Γ, we denote by Pol(Γ) the set of all operations which
are polymorphisms of all σ ∈ Γ. We write Pol(σ) for Pol({σ}).

A probability distribution ω over the set of k-ary operations on D is called an k-ary
fractional operation. We define supp(ω) to be the set of operations assigned positive prob-
ability by ω. We call ω a fractional polymorphism of σ if supp(ω) ⊆ Pol(σ) and for any
a1, . . . , ak ∈ Feas(σ), we have

Eψ∼ω[σ(ψ(a1, . . . , ak))] ≤ avg{σ(a1), . . . , σ(ak)}.

In this thesis, we make advancement in applications of (fractional) polymorphisms in
different algorithmic aspects of VCSPs. We first turn our attention to approximability of
VCSPs where our ultimate goal is to completely characterize valued constraint languages
for which efficient approximation algorithms are feasible. Secondly, we consider central top-
ics in the intersection of machine learning and optimization. VCSPs are at the core many
machine learning and data mining tasks and an intriguing question is to what extend are
the effects of universal algebraic techniques and polymorphisms in designing algorithms in
such areas. More specifically, our focus is on sparsification and differential privacy. As we
will discuss, these two have been the subject of intense studies both in machine learning
and theoretical computer science communities. In this thesis, we focus on valued constraint

1Crisp functions take only the values 0 or ∞.

13

languages that admit the submodularity property. In such case, we first focus on design-
ing efficient sparsification algorithms for submodular functions and study applications and
consequences of our results. In the last chapter of this thesis, we consider designing op-
timization algorithms that preserve differential privacy and discuss several applications of
our algorithms. We hope our studies here help to better understand and advance the notion
of polymorphisms and universal algebraic concepts in algorithm design both in theory and
practice, and points towards uniform approaches for general VCSPs.

1.3.1 Approximation of VCSPs and Minimum Cost H-coloring

For a minimization problem, an α-approximation algorithm is a (randomized) polynomial
time algorithm that finds an approximate solution of cost at most α times the minimum
cost. A constant ratio approximation algorithm is an α-approximation algorithm for some
constant α. For finite VCSPs where weighted relations only takes finite values, Raghaven-
dra [190] showed how to use the basic SDP relaxation to obtain a constant factor approx-
imation. Moreover, he proved that the approximation ratio cannot be improved under the
Unique Game Conjecture (UGC). This constant is not explicit, but there is an algorithm
that can compute it with any given accuracy in doubly exponential time with respect to the
domain size, arity, and the accuracy factor [191]. In another line of research, the power of so-
called basic linear program (BLP) concerning constant factor approximation of finite VCSPs
has been recently studied in [61, 74]. However, the approximability of VCSPs for constraint
languages that are not finite-valued remains poorly understood, and [103, 124, 162] are the
only results on approximation of VCSP for languages that have cost functions that can take
infinite values. The results of [103, 162] deal with the Minimum Cost Homomorphism problem
also known as Minimum Cost H-coloring problem to a digraph which is a generalization and
optimization version of Digraph Homomorphism problem in Example 1.3.2.

Minimum Cost Homomorphism. For a digraph G, let V (G) denote the vertex set
of G, and let A(G) denote the arcs of G. We denote the number of vertices of G by |G|.
Instead of (u, v) ∈ A(G), we use the shorthand uv ∈ A(G) or simply uv ∈ G. A graph G

is a symmetric digraph, that is, xy ∈ A(G) if and only if yx ∈ A(G). An edge is just a
symmetric arc.

Recall that a homomorphism of a digraph G to a digraph H (a.k.a H-Coloring) is a
mapping f : V (G) → V (H) such that for each arc xy of G, f(x)f(y) is an arc of H. We
say mapping f does not satisfy arc xy, if f(x)f(y) is not an arc of H. The homomorphism
problem for a fixed target digraph H, HOM(H), takes a digraph G as input and asks
whether there is a homomorphism from G to H. Therefore, by fixing the digraph H we
obtain a class of problems, one for each digraph H. For example, HOM(H), when H is an
edge, is exactly the problem of determining whether the input graph G is bipartite (i.e., the
2-Coloring problem). Similarly, if H is the complete graph on 3 vertices K3, then HOM(H)

14

is exactly the classical 3-Coloring problem. More generally, if H is a clique on k vertices,
then HOM(H) is the k-Coloring problem. Of course, HOM(H) is a special case of CSP
in which the constraint language is a binary relation. A celebrated result due to Hell and
Nesetril [104], states that, for graph H, HOM(H) is in P if H is bipartite or contains a
looped vertex, and that it is NP-complete for all other graphs H. See [32] for an algebraic
proof of the same result.

The optimization version of HOM(H) where the goal is to find a mapping f : V (G)→
V (H) that maximizes (minimizes) the number of satisfied (unsatisfied) arcs in G is known
as Max 2-CSP (Min 2-Csp). For instance, the most basic Boolean Max 2-CSP problem is
Max Cut where the target graph H is an edge. This line of research has attracted a great
deal of attention, see [159] and references therein. Our focus is another optimization variant
of the HOM(H) problem, i.e., we are not only interested in the existence of a homomor-
phism, but want to find the “best homomorphism”. The minimum cost homomorphism
problem to H, denoted by MinHOM(H), for a given input digraph G, and a cost function
c(x, i), x ∈ V (G), i ∈ V (H), seeks a homomorphism f of G to H that minimizes the total
cost ∑

x∈V (G)
c(x, f(x)). The cost function c can take non-negative rational values and positive

infinity, that is c : V (G) × V (H) → Q≥0 ∪ {+∞}. The MinHOM was introduced in [97],
where it was motivated by a real-world problem in defence logistics. The MinHOM problem
offers a natural and practical way to model and generalizes many optimization problems.

Example 1.3.4 ((Weighted) Minimum Vertex Cover). This problem can be formulated as
MinHOM(H) where V (H) = {0, 1}, E(H) = {11, 01} and c(u, 0) = 0, c(u, 1) > 0 for every
u ∈ V (G). Note that G and H are graphs in this example.

Example 1.3.5 (Chromatic Sum). In this problem, we are given a graph G, and the ob-
jective is to find a proper coloring of G with colors {1, . . . , k} with minimum color sum.
This can be seen as MinHOM(H) where H is a clique of size k with V (H) = {1, . . . , k} and
the cost function is defined as c(u, i) = i. The Chromatic Sum problem appears in many
applications such as resource allocation problems [13] and scheduling problems [160].

Example 1.3.6 (Min Cut in graphs). Let G be a graph. Each edge e of G has a weight
w(e), and the goal is to partition the vertices of G into P ⊂ V (G) and V (G)\P so that sum
of weights of edges between P and V (G) \ P is minimum. This problem can be formulated
as MinHOM as follows. Add two extra vertices s, t and connect s, t to every vertex in G

and set the edge weights zero. Construct G′ by replacing each edge e = uv of G by a path
u, xe, v. Let H be a graph with vertices α, β, γ and edge set {αα, αβ, βγ, γγ}. For every
vertex u ∈ V (G′) \ {s, t}, set c(u, α) = 0, c(u, γ) = 0, and c(xe, β) = w(e). Set c(s, α) = 0
and c(s, β) = c(s, γ) = |G|. Finally, set c(t, α) = c(t, β) = |G|, and c(t, γ) = 0. Now, finding
a minimum cut in G is equivalent to finding a minimum cost homomorphism from graph
G′ to H.

15

Example 1.3.7 (List Homomorphism (LHOM)). LHOM(H), seeks, for a given input digraph
D and lists L(x) ⊆ V (H), x ∈ V (D), a homomorphism f from D to H such that f(x) ∈ L(x)
for all x ∈ V (D). This is equivalent to MinHOM(H) with c(u, i) = 0 if i ∈ L(u), otherwise
c(u, i) = +∞. This problem is also known as List H-Coloring and its complexity is fully
understood due to series of results [14, 31, 33, 34, 76, 108].

Note that in the MinHOM problem the cost function is a part of the input. That is
the corresponding valued constraint language contains infinitely many possible unary cost
functions. A special case of MinHOM problem is where the cost function c is chosen from a
fixed set ∆. This problem is denoted by MinHOM(H,∆) [55, 106, 210, 211]. Interestingly, a
recent work by Cohen et al. [55] proved that VCSPs over a fixed valued constraint language
are polynomial-time equivalent to MinHOM(H,∆) over a fixed digraph and a proper choice
of ∆.

Our contributions. Most of the minimum cost homomorphism problems are NP-hard,
therefore we investigate the approximation of MinHOM(H).

Approximating MinHOM(H)

Input: A digraph G and a vertex-mapping costs c(x, u), x ∈ V (G), u ∈ V (H),
Output: A homomorphism f of G to H with the total cost of ∑

x∈V (G)
c(x, f(x)) ≤

α · Opt, where α is a constant.

Here, Opt denotes the cost of a minimum cost homomorphism of G to H. Moreover, we
assume size of H is constant. Recall that we approximate the cost over real homomorphisms,
rather than approximating the maximum weight of satisfied constraints, as in, say, Max CSP.

Ultimately, our goal is to fully characterize digraphs for which MinHOM(H) admits a
polynomial time constant factor approximation algorithm. We take important steps towards
this goal by providing constant factor approximation algorithms for MinHOM(H) where H
belongs to these two important cases of digraphs, namely

Theorem 1.3.8. Let H be a digraph. MinHom(H) admits a constant factor approximation
algorithm in the following cases

1. H is a bi-arc digraph i.e., it admits a conservative semilattice polymorphism a.k.a
min-ordering,

2. H is a k-arc digraph i.e., it admits a k-min-ordering.

Furthermore, we obtain a full characterization of graphs which admit a constant factor
approximation algorithm.

16

Theorem 1.3.9 (Dichotomy for graphs). Let H be a graph. There exists a constant factor
approximation algorithm for MinHOM(H) if H is a bi-arc graph i.e. admits a conservative
majority polymorphism, otherwise, MinHOM(H) is inapproximable unless P = NP.

Finally we conjecture a criteria for approximability of MinHOM(H) when H is a digraph.
Our results are presented in Chapter 6, and are based on the paper [187].

Conjecture 1.3.10. Let H be a digraph. MinHOM(H) admits a constant factor approxima-
tion algorithm when H is a DAT-free digraph, otherwise, MinHOM(H) is not approximable
unless P = NP.

1.3.2 Sparsification of VCSPs and submodularity

VCSPs are at the core of many machine learning and data mining tasks. In many data
intensive applications, however, the number of underlying cost functions in the original
function Σ(x1, . . . , xn) =

q∑
i=1

σi(xi) is so large, q is too large, that we need prohibitively

large amount of time to process it and/or it does not even fit in the main memory. To
overcome this issue, we study the notion of sparsification for VCSPs whose objective is to
obtain an accurate approximation of the original function that is a (weighted) sum of only a
few cost functions. Sparsification is an algorithmic paradigm where a dense object is replaced
by a sparse one with similar “features”, which often leads to significant improvements in
efficiency of algorithms, including running time, space complexity, and communication.

Formally, let Γ be a valued constraint language and P be an instance of VCSP(Γ) with
objective function

ΣP(x1, . . . , xn) =
q∑
i=1

σi(xi).

For 0 < ϵ < 1, an ϵ-sparsification of P is a re-weighted instance Pϵ

ΣPϵ(x1, . . . , xn) =
q∑
i=1

wiσi(xi),

such that for any assignment φ : X → D we have Val(Pϵ, φ) ∈ (1±ϵ)Val(P, φ). The goal here
is to find a sparsifier with minimum number of constraints. Depending on the application
one can define a threshold function τ(n, ϵ) for sparsification. Then a valued constraint
language Γ is called sparsifiable if for every instance P of VCSP(Γ) on n variables and for
every 0 < ϵ < 1 there is an ϵ-sparsification for P with τ(n, ϵ) many cost functions. The
goal is to characterize valued constraint languages that are sparsifiable with respect to a
threshold function τ(n, ϵ). Such a characterization is known for Boolean binary VCSPs and
threshold function τ(n, ϵ) = O(n

ϵ2) due to Filtser and Krauthgamer [82], this was extended
to binary VCSPs over finite domain by Butti and Zivný[47]. We extend upon these results
by considering decomposable submodular functions i.e., the corresponding valued constraint
language admits a nice 2-ary fractional polymorphism.

17

Sparsification and submodularity. Submodularity of a set function is an intuitive
diminishing returns property, stating that adding an element to a smaller set helps gaining
more return than adding it to a larger set. Formally, a set function f : 2E → R is submodular
if for any S ⊆ T ⊆ E and e ∈ E \ T it holds that

f(T ∪ {e})− f(T) ≤ f(S ∪ {e})− f(S)

Equivalently, a set function f : 2E → R is called submodular if for all subsets S and T of E

f(S ∩ T) + f(S ∪ T) ≤ f(S) + f(T). (1.2)

This can be expressed in terms of fractional polymorphisms as well. If we set D = {0, 1},
then any set function f on E can be associated with a (|E|-ary) weighted relation σ defined
on the characteristic vectors of subsets of E. The intersection and union operations on
subsets correspond to the Min and Max operations on the associated characteristic vectors.
Hence, f is submodular if and only if the associated cost function σ satisfies the following
inequality:

σ(Max(x1,x2)) + σ(Min(x1,x2)) ≤ σ(x1) + σ(x2).

This means that σ admits the 2-ary fractional polymorphism ωsub, defined by ωsub(Min) =
ωsub(Max) = 1

2 .
Submodularity is a fundamental structure that has emerged as a very beneficial prop-

erty in many combinatorial optimization problems arising in machine learning, graph theory,
economics, game theory, to name a few. The theory of submodular maximization provides
a general and unified framework for various combinatorial optimization problems includ-
ing the Maximum Coverage, Maximum Cut, and Facility Location problems. Furthermore, it
also appears in a wide variety of applications such as viral marketing [128], information
gathering [139], feature selection for classification [138], influence maximization in social
networks [128], document summarization [152], and speeding up satisfiability solvers [204].
For a survey, see [137]. As a consequence of these applications and importance, a wide
range of efficient approximation algorithms have been developed for maximizing submod-
ular functions subject to different constraints [48, 175, 177, 216]. However, the need for
efficient optimization methods that can be used in data-intensive tasks is wide-spread. In
this thesis we address these issues by studying sparsification of decomposable submodular
functions. A submodular function is called decomposable if it can be written as a sum of
several submodular functions i.e.,

F (S) =
N∑
i=1

fi(S) ∀S ⊆ E,

where each fi : 2E → R is a submodular function on the ground set E.

18

Submodular sparsification

Input: A decomposable submodular function F (S) = ∑N
i=1 fi(S) and ϵ,

Goal: Find a w ∈ RN with minimum number of non-zero entries such that for
F ′(S) = ∑N

i=1 wifi(S) we have

(1− ϵ)F ′(S) ≤ F (S) ≤ (1 + ϵ)F ′(S),

for all subsets S ⊆ E.

Our contributions. Given a decomposable submodular function F = ∑N
i=1 fi, we con-

sider the following problem and present a randomized algorithm that yields a sparse rep-
resentation that approximates F . We prove our algorithm yields a sparsifier of small size
(independent of N) with a very good approximation of F .

Theorem 1.3.11. Let F = ∑N
i=1 fi be a decomposable submodular function. For any ϵ > 0,

there exists a vector w ∈ RN with at most O(B·n2

ϵ2) non-zero entries such that for the
submodular function F ′ = ∑N

i=1 wifi we have

(1− ϵ)F ′(S) ≤ F (S) ≤ (1 + ϵ)F ′(S) ∀S ⊆ E.

Moreover, if all fi’s are monotone, then there exists a polynomial-time randomized algorithm
that outputs a vector w ∈ RN with at most O(B·n2.5 logn

ϵ2) non-zero entries in expectation
such that for the submodular function F ′ = ∑N

i=1 wifi, with high probability, we have

(1− ϵ)F ′(S) ≤ F (S) ≤ (1 + ϵ)F ′(S) ∀S ⊆ E.

We furthermore study saprsification under various constraints such as matroid con-
straint, and provide a randomized algorithm that obtains a sparsifier of a smaller size in
comparison to the general setting. We then discuss applications of our results in speeding
up optimization algorithms for submodular maximization/minimization. Finally, we em-
pirically examine our algorithm and demonstrate that it constructs a concise sparsifier on
which we can efficiently perform algorithms. These results are presented in Chapter 7, and
are based on the paper [189].

1.3.3 VCSPs under differential privacy

The need for efficient optimization methods that guarantee the privacy of individuals is wide-
spread across many applications concerning sensitive data about individuals, e.g., medical
data, web search query data, salary data, social networks. Consider the problem of assigning
people using a social network to one of two servers so that most pairs of friends are assigned
to the same server which can be modeled as an instance of the Min Cut problem; or the

19

problem of opening a small number of drop-off centers for undercover agents so that each
agent is able to visit some site convenient to her (each providing a list of acceptable sites)
which can be modeled as an instance of the Set Cover problem. In these scenarios and in
many others, the input data (friendship relations, medical history, agents locations) repre-
sent sensitive information about individuals, and it is preferable to use a private algorithm
that gives somewhat suboptimal solutions to a non-private optimal algorithm.

Differential privacy is a rigorous notion of privacy that allows statistical analysis of
sensitive data while providing strong privacy guarantees. Basically, differential privacy re-
quires that computations be insensitive to changes in any particular individual’s record. A
dataset is a collection of records from some domain, and two datasets are neighboring if
they differ in a single record. Simply put, the requirement for differential privacy is that the
computation behaves nearly identically on two neighboring datasets.

Various combinatorial problems have been considered in the differential privacy frame-
work and efficient algorithms have been developed for them, for instance see [94] and ref-
erences therein. However, these approaches are ad hoc and studying differential privacy in
a general and unifying framework for combinatorial problems such as the VCSPs is absent
in the literature. We therefore consider the problem of characterizing of valued constraint
languages Γ that admit efficient and accurate algorithms under differential privacy. In this
thesis, we focus on valued constraint languages with submodular property and present sev-
eral positive results.

Submodular optimization under differential privacy. In this thesis we consider
designing a differentially private algorithm for maximizing nonnegative and monotone sub-
modular functions in low-sensitivity regime. In this regime, informally speaking, the value
of the function is not very sensitive to changes in the dataset, yet this factor must be taken
into consideration. Whilst, a cardinality constraint is a natural one to place on a submodular
maximization problem (e.g., finding a set of size k that maximizes the function), many other
problems, e.g., personalized data summarization [170], require the use of more general types
of constraints, i.e., matroid constraints. The problem of maximizing a submodular function
under a matroid constraint is a classical problem [70], with many important special cases,
e.g., uniform matroid (the subset selection problem, see Example 8.1.1), partition matroid
(submodular welfare/partition problem). We consider the following.

Submodular maximization under differential privacy

Input: A sensitive dataset D associated to a monotone submodular function
FD : 2E → R+ and a matroid M = (E, I),

Goal: Find a subset S ∈ I that approximately maximizes FD in a manner that
guarantees differential privacy with respect to the input dataset D.

20

Furthermore, we consider a natural generalization of submodular functions, namely,
k-submodular functions. k-submodular function maximization allows for a richer problem
structure than submodular maximization. For instance, coupled feature selection [199], sen-
sor placement with k kinds of measures [179], and influence maximization with k topics can
be expressed as k-submodular function maximization problems.

The property of k-submodularity can be formulated in terms of polymorphisms as fol-
lows. Let D = {0, . . . , k}. Consider the following two operations on D:

Min0(s, t) =

0 if s ̸= 0, t ̸= 0, s ̸= t

min(s, t) otherwise.

and

Max0(s, t) =

0 if s ̸= 0, t ̸= 0, s ̸= t

max(s, t) otherwise.

where min(s, t) (respectively, max(s, t)) returns the smaller (respectively, the larger) of
s and t with respect to the usual order on the integers. As usual, for vectors s and t
in {0, . . . , k}E we let Min0(s, t) (respectively, Max0(s, t)) denote the vector obtained from
applying Min0 (respectively, Max0) to s and t coordinate-wise. Using these operations we
can define the general class of k-submodular function. Given a natural number k ≥ 1 and
a finite nonempty set E, a function f : {0, . . . , k}E → R+ is called k-submodular if for all s
and t in {0, . . . , k}E ,

f(Min0(s, t)) + f(Max0(s, t)) ≤ f(s) + f(t).

We consider the following problem.

k-submodular maximization under differential privacy

Input: A sensitive dataset D associated to a monotone k-submodular function
FD : (k + 1)E → R+ and a matroid M = (E, I),

Goal: Find S = (S1, . . . , Sk) with ⋃i∈[k] Si ∈ I that approximately maximizes FD
in a manner that guarantees differential privacy with respect to the input
dataset D.

Our contributions. In Chapter 8, we study the problem of maximizing monotone sub-
modular functions subject to matroid constraints in the framework of differential privacy.
We provide a (1− 1

e)-approximation algorithm which improves upon the previous results in

21

terms of approximation guarantee. This is done with an almost cubic number of function
evaluations in our algorithm.

Theorem 1.3.12. Suppose FD is monotone with sensitivity ∆ and M = (E, I) is a ma-
troid with rank r(M). For every ϵ > 0, there is an (ϵr(M)2)-differentailly private al-
gorithm that, with high probability, returns S ∈ I with quality at least (1 − 1

e)OPT −
O
(√

ϵ+ ∆r(M)|E| ln |E|
ϵ3

)
.

Moreover, we study k-submodularity, a natural generalization of submodularity. We
give the first 1

2 -approximation algorithm that preserves differential privacy for maximizing
monotone k-submodular functions subject to matroid constraints. The approximation ratio
is asymptotically tight and is obtained with an almost linear number of function evaluations.

Theorem 1.3.13. Suppose FD : (k + 1)E → R+ is monotone with sensitivity ∆ and
M = (E, I) is a matroid with rank r(M). For any ϵ > 0, there is an O(ϵr(M))-differentially
private algorithm that, with high probability, returns a solution X = (X1, . . . , Xk) ∈ (k+1)E

with
⋃
i∈[k]Xi ∈ I and quality at least 1

2OPT−O(∆r(M) ln |E|
ϵ).

22

Chapter 2

Ideal Membership Problem and
CSPs

2.1 Preliminaries

2.1.1 Ideals, varieties and the Ideal Membership Problem

We follow the same notation and terminology as [59, 161] and the presentation of this
section closely follows [161].

Let F denote an arbitrary field. Let F[x1, . . . , xn] be the ring of polynomials over a field
F and indeterminates x1, . . . , xn. Sometimes it will be convenient not to assume any specific
ordering or names of the indeterminates. In such cases we use F[X] instead, where X is a set
of indeterminates, and treat points in FX as mappings φ : X → F. The value of a polynomial
f ∈ F[X] is then written as f(φ). Let F[x1, . . . , xn]d denote the subset of polynomials of
degree at most d. An ideal of F[x1, . . . , xn] is a set of polynomials from F[x1, . . . , xn] closed
under addition and multiplication by a polynomial from F[x1, . . . , xn]. We will need ideals
represented by a generating set.

Definition 2.1.1. The ideal (of F[x1, . . . , xn]) generated by a finite set of polynomials
{f1, . . . , fm} in F[x1, . . . , xn] is defined as

I(f1, . . . , fm) def=
{ m∑
i=1

tifi | ti ∈ F[x1, . . . , xn]
}
.

Definition 2.1.2. The set of polynomials that vanish in a given set S ⊂ Fn is called the
vanishing ideal of S and denoted

I(S) def= {f ∈ F[x1, . . . , xn] : f(a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ S}.

Definition 2.1.3. An ideal I is radical if fm ∈ I for some integer m ≥ 1 implies that
f ∈ I. For an arbitrary ideal I the smallest radical ideal containing I is denoted

√
I. In

other words
√

I = {f ∈ F[x1, . . . , xn] | fm ∈ I for some m}.

23

Another common way to denote I(f1, . . . , fm) is by ⟨f1, . . . , fm⟩ and we will use both
notations interchangeably.

Definition 2.1.4. Let {f1, . . . , fm} be a finite set of polynomials in F[x1, . . . , xn]. We call

V (f1, . . . , fm) def= {(a1, . . . , an) ∈ Fn | fi(a1, . . . , an) = 0 1 ≤ i ≤ m}

the affine variety defined by f1, . . . , fm.
Similarly, for an ideal I ⊆ F[x1, . . . , xn] we denote by V (I) the set V (I) = {(a1, . . . , an) ∈

Fn | f(a1, . . . , an) = 0 ∀f ∈ I}.

The Weak Nullstellensatz states that in any polynomial ring, algebraic closure is enough
to guarantee that the only ideal which represents the empty variety is the entire polynomial
ring itself. This is the basis of one of the most celebrated mathematical results, Hilbert’s
Nullstellensatz.

Theorem 2.1.5 (The Weak Nullstellensatz). Let F be an algebraically closed field and let
I ⊆ F[x1, . . . , xn] be an ideal satisfying V (I) = ∅. Then I = F[x1, . . . , xn].

One might hope that the correspondence between ideals and varieties is one-to-one
provided only that one restricts to algebraically closed fields. Unfortunately, this is not
the case1. Indeed, the reason that the map V fails to be one-to-one is that a power of a
polynomial vanishes on the same set as the original polynomial.

Theorem 2.1.6 (Hilbert’s Nullstellensatz). Let F be an algebraically closed field. If f0,
f1, . . . , fs ∈ F[x1, . . . , xn], then f0 ∈ I(V (f1, . . . , fs)) if and only if fm0 ∈ ⟨f1, . . . , fs⟩ for
some integer m ≥ 1.

By definition, radical ideals consist of all polynomials which vanish on some variety
V . This together with Theorem 2.1.6 suggests that there is a one-to-one correspondence
between affine varieties and radical ideals.

Theorem 2.1.7 (The Strong Nullstellensatz). Let F be an algebraically closed field. If I is
an ideal in F[x1, . . . , xn], then I(V (I)) =

√
I.

The following theorem is a useful tool for finding unions and intersections of varieties.
We will use it in the following subsections where we construct ideals corresponding to
CSP instances.

Theorem 2.1.8 ([59]). If I and J are ideals in F[x1, . . . , xn], then

i. V (I ∩ J) = V (I) ∪V (J),

ii. V (I + J) = V (I) ∩V (J).

1For example V (x) = V
(
x2) = {0} works over any field.

24

2.1.2 The ideal-CSP correspondence

Here, we explain how to construct an ideal corresponding to a given instance of CSP. Con-
straints are in essence varieties, see e.g. [122, 212]. Following [161, 212], we shall translate
CSPs to polynomial ideals and back. Let P = (X,D,C) be an instance of CSP(Γ) where,
throughout this thesis, Γ is a fixed constraint language with relations of fixed arities. With-
out loss of generality, we assume that D ⊂ F2. Let Sol(P) be the (possibly empty) set of all
solutions of P. We wish to map Sol(P) to an ideal I(P) ⊆ F[X] such that Sol(P) = V (I(P)).
First, for every xi the ideal I(P) contains a domain polynomial fD(xi) whose zeroes are
precisely the elements of D. Then for every constraint R(xi1 , . . . , xik), where R is a predi-
cate on D, the ideal I(P) contains a polynomial fR(xi1 , . . . , xik) that interpolates R, that
is, for (xi1 , . . . , xik) ∈ Dk it holds fR(xi1 , . . . , xik) = 0 if and only if R(xi1 , . . . , xik) is true.
Note that each fR has bounded degree, this is because D and k are fixed.

Including a domain polynomial for each variable has the advantage that it ensures that
the ideals generated by our systems of polynomials are radical (see Lemma 8.19 of [21]).
Hence, by Theorem 2.1.5 and Theorem 2.1.7, we have the following properties.

Theorem 2.1.9. Let P be an instance of the CSP(Γ) and I(P) constructed as above. Then

V (I(P)) = ∅ ⇔ 1 ∈ I(P)⇔ I(P) = F[X], (Weak Nullstellensatz)

I(V (I(P))) =
√

I(P), (Strong Nullstellensatz)√
I(P) = I(P). (Radical Ideal)

2.1.3 The Ideal Membership Problem

In the general Ideal Membership Problem we are given an ideal I ⊆ F[x1, . . . , xn], usually
by some finite generating set, and a polynomial f0. The question then is to decide whether
or not f0 ∈ I. If I is given through a CSP instance, we can be more specific.

Definition 2.1.10. The Ideal Membership Problem associated with a constraint lan-
guage Γ over a set D is the problem IMP(Γ) in which the input is a pair (f0,P) where
P = (X,D,C) is a CSP(Γ) instance and f0 is a polynomial from F[X]. The goal is to
decide whether f0 lies in the ideal I(P). We use IMPd(Γ) to denote IMP(Γ) when the input
polynomial f0 has degree at most d.

As I(P) is radical, by the Strong Nullstellensatz an equivalent way to solve the mem-
bership problem f0 ∈ I(P) is to answer the following question:

Does there exist an a ∈ V (I(P)) such that f0(a) ̸= 0?

2In fact, we will mainly assume F = R and D = {0, 1, . . . , |D| − 1}

25

In the yes case, such an a exists if and only if f0 ̸∈ I(V (I(P))) and therefore f0 is not in
the ideal I(P). This observation also implies

Lemma 2.1.11 ([161]). For any constraint language Γ the problem IMP0(Γ) is equivalent
to not-CSP(Γ).

As was observed in the Introduction, IMP(Γ) belongs to coNP for any Γ over a finite
domain. We say that IMP(Γ) is tractable if it can be solved in polynomial time. We say
that IMP(Γ) is d-tractable if IMPd(Γ) can be solved in polynomial time for every d. Since
IMP(Γ) is in coNP, throughout this thesis by the search IMP we understand the following
problem.

Search version of IMP. Let (f0,P) be an instance of IMP(Γ) such that f0 ̸∈
I(P), the problem is to find an assignment φ ∈ V(I(P)) such that f0(φ) ̸= 0.

2.1.4 IMP and Gröbner Bases

In this section we present a very light introduction to Gröbner Bases and lay down some
notation and background. We follow the standard notation in [59, 161].

A possible way to solve the IMP is via polynomial division. Informally, if a remainder of
division of f0 by generating polynomials of I(P) is zero then f0 ∈ I(P). Let us recall some
standard notations from algebraic geometry that are needed to present a division algorithm
and the notion of Gröbner Bases.

A monomial ordering ≻ on F[x1, . . . , xn] is a relation ≻ on Zn≥0, or equivalently, a
relation on the set of monomials xα, α ∈ Zn≥0 (see [59], Definition 1, p.55). Each monomial
xα = xα1

1 · · ·xαn
n corresponds to an n-tuple of exponents α = (α1, . . . , αn) ∈ Zn≥0. This

establishes a one-to-one correspondence between the monomials in F[x1, . . . , xn] and Zn≥0.
Any ordering ≻ we establish on the space Zn≥0 will give us an ordering on monomials: if
α ≻ β according to this ordering, we will also say that xα ≻ xβ .

Definition 2.1.12. Let α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn≥0 and |α| = ∑n
i=1 αi,

|β| = ∑n
i=1 βi. Lexicographic order and graded lexicographic order are defined as follows.

1. We say α ≻lex β if the leftmost nonzero entry of the vector difference α − β ∈ Zn is
positive. We will write xα ≻lex xβ if α ≻lex β.

2. We say α ≻grlex β if |α| > |β|, or |α| = |β| and α ≻lex β.

Definition 2.1.13. For any α = (α1, · · · , αn) ∈ Zn≥0 let xα def= ∏n
i=1 x

αi
i . Let f = ∑

α aαxα

be a nonzero polynomial in F[x1, . . . , xn] and let ≻ be a monomial order.

1. The multidegree of f is multideg(f) def= max(α ∈ Zn≥0 : aα ̸= 0).

2. The degree of f is deg(f) = |multideg(f)| where |α| = ∑n
i=1 αi. In this thesis, this is

always according to grlex order.

26

3. The leading coefficient of f is LC(f) def= amultideg(f) ∈ F.

4. The leading monomial of f is LM(f) def= xmultideg(f) (with coefficient 1).

5. The leading term of f is LT(f) def= LC(f) · LM(f).

Definition 2.1.14 (A division algorithm). Let ≻ be a monomial order on Zn≥0, and let
F = {f1, . . . , fs} ⊂ F[x1, . . . , xn]. Then every f ∈ F[x1, . . . , xn] can be written as f =
q1f1+· · ·+qsfs+r, where qi, r ∈ F[x1, . . . , xn], and either r = 0 or r is a linear combination,
with coefficients in F, of monomials, none of which is divisible by any of LT(f1), . . . ,LT(fs).
Furthermore, if qifi ̸= 0, then multideg(f) ⪰ multideg(qifi). We call r a remainder of f on
division by F . Also, we say that f reduces to r modulo F , written f →F r.

The above definition suggests the following procedure to compute a remainder. Re-
peatedly, choose an fi ∈ F such that LT(fi) divides some term t of f and replace f with
f− t

LT(fi)fi, until it cannot be further applied. Note that the order we choose the polynomial
fi is not specified. Unfortunately, depending on the generating polynomials of the ideal a
remainder of division may not be unique. Moreover, such a remainder depends on the order
we do division.

Example 2.1.15. Let f = x2y − xy2 + y and I = ⟨f1, f2⟩ with f1 = x2 and f2 = xy − 1.
Consider the grlex order with x ≻lex y. On one hand, f = 0 · f1 + (x − y) · f2 − x. On the
other hand, f = y · f1 − y · f2 + 0.

The Hilbert Basis Theorem states that every ideal has a finite generating set (see, e.g.,
Theorem 4 on page 77 [59]). Fortunately, for every ideal there is a finite generating set that
suits our purposes. That is, there is a generating set so that the remainder of division by
that set is uniquely defined, no matter in which order we do the division.

Definition 2.1.16. Fix a monomial order on the polynomial ring F[x1, . . . , xn]. A finite
subset G = {g1, . . . , gt} of an ideal I ⊆ F[x1, . . . , xn] different from {0} is said to be a
Gröbner Basis (or standard basis) if

⟨LT(g1), . . . ,LT(gt)⟩ = ⟨LT(I)⟩

where ⟨LT(I)⟩ denotes the ideal generated by the leading terms of elements of I.

Proposition 2.1.17 ([59], Proposition 1, p.83). Let I ⊆ F[x1, . . . , xn] be an ideal and let
G = {g1, . . . , gt} be a Gröbner Basis for I. Then given f ∈ F[x1, . . . , xn], there is a unique
r ∈ F[x1, . . . , xn] with the following two properties:

1. No term of r is divisible by any of LT(g1), . . . ,LT(gt),

2. There is g ∈ I such that f = g + r.

27

In particular, r is the remainder on division of f by G no matter how the elements of G
are listed when using the division algorithm.

The remainder r is called the normal form of f by G, denoted by f |G. Note that,
although the remainder r is unique, even for a Gröbner Basis, the "quotients" qi produced
by the division algorithm f = q1g1 + · · ·+ qtgt + r can change if we list the generators in a
different order. As a corollary of Proposition 2.1.17, we get the following criterion for when
a given polynomial lies in an ideal.

Corollary 2.1.18 ([59], Corollary 2, p.84). Let G = {g1, . . . , gt} be a Gröbner Basis for an
ideal I ⊆ F[x1, . . . , xn] and let f ∈ F[x1, . . . , xn]. Then f ∈ I if and only if the remainder
on division of f by G is zero.

There is a criterion, known as Buchberger’s criterion, that tells us whether a given
generating set of an ideal is a Gröbner Basis. In order to formally express this criterion, we
need to define the notion of S-polynomials.

Definition 2.1.19 (S-polynomial). Let f, g ∈ F[x1, . . . , xn] be nonzero polynomials. If
multideg(f) = α and multideg(g) = β, then let γ = (γ1, . . . , γn), where γi = max(αi, βi)
for each i. We call xγ the least common multiple of LM(f) and LM(g), written xγ =
lcm(LM(f),LM(g)). The S-polynomial of f and g is the combination

S(f, g) = xγ

LT(f) · f −
xγ

LT(g) · g.

Theorem 2.1.20 (Buchberger’s Criterion [59], Theorem 3, p.105). Let I be a polynomial
ideal. Then a basis G = {g1, . . . , gt} of I is a Gröbner Basis of I if and only if for all pairs
i ̸= j, the remainder on division of S(gi, gj) by G (listed in some order) is zero.

Proposition 2.1.21 ([59], Proposition 4, p.106). We say the leading monomials of two
polynomials f, g are relatively prime if lcm(LM(f),LM(g)) = LM(f) ·LM(g). Given a finite
set G ⊆ F[x1, . . . , xn], suppose that we have f, g ∈ G such that the leading monomials of f
and g are relatively prime. Then S(f, g)→G 0.

If we restrict ourselves to the polynomials of degree at most d then we obtain a d-
truncated Gröbner Basis.

Definition 2.1.22 (d-truncated Gröbner Basis). If G is a Gröbner Basis of an ideal, the
d-truncated Gröbner Basis G′ of G is defined as

G′ = G ∩ F[x1, . . . , xn]d,

where F[x1, . . . , xn]d is the set of polynomials of degree less than or equal to d.

28

Solving IMPd and Gröbner Bases. Note that having a Gröbner Basis does not guar-
antee a polynomial time membership test unless the input polynomial has bounded degree.
For instance, consider the following example. Let I ⊆ F[x1, . . . , xn, y1, . . . , yn] be the ideal
generated by set of polynomials G = {x1−y1−1, . . . , xn−yn−1} which is indeed a Gröbner
Basis with respect to the grlex ordering x1 ≻lex ... ≻lex xn ≻lex y1 ≻lex ... ≻lex yn. Now let
the input polynomial be x1 · · ·xn. If we apply the division algorithm, we obtain the expan-
sion of the polynomial (y1 + 1) · · · (yn + 1), which contains exponentially many monomials.
Hence, while the division algorithm solves the problem correctly, it produces exponentially
long intermediate results, and therefore is exponential time.

To solve IMPd or even find a proof of membership it suffices to compute a d-truncated
Gröbner Basis with respect to a grlex order. This is because, for the input polynomial f0

of degree d, the only polynomials from G that can possibly divide f0 are those from Gd.
Moreover, the remainders of such divisions have degree at most d.

2.2 Overview of our contributions

In this thesis we expand on [161] and [24, 25] in several ways. We consider IMP(Γ) for
languages Γ over arbitrary finite set and attempt to obtain general results about such
problems. However, we mainly focus on a slightly different problem than Problem 1.2.1.

Problem 2.2.1. For which constraint languages Γ the problem IMP(Γ) [or IMPd(Γ)] can
be solved in polynomial time?

Note that answering whether f0 belongs to a certain ideal does not necessarily mean
finding an ideal membership proof of that. However, we will argue that, firstly, in many
applications this is the problem we need to solve and therefore our results apply. Secondly,
in Section 5.1.2 we will show that in the majority of cases if the existence of an ideal
membership proof can be efficiently decided, such a proof can also be efficiently found.

Expanding the constraint language. Firstly, in Section 3.1 we study reductions be-
tween IMP’s when the language Γ is enlarged in certain ways. Let Γ be a constraint language
over a set D. By Γ∗ we denote Γ with added constant relations, that is, relations of the form
{(a)}, a ∈ D. Imposing such a constraint on a variable x essentially fixes the allowed values
of x to be a. First, we prove that adding constant relations does not change the complexity
of the IMP. (The case of d = 0 and |D| = 2 of the following theorem was considered in [161]
under the name of singleton expansion.)

Theorem 2.2.2. For any Γ over D the problem IMP(Γ∗) is polynomial time reducible to
IMP(Γ), and for any d the problem IMPd(Γ∗) is polynomial time reducible to IMPd+|D|(|D|−1)(Γ).

Theorem 2.2.2 has two immediate consequences. Since IMP(Γ) is in co-NP, for any
CSP(Γ) instance P there is always a proof that the input polynomial f0 does not belong to

29

the ideal I(P). Any solution of P that is not a zero of f0 will do. Finding such a proof may
be treated as a search version of IMP(Γ). Through self-reducibility, Theorem 2.2.2 allows
us to solve the search problem.

Theorem 2.2.3. Let Γ be such that IMP(Γ) [IMPd+|D|(|D|−1)(Γ)] is solvable in polynomial
time. Then for any instance (f0,P) of IMP(Γ) [IMPd(Γ)] such that f0 ̸∈ I(P), a solution
a of P such that f0(a) ̸= 0 can also be found in polynomial time.

Theorem 2.2.2 also provides a hint at a more plausible conjecture for which languages
Γ the problem IMP(Γ) or IMPd(Γ) is polynomial time. In particular, it allows to find an
example of Γ such that CSP(Γ) is tractable while IMPd(Γ) is not, even for a Γ on a 2-
element set and d = 1. Later we state some results that might indicate that IMPd(Γ) is
polynomial time for every Γ such that CSP(Γ∗) is polynomial time. Note that the structure
of such CSPs is now very well understood.

Another way of expanding a constraint language is by means of primitive-positive (pp-)
definitions and pp-interpretations, and it is at the core of the so-called algebraic approach
to the CSP. A relation R is said to be pp-definable in Γ if there is a first order formula Φ
using only conjunctions, existential quantifiers, equality relation, and relations from Γ that
is equivalent to R. Pp-interpretations are more complicated (see Section 3.1.3) and allow
for certain encodings of R.

Theorem 2.2.4. (1) Let Γ,∆ be constraint languages over the same set D, ∆ is finite,
and every relation from ∆ is pp-definable in Γ. Then IMP(∆) is polynomial time
reducible to IMP(Γ) and IMPd(∆) is polynomial time reducible to IMPd(Γ) for any
d.

(2) Let Γ,∆ be constraint languages, ∆ is finite, and ∆ is pp-interpretable in Γ. Then
there is a constant k such that IMPd(∆) is polynomial time reducible to IMPkd(Γ)
for any d.

The approach of Theorem 2.2.4 was first applied to various proof systems in [6], although
that work is mostly concerned with proof complexity rather than computational complexity.
Mastrolilli [161] ventured into pp-definability without proving any reductions. In particular,
the first part of Theorem 2.2.4 uses techniques from [161] for projections of ideals. It will
later allow us to develop further universal algebra techniques for the IMP. The second part
of that theorem will also work towards more powerful universal algebra methods. We extend
the reductions of Theorem 2.2.4 to the multi-sorted case where each variable has its own
domain. The multi-sorted framework is standard for CSPs and is pivotal in proofs of the
dichotomy theorem of CSPs [35, 222] and we anticipate the multi-sorted IMP becomes the
standard framework in this line of research.

Recall that according to [192] in order to find an SOS proof one needs to be able to find
Nullstellensatz proofs efficiently. The reductions from Theorems 2.2.2, 2.2.4 do not always

30

allow to recover such a proof efficiently only confirming such a proof exists, and therefore
cannot be directly used in the conditions from [192]. However, in Section 5.3 we address
this issue.

Polymorphisms and sufficient conditions for tractability. Recall that a polymor-
phism of a constraint language Γ over a set D is a multi-ary operation on D that can be
viewed as a multi-dimensional symmetry of relations from Γ. By Pol(Γ) we denote the set
of all polymorphisms of Γ. As in the case of the CSP, Theorem 2.2.4 implies that polymor-
phisms of Γ is what determines the complexity of IMP(Γ). In Section 3.2.1 we show the
following.

Corollary 2.2.5. Let Γ,∆ be constraint languages over the same set D, ∆ is finite. If
Pol(Γ) ⊆ Pol(∆), then IMP(∆) is polynomial time reducible to IMP(Γ) and IMPd(∆) is
polynomial time reducible to IMPd(Γ) for any d.

Corollary 2.2.5 allows us to represent IMPs through polymorphisms and classify the
complexity of IMPs according to the corresponding polymorphisms. The method has been
initiated by Mastrolilli and Bharathi [24, 25, 161], although mainly for 2-element set and
one case of finite domain. We apply this approach to obtain several sufficient conditions for
tractability of the IMP.

Theorem 2.2.6. Let Γ be a constraint language over a set D. Then if one of the following
conditions holds, IMPd(Γ) is decidable in polynomial time for any d.

1. Γ has the dual-discriminator polymorphism (i.e. a ternary operation g such that
g(x, y, z) = x unless y = z, in which case g(x, y, z) = y);

2. Γ has a semilattice polymorphism (i.e. a binary operation f such that f(x, x) = x,
f(x, y) = f(y, x), and f(f(x, y), z) = f(x, f(y, z)));

3. |D| = p, p prime, and Γ has an affine polymorphism modulo p (i.e. a ternary oper-
ation h(x, y, z) = x ⊖ y ⊕ z, where ⊕,⊖ are addition and subtraction modulo p, or,
equivalently, of the field GF(p)). In this case every CSP can be represented as a system
of linear equations over GF(p).

4. D is an Abelian group and the affine operation x − y + z of D is a polymorphism of
Γ.

For the first part of Theorem 2.2.6 we come up with a technique of preprocessing the
input polynomial f0 that allows us to get rid of permutation constraints and greatly simplify
the proof for the dual-discriminator polymorphism, including the special case |D| = 3
considered in [24]. After our results, [26] gave an algorithm to compute a bounded degree
Gröbner Basis for this case.

31

In the second part of Theorem 2.2.6 we use the fact, see [181], that any language with a
semilattice polymorphism is pp-interpretable in a language on a 2-element set also having
a semilattice polymorphism. Then Theorem 2.2.6(2) follows from Theorem 2.2.4(2) and the
results of [161].

As is mentioned, the third part of Theorem 2.2.6 is in fact about systems of linear
equations over GF(p), since every instance of CSP(Γ), where Γ has an affine polymorphism,
is equivalent to a system of linear equations over GF(p). Bharathi and Mastrolilli solved this
case for p = 2 showing that IMPd(Γ) is polynomial time for any d. Their approach is based
on FGML algorithm [75] to construct a bounded degree Gröbner Basis. Instead, we map
an instance of IMP(Γ) on a different domain consisting of p-th roots of unity rather than
{0, . . . , p−1}. This transforms the generators of the ideal into very simple polynomials that
form a Gröbner Basis without any further modifications. Such a transformation makes it
difficult to find an ideal membership proof, but this is resolved in Section 5.1.2.

For the fourth part of Theorem 2.2.6 we need to use a completely different approach
than the one used in the third part; system of linear equations over GF(p). The reasons are
that, in the case of Abelian groups, an instance generally cannot be represented as a system
of linear equations, Gaussian elimination does not work on systems of linear equations over
an arbitrary Abelian group, and a reduced row-echelon form cannot be converted into a
Gröbner basis. Given an instance (f0,P) of IMP(Γ) we use the Fundamental Theorem of
Abelian groups and a generalized version of pp-interpretations for the IMP [41] to reduce
(f0,P) to an instance (f ′

0,P ′) of multi-sorted IMP(∆), in which every variable takes values
from a set of the form Zpℓ , p prime. Then we replace the domains Zpℓ of (f ′

0,P ′) by sets
of roots of unity that allows for a more concise representation of polynomials. Finally, we
show that a Gröbner Basis for the resulting problem can be efficiently constructed.

Algebras. In Section 3.2.2 we prove that the standard features of the universal algebraic
approach to the CSP work for IMP as well. These include reductions for standard algebraic
constructions such as subalgebras, direct powers, and homomorphic images. They easily
follow from Theorem 2.2.4(2). A more general construction of direct product requires a
more general version of CSP(Γ), and therefore of IMP(Γ), the multi-sorted one, in which
every variable can have its own domain of values. This is discussed in details in Section 3.3.
One implication of these results is a necessary condition for tractability of IMP(Γ) that
follows from a similar one for the CSP.

The IMP with indeterminate coefficients. In Chapter 5 we consider a number of
applications of the techniques developed in the first part. The key to those applications is
an extension of the IMP defined as follows. Given an ideal I ⊆ F[x1, . . . , xn] and a vector of ℓ
polynomials M = (g1, . . . , gℓ), the χIMP asks if there exist coefficients c = (c1, . . . , cℓ) ∈ Fℓ

such that cM = ∑ℓ
i=1 cigi belongs to the ideal I.

32

As with the regular IMP, χIMP can be parametrized by specifying a constraint language
Γ, in which case the resulting problem χIMP(Γ) (or χIMPd(Γ) if the degree of input
polynomials is bounded) only allows ideal produced by instances of CSP(Γ).

We prove that χIMPd can be solved in polynomial time when a (d-truncated) Gröbner
Basis can be efficiently generated, and also admits the same reductions as the IMP.

Theorem 2.2.7. Let Γ,∆ be constraint languages and ∆ is finite. Then

(1) If every relation from ∆ is pp-definable in Γ, then χIMP(∆) is polynomial time re-
ducible to χIMP(Γ) and χIMPd(∆) is polynomial time reducible to χIMPd(Γ) for
any d.

(2) If ∆ is pp-interpretable in Γ, then there is a constant k such that χIMPd(∆) is poly-
nomial time reducible to χIMPkd(Γ) for any d.

The theorem above allows us to show that for every Γ for which IMPd(Γ) is polynomial
time solvable, so is χIMPd(Γ). This includes constraint languages invariant under dual-
discriminator, semilattice, and affine polymorphisms.

In Section 5.1.2 we use χIMP along with the factor ring F[x1, . . . , xn]/I modulo an ideal
I to generate a basis for the factor ring consisting of monomials of degree at most d, and
then use it to construct a d-truncated Gröbner Basis for I. More precisely, we prove the
following.

Theorem 2.2.8. Let H be a class of ideals for which χIMPd is polynomial time solvable.
Then there exists a polynomial time algorithm that constructs a degree d Gröbner Basis (with
respect to a grlex) of an ideal I ∈ H, I ⊆ F[x1, . . . , xn], in time O(nd).

Theorem 2.2.8 makes it possible to construct d-truncated Gröbner Bases (with respect to
a grlex) in all cases IMPd(Γ) is known to be polynomial time. Thus, it basically eliminates
the gap between deciding the existence of an ideal membership proof and finding such a
proof.

While our results for tractable cases of χIMPd are proved in an ad hoc manner, they
all share the same scheme. That is, to solve the χIMPd one might reduce the problem at
hand to a problem for which a Gröbner Basis can be constructed in a relatively simple way.
We formally formulate this powerful idea and in Section 5.2 develop a unifying construction
based on substitution reductions that covers all the useful cases so far. We believe our
substitution techniques will find further applications in the study of IMP.

IMP and SOS proofs. In Section 5.3, we apply χIMP and algebraic techniques to
finding Sum-of-Squares (SoS) proofs. For variables x1, . . . , xn a semialgebraic set is given
by a collection of polynomial equalities and inequalities such as

S = {x ∈ Rn | p1(x) = 0, . . . , pm(x) = 0, q1(x) ≥ 0, . . . , qℓ(x) ≥ 0}.

33

The goal is to prove that some polynomial r(x) is nonnegative on S. An SOS proof of
r(x) ≥ 0 is given by a polynomial identity of the form

r(x) =
t0∑
i=1

h2
i (x) +

ℓ∑
k=1

(
tk∑
j=1

s2
j (x))qk(x) +

m∑
i=1

λi(x)pi(x). (2.1)

The degree of an SOS proof is often defined to be the maximum degree of the polynomials
involved in the proofs i.e., max{deg(h2

i), deg(s2
jqk), deg(λipi)}. If the degree is bounded such

a proof can often be found using an SDP program.
O’Donnell [178] discovered that in some cases although an SOS proof of low degree

exists, it may involve exponentially long coefficients, and therefore it may be impossible
to find such a proof efficiently. The example given by O’Donnell essentially contains the
following system

P = {x2
1 − x2, x

2
2 − x3, . . . , x

2
n−1 − xn, x2

n}.

Note that P is indeed a Gröbner Basis however the ideal generated by P, I(P), is not
radical. The polynomial ϵ − x1 is nonnegative on S = {(0, . . . , 0)} and every SOS proof of
nonnegativity of bounded degree must involve polynomials with exponentially large coeffi-
cients [218].

It turns out even adding domain polynomials which makes the ideal radical does not
guarantee low bit complexity of coefficients in (2.1), for instance see the Knapsack example in
[192]. Raghavendra and Weitz [192] suggested three conditions such that if the set S satisfies
them, the existence of a low degree SOS proof of the form (2.1) implies the existence of a
low bit complexity one of the form (2.1). Two of these conditions hold for the majority of
combinatorial problems, and the third one is so called kd-completeness of the IMP part of the
proof. This means the ideal generated by p1, . . . , pm is radical, and furthermore p1, . . . , pm

are k-effective meaning every degree d polynomial in the ideal has a degree kd derivation
from p1, . . . , pm. Ideally, we would like to have k = O(d), this is a very strong condition
and there is no known universal strategy to verify k-effectiveness; even if we are given a
Gröbner Basis of the ideal3. We point out the strategy suggested and used by Raghavandra
and Weitz “is by no means universally applicable, and it had to be applied on a case-by-case
basis”, as marked in [218].

The situation is different if we are interested in SOS proofs of nonnegativity modulo the
ideal I(P) = ⟨p1, . . . , pm⟩ rather than modulo {p1, . . . , pm} — which is sufficient to show
r(x) is nonnegative on S. A polynomial r(x) is called SOS modulo S (or modulo I(P), when

3Obviously, if p1, . . . , pm form a Gröbner Basis then they are 1-effective i.e. every degree d polynomial in
the ideal has a degree d derivation from p1, . . . , pm.

34

the ideal is radical) if there are hi, sj , and g ∈ I(P) such that

r(x) =
t0∑
i=1

h2
i (x) +

ℓ∑
k=1

(
tk∑
j=1

s2
j (x))qk(x) + g (2.2)

Note that polynomial g might be of the form g = ∑m
i=1 λi(x)pi(x) + f with f ∈ I(P) and

some nonzero λi(x). It is known that every nonnegative polynomial on S is of the form
(2.2), provided that the ideal I(P) is radical which is a crucial requirement, for example
see [145]. Adapting the proof from [192], it is immediate to prove that any nonnegative
polynomial over S that admits a degree d SOS proof of form (2.2) also admits a degree d
SOS proof of form (2.2) with low bit complexity coefficients.

Theorem 2.2.9. Let P be an instance of CSP(Γ) with domain D, and I(P) = ⟨p1 . . . , pm⟩
be the corresponding ideal to P. Assume that ∀qi, ∀a ∈ S we have qi(a) > ε.

Then if r has a degree d SOS proof of nonnegativity modulo I(P), it also has a degree
d SOS proof of nonnegativity modulo I(P) with coefficients bounded by 2poly(nd,n|D|,log 1

ε
). In

particular, if there are no polynomial inequalities then every coefficient can be written down
with only poly(nd, n|D|) bits.

The above theorem does not tell us how to decide in polynomial time if a polynomial r
is SOS modulo S as opposed to the SOS proofs of the form (2.1) where the problem reduces
to solving an SDP. One approach suggested by Raghavendra and Weitz and Mastrolilli, is
to express the polynomial g in (2.2) in terms of “nice” generating sets of polynomials such
as Gröbner Bases and then use an SDP formulation, see Problem 1.2.1. Here, we present
a different perspective through the lens of χIMP to decide the existence of an SOS proof
modulo S. The following theorem puts forward the idea that the χIMP is the main player
in SOS proofs automatability and allows us to use a much larger tool box than the usual
Gröbner Basis.

Theorem 2.2.10. Let Γ be a constraint language such that χIMPd(Γ) is polynomial time
solvable. Let P be an instance of CSP(Γ) and I(P) = ⟨p1 . . . , pm⟩ be the corresponding ideal
to P. Assume that ∀qi, ∀a ∈ S we have qi(a) > ε.

Then for a polynomial r, the existence of an SOS proof of form (2.2) with

max{deg(h2
i), deg(s2

jqk)} ≤ d

is polynomial time decidable. Furthermore, such a proof can be found in polynomial time, if
one exists.

Theorem 2.2.10 requires χIMPd(Γ) to be polynomial time solvable. However, in many
cases e.g., Boolean CSPs such as Vertex Cover, Clique, Stable Set, and 2-SAT, the cor-
responding χIMP is polynomial time solvable and a Gröbner Basis can be computed in

35

polynomial time. On one hand, in such cases, it is straightforward to impose restrictions on
SOS polynomials, for instance having domain polynomials x2

i − xi allows us to restrict to
multilinear SOS proofs. However, on the other hand, in such cases the degree restriction is
less demanding particularly on the “ideal part”. It would be interesting to see whether this
lead to some improvements on the existing SOS SDP relaxations for problems where the
corresponding χIMP is polynomial time solvable.

IMP and theta bodies. In Section 5.4, we apply our techniques to show that the theta
bodies [90] arising from certain combinatorial problems can be constructed in polynomial
time. One of the core problems in optimization is to understand the conv(S) or a relaxation
of conv(S), where S the set of feasible solutions to a given problem and conv(S) denotes
the convex hull of S. Here, we consider combinatorial ideals arising from CSPs where S is
a finite subset of Rn. Theta body relaxations, introduced by Gouveia, Parrilo and Thomas
[90], obtain a hierarchy of relaxations to conv(S). They are strong relaxations, for instance,
they achieve the best approximation among all symmetric SDPs of a comparable size [218]
and are known to have nice properties [90].

Let THk(I(P)), P ∈ CSP(Γ), denote the k-th theta body of I(P). Theta bodies create a
nested sequence of closed convex relaxations i.e., TH1(I(P)) ⊇ TH2(I(P)) ⊇ · · · ⊇ conv(S).
We say a constraint language Γ is THk-exact if for any instance P of CSP(Γ) the ideal I(P)
is THk-exact. The ideal I(P) is THk-exact if THk(I(P)) = conv(S). Zero-dimensional ideals
are THk-exact for some finite k [145]. An intriguing question is characterizing THk-exact
constraint languages, for constant k: Which constraint languages are THk-exact, for some
constant k?. This is analogous to Lovász’s question [155] where he asked: Which ideals in
R[x1, . . . , xn] are THk-exact 4. This question is partially answered in [90] for the case k = 1
from a completely different perspective. From algorithmic point of view, a natural question
to ask is that for which constraint languages constructing theta bodies is a polynomial time
task.

Problem 2.2.11. For which constraint languages Γ the k-th theta body THk(I(P)) is com-
putable in polynomial time where P is an instance of CSP(Γ)?

In Section 5.4, we provide strong evidence that the polymorphisms of constraint lan-
guages might be the right notion that one should consider to address Problem 2.2.11.
To construct the k-th theta bodies it is sufficient to obtain a basis for the factor ring
R[x1, . . . , xn]k/I modulo ideal I [145, 184]. Our result in Theorem 2.2.8 gives us such a lux-
ury. We point out that the connection between theta bodies and the IMP was first reported
in [161] and efficient constructions of theta bodies of Boolean problems have been addressed

4In fact, Lovász’s asked which ideals in R[x1, . . . , xn] are (1, k)-SOS. An ideal is (1, k)-SOS if every
nonnegative linear polynomial on S is k-SOS mod I. However, it turns out that a radical ideal in R[x1, . . . , xn]
is (1, k)-SOS if and only if it is T Hk-exact [90].

36

by Mastrolilli. While there are only very few problems for which efficient construction of
theta bodies are known, we provide a unifying framework to study the computational as-
pects of theta bodies and, ultimately, making progress towards answering Problem 2.2.11.
In particular, we present (rediscover) several positive results for problems such as Stable
Set, Binary Matroids, H-Coloring, Min/Max Ones, and Strict CSPs.

37

Chapter 3

Algebraic approach to IMP

3.1 Expanding the constraint language

In this section we discuss constructions on relations that allow us to reduce one IMP with a
fixed constraint language to another. First we show that adding so-called constant relations
does not change the complexity of the problem. Second, we will consider languages on
the same domain, and prove that primitive positive (pp-, for short) definitions between
constraint languages provides a reduction between the corresponding IMPs. Third, we will
turn our attention to the case where two languages are defined on different domains. In this
case, we study a stronger notion called primitive positive interpretability. We prove that if
a language Γ pp-interprets a language ∆, then IMP(∆) is reducible to IMP(Γ). Finally, we
discuss how ideal membership proofs can (or cannot) be recovered under these reductions.

3.1.1 Constant relations and the search problem

We start with expansion of a constraint language Γ on a set D by constant relations. A
constant relation Ra, a ∈ D, is the unary relation, that is, a subset of D, that contains
just one element a. Using it in a CSP is equivalent to pinning a variable to a fixed value
a. Expansion by constant relations is very important for CSPs. It preserves the complexity
of the decision version of the problem when Γ is a core, see [39], and it preserves the
complexity of the counting version of the problem for any Γ, see [37]. For A ⊆ D let ΓA

denote Γ ∪ {Ra | a ∈ A}. We also call constraints of the form ⟨x,Ra⟩ pinning constraints.

Proposition 3.1.1. Let Γ be a constraint language on a set D and A ⊆ D. Then IMPd(ΓA)
is polynomial time reducible to IMPd+|A|(|D|−1)(Γ).

Proof. Let P = (X,D,C) be an instance of CSP(ΓA) and let I(P) be the ideal correspond-
ing to P. Suppose (f0,P) is an instance of IMPd(ΓA) where we want to decide if f0 ∈ I(P).
First, we perform some preprocessing of (f0,P). Note that if P contains constraints ⟨x,Ra⟩,
⟨x,Rb⟩, a ̸= b, then P has no solution and so 1 ∈ I(P) implying f0 ∈ I(P). Let Xa denote
the set of variables x, for which there is a constraint ⟨x,Ra⟩ ∈ C. Introduce new variable

38

xa for each a ∈ A and replace every x ∈ Xa, with xa in both f0 and P. In particular, let

X ′ =
(
X \

⋃
a∈A

Xa

)
∪ {xa | a ∈ A}.

The resulting instance (f ′
0,P ′) has the following properties:

– The solutions of P and P ′ are in one-to-one correspondence, since for every solution
φ of P we have φ(x) = a for each x ∈ Xa, and so the mapping φ′ : X ′ → D such that
φ(xa) = a for a ∈ A and φ′(x) = φ(x) otherwise is a solution of P ′ and vice versa.

– f0(φ) = 0 if and only if f ′
0(φ′) = 0.

Now let P∗ = (X ′, D,C∗) be an instance of CSP(Γ) where C∗ consists of all constraint
from C ′ except the ones of the form ⟨x,Ra⟩, a ∈ A. We define a new polynomial f∗

0 as
follows.

f∗
0 =

∏
a∈A

∏
b∈D\{a}

(xa − b)

 · f ′
0.

Observe that, for any a ∈ A and φ∗ : X ′ → D, if φ∗(xa) ̸= a then f∗
0 (φ∗) = 0. Suppose

φ′ ∈ V(I(P ′)). As φ′ satisfies all the pinning constraints in C ′, we have f ′
0(φ′) ̸= 0 if and

only if f∗
0 (φ′) ̸= 0. Moreover, suppose φ∗ ∈ V(I(P∗) and f∗

0 (φ∗) ̸= 0. This implies that

1. ∏
a∈A

∏
b∈D\{a}

(φ∗(xa)− b) ̸= 0, which means φ∗ satisfies all the pinning constraints in C,

and hence φ∗ ∈ V(I(P ′)), and

2. f ′
0(φ′) ̸= 0.

Combining the preprocessing step with the second one there exists φ ∈ V(I(P)) such that
f0(φ) ̸= 0 if and only if there exists φ∗ ∈ V(I(P∗) such that f∗

0 (φ∗) ̸= 0. This completes
the proof of the proposition.

Proposition 3.1.1 together with the fact that IMP(Γ) is a subproblem of IMP(ΓA)
implies a close connection between the complexity of IMP(Γ) and IMP(ΓA).

Corollary 3.1.2. For any constraint language Γ on D and any A ⊆ D, the problem
IMP(ΓA) is tractable (d-tractable) if and only if IMP(Γ) is tractable (d-tractable), and
IMP(ΓA) is coNP-complete if and only if IMP(Γ) is coNP-complete.

Recall that Γ∗ = ΓD. Then

Theorem 3.1.3. For any Γ over D the problem IMP(Γ∗) is polynomial time reducible to
IMP(Γ), and for any d the problem IMPd(Γ∗) is polynomial time reducible to IMPd+|D|(|D|−1)(Γ).

However, Proposition 3.1.1 leaves some room for possible complexity of IMPd(Γ) for
small d, less than |D|(|D| − 1).

39

Example 3.1.4. Fix D, ℓ ≤ |D|. Let NEQs, s ≤ |D| denote the s-ary disequality relation
on D given by

NEQs = {(a1, . . . , as) | |{a1, . . . , as}| = s}.

In particular, CSP(NEQ2) is equivalent to |D|-Coloring. Now let a (ℓ + 2)-ary relation R

be defined as follows

R = (NEQ2 × NEQℓ) ∪ {(a1, . . . , a2+ℓ) | |{a1, . . . , a2+ℓ}| < ℓ},

and let Γ = {R}. It is easy to see that CSP(Γ) is polynomial time, as assigning the same
value to all variables always provides a solution. As we observed in Lemma 2.1.11 this
implies that IMP0 is also easy. Actually, f0 of degree 0 never belongs to the ideal except
f0 = 0.

It can also be shown that for any A ⊆ D with |A| < ℓ assigning a constant a ∈ A to
all variables except those bound by the pinning constraints is also a solution of CSP(ΓA).
Therefore, IMP0(ΓA) is easy for any such set. On the other hand, if |A| = ℓ, say, A =
{a1, . . . , aℓ}, then CSP(ΓA) can simulate |D|-Coloring by using R(x, y, a1, . . . , aℓ). (This
will be made more precise in Section 3.1.2.) Therefore, IMP0(ΓA) is coNP-complete in
this case. Clearly that playing with the exact definition of R one can construct a language
Γ such that IMP0(ΓA) becomes coNP-complete for any specified collection of subsets A
while remains easy for the rest of the subsets.

In the case of a 2-element D we can show a more definitive result.

Proposition 3.1.5 (see also [161]). Let Γ be a constraint language on the set {0, 1}. Then

(1) IMPd(Γ∗) is polynomial time equivalent to IMPd+2(Γ).

(2) IMP0(Γ) is polynomial time [coNP-complete] if and only if CSP(Γ) is polynomial
time [NP-complete].

(3) If CSP(Γ{0}) or CSP(Γ{1}) is NP-complete then IMP1(Γ) is coNP-complete.

Items (1),(3) follow from Proposition 3.1.1 and item (2) follows from Lemma 2.1.11.
Moreover, replacing the relation NEQ2 in Example 3.1.4 with the Not-All-Equal relation,
one can construct constraint languages Γ such that the borderline between easiness and
hardness in the sequence IMP0(Γ), IMP1(Γ), IMP2(Γ) lies in any desirable place.

Proposition 3.1.1 also provides a connection between the decision version of the IMP
and its search version. Since IMP(Γ) is in coNP, here by the search IMP we understand the
following problem. Let (f0,P) be an instance of IMP(Γ) such that f0 ̸∈ I(P), the problem
is to find an assignment φ ∈ V(I(P)) such that f0(φ) ̸= 0.

Corollary 3.1.6. A decision problem IMP(Γ) is tractable [d-tractable] if and only if the
corresponding search problem is tractable [d-tractable].

40

Proof. One direction is trivial as the tractability of the search problem implies the tractabil-
ity of the corresponding decision problem.

For the converse, let Γ be a constraint language over a finite set D such that IMP(Γ) is
(d-) tractable. Consider (f0,P), an instance of IMP(Γ), where P = (X,D,C) is an instance
of CSP(Γ). By the choice of Γ, we can decide in polynomial time whether there exists φ
such that φ ∈ V(I(P)) but f0(φ) ̸= 0. Suppose such φ exists and hence f0 ̸∈ I(P). Then
for each x ∈ X there must be some a ∈ D, for which in the following instance (f ′

0,P ′) of
the IMP we have f ′

0 ̸∈ I(P ′):

1. define f ′
0 to be the polynomial obtained from f0 by substituting a for x.

2. define P ′ with P ′ = (X,D,C ′ = C ∪ {⟨x, {a}⟩}).

Checking whether f ′
0 ∈ I(P ′) is an instance of IMP(Γ∗) and therefore can be done in

polynomial time. Hence, by considering each possible value a ∈ D we can find a value for
x that is a part of φ ∈ V(I(P)) such that f0(φ) ̸= 0. Having found such a value a for x we
retain x = a and move to the smaller problem. Repeating the process for each variable in
turn we can find a required φ. The algorithm requires solving at most |X| · |D| instances of
IMP(Γ∗), each of which can be solved in polynomial time.

3.1.2 Primitive positive definability

One of the most useful reductions between CSPs is by means of primitive-positive definitions.

Definition 3.1.7 (pp-definability). Let Γ,∆ be constraint languages on the same set D. We
say that Γ pp-defines ∆ (or ∆ is pp-definable from Γ) if for each relation (predicate) R ⊆ Dk

in ∆ there exists a first order formula L over variables {x1, . . . , xm, xm+1, . . . , xm+k} that
uses predicates from Γ, equality relations, and conjunctions such that

R(xm+1, . . . , xm+k) = ∃x1 . . . ∃xmL

Such an expression is often called a primitive positive (pp-) formula.

Mastrolilli showed that there is an analogue of existential quantification on the IMP
side.

Definition 3.1.8. Given I = ⟨f1, . . . , fs⟩ ⊆ F[X], for Y ⊆ X, the Y -elimination ideal IX\Y

is the ideal of F[X \ Y] defined by

IX\Y = I ∩ F[X \ Y]

In other words, IX\Y consists of all consequences of f1 = · · · = fs = 0 that do not depend
on variables from Y .

41

Theorem 3.1.9 ([161]). Let P = (X,D,C) be an instance of the CSP(Γ), and let I(P) be
the corresponding ideal. For any Y ⊆ X let IY be the (X\Y)-elimination ideal. Then, for any
partial solution φY ∈ V(IY) there exists an extension ψ : X \Y such that (φ,ψ) ∈ V(I(P)).

Let Γ,∆ be constraint languages on the same domain D such that Γ pp-defines ∆. This
means that for every relation R from ∆ there is a pp-definition in Γ

R(xmR+1, . . . , xmR+kR
) = ∃x1 . . . ∃xmRLR.

Suppose P∆ = (X,D,C) is an instance of CSP(∆). This instance can be converted into an
instance PΓ = (X ′, D,C ′) of CSP(Γ), see Theorem 2.16 in [39], in such a way that X ⊆ X ′

and the instance P∆ has a solution if and only if PΓ does. Moreover, it can be shown that
PΓ,P∆ satisfy the following condition.

The Extension Condition. Every solution of P∆ can be extended to a solution
of PΓ, and, vice versa, the restriction of every solution of PΓ onto variables from
X is a solution of P∆.

As usual, let I(P∆) be the ideal of F[X] corresponding to P∆ and I(PΓ) the ideal of F[X ′]
corresponding to PΓ. We would like to relate the set of solutions of P∆ to the variety
of the X ′ \ X-elimination ideal of I(PΓ). The next lemma states that the variety of the
X ′ \X-elimination ideal of I(PΓ) is equal to the the variety of I(P∆).

Lemma 3.1.10 ([161], Lemma 6.1, paraphrased). Let IX = I(PΓ) ∩ F[X] be the X ′ \X-
elimination ideal of I(PΓ). Then

V(I(P∆)) = V(IX).

We can now prove a reduction for pp-definable constraint languages.

Theorem 3.1.11. If Γ pp-defines ∆, then IMP(∆) [IMPd(∆)] is polynomial time reducible
to IMP(Γ) [respectively, to IMPd(Γ)].

Proof. Let (f0,P∆), P∆ = (X,D,C∆), be an instance of IMP(∆) where X = {xm+1, . . . ,

xm+k}, f0 ∈ F[xm+1, . . . , xm+k], k = |X|, and m will be defined later, and I(P∆) ⊆
F[xm+1, . . . , xm+k]. From this we construct an instance (f ′

0,PΓ) of IMP(Γ) where f ′
0 ∈

F[x1, . . . , xm+k] and I(PΓ) ⊆ F[x1, . . . , xm+k] such that f0 ∈ I(P∆) if and only if f ′
0 ∈ I(PΓ).

Using pp-definitions of relations from ∆ we convert the instance P∆ into an instance
PΓ = ({x1, . . . , xm+k}, D,CΓ) of CSP(Γ) such that every solution of P∆,PΓ satisfy the
Extension Condition above. Such an instance PΓ can be constructed in polynomial time as
follows.

42

By the assumption each S ∈ ∆, say, tS-ary, is pp-definable in Γ by a pp-formula involving
relations from Γ and the equality relation, =D. Thus,

S(yqS+1, . . . , yqS+tS) = ∃y1, . . . , yqS (R1(w1
1, . . . , w

1
l1) ∧ · · · ∧Rr(wr1, . . . , wrlr)),

where w1
1, . . . , w

1
l1
, . . . , wk1 , . . . , w

k
lk
∈ {y1, . . . , yqS+tS} and R1, . . . , Rr ⊆ Γ ∪ {=D}.

Now, for every constraint B = ⟨s, S⟩ ∈ C∆, where s = (xi1 , . . . , xit) create a fresh copy
of {y1, . . . , yqS} denoted by YB, and add the following constraints to CΓ

⟨(w1
1, . . . , w

1
l1), R1⟩, . . . , ⟨(wr1, . . . , wrlr), Rr⟩.

We then set m = ∑
B∈C |YB| and assume that ∪B∈CYB = {x1, . . . , xm}. Note that the

problem instance obtained by this procedure belongs to CSP(Γ ∪ {=D}). All constraints
of the form ⟨(xi, xj),=D⟩ can be eliminated by replacing all occurrences of the variable xi
with xj . Moreover, it can be checked (see also Theorem 2.16 in [39]) that P∆,PΓ satisfy the
Extension Condition.

Let I(PΓ) ⊆ F[x1, . . . , xm+k] be the ideal corresponding to PΓ and set f ′
0 = f0. Since

f0 ∈ F[xm+1, . . . , xm+k] we also have f0 ∈ F[x1, . . . , xm+k]. Hence, (f0,PΓ) is an instance of
IMP(Γ). We prove that f0 ∈ I(P∆) if and only if f0 ∈ I(PΓ).

Suppose f0 ̸∈ I(P∆), this means there exists φ ∈ V(I(P∆)) such that f(φ) ̸= 0. By
Theorem 3.1.9, φ can be extended to a point φ′ ∈ V(I(PΓ)). This in turn implies that
f0 ̸∈ I(PΓ). Conversely, suppose f0 ̸∈ I(PΓ). Hence, there exists φ′ ∈ V(I(PΓ)) such
that f0(φ′) ̸= 0. Projection of φ′ to its last k coordinates gives a point φ ∈ V(IX). By
Lemma 3.1.10, φ ∈ V(I(P∆)) which implies f0 ̸∈ I(P∆).

Remark 3.1.12. The smallest set of all relations pp-defined from a constraint language
Γ ⊆ RA is called the relational clone of Γ, denoted by ⟨Γ⟩. Hence, as a corollary to
Theorem 3.1.11, for a finite set of relations Γ, IMP(Γ) is tractable [d-tractable] if and
only if IMP(∆) is tractable [d-tractable] for any finite ∆ ⊆ ⟨Γ⟩. Similarly, IMP(Γ) is
coNP-complete if and only if IMP(∆) is coNP-complete for some finite ∆ ⊆ ⟨Γ⟩.

3.1.3 Primitive positive interpretability

Pp-definability is a useful technique that tells us what additional relations can be added to
a constraint language without changing the complexity of the corresponding problem class,
and provides a tool for comparing different languages on the same domain. Next, we discuss
a more powerful tool that can be used to compare the complexity of the IMP for languages
over different domains.

Definition 3.1.13 (pp-interpretability). Let Γ,∆ be constraint languages over finite do-
mains D,E, respectively, and ∆ is finite. We say that Γ pp-interprets ∆ if there exists a

43

natural number ℓ, a set F ⊆ Dℓ, and an onto mapping π : F → E such that Γ pp-defines
the following relations

1. the relation F ,

2. the π-preimage of the equality relation on E, and

3. the π-preimage of every relation in ∆,

where by the π-preimage of a k-ary relation S on E we mean the ℓk-ary relation π−1(S) on
D defined by

π−1(S)(x11, . . . , x1k, x21, . . . , x2k, . . . , xℓ1, . . . , xℓk) is true

if and only if
S(π(x11, . . . , xℓ1), . . . , π(x1k, . . . , xℓk)) is true.

Example 3.1.14. Suppose D = {0, 1} and E = {0, 1, 2} and define relations RD =
{(0, 0), (0, 1), (1, 1)} and RE = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}. Note that relations
RD, RE are orders 0 ≤ 1 and 0 ≤ 1 ≤ 2 on D,E, respectively. Set Γ = {RD} and ∆ = {RE}.

Let n = 2 and define F = {(0, 0), (0, 1), (1, 1)} ⊆ D2. The language Γ pp-defines F
i.e. F = {(x, y) | x ≤ y and x, y ∈ {0, 1}}. Now define mapping π : F → E as follows
π((0, 0)) = 0, π((0, 1)) = 1, π((1, 1)) = 2. The π-preimage of the relation RE is the relation

RF = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)}.

The language Γ pp-defines Γ′ = {RF } through the following pp-formula

RF = {(x1, x2, y1, y2) | (x1 ≤ y1)∧(x2 ≤ y2)∧(x1 ≤ x2)∧(y1 ≤ y2), and (x1, x2, y1, y2) ∈ {0, 1}4}.

Consider instance ({x, y, z}, E, C) of CSP(∆) where the set of constraints is C =
{⟨(x, y), RE⟩, ⟨(y, z), RE⟩}. This basically means the requirements (x ≤ y) ∧ (y ≤ z). This
instance is equivalent to the following instance of CSP(Γ′):

⟨(x1, x2, y1, y2), RF ⟩ ∧ ⟨(y1, y2, z1, z2), RF ⟩ (3.1)

As was pointed out, Γ pp-defines F as well as RF . Hence, we define ({x1, x2, y1, y2, z1, z2}, D,
C ′), an instance of CSP(Γ), with the constraints

⟨(x1, x2), RD⟩ ∧ ⟨(y1, y2), RD⟩ ∧ ⟨(z1, z2), RD⟩ (3.2)

∧ ⟨(x1, y1), RD⟩ ∧ ⟨(x2, y2), RD⟩ (3.3)

∧ ⟨(y1, z1), RD⟩ ∧ ⟨(y2, z2), RD⟩ (3.4)

44

Note that (3.2) is a pp-definition of relation F and forces (x1x2), (y1y2), (z1z2) ∈ F . More-
over, equations (3.3) and (3.4) are equivalent to

(x1 ≤ y1) ∧ (x2 ≤ y2) ∧ (y1 ≤ z1) ∧ (y2 ≤ z2) (3.5)

Applying the mapping π, every solution of the instance ({x1, x2, y1, y2, z1, z2}, D,C ′) can
be transformed to a solution of instance ({x, y, z}, E, C) and back.

One can interpolate mapping π in Definition 3.1.13 by a polynomial of low degree. It is a
known fact that given N + 1 distinct x0, . . . ,xN ∈ Rℓ and corresponding values y0, . . . , yN ,
there exists a polynomial p of degree at most ℓN that interpolates the data i.e. p(xj) = yj for
each j ∈ {0, . . . , N} (such a polynomial can be obtained by a straightforward generalization
of the Lagrange interpolating polynomial, see, e.g., [185]). Hence, we can interpolate the
mapping π by a polynomial of total degree at most ℓ|E|.

Theorem 3.1.15. Let Γ,∆ be constraint languages on sets D,E, respectively, and let Γ
pp-interprets ∆. Then IMPd(∆) is polynomial time reducible to IMPℓ|E|(Γ).

Proof. Let (f0,P∆) be an instance of IMPd(∆) where f0 ∈ F[x1, . . . , xn], P∆ = ({x1, . . . , xn},
E, C∆), an instance of CSP(∆), and I(P∆) ⊆ F[x1, . . . , xn].

The properties of the mapping π from Definition 3.1.13 allow us to rewrite an instance
of CSP(∆) to an instance of CSP(Γ′) over the constraint language Γ′. Recall that, by
Definition 3.1.13, Γ′ contains all the ℓk-ary relations π−1(S) on D where S ∈ ∆ is k-ary
relation.

Note that Γ′ is pp-definable from Γ. By Theorem 3.1.11, IMP(Γ′) is reducible to IMP(Γ).
It remains to show IMPd(∆) is reducible to IMPd(Γ′). To do so, from instance (f0,P∆) of
IMPd(∆) we construct an instance (f ′

0,PΓ′) of IMPd(Γ′) such that f0 ∈ I(P∆) if and only
if f ′

0 ∈ I(PΓ′).
Let p be a polynomial of total degree at most ℓ|E| that interpolates mapping π. For

every f0 ∈ F[x1, . . . , xn], let f ′
0 ∈ F[x11, . . . , xℓ1, . . . , x1n, . . . , xℓn] be the polynomial that

is obtained from f0 by replacing each indeterminate xi with p(x1i, . . . , xℓi). Clearly, for
any assignment φ : {x1, . . . , xn} → E, f0(φ) = 0 if and only if f ′

0(ψ) = 0 for every ψ :
{x11, . . . , xℓn} → D such that

φ(xi) = π(ψ(x1i), . . . , ψ(xℓi))

for every i ≤ n. Moreover, for any such φ,ψ it holds φ ∈ V(I(P∆)) if and only if ψ ∈
V(I(PΓ′)). This yields that

(∃φ ∈ V(I(P∆)) ∧ f0(φ) ̸= 0) ⇐⇒ (∃ψ ∈ V((PΓ′)) ∧ f ′
0(ψ) ̸= 0)

45

Note that the condition that f0 has bounded degree is important here, because otherwise f ′
0

may have exponentially more monomials than f0. This completes the proof of the theorem.

3.2 Polymorphisms and algebras

3.2.1 Polymorphisms and a necessary condition for tractability

Sets of relations closed under pp-definitions allow for a succinct representation through
polymorphisms. Let R be a k-ary relation on a set D and ψ an n-ary operation on the
same set. Operation ψ is said to be a polymorphism of R if for any a1, . . . , an ∈ R the
tuple ψ(a1, . . . , an) belongs to R. Here by ψ(a1, . . . , an) we understand the component-wise
action of ψ, that is, if ai = (ai1, . . . , aik) then

ψ(a1, . . . , an) = (ψ(a1
1, . . . , a

n
1), . . . , ψ(a1

k, . . . , a
n
k)).

For more background on polymorphisms, their properties, and links to the CSP the reader
is referred to a relatively recent survey [18]. Most of the standard results we use below can
be found in this survey.

A polymorphism of a constraint language Γ is an operation that is a polymorphism of
every relation in Γ. The set of all polymorphisms of the language Γ is denoted by Pol(Γ).
For a set Ψ of operations by Inv(Ψ) we denote the set of relations R such that every
operation from Ψ is a polymorphism of R. The operators Pol and Inv induces so called
Galois correspondence between sets of operations and constraint languages. There is a rich
theory of this correspondence, however, for the sake of this thesis we only need one fact.

Theorem 3.2.1. Let Γ,∆ be constraint languages on a finite set D. Then Pol(Γ) ⊆ Pol(∆)
if and only if Γ pp-defines ∆. In particular, Inv(Pol(Γ)) is the set of all relations pp-definable
in Γ.

Combining Theorem 3.2.1 and Theorem 3.1.11, polymorphisms of constraint languages
provide reductions between IMPs.

Corollary 3.2.2. Let Γ,∆ be constraint languages on a finite set D and ∆ finite. If Pol(Γ) ⊆
Pol(∆) then IMP(∆) [IMPd(∆)] is polynomial time reducible to IMP(Γ) [IMPd(Γ)].

Corollary 3.2.2 amounts to saying that similar to CSP(Γ) the complexity of IMP(Γ) is
determined by the polymorphisms of Γ.

Next we use the known necessary condition for CSP tractability [39] to obtain some
necessary conditions for tractability of IMP(Γ).

A projection is an operation ψ : Dk → D such that there is i ∈ [k] with ψ(x1, . . . , xk) =
xi for any x1, . . . , xk ∈ D. If the only polymorphisms of a constraint language are projections,
every relation is pp-definable in Γ implying that IMP(Γ) is coNP-complete.

46

Theorem 3.1.3 is another ingredient for our necessary condition. Recall that for a lan-
guage Γ by Γ∗ we denote the language with added constant relations Ra for all a ∈ D. It
is known that every polymorphism ψ of all the constant relations is idempotent, that is,
satisfies the condition ψ(x, . . . , x) = x. Therefore, by Theorem 3.1.3 it suffices to focus on
idempotent polymorphisms.

Proposition 3.2.3. Let Γ be a constraint language over a finite set D. If the only idempo-
tent polymorphisms of Γ are projections then IMP|D|(|D|−1)(Γ) is coNP-complete.

Example 3.2.4. Consider the relation N = {0, 1}3\{(0, 0, 0), (1, 1, 1)}. This relation corre-
sponds to Not-All-Equal Satisfiability problem and it is known that the idempotent
operations from Pol({N}) are projections [186]. CSP({N}) was shown to be NP-complete
by Schaefer [196] and IMP({N}) is shown to be coNP-complete in [161].

3.2.2 Algebras and a better necessary condition

In this section we briefly review the basics of structural properties of (universal) algebra in
application to the IMP. Universal algebras have been instrumental in the study of CSPs,
and, although we do not go deeper into this theory in this thesis, we expect they should be
useful for IMPs as well. We follow textbooks [45, 165] and texts on the algebraic theory of
the CSP, see, e.g., [15, 16, 39, 37].

Algebras. An algebra is a pair D = (D,Ψ) where D is a set (always finite in this thesis)
and Ψ is a set of operations on D (perhaps multi-ary). The operations from Ψ are called
basic, and any operation that can be obtained from operations in Ψ by means of composition
is called a term operation. The set of all term operations will be denoted by Term(D).
For example, Ψ can be the set Pol(Γ) for some constraint language Γ on D, in which
case D is called the algebra of polymorphisms of Γ and will be denoted Alg(Γ). Thus,
Alg(Γ) = (D,Pol(Γ)).

By Corollary 3.2.2 the algebra Alg(Γ) determines the complexity of IMP(Γ) and IMPd(Γ)
for sufficiently large d. The advantage of using algebras rather than just polymorphisms is
that it unlocks a variety of structural methods that cannot be easily applied if we only use
polymorphisms. Algebra D = (D,Ψ) is said to be tractable [d-tractable] if for any finite
constraint language Γ such that Ψ ⊆ Pol(Γ) the problem IMP(Γ) is tractable [d-tractable].
Algebra D is said to be coNP-complete if for some finite language Γ with Ψ ⊆ Pol(Γ) the
problem IMP(Γ) is coNP-complete. In the rest of this section apart from another necessary
condition of tractability we prove several results that deduce the tractability [d-tractability,
coNP-completeness] of a certain algebra derivative from D from a similar property of D.

Idempotent algebras. The first step will be to reduce the kind of algebras we have to
study. By Theorem 3.1.3 idempotent polymorphisms determine the complexity of IMP(Γ).

47

On the algebraic side, an algebra D is said to be idempotent if each of its basic operations
(and therefore each of its term operations) is idempotent. Every algebra D = (D,Ψ) can be
converted into an idempotent algebra simply by throwing out all the non-idempotent term
operations. Let Termid(D) denote the set of all idempotent operations from Term(D). Then
the full idempotent reduct of D = (D,Ψ) is the algebra Id(D) = (D,Termid(D)).

Proposition 3.2.5. For any finite algebra D = (D,Ψ), D is tractable [d-tractable] if and
only if Id(D) is tractable [d-tractable]. Also Id(D) is coNP-complete if and only if D is
coNP-complete.

Proof. Note that an operation ψ on a set D is idempotent if and only if it preserves all
the relations in the set ΓCON = {Ra | a ∈ D}, consisting of all constant relations Ra on
D. Hence, Inv(Termid(D)) is the relational clone generated by Inv(Ψ) ∪ ΓCON, or, in other
words, every relation R such that Termid(D) ⊆ Pol(R) is pp-definable in Inv(Ψ) ∪ ΓCON.

Let ∆ be a finite set from Inv(Termid(D)). By the observation above there is a finite Γ ⊆
Inv(Ψ)∪ΓCON such that Γ pp-defines ∆. By Theorem 3.1.3 for any d the problem IMPd(∆)
can be reduced in polynomial time to IMPd+|D|(|D|−1)(Γ), and the result follows.

Subalgebras, homomorphisms, and direct powers. The following standard algebraic
constructions have been very useful in the study of the CSP.

Definition 3.2.6. Let D = (D,Ψ) be an algebra.

– (Subalgebra) Let E ⊆ D such that, for any ψ ∈ Ψ and for any b1, . . . , bk ∈ E, where
k is the arity of ψ, we have ψ(b1, . . . , bk) ∈ E. In other words, ψ is a polymorphism
of E or E ∈ Inv(Ψ). The algebra E = (E,Ψ|E), where Ψ|E consists of the restrictions
of all operations in Ψ to E, is called a subalgebra of D.

– (Direct power) For a natural number k the k-th direct power Dk of D is the
algebra Dk = (Dk,Ψk), where Ψk consists of all the operations from Ψ acting on Dk

component-wise (see the definition of polymorphism).

– (Homomorphic image) Let E be a set and χ : D → E a mapping such that
for any (say, k-ary) ψ ∈ Ψ and any a1, . . . , ak, b1, . . . , bk ∈ D, if χ(ai) = χ(bi),
i ∈ [k], then χ(ψ(a1, . . . , ak)) = χ(ψ(b1, . . . , bk)). The algebra E = (E,Ψχ) is called
a homomorphic image of D, where for every ψ ∈ Ψ the set Ψχ contains ψ/χ given
by ψ/χ(c1, . . . , ck) = χ(ψ(a1, . . . , ak)) and a1, . . . , ak ∈ D are such that ci = χ(ai),
i ∈ [k].

If an algebra is the algebra of polymorphisms of some constraint language, the concepts
above are related to pp-definitions and pp-interpretations. We will use the following easy
observation.

48

Lemma 3.2.7. Let D = (D,Ψ) = Alg(Γ) for a constraint language Γ over D.

– If E = (E,Ψ|E) is a subalgebra of D then E is pp-definable in Γ.

– Every relation from Inv(Ψk) is pp-interpretable in Γ.

– Let E = (E,Ψχ) be a homomorphic image of D. Then every relation from Inv(Ψχ) is
pp-interpretable in Γ.

The standard algebraic constructions also include direct products of different algebras.
Direct products also have a strong connection to the CSP and therefore IMP. However,
they require a more general framework, multi-sorted CSPs and IMPs. These are beyond the
scope of this thesis.

We are now ready to prove the reductions induced by subalgebras, direct powers, and
homomorphic images.

Theorem 3.2.8. Let D be an algebra and E its subalgebra [direct power, homomorphic im-
age]. If D is d-tractable, then so is E. If E is coNP-complete, then D is also coNP-complete.
Moreover, if E is a subalgebra of D, then E is tractable whenever D is.

Proof. The theorem is almost straightforward from Lemma 3.2.7 and Theorems 3.1.11, 3.1.15.
Let D = (D,Ψ), E = (E,Ψ′) and ∆ ⊆ Inv(Ψ′), a finite set. Note that D = Alg(Γ) for
Γ = Inv(Ψ).

If E is a subalgebra of D, that is, Ψ′ = Ψ|E then by Lemma 3.2.7 E is pp-definable in
Γ and therefore ∆ ⊆ Inv(Ψ|E) ⊆ Inv(Ψ). The result follows.

If E is a direct power, say, E = (Dk,Ψk), then since every relation from Inv(Ψk) is pp-
interpretable in Γ, there is a finite set Γ′ ⊆ Γ that pp-interprets ∆. Then by Theorem 3.1.15
IMPd(∆) can be reduced to IMPd(Γ′) in polynomial time. The result follows.

In the case when E is a homomorphic image of Γ, the proof is identical to the previous
case due to Lemma 3.2.7.

Stronger necessary condition for tractability. Subalgebras, direct powers, and ho-
momorphic images allow us to state a stronger condition for tractability of constraint lan-
guages. In the case of the CSP, when a constraint language Γ contains all the constant
relations, CSP(Γ) is NP-complete if and only if Alg(Γ) has a homomorphic image D of a
subalgebra such that all the term operations of D are projections. Using Theorem 3.1.3 we
can make this condition even stronger (although only necessary).

Theorem 3.2.9. Let Γ be a constraint language with the property that there exists a ho-
momorphic image E of a subalgebra of a direct power of Id(Alg(Γ)) such that all the term
operations of E are projections. Then IMP|D|(|D|−1)(Γ) is coNP-complete.

Proof. Let E = (E,Ψ). Since the term operations of E are only projections, by Proposi-
tion 3.2.3 there is a finite set ∆ such that IMP0(∆) is coNP-complete. Then, by Lemma 3.2.7,
Γ∗ pp-interprets ∆, and we obtain the result by Theorems 3.1.3 and 3.1.15.

49

3.3 Multi-sorted CSPs and IMP

3.3.1 Multi-sorted problems

In most theoretical studies of the CSP all variables are assumed to have the same domain,
this type of CSPs are known as one-sorted CSPs. However, for various purposes, mainly
for more involved algorithms such as in [35, 222] one might consider CSPs where different
variables of a CSP have different domains, this type of CSPs are known as multi-sorted
CSPs [38]. We study this notion in the context of the IMP and provide a reduction for
multi-sorted languages that are pp-interpretable. This in particular is useful in this thesis as
it provides a reduction between languages that are invariant under an affine polymorphism
over an arbitrary Abelian group and languages over several cyclic p-groups. Definitions
below are from [38].

Definition 3.3.1. For any finite collection of finite domains D = {Dt | t ∈ T}, and any
list of indices (t1, t2, . . . , tm) ∈ Tm, a subset R of Dt1 × Dt2 × · · · × Dtm, together with
the list (t1, t2, . . . , tm), is called a multi-sorted relation over D with arity m and signature
(t1, t2, . . . , tm). For any such relation R, the signature of R is denoted σ(R).

As an example consider D = {D1, D2} with D1 = {0, 1}, D2 = {0, 1, 2}. Then Z6, which
is the direct sum of Z2 and Z3, Z2 ⊕Z3, can be viewed as a multi-sorted relation over D of
arity 2 with signature (1, 2).

Similar to regular one-sorted CSPs, given any set of multi-sorted relations, we can define
a corresponding class of multi-sorted CSPs. Let Γ be a set of multi-sorted relations over a
collection of sets D = {Dt | t ∈ T}. The multi-sorted constraint satisfaction problem over
Γ, denoted MCSP(Γ), is defined to be the decision problem with instance P = (X,D, δ, C),
where X is a finite set of variables, δ : X → T , and C is a set of constraints where each
constraint C ∈ C is a pair ⟨s, R⟩, such that

• s = (x1, . . . , xmC) is a tuple of variables of length mC , called the constraint scope;

• R is an element of Γ with arity mC and signature (δ(x1), . . . , δ(xmc)), called the
constraint relation.

The goal is to decide whether or not there exists a solution, i.e. a mapping φ : X → ∪D∈DD,
with φ(x) ∈ Dδ(x), satisfying all of the constraints. We will use Sol(P) to denote the (possibly
empty) set of solutions of the instance P.

The multi-sorted IMP, that is, IMP(Γ) for a multi-sorted constraint language Γ is largely
defined in the same way as the regular one. The ideal corresponding to an instance P of
MCSP(Γ) is constructed similar to the one-sorted case, the only difference is that for
an instance P = (X,D, δ, C) the corresponding ideal I(P) contains domain polynomials∏
a∈Dδ(xi)

(xi−a) for each variable xi. As with one-sorted CSPs, the IMP associated with a
multi-sorted constraint language Γ over a set D is the problem IMP(Γ) in which the input

50

is a pair (f,P) where P = (X,D, δ, C) is a MCSP(Γ) instance and f is a polynomial from
F[X]. The goal is to decide whether f lies in the ideal I(P). We use IMPd(Γ) to denote
IMP(Γ) when the input polynomial f has degree at most d.

3.3.2 Multi-sorted languages, pp-definability and interpretability

Here we introduce the definition of pp-definitions and the more powerful construction, pp-
interpretations, in the multi-sorted case, and prove that, similar to the one-sorted case, they
give rise to reductions between IMPs.

Definition 3.3.2 (pp-definability). Let Γ be a multi-sorted constraint language on a collec-
tion of sets D = {Dt | t ∈ T}. A primitive-positive (pp-) formula in the language Γ is a first
order formula L over variables X that uses predicates from Γ, equality relations, existential
quantifier, and conjunctions, and satisfies the condition:

if R1(x1, . . . , xk), R2(y1, . . . , yℓ) are atomic formulas in L with signatures σ1, σ2

and such that xi, yj is the same variable, then σ1(i) = σ2(j).

The condition above determines the signature σ : X → T of L.
Let ∆ be another multi-sorted language over D. We say that Γ pp-defines ∆ (or ∆ is

pp-definable from Γ) if for each (k-ary) relation (predicate) R ∈ ∆ there exists a pp-formula
L over variables {x1, . . . , xm, xm+1, . . . , xm+k} such that

R(xm+1, . . . , xm+k) = ∃x1 . . . ∃xmL,

and if σ, σ′ are the signatures of L and R, respectively, then σ′ = σ|{m+1,...,m+k}.

An analog of the following result for one-sorted CSPs is proved in Section 3.1.2.

Theorem 3.3.3. If multi-sorted constraint language Γ pp-defines multi-sorted constraint
language ∆, then IMP(∆) [IMPd(∆)] is polynomial time reducible to IMP(Γ) [respectively,
to IMPd(Γ)].

The proof of Theorem 3.3.3 is very similar to the proof of Theorem 3.1.11 and we defer
the proof to Section 3.3.4.

Multi-sorted pp-interpretations are also similar to the one-sorted case, but require a bit
more care.

Definition 3.3.4 (pp-interpretability). Let Γ,∆ be multi-sorted constraint languages over
finite collections of sets D = {Dt | t ∈ T}, E = {Es | s ∈ S}, respectively, and ∆ is
finite. We say that Γ pp-interprets ∆ if for every s ∈ S there exist is,1, . . . , is,ℓs ∈ T , a set
Fs ⊆ Dis,1 × · · · × Dis,ℓs

, and an onto mapping πs : Fs → Es such that Γ pp-defines the
following relations

1. the relations Fs, s ∈ S,

51

2. the πs-preimage of the equality relations on Es, s ∈ S, and

3. the π-preimage of every relation in ∆,

where by the π-preimage of a k-ary relation Q ⊆ Es1 × · · ·×Esk
over E we mean the m-ary

relation π−1(Q) over D, with m = ∑k
i=1 ℓsi, defined by

π−1(Q)(x1,1, . . . , x1,ℓs1
, x2,1, . . . , x2,ℓs2

, . . . , xk,1, . . . , xk,ℓsk
) is true

if and only if

Q(πs1(x1,1, . . . , x1,ℓs1
), . . . , πsk

(xk,1, . . . , xk,ℓsk
)) is true.

Example 3.3.5. Suppose D = {Z2,Z3} and E = {Z6}. Now, any relation on E is pp-
interpretable in a language in D via F = Z2 × Z3 and π : F → Z6 as

π(0, 0) = 0 π(1, 2) = 1 π(0, 1) = 2
π(1, 0) = 3 π(0, 2) = 4 π(1, 1) = 5.

Example 3.3.6. Here we present a very simple example of pp-interpretation that will be
useful later. Suppose D = {D = Z2} and E = {E1, E2} with E1 = E2 = Z2 × Z2. Define
relations RD = {(0, 0), (1, 1)} and

RE =
(

(0, 0) (1, 0) (0, 1) (1, 1)
(0, 0) (0, 1) (1, 0) (1, 1)

)
← x

← y

Note that the relation RE contains all pairs (x, y) ∈ E1 × E2 with x =
(

0 1
1 0

)
y and the

relation RD is the equality. Set Γ = {RD} and ∆ = {RE}.
Set F = D × D and define mapping π : F → E as follows π(x1, x2) = (x1, x2). The

π-preimage of the relation RE is the relation

RF =

0 1 0 1
0 0 1 1
0 0 1 1
0 1 0 1

← x1

← x2

← y1

← y2

The language Γ pp-defines Γ′ = {RF } through the following pp-formula

RF = {(x1, x2, y1, y2) | (x1 = y2) ∧ (x2 = y1), and (x1, x2, y1, y2) ∈ {0, 1}4}.

52

Consider instance P = ({x, y, z}, E , δ, C) of MCSP(∆) where the set of constraints is

C = {⟨(x, y), RE⟩, ⟨(y, z), RE⟩}

and δ maps x to 1 and y, z to 2. This basically means the requirements x =
(

0 1
1 0

)
y and

y =
(

0 1
1 0

)
z. This instance is equivalent to the following instance P ′ of CSP(Γ′):

⟨(x1, x2, y1, y2), RF ⟩ ∧ ⟨(y1, y2, z1, z2), RF ⟩

Applying the mapping π, every solution of the instance P ′ can be transformed to a solution
of instance P and back. This in turn is equivalent to the following instance of CSP(Γ)

⟨(x1, y2), RD⟩ ∧ ⟨(x2, y1), RD⟩ ∧ ⟨(y1, z2), RD⟩ ∧ ⟨(x2, z1), RD⟩.

As in the one-sorted case, pp-interpretations give rise to reductions between IMPs.

Theorem 3.3.7. Let Γ, ∆ be multi-sorted constraint languages over collections of sets
D = {Dt | t ∈ T}, E = {Es | s ∈ S}, respectively, and let Γ pp-interprets ∆. Then IMPd(∆)
is polynomial time reducible to IMPO(d)(Γ).

Again, the proof of Theorem 3.3.7 is similar to that of Theorem 3.1.15 and is moved to
Section 3.3.5.

3.3.3 Multi-sorted polymorphisms

Polymorphisms provide a link between constraint languages and relations pp-definable in
those languages.

Proposition 3.3.8 ([28, 84]). Let Γ be a constraint language on set A and R a relation on
the same set. The relation R is pp-definable in Γ if and only if Pol(Γ) ⊆ Pol(R).

Corollary 3.3.9 ([121, 43]). Let Γ,∆ be constraint languages on a set D, ∆ finite, and
Pol(Γ) ⊆ Pol(∆). Then CSP(∆) is polynomial time reducible to CSP(Γ), and IMPd(∆) is
polynomial time reducible to IMPd(Γ), for any d.

We will need a version of polymorphisms adapted to multi-sorted relations. Let D =
{Dt | t ∈ T} be a collection of sets. A multi-sorted operation on D is a functional symbol
f with associated arity k along with an interpretation fDt of f on every set Dt ∈ D,
which is a k-ary operation on Dt. A multi-sorted operation f is said to be a (multi-sorted)
polymorphism of a multi-sorted relation R ⊆ Dt1 × · · · × Dtn , t1, . . . , tn ∈ T , if for any
a1, . . . , ak ∈ R the tuple

f(a1, . . . , ak) = (fDt1 (a1,1, . . . , a1,k), . . . , fDtn (an,1, . . . , an,k))

53

belongs to R.

Example 3.3.10. Note that for the sake of defining a multi-sorted operation, the collection
D does not have to be finite. Let A be the class of all finite Abelian groups and f a ternary
functional symbol that is interpreted as the affine operation fA(x, y, z) = x−y+ z on every
A ∈ A, where +,− are operations of A.

Consider the multi-sorted binary relation R ⊆ Z2 × Z4 over D = {Z2,Z4} given by

R = {(0, 1), (0, 3), (1, 0), (1, 2)}.

It is straightforward to verify that f is a polymorphism of R. For instance,

f

((
0
1

)
,

(
1
0

)
,

(
1
2

))
=
(

0− 1 + 1
1− 0 + 2

)
=
(

0
3

)
∈ R.

To make sure f is a polymorphism of R we of course have to check every combination of
pairs from R.

The connection between multi-sorted polymorphisms and pp-definitions is more compli-
cated than that in the one-sorted case [38], and we do not need it here. However, we will
need the following well known fact.

Lemma 3.3.11. Let R ⊆ D1 × · · · ×Dn, f a k-ary polymorphism of R, and let f1, . . . , fk

be m-ary polymorphisms of R. Then the composition of f and f1, . . . , fk given by

gDi(x1, . . . , xm) = fDi(fDi
1 (x1, . . . , xm), . . . , fDi

k (x1, . . . , xm))

for i ∈ [n] is a polymorphism of R.

3.3.4 Proof of Theorem 3.3.3

In this section we provide a proof for Theorem 3.3.3. Our proof is a slight modification
of the one given for one-sorted CSPs. In order to establish the result, we first analyze
the relationship between pp-definability and the notion of elimination ideal from algebraic
geometry. This has been explored in case of one-sorted CSPs in [41, 161]. Here we establish
a relationship in the case of multi-sorted CSPs. The proofs and ideas used here are almost
identical to the ones in [161].

Theorem 3.3.12. Let P = (X,D, δ, C) be an instance of the MCSP(Γ), and let I(P) be
its corresponding ideal. For any Y ⊆ X let IY be the (X \ Y)-elimination ideal. Then, for
any partial solution φY ∈ V(IY) there exists an extension ψ : X \ Y → ∪t∈TDt such that
(φ,ψ) ∈ V(I(P)).

54

Proof. Suppose D = {Dt | t ∈ T}, δ : X → T and set I = I(P). We may assume V (I) ̸= ∅.
This is because if V (I) = ∅ then 1 ∈ I which implies 1 ∈ IY . If the latter holds then the
claim is vacuously true. We proceed by assuming V (I) ̸= ∅ and V (IY) ̸= ∅.

The proof is by contradiction. Suppose there exists a = (a1, . . . , am) ∈ V (IY), with m =
|Y |, that does not extend to a feasible solution from V (I). Assume Y = {y1, . . . , ym} ⊆ X,
and define the polynomial

q(y1, . . . , ym) =
m∏
i=1

∏
j∈Dδ(yi)\{ai}

(yi − j).

Observe that q(a1, . . . , am) ̸= 0 however for every b = (b1, . . . , bm) that can be extended to
a feasible solution of V (I) we have q(b) = 0. This implies

q(y1, . . . , ym) ∈ I(V (I)) ∩ F[y1, . . . , ym] = I ∩ F[y1, . . . , ym] = IY

where the first equality follows from the Strong Nullstellensat and I being radical. Having
q(y1, . . . , ym) ∈ IY implies that a = (a1, . . . , am) ̸∈ V (IY), a contradiction.

Let ∆ and Γ be multi-sorted constraint languages over D where Γ pp-defines ∆. That
is for each (k-ary) relation (predicate) R ∈ ∆ there exists a pp-formula L over variables
{x1, . . . , xm, xm+1, . . . , xm+k} such that

R(xm+1, . . . , xm+k) = ∃x1 . . . ∃xmL, (3.6)

and if σ, σ′ are the signatures of L and R, respectively, then σ′ = σ|{m+1,...,m+k}. Let
S = Sol(L) be the set of satisfying assignments for L and let I(S) be its corresponding
vanishing ideal. Note that I(S) ⊆ F[x1, . . . , xm+k].

Lemma 3.3.13. R = V (IX) where IX = I(S) ∩ F[xm+1, . . . , xm].

Proof. Define the mapping πX : Fm+k → Fk to be the projection

π(a1, . . . , am+k) = (am+1, . . . , am+k).

If we apply πX to S we get πX(S) ⊆ Fk. Now it is easy to see π(S) ⊆ V (IX). This is because
every polynomial in IX vanishes on all the points in π(S). Provided that π(S) ⊆ V (IX)
we can write R as follows

R = πX(S) = {(am+1, . . . , am+k) ∈ V (IX) | ∃a1, . . . , am ∈ F s.t. (a1, . . . , am+k) ∈ S}

This is exactly the set of points in IX that can be extended to a solution in S. However,
by Theorem 3.3.12 all the points in V (IX) can be extended to a solution in S. This means
R = V (IX) as desired.

55

We now have all the required ingredients to prove Theorem 3.3.3.

Proof of Theorem 3.3.3. Let (f,P∆), P∆ = (X,D, δ∆, C∆), be an instance of IMP(∆)
where X = {xm+1, . . . , xm+k}, f ∈ F[xm+1, . . . , xm+k], k = |X|, and m will be defined later,
and I(P∆) ⊆ F[xm+1, . . . , xm+k]. From this we construct an instance (f ′,PΓ) of IMP(Γ)
where f ′ ∈ F[x1, . . . , xm+k] and I(PΓ) ⊆ F[x1, . . . , xm+k] such that f ∈ I(P∆) if and only if
f ′ ∈ I(PΓ).

From P∆ we construct an instance PΓ = ({x1, . . . , xm+k},D, , δΓ, CΓ) of CSP(Γ) as
follows. By the assumption each S ∈ ∆, say, tS-ary, is pp-definable in Γ. Thus,

S(yqS+1, . . . , yqS+tS) = ∃y1, . . . , yqS

L︷ ︸︸ ︷
(R1(w1

1, . . . , w
1
l1) ∧ · · · ∧Rr(wr1, . . . , wrlr)),

where w1
1, . . . , w

1
l1
, . . . , wk1 , . . . , w

k
lk
∈ {y1, . . . , yqS+tS} and R1, . . . , Rr ⊆ Γ∪{=D}. Moreover,

for σ and σS , the signatures of L and S respectively, we have σS = σ|{qS+1,...,qS+tS}. Now,
for every constraint B = ⟨s, S⟩ ∈ C∆, where s = (xi1 , . . . , xit) create a fresh copy of
{y1, . . . , yqS} denoted by YB, and add the following constraints to CΓ

⟨(w1
1, . . . , w

1
l1), R1⟩, . . . , ⟨(wr1, . . . , wrlr), Rr⟩.

where for each Ri, Rj we have if wik, w
j
k′ are the same variable, then σRi(wik) = σRj (wjk′).

Set m = ∑
B∈C |YB| and assume that ∪B∈CYB = {x1, . . . , xm}. All constraints of the form

⟨(xi, xj),=D⟩ can be eliminated by replacing all occurrences of the variable xi with xj .
Let I(PΓ) ⊆ F[x1, . . . , xm+k] be the ideal corresponding to PΓ and set f ′ = f . Since

f ∈ F[xm+1, . . . , xm+k] we also have f ∈ F[x1, . . . , xm+k]. Hence, (f,PΓ) is an instance of
IMP(Γ). We prove that f ∈ I(P∆) if and only if f ∈ I(PΓ).

Suppose f ̸∈ I(P∆), this means there exists φ ∈ V(I(P∆)) such that f(φ) ̸= 0. By
Theorem 3.3.12, φ can be extended to a point φ′ ∈ V(I(PΓ)). This in turn implies that f ̸∈
I(PΓ). Conversely, suppose f ̸∈ I(PΓ). Hence, there exists φ′ ∈ V(I(PΓ)) such that f(φ′) ̸=
0. Projection of φ′ to its last k coordinates gives a point φ ∈ V(IX). By Lemma 3.3.13,
φ ∈ V(I(P∆)) which implies f ̸∈ I(P∆).

3.3.5 Proof of Theorem 3.3.7

In this section we provide a proof for Theorem 3.3.7.

Proof of Theorem 3.3.7. Recall that Γ, ∆ are multi-sorted constraint languages over col-
lections of sets D = {Dt | t ∈ T}, E = {Es | s ∈ S}, respectively, and Γ pp-interprets
∆.

Let (f,P∆) be an instance of IMPd(∆) where f ∈ F[x1, . . . , xn], P∆ = ({x1, . . . , xn}, E ,
δ∆, C∆), an instance of CSP(∆), and I(P∆) ⊆ F[x1, . . . , xn].

56

As Γ pp-interprets ∆ then for every s ∈ S there exist is,1, . . . , is,ℓs ∈ T , a set Fs ⊆
Dis,1 × · · · ×Dis,ℓs

, and an onto mapping πs : Fs → Es such that Γ pp-defines the following
relations. By Definition 3.3.4, according to the properties of π1, . . . , π|S| we can rewrite an
instance of CSP(∆) to an instance of CSP(Γ′) over the constraint language Γ′. Γ′ contains

1. the relations Fs, s ∈ S,

2. the πs-preimage of the equality relations on Es, s ∈ S, and

3. the π-preimage of every relation in ∆.

Note that if δ∆(x) = s then δΓ′(xs,j) = is,j , for all 1 ≤ j ≤ ℓs. Moreover, note that Γ′

is pp-definable from Γ. By Theorem 3.3.3, IMP(Γ′) is reducible to IMP(Γ). It remains to
show IMPd(∆) is reducible to IMPd(Γ′). To do so, from instance (f,P∆) of IMPd(∆) we
construct an instance (f ′,PΓ′) of IMPd(Γ′) such that f ∈ I(P∆) if and only if f ′ ∈ I(PΓ′).

Let ps be a polynomial of total degree at most |Es|(|Dis,1 |+· · ·+|Dis,ℓs
|) that interpolates

mapping πs, s ∈ S. For every f ∈ F[x1, . . . , xn], let

f ′ ∈ F[x1,1, . . . , x1,ℓs1
, x2,1, . . . , x2,ℓs2

, . . . , xk,1, . . . , xk,ℓsk
]

be the polynomial that is obtained from f by replacing each indeterminate xi, with δ∆(xi) =
s, by ps(xs,1, . . . , xs,ℓs).

Now, for any assignment φ : {x1, . . . , xn} → ∪s∈SEs, with the condition φ(xi) ∈ Eδ∆(xi)

for all xi, f(φ) = 0 if and only if f ′(ψ) = 0 for every

ψ : {x1,1, . . . , x1,ℓs1
, x2,1, . . . , x2,ℓs2

, . . . , xk,1, . . . , xk,ℓsk
} → ∪t∈TDt

such that for each xi with δ∆(xi) = s we have

φ(xi) = π(ψ(xs,1), . . . , ψ(xs,ℓs))

Moreover, for any such φ,ψ it holds φ ∈ V(I(P∆)) if and only if ψ ∈ V(I(PΓ′)). This yields
that

(∃φ ∈ V(I(P∆)) ∧ f(φ) ̸= 0) ⇐⇒ (∃ψ ∈ V((PΓ′)) ∧ f ′(ψ) ̸= 0)

Note that the condition that f has bounded degree is important here, because otherwise f ′

may have exponentially more monomials than f . This completes the proof of the theorem.

57

Chapter 4

Sufficient conditions for
tractability of IMP

4.1 The dual-discriminator

Here we deal with a majority operation. Over the Boolean domain there is only one ma-
jority operation, called the dual-discriminator. In the Boolean case, Mastrolilli [161] proved
that the IMP(Γ) is tractable when the constraint language Γ is closed under the dual-
discriminator operation. Later, Bharathi and Mastrolilli [24] expand this tractability result
to constraint languages over the ternary domain. We establish tractability result for any
finite domain. We point out that constraint languages closed under the dual-discriminator
operation are also known as 0/1/all constraints. We start off with the definition of a majority
polymorphism and explain an appealing structure of majority closed relations.

Definition 4.1.1. Let µ be a 3-ary operation from D3 to D. If for all x, y ∈ D we have
µ(x, x, y) = µ(x, y, x) = µ(y, x, x) = x, then µ is called a majority operation.

For a (n-ary) relation R and T ⊆ [n] by prTR we denote the projection of R onto T ,
that is, the set of tuples (ai)i∈T such that there is (b1, . . . , bn) ∈ R with bi = ai for each
i ∈ T .

Proposition 4.1.2 ([121]). Let R be a relation of arity n with a majority polymorphism,
and let C = ⟨S,R⟩ constraining the variables in S with relation R. For any problem P with
constraint C, the problem P ′ which is obtained by replacing C by the set of constraints

{((S[i], S[j]), pri,j(R)) | 1 ≤ i ≤ j ≤ n}

has exactly the same solutions as P.

The above proposition suggests that, without loss of generality, we may assume that all
the constraints are binary when a constraint language has a majority polymorphism µ. Let
Γ be a language over a set D such that µ ∈ Pol(Γ), and let P = (X,D,C) be an instance

58

of CSP(Γ). We assume each constraint in C is binary. That is

C = {Cij = ⟨(xi, xj), Rij⟩ | Rij ⊆ Di ×Dj where Di, Dj ⊆ D}.

Relations closed under the dual-discriminator operation admit a much nicer structure
that has been characterized, see [205]. Indeed, such a characterization states that constraints
can only be of three types. Let us first define the dual-discriminator operation before for-
mulating the characterization. The dual-discriminator operation is defined as follows.

∇(x, y, z) =

y if y = z,

x otherwise.

Lemma 4.1.3 ([58, 205]). Suppose ∇ ∈ Pol(Γ). Then each constraint Cij = ⟨(xi, xj), Rij⟩
is one of the following three types.

1. A complete constraint: Rij = Di ×Dj for some Di, Dj ⊆ D,

2. A permutation constraint: Rij = {(a, π(a)) | a ∈ Di} for some Di ⊆ D and some
bijection π : Di → Dj, where Dj ⊆ D,

3. A two-fan constraint: Rij = {({a} × Dj) ∪ (Di × {b})} for some Di, Dj ⊆ D and
a ∈ Di, b ∈ Dj.

We introduce two preprocessing steps that we apply to a an instance of a CSP before
solving the IMP. Let Γ be a constraint language such that ∇ ∈ Pol(Γ) and P = (X,D,C)
be an instance of CSP(Γ). The first step is standard in the CSP research and is referred to
as establishing certain local consistency, [5, 18]. In the case of dual discriminator we need
(2, 3)-consistency. This procedure works as follows. First of all we set up a binary constraint
Cuv = ⟨(u, v), Ruv⟩ for every pair u, v of variables from X. Initially, if there is a constraint
on u, v, we set Cuv to be that constraint; for the remaining pairs we set Ruv = D2. Then
iterate the following until further improvements are impossible: pick u, v, w ∈ X and for
every (a, b) ∈ Ruv check whether there is c ∈ D such that (a, c) ∈ Ruw and (b, c) ∈ Rvw.
If such a c does not exist, remove (a, b) from Ruv. The resulting instance P ′ = (V,D,C ′)
satisfies the following conditions. Every solution of P is a solution of P ′,∇ is a polymorphism
of every constraint relation from P ′, and it is impossible to combine a limited number of
constraints to produce a constraint on u, v that is tighter than Cuv.

The second preprocessing step handles permutation constraints and transform the in-
stance into an instance without any permutation constraints. Such a transformation sim-
plifies the problem and yields to an efficient computation of a Gröbner Basis. Let P =
(X,D,C) be an instance of CSP(Γ) such that ∇ ∈ Pol(Γ). We proceed by assuming P
is (2, 3)-consistence. Suppose the set of constraints C contains a permutation constraint

59

Cij = ⟨(xi, xj), Rij⟩ with Rij = {(a, π(a)) | a ∈ Di, π(a) ∈ Dj}. Define instance P ′ =
(X \ {xj}, D,C ′) as follows.

1. C ′
st = Cst if s ̸= j and t ̸= j,

2. replace each constraint Csj = ⟨(xs, xj), Rsj⟩ by C ′
si = ⟨(xs, xi), R′

si⟩ where R′
si =

{(a, π−1(b)) | (a, b) ∈ Rsj},

3. replace each constraint Cjs = ⟨(xj , xs), Rjs⟩ by C ′
is = ⟨(xi, xs), R′

is⟩ where R′
is =

{(π−1(a), b) | (a, b) ∈ Rjs}.

Note that instance P has a solution if and only if instance P ′ has a solution. The next
lemma states the above preprocessing step does not change the complexity of the IMP. In
the next lemma we use a polynomial interpolation of permutation π. The permutation π

can be interpolated by a polynomial p : R→ R such that p(a) = π(a) for all a ∈ Di.

Lemma 4.1.4. Let I(P) and I(P ′) be the corresponding ideals to instances P and P ′,
respectively. Given a polynomial f0, define polynomial f ′

0 to be the polynomial obtained from
f0 by replacing every occurrence of xj with p(xi). Then f0 ∈ I(P) if and only if f ′

0 ∈ I(P ′).

Proof. Note that, by our construction, there is a one-to-one correspondence between the
points in V(I(P)) and the points in V(I(P ′)). That is, each a = (a1, . . . , ai, . . . , aj =
p(ai), . . . , an) ∈ V(I(P)) corresponds to a′ = (a1, . . . , aj−1, aj+1, . . . , an) ∈ V(I(P ′)). Fur-
thermore, for all a ∈ V(I(P)) and the corresponding a′ ∈ V(I(P ′)) we have f0(a) = f ′

0(a′).
This yields that

(∃a ∈ V(I(P)) ∧ f0(a) ̸= 0) ⇐⇒ (∃a′ ∈ V(I(P ′)) ∧ f ′
0(a′) ̸= 0)

This finishes the proof of the lemma.

The preprocessing steps and Lemma 4.1.4 suggest that we can massage any instance
of IMP(Γ) and obtain an instance IMP(Γ) without permutation constraints. This can be
carried out in polynomial time by processing permutation constraints one by one in turn,
provided the original polynomial has bounded degree, as otherwise the number of monomials
in the resulting polynomial may be exponentially greater than that of the original one.

Lemma 4.1.5. Let P = (X,D,C) be an instance of CSP(Γ) such that ∇ ∈ Pol(Γ) and C
contains no permutation constraint. Then a Gröbner Basis of the corresponding ideal I(P)
can be computed in polynomial time.

Proof. The satisfiability of the instance P can be decided in polynomial time [58] so we
may assume that 1 ̸∈ I(P), else G = {1} is a Gröbner Basis. Moreover, we assume for every
xi, xj , xk ∈ X if (a, b) ∈ Rij then there exists c such that (a, c) ∈ Rik and (c, b) ∈ Rkj . This
is because of the (2, 3)-consistency. Note that such an assumption does not change Sol(P).

60

Equivalently, it does not change V (I(P)) which, by Theorem 2.1.9, means the ideal I(P)
does not change. This arc consistency assumption has a consequence in terms of polynomials
which enables us to prove our set of polynomials is indeed a Gröbner Basis.

First, let us give a set G of polynomials that represent binary constraints. Initially, G
contains all the domain polynomials i.e. G = { ∏

a∈D
(xi−a) | xi ∈ X}. We proceed as follows.

i) To each complete constraint Cij = ⟨(xi, xj), Rij = Di × Dj⟩ we associate two poly-
nomials gi = ∏

a∈Di

(xi − a) and gj = ∏
b∈Dj

(xj − b) and replace ∏
a∈D

(xi − a) by gi, and

replace ∏
a∈D

(xj − a) by gj .

ii) To each two-fan constraint Cij = ⟨(xi, xj), Ri,j = {({a} × Dj) ∪ (Di × {b})}⟩ we
associate polynomial gij = (xi − a)(xj − b) and set G = G ∪ {gij}. Furthermore, we
replace domain polynomial ∏

a∈D
(xi−a) by ∏

a∈Di

(xi−a), and replace domain polynomial∏
a∈D

(xj − a) by ∏
a∈Dj

(xj − a).

Observe that, as a consequence of arc consistency, for every two polynomials f = (xi −
a)(xj − b) and g = (xi − c)(xk − d) in G with a ̸= c polynomial h = (xj − b)(xk − d) is also
in G.

Consider grlex order with x1 ≻lex · · · ≻lex xn. Now, we prove G is a Gröbner Basis with
respect to the grlex by showing for any two polynomials f, g ∈ G we have S(f, g) →G 0.
We dismiss the cases where LM(f) and LM(g) are relatively prime. In these cases, by
Proposition 2.1.21, we have S(f, g) →G 0. Hence, we focus on the cases where LM(f) and
LM(g) are not relatively prime.

1. Suppose f = (xi − a)(xj − b) and g = (xi − a)(xk − d). Then

S(f, g) = xk · f − xj · g = d · xi · xj − b · xi · xk + a · b · xk − a · d · xj = d · f − b · g.

Observe that multideg(S(f, g)) ⪰ multideg(d ·f) and multideg(S(f, g)) ⪰ multideg(b ·
g). Hence, by Definition 2.1.14, we have S(f, g)→{f,g} 0.

2. Suppose f = (xi − a)(xj − b) and g = (xi − c)(xk − d) where a ̸= c. Then S(f, g) =
xk · f −xj · g and S(f, g)→{f,g} (c− a)(xj − b)(xk− d). However, h = (xj − b)(xk− d)
is in G and hence S(f, g)→G 0.

3. Suppose f = ∏
a∈Di

(xi − a) and g = (xi − c)(xj − b) where c ∈ Di ⊆ D. Observe that c

must be in Di due to the (2, 3)-consistency preprocessing. Define f1 = ∏
a∈Di\{c}

(xi−a)

61

and g1 = (xj − b). Hence, f = (xi − c) · f1 and g = (xi − c) · g1.

S(f, g) = xj · f − (x|Di|−1
i) · g

= [(xj − b) + b] · f −

 ∏
a∈Di\{c}

(xi − a)−

 ∏
a∈Di\{c}

(xi − a)− x|Ai|−1
i

 · g
= (xj − b) · f − (b) · f −

∏
a∈Di\{c}

(xi − a) · g +

 ∏
a∈Di\{c}

(xi − a)− x|Di|−1
i

 · g
= (−b) · f +

 ∏
a∈Di\{c}

(xi − a)− x|Di|−1
i

 · g
= (g1 − LT(g1)) · f + (f1 − LT(f1)) · g

We show that multideg(S(f, g)) ⪰ multideg((LT(g1)− g1) · f) and multideg(S(f, g)) ⪰
multideg((f1 − LT(f1)) · g). This follows by showing LM((LT(g1) − g1) · f) ̸= LM((f1 −
LT(f1)) · g). By contradiction, if LM((LT(g1)− g1) · f) = LM((f1 − LT(f1)) · g) then

LM(LT(g1)− g1) · LM(f) = LM(f1 − LT(f1)) · LM(g) =⇒ x
|Ai|
i = x

|Ai|−2
i · xixj

The latter is impossible, hence multideg(S(f, g)) ⪰ multideg((LT(g1)−g1)·f) and multideg(
S(f, g)) ⪰ multideg((f1 − LT(f1)) · g). Therefore, we have S(f, g) →{f,g} 0 (recall Defini-
tion 2.1.14).

We have shown for any two polynomials f, g ∈ G we have S(f, g) →G 0. Hence, by
Buchberger’s criterion (Theorem 2.1.20), G is a Gröbner Basis for I(P).

Theorem 4.1.6. Let Γ be a constraint language. If Γ has the dual-discriminator polymor-
phism, then IMPd(Γ) is decidable in polynomial time.

Note that unlike in the results of [161, 24], due to the preprocessing step, Theorem 4.1.6
does not always allow one to find a proof that a polynomial belongs to the ideal, but this is
resolved in Chapter 5. Indeed we prove that we can find a proof of membership for IMPd(Γ),
if one exists, by constructing a d-truncated Gröbner Basis with respect to a grlex .

4.2 Semilattice polymorphisms

In this section we study the IMP(Γ) for languages Γ where Pol(Γ) contains a semilattice
operation. A binary operation ψ(x, y) satisfying the following three conditions is said to be
a semilattice operation:

1. Associativity: ψ(x, ψ(y, z)) = ψ(ψ(x, y), z)

2. Commutativity: ψ(x, y) = ψ(y, x)

62

3. Idempotency: ψ(x, x) = x

Mastrolilli [161] considered this problem for languages over the Boolean domain i.e.,
D = {0, 1}, and proved the following. We remark that a Boolean relation is closed under a
semilattice operation if and only if it can be defined by a conjunction of dual-Horn clauses
or can be defined by a conjunction of Horn clauses [121].

Theorem 4.2.1 ([161]). Let Γ be a finite Boolean constraint language. If Γ has a semilattice
polymorphism, then IMPd(Γ) can be solved in nO(d) time for d ≥ 1.

We extend this tractability result to languages over any finite domain D. That is, we
prove that IMPd(Γ) is polynomial time solvable when Γ is a language over D and it has
a semilattice polymorphism. To do so, we use a well-known result in semilattice theory.
A semilattice is an algebra D = (D, {ψ}), where ψ is a semilattice operation. Informally
speaking, every semilattice is a subalgebra of a direct power of a 2-element semilattice.

Theorem 4.2.2 ([181]). Let D = (D,ψ) be a finite semilattice where ψ is a semilattice
operation. Then there is k such that D is a subalgebra of the direct power Bk of B =
({0, 1}, φ), where φ is a semilattice operation on {0, 1}.

Armed with Theorem 4.2.2 a proof of tractability of semilattice IMPs is straightforward.

Theorem 4.2.3. Let Γ be a finite constraint language over domain D. If Γ has a semilattice
polymorphism, then IMPd(Γ) is decidable in polynomial time.

Proof. Let ψ be a semilattice polymorphism of Γ. Then D = (D,ψ) is a semilattice,
and therefore is a subalgebra of Bk, where B = ({0, 1}, φ) is a 2-element semilattice. By
Lemma 3.2.7, there is a finite constraint language ∆ over {0, 1} such that φ is a polymor-
phism of ∆. By Theorem 3.1.15, IMPd(Γ) reduces to IMPud(∆) in polynomial time for a
constant u. By Theorem 4.2.1, we get the result.

In Chapter 5 we prove that we can indeed find a proof of membership for IMPd(Γ), if
one exists, by constructing a d-truncated Gröbner Basis with respect to a grlex .

Example 4.2.4 (Totally Ordered Domain). Let D = {1, . . . , t} be a finite domain and Γ be
a language defined on D. A semilattice polymorphism ψ is conservative if ψ(x, y) ∈ {x, y}.
Suppose Γ has a conservative semilattice polymorphism ψ : D2 → D. Note that ψ defines a
total ordering on {1, . . . , t} so that u ≤ v if and only if ψ(u, v) = u. Define π : D → {0, 1}t

to be the following mapping

π(i) = (0, . . . , 0,
i︷ ︸︸ ︷

1, . . . , 1).

Let P = (X,D,C) denote an instance of CSP(Γ) where X = {x1, . . . , xn}. Construct CSP
instance P ′ = (X ′, {0, 1}, C ′) with X ′ = {x11, . . . , x1t, . . . , xn1, . . . , xnt} with the following
set of constraints

63

1. xij ≤ xik for all 1 ≤ i ≤ n and 1 ≤ k ≤ j ≤ t,

2. if R(xi1 , . . . , xik) ∈ C then π(R)(xi11, . . . , xi1t, . . . , xik1, . . . , xikt) ∈ C ′.

Observe that a ∈ V(I(P)) if and only if π(a) ∈ V(I(P ′)). Given f0 ∈ F[x1, . . . , xn], define
f ′

0 ∈ F[x11, . . . , x1t, . . . , xn1, . . . , xnt] to be the polynomial obtained from f0 where we replace
each indeterminate xi with xi1 + · · ·+xit. It is easy to check that, for a ∈ V(I(P)), we have
f0(a) = 0 if and only if π(a) ∈ V(I(P ′)) and f ′

0(π(a)) = 0. Therefore, deciding if f0 ∈ I(P)
is equivalent to deciding if f ′

0 ∈ I(P ′) where the later one is polynomial time solvable by
Theorem 4.2.1.

4.3 Affine operations I: linear system in GF(p)

In this section and the subsequent section we consider IMPs over languages invariant under
affine operations of GF(p) and arbitrary finite Abelian groups, respectively. This type of
constraint languages played an important role in the study of the CSP for three reasons.
First, it captures a very natural class of problems. Problems CSP(Γ) where Γ is invariant
under an affine operation of a finite field F can be expressed by systems of linear equations
over F and therefore admit a classic solution algorithm such as Gaussian elimination or
coset generation. In the case of a general Abelian group A the connection with systems of
linear equations is more complicated, although it is still true that every instance of CSP(Γ)
in this case can be thought of as a system of linear equations with coefficients from some
ring — the ring of endomorphisms of A.

Problems CSP(Γ) where Γ has an affine polymorphism were pivotal in the development
of few subpowers algorithms, and, in a sense, constitute the main nontrivial case of them.
The few subalgebras algorithms [36, 118] when applied to systems of linear equations serve
as an alternative to Gaussian elimination that also work in a more general situation and
are less sensitive to the algebraic structure behind the problem. There is, therefore, a hope
that studying IMPs with an affine polymorphism may teach us about proof systems that
use the IMP and do not quite work in the affine case.

In this section we focus on constraint languages that are expressible as a system of
linear equations modulo a prime number. Let Γ be a constraint language over a set D with
|D| = p, and p a prime number. Suppose Γ has an affine polymorphism modulo p (i.e. a
ternary operation ψ(x, y, z) = x⊖y⊕z, where ⊕,⊖ are addition and subtraction modulo p,
or, equivalently, of the field GF(p)). In this case every CSP can be represented as a system
of linear equations over GF(p). Without loss of generality, we may assume that the system
of linear equations at hand is already in the reduced row echelon form. Transforming system
of linear equations mod p in its reduced row echelon form to a system of polynomials in
R[X] that are a Gröbner Basis is not immediate and requires substantial work. This is the
case even if we restrict ourselves to lexicographic order.

64

A proof based on the Gröbner Bases conversion technique is given in Section 4.5. That
proof is of an independent interest as it relies on the existence of the so-called independent
p-expressions and it is quite technical. Here, we present an alternative simple algorithm that
checks the membership in polynomial time. In section 5.1.2, we will see how this algorithm
can be used to construct a d-truncated Gröbner Basis.

Let P be an instance of CSP(Γ) that is expressed as a system of linear equations S over
Zp with variables x1, . . . , xn. A system of linear equations over Zp can be solved by Gaussian
elimination (this immediately tells us if 1 ∈ I(P) or not, and we proceed only if 1 ̸∈ I(P)).
We assume a lexicographic order ≻lex with x1 ≻lex · · · ≻lex xn. We also assume that the
linear system has r ≤ n equations and it is already in its reduced row echelon form with xi

as the leading monomial of the i-th equation. Let Suppi ⊂ [n] such that {xj : j ∈ Suppi}
be the set of variables appearing in the i-th equation of the linear system except for xi.

Fix a prime p and let ⊕, ⊖, ⊙ denote addition, subtraction, and multiplication modulo p,
respectively. We will call a linear polynomial over Zp a p-expression. Let the i-th equation be
gi = 0 (mod p) where gi := xi⊖fi, with i ∈ [r] and fi is the p-expression (⊕j∈Suppi

αjxj)⊕αi
and αj , αi ∈ Zp. We will assume that each variable xi is associated with its p-expression fi

which comes from the mod p equations. This is clear for i ≤ r; for i > r the p-expression
fi = xi itself. Hence, we can write down the reduced Gröbner Basis in the lex order in an
implicit form as follows.

G1 = {x1 ⊖ f1, . . . , xr ⊖ fr,
∏
i∈Zp

(xr+1 − i), . . . ,
∏
i∈Zp

(xn − i)} (4.1)

Let Up = {ω, ω2, . . . , ωp = ω0 = 1} be the set of p-th roots of unity where ω is a primitive
p-th root of unity. For a primitive p-th root of unity ω we have ωa = ωb if and only if
a ≡ b (mod p). From P we construct a new CSP instance P ′ = (V,Up, C̃) where for each
equation xi ⊖ fi = 0 with fi = (⊕j∈Suppi

αjxj)⊕ αi we add the constraint xi − f ′
i = 0 with

f ′
i = ωαi(

∏
j∈Suppi

x
αj

j).

Moreover, the domain constraints are different. For each variable xj , r + 1 ≤ j ≤ n, the
domain polynomial is (xj)p − 1. Therefore, we write G over complex number domain as
follows.

G′ = {x1 − f ′
1, . . . , xr − f ′

r, (xr+1)p − 1, . . . , (xn)p − 1} (4.2)

Define univariate polynomial ϕ ∈ C[x] so that it interpolates points (0, ω0), (1, ω), . . . , (p−
1, ωp−1). This polynomial provides a one-to-one mapping between solutions of instance P

65

and instance P ′. That is, (a1, . . . , an) is a solution of P if and only if (ϕ(a1), . . . , ϕ(an)) is
a solution of P ′.

Lemma 4.3.1. For a polynomial f ∈ R[x1, . . . , xn] define polynomial f ′ ∈ C[x1, . . . , xn] to
be

f ′(x1, . . . , xn) = f(ϕ−1(x1), . . . , ϕ−1(xn)).

Then f ∈ I(P) if and only if f ′ ∈ I(P ′).

Proof. As I(P) is radical, by the Strong Nullstellensatz we have f ̸∈ I(P) if and only if
there exists a point a ∈ Znp such that a is in Sol(P) and f(a) ̸= 0. Note I(P ′) is also radical
since for all xi ∈ {x1, . . . , xr} the domain polynomial xpi − 1 is in I(P ′) because remainder
of division of xpi − 1 by G′ is 0 = (f ′

i)p − 1. Hence, for I(P ′) we have f ′ ̸∈ I(P ′) if and only
if there exists a point a′ ∈ Unp such that a′ ∈ Sol(P ′) and f ′(a′) ̸= 0.

Suppose f ̸∈ I(P) and consider a point a = (a1, . . . , an) ∈ Znp so that a ∈ Sol(P) and
f(a) ̸= 0. Recall that a ∈ Sol(P) if and only if a′ = (ωa1 , . . . , ωan) ∈ Sol(P ′). Furthermore,

f ′(ωa1 , . . . , ωan) = f(a1, . . . , an) ̸= 0

Therefore, for a′ ∈ Sol(P ′) we have f ′(a′) ̸= 0 which implies f ′ ̸∈ I(P ′). This finishes the
proof.

The next lemma states that IMP(I(P ′)) is polynomial time solvable by showing that
the set of polynomials G′ is in fact a Gröbner Basis for I(P ′).

Lemma 4.3.2. G′ is a Gröbner Basis for I(P ′) with respect to lex order x1 ≻lex · · · ≻lex xn.

Proof. First, we proceed to show G′ is a Gröbner Basis for ⟨G′⟩. Note that for each xi− f ′
i ,

we have LM(xi − f ′
i) = xi. Moreover, the leading monomial of (xj)p − 1, r + 1 ≤ j ≤ n,

is (xj)p. Hence, for every pair of polynomials in G′ the reduced S-polynomial is zero as
the leading monomials of any two polynomials in G′ are relatively prime. By Buchberger’s
Criterion it follows that G′ is a Gröbner Basis for ⟨G′⟩ over C[x1, . . . , xn] (according to the
lex order).

It remains to show ⟨G′⟩ = I(Sol(P ′)). According to our construction we have V (⟨G′⟩) =
Sol(P ′) which implies ⟨G′⟩ ⊆ I(Sol(P ′)). In what follows, we prove I(Sol(P ′)) ⊆ ⟨G′⟩.
Consider a polynomial f ∈ I(Sol(P ′)). Note that f(a) = 0 for all a ∈ Sol(P ′). Let r = f |G′ .
r does not contain variables x1, . . . , xr, and hence it is a polynomial in xr+1, . . . , xn. Now
note that any b = (b1, . . . , bn−r) ∈ Un−r

p extends to a unique point in Sol(P ′). Therefore, all
the points in Un−r

p are zeros of r, hence r = f |G′ is the zero polynomial. Since f ∈ I(Sol(P ′))
was arbitrary chosen, it follows that for every f ∈ I(Sol(P ′)) we have f |G′ = 0. Hence G′ is
a Gröbner Basis of I(Sol(P ′)).

Provided thatG′ is a Gröbner Basis with respect to the lex order, we can test membership
of any bounded degree polynomial in polynomial time. Note that dividing any polynomial

66

by x1 − f ′
1, . . . , xr − f ′

r results in a polynomial only in xr+1, . . . , xn where the membership
can be tested using only {(xr+1)p− 1, . . . , (xn)p− 1}, a Gröbner Basis with respect to grlex
in C[xr+1, . . . , xn].

We also remark that the substitution technique used in Lemma 4.3.1 may result in
a polynomial with exponentially many monomials. However, for polynomials of bounded
degree d it yields a polynomial of degree at most pd and polynomially many monomials.
Thus, we obtain the following.

Theorem 4.3.3. Let Γ be a constraint language over domain D = GF(p). If Γ has an affine
polymorphism, then IMPd(Γ) is decidable in polynomial time.

In Chapter 5 we prove that we can indeed find a proof of membership for IMPd(Γ), if
one exists, by constructing a d-truncated Gröbner Basis with respect to a grlex .

4.4 Affine operations II: CSPs over Abelian groups

CSPs over Abelian groups, or more precisely problems of the form CSP(Γ) where Γ is a
constraint language closed under the affine polymorphism x−y+z of an Abelian group, are
well understood. However, they are usually considered as a special case of either arbitrary
finite groups, in which case the coset generation algorithm applies [79], or as a special case
of CSPs with a Mal’tsev polymorphism [36, 118]. In the IMP literature [161, 25, 41] such
CSPs have been mainly considered from the point of view of systems of linear equations.
Such a representation is necessary, because it is used to construct a Gröbner basis of the
corresponding ideal. While it is true that every CSP given by a system of linear equations
over some Abelian group can also be thought of as an instance of CSP(Γ) for an appropriate
language Γ closed under the affine operation, the converse is not true in general. For instance,
the relation RE from Example 3.3.6 is invariant under the affine operation x−y+z of Z2×Z2,
but cannot be represented by a system of linear equations over this group.

Therefore our goal in this section is to show that a CSP over an Abelian group can
always be converted into a (multi-sorted) CSP that admits a representation by a system of
linear equations (with caveats that will be discussed later), and then to demonstrate how
a row-echelon form of such a system can be constructed, ready to be transformed into a
Gröbner basis.

4.4.1 Abelian groups

In this section we state the facts about Abelian groups we will need in this thesis. It is well
known that every finitely generated Abelian group is isomorphic to a direct sum of primary
cyclic groups and infinite cyclic groups. In the following, the notation G ⊕ H denotes the
direct sum of two (Abelian) groups.

67

Proposition 4.4.1. (1) (The Fundamental Theorem of Abelian Groups.) Let A be a
finite Abelian group. Then A = A1 ⊕ · · · ⊕ An, where A1, . . . ,An are cyclic groups.

(2) There exists a decomposition from item (1), in which the order of each Ai is a prime
power.

Let A be an Abelian group. By Proposition 4.4.1, A can be decomposed into A = A1 ⊕
· · ·⊕An where Ai = Z

q
ℓi
i

. Without loss of generality assume that for some k1, . . . , ks it holds
q1 = · · · = qk1 = p1, qk1+1 = · · · = qk1+k2 = p2, . . . , qk1+···+ks−1+1 = · · · = qk1+···+ks = ps.
We also change the notation for ℓi so that A can be represented as

A = Z
p

ℓ1,1
1
⊕ · · · ⊕ Z

p
ℓ1,k1
1
⊕ Z

p
ℓ2,1
2
· · · ⊕ Z

p
ℓ2,k2
2
⊕ · · · ⊕ Z

p
ℓs,ks
s

.

Later it will also be convenient to assume that ℓr,kr is maximal among ℓr,1, . . . , ℓr,kr . We
will denote this value by mr.

Next we describe relations invariant under an affine polymorphism of an Abelian group
in group-theoretic form. Recall that for an Abelian group A and its subgroup B, a coset of
A modulo B is a set of the form a0 + B = {a0 + a | a ∈ B}. The following statement is
folklore, but we give a proof for completeness.

Lemma 4.4.2. Let R be a subset of the Cartesian product of Abelian groups A1×· · ·×An.
Then R is invariant with respect to the (multi-sorted) affine operation f(x, y, z) = x− y+ z

of the groups A1, . . . ,An if and only if R is a coset of A = A1 × · · · × An, viewed as an
Abelian group, modulo some subgroup B of A.

Proof. If R is a coset of A modulo a subgroup B, fix a0 ∈ R. Then R = {a0 + a | a ∈ B}.
For any a,b, c ∈ B we have

f(a + a0,b + a0, c + a0) = (a − b + c) + a0 ∈ R,

as a − b + c ∈ B.
Conversely, suppose R is invariant under f . Fix a0 ∈ R and set B = {a − a0 | a ∈ R}.

We need to show that B is a subgroup of A. Since A is finite it suffices to show that B is
closed under addition. Let a,b ∈ B, then a + a0,b + a0 ∈ R. As R is invariant under f ,

f(a + a0,a0,b + a0) = (a + a0)− a0 + (b + a0) = (a + b) + a0 ∈ R,

implying a + b ∈ B.

4.4.2 PP-interpretations in Abelian groups

In this section we show that any constraint language invariant under an affine operation of
some Abelian group can be pp-interpreted by a multi-sorted constraint language over very
simple groups. We use the notation from Section 4.4.1.

68

Proposition 4.4.3. Let ∆ be a finite constraint language invariant under the affine opera-
tion of A. Then there is a multi-sorted constraint language Γ over Zpm1

1
, . . . ,Zpms

s
invariant

under the affine operation of Zpm1
1
, . . . ,Zpms

s
such that Γ pp-interprets ∆.

Proof. For a natural number r and an Abelian group B by rB we denote the subgroup
rB = {ra | a ∈ B} of B. Observing that Zpℓ is isomorphic to pm−ℓZpm let

F = p
m1−ℓ1,1
1 Zpm1

1
× · · · × pm1−ℓ1,k1

1 Zpm1
1
× · · · × p

ms−ℓs,ks−1+1
1 Zpms

s
× · · · × pms−ℓs,ks

1 Zpms
s
,

and define a mapping π : F → A by

π(x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks) =

((pm1−ℓ1,1
1)−1x1,1, (pm1−ℓ1,2

1)−1x1,2, . . . , x1,k1 , . . . , (p
ms−ℓs,ks−1+1
s)−1xs,1, . . . , (p

ms−ℓs,ks
s)−1xs,ks).

Note that the values of the form (pmr−ℓr,i
r)−1xr,i ∈ Z

p
ℓr,i
r

are well defined because xr,i ∈

p
mr−ℓr,i
r Zpmr

r
. Then we set Γ = {F} ∪ {π−1(=A)} ∪ {π−1(R) | R ∈ ∆}. The language Γ

contains F , the preimage of the equality relation on A, and the preimages of all the relations
from ∆. Therefore, by the definition of pp-interpretability Γ pp-interprets ∆. It remains to
show that Γ is invariant under the affine operation of Zpm1

1
, . . . ,Zpms

s
as a multi-sorted

polymorphism.
The set F is clearly invariant under any operation of the groups Zpm1

1
, . . . ,Zpms

s
, as it is

a Cartesian product of subgroups of those groups. For a,b ∈ F we have (a,b) ∈ π−1(=A) if
and only if pmr−ℓr,i

r ar,i = p
mr−ℓr,i
r br,i in Zpmr

r
, where i ∈ [kr]. So, if (a1,b1), (a2,b2), (a3,b3) ∈

π−1(=A), c = a1 − a2 + a3,d = b1 − b2 + b3 then for any r ∈ [s] and i ∈ [kr] we have

p
mr−ℓr,i
r cr,i = p

mr−ℓr,i
r (a1

r,i − a2
r,i + a3

r,i)

= p
mr−ℓr,i
r a1

r,i − p
mr−ℓr,i
r a2

r,i + p
mr−ℓr,i
r a3

r,i

= p
mr−ℓr,i
r b1

r,i − p
mr−ℓr,i
r b2

r,i + p
mr−ℓr,i
r b3

r,i

= p
mr−ℓr,i
r (b1

r,i − b2
r,i + b3

r,i)

= p
mr−ℓr,i
r dr,i.

Now, let R ∈ ∆ be a t-ary relation and R′ = π−1(R). We show that x − y + z

is a polymorphism of R′. Let a′,b′, c′ ∈ R′, a = π(a′),b = π(b′), c = π(c′), d′ =
a′ − b′ + c′, and d = a − b + c. It suffices to show that π(d′) = d, as it implies d′ ∈ R′,
since d ∈ R. Each of the tuples a′,b′, c′,d′ is a t · n-tuple. We will denote its compo-
nents by a′

i,r,j (b′
i,r,j , c

′
i,r,j , d

′
i,r,j), i ∈ [t], r ∈ [s], j ∈ [kr] so that π(a′

i,1,1, . . . , a
′
i,s,ks

) = ai

(π(b′
i,1,1, . . . , b

′
i,s,ks

) = bi, π(c′
i,1,1, . . . , c

′
i,s,ks

) = ci). For any i ∈ [t], r ∈ [s], and j ∈ [kr] we

69

have

(pmr−ℓr,j
r)−1d′

i,r,j = (pmr−ℓr,j
r)−1a′

i,r,j − (pmr−ℓrj
r)−1b′

i,r,j + (pmr−ℓr,j
r)−1c′

i,r,j .

Therefore,

π(d′
i,1,1, . . . , d

′
i,s,ks

)

= (pm1−ℓ1,1
1)−1d′

i,1,1 ⊕ · · · ⊕ (pms−ℓs,ks
s)−1d′

i,s,ks

= (pm1−ℓ1,1
1)−1(a′

i,1,1 − b′
i,1,1 + c′

i,1,1)⊕ · · · ⊕ (pms−ℓs,ks
s)−1(a′

i,s,ks
− b′

i,s,ks
+ c′

i,s,ks
)

=
(
(pm1−ℓ1,1

1)−1a′
i,1,1 ⊕ · · · ⊕ (pms−ℓs,ks

s)−1a′
i,s,ks

)
−
(
(pm1−ℓ1,1

1)−1b′
i,1,1 ⊕ · · · ⊕ (pms−ℓs,ks

s)−1b′
i,s,ks

)
+
(
(pm1−ℓ1,1

1)−1c′
i,1,1 ⊕ · · · ⊕ (pms−ℓs,ks

s)−1c′
i,s,ks

)
= ai − bi + ci = di.

Note that ⊕ in the formulas above denote the representation of elements of A as a direct
sum of elements Z

p
ℓr,j
r

.

A nice property of languages over Zpm1
1
, . . . ,Zpms

s
, with pi ̸= pj when i ̸= j, is that

any (multi-sorted) relation can be decomposed into relations of the same sort. Let R ⊆
D1×· · ·×Dn and I = {i1, . . . , ik} ⊆ [n]. For a ∈ R by prIa we denote the tuple (ai1 , . . . , aik),
and prIR = {prIa | a ∈ R}.

For two relations R1(x1, . . . , xr) and R2(y1, . . . , yt) of arities r and t respectively, their
Cartesian product is the relation R of arity r + t defined as

R(x1, . . . , xr, y1, . . . , yt) = R1(x1, . . . , xr)×R2(y1, . . . , yt)

= {(x1, . . . , xr, y1, . . . , yt) | (x1, . . . , xr) ∈ R1 ∧ (y1, . . . , yt) ∈ R2}.

Lemma 4.4.4. Let R(x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks) be such that xi,j has domain Zpmi
i

and R is invariant under the affine operation. Then R is decomposable as follows

R(x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks) =

(pr(1,1),...,(1,k1)R)(x1,1, . . . , x1,k1)× · · · × (pr(s,1),...,(s,ks)R)(xs,1, . . . , xs,ks).

Proof. It suffices to show that

R(x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks) =

(pr(1,1),...,(1,k1)R)(x1,1, . . . , x1,k1)× (pr(2,1),...,(s,ks)R)(x2,1, . . . , xs,ks).

70

Let M = pm1
1 · pm2

2 . . . · pms
s , M1 = M/pm1

1 , and let u, v ∈ [M] be such that u ≡ 1
(mod pm1

1), u ≡ 0 (mod M1) and v ≡ 0 (mod pm1
1), v ≡ 1 (mod M1). Then for any a ∈ R,

a = (a1,a2), where a1 ∈ pr(1,1),...,(1,k1)R and a2 ∈ pr(2,1),...,(s,ks)R, it holds u · a = (a1, 0)
and v · a = (0,a2), and 0 denotes the zero vector of an appropriate length.

We prove that, as any composition of polymorphisms of R is a polymorphism of R the
operation g(x, y, z) = ux + vy + (1 − u − v)z is a polymorphism of R. More precisely, we
prove by induction on u′, v′ that u′x+v′y+(1−u′−v′)z can be obtained as a composition of
f(x, y, z) = x− y+ z with itself. Indeed, for u′ = v′ = 1 the operation f(x, z, y) = x+ y− z
is as required. Suppose the statement is proved for g′(x, y, z) = u′x + v′y + (1 − u′ − v′)z.
Then

f(x, z, g′(x, y, z)) = x− z + u′x+ v′y + (1− u′ − v′)z = (u′ + 1)x+ v′y + (1− (u′ + 1)− v′)z,

f(y, z, g′(x, y, z)) = y − z + u′x+ v′y + (1− u′ − v′)z = u′x+ (v′ + 1)y + (1− u′ − (v′ + 1))z.

We need to prove that if a,b ∈ R, a = (a1,a2),b = (b1,b2) then (a1,b2) ∈ R. This is
however straightforward:

g(a,b,a) = (1− v)a + vb

= (1− v)(a1,a2) + v(b1,b2)

= ((1− v)a1, (1− v)a2) + (vb1, vb2)

= (a1, 0) + (0,b2)

= (a1,b2).

Lemma 4.4.4 allows us to decompose multi-sorted CSPs into instances, in which every
constraint contains variables of only one sort.

Proposition 4.4.5. Let P be an instance of CSP(Γ), where Γ is a multi-sorted constraint
language over D = {Zpm1

1
, . . . ,Zpms

s
} invariant with respect to the affine polymorphism of

Zpm1
1
, . . . ,Zpms

s
. Then P is equivalent to P ′ such that for every constraint ⟨s, R⟩, the variables

in s are of the same sort. Moreover, the set of variables X of P ′ is the same as that of P
and for any x ∈ X its sort is the same in both P and P ′.

4.4.3 Constructing a system of linear equations

Having the decomposition result in Lemma 4.4.4 and Proposition 4.4.5, we proceed to
show that any instance of CSP(Γ) where Γ is invariant under the affine operation of Zpm

can be transformed into a system of linear equations over Zpm that is in the reduced row-
echelon form i.e., there are free variables and the rest of variables are linear combinations

71

thereof. Note that unlike linear equations over Zp, such a transformation is not immediate.
In particular, it will require introducing new variables that will serve as free variables.

Lemma 4.4.6. Let P be an instance of CSP(Γ) where Γ is a constraint language over
A = Zpm invariant under the affine operation of the group. Let X = {x1, . . . , xn} be the set
of variables of P. Then there are parameters y1, . . . , yr such that for every j ∈ [n] there are
α1,j , . . . , αr,j , cj ∈ Zpm, for which (x1, . . . , xn) ∈ R if and only if xj = α1,jy1+· · ·+αr,jyr+cj
for some values y1, . . . , yr ∈ Zpm.

Proof. We start with a claim that indicates what the existing algorithms allow us to do
with respect to the instance P. Recall that Sol(P) denotes the set of solutions of P.

Claim 1. (1) A solution of P, if one exists, can be found in polynomial time.

(2) For any x ∈ X and any a ∈ Zpm , a solution φ ∈ Sol(P) can be found in polynomial time
such that φ(x) = a, if one exists.

(3) For any x ∈ X the set Solx(P) = {φ(x) | φ ∈ Sol(P)} can be found in polynomial time.

Proof of Claim 1. (1) A ternary operation f on a set A is said to be Mal’tsev if f(x, x, y) =
f(y, x, x) = y for x, y ∈ A. The affine operation of any Abelian group including A is
Mal’tsev. It was proved in [36] that for any Γ invariant under a Mal’tsev operation the
problem CSP(Γ) can be solved in polynomial time. Since Γ in Lemma 4.4.6 is invariant
under a Mal’tsev operation, it implies item (1).

(2) The constant relation Ra = {(a)} is invariant under the affine operation of A. This
means that the problem P ′ obtained from P by adding the constraint ⟨(x), Ra⟩ can be
solved in polynomial time using the algorithm from [36]. A mapping φ is a solution of P ′ if
and only if φ ∈ Sol(P) and φ(x) = a.

(3) To find the set Solx(P) one just needs to apply item (2) to every element of A.

Pick an arbitrary solution φ0 ∈ R and let S′ = {φ− φ0 | φ ∈ Sol(P)}. By Lemma 4.4.2
S′ is a subgroup of An. First, find Solx(P) for every x ∈ X and set S′

x = Solx(P) − φ0(x)
(subtraction in A). For a ∈ A let p(a) denote the maximal power of p that divides a. Find
x ∈ X such that S′

x contains an element a ∈ A for which p(a) is minimal possible. Without
loss of generality let x be x1, and denote the value a by a1 and set o1 = m − p(a1). Let
also φ1 be a solution of P such that φ1(x1) = a1 +φ0(x1), and φ′

1 = φ1−φ0. Observe that
since p(a1) is minimal, for any xi ∈ X we have φ′

1(xi) = α′
1,iφ

′
1(x1) for some α′

1,i ∈ Zpm .
Let P(1) be the instance P with the extra constraint ⟨(x1), Rφ0(x1)⟩. Suppose that P(i) is
constructed, that is obtained from P by adding constraints ⟨(xj), Rφ0(xj)⟩ for j ∈ [i]. Let
also S(i) = {φ−φ0 | φ ∈ Sol(P(i)}. Again, find x ∈ X−{x1, . . . , xi} and an element a ∈ S(i)

x

such that p(a) is minimal possible. Assume that x = xi+1, a = ai+1, and oi+1 = m−p(ai+1).
Find a solution φi+1 ∈ Sol(P(i)) with φi+1(xi1) = ai+1 +φ0(xi+1) and let φ′

i+1 = φi+1−φ0.

72

The process ends at some point, suppose at step r, as φ0 is the only solution of P(r+1).
By construction, {φ′

1, . . . , φ
′
r} is a generating set of S′ and φ′

j(xi) = 0 for j > i, i, j ∈ [r].
As we observed, for any j ∈ [n] there are α′

1,j , . . . , α
′
r,j , α′

i,j ∈ Zqoi for i ∈ [r], such that
φ′

1(xj) = α′
1,jφ

′
1(x1), . . . , φ′

r(xj) = α′
r,jφ

′
r(xr). We claim that coefficients αi,j = α′

i,jφ
′
i(xi),

cj = φ0(xi) i ∈ [r], j ∈ [n] are as required. To see this, observe that, as {φ′
1, . . . , φ

′
r} is a

generating set of S′, we have φ ∈ Sol(P) if and only if there are y1, . . . , yr ∈ Zpm , such that
φ− φ0 = y1φ

′
1 + · · ·+ yrφ

′
r. Thus, for any j ∈ [n] we have

φ(xj)− cj = y1φ
′
1(xj) + · · ·+ yrφ

′
r(xj)

= y1α
′
1,jφ

′
1(x1) + · · ·+ yrα

′
r,jφ

′
r(xr)

= α1,jy1 + · · ·+ αr,jyr.

Thus, solutions of P are exactly the mappings satisfying the equations

xj = α1,jy1 + · · ·+ αr,jyr + cj .

Putting everything together, we have proposed a reduction that transforms every in-
stance of CSP(∆), where ∆ is constraint language invariant under the affine operation of
an Abelian group, into a systems of linear equations over cyclic p-groups. Note that by
the Decomposition Lemma (Lemma 4.4.4) and Proposition 4.4.5 we can assume that these
systems of linear equations do not share variables. We summarize the result of this section
as the following proposition.

Proposition 4.4.7. Let ∆ be a constraint language invariant under the affine operation of
an Abelian group A. There are distinct primes p1, . . . , ps, integers m1, . . . ,ms (not neces-
sary distinct), and a multi-sorted constraint language Γ over Zpm1

1
, . . . ,Zpms

s
such that Γ is

invariant under the affine operation of these groups, and Γ pp-interprets ∆. Moreover, for
every instance P of CSP(Γ) there are integers k1, . . . , ks (not necessary distinct) such that
P is on the set of variables X = {x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks}, and it can be expressed
as s systems L1, . . . ,Ls of linear equations where

1. each Li is a system of linear equations over Zpmi
i

with variables X(Li)∪Y (Li), where
X(Li) = {xi,1, . . . , xi,ki

}, Y (Li) = {yi,1, . . . , yi,ri};

2. each Li is of the following form

(1ki×ki
Mi)(xi,1, . . . , xi,ki

, yi,1, . . . , yi,ri , 1)T = 0;

3. X(Li) ∩X(Lj) = ∅, Y (Li) ∩ Y (Lj) = ∅, for all 1 ≤ i, j ≤ s and i ̸= j;

73

4. an assignment φ to variables from X is a solution of P if and only if for every i ∈ [s]
there are values of variables from Y (Li) that together with φ|X(Li) satisfy Li.

4.4.4 Solving the IMP

In this section we focus on solving the IMP for constraint languages that are invariant
under the affine operation of an Abelian group. In fact, we will prove that in such cases one
can construct a d-truncated Gröbner Basis.

Theorem 4.4.8. Let A be an Abelian group. Then IMPd(∆) is polynomial time decidable
for any finite constraint language ∆ which is invariant under the affine operation of A.

The rest of this section is devoted to proving Theorem 4.4.8. We use the notation from
Section 4.4.1. Let A be an Abelian group and ∆ a finite constraint language invariant under
the affine operation of A. We will provide a polynomial time algorithm that, for any instance
P = (X,A, C) of CSP(∆), decides if an input polynomial f ∈ C[X] belongs to I(P) ⊆ C[X].
As before, we assume

A = Z
p

ℓ1,1
1
⊕ · · · ⊕ Z

p
ℓ1,k1
1
⊕ Z

p
ℓ2,1
2
· · · ⊕ Z

p
ℓ2,k2
2
⊕ · · · ⊕ Z

p
ℓs,ks
s

,

and mr is maximal among ℓr,1, . . . , ℓr,kr . By Proposition 4.4.3, ∆ is pp-interpretable in a
multi-sorted constraint language Γ which is invariant under the affine operation of Zpm1

1
, . . . ,

Zpms
s

. By Theorem 3.3.7, since multi-sorted constraint language Γ pp-interprets ∆ then
IMPd(∆) is polynomial time reducible to IMPO(d)(Γ). Combined with Proposition 4.4.7
this yields the following statement.

Proposition 4.4.9. Let ∆ be a constraint language that is invariant under the affine op-
eration of A. Then IMPd(∆) is polynomial time reducible to IMPO(d)(Γ) with Γ being a
constraint language invariant under the affine operation of Zpm1

1
, . . . ,Zpms

s
. Moreover, every

instance (f,P) of IMPd(∆) is transformed to an instance (f ′,P ′) of IMPO(d)(Γ) satisfying
the following conditions.

(1) For every i ∈ [s] there is a set Yi = {yi,1, . . . , yi,ri} of variables of P ′ and Yi ∩ Yj = ∅
for i ̸= j.

(2) For every constraint ⟨s, R⟩ of P ′ the following conditions hold:

(a) there is i ∈ [s] such that Zpmi
i

is the domain of every variable from s;

(b) R is represented by a linear equation of the form

xj = α1yi,1 + · · ·+ αriyi,ri

over Zpmi
i

.

74

For an instance (f,P) of IMPd(Γ) we assume that

P = (X ∪ Y,D, δ, C),

with X = {x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks}, Y = {y1,1, . . . , y1,r1 , . . . , ys,1, . . . , ys,rs} D =
{Di | Di = Zpmi

i
, 1 ≤ i ≤ s} and δ : X∪Y → [s] defined as δ(xi,j) = δ(yi,j) = i. Furthermore,

the input polynomial f is from C[x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks].
In the next sections, we present a reduction that transforms the problem to an equivalent

problem over roots of unities and then compute a truncated Gröbner Basis.

Reduction to roots of unity

By Propositions 4.4.7 and 4.4.9 any instance of CSP(Γ) can be thought of as a system of
linear equations.

Note that a system of linear equations over Zpmi
i

can be solved in polynomial time. This
immediately tells us if 1 ∈ I(P) or not, and we proceed only when 1 ̸∈ I(P). We assume
the lexicographic order ≻lex with

x1,1 ≻lex · · · ≻lex x1,k1 ≻lex · · · ≻lex xs,1 ≻lex · · · ≻lex xs,ks (4.3)

≻ y1,1 ≻ · · · ≻ y1,r1 ≻ y2,1 ≻ · · · ≻ y2,r2 ≻ · · · ≻ ys,rs .

Since these systems of linear equations do not share any variables we construct a trun-
cated Gröbner Basis for each of them independently, and then will show that the union of
all these Gröbner Bases is indeed a Gröbner Basis for I(P). We denote the corresponding
ideal for each Li by I(Li).

Note that each linear system Li is already in its reduced row-echelon form with xi,j as
the leading monomial of the j-th equation, 1 ≤ j ≤ ki. Each linear equation can be written
as xi,j + fi,j = 0 (mod pmi

i) where fi,j is a linear polynomial over Zpmi
i

. This is elaborated
on as follows.

Li :=

xi,1 +
fi,1︷ ︸︸ ︷

α1,1 yi,1 + · · ·+ α1,ri yi,ri + α1 = 0 (mod pmi
i)

xi,2 +
fi,2︷ ︸︸ ︷

α2,1 yi,1 + · · ·+ α2,ri yi,ri + α2 = 0 (mod pmi
i)

...

xi,ki
+

fi,ki︷ ︸︸ ︷
αki,1 yi,1 + · · ·+ αki,ri

yi,ri + αri = 0 (mod pmi
i)

−→ Li :=

xi,1 + fi,1 = 0 (mod pmi
i)

xi,2 + fi,2 = 0 (mod pmi
i)

...
xi,ki

+ fi,ki
= 0 (mod pmi

i)

Hence, we can write down a generating set for I(Li) in an implicit form as follows where
the addition is modulo Zpmi

i
,

Gi =

xi,1 + fi,1, . . . , xi,ki
+ fi,ki

,
∏

j∈Z
p

mi
i

(yi,1 − j), . . . ,
∏

j∈Z
p

mi
i

(yi,ri − j)

 (4.4)

75

Let Upmi
i

= {ωi, ω2
i , . . . , ω

(pmi
i)

i = ω0
i = 1} be the set of pmi

i -th roots of unity where ωi is
a primitive pmi

i -th root of unity. For a primitive pmi
i -th root of unity ωi we have ωai = ωbi if

and only if a ≡ b (mod pmi
i). From Li we construct a new CSP instance L′

i = (V,Upmi
i
, C̃)

where for each equation xi,t + fi,t = 0 (mod pmi
i) we add the constraint xi,t − f ′

i,t = 0 with

f ′
i,t = ωαt

i ·
(
y
αt,1
i,1 · . . . · y

αt,ri
i,ri

)
.

Moreover, the domain constraints are different. For each variable xi,j , j ∈ [ki], or yi,j , j ∈ [ri]
the domain polynomial is (xi,j)(pmi

i) = 1, (yi,j)(pmi
i) = 1. Therefore, we represent Gi from

(4.4) over complex number domain as follows.

G′
i =

{
xi,1 − f ′

i,1, . . . , xi,ki
− f ′

i,ki
, (yi,1)(pmi

i) − 1, . . . , (yi,ri)(pmi
i) − 1

}
(4.5)

Define univariate polynomial ϕi ∈ C[X] so that it interpolates points

(0, ω0
i), (1, ωi), . . . , (pmi

i − 1, ω(pmi
i −1)

i).

This polynomial provides a one-to-one mapping between solutions of Li and L′
i. That is,

(ai,1, . . . , ai,ki
, bi,1, . . . , bi,ri) is a solution of Li if and only if

(ϕi(ai,1), . . . , ϕi(ai,ki
), ϕi(bi,1), . . . , ϕi(bi,ri))

is a solution of L′
i.

For an instance P of CSP(Γ), which is a collection of systems of linear equations
L1, . . . ,Ls, define the instance P ′ which is a collection of systems of linear equations
L′

1, . . . ,L′
s. In the next lemma we prove our transformation to roots of unity gives rise

to an equivalent ideal membership problem.

Lemma 4.4.10. For a polynomial p ∈ C[X] define polynomial p′ ∈ C[X] to be

p′(x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks)

= p
(
ϕ−1

1 (x1,1), . . . , ϕ−1
1 (x1,k1), . . . , ϕ−1

s (xs,1), . . . , ϕ−1
s (xs,ks)

)
.

Then p ∈ I(P) if and only if p′ ∈ I(P ′).

Proof. Recall that I(P) is a radical ideal, then by the Strong Nullstellensatz we have p ̸∈
I(P) if and only if there exists a point

a ∈ Zk1
p

m1
1
× · · · × Zks

pms
s

76

such that a is in Sol(P) and p(a) ̸= 0. Similarly, as I(P ′) is radical 1 then p′ ̸∈ I(P ′) if and
only if there exists a point (a′,a′′),

a′ ∈ Uk1
p

m1
1
× · · · × Uks

pms
s
, a′′ ∈ U r1

p
m1
1
× · · · × U rs

pms
s

such that (a′,a′′) ∈ Sol(P ′) and p′(a′) ̸= 0.
Moreover, by our construction, a = (a1,1, . . . , a1,k1 , a2,1, . . . , a2,k2 , . . . , as,ks) is a solution

of P if and only if

a′ = (ϕ1(a1,1), . . . , ϕ1(a1,k1), ϕ2(a2,1), . . . , ϕ2(a2,k2), . . . , ϕs(as,ks))

can be extended to a solution of P ′. Finally,

p′
(
ϕ−1

1 (a1,1), . . . , ϕ−1
1 (a1,k1), ϕ−1

2 (a2,1), . . . , ϕ−1
2 (a2,k2), . . . , ϕ−1

s (as,ks)
)

= 0

if and only if p(a) = 0. This finishes the proof.

4.4.5 Gröbner Bases for the problem over roots of unity

Having transformed the problem to a problem over (multi-sorted) roots of unity has a huge
advantage, namely these new generating sets corresponding to each Li are indeed Gröbner
Bases. We first verify this for each Li, then will show the union of all these generating sets
gives a Gröbner Basis for the entire problem.

Lemma 4.4.11. For each 1 ≤ i ≤ s, the set of polynomials G′
i in (4.5) is a Gröbner Basis

for I(L′
i) = I(Sol(L′

i)) with respect to lex order xi,1 ≻ · · · ≻ xi,ki
≻ yi,1 ≻ · · · ≻ yi,ri.

Proof. The proof has two parts. In the first part we show that G′
i is a Gröbner Basis by

showing that it satisfies the Buchberger’s Criterion, Theorem 2.1.20. In the second part we
show the generating ideal by G′

i is equivalent to the vanishing ideal of Sol(L′
i).

Consider ⟨G′
i⟩. We show that G′

i is a Gröbner Basis for ⟨G′
i⟩ by verifying that the leading

monomials of every pair of polynomials in G′
i are relatively prime. For each xi,j−f ′

i,j , we have
LM(xi,j − f ′

i,j) = xi,j . Moreover, the leading monomial of (xi,j)(pmi
i) − 1 or (yi,j)(pmi

i) − 1
is (xi,j)(pmi

i) and (yi,j)(pmi
i), respectively. Hence, for every pair of polynomials in G′

i the
leading monomials are relatively prime which, by Proposition 2.1.21, implies their reduced
S-polynomial is zero. By Buchberger’s Criterion, Theorem 2.1.20, it follows that G′

i is a
Gröbner Basis for ⟨G′

i⟩ (according to the lex order).
It remains to show ⟨G′

i⟩ = I(Sol(L′
i)). It is easy to see that ⟨G′

i⟩ ⊆ I(Sol(L′
i)). This

is because, by our construction we have V (⟨G′
i⟩) = Sol(L′

i) and hence any polynomial

1For all i ∈ [s] and for all j ∈ {1, . . . , ki}, the domain polynomial (xi,j)(p
mi
i

) − 1 belongs to the idea I(P ′)
i.e. remainder of division of (xi,j)(p

mi
i

) − 1 by (xi,j) − f ′
i,j is 0 = 1 − (f ′

i,j)(p
mi
i

).

77

p ∈ ⟨G′
i⟩ is zero over all the points in Sol(L′

i) which implies p ∈ I(Sol(L′
i)). Next we prove

I(Sol(L′
i)) ⊆ ⟨G′

i⟩. Consider a polynomial p ∈ I(Sol(L′
i)). We prove p|G′

i
= 0. Note that

p(a) = 0 for all a ∈ Sol(L′
i). Let q = p|G′

i
. Because of xi,1 − f ′

i,1, . . . , xi,ki
− f ′

i,ki
in G′,

the polynomial q does not contain variables xi,1, . . . , xi,ki
, and hence it is a polynomial in

yi,1, . . . , yi,ri . Now note that any b = (b1, . . . , bri) ∈ U ri

p
mi
i

extends to a unique point in
Sol(L′

i), this is because in G′
i (similarly in Gi and Li) all the xi,1, . . . , xi,ki

have coefficients
and exponent equal to 1. Therefore, all the points in U ri

p
mi
i

are zeros of q, hence q = p|G′
i

is the zero polynomial. Since p ∈ I(Sol(L′
i)) was arbitrary chosen, it follows that for every

p ∈ I(Sol(L′
i)) we have p|G′

i
= 0. Hence, I(Sol(L′

i)) ⊆ ⟨G′
i⟩. This finishes the proof.

Given the above lemma we prove G′ = ∪1≤i≤sG
′
i is a Gröbner Basis for I(P ′) =

I(Sol(P ′)) with respect to the lex order (4.3).

Lemma 4.4.12. The set of polynomials G′ = ∪1≤i≤sG
′
i forms a Gröbner Basis for I(P ′) =

I(Sol(P ′)) with respect to the lex order x1,1 ≻lex · · · ≻lex x1,k1 ≻lex · · · ≻lex xs,1 ≻lex

· · · ≻lex xs,ks ≻ y1,1 ≻lex · · · ≻lex y1,r1 ≻lex · · · ≻lex ys,1 ≻lex · · · ≻lex ys,rs.

Proof. Recall that

Sol(P ′) = Sol(L′
1) ∩ · · · ∩ Sol(L′

s)

= V
(
I(Sol(L′

1))
)
∩ · · · ∩V

(
I(Sol(L′

s))
)

= V
(〈
G′

1
〉)
∩ · · · ∩V

(〈
G′
s

〉)
(by Lemma 4.4.11)

= V
(〈
G′

1
〉

+ · · ·+
〈
G′
s

〉)
(by Theorem 2.1.8)

This implies,

I(P ′) = I(Sol(P ′)) =
〈
G′

1
〉

+ · · ·+
〈
G′
s

〉
.

Now by Lemma 4.4.11 each G′
i is a Gröbner Basis. Moreover, observe that for all distinct

i and j the ideals ⟨G′
i⟩ and

〈
G′
j

〉
do not share variables. Hence, the set of polynomials

G′
1 ∪ · · · ∪G′

s is indeed a Gröbner Basis for I(Sol(P ′)), according to the lex order.

Lemma 4.4.10 states that checking if a polynomial p is in I(P) is equivalent to checking
if the polynomial p′ is in I(P ′). However, the substitution technique used in Lemma 4.4.10
may result in a polynomial with exponentially many monomials and hence we only consider
polynomials of bounded degree. Provided that G′ is a Gröbner Basis for I(P ′) with respect to
the lex order, see Lemma 4.4.12, we can test membership of any bounded degree polynomial
in polynomial time. Note that division of any polynomial by polynomials xi,1−f ′

i,1, . . . , xi,ki
−

f ′
i,ki
, i ∈ [s] results in a polynomial over variables yi,1, . . . , yi,ri , i ∈ [s], where

∪i∈[s]{(yi,1)(pmi
i) − 1, . . . , (yi,ri)(pmi

i) − 1}

78

is a Gröbner Basis with respect to the grlex order in C[∪i∈s{yi,1, . . . , yi,ri}]. This gives the
following theorem.

Theorem 4.4.13. Let Γ be a finite multi-sorted constraint language which is invariant
under the affine operation of Zpm1

1
, . . . ,Zpms

s
. Then IMPd(Γ) is decidable in polynomial

time.

The above theorem together with Proposition 4.4.9 imply that the IMPd(∆) is polyno-
mial time decidable for constraint language ∆ that is invariant under the affine operation
of an Abelian group.

Theorem 4.4.14. Let ∆ be a finite constraint language invarient under the affine operation
of Abelian group A. Then IMPd(∆) is decidable in polynomial time.

Later in Chapter 5 we will prove that in fact we can find a proof of membership, if one
exists, for constraint languages over Abelian groups. In fact, we provide a polynomial time
algorithm to construct a d-truncated Gröbner Basis with respect to a grlex .

4.5 Gröbner Bases for linear system in GF(p) via conversion
technique

In this section we focus on constraint languages that are expressible as a system of linear
equations modulo a prime number. Let Γ be a constraint language over a set D with
|D| = p, and p a prime number. Suppose Γ has an affine polymorphism modulo p (i.e. a
ternary operation ψ(x, y, z) = x⊖y⊕z, where ⊕,⊖ are addition and subtraction modulo p,
or, equivalently, of the field GF(p)). In this case every CSP can be represented as a system
of linear equations over GF(p). Without loss of generality, we may assume that the system of
linear equations at hand is already in the reduced row echelon form. Transforming system of
linear equations mod p in its reduced row echelon form to a system of polynomials in R[X]
that are a Gröbner Basis is not immediate and requires substantial work. This is the case
even if we restrict ourselves to lexicographic order. Let us elaborate on this by an example
considering linear equations over GF (2).

Example 4.5.1. We assume a lexicographic order ≻ with x1 ≻lex · · · ≻lex xn. We also
assume that the linear system has r ≤ n equations and is already in its reduced row echelon
form with xi as the leading monomial of the i-th equation. Let Suppi ⊂ [n] such that
{xj : j ∈ Suppi} is the set of variables appearing in the i-th equation of the linear system
except for xi. Let the i-th equation be gi = 0(mod 2) where gi = xi ⊕ fi, with i ∈ [r]
and fi is the Boolean function (⊕j∈Suppi

xj) ⊕ αi and αi ∈ {0, 1}. Define a polynomial
M(fi) ∈ R[x1, . . . , xn] interpolating fi, that is, such that, for every a ∈ {0, 1}n, fi(a) = 0
if and only if M(fi)(a) = 0, and fi(a) = 1 if and only if M(fi)(a) = 1. Now, consider the

79

following set of polynomials.

G = {x1 −M(f1), . . . , xr −M(fr), (x2
r+1 − xr+1), . . . , (x2

n − xn)}.

Set G ⊂ R[x1, . . . , xn] is a Gröbner Basis with respect to lex order. This is because for every
pair of polynomials in G the reduced S-polynomial is zero as the leading monomials of any
two polynomials in G are relatively prime. By Buchberger’s Criterion (see Theorem 2.1.20)
it follows that G is a Gröbner Basis with respect to the lex ordering.

However, this construction may not be computationally efficient as the polynomials
M(fi) may have exponentially many monomials. This case was overlooked in [161]. Bharathi
and Mastrolilli [25] resolved this issue in an elegant way. Having G′ = {x1 − f1, . . . , xr −
fr, (x2

r+1−xr+1), . . . , (x2
n−xn)}, they convert G′ to set of polynomials in R[x1, . . . , xn] which

is a d-truncated Gröbner Basis. Their conversion algorithm has time complexity nO(d) where
d = O(1). Their algorithm is a modification of the conversion algorithm by Faugère, Gianni,
Lazard and Mora [75]. See [25] for more details.

We consider this problem for any fixed prime p and prove that a d-truncated Gröbner
Basis can be computed in time nO(d). First, we give a very brief introduction to the FGLM
conversion algorithm [75]. Next, we present our conversion algorithm that, given a system
of linear equations mod p, produces a d-truncated Gröbner Basis in graded lexicographic
order. The heart of our algorithm is finding linearly independent expressions mod p that
helps us carry the conversion.

4.5.1 Gröbner Basis conversion

We say a Gröbner Basis G = {g1, . . . , gt} is reduced if LC(gi) = 1 for all gi ∈ G, and if for
all gi ∈ G no monomial of gi lies in ⟨LT(G \ {gi})⟩. We note that for an ideal and a given
monomial ordering the reduced Gröbner Basis of I is unique (see, e.g., [59], Theorem 5,
p.93). Given the reduced Gröbner Basis of a zero-dimensional ideal I ⊂ F[X] with respect
to a monomial order ≻1, where F is a computable field, the FGLM algorithm computes
a Gröbner Basis of I with respect to another monomial order ≻2. The complexity of the
FGLM algorithm depends on the dimension of F-vector space F[X]/I. More precisely, let
D(I) denote the dimension of F-vector space F[X]/I, then we have the following proposition.

Proposition 4.5.2 (Proposition 4.1 in [75]). Let I be a zero-dimensional ideal and G1 be
the reduce Gröbner Basis with respect to an ordering ≻1. Given a different ordering ≻2,
there is an algorithm that constructs a Gröbner Basis G2 with respect to ordering ≻2 in
time O(nD(I)3).

We cannot apply the FGLM algorithm directly as D(I) could be exponentially large in
our setting. Note that D(I) is equal to the number of common zeros of the polynomials
from ⟨G1⟩, which in the case of linear equations is D(I) = O(pn−r) where r is the number of

80

Algorithm 1 Conversion algorithm
Require: G1 as in (4.6) that corresponds to I(P), degree d.

1: Let Q be the list of all monomials of degree at most d arranged in increasing order with
respect to grlex .

2: G2 = ∅, B(G2) = {1} (we assume 1 ̸∈ I(P)). Let bi (arranged in increasing grlex order)
be the elements of B(G2).

3: for q ∈ Q do
4: if q is divisible by some LM in G2 then
5: Discard it and go to Step 3,
6: if q|G1 = ∑

j
kjbj |G1 then ▷ where kj ∈ R, bj ∈ B(G2)

7: G2 = G2 ∪ {q −
∑
j
kjbj}

8: else
9: B(G2) = B(G2) ∪ {q}

10: return G2

equations in the reduced row echelon form. Furthermore, as we discussed, we are not given
the explicit reduced Gröbner Basis G1 with respect to lex ordering (the Gröbner Basis is
presented to us as a system of linear equation mod p rather than polynomials in R[X]). We
shall present an algorithm that resolves these issues.

Let P be an instance of CSP(Γ) that is expressed as a system of linear equations S over
Zp with variables x1, . . . , xn. A system of linear equations over Zp can be solved by Gaussian
elimination (this immediately tells us if 1 ∈ I(P) or not, and we proceed only if 1 ̸∈ I(P)).
We assume a lexicographic order ≻lex with x1 ≻lex · · · ≻lex xn. We also assume that the
linear system has r ≤ n equations and it is already in its reduced row echelon form with xi

as the leading monomial of the i-th equation. Let Suppi ⊂ [n] such that {xj : j ∈ Suppi}
be the set of variables appearing in the i-th equation of the linear system except for xi.

Fix a prime p and ⊕, ⊖, ⊙ denote addition, subtraction, and multiplication modulo p,
respectively. We will call a linear polynomial over Zp a p-expression. Let the i-th equation be
gi = 0 (mod p) where gi := xi⊖fi, with i ∈ [r] and fi is the p-expression (⊕j∈Suppi

αjxj)⊕αi
and αj , αi ∈ Zp. We will assume that each variable xi is associated with its p-expression fi

which comes from the mod p equations. This is clear for i ≤ r; for i > r the p-expression
fi = xi itself. Hence, we can write down the reduced Gröbner Basis in the lex order in an
implicit form as follows.

G1 = {x1 − f1, . . . , xr − fr,
∏
i∈Zp

(xr+1 − i), . . . ,
∏
i∈Zp

(xn − i)} (4.6)

Given G1, our conversion algorithm, Algorithm 1, constructs a d-truncated Gröbner
Basis over R[x1, . . . , xn] with respect to the grlex order. At the beginning of the algorithm,
there will be two sets: G2, which is initially empty but will become the new Gröbner Basis
with respect to the grlex order, and B(G2), which initially contains 1 and will grow to be the

81

grlex monomial basis of the quotient ring R[x1, . . . , xn]/I(P) as a R-vector space. In fact,
B(G2) contains the reduced monomials (of degree at most d) with respect to G2. Every
f ∈ R[x1, . . . , xn] is congruent modulo I(P) to a unique polynomial r which is a R-linear
combination of the monomials in the complement of ⟨LT(I(P))⟩. Furthermore, the elements
of {xα | xα ̸∈ ⟨LT(I(P))⟩} are "linearly independent modulo I(P)" (see Proposition 5.1.8).
This suggests the following. In Algorithm 1, Q is the list of all monomials of degree at most
d arranged in increasing order with respect to grlex ordering. The algorithm iterates over
monomials in Q in increasing grlex order and at each iteration decides exactly one of the
followings given the current sets G2 and B(G2).

1. q should be discarded (if q is divisible by some LM in G2), or

2. a polynomial with q as its leading monomial should be added to G2 (if q|G1 =∑
j
kjbj |G1 ; bj ∈ B(G2)), or

3. q should be added to B(G2).

The trickiest part is to decide if the current monomial q|G1 is a R-linear combination of
bj |G1 with bj being the current elements in B(G2). Provided this can be done correctly and
in polynomial time, the correctness of Algorithm 1 follows by the analyses in [75] and it runs
in polynomial time as there are at most O(nd) monomials in Q. The rest of this section is
devoted to provide a polynomial time procedure that correctly decides if q|G1 = ∑

j
kjbj |G1

holds for the current monomial q and the current bjs in B(G2).

4.5.2 Expansion in a basis of p-expressions

For a monomial q, the normal form of q by G1, q|G1 , is the remainder on division of q by
G1 in the lex order. q|G1 is unique and it does not matter how the elements of G1 are listed
when using the division algorithm. Here, it suffices for us to write q|G1 in terms of product
of p-expressions. We start with a simple observation. Recall that r denotes the number of
linear equations in the reduced row echelon form.

Observation 4.5.3. Let q = xα1
1 · · ·xαn

n be a monomial such that for all r < i we have
αi ≤ p− 1. Then, q|G1 = fα1

1 · · · fαn
n where each fi is the p-expression associated to xi.

A keystone of our conversion algorithm is a relation between a product of p-expressions
and a sum of p-expressions. Intuitively speaking, we will prove that a product of p-expressions
can be written as a R-linear combination of (linearly independent) p-expressions. Indeed,
we provide a set of p-expressions and prove the p-expressions in this set are linearly inde-
pendent and span the space of functions from Zdp to C. Consider the set Vn,p of functions
from Znp to C as a pn-dimensional vector space, whose components are values of the function

82

at the corresponding point of Znp . Let

Fn =
{

n⊕
i=1

αixi ⊕ xn+1 ⊕ β | αi ∈ {0, . . . , p− 1}, i ∈ [n], β ∈ {0, . . . , p− 2}
}

be a collection of linear functions over Zp, and let

Fn = Fn ∪ · · · ∪ F0 ∪ {1}.

Theorem 4.5.4. For any n, the collection Fn of p-expressions is linearly independent as
a set of vectors from Vn+1,p and forms a basis of Vn+1,p.

As a first application of Theorem 4.5.4 we show that any p-expression can be written as
a R-linear combination of p-expressions in our basis Fn.

Lemma 4.5.5. Any p-expression α1x1⊕α2x2⊕· · ·⊕αnxn⊕β with αn ̸= 0 can be represented
by a R-linear combination of the p-expression basis from Fn−1.

Proof. By Theorem 4.5.4, for any x and y, the expression y ⊕ αx ⊕ β can be written as a
R-linear combination of p-expressions from F1. Such a R-linear combination can be found
in constant time pO(1) as the number of functions in F1 is p2. We continue by assuming
such a R-linear combination of any y ⊕ αx⊕ β is provided to us.

Now consider α1x1 ⊕ α2x2 ⊕ · · · ⊕ αnxn ⊕ β. Introduce a new variable y and set y =
α1x1⊕α2x2⊕· · ·⊕αn−1xn−1. Hence, α1x1⊕α2x2⊕· · ·⊕αnxn⊕β = y⊕αnxn⊕β. By the
above discussion, y ⊕ αnxn ⊕ β can be written as a R-linear combination of p-expressions
from F1. Therefore, there exist cγ , cαγ , κ ∈ R so that

y ⊕ αnxn ⊕ β =
p−2∑
γ=0

cγ(y ⊕ γ) +
∑

α∈[p−1],γ∈[p−2]
cαγ(αy ⊕ xn ⊕ γ) + κ (4.7)

Note that p-expressions y ⊕ γ are in F0, p-expressions αy ⊕ xn ⊕ γ are in F1, and κ is a
constant. Substituting back for y, we observe that the second sum on the right hand side is
already a R-linear combination of p-expressions from Fn−1. Consider the first sum.

p−2∑
γ=0

cγ(y ⊕ γ) =
p−2∑
γ=0

cγ(α1x1 ⊕ α2x2 ⊕ · · · ⊕ αn−1xn−1 ⊕ γ) (4.8)

Now set y = α1x1 ⊕ α2x2 ⊕ · · · ⊕ αn−2xn−2. This gives

p−2∑
γ=0

cγ(α1x1 ⊕ α2x2 ⊕ · · · ⊕ αn−1xn−1 ⊕ γ) =
p−2∑
γ=0

cγ(y ⊕ αn−1xn−1 ⊕ γ) (4.9)

Note that each term y ⊕ αn−1xn−1 ⊕ γ is expressible as a R-linear combination of p-
expressions from F1. This leads us to the following.

83

p−2∑
γ=0

cγ(y ⊕ αn−1xn−1 ⊕ γ)

=
p−2∑
γ=0

cγ

p−2∑
δ=0

cδ(y ⊕ δ) +
∑

α∈[p−1],δ∈[p−2]
cαδ(αy ⊕ xn−1 ⊕ δ) + κ′

 (4.10)

=
p−2∑
γ=0

cγ

p−2∑
δ=0

cδ(y ⊕ δ)

+
p−2∑
γ=0

cγ

 ∑
α∈[p−1],
δ∈[p−2]

cαδ(αy ⊕ xn−1 ⊕ δ)

+
p−2∑
γ=0

cγκ
′

=
p−2∑
γ=0

c′
γ(y ⊕ γ) +

∑
α∈[p−1],
γ∈[p−2]

c′
αγ(αy ⊕ xn−1 ⊕ γ) + κ′′ (4.11)

Note that p-expressions y ⊕ γ are in F0, p-expressions αy ⊕ xn−1 ⊕ γ are in F1, and κ′′ is a
constant. Substituting back for y, we observe that the second sum on the right hand side
is already a R-linear combination of p-expressions from Fn−2. Hence, it suffices to continue
with the first term of the sum (4.11) which we can handle similar to the above procedure.

All in all, it requires to repeat the above procedure n times where at the i-th iteration
we deal with a sum of p − 2 p-expressions of form

n−i⊕
i=1

αixi ⊕ β. This results in O(npO(1))
running time.

Another application of Theorem 4.5.4 is transforming a multiplication of p-expressions to
an equivalent R-linear combination of the basis in Fn. Suppose x1, . . . , xd are (not necessary
distinct) variables that take values 0, . . . , p− 1. Let x1 · x2 · · ·xd be their multiplication. In
general, we are interested in a multiplication of p-expressions however, let us first discuss
the simpler case of x1 ·x2 · · ·xd. Unfortunately, the trick we used in the proof of Lemma 4.5.5
is no longer effective here. However, assuming d is a constant makes the situation easier.
x1 · x2 · · ·xd is a pd-dimensional vector. By Theorem 4.5.4, the set Fd−1 of p-expressions
spans the set Vd,p of functions from Zdp to C as a pd-dimensional vector space. Hence, in
constant time (depending on p and d), we can have a R-linear combination of the basis in
Fd−1 that represents x1 · x2 · · ·xd. We continue by assuming such a R-linear combination
of any x1 · x2 · · ·xd is provided to us. The next lemma states that we can have a R-linear
combination of the basis in Fn for any h1 · h2 · · ·hd where each hi is a p-expression over
variables x1, . . . , xn.

Lemma 4.5.6. Let h1, h2, . . . , hd be (not necessary distinct) p-expressions over variables
x1, . . . , xn. The product M = h1 · h2 · · ·hd viewed as a function from Znp to C can be
represented as a R-linear combination of the basis in Fn−1.

84

Proof. Let us treat his as indeterminates. Define

Ht =
{

t⊕
i=1

αihi ⊕ ht+1 ⊕ β | αi ∈ {0, . . . , p− 1}, i ∈ [t], β ∈ {0, . . . , p− 2}
}

to be a collection of linear functions over Zp, and let

Hd−1 = Hd−1 ∪ · · · ∪H0 ∪ {1}.

By Theorem 4.5.4 and the above discussion, M can be written as a R-linear combination
of functions in Hd−1. Therefore, there are coefficients cα1...αtβ ∈ R and constant κ ∈ R so
that

M =
d−1∑
t=0

∑
αi∈[p−1],
β∈[p−2]

cα1...αtβ

(
t⊕
i=1

αihi ⊕ ht+1 ⊕ β
)

+ κ (4.12)

Recall that each hi is a p-expressions over variables x1, . . . , xn. By substituting back for
each hi and rearranging terms, each p-expression ⊕t

i=1 αihi ⊕ ht+1 ⊕ β is equivalent to
α′

1x1 ⊕ α′
2x2 ⊕ · · · ⊕ α′

nxn ⊕ β′ for some α′
1, . . . , α

′
n, β

′ ∈ [p − 1]. By Lemma 4.5.5, such
expression can be written as a R-linear combination of basis in Fn.

Note that number of p-expressions in (4.12) is at most pd+1. By Lemma 4.5.5, each
p-expression can be written as a R-linear combination of basis in Fn in time O(npO(1)).
Therefore, in time O(npO(d)) we can write M = h1 · h2 · · ·hd as a R-linear combination of
basis in Fn which is polynomial in n for fixed p and d.

4.5.3 The correctness of the conversion algorithm

Now we have enough ingredients to prove Algorithm 1 runs in polynomial time and correctly
decides if q|G1 = ∑

j
kjbj |G1 for every q. In the following theorem, suppose q is the current

monomial considered by the algorithm. Furthermore, suppose sets G2 and B(G2) have been
constructed correctly so far.

Theorem 4.5.7. Let q = xα1
1 · · ·xαn

n be a monomial of degree at most d. Suppose q is not
divisible by any leading monomial of polynomials in the current set G2. Then, there exists
a polynomial time algorithm that can decide whether q|G1 = ∑

j
kjbj |G1 where bj are in the

current set B(G2) in Algorithm 1.

Proof. First, we discuss the case where for some r < i we have p− 1 < αi. Set q = q′ · xαi
i

where q′ = xα1
1 · · ·x

αi−1
i−1 ·x

αi+1
i+1 · · ·xαn

n . Then q|G1 = q′|G1 ·x
αi
i |G1 . Note that xαi

i |G1 is a linear
combination of xp−1

i , xp−2
i , . . . , xi. This is because the domain polynomial ∏a∈Zp

(xi − a) is

85

in G1. Therefore,

q|G1 = q′|G1 · x
αi
i |G1

= q′|G1 · (cp−1x
p−1
i + · · ·+ c1xi)

= (q′ · cp−1x
p−1
i)|G1 + · · ·+ (q′ · c1xi)|G1 (4.13)

All of q′ · xji in (4.13) have degree less than q, and hence they have been considered by
Algorithm 1 before reaching q. Now, none of q′ ·xji can be a multiple of the leading monomial
of a polynomial in G2 as otherwise q divides the leading monomial of a polynomial in G2.
This implies that all q′ ·xji with cj ̸= 0 in (4.13) are in B(G2) and we have q|G1 = ∑

j
kjbj |G1 .

We continue by assuming for all r < i we have αi ≤ p−1. Note that if q|G1 = ∑
j
kjbj |G1 ,

then q|G1 −
∑
j
kjbj |G1 = 0 and hence q − ∑

j
kjbj ∈ I(P). We proceed by checking, in a

systematic way, if there exist coefficients kj such that q|G1 −
∑
j
kjbj |G1 = 0 holds. We will

construct a system of linear equations over R for coefficients kj so that this system has a
solution if and only if q|G1 = ∑

j
kjbj |G1 .

By Observation 4.5.3, we have q|G1 = fα1
1 · · · fαn

n where each fi is the p-expression
associated to xi. Similarly, for each bj we have bj |G1 = Mj where Mj = hj1 · hj2 · · ·hjd is a
multiplication of at most d (not necessary distinct) p-expressions.

fα1
1 · · · f

αn
n =

∑
j

kjbj |G1 =
∑
j

kjMj (4.14)

Recall that degree of q is at most d and, by Lemma 4.5.6, q can be written as a R-
linear combination of the basis in Fn−1, say Lq. Similarly, by Lemma 4.5.6, each product
Mj = hj1 · hj2 · · ·hjd can be written as a R-linear combination of the basis in Fn−1 in
polynomial time. Therefore, (4.14) is equivalent to

fα1
1 · · · f

αn
n = Lq =

∑
j

kjbj |G1 =
∑
j

kjMj =
∑
j

kjLj (4.15)

where each Lj is a R-linear combination equivalent to Mj via p-expression basis in Fn.
Rearranging terms in ∑

j
kjLj and Lq yields

0 =
∑
j

kjLj −Lq =
∑
j

k′
jL

′
j (4.16)

where each k′
j is linear combination of kjs. Since Fn−1 is linearly independent and the left

hand side of (4.16) is a constant we deduce that all k′
j should be zero. Hence, we are left

with (possibly more than one) linear equations with respect to kj over R. Note that at this

86

point there is not any term with a p-expression. If such a system has a (unique) solution
for kj then we conclude q|G1 = ∑

j
kjbj |G1 , else the equality does not hold.

Note that, by Lemma 4.5.6, time complexity of finding a R-linear combination of basis in
Fn−1 for a multiplication of d p-expressions is O(npO(d)). Moreover, we use Lemma 4.5.6 at
most O(nO(d)) many times. Hence, the whole process requires O(nO(d)) time complexity.

Theorem 4.5.8. Let Γ be a constraint language where each relation in Γ is expressed as a
system of linear equations modulo a prime number p. Then, the IMPd(Γ) can be solved in
polynomial time for fixed d and p.

4.5.4 Proof of Theorem 4.5.4

In this section we give a proof of Theorem 4.5.4. Also, it turns out in the case p = 3 there
is another basis of Vn,p that has a particularly clear structure. We give a proof of this result
in Section 4.5.4.

Linear independence

Recall that we consider the set Vk,p of functions from Zkp to C as a pk-dimensional vector
space, whose components are values of the function at the corresponding point of Zkp. Let

Fk =
{

k⊕
i=1

αixi ⊕ xk+1 ⊕ β | αi ∈ {0, . . . , p− 1}, i ∈ [n], β ∈ {0, . . . , p− 2}
}

be a collection of linear functions over Zp, and let

Fk = Fk ∪ · · · ∪ F0 ∪ {1}.

The result we are proving in this section is

Theorem 4.5.9. For any k, the collection Fk of p-expressions is linearly independent as a
set of vectors from Vk+1,p and forms a basis of Vk+1,p.

Monomials and projections

As a vector space the set Vk,p has several natural bases. Let Mon(k, p) denote the set of
all monomials u = xd1

1 . . . xdk
k where di ∈ {0, . . . , p − 1}; and let cont(u) denote the set

{i | di ̸= 0}. For a ∈ Zkp we denote by ra the function given by ra(a) = 1 and ra(x) = 0
when x ̸= a. We start with a simple observation.

Lemma 4.5.10. The sets Mon(k, p) and R(k, p) = {ra | a ∈ Zkp} are bases of Vk,p.

As is easily seen, both sets contain pk elements, R(k, p) obviously spans Vk,p. That
Mon(k, p) also spans Vk,p follows from polynomial interpolation properties.

87

Our goal here is to find yet another basis of Vk,p suitable for our needs, which is the set
Fk defined above.

In this section we view functions from Fk as elements of Vk+1,p. In particular, we will
use coordinates of such functions in the bases Mon(k + 1, p) and R(k + 1, p). The latter is
of course just the collection of values of a function in points from Zk+1

p , while the former
is the polynomial interpolation of a function, which is unique when we restrict ourselves to
polynomials of degree at most p− 1 in each variable.

The number of functions in Fk is

1 +
k∑
ℓ=0
|Fℓ| = 1 +

k∑
ℓ=0

pℓ(p− 1) = 1 + (p− 1)
k∑
ℓ=0

pℓ = 1 + (p− 1)p
k+1 − 1
p− 1 = pk+1.

Thus, we only need to prove that Fk spans Vk+1,p.
We will need a finer partition of sets Fk: for S ⊆ [k] let FSk denote the set of functions⊕k

i=1 αixi ⊕ xk+1 ⊕ b such that αi ̸= 0 if and only if i ∈ S.
We prove by induction on |S|, S ⊆ [k + 1], that any monomial u with cont(u) = S is in

the span of
FSk =

⋃
ℓ≤k,T⊆S∩[ℓ]

F Tℓ .

Since up to renaming the variables FSk can be viewed as F|S|, it suffices to prove the result
for S = [k], and our inductive process is actually on k.

For f ∈ Fk let f ′ denote the sum of all monomials u of f (with the same coefficients)
for which cont[u] = [k + 1]. In other words, f ′ can be viewed as a projection f onto the
subspace V1 spanned by Mon∗(k+ 1, p) = {u ∈ Mon(k+ 1, p) | cont(u) = [k+ 1]} parallel to
the subspace V2 spanned by Mon†(k+ 1, p) = Mon(k+ 1, p)−Mon∗(k+ 1, p). Let F ′

k = {f ′ |
f ∈ Fk}. Note that V1 is also the subspace of Vn,p spanned by the set {ra | a ∈ (Z∗

p)k+1},
and the dimensionality of V1 is (p− 1)k+1 = |Fk| = |F ′

k|. Since by the induction hypothesis
f − f ′ is in the span of Fk, it suffices to prove that vectors in F ′

k are linearly independent,
and therefore generate V1. This will be proved in the rest of this section.

Proposition 4.5.11. The set F ′
k is linearly independent.

We prove Proposition 4.5.11 by constructing a matrix containing the values of functions
from F ′

k and find its rank by finding all its eigenvalues. We do it in three steps. First, let F †
k

denote the superset of Fk that apart from functions from Fk also contains functions of the
form ⊕k

i=1 αixi⊕xk+1⊕(p−1) for αi ∈ Z∗
p, i ∈ [k]. Then, let Nk be the p(p−1)k×p(p−1)k-

dimensional matrix whose rows are labeled with (x1, . . . , xk+1) ∈ (Z∗
p)k × Zp representing

values of the arguments of functions from F †
k , and the columns are labeled with f ∈ F †

k . The
entry of Nk in row (x1, . . . , xk+1) and column f is f(x1, . . . , xk+1). In the next section we
find the eigenvectors and eigenvalues of Nk. In the second step we use the properties of Nk to
study the matrix N ′′

k obtained from Nk by replacing every entry of the form f(x1, . . . , xk+1)

88

with the value f ′′(x1, . . . , xk+1), where f ′′ is the sum of all the monomials u from f with
x1, . . . , xk ∈ cont(u). We again find the eigenvectors and eigenvalues of N ′′

k . Finally, we
transform N ′′

k to obtain a new matrix N ′
k in such a way that the entry of N ′

k in the row
(x1, . . . , xk+1) with xk+1 ̸= 0 and column f equals f ′(x1, . . . , xk+1). We then finally prove
that all the rows of N ′

k labeled (x1, . . . , xk+1), xk+1 ̸= 0, are linearly independent.

Kronecker sum and the eigenvalues of Nk

We first introduce some useful notation.
Let A,B be q× r and s× t matrices with entries in Zp. The Kronecker sum of A and B

denoted A ⊞ B is the qs × rt matrix whose entry in row is + i′ and column jt + j′ equals
A(i, j) ⊕ B(i′, j′). In other words, A ⊞ B is defined the same way as Kronecker product,
except using addition modulo p rather than multiplication. We also use A⊞k to denote
A⊞ · · ·⊞A.

We consider two matrices, matrix Bp essentially consists of values of unary functions αx
on [p − 1], except that we rearrange its rows and columns as follows. Let a be a primitive
residue modulo p, that is, a generator of Z∗

p. Then

Bp =

1 a a2 a3 . . . ap−2

ap−2 1 a a2 . . . ap−3

ap−3 ap−2 1 a . . . ap−4

...
...

...
...

...
a a2 a3 a4 . . . 1

,

where ai denotes exponentiation modulo p. Matrix Cp is again the operation table of addition
modulo p with rearranged rows

Cp =

0 1 2 . . . p− 1
p− 1 0 1 . . . p− 2
p− 2 p− 1 0 . . . p− 3

...
...

...
...

1 2 3 . . . 0

.

As is easily seen, the values of functions ⊕k
i=1 αixi, α1, . . . , αk ∈ Z∗

p on (Z∗
p)k can be viewed

as B⊞k; and those of ⊕k
i=1 αixi ⊕ xk+1 ⊕ b, α1, . . . , αk ∈ Z∗

p, b ∈ Zp, on x1, . . . , xk ∈ Z∗
p,

xk+1 ∈ Zp can be represented as Nk = Cp ⊞ B⊞k
p . Next we find the eigenvectors and

eigenvalues of Nk.

89

Recall that a square matrix of the form

A =

a1 a2 a3 . . . an

an a1 a2 . . . an−1

an−1 an a1 . . . an−2
...

...
...

...
a2 a3 a4 . . . a1

(4.17)

is called circulant. The eigenvectors and eigenvalues of circulant matrices are well known.
We give a brief proof of the following fact for the sake of completeness.

Lemma 4.5.12. The eigenvectors of the matrix A in (4.17) have the form v⃗ξ = (1, ξ, ξ2, . . . , ξn−1)
for nth roots of unity ξ. The eigenvalue corresponding to v⃗ξ is µξ = a1 + a2ξ + a3ξ

2 + · · ·+
anξ

n−1.

Proof. We compute A · v⃗ξ

A · v⃗ξ =

a1 a2 a3 . . . an

an a1 a2 . . . an−1

an−1 an a1 . . . an−2
...

...
...

...
a2 a3 a4 . . . a1

·

1
ξ

ξ2

...
ξn−1

=

a1 + a2ξ + a3ξ
2 + · · ·+ anξ

n−1

an + a1ξ + a2ξ
2 + · · ·+ an−1ξ

n−1

an−1 + anξ + a1ξ
2 + · · ·+ an−2ξ

n−1

...
a2 + a3ξ + a4ξ

2 + · · ·+ a1ξ
n−1

= (a1 + a2ξ + a3ξ
2 + · · ·+ anξ

n−1)

1
ξ

ξ2

...
ξn−1

,

as required.

90

A generalization of circulant matrices is obtained by replacing entries of a circulant
matrix by matrices. More precisely, a matrix of the form

A =

A1 A2 A3 . . . An

An A1 A2 . . . An−1

An−1 An A1 . . . An−2
...

...
...

...
A2 A3 A4 . . . A1

, (4.18)

where A1, . . . , An are square matrices of the same size is said to be block-circulant. Note
that Nk can be viewed as a block-circulant matrix:

Nk = Cp ⊞B⊞k
p =

B⊞k
p B⊞k

p ⊕ 1 . . . B⊞k
p ⊕ (p− 1)

B⊞k
p ⊕ (p− 1) B⊞k

p . . . B⊞k
p ⊕ (p− 2)

...
...

...
B⊞k
p ⊕ 2 B⊞k

p ⊕ 3 . . . B⊞k
p

 .

Similarly, B⊞ℓ
p can also be viewed as a block-circulant matrix:

B⊞(ℓ−1)
p ⊞Bp =

B

⊞(ℓ−1)
p ⊕ 1 B

⊞(ℓ−1)
p ⊕ a . . . B

⊞(ℓ−1)
p ⊕ ap−1

B
⊞(ℓ−1)
p ⊕ ap−1 B

⊞(ℓ−1)
p ⊕ 1 . . . B

⊞(ℓ−1)
p ⊕ ap−2

...
...

...
B

⊞(ℓ−1)
p ⊕ a B

⊞(ℓ−1)
p ⊕ a2 . . . B

⊞(ℓ−1)
p ⊕ 1

 .

In some cases the eigenvectors and eigenvalues of block-circulant matrices can also be
found.

Lemma 4.5.13. Let A be a block-circulant matrix with blocks A1, . . . , An as in (4.18)
such that A1, . . . , An have the same eigenvectors. Then every eigenvector w⃗ of A has the
form w⃗v,ξ = (1, ξ, . . . , ξn−1) ⊗ v⃗, where ξ is an nth root of unity and v⃗ is an eigenvector
of A1, . . . , An. Conversely, for every eigenvector v⃗ of A1, . . . , An and an nth root of unity
ξ, w⃗v,ξ is an eigenvector of A. The eigenvalue of A associated with w⃗v,ξ is µ1,v⃗ + µ2,v⃗ξ +
µ3,v⃗ξ

2 + · · ·+ µn,v⃗ξ
n−1, where µi,v⃗ is the eigenvalue of Ai associated with v⃗.

91

Proof. As in the proof of Lemma 4.5.12 we compute A · w⃗v,ξ:

A · w⃗v,ξ =

A1 A2 A3 . . . An

An A1 A2 . . . An−1

An−1 An A1 . . . An−2
...

...
...

...
A2 A3 A4 . . . A1

·

v⃗

ξv⃗

ξ2v⃗
...

ξn−1v⃗

=

A1v⃗ + ξA2v⃗ + ξ2A3v⃗ + · · ·+ ξn−1Anv⃗

Anv⃗ + ξA1v⃗ + ξ2A2v⃗ + · · ·+ ξn−1An−1v⃗

An−1v⃗ + ξAnv⃗ + ξ2A1v⃗ + · · ·+ ξn−1An−2v⃗
...

A2v⃗ + ξA3v⃗ + ξ2A4v⃗ + · · ·+ ξn−1A1v⃗

= (µ1,v⃗ + ξµ2,v⃗ + ξ2µ3,v⃗ + · · ·+ ξn−1µn,v⃗)

v⃗

ξv⃗

ξ2v⃗
...

ξn−1v⃗

,

as required.

We now apply these techniques to Nk. Let v⃗(η) = (1, η, η2, . . . , ηp−1) for a (p−1)th root
of unity, and let ⊗ denote Kronecker product.

Lemma 4.5.14. (1) For any k and any i, j ∈ Zp the matrices B⊞k
p ⊕ i and B⊞k

p ⊕ j have
the same eigenvectors, and every eigenvector has the form

v⃗(η1, . . . , ηk) = v⃗(η1)⊗ · · · ⊗ v⃗(ηk)

for some (p− 1)th roots of unity.

(2) For any k and any j ∈ Zp the eigenvalues of the matrix B⊞k
p ⊕ j are

λ(η1, . . . , ηk; j) =
p−2∑

i1,...,ik=0
(ai1 ⊕ · · · ⊕ aik ⊕ j)ηi11 . . . ηikk

for (p− 1)th roots of unity η1, . . . , ηk.

(3) Let i1, . . . , is ∈ [k] be such that if ηi ̸= 1 then i = ir, r ∈ [s], and s ̸= 0. Then

λ(η1, . . . , ηk; j) = (−1)k−sλ(ηi1 , . . . , ηik ; j).

92

Proof. We proceed by induction on k to prove all three claims simultaneously. If k = 1
then as Bp ⊕ j is a circulant matrix whose first row is (1⊕ j, a⊕ j, a2 ⊕ j, . . . , ap−2 ⊕ j), by
Lemma 4.5.12 its eigenvalues have the form

λ(η1) = (1⊕ j) + (a⊕ j)η1 + (a2 ⊕ j)η2
1 + · · ·+ (ap−2 ⊕ j)ηp−2

for a (p−1)th root of unity η1, and the corresponding eigenvector is v⃗(η1) = (1, η1, η
2
1, . . . , η

p−1
1)

regardless of j.
Now, suppose that the lemma is true for k − 1. Also, suppose that every eigenvector of

B
⊞(k−1)
p ⊕ j has the form v⃗(η2, . . . , ηk) for (p− 1)th roots of unity η2, . . . , ηk. Then B⊞k

p ⊕ j
is a block-circulant matrix with the first row (B⊞(k−1)

p ⊕ 1 ⊕ j, B⊞(k−1)
p ⊕ a ⊕ j, B⊞(k−1)

p ⊕
a2 ⊕ j, . . . , B⊞(k−1)

p ⊕ ap−1 ⊕ j). As by the induction hypothesis the blocks in this row have
the same eigenvectors, by Lemma 4.5.13 the eigenvalues of B⊞k

p ⊕ j have the form

µ0,v⃗ + µ1,v⃗η1 + µ1,v⃗η
2
1 + · · ·+ µp−2,v⃗η

p−2
1 ,

where v⃗ is an eigenvector of B⊞(k−1) and µi,v⃗ is the eigenvalue of B⊞(k−1)⊕ai⊕ j associated
with v⃗. Thus, plugging in the inductive hypothesis we obtain the result.

To prove item (3) we need to inspect the case when ηk = 1. In this case

λ(η1, . . . , ηk) =
p−2∑

i1,...,ik=0
(ai1 ⊕ · · · ⊕ aik ⊕ j)ηi11 . . . ηikk

=
p−2∑

i1,...,ik=0
(ai1 ⊕ · · · ⊕ aik ⊕ j)ηi11 . . . η

ik−1
k−1 · 1

=
p−2∑

i1,...,ik−1=0
ηi11 . . . η

ik−1
k−1

 p−2∑
ik=0

(ai1 ⊕ · · · ⊕ aik ⊕ j)

=

p−2∑
i1,...,ik−1=0

ηi11 . . . η
ik−1
k−1

(
p(p− 1)

2 − (ai1 ⊕ · · · ⊕ aik−1 ⊕ j)
)

= p(p− 1)
2

p−2∑
i1,...,ik−1=0

ηi11 . . . η
ik−1
k−1 − λ(η1, . . . , ηk−1)

= −λ(η1, . . . , ηk−1).

The last equality is due to fact that

p−2∑
i1,...,ik−1=0

ηi11 . . . η
ik−1
k−1 =

p−2∑
i1=0

ηi11 · · · · ·
p−2∑

ik−1=0
η
ik−1
k−1 = 0.

By the induction hypothesis the result follows.

93

Since the matrix Nk can be represented as Cp ⊞ B⊞k
p , its eigenvalues can be found by

Lemma 4.5.13.

Lemma 4.5.15. The eigenvalues of Nk can be represented in one of the following forms.

• for a pth root of unity ξ and (p− 1)th roots of unity η1, . . . , ηk

µ(η1, . . . , ηk; ξ) =
p−1∑
j=0

ξj
p−2∑

i1,...,ik=0
(ai1 ⊕ · · · ⊕ aik ⊕ j)ηi11 . . . ηikk .

• for a pth root of unity ξ and (p− 1)th roots of unity η1, . . . , ηk

µ(η1, . . . , ηk; ξ) = P (ξ) ·Q(η1, ξ) · · · · ·Q(ηk, ξ),

where P (ξ) = p
ξ−1 unless ξ = 1, in which case P (1) = p(p−1)

2 , and

Q(η, ξ) =
p−2∑
i=0

ηiξa
i
.

Proof. (1) By Lemma 4.5.13 the eigenvalues of Nk have the form λ0,v⃗+λ1,v⃗ξ+λ2,v⃗ξ
2 + · · ·+

λp−1,v⃗ξ
p−1, where v⃗ is an eigenvector of B⊞k

p ⊕ i for all i ∈ Zp, and λi,v⃗ is the eigenvalue of
B⊞k
p ⊕ i associated with v⃗, and ξ is a pth root of unity. By Lemma 4.5.14 we obtain item

(1) of the lemma.
(2) Consider the values ai1⊕· · ·⊕aik⊕j in the formula from part (1). For j = 0, . . . , p−1

they constitute the set Zp regardless of i1, . . . , ik, and the sequence, when j grows from 0
to p− 1, is a sequence of consequent residues modulo p. Therefore

p−1∑
j=0

(ai1 ⊕ · · · ⊕ aik ⊕ j)ξj = ξa
i1 ⊕···⊕aik

p−1∑
j=0

jξj ,

and let P (ξ) = ∑p−1
j=0 jξ

j . Therefore by part (1)

µ(η1, . . . , ηk; ξ) =
p−1∑
j=0

ξj
p−2∑

i1,...,ik=0
(ai1 ⊕ · · · ⊕ aik ⊕ j)ηi11 . . . ηikk

=
p−2∑

i1,...,ik=0
ξa

i1 ⊕···⊕aikP (ξ)ηi11 . . . ηikk

= P (ξ)
p−2∑

i1,...,ik=0
(ηi1ξai1) · · · · · (ηikk ξ

aik)

= P (ξ)

 p−2∑
i1=0

ηi1ξa
i1

 · · · · ·
 p−2∑
ik=0

ηikk ξ
aik

= P (ξ) ·Q(η1, ξ) · · · · ·Q(ηk, ξ).

94

Finally, we show that P (ξ) has the required form. Since ∑p−1
j=0 ξ

j = 0, we have P (ξ) =
P ′(ξ), where P ′(x) = ∑p−1

j=0(j + 1)xj . Then

p−1∑
j=0

(j + 1)xj = d

dx

p−1∑
j=0

xj+1

= d

dx

(
xp+1 − x
x− 1

)

= ((p+ 1)xp − 1)(x− 1)− (xp+1 − x)
(x− 1)2

= pxp+1 − (p+ 1)xp + 1
(x− 1)2 .

Since ξ is a pth root of unity, if ξ ̸= 1 we have

P (ξ) = pξ − (p+ 1) + 1
(ξ − 1)2 = p

ξ − 1 .

Finally, P (1) = p(p−1)
2 , as is easily seen.

Clearly, the co-rank of Nk equals the multiplicity of the eigenvalue 0. Thus, we need to
find the number of combinations of ξ, η1, . . . , ηk such that µ(η1, . . . , ηk; ξ) = 0. For some of
them it is easy.

Lemma 4.5.16. If ηi ̸= 1 for some i ∈ [k] then µ(η1, . . . , ηk; 1) = 0.

Proof. We use Lemma 4.5.15. Let ξ = 1, and, say, η1 ̸= 1. Then

Q(η1, 1) =
p−2∑
i=0

ηi1 = ηp−1
1 − 1
η1 − 1 = 0,

as η1 is a (p− 1)th root of unity and η1 ̸= 1.

Lemma 4.5.17. Let ξ ̸= 1 be a pth root of unity and η a (p − 1)th root of unity. Then
Q(η, ξ) ̸= 0.

Proof. Let χ be a primitive p(p−1)th root of unity. Then η, ξ can be represented as η = χup,
ξ = χv(p−1) and Q(η, ξ) can be rewritten as

Q∗(χ) =
p−1∑
j=1

χjup+ajv(p−1).

Note that all the arithmetic operations in the exponent including aj can be treated as
regular ones rather than modular, as χb = χc whenever b ≡ c (mod p(p− 1)). Therefore if

95

there are η, ξ, ξ ̸= 1 such that Q(η, ξ) = 0, then there exists a primitive p(p− 1)th root of
unity χ that is also a root of the polynomial

Q∗(x) =
p−1∑
j=1

xjup+ajv(p−1).

This means that Q∗(x) is divisible by p(p − 1) cyclotomic polynomial Cp(p−1). The degree
of Cp(p−1) equals φ(p(p− 1)), where φ is Euler’s totient function. In particular, the degree
of Cp(p−1) is divisible by p− 1, and so is the degree of Q∗. Since a and p− 1 are relatively
prime with p, it is only possible iv u is divisible by p − 1, that is, η = 1, in which case, as
is easily seen, Q(1, ξ) = −1 if ξ ̸= 1 and Q(1, 1) = p− 1.

The next proposition follows from Lemma 4.5.17 and the observation that P (ξ) ̸= 0
whenever ξ is a pth root of unity.

Proposition 4.5.18. The rank of Nk is (p− 1)k + 1.

Changed matrices

In this subsection we make the second step in our proof.

Lemma 4.5.19. Let f = ⊕k
i=1 αixi ⊕ xk+1 ⊕ b then

f ′′ =
∑
S⊆[k]

(−1)k−|S|
(⊕
i∈S

αixi ⊕ xk+1 ⊕ b
)
. (4.19)

Proof. We need to show that f ′′(x1, . . . , xk+1) = 0 whenever xi = 0 for some i ∈ [k]. In
order to do that observe that the terms in (4.19) can be paired up so that every S containing
i is paired with S − {i}. Then ⊕i∈S αixi ⊕ xk+1 ⊕ b and ⊕i∈S−{i} αixi ⊕ xk+1 ⊕ b appear
in (4.19) with opposite signs, and, as xi = 0 are equal.

Let N ′′
k denote the matrix constructed the same way as Nk only with f ′′, f ∈ F †, in

place of f . More precisely, N ′′
k is the p(p−1)k×p(p−1)k-dimensional matrix whose rows are

labeled with (x1, . . . , xk+1) ∈ (Z∗
p)k × Zp representing values of the arguments of functions

from F †
k , and the columns are labeled with f ∈ F †

k . The entry of N ′′
k in row (x1, . . . , xk+1)

and column f is f ′′(x1, . . . , xk+1).
Using Lemma 4.5.19 we represent N ′′

k as a sum of matrices. Let f = ⊕k
i=1 αixi⊕xk+1⊕b ∈

F †
k and S ⊆ [k]. Then let fS denote the function ⊕i∈S αixi ⊕ xk+1 ⊕ b. In other words, by

Lemma 4.5.19
f =

∑
S⊆[k]

(−1)k−|S|fS .

By Nk(S), S ⊆ [k], we denote the matrix constructed in a similar way to Nk and N ′′
k .

Again, its rows are labeled with (x1, . . . , xk+1) ∈ (Z∗
p)k × Zp, and the columns are labeled

96

with f ∈ F †
k . The entry of Nk(S) in row (x1, . . . , xk+1) and column f is fS(x1, . . . , xk+1).

It is now easy to see that
N ′′
k =

∑
S⊆[k]

(−1)k−|S|Nk(S).

In order to determine the structure of Nk(S) we need one further observation. Let 0ℓ

denote the square ℓ-dimensional matrix whose entries are all 0. Note that for a matrix B

and 0ℓ

B ⊞ 0ℓ =

B . . . B
...

...
B . . . B

 .
Lemma 4.5.20. Let B an n-dimensional diagonalizable matrix. Then the eigenvectors of
B⊞0ℓ are of the form (β1v⃗, . . . , βℓv⃗) where v is an eigenvector of B and either β1 = · · · = βℓ

or β1 + · · ·+ βℓ = 0. The corresponding eigenvalue in the former case is ℓλ, where λ is the
eigenvalue of B associated with v⃗, and 0 in the latter case.

The following lemma establishes the structure of Nk(S), its eigenvalues and eigenvectors.

Lemma 4.5.21. (a) Nk(S) = Cp ⊞D1 ⊞ · · ·⊞Dk, where

Di =
{
Bp, if i ∈ S,
0p−1, otherwise.

(b) Every eigenvector of Nk is also an eigenvector of Nk(S).

(c) The eigenvalue µ(η1, . . . , η;ξ;S) of Nk(S) associated with eigenvector v⃗(η1, . . . , ηk; ξ)
equals

µ(η1, . . . , η;ξ;S) =

0 if ηi ̸= 1 for some i ∈ [k]− S,
µ(1, . . . , 1; 1), if ξ = η1 = · · · = ηk = 1,
(1− p)|[k]−S|µ(η1, . . . , ηk; ξ), otherwise.

Proof. We will construct the matrix Nk(S) inductively and prove the three claims of the
lemma as we go. Let Nk(S, ℓ), ℓ ≤ k, denote the (p− 1)ℓ × (p− 1)ℓ-matrix whose rows are
labeled with (x1, . . . , xℓ) ∈ (Z∗

p)ℓ, columns are labeled with functions f = ⊕ℓ
i=1 αixi. The

entry of Nk(S, ℓ) in row (x1, . . . , xℓ) and column f is fS(x1, . . . , xℓ). We show that

(a’) Nk(S, ℓ) = D1 ⊞ · · ·⊞Dℓ, where the Di’s are defined as in the lemma.

(b’) Every vector of the form v⃗(η1, . . . , ηℓ) = v⃗(η1) ⊗ · · · ⊗ v⃗(ηℓ), where ηi is a (p − 1)th
root of unity is an eigenvector of Nk(S, ℓ)⊕ j for j ∈ Zp.

97

(c’) The eigenvalue µ(η1, . . . , ηℓ, S, j) ofNk(S, ℓ)⊕j associated with eigenvector v⃗(η1, . . . , ηℓ)
equals

µ(η1, . . . , ηℓ, S, j)

=

(p− 1)ℓ · j if [ℓ] ∩ S = ∅ and η1 = · · · = ηℓ,

0, if ηi ̸= 1 for some i ∈ [ℓ]− S,
(p− 1)|[ℓ]−S|λ(ηi1 , . . . , ηit ; j), otherwise (see Lemma 4.5.14),

where {j1, . . . , jt} = [ℓ] ∩ S.

If ℓ = 1 then either Nk(S, 1) = Bp if 1 ∈ S, or Nk(S, 1) = 0p−1 if 1 ̸∈ S. In the former
case we have the result by Lemma 4.5.14, and in the latter case by Lemma 4.5.20 every
vector of the form v⃗(η), η is a (p − 1)th root of unity, is an eigenvector with eigenvalue
(p− 1)j if η = 1 and 0 otherwise.

Suppose the statement is true for some ℓ. If [ℓ+ 1]∩S = ∅, the claim is straightforward,
as fS(x1, . . . , xℓ+1) = 0 for all x1, . . . , xℓ+1 ∈ Z∗

p, and the result follows by Lemma 4.5.20.
Next, suppose that [ℓ]∩S ̸= ∅, but ℓ+1 ̸∈ S. In this case the entry of Nk(S, ℓ+1) indexed

with row (x1, . . . , xℓ+1) and column f = ⊕ℓ+1
i=1 αixi is fS(x1, . . . , xℓ+1) = f∗

S(x1, . . . , xℓ) =⊕
i∈S∩[ℓ] αixi, where f∗ = ⊕ℓ

i=1 αixi.This implies that Nk(S, ℓ+1)⊕j = (Nk(S, ℓ)⊕j)⊞0p−1.
By Lemma 4.5.20 the eigenvectors of Nk(S, ℓ + 1) ⊕ j are of the two types: v⃗′ = (v⃗, . . . , v⃗)
or (β1v⃗, . . . , βp−1v⃗) with β1 + · · · + βp−1 = 0, where v⃗ is an eigenvector of Nk(S, ℓ) ⊕ j. In
the first case v⃗′ = v⃗⊗ v⃗(η) for η = 1 and by the induction hypothesis has the required form.
The corresponding eigenvalue of Nk(S, ℓ+ 1)⊕ j equals (p− 1)λ, where λ is the eigenvalue
of Nk(S, ℓ) ⊕ j associated with v⃗, and so also has the required form. In the latter case
v ⊗ (1, η, . . . , ηp−2), η ̸= 1 and v⃗ is an eigenvector of Nk(S, ℓ) ⊕ j, satisfies the condition
1+η+· · ·+ηp−2 = 0 and has eigenvalue 0. By the induction hypothesis and Lemma 4.5.14(3)
we get the result.

Finally, let ℓ+1 ∈ S. In this case for any x1, . . . , xℓ+1 ∈ Z∗
p and f = ⊕ℓ+1

i=1 αixi the entry
of Nk(S, ℓ+ 1) equals

fS(x1, . . . , xℓ+1) =
ℓ+1⊕
i=1

αixi = f∗
S(x1, . . . , xℓ)⊕ αℓ+1xℓ+1,

which implies Nk(S, ℓ+1) = Nk(S, ℓ)⊞Bp proving (a’). Therefore Nk(S, ℓ+1)⊕j is a block-
circulant matrix and we can apply Lemma 4.5.13 to show that eigenvectors of Nk(S, ℓ+ 1)
are of the form

v⃗ ⊗ (1, η, . . . , ηp−2) = v⃗ ⊗ v⃗(η),

where η is a (p− 1)th root of unity and v⃗ is any eigenvector of Nk(S, ℓ)⊕ j. The eigenvalue
of such a vector can be found using the inductive hypothesis and the last part of the proof

98

of Lemma 4.5.14 as follows. We have

µ(η1, . . . , ηℓ+1, S, j) = µ0,v⃗ + µ1,v⃗ηℓ+1 + µ1,v⃗η
2
ℓ+1 + · · ·+ µp−2,v⃗η

p−2
ℓ+1 ,

where v⃗ is an eigenvector of Nk(S, ℓ) and µi,v⃗ is the eigenvalue of Nk(S, ℓ)⊕ai⊕j associated
with v⃗. If there is i ∈ S ∩ [ℓ] such that ηi ̸= 1, then µ(η1, . . . , ηℓ+1, S, j) = 0. If S ∩ [ℓ] = ∅
and η1 = · · · = ηℓ = 1 then

µ(η1, . . . , ηℓ+1, S, j) =
p−2∑
i=0

(p− 1)ℓ(ai ⊕ j)ηiℓ+1 = (p− 1)ℓλ(ηℓ+1; j).

If S ∩ [ℓ] = {i1, . . . , it} ̸= ∅, then by the induction hypothesis

µ(η1, . . . , ηℓ+1, S, j) =
p−2∑
i=0

(p− 1)|[ℓ]−S|λ(ηi1 , . . . , ηit ; ai ⊕ j)ηiℓ+1

= (p− 1)|[ℓ]−S|
p−2∑
i=0

p−2∑
j1,...,jt=0

(aj1 ⊕ · · · ⊕ ajt ⊕ ai ⊕ j)ηi1 . . . ηitηiℓ+1

= (p− 1)|[ℓ]−S|λ(ηi1 , . . . , ηit , ηℓ+1; j).

We now consider the last step in constructing Nk(S), from Nk(S, k) to Nk(S). As is
easily seen, Nk(S) = Cp ⊞Nk(S, k), implying item (a) of the lemma, and by Lemma 4.5.13
every vector of the form (1, ξ, . . . , ξp−1) ⊗ v⃗, where v⃗ is an eigenvector of Nk(S, k) and ξ

is a pth root of unity is an eigenvector of Nk(S). By the induction hypothesis this implies
item (b) of the lemma. Finally, again by Lemma 4.5.13 and the induction hypothesis the
eigenvalue associated with the vector (1, ξ, . . . , ξp−1)⊗ v⃗(η1, . . . , ηk) equals

µ(η1, . . . , ηk; ξ;S)

= µ(η1, . . . , ηk, S, 0) + µ(η1, . . . , ηk, S, 1)ξ + · · ·+ µ(η1, . . . , ηk, S, p− 1)ξp−1.

If S = ∅, ξ ̸= 1, and η1 = · · · = ηk = 1 then

µ(1, . . . , 1; ξ; ∅) =
p−1∑
j=0

(p− 1)kjξj = (p− 1)kP (ξ)

= (p− 1)k(−1)kµ(1, . . . , 1; ξ)

= (1− p)kµ(1, . . . , 1; ξ),

as Q(1, ξ) = −1, as is easily seen. Also,

µ(1, . . . , 1; 1; ∅) = (p− 1)kP (1) = µ(1, . . . , 1; 1).

99

If ηi ̸= 1 for some i ∈ [k] − S then µ(η1, . . . , ηk, S, j) = 0, and so µ(η1, . . . , ηk; ξ;S) = 0.
Otherwise if S = {i1, . . . , is},

µ(η1, . . . , ηk; ξ;S) = (p− 1)|[k]−S|
p−1∑
j=0

λ(ηi1 , . . . , ηis ; j)ξj

= (p− 1)|[k]−S|µ(ηi1 , . . . , ηis ; ξ)

Finally, by Lemma 4.5.14 µ(ηi1 , . . . , ηis ; ξ) = (−1)|[k]−S|µ(η1, . . . , ηk; ξ), if ξ ̸= 1, µ(ηi1 , . . . , ηis ; 1) =
0 if ηij ̸= 1 for some j, and µ(1, . . . , 1; 1) = (p− 1)|S|P (1), and the result follows.

Now, we are ready to find the eigenvalues of N ′′
k .

Lemma 4.5.22. Let w⃗ = v⃗(η1, . . . , ηk, ξ) and T ⊆ [k] be such that i ∈ T iff ηi ̸= 1. Then

µ′′(η1, . . . , ηk; ξ) =
{
pk−|T |µ(η1, . . . , ηk; ξ), if ξ ̸= 1,
0, if ξ = 1 and ηi ̸= 1 for some i ∈ [k].

Proof. Assume first that ξ ̸= 1. By Lemmas 4.5.19 and 4.5.21 we have

µ′′(η1, . . . , ηk; ξ) =
∑
S⊆[k]

(−1)|[k]−S|µ(η1, . . . , ηk; ξ;S)

=
∑

[k]⊇S⊇T
(−1)|[k]−S|µ(η1, . . . , ηk; ξ;S)

=
k−|T |∑
ℓ=0

(−1)ℓ
(
k − |T |

ℓ

)
(1− p)ℓµ(η1, . . . , ηk; ξ)

= µ(η1, . . . , ηk; ξ)
k−|T |∑
ℓ=0

(
k − |T |

ℓ

)
(p− 1)ℓ

= µ(η1, . . . , ηk; ξ)pk−|T |,

as required.
Now let ξ = 1. If T ̸= ∅, then µ(η1, . . . , η;ξ;S) = 0 for any S ⊆ [k]. Otherwise, we have

µ′(η1, . . . , ηk; ξ) =
∑
T⊆[k]

(−1)k−|T |µ(1, . . . , 1; 1;T)

=
∑
T⊆[k]

(−1)k−|T |µ(1, . . . , 1; 1)

= µ(1, . . . , 1; 1)
k−1∑
ℓ=0

(−1)ℓ
(
k

ℓ

)
= 0.

100

Since f ′ consists of all the monomials u of f with x1, . . . , xk+1 ∈ cont(U) and f ′′ consists
of those with x1, . . . , xk ∈ cont(u), it is easy to see that

f ′(x1, . . . , xk, xk=1) = f ′′(x1, . . . , xk, xk+1)− f ′′(x1, . . . , xk, 0). (4.20)

Let N ′′′
k denote the matrix obtained from N ′′

k by subtracting the row labeled (x1, . . . , xk, 0)
from every row labeled by (x1, . . . , xk, xk+1), xk+1 ∈ Z∗

p. By (4.20) the rows of N ′′′
k labeled

(x1, . . . , xk, xk+1), xk+1 ∈ Z∗
p contain the values of f ′(x1, . . . , xk, xk+1). Let N ′

k be the sub-
matrix of N ′′′

k containing only such rows. We need to prove that the columns of N ′
k labeled

with f ∈ Fk are linearly independent. We do it by first proving that the rank of N ′
k equals

(p−1)k+1 and then demonstrating that the column labeled f (p−1) = ⊕k
i=1 αixi⊕xk+1⊕(p−1)

is a linear combination of columns labeled f (b) = ⊕k
i=1 αixi⊕xk+1⊕b for b ∈ {0, . . . , p−2}.

Lemma 4.5.23. Let f = ⊕k
i=1 αixi ⊕ xk+1 ⊕ b.

(a)

Σ′f =
p−1∑

xk+1=0
f ′′(x1, . . . , xk, xk+1) = 0.

(b) Let f (a) denote the function f (a) = ⊕k
i=1 αixi ⊕ xk+1 ⊕ a (and so f = f (b)). Then

Σf =
∑
b∈Zp

f ′′(b)(x1, . . . , xk+1) = 0.

Proof. (a) We have

Σ′f =
p−1∑

xk+1=0
f ′′(x1, . . . , xk, xk+1)

=
p−1∑

xk+1=0

∑
S⊆[k]

(−1)k−|S|fS(x1, . . . , xk+1)

=
∑
S⊆[k]

(−1)k−|S|
p−1∑

xk+1=0
fS(x1, . . . , xk+1).

Let S ⊆ [k], x1, . . . , xk ∈ Z∗
p, and let us denote A = fS(x1, . . . , xk, 0) = ⊕k

i∈S αixi⊕ b. Then

p−1∑
xk+1=0

fS(x1, . . . , xk+1) =
p−1∑
a=0

(A⊕ a)

= p(p+ 1)
2 .

101

Now,
Σ′f = p(p+ 1)

2
∑
S⊆[k]

(−1)k−|S| = 0.

(b) We have

Σf =
∑
b∈Zp

f ′′(b)(x1, . . . , xk+1)

=
∑
b∈Zp

∑
S⊆[k]

(−1)k−|S|f
(b)
S (x1, . . . , xk+1)

=
∑
S⊆[k]

(−1)k−|S| ∑
b∈Zp

f
(b)
S (x1, . . . , xk+1).

Let S ⊆ [k], x1, . . . , xk+1 ∈ Z∗
p, and let us denote A = ⊕

i∈S αixi ⊕ xk+1. Then

∑
b∈Zp

f
(b)
S (x1, . . . , xk+1) =

∑
b∈Zp

(A⊕ b) =
∑
b∈Zp

b = p(p+ 1)
2 .

Now,
Σf = p(p+ 1)

2
∑
S⊆[k]

(−1)k−|S| = 0.

We are now in a position to complete the proof of Proposition 4.5.11. Let a⃗(x1, . . . , xk, xk+1)
denote the row of N ′′

k labeled with (x1, . . . , xk, xk+1). Then by Lemma 4.5.23(a)

a⃗(x1, . . . , xk, 0) = −
∑
b∈Z∗

p

a⃗(x1, . . . , xk, b),

and the row of N ′′′
k labeled with (x1, . . . , xk, xk+1) is

b⃗(x1, . . . , xk, xk+1) = a⃗(x1, . . . , xk, xk+1) +
∑
b∈Z∗

p

a⃗(x1, . . . , xk, b).

As is easily seen the row a⃗(x1, . . . , xk, 0) is still a linear combination of b⃗(x1, . . . , xk, xk+1),
xk+1 ∈ Z∗

p, implying that the rows of N ′′′
k labeled (x1, . . . , xk+1) ∈ (Z∗

p)p+1 are linearly
independent and N ′

k has rank (p − 1)k+1. Finally, by Lemma 4.5.23(a) the columns of N ′
k

labeled with f ∈ Fk are also linear independent.

Linear equations mod 3

In this section we consider the case where p = 3 and provide linearly independent p-
expressions that span the space of functions from Zn3 to C. The p-expressions we consider

102

here are different from the ones considered in Theorem 4.5.4 and we prove they are linearly
independent using somewhat a simpler approach.

In this subsection set p = 3 and ⊕, ⊙ denote addition and multiplication modulo 3,
respectively. Let x1, . . . , xn be variables that take values from the ternary domain {0, 1, 2}.
Here we prove that all the linear expressions of the form

(a1 ⊙ x1)⊕ (a2 ⊙ x2)⊕ · · · ⊕ (an ⊙ xn)

with ai ∈ {0, 1, 2} are linearly independent, except the zero expression. For instance, in the
case where n = 1, the following matrix has rank 2 meaning that x1 and 2⊙ x1 are linearly
independent.

A =

0 x1 2⊙x1
0 0 0 x1=0

0 1 2 x1=1

0 2 1 x1=2

Now define sequence of matrices as follows. Set C1 = A and recursively define Cn to be
the following 3n × 3n matrix

Cn =

Cn−1 Cn−1 Cn−1

Cn−1 Cn−1 ⊕ 1 Cn−1 ⊕ 2
Cn−1 Cn−1 ⊕ 2 Cn−1 ⊕ 1

Observation 4.5.24. For any real numbers a, b ̸= 0 and any integer n we have rank(aCn+
b) = rank(Cn) + 1.

Proof. Note that the first row and the first column of Cn contain only zeros. That is

Cn =

0 0 · · · 0
0
... B

0

where B is a 3n − 1× 3n − 1 matrix and has the same rank as Cn. Now, rank(aCn +B) =
rank(Cn + b

a).

Cn + b
a =

b
a

b
a · · · b

a
b
a
... B + b

a
b
a

→

b
a

b
a · · · b

a

0
... B + 0
0

→

b
a 0 · · · 0
0
... B

0

103

Hence, rank(aCn + b) = rank(Cn + b
a) = rank(Cn) + 1.

Lemma 4.5.25. For any integer n, Cn has rank 3n − 1 i.e., all the linear expressions of
the form (a1 ⊙ x1)⊕ (a2 ⊙ x2)⊕ · · · ⊕ (an ⊙ xn) with ai ∈ {0, 1, 2} are linearly independent,
except the zero expression.

Proof. The proof is by induction. Clearly, for n = 1, the matrix C1 = A has rank 2. Suppose
Ci has rank 3i − 1 for all 1 ≤ i ≤ n. For a matrix M with 0, 1, 2 entries, let

p1(M) = 3
2M ◦M + 5

2M + 1

p2(M) = −3
2M ◦M −

7
2 + 2

where ◦ denotes the Hadamard product or the element-wise product of two matrices. Ob-
serve that M ⊕ 1 = p1(M) and M ⊕ 2 = p2(M). Hence, we can write Cn+1 as follow

Cn+1 =

Cn Cn Cn

Cn p1(Cn) p2(Cn)
Cn p2(Cn) p1(Cn)

104

Next, we perform a series of row and column operations to transform Cn into a block-
diagonal matrix.

Cn+1 =

Cn Cn Cn

Cn p1(Cn) p2(Cn)
Cn p2(Cn) p1(Cn)

→

Cn Cn Cn

0 p1(Cn)− Cn p2(Cn)− Cn
0 p2(Cn)− Cn p1(Cn)− Cn

→

Cn 0 0
0 p1(Cn)− Cn p2(Cn)− Cn
0 p2(Cn)− Cn p1(Cn)− Cn

→

Cn 0 0
0 p1(Cn)− Cn p2(Cn)− Cn
0 p1(Cn) + p2(Cn)− 2Cn p1(Cn) + p2(Cn)− 2Cn

→

Cn 0 0
0 p1(Cn)− Cn p2(Cn)− Cn
0 −3Cn + 3 −3Cn + 3

→

Cn 0 0
0 p1(Cn)− Cn p1(Cn) + p2(Cn)− 2Cn
0 −3Cn + 3 −6Cn + 6

→

Cn 0 0
0 p1(Cn)− Cn −3Cn + 3
0 −3Cn + 3 −6Cn + 6

→

Cn 0 0
0 p1(Cn)− Cn − 1

2(−3Cn + 3) −3Cn + 3
0 0 −6Cn + 6

→

Cn 0 0
0 p1(Cn)− Cn − 1

2(−3Cn + 3) 0
0 0 −6Cn + 6

→

Cn 0 0
0 −3

2Cn ◦ Cn + 3Cn − 1
2 0

0 0 6Cn − 6

→

Cn 0 0
0 −3Cn ◦ Cn + 6Cn − 1 0
0 0 Cn − 1

Hence, rank of Cn+1 is rank(Cn) + rank(Cn − 1) + rank(−3Cn ◦ Cn + 6Cn − 1). Moreover,
Observation 4.5.24 yields

rank(Cn+1) = rank(Cn) + rank(Cn − 1) + rank(−3Cn ◦ Cn + 6Cn − 1)

= 3n − 1 + 3n + rank(−3Cn ◦ Cn + 6Cn − 1)

105

In what follows we prove that rank(−3Cn ◦Cn + 6Cn − 1) = 3n. Let us define the following
two matrices associated to a matrix M with {0, 1, 2} entries.

M †[i, j] =

0 if M [i, j] = 0

1 if M [i, j] = 1

0 if M [i, j] = 2

and M ††[i, j] =

0 if M [i, j] = 0

0 if M [i, j] = 1

2 if M [i, j] = 2

Note that Cn = C†
n + C††

n . For instance in the case C1 = A the two matrices A† and A††

are A† =

0 0 0
0 1 0
0 0 1

 and A†† =

0 0 0
0 0 2
0 2 0

. Here, we simplify the expression −3Cn ◦Cn +

6Cn − 1 and write it in terms of C†
n and C††

n .

−3Cn ◦ Cn + 6Cn − 1 = −3(C†
n + C††

n) ◦ (C†
n + C††

n) + 6(C†
n + C††

n)− 1

= −3(C†
n ◦ C†

n + C††
n ◦ C††

n) + 6C†
n + 6C††

n − 1

= −3(C†
n + 2C††

n) + 6C†
n + 6C††

n − 1

= −3C†
n − 6C††

n + 6C†
n + 6C††

n − 1

= 3C†
n − 1

Claim 4.5.26. For every positive integer n, the matrix 3C†
n−1 has full rank. This implies

that −3Cn ◦ Cn + 6Cn − 1 has full rank.

Proof. For the base case n = 1, the matrix 3A† − 1 =

−1 −1 −1
−1 2 −1
−1 −1 2

 has full rank i.e.,

rank(3A† − 1) = 3. For our induction hypothesis suppose the claim is correct for every n.
Next we show 3C†

n+1 − 1 has rank 3n+1.

106

3C†
n+1 = 3

C†
n C†

n C†
n

C†
n (Cn ⊕ 1)† (Cn ⊕ 2)†

C†
n (Cn ⊕ 2)† (Cn ⊕ 1)†

− 1

=

3C†

n − 1 3C†
n − 1 3C†

n − 1
3C†

n − 1 3(Cn ⊕ 1)† − 1 3(Cn ⊕ 2)† − 1
3C†

n − 1 3(Cn ⊕ 2)† − 1 3(Cn ⊕ 1)† − 1

→

3C†

n − 1 3C†
n − 1 3C†

n − 1
0 3(Cn ⊕ 1)† − 3C†

n 3(Cn ⊕ 2)† − 3C†
n

0 3(Cn ⊕ 2)† − 3C†
n 3(Cn ⊕ 1)† − 3C†

n

→

3C†

n − 1 0 0
0 3(Cn ⊕ 1)† − 3C†

n 3(Cn ⊕ 2)† − 3C†
n

0 3(Cn ⊕ 2)† − 3C†
n 3(Cn ⊕ 1)† − 3C†

n

→

3C†

n − 1 0 0
0 (Cn ⊕ 1)† − C†

n (Cn ⊕ 2)† − C†
n

0 (Cn ⊕ 2)† − C†
n (Cn ⊕ 1)† − C†

n

For a matrix M with 0, 1, 2 entries, define p′

1(M) = 1
2M ◦ M −

3
2M + 1 and p′

2(M) =
1
2M ◦M −

1
2M where ◦ denotes the Hadamard product or the element-wise product of two

matrices. Observe that (M ⊕ 1)† = p′
1(M) and (M ⊕ 2)† = p′

2(M).

p′
1(M) = 1

2(M † +M ††) ◦ (M † +M ††) + 3
2(M † +M ††) + 1 = −M † − 1

2M
†† + 1

p′
2(M) = 1

2(M † +M ††) ◦ (M † +M ††)− 1
2(M † +M ††) = 1

2M
††

107

We continue by performing row and column operation to to transform 3Cn+1 − 1 into a
block-diagonal matrix.

3C†
n − 1 0 0
0 (Cn ⊕ 1)† − C†

n (Cn ⊕ 2)† − C†
n

0 (Cn ⊕ 2)† − C†
n (Cn ⊕ 1)† − C†

n

=

3C†

n − 1 0 0
0 −2C†

n − 1
2C

††
n + 1 −C†

n + 1
2C

††
n

0 −C†
n + 1

2C
††
n −2C†

n − 1
2C

††
n + 1

→

3C†

n − 1 0 0
0 −2C†

n − 1
2C

††
n + 1 −C†

n + 1
2C

††
n

0 −3C†
n + 1 −3C†

n + 1

→

3C†

n − 1 0 0
0 −C†

n − C††
n + 1 −C†

n + 1
2C

††
n

0 0 −3C†
n + 1

→

3C†
n − 1 0 0
0 −C†

n − C††
n + 1 −3

2C
†
n + 1

2
0 0 −3C†

n + 1

→

3C†

n − 1 0 0
0 −C†

n − C††
n + 1 0

0 0 −3C†
n + 1

→

3C†
n − 1 0 0
0 C†

n + C††
n − 1 0

0 0 3C†
n − 1

=

3C†

n − 1 0 0
0 Cn − 1 0
0 0 3C†

n − 1

By the induction hypothesis, rank(3C†

n−1) = 3n. Moreover, by the induction hypothesis and
Observation 4.5.24 rank(Cn − 1) = 3n. As a result, rank(3C†

n+1 − 1) = 3n + 3n + 3n = 3n+1

and −3Cn ◦ Cn + 6Cn − 1 has full rank.

Recall that rank(Cn+1) = rank(Cn) + rank(Cn−1) + rank(−3Cn ◦Cn + 6Cn−1). By the
induction hypothesis and Observation 4.5.24, we have rank(Cn − 1) = rank(Cn) + 1 = 3n.
Moreover, Claim 4.5.26 yields rank(−3Cn ◦ Cn + 6Cn − 1) = 3n. Hence,

rank(Cn+1) = 3n − 1 + 3n + 1 + 3n + 1 = 3n+1 − 1.

108

Chapter 5

Finding membership proofs and
applications

In this section, we study a variation of the IMP and show similar reductions for pp-
definability notion as well as pp-interpretability notion. These reductions provide a very
strong tool for solving the search version of the IMP. More generally, using the algebraic
approach we present a general framework for computing d-truncated Gröbner Bases for
combinatorial ideals. Moreover, in the later sections we discuss applications of this vari-
ation of the IMP in studying bit complexity of SOS proofs, and how it can be used to
construct theta bodies of combinatorial problems.

5.1 The IMP with indeterminate coefficients

In the new variant of the IMP we are given a polynomial with unknown coefficients and the
goal is to decide if there is an assignment for coefficients such that the resulting polynomial
belongs to an ideal. Formally speaking,

Definition 5.1.1 (χIMP). Given an ideal I ⊆ F[x1, . . . , xn] and a vector of ℓ polynomials
M = (g1, . . . , gℓ), the χIMP asks if there exist coefficients c = (c1, . . . , cℓ) ∈ Fℓ such that
cM = ∑ℓ

i=1 cigi belongs to the ideal I.

In a similar fashion, χIMP associated with a constraint language Γ over a set D is the
problem χIMP(Γ) in which the input is a pair (M,P) where P = (X,D,C) is a CSP(Γ)
instance and M is a vector of ℓ polynomials. The goal is to decide whether there are
coefficients c = (c1, . . . , cℓ) ∈ Fℓ such that cM lies in the combinatorial ideal I(P). We use
χIMPd(Γ) to denote χIMP(Γ) when the vector M contains polynomials of degree at most
d. By the search χIMP we understand the following problem.

Search version of χIMP. Let (M,P) be an instance of χIMP(Γ) where there
are coefficients c = (c1, . . . , cℓ) ∈ Fℓ so that cM ∈ I(P), the problem is to find
a c = (c1, . . . , cℓ) ∈ Fℓ such that cM ∈ I(P).

109

Next, we show that the main reductions from Section 3.1 work for the χIMP as well.

Theorem 5.1.2. If Γ pp-defines ∆, then χIMP(∆) is polynomial time reducible to χIMP(Γ).

Proof. The proof of Theorem 5.1.2 closely follows that of Theorem 3.1.11. Let (M,P∆),
P∆ = (X,D,C∆), be an instance of χIMP(∆) where X = {xm+1, . . . , xm+k}, M is a
vector of ℓ polynomials in xm+1, . . . , xm+k, k = |X|, and m will be defined later, and
I(P∆) ⊆ F[xm+1, . . . , xm+k]. From this we construct an instance (M ′,PΓ) of χIMP(Γ)
where M ′ is a vector of ℓ′ polynomials in x1, . . . , xm+k and I(PΓ) ⊆ F[x1, . . . , xm+k] such
that

∃c ∈ Fℓ with cM ∈ I(P∆) ⇐⇒ ∃c′ ∈ Fℓ
′ with c′M ′ ∈ I(PΓ).

Using pp-definitions of relations from ∆ we convert the instance P∆ into an instance PΓ =
({x1, . . . , xm+k}, D,CΓ) of CSP(Γ) such that every solution of P∆,PΓ satisfy the Extension
Condition 3.1.2. Such an instance PΓ can be constructed in polynomial time as follows.

By the assumption each S ∈ ∆, say, tS-ary, is pp-definable in Γ by a pp-formula involving
relations from Γ and the equality relation, =D. Thus,

S(yqS+1, . . . , yqs+tS) = ∃y1, . . . , yqS (R1(w1
1, . . . , w

1
l1) ∧ · · · ∧Rr(wr1, . . . , wrlr)),

where w1
1, . . . , w

1
l1
, . . . , wk1 , . . . , w

k
lk
∈ {y1, . . . , ymS+tS} and R1, . . . , Rr ⊆ Γ ∪ {=D}.

Now, for every constraint B = ⟨s, S⟩ ∈ C∆, where s = (xi1 , . . . , xit) create a fresh copy
of {y1, . . . , yqS} denoted by YB, and add the following constraints to CΓ

⟨(w1
1, . . . , w

1
l1), R1⟩, . . . , ⟨(wr1, . . . , wrlr), Rr⟩.

We then set m = ∑
B∈C |YB| and assume that ∪B∈CYB = {x1, . . . , xm}. Note that the

problem instance obtained by this procedure belongs to CSP(Γ ∪ {=D}). All constraints
of the form ⟨(xi, xj),=D⟩ can be eliminated by replacing all occurrences of the variable xi
with xj . Moreover, it can be checked (see also Theorem 2.16 in [39]) that P∆,PΓ satisfy the
Extension Condition 3.1.2.

Let I(PΓ) ⊆ F[x1, . . . , xm+k] be the ideal corresponding to PΓ and set M ′ = M . Now,
(M ′,PΓ) is an instance of χIMP(Γ). We prove that, for every c ∈ Fℓ, cM ∈ I(P∆) if and
only if cM ∈ I(PΓ).

Consider an arbitrary c ∈ Fℓ and set f0 = cM . Suppose f0 ̸∈ I(P∆), this means there
exists φ ∈ V(I(P∆)) such that f0(φ) ̸= 0. By Theorem 3.1.9, φ can be extended to a point
φ′ ∈ V(I(PΓ)). This in turn implies that f0 ̸∈ I(PΓ). Conversely, suppose f0 ̸∈ I(PΓ).
Hence, there exists φ′ ∈ V(I(PΓ)) such that f0(φ′) ̸= 0. Projection of φ′ to its last k
coordinates gives a point φ ∈ V(IX). By Lemma 3.1.10, φ ∈ V(I(P∆)) which implies
f0 ̸∈ I(P∆).

The reduction for pp-interpretable languages remain valid in the case of χIMP as well.

110

Theorem 5.1.3. Let Γ,∆ be constraint languages on sets D,E, respectively, and let Γ
pp-interprets ∆. Then χIMPd(∆) is polynomial time reducible to χIMPdℓ|E|(Γ).

Proof. Let (M,P∆) be an instance of χIMP(∆) where M is a vector of r polynomials in
x1, . . . , xn, P∆ = ({x1, . . . , xn}, E, C∆), an instance of CSP(∆), and I(P∆) ⊆ F[x1, . . . , xn].

The properties of the mapping π from Definition 3.1.13 allow us to rewrite an instance
of CSP(∆) to an instance of CSP(Γ′) over the constraint language Γ′. Recall that, by
Definition 3.1.13, Γ′ contains all the ℓk-ary relations π−1(S) on D where S ∈ ∆ is k-ary
relation, as well as the 2ℓ-ary relation π−1(=E).

Note that Γ′ is pp-definable from Γ. By Theorem 5.1.2, χIMP(Γ′) is reducible to
χIMP(Γ). It remains to show χIMP(∆) is reducible to χIMP(Γ′). To do so, from instance
(M,P∆) of χIMP(∆) we construct an instance (M ′,PΓ′) of χIMP(Γ′) such that

∃c ∈ Fr with cM ∈ I(P∆) ⇐⇒ ∃c′ ∈ Fr
′ with c′M ′ ∈ I(P ′

Γ).

Let p be a polynomial of total degree at most ℓ|E| that interpolates mapping π. For each
monomial xα = ∏

xαi
i in M replace each indeterminate xi with p(x1i, . . . , xℓi). This yields

the following polynomial

n∏
i=1

[p(x1i, . . . , xℓi)]αi (5.1)

Note that for a monomial of total degree at most d, the maximal degree of monomials appear-
ing in the polynomial (5.1) is at most dℓ|E|. Let M ′ be the vector of monomials consisting
monomials in (5.1) for all monomials in M . Observe that M ′ contains at most O(ndℓ|E|)
monomials and each monomial inM ′ consists of indeterminates x11, . . . , xℓ1, . . . , x1n, . . . , xℓn.
Now, (M ′,PΓ′) is an instance of χIMP(Γ′).

Consider an arbitrary c ∈ Fr and set f0 = cM ∈ F[x1, . . . , xn]. Let

f ′
0 ∈ F[x11, . . . , xℓ1, . . . , x1n, . . . , xℓn]

be the polynomial that is obtained from f0 by replacing each indeterminate xi with p(x1i, . . . , xℓi).
Note that there exists c′ such that f ′

0 = c′M ′. Clearly, for any assignment φ : {x1, . . . , xn} →
E, f0(φ) = 0 if and only if f ′

0(ψ) = 0 for every ψ : {x11, . . . , xℓn} → D such that

φ(xi) = π(ψ(x1i), . . . , ψ(xℓi))

for every i ≤ n. Moreover, for any such φ,ψ it holds φ ∈ V(I(P∆)) if and only if ψ ∈
V(I(PΓ′)). This yields that

(∃φ ∈ V(I(P∆)) ∧ f0(φ) ̸= 0) ⇐⇒ (∃ψ ∈ V((PΓ′)) ∧ f ′
0(ψ) ̸= 0)

111

This completes the proof of the theorem.

Recall that one drawback of the reductions for the IMP, Theorems 3.1.11 and 3.1.15, is
the issue of recovering a proof which is a subtle point in the search version of the IMP. A
nice property of the reductions in Theorems 5.1.2 and 5.1.3 is that they provide reductions
for the search version of the χIMP as well. To elaborate, consider the reduction for pp-
interpretablility in the proof of Theorem 5.1.3. The entries of vector c′ are linear combination
of c1, . . . , cℓ. Hence, if there exists a polynomial time algorithm that finds c′ such that
c′M ′ ∈ I(PΓ′) then a vector c with cM ∈ I(P∆) can be computed by simply solving a
system of linear equations with c1, . . . , cℓ as unknowns. This is formalized as follows.

Theorem 5.1.4. Let Γ and ∆ be constraint languages on (possibly similar) sets D, E,
respectively. Suppose there exists a polynomial time algorithm that solves the search version
of χIMP(Γ). Then, there exists a polynomial time algorithm that solves the search version
of χIMP(∆) if

1. D = E and Γ pp-defines ∆, or

2. Γ pp-interprets ∆.

Proof. It follows from a similar argument in the proofs of Theorems 5.1.2, 5.1.3, and noting
that c′ is a linear combination of c1, . . . , cℓ.

5.1.1 Sufficient conditions for tractability of χIMP

We first show that having a Gröbner Basis yields a polynomial time algorithm for solving
the search version of χIMP. Next, we use the reductions from Theorem 5.1.4 to establish
the tractability of χIMPd(Γ) for languages closed under various polymorphisms.

Theorem 5.1.5. Let I be an ideal, and let {g1, . . . , gs} be a given (d-truncated) Gröbner
Basis for I with respect to a grlex. Then the (search version of) χIMPd is polynomial time
solvable.

Proof. Recall that a polynomial p belongs to I if and only if the remainder on division
of p by g1, . . . , gs is zero. Let M = (m1, . . . ,mℓ) be a vector of ℓ polynomials and c =
(c1, . . . , cℓ) ∈ Fℓ be a vector of unknown coefficients. Set f = cM = ∑

cimi. We do the
division algorithm to obtain the reminder of dividing f by g1, . . . , gs. Repeatedly, choose a
gi ∈ {g1, . . . , gs} such that LT(gi) divides some term t of f and replace f with f − t

LT(gi)gi,
until it cannot be further applied. Hence,

f = q1g1 + · · ·+ qrgs + r

where r is a linear combination, with unknown coefficients in F, of monomials, none of
which is divisible by any of LT(g1), . . . ,LT(gs). The key observation is that the coefficients

112

of monomials in r are linear combination of c1, . . . , cℓ. Now, we want r to be the zero
polynomial. Hence, we set every unknown coefficient of monomials in r to be zero. This in
turn yields a system of linear equations in c1, . . . , cℓ. Such a system of linear equations has
a solution if and only if there exists c = (c1, . . . , cℓ) such that f = cM ∈ I.

The above theorem and the results by Mastrolilli [161, 25] give the following corollary.

Corollary 5.1.6. Let Γ be a finite constraint language over domain {0, 1}. Then the (search
version of) χIMPd(Γ) can be solved in polynomial time if

1. Γ has a semilattice polymorphism, or

2. Γ has a majority polymorphism, or

3. Γ has a minority polymorphism.

Now we use our reductions to prove the same tractability results for languages over
arbitrary finite domain. Note that the only majority polymorphism over {0, 1} is the dual-
discriminator.

Theorem 5.1.7. Let Γ be a finite constraint language over domain D. Then the (search
version of) χIMPd(Γ) can be solved in polynomial time if

1. Γ has a semilattice polymorphism, or

2. Γ has the dual-discriminator polymorphism, or

3. Γ is expressed as a system of linear equations over GF(p), p prime.

Proof. In the first case where Γ has a semilattice polymorphism we reduce the problem to
the Boolean case similar to Theorem 4.2.3. That is, there exists a finite constraint language
∆ over {0, 1} with a semilattice polymorphism so that ∆ pp-interprets Γ. Now by Theo-
rem 5.1.3 χIMPd(Γ) is polynomial time reducible to χIMPud(∆) for a constant u. Then
using Theorem 5.1.4 and Corollary 5.1.6 we can solve χIMPd(Γ).

In the second case, let P = (X,D,C) be an instance of CSP(Γ) where ∇ ∈ Pol(Γ), and
(M,P) be an instance of χIMPd(Γ) where M has length ℓ. Recall the preprocessing step
in Lemma 4.1.4 that yields an instance P ′ = (X ′, D,C ′) where C ′ contains no permutation
constraints. In a similar fashion as Lemma 4.1.4 we can transform the vector of polynomials
M and obtain a vector of polynomials M ′ which consists of polynomials of degree at most
O(d), and in addition we have

∃c ∈ Fℓ with cM ∈ I(P) ⇐⇒ ∃c′ ∈ Fℓ with c′M ′ ∈ I(P ′).

Note that in the above each entry of c′ is a linear combination of c1, . . . , cℓ, entries of c.
Now by Theorem 4.1.6, we can compute an O(d)-truncated Gröbner Basis with respect to

113

grlex for I(P ′). Hence, by Theorem 5.1.9, the instance (M ′,P ′) is polynomial time solvable.
This in turn, gives a system of linear equations over c1, . . . , cℓ. Solving this system of linear
equations yields a solution for (M,P), if one exists.

For the third case we use a reduction similar to Theorems 4.3.3 to transform the in-
stances into instances over roots of unities, where we can compute truncated Gröbner Bases.
The key observation here is that under these reductions, similar to the reduction for pp-
interpretability in Theorem 5.1.4 or the transformation in the second case, we end up with
system of linear equations over unknown variables c1, . . . , cℓ.

We prove a similar result for constraint languages invariant under the affine operation
of an Abelian group. Indeed, in Section 5.2, we provide a unifying framework based on
substitution techniques that covers all the cases here.

5.1.2 A framework for constructing d truncated Gröbner Bases

We observe that constructing a d-truncated Gröbner Basis for an ideal I is reducible to solv-
ing χIMPd for the ideal I. With this reduction at hand, we design algorithms to construct
d-truncated Gröbner Basis for many combinatorial ideals, namely, combinatorial ideals aris-
ing from languages invariant under a semilattice, or the dual-discriminator, or languages
expressible as linear equations over GF(p). Some basic notation are in order.

Let I ∈ F[X] be an ideal. We say two polynomials f, g are congruent modulo I and
write f ≡ g mod I if f − g ∈ I. It is easy to see that congruence modulo I is an equivalence
relation on F[X]. The quotient of F[X] modulo I, written F[X]/I is a ring with the base set
consisting of the cosets [f] = f + I = {f + q | q ∈ I}. F[X]/I is a commutative ring under
addition [f] + [g] = [f + g] and multiplication [f] · [g] = [fg] (product in F[X]). We consider
F[X]/I as a F-vector space with addition defined as above and scalar multiplication given
by c · [f] = [c · f], c ∈ F. We also consider the subset F[X]d/I of all polynomials of total
degree at most d. As is easily seen it is also an F-vector space. Note that F[X]/I is infinitely
dimensional in general. However, if I is zero-dimensional and radical then the quotient ring
F[X]/I is a finite dimensional vector space. Moreover, for any bound d on the total degree of
polynomials F[X]d/I is finitely dimensional. We also have a natural basis for those spaces.

Proposition 5.1.8 (Proposition 1 on page 248 of [59]). Fix a monomial ordering on F[X]
and let I ⊆ F[X] be an ideal. Let ⟨LT(I)⟩ denote the ideal generated by the leading terms of
elements of I.

1. Every f ∈ F[X] is congruent modulo I to a unique polynomial r which is a F-linear
combination of the monomials in the complement of ⟨LT(I)⟩,

2. The elements of {xα | xα ̸∈ ⟨LT(I)⟩} are linearly independent modulo I, i.e., if we
have ∑

α

cαxα ≡ 0 mod I,

114

Algorithm 2 d-Truncated Gröbner Bases
Require: I, degree d.

1: Let Q be the list of all monomials of degree at most d arranged in increasing grlex order.
2: G = ∅, B(G) = {1} (we assume 1 ̸∈ I).
3: Let bi (arranged in increasing grlex order) be the elements of B(G).
4: for q ∈ Q do
5: if q is divisible by some LM in G then
6: Discard it and go to Step 4,
7: Let M be the vector of length ℓ whose entries are monomials in B(G),
8: if there exists c ∈ Fℓ such that q − cM ∈ I then
9: G = G ∪ {q − cM}

10: else
11: B(G) = B(G) ∪ {q}
12: return G

where the xα are all in the complement of ⟨LT(I)⟩, then cα = 0 for all α.

Proposition 5.1.8 suggests a simple algorithm to construct a d-truncated Gröbner Basis.
Let I ⊆ F[X] be an ideal. At the beginning of the algorithm, there will be two sets: G, which
is initially empty but will become the d-truncated Gröbner Basis with respect to the grlex
order, and B(G), which initially contains 1 and will grow to be the grlex monomial basis
of the quotient ring F[x1, . . . , xn]/I as a F-vector space i.e., B(G) = {xα | |α| ≤ d,xα ̸∈
⟨LT(I)⟩}. In fact, B(G) contains the reduced monomials (of degree at most d) with respect
to G. Every f ∈ F[x1, . . . , xn] is congruent modulo I to a unique polynomial r which is a F-
linear combination of the monomials in the complement of ⟨LT(I)⟩. Furthermore, F[X]d/I is
isomorphic as a F-vector space to Span(xα | xα ̸∈ ⟨LT(I)⟩) via mapping Φ([f]) = f |G. Here,
Span(xα | xα ̸∈ ⟨LT(I)⟩) means the set of all F-linear combinations of {xα | xα ̸∈ ⟨LT(I)⟩)}.
Hence, for every f ∈ F[x1, . . . , xn], we have

f |G ∈ Span(xα | xα ̸∈ ⟨LT(I)⟩).

This suggests the following algorithm, inspired by the famous FGLM algorithm [75] and
the conversion algorithm in [25]. In Algorithm 2, Q is the list of all monomials of degree at
most d arranged in increasing order with respect to grlex ordering. The algorithm iterates
over monomials in Q in increasing grlex order and at each iteration decides exactly one of
the following actions given the current sets G and B(G).

1. q should be discarded (if q is divisible by some LM in G), or

2. a polynomial with q as its leading monomial should be added to G, or

3. q should be added to B(G).

115

Theorem 5.1.9. Let H be a class of ideals for which the search version of χIMPd is
polynomial time solvable. Then there exists a polynomial time algorithm (see Algorithm 2)
that constructs a degree d Gröbner Basis of an ideal I ∈ H with respect to a grlex order,
I ⊆ F[x1, . . . , xn], in time O(nd).

Proof. Algorithm 2 is clearly a polynomial time algorithm assuming χIMPd for ideal I is
polynomial time solvable. We prove G returned by the algorithm is d-truncated Gröbner
Basis, and set of monomials B(G) is so that

B(G) = {xα | |α| ≤ d,xα ̸∈ ⟨LT(I)⟩}.

We prove this by induction. The induction base is correct as B(G) = {1} and G = ∅.
Suppose sets G and B(G) are computed correctly up to the i-th iteration and let q be the
current monomial.

First, if q is a multiple of some LM in G then q ∈ ⟨LT(G)⟩. Furthemore, no polynomial
with q as its leading monomial is in a reduced Gröbner Basis of I (recall the definition of a
reduced Gröbner Basis). Therefore, in this case, Algorithm 2 correctly discards monomial
q.

Second, suppose q is not divisible by any LM in G then by the division algorithm the
normal form of q by G, q|G, is q itself. Now the algorithm decides if a polynomial with q

as its leading monomial can be in G. Let g = q + f be a polynomial such that LM(g) = q.
Therefore, by Proposition 5.1.8 and the inductive hypothesis, if g ∈ I then with the current
G and B(G) we must have

0 = g|G = q|G + f |G = q +
∑

kibi

where all
bi ∈M = {xα | deg(xα) < deg(q),xα ̸∈ ⟨LT(I)⟩}

and ki ∈ R. This yields g ∈ I if there exists c ∈ Rℓ such that q − cM ∈ I(P) then
{q − cM} ∈ I. Furthermore, if such c ∈ Rℓ does not exists then it implies there is no
polynomial in I with q as its leading monomial. Hence, q must be added to B(G).

We point out that in Theorem 5.1.9, if only the decision version of χIMP is polynomial
time solvable then a slight modification of Algorithm 2 returns basis monomials {xα | |α| ≤
d,xα ̸∈ ⟨LT(I)⟩}.

Theorem 5.1.10. Let Γ be a finite constraint language over domain D. For an instance P
of CSP(Γ) a d-truncated Gröbner Basisof I(P) with respect to a grlex order can be computed
in time O(nd) if

1. Γ has a semilattice polymorphism, or

116

2. Γ has the dual-discriminator polymorphism, or

3. Γ is expressed as a system of linear equations over GF(p), p prime.

Proof. Follows from Theorems 5.1.7 and 5.1.9.

We prove a similar result for constraint languages invariant under the affine operation of
an Abelian group. Indeed, in the following section we formalize the main idea of the above
theorem in terms of a unifying framework based on substitution techniques that covers all
the cases here. We believe our substitution techniques will find further applications in the
study of IMP.

5.2 Finding a proof and the substitution technique

In the previous sections we introduced a framework to bridge the gap between the decision
of IMP and finding a proof of membership. Indeed, the framework gives a polynomial time
algorithm to construct a truncated Gröbner Basis provided that the search version of the
χIMPd is polynomial time solvable. Then it was observed in Theorem 5.1.5 that having a
(truncated) Gröbner Basis yields a polynomial time algorithm for solving the search version
of χIMPd. Given this, to solve the χIMPd one might reduce the problem at hand to a
problem for which a (truncated) Gröbner Basis can be constructed in a relatively simple
way. This approach was successfully applied in various cases in Theorem 5.1.7 in an ad hoc
manner. However, the core idea in all of them is a substitution technique. Here we provide
a unifying construction based on substitution reductions that covers all the useful cases so
far.

5.2.1 Reduction by substitution

We call a class of IMPs or χIMPs CSP-based if its instances are of the form (f,P) or
(M,P), where P is a CSP instance over a fixed set D. Let X ,Y be restricted CSP-based
classes of the χIMP. The classes X ,Y can be defined by various kinds of restrictions, for
example, as χIMP(Γ), χIMP(∆), but not necessarily. Let the domain of X be D and the
domain of Y be E. Let also µ1, . . . , µk be a collection of surjective functions µi : Eℓi → D,
i ∈ [k]. Each mapping µi can be interpolated by a polynomial hi. We call the collection
{h1, . . . , hk} a substitution collection.

We define substitution reductions for the χIMP, for the IMP it is quite similar. The
problem X is said to be substitution reducible to Y if there exists a substitution collection
{h1, . . . , hk} and a polynomial time algorithm A such that for every instance (M,P) of X
the instance constructed as follows belongs to Y.

(1) Let X be the set of variables of (M,P). For every x ∈ X the algorithm A selects a
polynomial hix and a set of variables Yx such that

117

(a) |Yx| = ℓix ;
(b) for any x, y ∈ X either Yx = Yy or Yx ∩ Yy = ∅;
(c) if x1, . . . , xr ∈ X are such that Yx1 = · · · = Yxr = {y1, . . . , yℓj} then for any solu-

tion φ of P there are values a1, . . . , aℓj ∈ E such that φ(xi) = hixi
(a1, . . . , aℓj).

(2) If M = (g1, . . . , gℓ) then M ′ = (g′
1, . . . , g

′
ℓ), where for gi(x1, . . . , xt)

g′
i = gi(hix1

(Yx1), . . . , hixy
(Yxt)).

(3) Let Y = ⋃
x∈X Yx. The instance P ′ is given by (Y,E, C′), where for every constraint

⟨s, R⟩, s = (x1, . . . , xt), P ′ contains the constraint ⟨s′, R′⟩ such that

– s′ = (x1,1, . . . , x1,ℓx1
, x2,1, . . . , xt,ℓxt

), where Yxj = {xj,1, . . . , xj,ℓj};
– R′ is an ℓ-ary relation, ℓ = ℓx1+, . . . ,+ℓxt , such that (a1,1, . . . , a1,ℓx1

, a2,1, . . . , at,ℓxt
) ∈

R′ if and only if (hix1
(a1,1, . . . , a1,ℓx1

), . . . , hixt
(at,1, . . . , at,ℓxt

)) ∈ R.

Lemma 5.2.1. Let X ,Y be restricted CSP-based classes of the χIMPd and χIMPrd, respec-
tively, ℓ ≥ 1. If X is substitution reducible to Y with a substitution collection {h1, . . . , hk},
and r ≥ ℓi for each i ∈ [k], then there is a polynomial time reduction from X to Y.

Proof. Let (M,P) with M = (g1, . . . , gℓ) be an instance of X . Moreover, suppose polyno-
mials in M have total degree at most d. By the above definition, in polynomial time, we
construct an instance (M ′,P ′) with M ′ = (g′

1, . . . , g
′
ℓ) of Y that satisfies the conditions in

the definition. Note that each polynomial hi in the substitution collection has degree at
most ℓi|D|, therefore, each g′

i in M ′ has a bounded degree. We now prove (M,P) is a yes
instance if and only if (M ′,P ′) is a yes instance.

Recall that Y = ⋃
x∈X Yx and set X = {x1, . . . , xn}, Y = {y1, . . . , ym}. Let I(P) ⊆

F[X] and I(P ′) ⊆ F[Y] be the corresponding ideals to P and P ′, respectively. Consider an
arbitrary c ∈ Fℓ and set f ∈ F[X] to be

f(x1, . . . , xn) =
ℓ∑
i=1

cigi(x1, . . . , xn)

= cM.

Now define the polynomial f ′ ∈ F[Y] to be

f ′(y1, . . . , ym) =
ℓ∑
i=1

cigi(hix1
(Yx1), . . . , hixn

(Yxn))

=
ℓ∑
i=1

cig
′
i(Y)

= cM ′.

118

In what follows, we prove that we can construct a satisfying assignment for P ′ from
a satisfying assignment for P, and vice versa. Consider a satisfying assignment ψ for the
instance P ′. We find a mapping φ : X → D and show it is a satisfying assignment for P.
Define φ as follows. For any x ∈ X with Yx = {yx,1, . . . , yx,ℓix

} let

φ(x) = hix(ψ(yx,1), . . . , ψ(yx,ℓix
)).

Consider a constraint from P, say ⟨s, R⟩ with s = (x1, . . . , xt). By definition, there exists a
constraint ⟨s′, R′⟩ such that

− s′ = (x1,1, . . . , x1,ℓx1
, x2,1, . . . , xt,ℓxt

), where Yxj = {xj,1, . . . , xj,ℓj} ⊆ Y ;

− R′ is an ℓ-ary relation, ℓ = ℓx1+, . . . ,+ℓxt , such that (a1,1, . . . , a1,ℓx1
, a2,1, . . . , at,ℓxt

) ∈
R′ if and only if (hix1

(a1,1, . . . , a1,ℓx1
), . . . , hixt

(at,1, . . . , at,ℓxt
)) ∈ R.

Now since ψ is a satisfying assignment of P ′ then

(ψ(x1,1), . . . , ψ(x1,ℓx1
), ψ(x2,1), . . . , ψ(xt,ℓxt

)) ∈ R′

if and only if(
hix1

(ψ(x1,1), . . . , ψ(x1,ℓx1
)), . . . , hixt

(ψ(xt,1), . . . , ψ(xt,ℓxt
))
)
∈ R.

Hence, since ψ is a satisfying assignment for P ′ then φ is a satisfying assignment for P.
Conversely, consider a satisfying assignment φ for the instance P. We find a mapping

ψ : Y → E and show it is a satisfying assignment for P ′. Define ψ as follows. Let x1, . . . , xr

be all the variables such that y ∈ Yxi , i ∈ [r]. According to the definition, item 1(b), we
must have Yx1 = · · · = Yxr = {y1, y2, . . . , yℓj}. Without loss of generality, suppose y = y1.
Now, according to item 1(b) of the definition, since φ is a solution of P there are values
a1, . . . , aℓj ∈ E such that φ(xi) = hixi

(a1, . . . , aℓj) for all i ∈ [r]. Hence, in this case we set
ψ(y) = a.

Now we show ψ is a satisfying assignment for P ′. Consider a constraint from P ′, let say
⟨s′, R′⟩. By item (3) in the definition, there exists a constrain ⟨s, R⟩ with s = (x1, . . . , xt) in
P that gives rise to ⟨s′, R′⟩ such that

− s′ = (x1,1, . . . , x1,ℓx1
, x2,1, . . . , xt,ℓxt

), where Yxj = {xj,1, . . . , xj,ℓj} ⊆ Y ;

− R′ is an ℓ-ary relation, ℓ = ℓx1+, . . . ,+ℓxt , such that (a1,1, . . . , a1,ℓx1
, a2,1, . . . , at,ℓxt

) ∈
R′ if and only if (hix1

(a1,1, . . . , a1,ℓx1
), . . . , hixt

(at,1, . . . , at,ℓxt
)) ∈ R.

Now since φ is a satisfying assignment of P then

(φ(x1), . . . , φ(xn)) ∈ R

=⇒
(
hix1

(ψ(x1,1), . . . , ψ(x1,ℓx1
)), . . . , hixt

(ψ(xt,1), . . . , ψ(xt,ℓxt
))
)
∈ R.

119

if and only if
(ψ(x1,1), . . . , ψ(x1,ℓx1

), ψ(x2,1), . . . , ψ(xt,ℓxt
)) ∈ R′

Hence, since φ is a satisfying assignment for P then ψ is a satisfying assignment for P ′.
It remains to show f ′(ψ) = 0 if and only if f(φ) = 0. This is the case because

f ′(ψ) =
ℓ∑
i=1

cig
′
i(ψ)

=
ℓ∑
i=1

cigi
(
hix1

(ψ(Yx1)), . . . , hixn
(ψ(Yxn))

)

=
ℓ∑
i=1

cigi(φ(x1), . . . , φ(xn))

= f(φ)

Therefore we have proved

∃c ∈ Fℓ with cM ∈ I(P) ⇐⇒ ∃c′ ∈ Fℓ with c′M ′ ∈ I(P ′).

This finishes the proof.

Theorem 5.1.5 and the above lemma provide a powerful tool for solving the χIMP. That
is, if X is substitution reducible to Y and furthermore Y is such that it admits a polynomial
time algorithm to construct a Gröbner Basis, then instances of X are solvable in polynomial
time too. More formally,

Theorem 5.2.2. Let X ,Y be restricted CSP-based classes of the χIMPd and χIMPrd,
r ≥ 1 respectively, such that X is substitution reducible to Y with a substitution collection
{h1, . . . , hk} and r ≥ ℓi for i ∈ [k]. Suppose there exists a polynomial time algorithm that
for any instance (M ′,P ′) of Y constructs a (truncated) Gröbner Basis, then

1. there is a polynomial time algorithm that solves every instance (M,P) of X ; and

2. there exists a polynomial time algorithm that for any instance (M,P) of X constructs
a d-truncated Gröbner Basis for I(P).

Proof. Suppose M contains ℓ polynomials g1, . . . , gℓ. From instance (M,P) of X we con-
struct an instance (M ′,P ′) of Y as explained above. Now by Lemma 5.2.1 these two instances
are equivalent.

The objective is to find c ∈ Fℓ such that f = cM ∈ I(P), if one exists. After carrying out
the construction the coefficients in all the polynomials g′

1, . . . , g
′
ℓ ∈M ′ are linear combination

of elements of c. Hence, we have polynomial f ′ = c′M ′ where each entry of c′ is a linear
combination of elements of c. By our assumption, we can construct a Gröbner Basis for

120

I(P ′) then we can check in polynomial time if such c′ exists. If no such c′ exists then
(M,P) is a no instance, else we can solve a system of linear equations over the elements of
c and find a solution c.

Finally, for the second part of the theorem since (M,P) is polynomial time solvable,
by Theorem 5.1.9, we can construct a d-truncated Gröbner Basis for I(P) in polynomial
time.

5.2.2 Applications of reduction by substitution

In this section we demonstrate that the notion of reduction by substitution introduced in
the previous section is applicable to various cases, in particular the case of CSPs over
constraint languages closed under the affine operation of an finite Abelian group. We start
off with the case of pp-interpretation.

Lemma 5.2.3. Let ∆ and Γ be multi-sorted constraint languages over finite collection of
sets D = {Dt | t ∈ T}, E = {Es | s ∈ S}, respectively. Let X ,Y be classes of CSP-based
χIMP with X defined as χIMPd(∆) and Y defined as χIMP(Γ). Suppose Γ pp-interprets
∆, then X is substitution reducible to Y.

Proof. Let (M,P) be an instance of X . We provide an algorithm that construct an instance
(M ′,P ′) of Y in such a way that it satisfies the conditions for reduction by substitution.

Recall Definition 3.3.4. Define the substitution collection {hs | s ∈ S} to be the set of
polynomials where each hs interpolates the onto mapping πs : Fs → Es. For every constraint
⟨v, R⟩ in P with v = (x1, . . . , xt), P ′ contains the constraint ⟨v′, R′⟩ with

− v′ = (x1,1, . . . , x1,ℓs1
, . . . , xt,1, . . . , xt,ℓst

), and

− R′ is such that

π−1(R)(x1,1, . . . , x1,ℓs1
, x2,1, . . . , x2,ℓs2

, . . . , xt,1, . . . , xt,ℓst
) is true

if and only if

R(hs1(x1,1, . . . , x1,ℓs1
), . . . , hsk

(xk,1, . . . , xk,ℓst
)) is true.

Now for each xi with δ∆(xi) = s we have Yxi = {xi,1, . . . , xi,ℓs}. Note that for every distinct
xi and xj we have Yxi ∩ Yxj = ∅. This satisfies conditions 1(b),(c). Moreover, according to
pp-interpretability and the way (M ′,P ′) is constructed condition (3) is also satisfied.

From the above lemma and Theorem 5.2.2 we obtain the following corollary.

Corollary 5.2.4. Let ∆ and Γ be multi-sorted constraint languages over finite collection
of sets D = {Dt | t ∈ T}, E = {Es | s ∈ S}, respectively. Suppose Γ pp-interprets ∆ and

121

there exists a polynomial time algorithm that for any instance (M ′,P ′) of χIMPO(d)(Γ)
constructs a (truncated) Gröbner Basis, then

1. there is a polynomial time algorithm that solves every instance (M,P) of χIMPd(∆);
and

2. there exists a polynomial time algorithm that for any instance (M,P) of χIMPd(∆)
constructs a d-truncated Gröbner Basis for I(P).

Reduction by substitution for languages over Abelian groups

In this section we prove that our reductions for constraint languages over finite Abelian
groups is an example of reduction by substitution. Lemma 5.2.3 states that reductions
under pp-interpretability can be seen as reduction by substitution. This means the part of
our reduction where we transform an instance of CSP over an Abelian group to an instance
of CSP over Zpm1

1
, . . . ,Zpms

s
can be seen as a reduction by substitution. We will show that

the reduction to roots of unities is also a reduction by substitution.
Let (M,P) be such that M = (g1, . . . , gℓ) is a vector of polynomials of length ℓ where

each gi ∈ M is from C[x1,1, . . . , x1,k1 , . . . , xs,1, . . . , xs,ks] and P is an instance of CSP(Γ).
Here Γ is a constraint language invariant under the affine operation of Zpm1

1
, . . . ,Zpms

s
.

Moreover, P can be represented as a collection of systems of linear equations L1, . . . ,Ls
where

1. each Li is a system of linear equations over Zpmi
i

with variables X(Li)∪Y (Yi), X(Li) =
{xi,1, . . . , xi,ki

}, Y (Li) = {yi,1, . . . , yi,ri};

2. each Li is of the following form

(1ki×ki
Mi)(xi,1, . . . , xi,ki

, yi,1, . . . , yi,ri , 1)T = 0;

3. X(Li) ∩X(Lj) = ∅, Y (Li) ∩ Y (Lj) = ∅, for all 1 ≤ i, j ≤ s and i ̸= j;

4. an assignment φ to variables from X is a solution of P if and only if for every i ∈ [s]
there are values of variables from Y (Li) that together with φ|X(Li) satisfy Li.

Now for each i ∈ [s] let hi be a polynomial that interpolates the mapping

(0, ω0
i), (1, ωi), . . . , (pmi

i − 1, ω(pmi
i −1)

i)

where ωi is a primitive pmi
i -th root of unity. The substitution collection consists of all hi,

i ∈ [s]. For every variable xi,j , yi,j we set Yi,j = {xi,j} and Y ′
i,j = {yi,j} satisfying condition

1(b). Then, for each variable xi,j , yi,j we choose hixi,j
= hi, hiyi,j

= hi. Thus, condition 1(c)
is satisfied.

122

Now for every constraint in P which is of the form

xi,t + αt,1 yi,1 + · · ·+ αt,ri yi,ri + αt = 0 (mod pmi
i)

we add the following constraint in P ′

xi,t − ωαt
i ·

(
y
αt,1
i,1 · . . . · y

αt,ri
i,ri

)
= 0.

Such construction of P ′ guarantees that conditions in (3) hold. Now it is immediate that
our transformation of the problem to an equivalent problem over roots of unities is indeed
a reduction by substitution. This together with the fact that there exists an algorithm to
construct a Gröbner Basis for the equivalent problem over roots of unities, see Lemma 4.4.12,
give us the following theorem.

Theorem 5.2.5. Let A be an Abelian group. Then IMPd(∆) is polynomial time solvable
for any finite constraint language ∆ which is invariant under the affine operation of A.

Moreover, given an instance (f0,P) of IMPd(∆) a (d-truncated) Gröbner Basis of I(P)
(with respect to a grlex order) can be constructed in polynomial time.

Proof. The discussion above tells us that χIMPd(∆) is substitution reducible to a class of
χIMP, say Y, where for every instance (M ′,P ′) of Y we can construct a Gröbner Basis.
Hence, by Theorem 5.2.2, every instance (M,P) of χIMPd(∆) is polynomial time solvable.
Moreover, by item 2 of Theorem 5.2.2, we can construct a d-truncated Gröbner Basis for
I(P) thus IMPd(∆) is polynomial time solvable.

5.3 SOS proofs: bit complexity and automatability

The focus of this section is on designing efficient algorithms to find proofs of nonnegativity
of polynomials over (semi)algebraic sets. Sum-of-squares certificates of nonnegativity is a
popular and powerful framework to provide a proof that a polynomial is nonnegative. In
this section we present a very light introduction to SOS proofs of nonnegativity and lay
down some notation and background. The main appeal of this proof system is that it can
be transformed into an SDP feasibility problem and hopefully be solved efficiently using
methods such as the Ellipsoid method. However, we discuss a recently discovered issue
with the bit complexity of the coefficients appearing in polynomials in an SOS proof which
could cause algorithms such as the Ellipsoid method to run in exponential time. This issue
affects the automatability of SOS proofs. Our objective is to characterize algebraic sets
i.e., constraint languages, for which SOS proofs are automatable. We first observe that the
existence of a degree d SOS proof implies existence of a degree d SOS proof on quotient
rings. Hence, we only need to look at SOS on quotient rings. Using this we then prove that
for radical ideals and ideals arising from CSP instances we can guarantee SOS proofs with

123

low bit complexity, provided a low degree one exists. This leads us to the third part of
this section where we show that degree bounds on SOS proofs can be relaxed preserving
automatability provided the IMP part is polynomial time solvable. We believe this could
potentially lead to more expressive SOS proofs. Throughout this section we work with
F = R.

5.3.1 SOS proofs on quotient ring

In this subsection we provide a light introduction to SOS proofs and discuss the issue with
the bit complexity of the coefficients of polynomials appearing in a proof.

It is known that, in general, nonnegativity of a polynomial is not equivalent to having
a representation as a sum-of-squares polynomials [112]. The most famous example of these
type of polynomials is the Motzkin polynomial [174]. The Motzkin polynomial r(x, y) =
1 + x4y2 + x2y4 − 3x2y2 is nonnegative while it cannot be represented as a sum-of-squares
[193]. However, the situation is different when one is concerned with proofs of nonnegativity
over (semi)algebraic sets. Let S be the following semialgebraic set.

S = {x ∈ Rn | p1(x) = 0, . . . , pm(x) = 0, q1(x) ≥ 0, . . . , qℓ(x) ≥ 0} (5.2)

where the ideal I = ⟨p1, . . . , pm⟩ is zero-dimensional and radical. In this case we have the
following lemma. Note that radicality is crucial in the next lemma.

Lemma 5.3.1 ([183]). Every nonnegative polynomial on S is of the form s2
0 +∑ℓ

j=1 s
2
jqj+g

with g ∈ I.

This leads to a uniform and powerful tool for low degree polynomial optimization. For-
mally,

Minimize r(x)
Subject to: x ∈ S = {x ∈ Rn | p1(x) = 0, . . . , pm(x) = 0, q1(x) ≥ 0, . . . , qℓ(x) ≥ 0}

An SOS proof of a lower bound r(x) ≥ θ is given by a polynomial identity of the form

r(x)− θ =
t0∑
i=1

h2
i (x) +

ℓ∑
k=1

(
tk∑
j=1

s2
j (x))qk(x) +

m∑
i=1

λi(x)pi(x). (5.3)

The degree of an SOS certificate is often defined to be the maximum degree of the polyno-
mials involved in the proofs i.e., max{deg(h2

i), deg(s2
jqk), deg(λipi)}.

A common misconception was that if a degree d SOS proof of nonnegativity exists then
the corresponding SDP feasibility is solvable by the Ellipsoid method in time O(nd). This
is sometimes referred to as the SOS proof system being automatabe. Unfortunately, this is
not true in general [178]. Technically, the Ellipsoid method is guaranteed to work in time

124

poly(nd) if the SDP’s feasible region (should it exist) intersects a ball of radius 2poly(nd) [93].
Thus, it is not sufficient for an SOS proof to exist, we also need one to exist in which all
the SOS polynomials can be written down with poly(nd) bits i.e., coefficients involved in an
SOS certificate have low bit complexity.

Let I ⊆ R[X] be a zero-dimensional ideal. Fix a monomial order, here we consider
grlex order. Suppose we know B = {xα | xα ̸∈ ⟨LT (I)⟩} so that R[X] = SpanR(B) ⊕ I. If
r = ∑

s2
i + q with si ∈ R[X], q ∈ I, write si = ui + vi with ui ∈ SpanR(B) and vi ∈ I.

Hence, r = ∑
u2
i + g where g = q + ∑(v2

i + 2uivi) is in I. This yields the following well
known lemma.

Lemma 5.3.2 ([145]). Let I = ⟨p1 . . . , pm⟩ be an ideal in R[X] and Q = {q1, . . . , qℓ}. Define
S = {x ∈ Rn | p1(x) = 0, . . . , pm(x) = 0, q1(x) ≥ 0, . . . , qℓ(x) ≥ 0}.

Suppose r(x) has a degree d SOS proof of nonnegativity on S. Then, it has a degree d
SOS proof of nonnegativity

r(x) =
t0∑
i=1

h2
i (x) +

ℓ∑
k=1

(
tk∑
j=1

s2
j (x))qi(x) + g

such that all hi, sj are in Span(xα | |α| ≤ d
2 ,x

α ̸∈ ⟨LT(I)⟩) and g ∈ I.

This tells us the existence of a degree d SOS proof modulo the ideal implies existence
of an SOS proof modulo the ideal where all the SOS polynomials are linear combination of
the monomials from B.

5.3.2 Automatability on quotient ring

Here we wish to provide conditions that guarantee low bit complexity for polynomials
appearing in an SOS proof. This in turn guarantees automatability i.e., if there exists a
degree d SOS proof of nonnegativity then the Ellipsoid method is guaranteed to find such a
proof. The first systematic approach to this problem is due to Raghavendra and Weitz [192].
Let P = {p1 . . . , pm} and Q = {q1, . . . , qℓ} and define S ⊆ {a ∈ Rn | ∀p ∈ P : p(a) = 0}. We
write ud for the vector of polynomials whose entries are the elements of the usual monomial
basis of R[X]d. Similarly, we use ud(a) for the vector of reals whose entries are the entries
of ud evaluated at a. Let U denote the uniform distribution over S and define the moment
matrix as

Md = Ea∼U [ud(a)ud(a)T]. (5.4)

In some sense, the main condition that Raghavendra and Weitz provided is that every
polynomial of degree d has a proof of membership in the ideal from p1, . . . , pm of degree at
most kd. In this case we say p1, . . . , pm are k-effective or P is k-effective. As an example, if
p1, . . . , pm form a Gröbner Basis with respect to grlex then they are 1-effective. If furthermore

125

the ideal I(P) = ⟨p1, . . . , pm⟩ is radical, then in this case we say that (P,Q) is kd-complete
on S up to degree d. Ideally, we want k to be small e.g., k = O(d). This is a very strong
condition on the structure of the ideal I while the other conditions in [192] are considered
to be mild. The conditions are as follows,

1. (P,Q) is kd-complete on S up to degree d,

2. S is ε-robust for Q. This means ∀q ∈ Q, ∀a ∈ S : q(a) > ε,

3. S is δ-spectrally rich for (P,Q) up to degree d. This means every nonzero eigenvalue
of Md is at least δ1.

Provided the above conditions are met, they show that any polynomial r that is non-
negative on S and admits a degree d SOS of form (5.3), is guaranteed to have a degree kd
SOS certificate of form (5.3) where all coefficients have polynomial bit complexity. While
[218] developed a proof strategy for proving that a set of polynomials are k-effective, un-
fortunately, as marked in [218]: “ this strategy is by no means universally applicable, and
it had to be applied on a case-by-case basis”. It is not obvious how to verify effectiveness
even if we are given a Gröbner Basis of the ideal ⟨p1, . . . , pm⟩ 2.

The situation is different if we are interested in SOS proofs of nonnegativity on S modulo
the ideal, rather than an SOS proof modulo {p1, . . . , pm}. Recall that as long as the ideal is
radical, by Lemma 5.3.1, every nonnegative polynomial on S is of the form s2

0+∑ℓ
j=1 s

2
jqj+g

with g ∈ I(P). We say a polynomial r(x) is SOS modulo S (or modulo I(P), when the ideal
is radical) if there are hi, sj , and g ∈ I(P) such that

r(x) =
t0∑
i=1

h2
i (x) +

ℓ∑
k=1

(
tk∑
j=1

s2
j (x))qk(x) + g. (5.5)

Turning our attention to SOS proofs of form (5.5) modulo CSP-based ideals, we note
these ideals are radical and moreover we realize that the k-effectiveness condition is avoidable
and somewhat irrelevant. In addition, the discrete nature of the varieties of CSP-based ideals
implies the δ-spectrally richness. In fact, one can prove similar to Lemma 7 of [192] that
1
δ = 2poly(n|D|) where D is the domain of the constraint language at hand. We follow a
similar approach to [192] proving the following theorem.

Theorem 5.3.3. Let P be an instance of CSP(Γ) with domain D, and I(P) = ⟨p1 . . . , pm⟩
be the corresponding ideal to P. Define S = V (I(P)) = {a ∈ Rn | ∀p ∈ P : p(a) = 0} and
suppose S is ε-robust for Q = {q1, . . . , qℓ}.

1A zero eigenvector of M corresponds to a polynomial which is zero on S.

2Obviously, if p1, . . . , pm form a Gröbner Basis then they are 1-effective i.e. every degree d polynomial in
the ideal has a degree d derivation from p1, . . . , pm.

126

Let r(x) be a polynomial nonnegative on S, and assume r has a degree d SOS proof of
nonnegativity

r(x) =
t0∑
i=1

h2
i (x) +

ℓ∑
k=1

(
tk∑
j=1

s2
j (x))qk(x) + g (g ∈ I(P))

Then r has a degree d SOS proof of nonnegativity modulo I(P) such that the coefficients of
every polynomial appearing in the proof are bounded by 2poly(nd,n|D|,log 1

ε
). In particular, if

Q = ∅ then every coefficient can be written down with only poly(nd, n|D|) bits.

Proof. Let I = I(P) and B d
2

= {xα | |α| ≤ d
2 ,x

α ̸∈ ⟨LT(I)⟩}. Let v be the vector whose
entries are the elements of Bd, so any polynomial in SpanR(B d

2
) can be expressed as cTv,

where c is a vector of reals. By Lemma 5.3.2, there is a proof of nonnegativity as follows.

r(x) =
t0∑
i=1

(cTi v)2(x) +
ℓ∑

k=1

 tk∑
j=1

(dTkjv)2(x)

 qk(x) + g (g ∈ I)

= ⟨C,vvT ⟩+
ℓ∑

k=1
⟨Dk,vvT ⟩qk + g

for PSD matrices C,D1, . . . , Dℓ. Next, we average this polynomial identity over all the points
a ∈ S:

Ea∈S [r(a)] = ⟨C,Ea∈S [v(a)v(a)T]⟩+
ℓ∑

k=1
⟨Dk,Ea∈S [v(a)v(a)T qk(a)]⟩+ 0

Let ||r|| denote the maximum absolute value of coefficients of r and ||S|| = maxa∈S ||a||∞.
Then the LHS is at most poly(||r||, ||S||) ≤ 2poly(nd). The RHS is a sum of positive numbers,
since the inner products are over pairs of PSD matrices. Thus the LHS is an upper bound on
each term of the RHS. We would like to say that the LHS also provides an upper bound on
the entries of matrices C, Dk or an upper bound on the trace of these matrices. Recall that
the trace of a matrix is sum of its eigenvalues. Hence, we prove that the averaged matrix
M ′ = Ea∈S [v(a)v(a)T] has no zero eigenvector so none of the eigenvalues of matrices C
and Dk’s are being dismissed by a zero eigenvector of M ′.

We now claim that the averaged matrix M ′ = Ea∈S [v(a)v(a)T] has no zero eigenvector.
Any zero eigenvector c of M ′ can be associated with a polynomial cTv. Since cTM ′c =
Ea∈S [(cTv(a))2] and cTM ′c = 0, we must have cTv(a) = 0 for each a ∈ S. Therefore,
as I is radical, by the Strong Nullstellensatz 2.1.9, cTv must be in the ideal I. This is a
contradiction to v being a vector of monomials from B d

2
.

We proceed by assuming the averaged matrix M ′ = Ea∈S [v(a)v(a)T] has no zero eigen-
vector. Therefore, none of the eigenvalues of matrix C are being dismissed by a zero eigen-
vector of M ′. The same is true for all Dk. Furthermore, similar to M (5.4), every nonzero

127

eigenvalue of M ′ is at least δ, so

⟨C,Ea∈S [v(a)v(a)T]⟩ ≥ δ · Tr(C).

Also, qk(a) > ε for each k and a. Thus,

⟨Dk,Ea∈S [v(a)v(a)T qk(a)]⟩ ≥ ε · ⟨Dk,Ea∈S [v(a)v(a)T]⟩

≥ ε · δ · Tr(Dk)

Thus, after averaging we have

δ · Tr(C) + ε · δ ·
ℓ∑

k=1
Tr(Dk) ≤ poly(||r||, ||S||) ≤ 2poly(nd)

Every entry of a PSD matrix is bounded by the trace, so C and each Dk have entries
bounded by poly(||r||, ||S||, 1

ε ,
1
δ). Noting that poly(||r||, ||S||) ≤ 2poly(nd) and 1

δ = 2poly(n|D|)

yields the desire bound on the entries of C and each Dk. It remains to give an upper bound
on the coefficients appearing in g. Consider the system of linear equations induced by

r(x)− ⟨C,vvT ⟩+
ℓ∑

k=1
⟨Dk,vvT ⟩qk = g

where we take the coefficients appearing in g as variables. Note that this system is fea-
sible. By Lemma 5.3.2, g has degree at most d and therefore there are at most O(nd)
variables and the coefficients on the LHS are bounded by poly(||r||, ||S||, 1

δ ,
1
ε). Let ||P ,Q||

denote the maximum absolute value of coefficients appearing in polynomials p1, . . . , pm and
q1, . . . , qℓ. By Cramer’s rule, the coefficients appearing in g can be taken to be bounded by
poly(||{P ,Q}||, ||r||, ||S||, 1

δ ,
1
ε , n!). Noting that poly(||{P ,Q}||, ||r||, ||S||) ≤ 2poly(nd), as they

are part of the input, and 1
δ = 2poly(n|D|) gives that this bound is at most 2poly(nd,n|D|,log 1

ε
)

as desired.

The required conditions in Theorem 5.3.3 are quite mild and covers almost all algebraic
sets arising from CSP-based ideals, particularly when Q = ∅. We remark that, Theo-
rem 5.3.3 is applicable to radical ideals as long as the δ-spectrally richness is met.

5.3.3 Automatability and CSP-based ideals

Note that in [192] if the conditions for low bit complexity are met then one can formulate
(5.3) as an SDP which is guaranteed to be solved by the Ellipsoid method in time poly(nd).
However, Theorem 5.3.3 does not tell us how to decide in polynomial time if a polynomial
r is SOS modulo S. One approach suggested by Raghavendra and Weitz and Mastrolilli, is
to express the polynomial g in (5.5) in terms of “nice” generating sets of polynomials such

128

as Gröbner Bases and then use an SDP formulation, see Problem 1.2.1. Here, we suggest
a different perspective through the lens of χIMP to decide the existence of an SOS proof
modulo S. The following theorem puts forward the idea that the χIMP is the main player
in SOS proofs automatability and allow us to use a much larger tool box than the usual
Gröbner Basis.

Theorem 5.3.4. Let Γ be a constraint language such that χIMPd(Γ) is polynomial time
solvable. Let P be an instance of CSP(Γ) and I(P) = ⟨p1 . . . , pm⟩ be the corresponding ideal
to P. Assume that ∀qi, ∀a ∈ S we have qi(a) > ε.

Then for a polynomial r, the existence of an SOS proof of form (5.5) with max{deg(h2
i),

deg(s2
jqk)} ≤ d is polynomial time decidable. Furthermore, such a proof can be found in

polynomial time, if one exists.

Proof. By Theorem 5.3.3 if an SOS proof exists then there is an SOS proof such that
its coefficients can be written down with at most poly(nd, n|D|, log 1

ϵ) bits. Moreover, by
Theorem 5.1.9, we can compute a d-truncated Gröbner Basis for I(P) in time O(nd). Then
using the d-truncated Gröbner Basis, a proof of form (5.5) can be formulated as an SDP.
Finally, the Ellipsoid method is guaranteed to find a proof in time poly(nd), if one exists.

The above results cover a wide range of problems for which a low bit complexity guar-
antee and automatability of SOS proofs was not known. Here we give an example of such
problems, the H-Coloring problem.

Example 5.3.5. Fix a (di)graph H with V (H) = {0, 1, . . . , d}. For any (di)graph G with
vertex set V (G) = {x1, . . . , xn} we are interested in homomorphisms from G to H. The set
of all homomorphisms from G to H can be captured by the following polynomial system.
The first set of polynomials are the domain polynomials and ensures each vertex of G is
assigned a label from V (H). The second set of polynomials are the edge constraints where
they ensure that each edge xixj of G is mapped to an edge αβ ∈ E(H).

P =
{ ∏
α∈V (H)

(xi − α) | xi ∈ V (G)
}

∪
{ ∏
αβ∈E(H)

(1−
∏

λ∈V (H),
λ ̸=α

λ− xi
λ− α

∏
λ∈V (H),
λ ̸=β

λ− xj
λ− β

) | xixj ∈ E(G)
}

Here S is the set of all homomorphisms from G to H. This setting is very general and
many important optimization problems are captured by this specification: k Coloring where
H is a clique of size k, Vertex Cover where H = (V = {0, 1}, E = {(0, 1), (1, 0), (1, 1)}). For
both of these examples it is known that P is in fact a Gröbner Basis. Our results imply
that if there exists a degree d SOS proof of nonnegativity on S then there exists one of
degree d with low bit complexity. Furthermore, our result implies that when H is closed

129

under a semilattice polymorphism then a truncated Gröbner Basis can be constructed in
polynomial time. This includes many graph classes such as bi-arc digraphs, interval graphs,
signed interval digraphs, threshold tolerance graphs, etc. [107].

5.4 Theta bodies for combinatorial ideals

One of the core problems in optimization is to understand the conv(S) or a relaxation of
conv(S), where S the set of feasible solutions to a given problem and conv(S) denotes the
convex hull of S. For the CSPs, an instance P of CSP(Γ) can be associated with an ideal
I(P) = ⟨f1, . . . , fs⟩ and the Sol(P) = V (I(P)) is a finite subset of Rn. Hence, in this setting
we are interested in computing conv(V (I(P))). This is cut out by the inequalities f(x) ≥ 0
as f runs over all linear polynomials that are nonnegative over V (I(P)). Thus, a natural
relaxation for conv(V (I(P))) is 3

{x ∈ Rn | f(x) ≥ 0 for all f linear and SOS mod I} (5.6)

Here we wish to provide a systematic approach using the algebraic property of the
solution sets and our results on the IMP and χIMP to compute/approximate conv(Sol(P)).
We follow the notion of theta bodies introduced and advanced by Gouveia, Parrilo and
Thomas [90]. Throughout this section we work with F = R. Some definitions are in order.

Definition 5.4.1. Let I be an ideal in R[X].

1. A polynomial f ∈ R[X] is called k-SOS mod I if there exist s1, . . . , st ∈ R[X]k such
that f −

∑t
i=1 s

2
i ∈ I.

2. The ideal I is called k-SOS if every nonnegative polynomial on V (I) is k-SOS mod
I. If every degree d nonnegative polynomial on V (I) is k-SOS mod I we say I is
(d, k)-SOS.

Lovász [155] asked the following question: Which ideals in R[X] are (1, 1)-SOS? How
about (1, k)-SOS?. We propose a restricted version of this question for vanishing ideals of
constraint languages. Formally, we say a language Γ is (d, k)-SOS if for every instance P of
CSP(Γ) the corresponding ideal I(P) is (d, k)-SOS. An analogue of Lovász’s question for
constraint languages is,

Problem 5.4.2. Which languages are (1, 1)-SOS? How about (1, k)-SOS?

Gouveia, Parrilo and Thomas [90] quite elegantly present an equivalent geometric notion
to an ideal being (1, k)-SOS.

3Note that, in general, for an ideal I ∈ R[X] the convex hull of V (I) may not be closed. Hence, (5.6) is
a relaxation for the closure of conv(V (I)), denoted by cl(conv(V (I))). Here, closure of the convex hull of a
set C means the intersection of the closed halfspaces containing C.

130

Definition 5.4.3. For a positive integer k, the k-th theta body of an ideal I ∈ R[X] is

THk(I) := {x ∈ Rn | f(x) ≥ 0 for every linear f that is k-SOS mod I}. (5.7)

Observe that, by definition, TH1(I) ⊇ TH2(I) ⊇ · · · ⊇ conv(V (I)). We say a combina-
torial ideal is THk-exact if THk(I) = conv(V (I))4. Zero-dimensional ideals are THk-exact
for some finite k [145]. We say a language Γ is THk-exact if for any instance P of CSP(Γ)
the ideal I(P) is THk-exact. An intriguing question is characterizing THk-exact languages,
for constant k.

Problem 5.4.4. Which languages are THk-exact, for some constant k?

Gouveia, Parrilo and Thomas [90] proved that a radical ideal is THk-exact if and only
if it is (1, k)-SOS. They have also provided an answer to Problem 5.4.2 characterizing finite
sets S ⊂ Rn that are (1, 1)-SOS (see Theorem 4.2 in [90]).

Although the results of [90] provide a characterization of THk-exact ideal, they do little
to the computational side of theta bodies. Theta bodies provide a set of relaxations of
solution sets and helps to formulate many combinatorial problems as optimizing a (linear)
polynomial over theta bodies which could lead to a better understanding of approximability
of many combinatorial problems in a unified way. In order to use theta bodies in this way,
we need a method of efficiently ‘construct’ a theta body. One way to describe the k-th theta
body of I is in terms of the so called combinatorial moment matrices which are matrices
indexed by a basis of Bk [145]. Let us elaborate on this via an example, see [145, 90] for
further details. First we explain the construction of combinatorial moment matrices and
then discuss how we can use them to describe theta bodies for the Clique problem. We may
assume B = {xα | xα ̸∈ ⟨LT(I)⟩} and Bk = {xα | |α| ≤ k,xα ̸∈ ⟨LT(I)⟩} are vectors with
their elements listed in increasing grlex order. Hence, any polynomial modulo I is c · B with
c ∈ R|B|. Now, let y = (y1, . . . , ym) ∈ R|B2k| and define MBk

(y) to be the matrix indexed by
Bk whose (xαi ,xαj) entry is c · y where c ∈ R|B2k| is so that

xαi+αj = xαixαj ≡ c · B2k mod I.

The matrix MBk
(y) is known as the k-th truncated combinatorial moment matrix. Having

MBk
, we define the following

THk(I) = {y = (1, y1, . . . , ym) | y ∈ RB2k and MBk
(y) ⪰ 0}. (5.8)

4In [90], an ideal in R[X] is called T Hk-exact if T Hk(I) = cl(conv(V (I))). In general, conv(V (I)) may
not be closed while the theta bodies are. Therefore, the theta body sequence of I can converge, if at all, only
to cl(conv(V (I))).

131

We now explain this construction using the Clique problem. Let G = (V,E) be a graph with
vertex set V = {x1, . . . , xn} and edge set E. A clique in G is a set of vertices U such that
for all xi, xj ∈ U , xixj ∈ E. The corresponding ideal is

IClique =
〈
x2
i − xi : xi ∈ V, xi · xj : xixj ̸∈ E

〉
.

For a subset U ⊆ V let xU = ∏
xi∈U xi. From definition of I, it is clear that B = {xU |

U is a clique in G}. In particular, B1 = {1, x1, . . . , xn}. Denote by y0, y1, . . . , yn the first
n+ 1 coordinates of y ∈ R|B2k|. Then the k-th theta body of I is described as

THk(IClique) = {(1, y1, . . . , yn) | y ∈ R|B2k| and MBk
(y) ⪰ 0}.

Equivalently, in a more intuitive way, we can describe the k-th theta body as follows too.

THk(IClique) =

y ∈ Rn :

∃M ⪰ 0, M ∈ R|Bk|×|Bk| such that
M∅∅ = 1,
M∅{i} = M{i}∅ = M{i}{i} = yi

MUU ′ = 0 if U ∪ U ′ is not clique in G

MUU ′ = MWW ′ if U ∪ U ′ = W ∪W ′

.

Another way to compute a representation of theta bodies is to work with the truncated
quadratic module. The quadratic module of I is

M(I) = {s+ I | s is SOS in R[X]},

and the k-th truncation of M(I) is

Mk(I) = {s+ I | s is k-SOS in R[X]}.

Both M(I) and Mk(I) are cones in the R-vector space R[X]/I. Recall that R[X]/I as
a R-vector space is isomorphic to Span(xα | xα ̸∈ ⟨LT(I)⟩). Hence, having a monomial basis
B = {xα | xα ̸∈ ⟨LT(I)⟩} or Bk = {xα | |α| ≤ k,xα ̸∈ ⟨LT(I)⟩} would lead to an efficient
computation of sum-of-squares in R[X]/I [184].

If the ideals arising from the combinatorial problem are produced through instance
of CSP(Γ) for some language Γ, our methods make it possible to efficiently compute a
representation of the corresponding theta body of one of the types described above. We
say the class of k-th theta bodies arising from instances of CSP(Γ), denoted by THk(Γ), is
efficiently computable if for any instance P of CSP(Γ) a representation of the k-th theta
body THk(I(P)) can be constructed in polynomial time. Therefore, we propose the following
research problem.

132

Problem 5.4.5. For which languages Γ the k-th theta body THk(I(P)) is computable in
polynomial time where P is an instance of CSP(Γ)?

We point out that the connection between theta bodies and the IMP was first reported
in [161] and efficient constructions of theta bodies of Boolean problems have been addressed
by Mastrolilli. Here we improve/extend upon this by employing our results on χIMP. Our
results on χIMP imply that a monomial basis Bk as well as a k-truncated Gröbner Basis
can be computed in polynomial time. This together with our result on the bit complexity
of SOS proofs obtain the following.

Theorem 5.4.6. Let H be a class of ideals for which χIMPd is polynomial time decidable.
Then there exists a polynomial time algorithm that constructs the d-th theta body of an ideal
I ∈ H.

Proof. Let I be an ideal in H. By Theorem 5.1.9 we can construct the d-truncated Gröbner
Basis as well as Bd. This together with the result of Laurent [145] leads to a polynomial
time algorithm to compute the d-th theta body of I.

Using the reductions from Theorems 5.1.4 and 5.1.10 we obtain the following results.

Corollary 5.4.7. Let Γ and ∆ be constraint languages on (possibly different) sets D, E,
respectively. Suppose there exists a polynomial time algorithm that solves the search version
of χIMPk(Γ). Then, O(k)-th theta body for language ∆ can be constructed in polynomial
time if

1. D = E and Γ pp-defines ∆, or

2. Γ pp-interprets ∆.

Corollary 5.4.8. Let Γ be a finite constraint language over domain D. For constant k
and an instance P of CSP(Γ) the k-th theta body of I(P), THk(I(P)), can be computed in
polynomial time if

1. Γ has a semilattice polymorphism, or

2. Γ has the dual-discriminator polymorphism, or

3. Γ is expressed as a system of linear equations over GF(p), p prime.

4. Γ is invariant under the affine operation of an Abelian group.

Our results yield efficient construction of theta bodies for many well-studied combina-
torial problems. Note that, in this case, Theorem 5.3.3 guarantees low bit complexity of
the coefficients in SOS proofs which leads to a polynomial time execution of the Ellipsoid
method. As a result optimizing a linear polynomial over such theta bodies is guaranteed

133

to be polynomial time using the Ellipsoid method. In what follows we provide examples of
well-studied problems for which the objective is optimizing a linear polynomial over integer
points and (re)discover multiple positive results on computation of theta bodies. We point
out there are only a handful of specific problems for which theta bodies are known to be
efficiently computed.

The Maximum Stable Set problem. Let G = (V,E) be an undirected graph with
vertex set V = {x1, . . . , xn} and edge set E. A stable set (a.k.a independent set) in G is a
set of vertices U such that for all xixj ∈ U , xixj ̸∈ E. The Maximum Stable Set problem
seeks a stable set of largest cardinality in G. This can be seen as an optimization problem
over language Γ = {RΓ := {(0, 0), (0, 1), (1, 0)}}. More precisely, the objective is maximizing∑
i xi subject to (xixj) ∈ RΓ, for all xixj ∈ E. One can observe that Γ admits the semilattice

polymorphism Min and hence by Corollary 5.4.8 the k-th theta body of the corresponding
ideal to this problem, THk(G), can be constructed in polynomial time. We point out that,
for this problem, it is known that the 1-st theta body provides a convex relaxation for the
(characteristic vectors) of all stable sets in G [154]. Therefore, the problem max

x∈TH1(G)

∑
xi is

a SDP which can be solved to arbitrary precision in polynomial time in the size of G. The
optimal value of this SDP provides an upper bound on the size of a maximum stable set.

Binary matroid and its theta bodies. Let M = (E, C) be a binary matroid where E
is called the ground set and C is a collection of subsets of E that is closed under taking
symmetric differences. Each member of C is called a cycle. (Often members of C are called
independent sets, however, here we call them cycles to avoid confusion.) One can view the
binary matroid M = (E, C) as the GF(2)-vector subspaces of GF(2)E . Let 1F ∈ {0, 1}E

denote the characteristic vector of F ⊆ E, thus the cycles of the binary matroid M arise
as the solutions in GF(2)E of a linear system Mx = 0, where M is a matrix with columns
indexed by E. The convex hull of the vectors 1F , F ∈ C, is called the matroid polytope or
cycle polytope. Let I(M) ⊆ R[xi | i ∈ E] be the vanishing ideal of the cycle vectors of M.
Our result in Theorem 5.1.10 implies the following theorem.

Theorem 5.4.9. The set Bk = {xα | |α| ≤ k,xα ̸∈ ⟨LT(I(M))⟩}, and the k-truncated
Gröbner Basis of the ideal I(M) can be computed in polynomial time.

This result has numerous consequences including a polynomial time algorithm to con-
struct THk(I(M)). This in turn can be viewed as computing the moment matrices for the
cycle ideal I(M). One classical and well studied application is cut function of graphs. When
M is the cut polytope then THk(I(M)) provides a relaxation for the cut polytope. In par-
ticular, TH1(I(M)) coincides with the edge-relaxation considered by Rendl and Wiegele
[219] and numerical experiments there indicates that it is often tighter than the Goemans-
Williamson SDP relaxation [87]. See [89] for more detailed discussions and applications.

134

The Min/Max Ones problem and a generalization. Min Ones and Max Ones are
Boolean CSP problems where the objective is to find a feasible solution (a 0-1 assignment
satisfying all constraints) minimizing/maximizing the number of variables assigned the la-
bel 1 [130]. Classical examples are the Minimum Vertex Cover, the Maximum Stable Set, and
many packing and covering problems [202]. In almost all the cases where Boolean CSP is
polynomial time decidable our results imply that we can construct theta bodies as relax-
ations of the solution space. This motivates the question of studying the power of the theta
body relaxations in designing approximation algorithms for this class of problems.

The MinHOM problem. Recall the MinHOM problem in which H = (V,E) with
V (H) = {0, 1, . . . , d} is a fixed digraph and G = (V,E) with V (G) = {x1, . . . , xn} is an
input digraph. Given a cost function c : V (G)×V (H)→ R+∪{+∞}, the objective is to find
a homomorphism from G to H with minimum cost which is defined as ∑i∈[n],j∈V (H) c(xi, j).
Our result implies that we can construct theta bodies for many cases of H, in particular all
the approximable cases considered in this thesis, and have a convex relaxation of all possible
homomorphisms. This motivates the question of checking if formulating the MinHOM prob-
lem as an optimization problem over theta bodies help to achieve (better) approximation
algorithms.

The Strict CSPs problem. A natural generalization of the above problems, both in
terms of domain and arity of the relations, is the class of Strict CSPs [142]. As usual we
have a constraint language Γ on domain D = {0, . . . , d}. Given an instance P = (X,D,C) of
CSP(Γ) and a cost function c : X×D → R+∪{+∞}, the objective is to minimize/maximize∑
xi∈X,j∈D c(xi, j) subject to V (⟨P⟩) i.e., finding a solution to P that minimizes/maximizes∑
xi∈X xi. The approximability of this problem and it special cases have been studied in-

tensively and (Unique Game) hardness results are known [142]. It is tempting to study the
power of theta body relaxations for approximation of Strict CSPs as our results imply in
many cases a theta body can be constructed in polynomial time.

135

Chapter 6

Approximation of minimum cost
H-coloring

6.1 Introduction

The complexity of exact minimization of MinHOM(H) was studied in a series of papers,
and complete complexity classifications were given in [95] for undirected graphs, in [109]
for digraphs, and in [206] for more general structures. Certain minimum cost homomor-
phism problems have polynomial time algorithms [95, 96, 97, 109], but most are NP-
hard. We remark that, the complexity of exact minimization of VCSPs is well under-
stood [136, 207]. In terms of approximation, Hell et al., [103] proved a dichotomy for ap-
proximating MinHOM(H) when H is a bipartite graph by transforming the MinHOM(H)
to a linear program, and rounding the fractional values to get a homomorphism to H. Their
characterization is best described in terms of polymorphisms or equivalently an ordering
on the vertices of H. They say a (di)graph admits a min-ordering when the (di)graph is
invariant under a conservative semilattice polymorphism, more on this latter.

Theorem 6.1.1 (Dichotomy for bipartite graphs [103]). For a fixed bipartite graph H,
MinHOM(H) admits a constant factor approximation algorithm if H admits a min-ordering
(complement of H is a circular arc graph), otherwise MinHOM(H) is not approximable
unless P = NP.

Beyond this, there is no result concerning the approximation of MinHOM(H).

6.1.1 Overview of our contributions

One can show that if LHOM(H) is not polynomial time solvable then there is no approxi-
mation algorithm for MinHOM(H) [103, 162].

Observation 6.1.2. If LHOM(H) is not polynomial time solvable, then there is no approx-
imation algorithm for MinHOM(H).

136

The complexity of the LHOM problems for graphs, digraphs, and relational structures
(with arity two and higher) have been classified in [76, 108, 33] respectively. LHOM(H)
is polynomial time solvable if the digraph H does not contain a digraph asteroidal triple
(DAT)1 as an induced sub-digraph, and NP-complete when H contains a DAT [108].

MinHOM(H) is polynomial time solvable when digraph H admits a k-min-max-ordering,
a subclass of DAT-free digraphs, and otherwise, NP-complete [109, 110].

Here, in this thesis, we take an important step towards closing the gap between DAT-free
digraphs and the one that admit a k-min-max-ordering. First, we consider digraphs that
admit a min-ordering i.e., conservative semilattice polymorphism. Digraphs that admit a
min-ordering have been studied under the name of bi-arc digraphs [107] and signed interval
digraphs [101, 102]. Deciding if digraph H has a min-ordering and finding a min-ordering
of H is in P [107]. We provide a constant factor approximation algorithm for MinHOM(H)
where H admits a min-ordering.

Theorem 6.1.3 (Digraphs with a min-ordering). If digraph H admits a min-ordering i.e.,
conservative semilattice polymorphism, then MinHOM(H) has a constant factor approxi-
mation algorithm.

Sections 6.4, 6.5 are dedicated to the proof of Theorem 6.1.3. In section 6.6, we turn our
attention to digraphs with k-min-orderings, for integer k > 1. They are also called digraphs
with extended X-underbar [9, 98, 156]. It was shown in [98] that if H has the X-underbar
property, then the HOM(H) problem is polynomial time solvable. In Lemmas 6.6.2 and
6.6.1, we show that if H admits a k-min-ordering, then H is a DAT-free digraph, and
provide a simple proof that LHOM(H) is polynomial time solvable. Finally, we have the
following theorem.

Theorem 6.1.4 (Digraphs with a k-min-ordering). If digraph H admits a k-min-ordering
for some integer k > 1, then MinHOM(H) has a constant factor approximation algorithm.

Considering graphs, Feder et al., [76] proved that LHOM(H) is polynomial time solvable
if H is a bi-arc graph, and is NP-complete otherwise. In the same paper, they showed graph
H is a bi-arc graph if and only if it admits a conservative majority polymorphism. In Section
6.7, we show that the same dichotomy classification holds in terms of approximation.

Theorem 6.1.5 (Dichotomy for graphs). Let H be a graph. There exists a constant factor
approximation algorithm for MinHOM(H) if H is a bi-arc graph i.e. admits a conservative
majority polymorphism, otherwise, MinHOM(H) is inapproximable unless P = NP.

By combining the approach for obtaining the dichotomy in the graph case, together with
the idea of getting an approximation algorithm for digraphs admitting a min-ordering, we

1The definition of DAT (Definition 6.2.4) is rather technical and it is not necessary to fully understand
in this thesis.

137

might be able to achieve a constant factor approximation algorithm for MinHOM(H) when
H is DAT-free. Note that DAT-free digraphs can be characterized in terms of conservative
semilattice and majority polymorphisms [108]. Thus, we conjecture the following dichotomy.

Conjecture 6.1.6. Let H be a digraph. MinHOM(H) admits a constant factor approxima-
tion algorithm when H is a DAT-free digraph, otherwise, MinHOM(H) is not approximable
unless P = NP.

Our constant factors depend on the size of H. However, the implementation of the LP
and the ILP would yield a small integrality gap (See [187]). This indicates perhaps a better
analysis of the performance of our algorithm is possible.

Problem 6.1.7. For which digraphs MinHOM(H) is approximable within a constant factor
independent of size of H?

6.2 Preliminaries

Recall that a polymorphism of H of arity k is a mapping f from the set of k-tuples over V (H)
to V (H) such that if xiyi ∈ A(H) for i = 1, 2, . . . , k, then f(x1, x2, . . . , xk)f(y1, y2, . . . , yk) ∈
A(H), and a polymorphism f is conservative if f(x1, x2, . . . , xk) ∈ {x1, x2, . . . , xk}. If f is a
polymorphism of H we also say that H admits f . A conservative semilattice polymorphism
of H naturally defines a binary relation x ≤ y on the vertices of H by x ≤ y if and only
if f(x, y) = x; by associative, the relation ≤ is a linear order on V (H), which we call a
min-ordering of H.

Definition 6.2.1. The ordering v1 < v2 < · · · < vn of V (H) is a

– min-ordering if and only if uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that
uv′ ∈ A(H);

– max-ordering if and only if uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that
u′v ∈ A(H);

– min-max-ordering if and only if uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies
that uv′, u′v ∈ A(H).

For a bipartite graph H = (B,W) let −→H be the digraph obtained by orienting all the
edges of H from B to W . If −→H admits a min-ordering then we say H admits a min-ordering.
It is worth mentioning that, a bipartite graph H admits a conservative majority, if and only
if it admits a min-ordering [103]. Moreover, the complement of H is a circular arc graph
with clique cover two [76].

Definition 6.2.2. Let H = (V,E) be a digraph that admits a homomorphism f : V (H)→
−→
Ck (here −→Ck is the induced directed cycle on {0, 1, 2, . . . , k−1}(i.e., arc set {(01, 12, 23, ..., (k−
2)(k − 1), (k − 1)0}). Let Vi = f−1(i), 0 ≤ i ≤ k − 1.

138

– A k-min-ordering of H is a linear ordering < of the vertices of H, so that < is a min-
ordering on the subgraph induced by any two circularly consecutive Vi, Vi+1 (subscript
addition modulo k).

– A k-min-max-ordering of H is a linear ordering < of the vertices of H, so that < is a
min-max-ordering on the subgraph induced by any two circularly consecutive Vi, Vi+1

(subscript addition modulo k).

We close this section by giving a formal definition of a digraph asteroidal triple (DAT).
The definition is rather technical and it is not necessary to fully understand it in this thesis.
We give a brief discussion on DAT for the sake of completeness.

Definition 6.2.3 (Invertible pair). Let H be a digraph. Define Ĥk to be the digraph with
the vertex set {(a1, a2, . . . , ak) | ai ∈ V (H), 1 ≤ i ≤ k} and the arc set

A(Ĥk) ={(a1, a2, . . . , ak)(b1, b2, . . . , bk) | aibi(biai) ∈ A(H), 1 ≤ i ≤ k,

a1bj(bja1) ̸∈ A(H)∀j, 2 ≤ j ≤ k}.

When k = 2, we say (x, y) is an invertible pair if (x, y), (y, x) belong to the same strong
component of Ĥ2.

Definition 6.2.4 (DAT). A digraph asteroidal triple of H is an induced sub-digraph of
Ĥ3, on three directed paths P1, P2, P3 where P1 goes from (a, b, c) to (α, β, β), P2 goes from
(b, a, c) to (α, β, β), and P3 goes from (c, a, b) to (α, β, β) and (α, β) is an invertible pair.

If H contains a DAT then all three pairs (a, b), (b, c), (c, a) are invertible. Note that
an invertible pair is an obstruction to existence of min-orderings [76, 103]. Moreover, H
does not admit a conservative majority polymorphism g because of the directed path P1,
g(a, b, c) ̸= a, and because of P2, g(a, b, c) ̸= b, and finally because of P3, g(a, b, c) ̸= c.
Therefore, the value of g(a, b, c) can not be any of the a, b, c [108].

DAT-free digraph can also be characterized in terms of polymorphisms.

Theorem 6.2.5 ([108]). Let H be a digraph. H is DAT-free if and only if there exist a
conservative binary polymorphism f and a conservative ternary polymorphism g of H such
that for every a, b ∈ V (H),

1. either f |{a,b} is a semilattice polymorphism or

2. g|{a,b} is a majority polymorphism.

6.3 LP for digraphs with a min-max-ordering

Before presenting the LP, we give a procedure to modify lists associated to the vertices of
D. To each vertex x ∈ D, we associate a list L(x) that initially contains V (H). Think of

139

L(x) as the set of possible images for x in a homomorphism from D to H. Apply the arc
consistency procedure as follows. Take an arbitrary arc xy ∈ A(D) (yx ∈ A(D)) and let
a ∈ L(x). If there is no out-neighbor (in-neighbor) of a in L(y) then remove a from L(x).
Repeat this until a list becomes empty or no more changes can be made. Note that if we
end up with an empty list after arc consistency then there is no homomorphism of D to H.

Let a1, a2, a3, . . . , ap be a min-max-ordering < of the target digraph H. Define ℓ+(i)
to be the smallest subscript j such that aj is an out-neighbor of ai (and ℓ−(i) to be the
smallest subscript j such that aj is an in-neighbor of ai).

Consider the following linear program. For every vertex v of D and every vertex ai of H
define variable vi. We also define variable vp+1 for every v ∈ D whose value is set to zero.

min
∑
v,i
c(v, ai)(vi − vi+1)

subject to: vi ≥ 0 (C1)
v1 = 1 (C2)
vp+1 = 0 (C3)
vi+1 ≤ vi (C4)
vi+1 = vi if ai ̸∈ L(v) (C5)
ui ≤ vl+(i) ∀uv ∈ A(D) (C6)
vi ≤ ul−(i) ∀uv ∈ A(D) (C7)

Table 6.1: LP with constraint set S

Let us denote the set of constraints of the above LP by S. In what follows, we prove that
there is a one-to-one correspondence between integer solutions of S and homomorphisms
from D to H when H admits a min-max-ordering.

Theorem 6.3.1. If digraph H admits a min-max-ordering, then there is a one-to-one cor-
respondence between homomorphisms of D to H and integer solutions of S.

Proof. For homomorphism f : D → H, if f(v) = at we set vi = 1 for all i ≤ t, otherwise
we set vi = 0. We set v1 = 1 and vp+1 = 0 for all v ∈ V (D). Now all the variables are
nonnegative and we have vi+1 ≤ vi. Note that if ai ̸∈ L(v) then f(v) ̸= ai and we have
vi − vi+1 = 0. It remains to show that ui ≤ vl+(i) for every uv arc in D. Suppose for
contradiction that ui = 1 and vl+(i) = 0 and let f(u) = ar and f(v) = as. This implies that
ur = 1, whence i ≤ r; and vs = 1, whence s < l+(i). Since aial+(i) and aras both are arcs of
H with i ≤ r and s < l+(i), the fact that H has a min-ordering implies that aias must also
be an arc of H, contradicting the definition of l+(i). The proof for vi ≤ ul−(i) is analogous.

Conversely, if there is an integer solution for S, we define a homomorphism f as follows:
we let f(v) = ai when i is the largest subscript with vi = 1. We prove that this is indeed
a homomorphism by showing that every arc of D is mapped to an arc of H. Let uv be an
arc of D and assume f(u) = ar, f(v) = as. We show that aras is an arc in H. Observe that
1 = ur ≤ vl+(r) ≤ 1 and 1 = vs ≤ ul−(s) ≤ 1, therefore we must have vl+(r) = ul−(s) = 1.

140

Since r and s are the largest subscripts such that ur = vs = 1 then l+(r) ≤ s and l−(s) ≤ r.
Since aral+(r) and al−(s)as are arcs of H, we must have the arc aras, as H admits a max-
ordering.

Furthermore, f(v) = ai if and only if vi = 1 and vi+1 = 0, so, c(v, ai) contributes to the
sum if and only if f(v) = ai.

We have translated the minimum cost homomorphism problem to a linear program. In
fact, this linear program corresponds to a minimum cut problem in an auxiliary network,
and can be solved by network flow algorithms [95, 162]. In [103], a similar result to Theorem
6.3.1 was proved for the MinHOM(H) problem on undirected graphs when target the graph
H is bipartite and admits a min-max-ordering. We shall enhance the above system S to
obtain an approximation algorithm for the case where H is only assumed to have a min-
ordering.

6.4 LP for digraphs with a min-ordering

In the rest of the section assume lists are not empty. Moreover, non-empty lists guarantee
a homomorphism when H admits a min-ordering. For the sake of completeness we present
the proof of the following lemma. The argument is simple and perhaps could have appeared
in earlier literature.

Lemma 6.4.1 ([105]). Let H be a digraph that admits a min-ordering. If all the lists are
non-empty after arc consistency, then there exists a homomorphism from D to H.

Proof. Let a1, a2, . . . , ap be a min-ordering of H. For every vertex x of D, define f(x) = ai

where ai is the smallest element (according to the ordering) in L(x). We show that f is a
homomorphism from D to H. Let xy be an arc of D. Suppose f(x) = ai and f(y) = aj .
Because of the arc-consistency, there exist aj′ in L(y) such that aiaj′ ∈ A(H) and there
exists ai′ ∈ L(x) such that ai′aj ∈ A(H). Note that j ≤ j′ and i ≤ i′. Since a1, a2, . . . , ap is
a min-ordering, then aiaj ∈ A(H) and f(x)f(y) ∈ A(H).

Suppose a1, a2, · · · , ap is a min-ordering of H. Let E′ denote the set of all the pairs
(ai, aj) such that aiaj is not an arc of H, but there is an arc aiaj′ of H with j′ < j and an
arc ai′aj of H with i′ < i. Let E = A(H) and define H ′ to be the digraph with vertex set
V (H) and arc set E ∪ E′. Note that E and E′ are disjoint sets.

Observation 6.4.2. The ordering a1, a2, · · · , ap is a min-max-ordering of H ′.

Proof. We show that for every pair of arcs e = aiaj′ and e′ = ai′aj in E ∪ E′, with i′ < i

and j′ < j, both g = aiaj and g′ = ai′aj′ are in E ∪E′. If both e and e′ are in E, g ∈ E ∪E′

and g′ ∈ E.
If only one of the arcs e, e′, say e, is in E′, there is a vertex aj′′ with aiaj′′ ∈ E and

j′′ < j′, and a vertex ai′′ with ai′′aj′ ∈ E and i′′ < i. Now, ai′aj and aiaj′′ are both in E,

141

so g ∈ E ∪ E′. We may assume that i′′ ̸= i′, otherwise g′ = ai′′aj′ ∈ E. If i′′ < i′, then
g′ ∈ E ∪ E′ because ai′aj′′ ∈ E; and if i′′ > i′, then g′ ∈ E because ai′aj ∈ E.

If both edges e, e′ are in E′, then the earliest out-neighbor of ai and earliest in-neighbor
of aj in E imply that g ∈ E∪E′, and the earliest out-neighbors of ai′ and earliest in-neighbor
of aj′ in E imply that g′ ∈ E ∪ E′.

Observation 6.4.3. Let e = aiaj ∈ E′. Then ai does not have any out-neighbor in H after
aj, or aj does not have any in-neighbor in H after ai.

Observation 6.4.3 easily follows from the fact that H has a min-ordering. Since H ′ has
a min-max-ordering, we can form system of linear inequalities S, for H ′ as described in
Section 6.3. Homomorphisms of D to H ′ are in a one-to-one correspondence with integer
solutions of S, by Theorem 6.3.1. However, we are interested in homomorphisms of D to
H, not H ′. Therefore, we shall add further inequalities to S to ensure that we only admit
homomorphisms from D to H, i.e., avoid mapping arcs of D to the arcs in E′. For every
arc e = aiaj ∈ E′ and every arc uv ∈ A(D), by Observation 6.4.3, two of the following set
of inequalities will be added to S (i.e. either (C8), (C11) or (C9), (C10)).

vj ≤ us + ∑
t<i

ataj∈E
at∈L(u)

(ut − ut+1) if as ∈ L(u) is the first in-neighbor of aj after ai (C8)

vj ≤ vj+1 + ∑
t<i

ataj∈E
at∈L(u)

(ut − ut+1) if aj has no in-neighbor after ai (C9)

ui ≤ vs + ∑
t<j

aiat∈E
at∈L(v)

(vt − vt+1) if as ∈ L(v) is the first out-neighbor of ai after aj (C10)

ui ≤ ui+1 + ∑
t<j

aiat∈E
at∈L(v)

(vt − vt+1) if ai has no out-neighbor after aj (C11)

Table 6.2: Extension of S

Additionally, for every pair (x, y) ∈ V (D) × V (D) consider a list L(x, y) of possible
pairs (a, b), a ∈ L(x) and b ∈ L(y). Perform pair consistency procedure as follows. Consider
three vertices x, y, z ∈ V (D). For (a, b) ∈ L(x, y) if there is no c ∈ L(z) such that (a, c) ∈
L(x, z) and (c, b) ∈ L(z, y) then remove (a, b) from L(x, y). Repeat this until a pair list
becomes empty or no more changes can be made. Here, we assume that after pair consistency
procedure no pair list is empty, as otherwise there is no homomorphism of D toH. Therefore,
by pair consistency, add the following constraints for every u ̸= v in V (D) and ai ∈ L(u):

ui − ui+1 ≤
∑
j:

(ai,aj)∈L(u,v)

(vj − vj+1) (C12)

142

Lemma 6.4.4. If H admits a min-ordering, then there is a one-to-one correspondence
between homomorphisms of D to H and the integer solutions of the extended system S.

Proof. In the proof of Theorem 6.3.1 we shown that from an integer solution for S, one can
obtained a homomorphism from D to H ′. Let f be such a homomorphism. We show that f is
a homomorphism from D to H. Let uv be an arc of D and let f(u) = ai, f(v) = aj . We have
ui = 1, ui+1 = 0, vj = 1, vj+1 = 0, and for all ataj ∈ E with t < i we have ut−ut+1 = 0. We
show that aiaj ∈ E. If it is not the case, then either constraints (C8),(C9) or constraints
(C10),(C11) should hold in the LP. Consider the former case. If as is the first in-neighbor
of aj after ai, then we will also have us = 0, and so inequality (C8) fails. Else, if aj has no
in-neighbor after ai, then inequality (C9) fails. The other case is similar.

Conversely, suppose f is a homomorphism of D to H (i.e., f maps the edges of D to the
edges in E). We show that the inequalities hold. For a contradiction, assume that the first
inequality fails (the other inequalities are similar). This means that for some arc uv ∈ A(D)
and some edge aiaj ∈ E′, we have vj = 1, us = 0, and the sum of (ut − ut+1) = 0, summed
over all t < i such that at is an in-neighbor of aj . The latter two facts easily imply that
f(u) = ai. Since aj has an in-neighbor after ai, Observation 6.4.3 tells us that ai has no
out-neighbors after aj , whence f(v) = aj and thus aiaj ∈ E, contradicting the fact that
aiaj ∈ E′. Note that if there is a homomorphism from D to H then inequality (C12) is a
necessary condition for having such a homomorphism.

6.5 Approximation for digraphs with a min-ordering

In what follows, we describe our approximation algorithm for MinHOM(H) where the fixed
digraph H has a min-ordering. We start off with an overview of our algorithm. The proofs
of the correctness and approximation bound are postponed for the later subsections.

Let D be the input digraph together with a costs function c, and let H be a fixed target
digraph H, let a1, · · · , ap be a min-ordering of the vertices of H. Algorithm 3, first constructs
digraph H ′ from H as explained in Section 6.4. By Observation 6.4.2, a1, . . . , ap is a min-
max-ordering for H ′. By Lemma 6.4.4, the integral solutions of the extended LP are in one-
to-one correspondence to homomorphisms from D to H. At this point, our algorithm will
minimize the cost function over extended S in polynomial time using a linear programming
algorithm. This will generally result in a fractional solution (Even though the original system
S is known to be totally unimodular [95, 162] and hence has integral optima, we have added
inequalities, thus losing this advantage). We will obtain an integer solution by a randomized
procedure called rounding. Choose, uniformly at random, a random variable X ∈ [0, 1], and
define the rounded values u′

i = 1 when ui ≥ X (ui is the returned value by the LP), and
u′
i = 0 otherwise. It is easy to check that the rounded values satisfy the original inequalities,

i.e., correspond to a homomorphism f of D to H ′.

143

Now the algorithm will modify the solution f to become a homomorphism from D

to H, i.e., to avoid mapping the arcs of D to the arcs in E′. This will be accomplished
by another randomized procedure, which we call Shift. We choose, uniformly at random,
another random variable Y ∈ [0, 1], which will guide the shifting. Let F denote the set of
all arcs in E′ to which some arcs of D are mapped by f . If F is empty, we need no shifting.
Otherwise, let aiaj be an arc of F . Since F ⊆ E′, Observation 6.4.3 implies that either aj
has no in-neighbor after ai or ai has no out-neighbor after aj . Suppose the first case happens
(the shifting process is similar in the other case).

Consider a vertex v in D such that f(v) = aj (i.e. v′
j = 1 and v′

j+1 = 0) and v has
an in-neighbor u in D with f(u) = ai (i.e. u′

i = 1 and u′
i+1 = 0). For such a vertex v,

let Sv = {at1 , at2 , . . . , atk} be the set of all vertices at with t < j such that aiat ∈ E and
at ∈ L(v). We will show in Lemma 6.5.1 that Sv is not empty. Suppose Sv consists of at
with subscripts t ordered as t1 < t2 < · · · < tk. The algorithm now selects one vertex from
this set as follows. Let Pv,t = vt−vt+1

Pv
, where

Pv =
∑
t<j

aiat∈E
at∈L(v)

(vt − vt+1).

Note that Pv > 0 because of constraints (C9) and (C10). Then atq is selected if
q∑
p=1

Pv,tp <

Y ≤
q+1∑
p=1

Pv,tp . Thus a concrete at is selected with probability Pv,t, which is proportional to

the difference of the fractional values vt− vt+1. When the selected vertex is at, we shift the
image of the vertex v from aj to at, and set v′

r = 1 if r ≤ t, else set v′
r = 0. Note that at

is before aj in the min-ordering2. Now we might need to shift images of the neighbors of v.
In this case, repeat the shifting procedure for neighbors of v. This processes continues in a
Breadth-first search (BFS) like manner, until no more shift is required (see Figure 6.1 for
an illustration). Note that a vertex might be visited multiple times in procedure shift while
a pair (v, ai) ∈ V (D)× V (H) is considered at most one time.

Lemma 6.5.1. During procedure Shift, the set of indices t1 < · · · < tk considered in Line
19 of the Algorithm 3 is non-empty.

Proof. In procedure Shift, consider vz such that f(v)f(z) ̸∈ E(H ′) and f(v) = at and
f(z) = al. This means 0 < vt − vt+1, and together with constraint (C12), it implies

0 < vt − vt+1 ≤
∑
j:

(at,aj)∈L(v,z)

(zj − zj+1).

2The images are always shifted towards smaller elements.

144

Therefore, there must be an index l′ such that (at, al′) ∈ L(v, z). It remains to show that al′
appears before al in the min-ordering. There are two cases to consider. First is f(v) is set
to at in rounding step (Line 5). Second is image of v was shifted from aj to at in procedure
Shift.

For the first case, note that, since f is a homomorphism from D to H ′, atal ∈ E(H ′) \
E(H). Arc vz is mapped to atal in rounding step (Line 5) according to random variable X.
Note that, during procedure Shift, we do not map any arc of D to edges in E(H ′) \E(H).
Therefore, we have X ≤ vt, zl. Consider the situation where al has no in-neighbor after at.
Let as be the first out-neighbor of at after al, then we have zs < X ≤ vt. This together with
inequality (C10) implies that

0 <
∑
l′<l

atal∈E
al′ ∈L(z)

(zl′ − zl′+1).

Hence, there exists an index l′ < l as we wanted. The argument for the case where at has
no out-neighbor after al is similar.

For the second case, before mapping v to at, there was an index aj such that at < aj .
There are two cases regarding ajal. Either it is in E(H) or it is in E(H ′) \ E(H). In
both cases, al′ must appear before al as otherwise, min-max-ordering implies atal ∈ E(H ′),
contradicting our assumption.

Lemma 6.5.2. Procedure shift runs in polynomial time and returns a homomorphism
from D to H ′.

Proof. It it easy to see that, if there exists a homomorphism from D to H, then there is a
homomorphism from D to H that maps every vertex of D to the smallest vertex in its list
(Lemma 6.4.1). We show that a sequence of shifting, either stops at some point, or it keeps
shifting to a smaller vertex in each list. In the latter case, after finite (polynomially many)
steps, we end up mapping every vertex of D to the smallest vertex in its list.

Consider an arc vz ∈ A(D). Suppose f(v) = at and f(z) = al. Assume that we have
shifted the image of v from at to at′ ∈ L(v) where at′ is before at in the min-ordering. If
at′al is in E(H) then we do not have to shift the image of z. Note that, since at′ is in L(v)
then it has to have an out-neighbor in L(z). Let say al′ ∈ L(z) is an out-neighbor of at′ . If
al′ is after al in the min-ordering then it implies at′al′ ∈ A(H). Else, al′ is before al in the
min-ordering and we shift the image of z to a smaller vertex in its list.

Lemma 6.5.2 shows that this shifting modifies the homomorphism f , and hence, the
corresponding values of the variables. Namely, v′

t+1, . . . , v
′
j are reset to 0, keeping all other

values the same. Note that these modified values still satisfy the original set of constraints
S, i.e., the modified mapping is still a homomorphism from D to H ′.

145

We repeat the same process for the next v with these properties, until no edge of D is
mapped to an edge in E′. Each iteration involves at most |V (H)| · |V (D)| shifts. After at
most |E′| iterations, no edge of D is mapped to an edge in F and we no longer need to
shift. See Figure 6.1 for an example. Next theorem follows from Lemma 6.5.1 and 6.5.2.

Theorem 6.5.3. Algorithm 3, in polynomial time, returns a homomorphism of D to H.

Algorithm 3 Approximation MinHOM(H)
1: procedure Approx–MinHOM(H)
2: Construct H ′ from H (as in Section 6.3)
3: Let uis be the (fractional) values returned by the extended LP
4: Choose a random variable X ∈ [0, 1]
5: For all uis: if X ≤ ui let u′

i = 1, else let u′
i = 0

6: Let f(u) = ai where i is the largest subscript with u′
i = 1 ▷ f is a homomorphism

from D to H ′

7: Choose a random variable Y ∈ [0, 1]
8: while ∃uv ∈ A(D) such that f(u)f(v) ∈ A(H ′) \A(H) do
9: if f(v) does not have an in-neighbor after f(u) then

10: Shift(f, v)
11: else if f(u) does not have an out-neighbor after f(v) then
12: Shift(f, u)
13: return f ▷ f is a homomorphism from D to H

14: procedure Shift(f, x)
15: Let Q be a Queue, Q.enqueue(x)
16: while Q is not empty do
17: v ← Q.dequeue()
18: for uv ∈ A(D) with f(u)f(v) ̸∈ A(H) or vu ∈ A(D) with f(v)f(u) ̸∈ A(H) do

▷ Here we assume the first condition hold, the other case is similar
▷ Plus, we assume f(v) does not have an in-neighbor after f(u)

19: Let t1 < · · · < tk be indices so that atj < f(v), atj ∈ L(v), f(u)atj ∈ A(H)

20: Let Pv ←
j=k∑
j=1

(vtj − vtj+1) and Pv,t ← (vt − vt+1) / Pv

21: if
q∑
p=1

Pv,tp < Y ≤
q+1∑
p=1

Pv,tp then

22: f(v)← atq , set v′
i = 1 for 1 ≤ i ≤ tq, and set v′

i = 0 for tp < i

23: for vz ∈ A(D) (zv ∈ A(D)) with f(v)f(z) ̸∈ A(H) (f(z)f(v) ̸∈ A(H)) do
24: Q.enqueue(z)
25: return f ▷ f is a homomorphism from D to H ′

Example 6.5.4 (Figure 6.1: two examples for Algorithm 3). In the right example, the
target digraph is H1 and the input is D1. The right digraphs (D1, H1) both can be view as
bipartite graphs and 1, 2, 3, 4, 5, 6, 7 is a min-ordering of H. When x is mapped to 3 and w

is mapped to 6 then the algorithm should shift the image of w from 6 to 5 and since 35

146

1

2

3

4

5

6

7

8

x

y

z

w

uv

In D

In H

1

2

3

4

5

6

7

In H1

In D1

x

y

z

w

Figure 6.1: Two examples for Algorithm 3.

is an arc there is no need to shift the image of y. In the left example, the target digraph
is H and the input is D. In H, 1, 2, 3, 4, 5, 6, 7, 8 is a min-ordering and 24 is a missing arc.
Suppose x is mapped to 2, y to 4, w to 7, z to 8, u to 5 and v to 2. Then we should shift
the image of y to 3 and then w to 6 and z to 6 and then u to 3 and v to one of the 1, 2.

6.5.1 Analyzing the approximation Ratio

We now claim that, the cost of this homomorphism is at most |V (H)|2 times the minimum
cost of a homomorphism. Let w denote the value of the objective function with the fractional
optimum ui, vj , and w′ denote the value of the objective function with the final values u′

i, v
′
j ,

after the rounding and all the shifting. Also, let w∗ be the minimum cost of a homomorphism
of D to H. Obviously, w ≤ w∗ ≤ w′.

We now show that the expected value of w′ is at most a constant times w. Let us focus
on the contribution of one summand, say v′

t − v′
t+1, to the calculation of the cost.

In any integer solution, v′
t−v′

t+1 is either 0 or 1. The probability that v′
t−v′

t+1 contributes
to w′ is the probability of the event that v′

t = 1 and v′
t+1 = 0. This can happen in the

following situations:

1. v is mapped to at by rounding, and is not shifted away. In other words, we have v′
t = 1

and v′
t+1 = 0 after rounding, and these values do not change by procedure Shift.

2. v is first mapped to some aj , j > t, by rounding, and then re-mapped to at by proce-
dure Shift.

Lemma 6.5.5. The expected contribution of one summand, say v′
t − v′

t+1, to the expected
cost of w′ is at most |V (H)|2c(v, at)(vt − vt+1).

Proof. Vertex v is mapped to at in two cases. The first case is where v is mapped to at by
rounding Line 5, and is not shifted away. In other words, we have v′

t = 1 and v′
t+1 = 0 after

147

rounding, and these values do not change by procedure Shift. Hence, for this case we have:

P[f(v) = at] = P[vt+1 < X ≤ vt] · P[v is not shifted in procedure Shift]

≤ vt − vt+1

Whence this situation occurs with probability at most vt − vt+1, and the expected contri-
bution is at most c(v, at)(vt − vt+1).

Second case is where f(v) is set to at during procedure Shift. The algorithm calls Shift
if there exists u0u1 ∈ A(D) such that f(u0)f(u1) ∈ E(H ′) \ E(H) (Line 8). Let us assume
it calls Shift(f, u1). Procedure Shift modifies images of vertices u1, u2, · · · . Consider the
last time that Shift changes image of v. Note that u1, · · · , uk = v is an oriented walk,
meaning that there is an arc between every two consecutive vertices of the sequence and
the uis are not necessarily distinct.

We first compute the contribution for a fixed j, that is the contribution of shifting v

from a fixed aj to at. We use induction on k. Consider the simplest case where k = 1.
In this case v is first mapped to aj , j > t, by rounding, and then re-mapped to at during
procedure Shift. This happens if there exist i and u such that uv is an arc of D mapped
to aiaj ∈ E′, and then the image of v is shifted to at (at < aj in the min-ordering), where
aiat ∈ E = A(H). In other words, we have u′

i = v′
j = 1 and u′

i+1 = v′
j+1 = 0 after rounding

(Line 5); and then v is shifted from aj to at. Therefore,

P[u′
i = v′

j = 1, u′
i+1 = v′

j+1 = 0] = P[max{ui+1, vj+1} < X ≤ min{ui, vj}]

= min{ui, vj} −max{ui+1, vj+1}

≤ vj − vj+1

≤
∑
t<j

aiat∈E
at∈L(v)

(vt − vt+1) = Pv

The last inequality is because aj has no in-neighbor after ai and it follows from inequal-
ity (C9). Having uv mapped to aiaj in the rounding step, we shift v to at with probability
Pv,t = (vt−vt+1)

Pv
. Note that the upper bound Pv is independent from the choice of u and

ai. Therefore, for a fixed aj , the probability that v is shifted from aj to at is at most
vt−vt+1
Pv

· Pv = vt − vt+1.
For k > 1, consider oriented walk u0, · · · , uk = v. Before calling Shift(f, u1), this walk

is mapped to some vertices in H. Without loss of generality, let us assume these vertices are
a0, a1, · · · , ak. Note that ais may not be distinct. Once again we compute the contribution
for a fixed k = j, that is the contribution of shifting v from a fixed ak = aj to at. First, we

148

give an upper bound on the probability of existence of such a situation after rounding step
(Line 5),

P[u0
0

′ = · · · = ukk
′ = 1, u0

1
′ = · · · = ukk+1

′ = 0]

= P[max{u0
1, · · · , ukk+1} < X ≤ min{u0

0, · · · , ukk}]

= min{u0
0, · · · , ukk} −max{u0

1, · · · , ukk+1}

≤ (ukk)− ukk+1

= vj − vj+1

≤
∑
t<k−1

ak−1at∈A(H)
at∈L(uk−1)

(uk−1
t − uk−1

t+1)

= Pv

Now the algorithm calls Shift(f, u1) and, in procedure Shift, images of u1, u2, · · · , uk =
v are changed in this order. We are interested in probability of mapping v from fixed
ak = aj to at. Analyzing the situation for u1 is the same as the case for k = 2. As induction
hypothesis, assume for u1, · · · , uk−1, the probability that the algorithm shifts image of ui

to some ai is at most uii − uii+1, particularly for uk−1 = u. At this point f(u) = ai and
f(v) = ak. Note that aiak is not an edge in H, as otherwise no change is required for
image of v. Here, the algorithm chooses at where at ∈ L(v), at < ak and aiat ∈ E(H) with
probability

vt − vt+1∑
j<k

aiaj∈A(H)
aj∈L(v)

(vj − vj+1)

It remains to argue that

ui − ui+1 ≤
∑
j<k

aiaj∈A(H)
aj∈L(v)

(vj − vj+1).

Having that gives us the probability of shifting v from aj to at is at most vt − vt+1.
Observe that ai does not have any neighbor as after ak. This is because ak−1ak, aias ∈

A(H ′) and the min-ordering implies aiak ∈ A(H) which contradicts our assumption. Thus,

149

by inequality (C11), we get

ui − ui+1 ≤
∑
j<k

aiaj∈A(H)
aj∈L(v)

(vj − vj+1)

This completes this part of the proof.
Let L(v) = {av1 · · · , avk}. Clearly, during procedure Shift, image of v can be shifted to

avi from any of vertices avi+1, · · · , avk. For any fixed aj ∈ {avi+1, · · · , avk}, this shift is initiated
from vertices in V (H) that are incident with some edges in E′, and reaches to aj to shift
image of v. Shifting of image of v happens because of missing edges from aj that is at most
|V (H)| − d+(aj) − d−(aj) ≤ |V (H)| (d+(aj) and d−(aj) are out-degree and in-degree of
aj respectively). Therefore, the contribution of v and avi to the expected value of w′ is at
most (1 + |V (H)|(k− i))c(v, avi)(vav

i
− vav

i+1
) where (vav

i
− vav

i+1
) is the upper bound on the

probability provided before.

Theorem 6.5.6. Algorithm3 returns a homomorphism with expected cost |V (H)|2 times
the optimal cost. The algorithm can be de-randomized to obtain a deterministic |V (H)|2-
approximation algorithm.

Proof. By Lemma 6.5.5 the expected value of w′ is

E[w′] = E

∑
v,i

c(v, ai)(v′
i − v′

i+1)

=
∑
v,i

c(v, ai)E[v′
i − v′

i+1]

≤ |V (H)|2
∑
v,i

c(v, ai)(vi − vi+1)

≤ |V (H)|2w

≤ |V (H)|2w∗.

At this point we have proved that Algorithm 3 produces a homomorphism whose expected
cost is at most |V (H)|2 times the minimum cost. It can be transformed to a deterministic
algorithm as follows. There are only polynomially many values vt (at most |V (D)| · |V (H)|).
When X lies anywhere between two such consecutive values, all computations will remain
the same. Thus we can de-randomize the first phase by trying all these values of X and
choosing the best solution. Similarly, there are only polynomially many values of the partial
sums

p∑
i=1

Pu,ti (again at most |V (D)|·|V (H)|), and when Y lies between two such consecutive
values, all computations remain the same. Thus we can also de-randomize the second phase
by trying all possible values and choosing the best. Since the expected value is at most
|V (H)|2 times the minimum cost, this bound also applies to this best solution.

150

6.6 Approximation for digraphs with a k-min-ordering

Digraphs admitting k-min-ordering (k > 1) do not admit a min-ordering or a conservative
majority polymorphism. However, this does not rule out the possibility of a constant factor
approximation algorithm. We show that they are in fact DAT-free digraphs and the List
Homomorphism problem is polynomial time solvable for this class of digraphs.

It turns out that digraphs admitting a k-min-ordering do not contain a DAT. Further-
more, List Homomorphism problem is polynomial time solvable for this class of digraphs
(Lemmas 6.6.2 and 6.6.1).

In the rest of this section −→Ck denotes an induced directed cycle with vertices {0, 1, . . . , k−
1} and the arc set {01, 12, . . . , (k − 2)(k − 1), (k − 1)0}.

Lemma 6.6.1. Let H be a digraph that admits a k-min-ordering. Then LHOM(H) is
polynomial time solvable.

Proof. Let D,H,L be an instance of LHOM(H) where D is the input digraph and L is the
set of lists, i.e. for every x ∈ V (D), L(x) ⊆ V (H). We run the arc consistency procedure
and suppose the lists are not empty after the arc consistency procedure. Let V0, V1, . . . , Vk−1

be the sets of vertices of H according to the k-min-ordering <. We also note that if there
exists a homomorphism ϕ : V (D)→ V (H), then D must be homomorphic to −→Ck because H
is homomorphic to −→Ck. This means the vertices of D are partitioned into D0, D1, . . . , Dk−1

where the arcs of D go from some Di to Di+1, 0 ≤ i ≤ k−1 (sum modulo k). For simplicity
we may assume that D is weakly connected; i.e. the underlying graph of D is connected.
Moreover, without loss of generality let x be an arbitrary vertex in D0 (D0 is not empty).
Now the vertices of D0 are mapped to some Vℓ, for some 0 ≤ ℓ ≤ k − 1. In other words,
L(x) ∩ Vℓ ̸= ∅.

Now for every y ∈ Dj+ℓ and every 0 ≤ j ≤ k, set f(y) to be the smallest element in
L(y) ∩ Vj+ℓ according to <. Observe that the restriction of < on Vi ∪ Vi+1, 0 ≤ i ≤ k − 1,
is a min-ordering. Suppose yz is an arc of D with y ∈ Dj+ℓ and z ∈ Dj+ℓ+1. We show that
f(y)f(z) is an arc of H. Suppose f(y) = a and f(z) = b. Since we run the arc-consistency
procedure, there exists some element b′ ∈ L(z) ∩ Vℓ+j+1 such that ab′ ∈ A(H), and there
exists some a′ ∈ L(y) ∩ Vℓ+j+1 so that a′b ∈ A(H). The ordering < on Vℓ+j ∪ Vℓ+j+1 is a
min-ordering, and hence, ab is an arc of H.

Lemma 6.6.2. Let H be a digraph that admits a k-min-ordering. Then H does not contain
a DAT.

Proof. It was shown in [108] that digraph H1 is DAT-free if and only if V (H1) × V (H1)
can be partitioned into two sets Vf , Vg where there exist two polymorphisms f, g over H1

such that f is a semilattice on Vf and g is a majority over Vg. Let V0, V1, . . . , Vk−1 be the
vertices of H according to the k-min-ordering <. Define the binary polymorphism f over
H as follows.

151

1. f(x, y) = f(y, x) = x when x, y ∈ Vi and x < y (in the ordering <),

2. f(x, y) = x, f(y, x) = y when x ∈ Vi and y ∈ Vj , 0 ≤ i ̸= j ≤ k − 1,

3. f(x, x) = x for every x ∈ V (H).

First we show that f is a polymorphism on H and it is semilattice on Vf = {(x, y) |
x, y ∈ Vi, 0 ≤ i ≤ k − 1}. Let xy, x′y′ ∈ A(H) where x, y ∈ Vi and x′, y′ ∈ Vi+1. Now
f(x, y)f(x′, y′) ∈ A(H) because between Vi, Vi+1 we have a min-ordering, implying that f is
a polymorphism. It is also easy (since < is min-ordering) to see that f is associative. Now,
define the ternary polymorphism g over H as follows :

1. g(x, y, z) = x when x, y, z ∈ Vi,

2. g(x, y, z) = x when x ∈ Vi, y ∈ Vj , z ∈ Vℓ and i, j, ℓ are all distinct,

3. g(x, y, z) = g(z, x, y) = g(x, z, y) = g(z, y, x) = g(y, z, x) = g(y, x, z) = x when
x, y ∈ Vi, x < y (in the ordering <), and z ∈ Vj , i ̸= j,

4. g(x, y, z) = g(z, x, y) = g(x, z, y) = g(z, y, x) = g(y, z, x) = g(y, x, z) = y when
x, y ∈ Vi, y < x, and z ∈ Vj , i ̸= j,

5. g(x, x, y) = g(x, y, x) = g(y, x, x) = x when x ∈ Vi and y ∈ Vj , i ̸= j,

6. g(x, x, x) = x for all x ∈ V (H).

We show that g is a polymorphism over H, and show that it is a majority polymorphism
over the pairs in Vg = {(x, y) | x ∈ Vi, y ∈ Vj , i ̸= j}. By definition, we need to show that

∀xx′, yy′, zz′ ∈ A(H) =⇒ g(x, y, z)g(x′, y′, z′) ∈ A(H)

Case 1. If x, y, z all belong to the same Vi, then x′, y′, z′ ∈ Vi+1, and hence, by definition

g(x, y, z)g(x′, y′, z′) = xx′ ∈ A(H).

Case 2. If x, y, z belong to three different partite sets, then x′, y′, z′ belong to three distinct
partite sets, and hence,

g(x, y, z)g(x′, y′, z′) = xx′ ∈ A(H).

Case 3. If x, y belong to Vi (possibly x = y) and z ∈ Vj , then x′, y′ ∈ Vi+1 and z′ ∈ Vj+1.
When x < y and x′ < y′, then by definition g(x, y, z)g(x′, y′, z′) ∈ A(H). Now suppose
that x < y and y′ < x′. Since < is a min-ordering on Vi, Vi+1, we have xy′ ∈ A(H),
and hence,

g(x, y, z)g(x′, y′, z′) = xy′ ∈ A(H).

152

By symmetry, the other remaining cases can be handled similarly.

Theorem 6.6.3. There is a |V (H)|2-approximation algorithm for MinHOM(H) when the
target digraph H admits a k-min-ordering, k > 1.

Proof. Let V0, V1, . . . , Vk−1 be a partition of the vertices of H according to the k-min-
ordering; i.e. every arc of H is from a vertex in Vl to a vertex in Vl+1, 0 ≤ k−1 (sum module
k). Clearly a mapping g : V (H)→ −→Ck with g(a) = l when a ∈ Vl, l ∈ {0, 1, . . . , k − 1}, is a
homomorphism from H to −→Ck

Let D be the input digraph together with the costs. Observe that if D is homomorphic
to H, then D must be homomorphic to −→Ck. We may assume that D is weakly connected.
Otherwise, each weakly connected component of D is treated separately.

Let x be a fixed vertex in D and let ψℓ be a homomorphism from D to −→Ck where
ψℓ(x) = ℓ, ℓ ∈ {0, 1, . . . , k− 1}. We design an approximation algorithm for MinHOM(H) in
which x is mapped to Vi of H. In order to find the approximation algorithm for MinHOM(H)
for the given digraph D, we consider each homomorphism ψℓ(x) = ℓ, ℓ ∈ {0, 1, . . . , k−1} and
find an approximation algorithm from D to H corresponding to ψℓ and output the one with
best performance. For simplicity of notations we work with ϕ = ψ0. Let U0, U1, U2, . . . , Uk−1

be the partition of the vertices in D under ϕ, i.e. ϕ−1(ℓ) = Uℓ.
Consider the following LP with set of constraint called S. For every u ∈ Uℓ and every ai ∈

Vℓ, ℓ ∈ {0, 1, . . . , k} define variable 0 ≤ ui ≤ 1. For every vertex ai ∈ Vj , j ∈ {0, 1, . . . , k−1},
let ℓ+(i) be the first bi′ ∈ Uj+1 in the ordering < such that aibi′ ∈ A(H) and let ℓ−1(i) be
the first cr ∈ Vj−1 in the ordering < such that crai ∈ A(H).

min
∑

ℓ∈{0,1,...,k−1}
v∈Uℓ,i∈Vℓ

c(v, ai)(vi − vi+1)

subject to: vi ≥ 0 (A1)
v1 = 1 ∀ℓ and every v ∈ Uℓ, ai ∈ Vℓ (A2)
vp+1 = 0 |V (H)| = p (A3)
vi+1 ≤ vi ∀ℓ and every v ∈ Uℓ, ai ∈ Vℓ (A4)
vi+1 = vi if ai ̸∈ L(v) (A5)
ui ≤ vl+(i) ∀ uv ∈ A(D) (A6)
vi ≤ ul−(i) ∀ uv ∈ A(D) (A7)

Let a1, a2, . . . , ap be the vertices in Vℓ according to the k-min-ordering <, and let
b1, b2, . . . , bq be the vertices in Vℓ+1 according to <.

Let E = A(H) and define H ′ to be the digraph with vertex set V (H) and arc set E∪E′.
Here E′ is the set of arcs added into A(H) so that the resulting digraph admit a k-min-
max-ordering. Note that E and E′ are disjoint sets. Let E′

ℓ denote the set of all the pairs
(ai, bj) ∈ Vℓ × Vℓ+1 such that aibj is not an arc of H, but there is an arc aibj′ of H with
j′ < j and an arc ai′bj of H with i′ < i. Observe that E′ = ⋃ℓ=k−1

ℓ=0 E′
ℓ.

153

For every arc e = aiaj ∈ E′
ℓ and every arc uv ∈ A(D), u ∈ Uℓ, v ∈ Uℓ+1 two of the

following set of inequalities is added to S (i.e. either (A8), (A9) or (A10), (A11)).

vj ≤ us + ∑
at∈L(u)
atbj∈Eℓ
t<i

(ut − ut+1) if as is the first in-neighbor of bj after ai (A8)

vj ≤ vj+1 + ∑
at∈L(u)
atbj∈Eℓ
t<i

(ut − ut+1) if bj has no in-neighbor after ai (A9)

ui ≤ vs + ∑
bt∈L(v)
aibt∈Eℓ
t<j

(vt − vt+1) if bs is the first out-neighbor of ai after bj (A10)

ui ≤ ui+1 + ∑
bt∈L(v)
aibt∈Eℓ
t<j

(vt − vt+1) if ai has no out-neighbor after bj (A11)

Moreover, by pair consistency, we can add the following constraints for every u ∈ Uℓ

and every v ∈ Uℓ′ in V (D) and ai ∈ L(u):

ui − ui+1 ≤
∑
j:

(ai,bj)∈L(u,v)

(vj − vj+1) (A12)

By similar argument as in the previous section, one can show the following. There is a
one-to-one correspondence between the homomorphisms from D to H, and integer solutions
of the extended system S.

In what follows we outline the process of rounding the fractional values of the LP to
obtain an integral solution, and hence, a homomorphism from D to H (see fig. 6.2). In the
first stage of the algorithm, we use a random variable X ∈ [0, 1] and round the fractional
values according to X. This means, if ui < X then u′

i is set to zero, otherwise we set u′
i = 1.

The intention is to map v to vertex ai of H when u′
i = 1 and u′

i+1 = 0. However, we may
set u′

i = v′
j = 1, u′

i+1 = v′
j+1 = 0 where u ∈ Uℓ, v ∈ Uℓ+1, ai ∈ Vℓ, bj ∈ Vℓ + 1 and aibj ∈ E′

ℓ,
i.e. aibj is not an arc of H but it is one of the added arcs into H. In other words, what
we have obtained would not be a homomorphism, and hence, we have to fix this partial
integral assignment. To keep track of fixings, we may assume sum i+ j is maximum.

We may assume that bj does not have any in-neighbor in Vℓ after ai. Now we use a
random variable Y ∈ [0, 1] to select an out-neighbor bt ∈ Vℓ+1 of ai before (in the ordering
<) bj and shift the image of v from bj to bt. The vertex bt is selected according to random
variable Y with the same rule as the one described in Section 6.5 (see the description after
Lemma 6.5.1). However, this could force us to shift the image of some out-neighbor of v, say
w ∈ Vℓ+2 (subscript in modulo k). Therefore, we deploy a BFS search (applying a version
of shift procedure in Algorithm 3) to fix the images of the vertices of D that may need
to be changed because of the initial change in shifting the image of v to bt (see the Figure

154

6.2). We use the same strategy as used in the case of the min-ordering to round the values
of S and obtain an integral solution.

x

y

z

w

u v

1

2

3

4

5

6

7

8

9

Input digraph D Target digraph H

Figure 6.2: An illustration of the algorithm for k-min-ordering.

Example 6.6.4 (Figure 6.2: an illustration of the algorithm for k-min-ordering). In digraph
H, 1, 2, 3, 4, 5, 6, 7, 8, 9 is a 3-min-ordering. The dash arcs are the missing arcs. Suppose after
the first step of rounding u′

2 = v′
5 = z′

7 = 1, v′
6 = u′

3 = z′
9 = 0. Then the algorithm shift the

image of v from 5 to 4 and consequently the image of z from 8 to 7.

6.7 A dichotomy for graphs

Feder and Vardi [78] proved that if a graph H admits a conservative majority polymorphism,
then LHOM(H) is polynomial time solvable. Later, Feder et al., [76] showed that LHOM(H)
is polynomial time solvable if and only if H is a bi-arc graph. Bi-arc graphs are defined as
follows.

Let C be a circle with two specified points p and q on C. A bi-arc is an ordered pair of
arcs (N,S) on C such that N contains p but not q, and S contains q but not p. A graph
H is a bi-arc graph if there is a family of bi-arcs {(Nx, Sx) : x ∈ V (H)} such that, for any
x, y ∈ V (H), not necessarily distinct, the following hold:

– if x and y are adjacent, then neither Nx intersects Sy nor Ny intersects Sx;

– if x and y are not adjacent, then both Nx intersects Sy and Ny intersects Sx.

We shall refer to {(Nx, Sx) : x ∈ V (H)} as a bi-arc representation of H. Note that a
bi-arc representation cannot contain bi-arcs (N,S), (N ′, S′) such that N intersects S′ but
S does not intersect N ′ and vice versa. Furthermore, by the above definition a vertex may
have a self loop.

Theorem 6.7.1 ([29, 76]). A graph admits a conservative majority polymorphism if and
only if it is a bi-arc graph.

155

Definition 6.7.2 (G∗). Let G = (V,E) be a graph. Let G∗ be a bipartite graph with partite
sets V, V ′ where V ′ is a copy of V . Two vertices u ∈ V , and v′ ∈ V ′ of G∗ are adjacent in
G∗ if and only if uv is an edge of G.

A circular arc graph is a graph that is the intersection graph of a family of arcs on a
circle. We interpret the concept of an intersection graph literally, thus any intersection graph
is automatically reflexive (i.e. there is a loop at every vertex), since a set always intersects
itself. A bipartite graph whose complement is a circular arc graph, is called a co-circular
arc graph. Note that co-circular arc graphs are irreflexive, meaning no vertex has a loop.

Lemma 6.7.3. Let H∗ be the bipartite graph constructed from a bi-arc graph H, according
to Definition 6.7.2. Then the following hold.

– H∗ is a co-circular arc graph.

– H∗ admits a min-ordering.

Proof. It is easy to see that H∗ is a co-circular arc graph. From a bi-arc representation
{(Ni, Si) : i ∈ V (H)} of H, we obtain a co-circular arc representation of H∗ by choosing
the arc Ni, i ∈ H for vertex i ∈ H∗ and arc Si for vertex i′ ∈ H∗. A bipartite graph admits
a min-ordering if and only if it is co-circular arc graph [103]. H∗ is a co-circular arc graph,
and hence, it admits a min-ordering.

Let H be a bi-arc graph, with vertex set I, and let H∗ = (I, I ′) be the bipartite graph
constructed from H according to Definition 6.7.2. Let a1, a2, . . . , ap be an ordering of the
vertices in I and b1, b2, . . . , bp be an ordering of the vertices of I ′. Note that each ai has a
copy bπ(i) in {b1, b2, . . . , bn} where π is a permutation on {1, 2, 3, . . . , p}. By Lemma 6.7.3,
let us assume a1, a2, . . . , ap, b1, b2, . . . , bp is a min-ordering for H∗.

Let G be the input graph with vertex set V and a cost function c. Construct G∗ from G

with vertex set V ∪V ′ as in Definition 6.7.2. Now construct an instance of the MinHOM(H∗)
for the input graph G∗ and set c(v′, bπ(i)) = c(v, ai) for v ∈ V , v′ ∈ V ′. Further, make H∗ a
digraph by orienting all its edges from I to I ′, and similarly make G∗ a digraph by orienting
all its edges from V to V ′. The following lemma immediately follows from the construction
of H∗ and G∗.

Lemma 6.7.4. There exists a homomorphism f : G → H with cost C if and only if there
exists homomorphism f∗ : G∗ → H∗ with cost 2C such that, if f∗(v) = ai then f∗(v′) = bj

with j = π(i).

We first perform the arc-consistency and pair-consistency procedures for the vertices in
G∗. Note that if L(u) contains element ai then L(u′) contains bπ(i) and when L(u′) contains
some bj then L(u) contains aπ−1(j). Next, we define the system of linear equations Ŝ∗ with

156

the same construction as in Sections 6.3, 6.4. Equivalently, one can use the LP formulation
in [103]. However, for the sake of completeness we present the entire LP in this section.

Consider the following linear program. For every vertex v ∈ V from G∗ = (V, V ′) and
every vertex ai ∈ I from H∗ = (I, I ′) define variable vi. For every vertex v′ ∈ V ′ from
G∗ and every vertex bi ∈ I ′ from H∗ define variable v′

i. We also define variable vp+1 for
every v ∈ V whose value is set to zero. Now the goal is to minimize the following objective
function:

min
∑
v,i
c(v, ai)(vi − vi+1) + ∑

v′,j
c(v′, bj)(v′

j − v′
j+1)

subject to: vi, v
′
π(i) ≥ 0 (CM1)

v1 = v′
1 = 1 (CM2)

vp+1 = 0 (CM3)
vi+1 ≤ vi and v′

π(i)+1 ≤ v
′
π(i) (CM4)

vi+1 = vi and v′
π(i)+1 = v′

π(i) if ai ̸∈ L(v) (CM5)
ui ≤ v′

l+(i) ∀ uv′ ∈ A(G∗) (CM6)
v′
i ≤ ul−(i) ∀ uv′ ∈ A(G∗) (CM7)
ui − ui+1 = u′

π(i) − u
′
π(i)+1 ∀u, u′ ∈ G∗, ∀ai, bπ(i) ∈ H∗ (CM8)

Let E′ denote the set of all the pairs (ai, bj) such that aibj is not an arc of H∗, but there
is an arc aibj′ of H∗ with j′ < j and an arc ai′bj of H∗ with i′ < i. Let E = A(H∗) and
define H ′∗ to be the digraph with vertex set V (H∗) and arc set E ∪ E′. Note that E and
E′ are disjoint sets. For every arc e = aibj ∈ E′ and every arc uv ∈ A(G∗), by Observation
6.4.3, two of the following set of inequalities will be added to Ŝ∗ (i.e. either (CM9), (CM12)
or (CM10), (CM11)).

v′
j ≤ us + ∑

at∈L(u)
atbj∈E
t<i

(ut − ut+1) if as is the first in-neighbor of bj after ai (CM9)

v′
j ≤ v′

j+1 + ∑
at∈L(u)
atbj∈E
t<i

(ut − ut+1) if bj has no in-neighbor after ai (CM10)

ui ≤ v′
s + ∑

bt∈L(v′)
aibt∈E
t<j

(v′
t − v′

t+1) if bs is the first out-neighbor of ai after bj (CM11)

ui ≤ ui+1 + ∑
bt∈L(v′)
aibt∈E
t<j

(v′
t − v′

t+1) if ai has no out-neighbor after bj (CM12)

Lemma 6.7.5. If H is a bi-arc graph, then there is a one-to-one correspondence between
homomorphisms from G to H and integer solutions of Ŝ∗.

Proof. For homomorphism f : G→ H, if f(v) = at we set vi = 1 for all i ≤ t, otherwise we
set vi = 0, we also set v′

j = 1 for all j ≤ π(i) and v′
j+1 = 0 where π(i) = j. We set v1 = 1,

157

v′
1 = 1 and vp+1 = v′

p+1 = 0 for all v, v′ ∈ V (G∗). Now all the variables are non-negative
and we have vi+1 ≤ vi and v′

j+1 ≤ v′
j . Note that by this assignment constraint (CM12)

is satisfied. It remains to show that ui ≤ v′
l+(i) for every arc uv′ ∈ A(G)∗ Suppose for

contradiction that ui = 1 and v′
l+(i) = 0 and let f(u) = ar and f(v) = as. This implies

that ur = 1, whence i ≤ r; and v′
s = 1, whence s < l+(i). Since aibl+(i) and arbs both are

arcs of H∗ with i ≤ r and s < l+(i), the fact that H∗ has a min-ordering implies that aibs
must also be an arc of H∗, contradicting the definition of l+(i). The proof for v′

j ≤ ul−(i) is
analogous.

Conversely, suppose there is an integer solution for Ŝ∗. First we define a homomorphism
g : G∗ → H∗ as follows : let g(u) = ai where i is the largest subscript with vi = 1, and
g(v′) = bj when j is the largest subscript with vj = 1. We prove that this is indeed a
homomorphism by showing that every arc of G∗ is mapped to an arc of H∗. Let uv′ be an
arc of G∗ and assume g(u) = ar, g(v′) = bs We show that arbs is an arc in H∗. Observe
that, by (CM6) and (CM7), 1 = ur ≤ v′

l+(r) ≤ 1 and 1 = v′
s ≤ ul−(s) ≤ 1, therefore we must

have v′
l+(r) = ul−(s) = 1. Since r and s are the largest subscripts such that ur = v′

s = 1
then l+(r) ≤ s and l−(s) ≤ r. Since arbl+(r) and al−(s)bs are arcs of H∗, we must have the
arc arbs in H∗ because H∗ admits a min-ordering. Furthermore, g(u) = ai if and only if
ui = 1 and ui+1 = 0, so, c(u, ai) contributes to the sum if and only if g(u) = ai and c(v′, bj)
contributes to the sum if and only if g(v′) = bj .

Now let f(u) = ai when g(u) = ai. We show that if uv is an esge of G then f(u)f(v)
is an edge of H. Since g is a homomorphism from G∗ to H∗, g(u)g(v′) ∈ A(H∗). Suppose
g(v′) = bj . This means ui = v′

j = 1, ui+1 = v′
j+1 = 0. Now by constraint (CM12), we have

vπ−1(j) = 1, and vπ−1(j)+1 = 0, and hence, we have f(v) = aπ−1(j). Now by definition of H∗,
aiaπ−1(j) is an arc of H because aibj is an arc of H∗. Furthermore, f(u) = ai if and only if
ui = 1 and ui+1 = 0, so, c(u, ai) contributes to the sum if and only if f(u) = ai.

Once again we round an optimal fractional solution of Ŝ∗, using random variable X ∈
[0, 1]. Let F be a mapping form V (G∗) to V (H∗) obtained after rounding. We propose
an algorithm that modifies F and achieves a homomorphism f : G → H (i.e. an integral
solution that satisfies Ŝ∗).

Theorem 6.7.6. There exists a randomized algorithm that modifies F and obtain a homo-
morphism f : G → H. Moreover, the expected cost of the homomorphism returned by this
algorithm is at most 2|V (H)| ·OPT .

Proof. For every variable ui, u ∈ V (G∗), set ûi = 1 if X ≤ ui else ûi = 0. Similarly for
every v′

j , v′ ∈ V (G∗), set v̂′
j = 1 if X ≤ v′

j else v̂′
i = 0. The algorithm has two stages after

rounding the variables using random variable X.

Stage 1. Fixing the arcs uv′ of G∗ that have been mapped to non-arcs aibj of H∗:
Suppose for some arc uv′ of G∗, ûi = 1, ûi+1 = 0, v̂′

j = 1, v̂′
j+1 = 0. By Observation 6.4.3,

158

either bj has no in-neighbor after ai or ai has no out-neighbor after bj . Suppose the former
is the case. We also note that because of the constrains (CM5), (CM6), aibj is one of the
arcs that should be added into H∗ in order to obtain a min-max-ordering for H ′∗. Suppose,
for edge uv′ ∈ A(G∗), F(u) = ai,F(v) = aj where aiaj ∈ E′; i.e. aibπ(j) ̸∈ A(H∗). We may
assume that aiaj is the first such non-edge in H when we look at the min-ordering of H∗.

Choose a random variable Y ∈ [0, 1], which will guide us to shift the image of v′ from
bj to some bt where aibt ∈ E, and bt appears before bj in the min-ordering of H∗. Consider
the set of such bts (by definition of the min-ordering of H∗, this set is non-empty), and
suppose it consists of bt with subscripts t ordered as t1 < t2 < . . . tk. Let Pv′,t = v′

t−v′
t+1

Pv′

with Pv′ = ∑
aibt∈E(H∗), t<j

(v′
t−v′

t+1). Select btq if
q∑
p=1

Pv′,tp < Y ≤
q+1∑
p=1

Pv′,tp . Thus, a concrete

bt is selected with probability Pv′,t, which is proportional to the difference of the fractional
values v′

t − v′
t+1. Observe that there is no need to shift the image of some vertex w which

is an in-neighbor of v′ from its current value to some other vertex (because of shifting the
image of v).

Now we note that the probability of shifting the image of some v′ from bj to bt is at
most v′

t − v′
t+1. Note that as long as such arcs uv′ exists, we repeat the shifting procedure.

At the end of this stage we have obtained a homomorphism f∗ from G∗ to H∗.

Stage 2. Making the assignment consistent with respect to both orderings: We
say a vertex u ∈ V of G∗ = (V, V ′) is unstable if ûi = 1, ûi+1 = 0, and û′

q = 1, û′
q+1 = 0 with

q ̸= π(i). Now we start a BFS in V (G∗) and continue as long as there exists an unstable
vertex u in G∗. We start from the biggest subscripts i for which there exists an unstable u
with ûi = 1, ûi+1 = 0. We put all such vertices u with respect to index i in a queue. During
the BFS, one of the following is performed:

1. shift the image of u′ from bq to bπ(i).

2. shift the image of u from ai to aπ−1(q).

As a consequence of the above actions we would have the following cases:

Case 1. We change the image of u′ from bq to bπ(i) (with ûi = 1, ûi+1 = 0), and there
exists some uv′ such that v̂j = v̂′

ℓ = 1 and v̂j+1 = v̂′
ℓ+1 = 0 with ℓ = π(j).

We note that aibπ(j) is an arc because uv′ is an arc, and hence, ajbπ(i) is an arc of H∗.
This would mean there is no need to shift the image of v from aj to something else
(see the Figure 6.3 (a)).

Case 2. We change the image of u′ from bq to bπ(i) (with ûi = 1, ûi+1 = 0). Let j be a
biggest subscript such that there exists some vu′ where v̂j = v̂′

ℓ = 1 and v̂j+1 = v̂′
ℓ+1 =

0 and ℓ ̸= π(j). Note that here j < i. Such vertex v is added into the queue, and once

159

ai

b⇡(j) b⇡(i) bq

u

v0

v

u0

aj

A

A

aj

b⇡(i) b`

v

u0

u

v0

ai

bq

a⇡�1(`)

aj

b⇡(i) b`

v

u0

u

v0

ai

bq

a⇡�1(`)

A

A(a) Case 1 (b) Case 2

Figure 6.3: Illustrating the shifting process in Stage 2 of the algorithm.

we retrieve v from the queue we do the following: Moving the image of v from aj to
aπ−1(ℓ) (see the Figure 6.3 (b)).

Note that aibℓ ∈ A(H∗) because vu′ is an arc of G∗, and hence aπ−1(ℓ)bπ(i) is an arc
of H∗, i.e. aiaℓ is an edge of H.

Case 3. We change the image of v from aj to some aπ−1(ℓ) (with v̂′
ℓ = 1, v̂′

ℓ+1 = 0), and
there exists some vw′ such that ŵt = ŵ′

r = 1 and ŵt+1 = ŵ′
r+1 = 0 with r = π(t). We

note that atbℓ ∈ A(H∗) because v′w is an arc, and hence, aπ−1(ℓ)br is an arc of H∗.
This would mean there is no need to shift the image of w′ to something else.

Case 4. We change the image of v from aj to some aπ−1(ℓ) (with v̂′
ℓ = 1, v̂′

ℓ+1 = 0) Let
r be a biggest subscripts such that there exists some vw′ where ŵt = ŵ′

r = 1 and
ŵt+1 = ŵ′

r+1 = 0 with r ̸= π(t), t < i. Such vertex w′ is added into the queue, and
once we retrieve w′ from the queue we do the following: Moving the image of w′ from
br to bπ−1(t).

Note that atbℓ ∈ A(H∗) because wv′ is an arc of G∗. Therefore, aπ−1(ℓ)bπ−1(t) is an
arc of H∗, i.e. an edge of H.

When Case (2) occurs, we continue the shifting. This would mean we may need to shift
the image of some out-neighbor w′ of v accordingly. We continue the BFS from v, and
modify the images of out-neighbors of v, say w′, to be consistent with new image of v. This
means we encounter either case 3 or 4. Suppose ŵ′

t = 1, ŵ′
t+1 = 0 or ŵ′

π(t) = 1, ŵπ(t)+1 = 0.
Then there is no need to change the image of w′. Otherwise, we change the image of w′

from bt to bj where aπ−1(ℓ)bj is an arc of H∗ and we need to consider Cases 3,4 for the
current vertex w. When we are in Case 4, then we would consider Cases 1,2 and proceed
accordingly.

Note that during the BFS, if we encounter a vertex x (x′) that has been visited before,
then we would be at Case 1 or 3 and hence, no further action is needed for in-neighbors
(out-neighbors) of x. We also note that at each step an unstable vertex y is associated to
some aℓ where ℓ is decreasing. Therefore, this procedure would eventually stop, and we no
longer have an unstable vertex y in V .

160

Estimating the ratio: Vertex v (v′) is mapped to at (bt) in three situations. The first
scenario is where v is mapped to at by rounding (according to random variable X in Stage
1) and is not shifted away. In other words, we have v̂t = 1 and v̂t+1 = 0 (i.e. vt+1 ≤ X < vt)
and these values do not change by the shifting procedure. Hence, for this case we have:

P[f(v) = at] = P[vt+1 < X ≤ vt]

≤ vt − vt+1

Whence this situation occurs with probability at most vt − vt+1, and the expected contri-
bution is at most c(v, at)(vt − vt+1).
The second scenario is where f(v) is set to at according to random variable Y in Stage 1.
In this case v is first mapped to aj , j > t, by rounding according to variable X and then
re-mapped to at during the shifting according to variable Y . We first compute the expected
contribution for a fixed j, that is the contribution of shifting v from a fixed aj to at.

This happens if there exist i and u′ ∈ V (H∗) such that vu′ is an arc of D∗ mapped to
ajbi ∈ E′, and then the image of v is shifted to at (at < aj in the min-ordering), where
atbi ∈ E = A(H∗). In other words, we have û′

i = v̂j = 1 and û′
i+1 = v̂j+1 = 0 after rounding;

and then v is shifted from aj to at. Therefore,

P[û′
i = v̂j = 1, û′

i+1 = v̂j+1 = 0] = P[max{u′
i+1, vj+1} < X ≤ min{u′

i, vj}]

= min{u′
i, vj} −max{u′

i+1, vj+1}

≤ vj − vj+1

≤
∑
t<j

atbi∈E
at∈L(v)

(vt − vt+1)

= Pv

The last inequality is because aj has no out-neighbor after bi and it follows from inequal-
ity (CM9). Having vu′ mapped to ajbi in the rounding step, we shift v to at with prob-
ability Pv,t = (vt−vt+1)

Pv
. Note that the upper bound Pv is independent from the choice of

u and bi. Therefore, for a fixed aj , the probability that v is shifted from aj to at is at
most vt−vt+1

Pv
· Pv = vt − vt+1. There are at most |V (H)| of such bi’s, (causing the shift to

aj) and hence, the expected contribution of vt − vt+1 to the objective function is at most
|V (H)|c(v, t)(vt − vt+1).
The third scenario is when the image of v is shifted from some aj to at in the second Stage
of the shifting . More precisely, when one of the actions 1,2 occurs.

This happens because the image of v′ has been shifted from bq to bπ(t) in Stage 2
according to variables X or Y (i.e. BFS). As we argued, in the previous scenarios, the
overall expected value of shifting v′ from bq to bπ(t) is |V (H)|c(v, t)(v′

π(t) − v
′
π(t)+1). Since

161

vt − vt+1 = v′
π(t) − v′

π(t)+1, the overall expected value of shifting v to at is |V (H)|(vt −
vt+1). In conclusion, the expected contribution of vt − vt+1 to the objective function is
2|V (H)|c(v, t)(vt − vt+1).

We remark that, as in the proof of Theorem 6.5.6, the above algorithm can be de-
randomized. By Lemma 6.7.3 and Theorem 6.7.6 we obtain the following classification
theorem.

Theorem 6.7.7. If H admits a conservative majority polymorphism, then MinHOM(H)
has a (deterministic) 2|V (H)|-approximation algorithm, otherwise, MinHOM(H) is inap-
proximable unless P = NP.

162

Chapter 7

Sparsification of submodular
functions

7.1 Introduction

Submodularity allows one to efficiently find provably (near-)optimal solutions. In particular,
a wide range of efficient approximation algorithms have been developed for maximizing or
minimizing submodular functions subject to different constraints. Unfortunately, these al-
gorithms require number of function evaluations which in many data intensive applications
are infeasible or extremely inefficient. Fortunately, several submodular optimization prob-
lems arising in machine learning have structure that allows solving them more efficiently.
A novel class of submodular functions are decomposable submodular functions. These are
functions that can be written as sums of several “simple” submodular functions, i.e.,

F (S) =
N∑
i=1

fi(S) ∀S ⊆ E,

where each fi : 2E → R is a submodular function on the ground set E with |E| = n.
Decomposable submodular functions encompass many of the examples of submodular

functions studied in the context of machine learning as well as economics. For example, they
are extensively used in economics in the problem of welfare maximization in combinatorial
auctions [64, 80, 81, 180, 216].

Example 7.1.1 (Welfare maximization). Let E be a set of n resources and a1, . . . , aN

be N agents. Each agent has an interest over subsets of resources which is expressed as a
submodular function fi : 2E → R. The objective is to select a small subset of resources that
maximizes the happiness across all the agents, the “social welfare”. More formally, the goal
is to find a subset S ⊆ E of size at most k that maximizes F (S) = ∑N

i=1 fi(S), where k is
a positive integer.

163

Decomposable submodular functions appear in various machine learning tasks such as
data summarization, where we seek a representative subset of elements of small size. This
has numerous applications, including exemplar-based clustering [65, 88], image summariza-
tion [209], recommender systems [182], and document and corpus summarization [152]. The
problem of maximizing decomposable submodular functions has been studied under differ-
ent constraints such as cardinality and matroid constraints in various data summarization
settings [167, 169, 170], and differential privacy settings [49, 171, 188].

In many of these applications, the number of underlying submodular functions are too
large (i.e., N is too large) to even fit in the main memory, and building a compressed repre-
sentation that preserves relevant properties of the submodular function is appealing. This
motivates us to find a sparse representation for a decomposable submodular function F . In
this chapter, we propose a simple and very effective algorithm that yields a sparse and accu-
rate representation of a decomposable submodular function. To the best of our knowledge
this work is the first to study sparsification of decomposable submodular functions.

7.1.1 Overview of our contributions

General setting. Given a decomposable submodular function F = ∑N
i=1 fi, we present

a randomized algorithm that yields a sparse representation that approximates F . Our algo-
rithm chooses each submodular function fi with probability proportional to its “importance”
in the sum ∑N

i=1 fi to be in the sparsifier. Moreover, each selected submodular function will
be assigned a weight which also is proportional to its “importance”. We prove this simple
algorithm yields a sparsifier of small size (independent of N) with a very good approx-
imation of F . Let |B(fi)| denote the number of extreme points in the base polytope of fi,
and B = maxi∈[N] |B(fi)|.

Theorem 7.1.2. Let F = ∑N
i=1 fi be a decomposable submodular function. For any ϵ > 0,

there exists a vector w ∈ RN with at most O(B·n2

ϵ2) non-zero entries such that for the
submodular function F ′ = ∑N

i=1 wifi we have

(1− ϵ)F ′(S) ≤ F (S) ≤ (1 + ϵ)F ′(S) ∀S ⊆ E.

Moreover, if all fi’s are monotone, then there exists a polynomial-time randomized algorithm
that outputs a vector w ∈ RN with at most O(B·n2.5 logn

ϵ2) non-zero entries in expectation
such that for the submodular function F ′ = ∑N

i=1 wifi, with high probability, we have

(1− ϵ)F ′(S) ≤ F (S) ≤ (1 + ϵ)F ′(S) ∀S ⊆ E.

Remark 7.1.3 (Tightness). The existential result is almost tight because in the special case
of directed graphs, we have maxi |B(fi)| = 2 and it is known that we need Ω(n2) edges to
construct a sparsifier [56].

164

Sparsifying under constraints. We consider the setting where we only are interested in
evaluation of F on particular sets. For instance, the objective is to optimize F on subsets of
size at most k, or it is to optimize F over subsets that form a matroid. Optimizing submod-
ular functions under these constraints has been extensively studied and has an extremely
rich theoretical landscape. Our algorithm can be tailored to these types of constraints and
constructs a sparsifier of even smaller size.

Theorem 7.1.4. Let F = ∑N
i=1 fi be a decomposable submodular function. For any ϵ > 0

and a matroid M of rank r, there exists a vector w ∈ RN with at most O(B·r·n
ϵ2) non-zero

entries such that for the submodular function F ′ = ∑N
i=1 wifi we have

(1− ϵ)F ′(S) ≤ F (S) ≤ (1 + ϵ)F ′(S) ∀S ⊆M.

Moreover, if all fi’s are monotone, then there exists a polynomial-time randomized algorithm
that outputs a vector w ∈ RN with at most O(B·r·n1.5 logn

ϵ2) non-zero entries in expectation
such that for the submodular function F ′ = ∑N

i=1 wifi, with high probability, we have

(1− ϵ)F ′(S) ≤ F (S) ≤ (1 + ϵ)F ′(S) ∀S ⊆M.

Applications, speeding up maximization/minimization. Our sparsifying algorithm
can be used as a preprocessing step in many settings in order to speed up algorithms.
To elaborate on this, we consider the classical greedy algorithm of [176] for maximizing
monotone submodular functions under cardinality constraints. We observe that sparsifying
the instance reduces the number of function evaluations from O(knN) to O(Bk2n2

ϵ2), which
is a significant speed up when N ≫ n. Regarding minimization, we prove our algorithm
gives an approximation on the Lovász extension, thus it can be used as a preprocessing
step for algorithms working on Lovász extensions such as the ones in [8, 73]. One particular
regime that has been considered in many results is where each submodular function fi

acts on O(1) elements of the ground set which implies B = maxi |B(fi)| is O(1). Using our
sparsifier algorithm as a preprocessing step is quite beneficial here. For instance, it improves
the running time of [8] from Õ(Tmaxflow(n, n+N) log 1

ϵ) to Õ(Tmaxflow(n, n+ n2

ϵ2) log 1
ϵ). Here,

Tmaxflow(n,m) denotes the time required to compute the maximum flow in a directed graph
of n vertices and m arcs with polynomially bounded integral capacities.

Well-known examples. In practice, the bounds on the size of sparsifiers are often better
than the ones presented in Theorems 7.1.2 and 7.1.4 e.g. B is a constant. We consider several
examples of decomposable submodular functions that appear in many applications, namely,
Maximum Coverage, Facility Location, and Submodular Hypergraph Min Cut problems. For
the first two examples, sparsifiers of size O(n2

ϵ2) can be constructed in time linear in N . For
Submodular Hypergraph Min Cut when each hyperedge is of constant size sparsifiers of size

165

O(n2

ϵ2) exist, and in several specific cases with various applications efficient algorithms are
employed to construct them.

Empirical results. Finally, we empirically examine our algorithm and demonstrate that
it constructs a concise sparsifier on which we can efficiently perform algorithms.

7.1.2 Related work

To the best of our knowledge there is no prior work on sparsification algorithms for decom-
posable submodular functions. However, special cases of this problem have attracted much
attention, most notably cut sparsifiers for graphs. The cut function of a graph G = (V,E)
can be seen as a decomposable submodular function F (S) = ∑

e∈E fe, where fe(S) = 1
if and only if e ∩ S ̸= ∅ and e ∩ (V \ S) ̸= ∅. The problem of sparsifying a graph while
approximately preserving its cut structure has been extensively studied, (See [1, 2, 12, 23]
and references therein.) The pioneering work of Benczúr and Karger [22] showed for any
graph G with n vertices one can construct a weighted subgraph G′ in nearly linear time
with O(n log n/ϵ2) edges such that the weight of every cut in G is preserved within a mul-
tiplicative (1± ϵ)-factor in G′. Note that a graph on n vertices can have N = Ω(n2) edges.
The bound on the number of edges was later improved to O(n/ϵ2) [19] which is tight [3].

A more general concept for graphs called spectral sparsifier was introduced by Spielman
and Teng [201]. This notion captures the spectral similarity between a graph and its spar-
sifiers. A spectral sparsifier approximates the quadratic form of the Laplacian of a graph.
Note that a spectral sparsifier is also a cut sparsifier. This notion has numerous applications
in linear algebra [158, 149, 57, 146], and it has been used to design efficient approximation
algorithms related to cuts and flows [23, 127, 157]. Spielman and Teng’s sparsifier has
O(n logc n) edges for a large constant c > 0 which was improved to O(n/ϵ2) [147].

In pursuing a more general setting, the notions of cut sparsifier and spectral sparsifier
have been studied for hypergraphs. Observe that a hypergraph on n vertices can have expo-
nentially many hyperedges i.e., N = Ω(2n). For hypergraphs, Kogan and Krauthgamer [133]
provided a polynomial-time algorithm that constructs an ϵ-cut sparsifier with O(n(r +
log n)/ϵ2) hyperedges where r denotes the maximum size of a hyperedge. The current best
result is due to [52] where their ϵ-cut sparsifier uses O(n log n/ϵ2) hyperedges and can be con-
structed in time O(Nn2 +n10/ϵ2) where N is the number of hyperedges. Recently, Soma dn
Yoshida [200] initiated the study of spectral sparsifiers for hypergraphs and showed that ev-
ery hypergraph admits an ϵ-spectral sparsifier with O(n3 log n/ϵ2) hyperedges. For the case
where the maximum size of a hyperedge is r, Bansal, Svensson, and Trevisan [12] showed
that every hypergraph has an ϵ-spectral sparsifier of size O(nr3 log n/ϵ2). Recently, this
bound has been improved to O(nr(log n/ϵ)O(1)) and then to O(n(log n/ϵ)O(1)) [125, 126].
This leads to the study of sparsification of submodular functions which is our focus and
provides a unifying framework for these previous works.

166

7.2 Preliminaries

For a positive integer n, let [n] = {1, 2, . . . , n}. Let E be a set of elements of size n which
we call the ground set. For a set S ⊆ E, 1S ∈ RE denotes the characteristic vector of S. For
a vector x ∈ RE and a set S ⊆ E, x(S) = ∑

e∈S x(e).

Submodular functions. Let f : 2E → R+ be a set function. We say that f is monotone if
f(S) ≤ f(T) holds for every S ⊆ T ⊆ E. We say that f is submodular if f(S∪{e})−f(S) ≥
f(T ∪{e})−f(T) holds for any S ⊆ T ⊆ E and e ∈ E\T . The base polytope of a submodular
function f is defined as

B(f) = {y ∈ RE | y(S) ≤ f(S) ∀S ⊆ E,y(E) = f(E)},

and |B(f)| denotes the number of extreme points in the base polytope B(f).

Definition 7.2.1 (ϵ-sparsifier). Let fi (i ∈ D) be a set of N submodular functions, and
F (S) = ∑

i∈D fi(S) be a decomposable submodular function. A vector w ∈ RN is called an
ϵ-sparsifier of F if, for the submodular function F ′ := ∑

i∈D wifi, the following holds for
every S ⊆ E

(1− ϵ)F ′(S) ≤ F (S) ≤ (1 + ϵ)F ′(S). (7.1)

The size of an ϵ-sparsifier w, size(w), is the number of indices i’s with wi ̸= 0.

Matroids and matroid polytopes. A pairM = (E, I) of a set E and I ⊆ 2E is called
a matroid if

(1) ∅ ∈ I,

(2) A ∈ I for any A ⊆ B ∈ I, and

(3) for any A,B ∈ I with |A| < |B|, there exists e ∈ B \A such that A ∪ {e} ∈ I.

We call a set in I an independent set. The rank function rM : 2E → Z+ of M is rM(S) =
max{|I| : I ⊆ S, I ∈ I}. An independent set S ∈ I is called a base if rM(S) = rM(E). We
denote the rank of M by r(M). The matroid polytope P(M) ⊆ RE of M is

P(M) = conv{1I : I ∈ I},

where conv denotes the convex hull. Or equivalently [71],

P(M) = {x ≥ 0 : x(S) ≤ rM(S) ∀S ⊆ E} .

167

Algorithm 4
Require: Submodular functions fi in dataset D where each fi : {0, 1}E → R, ϵ, δ ∈ (0, 1)

1: w ← 0
2: κ← 3 log(2n+1/δ)/ϵ2
3: for fi in D do
4: pi ← maxA⊆E fi(A)/F (A)
5: κi ← min{1, κ · pi}
6: wi ← 1/κi with probability κi ▷ do nothing with probability 1− κi
7: return w ∈ RD.

Concentration bound. We use the following concentration bound:

Theorem 7.2.2 (Chernoff bound, see e.g. [173]). Let X1, . . . , Xn be independent random
variable in range [0, a]. Let T = ∑n

i=1Xi. Then for any ϵ ∈ [0, 1] and µ ≥ E[T],

P [|T − E[T]| ≥ ϵµ] ≤ 2 exp
(
−ϵ

2µ

3a

)
.

7.3 Constructing a sparsifier

In this section, we propose a probabilistic argument that proves the existence of an accurate
sparsifier and turn this argument into an (polynomial-time) algorithm that finds a sparsifier
with high probability.

For each submodular function fi, let

pi = max
A⊆E

fi(A)
F (A) . (7.2)

The values pi’s are our guide on how much weight should be allocated to a submodular
function fi and with what probability it might happen. To construct an ϵ-sparsifier of F ,
for each submodular function fi, we assign weight 1/(κ ·pi) to wi with probability κ ·pi and
do nothing for the complement probability 1− κ · pi (see Algorithm 4). Here κ depends on
n, ϵ and δ where δ is the failure probability of our algorithm. Observe that, for each fi, the
expected weight wi is exactly one. We show that the expected number of entries of w with
wi > 0 is n2 ·maxi∈D |B(fi)|. Let B = maxi∈D |B(fi)| in the rest of this chapter.

Lemma 7.3.1. Algorithm 4 returns w which is an ϵ-sparsifier of F with probability at least
1− δ.

Proof. We prove that for every S ⊆ E with high probability it holds that (1 − ϵ)F ′(S) ≤
F (S) ≤ (1 + ϵ)F ′(S).

168

Observe that by our choice of pi and wi we have E[F ′(S)] = F (S), for all subsets S ⊆ E.
Consider a subset Sk. Using Theorem 7.2.2, we have

P
[
|F ′(Sk)− E[F ′(Sk)]| ≥ ϵE[F ′(Sk)]

]
= P

[
|F ′(Sk)− F (Sk)| ≥ ϵF (Sk)

]
(7.3)

≤ 2 exp
(
−ϵ2F (Sk)

3a

)
(7.4)

where a = maxi wifi(Sk). We bound the right hand side of (7.4) by providing an upper
bound for a.

a = max
i

wifi(Sk) = max
i

fi(Sk)
κ · pi

= max
i

fi(Sk)
κ ·max

A⊆E
fi(A)
F (A)

(7.5)

≤ max
i

fi(Sk)
κ · fi(Sk)

F (Sk)

= F (Sk)
κ

(7.6)

Given the above upper bound for a and the inequality in (7.4) yields

P
[
|F ′(Sk)− F (Sk)| ≥ ϵF (Sk)

]
≤ 2 exp

(
−ϵ

2F (Sk)
3a

)

≤ 2 exp
(
− ϵ2F (Sk)

3F (Sk)/κ

)
= 2 exp

(
−κϵ2

3

)
.

Recall that κ = 3 log(2n+1/δ)/ϵ2. Hence, taking a union bound over all 2n possible subsets
yields that Algorithm 4 with probability at least 1−δ returns a spectral sparsifier for F .

Lemma 7.3.2. Algorithm 4 outputs an ϵ-sparsifier with the expected size O(B·n2

ϵ2).

Proof. In Algorithm 4, each wi is greater than zero with probability κi and it is zero with
probability 1− κi. Hence,

E[size(w)] =
∑
i∈D

κi ≤ κ
∑
i∈D

pi ≤ O
(
n

ϵ2

)∑
i∈D

pi (7.7)

It suffices to show an upper bound for ∑i∈D pi.

Claim 7.3.3.
∑
i∈D pi ≤ n ·maxi∈D |B(fi)| = n ·B.

Claim 7.3.3 and inequality (7.7) yield the desired bound.

169

Lemmas 7.3.1 and 7.3.2 proves the existence part of Theorem 7.1.2. That is, for every
ϵ, δ ∈ (0, 1), there exists an ϵ-sparsifier of size at most O(B·n2

ϵ2) with probability at least
1− δ.

Polynomial time algorithm. Observe that computing pi’s (7.2) may not be a polynomial-
time task in general. However, to guarantee that Algorithm 4 outputs an ϵ-sparsifier with
high probability it is sufficient to instantiate it with an upper bound for each pi (see proof
of Lemma 7.3.1). Fortunately, the result of [10] provides an algorithm to approximate the
ratio of two monotone submodular functions.

Theorem 7.3.4 ([10]). Let f and g be two monotone submodular functions. Then there
exists a polynomial-time algorithm that approximates maxS⊆E

f(S)
g(S) within O(

√
n log n) fac-

tor.

Hence, when all fi’s are monotone we can compute p̂i’s with pi ≤ p̂i ≤ O(
√
n log n)pi

in polynomial time which leads to a polynomial-time randomized algorithm that constructs
an ϵ-sparsifier of the expected size at most O(B·n2.5 logn

ϵ2). This proves the second part of
Theorem 7.1.2.

As we will see, in various applications, the expected size of the sparsifier is often much
better than the ones presented in this section. Also, we emphasize that once a sparsifier is
constructed it can be reused many times (possibly for maximization/minimization under
several different constraints). Hence computing or approximating pi’s should be regarded
as a preprocessing step, see Example 7.3.5 for a motivating example. Finally, it is straight-
forward to adapt our algorithm to sparsify decomposable submodular functions of the form∑
i∈D αifi, known as mixtures of submodular functions [11, 209].

Example 7.3.5 (Knapsack constraint). Consider the following optimization problem

max
S⊆I
{F (S) :

∑
i∈S

ci ≤ B} (7.8)

where I = {1, . . . , n}, B and ci, i ∈ I, are nonnegative integers. In scenarios where the
items costs ci or B are dynamically changing and F = ∑N

i=1 fi is decomposable, it is quite
advantageous to use our sparsification algorithm and reuse a sparsifier. That is, instead of
maximizing F whenever item costs or B are changed, we can maximize F ′, a sparsification
of F .

7.4 Constructing a sparsifier under constraints

Here we are interested in constructing a sparsifier for a decomposable submodular function
F while the goal is to optimize F subject to constraints. One of the most commonly used

170

Algorithm 5
Require: Submodular functions fi : {0, 1}E → R in dataset D, matroid M = (E, I), and

ϵ, δ ∈ (0, 1)
1: w ← 0
2: κ← 3 log(2nr+1/δ)/ϵ2, where r is the rank of M.
3: for fi in D do
4: pi ← maxA∈I fi(A)/F (A)
5: κi ← min{1, κ · pi}
6: wi ← 1/κi with probability κi ▷ do nothing with probability 1− κi
7: return w ∈ RD.

and general constraints are matroid constraints. That is, for a matroid M = (E, I), the
objective is finding S∗ = argmaxS⊆E,S∈I F (S).

In this setting it is sufficient to construct a sparsifier that approximates F only on
independent sets. It turns out that we can construct a smaller sparsifier than the one
constructed to approximate F everywhere. For each submodular function fi, let

pi = max
A∈I

fi(A)
F (A) . (7.9)

Other than different definition for pi’s and different κ, Algorithm 5 is the same as Algo-
rithm 4.

Theorem 7.4.1. Algorithm 5 returns a vector w with expected size at most O(B·r·n
ϵ2) such

that, with probability at least 1− δ, for F ′ = ∑
i∈D wifi we have

(1− ϵ)F ′(S) ≤ F (S) ≤ (1 + ϵ)F ′(S) ∀S ⊆M.

Theorem 7.4.1 proves the existence part of Theorem 7.1.4. Algorithm 5 can be turned
into a polynomial-time algorithm if one can approximate pi’s (7.9). By modifying the proof
of Theorem 7.3.4 we prove the following.

Theorem 7.4.2. Let f and g be two monotone submodular functions and M = (E, I) be a
matroid. Then there exists a polynomial-time algorithm that approximates maxS⊆E,S∈I

f(S)
g(S)

within O(
√
n log n) factor.

By this theorem, when all fis are monotone we can compute p̂i’s with pi ≤ p̂i ≤
O(
√
n log n)pi in polynomial time which leads to a polynomial-time randomized algorithm

that constructs an ϵ-sparsifier of the expected size at most O(B·r·n1.5 logn
ϵ2). This proves the

second part of Theorem 7.1.4.

171

Algorithm 6
Require: Submodular function F = ∑

i∈D
fi with each fi : {0, 1}E → R, constant k, and

ϵ, δ ∈ (0, 1)
1: Compute F ′ = ∑

i∈D wifi, an ϵ-sparsifier for F .
2: A← ∅.
3: while |A| ≤ k do
4: ai ← argmaxa∈E\A(F ′(A ∪ {a})− F ′(A)).
5: A← A ∪ {ai}.
6: return A.

7.5 Applications

7.5.1 Submodular function maximization with cardinality constraint

Our sparsification algorithm can be used as a preprocessing step and once a sparsifier
is constructed it can be reused many times (possibly for maximization/minimization un-
der several different constraints). To elaborate on this, we consider the problem of max-
imizing a submodular function subject to a cardinality constraint. That is finding S∗ =
argmaxS⊆E,|S|≤k F (S). Cardinality constraint is a special case of matroid constraint where
the independent sets are all subsets of size at most k and the rank of the matroid is k.
A celebrated result of [176] states that for non-negative monotone submodular functions a
simple greedy algorithm provides a solution with (1− 1/e) approximation guarantee to the
optimal (intractable) solution. For a ground set E of size n and a monotone submodular
function F = ∑

i∈D fi, this greedy algorithm needs O(knN) function evaluations to find S of
size k such that F (S) ≥ (1− 1/e)F (S∗). We refer to this algorithm as GreedyAlg. In many
applications where N ≫ n, having a sparsifier is beneficial. Applying GreedyAlg on an
ϵ-sparsifier of size O(Bkn/ϵ2) improves the number of function evaluations to O(Bk2n2/ϵ2)
and yields S of size k such that F (S) ≥ (1 − 1/e − ϵ)F (S∗) with high probability (see
Algorithm 6).

We point out that sampling techniques such as [172, 168] sample elements from the
ground set E rather than sampling from functions f1, . . . , fN . Hence their running time
depend on N , which could be slow when N is large — the regime we care about. Besides,
our algorithm can be used as a preprocessing step for these algorithms. For instance, the
lazier than lazy greedy algorithm [168] requires O(nN log 1

ϵ) function evaluations. However,
when N is much larger than n it is absolutely beneficial to use our sparsification algorithm
and reduce the number of submodular functions that one should consider.

7.5.2 Two well-known examples

Maximum Coverage problem. Let [N] be a universe and E = {S1, . . . , Sn} with each
Si ⊆ N be a family of sets. Given a positive integer k, in the Max Coverage problem the

172

objective is to select at most k of sets from E such that the maximum number of elements
are covered, i.e., the union of the selected sets has maximal size. One can formulate this
problem as follows. For every i ∈ [N] and A ⊆ [n] define fi(A) as

fi(A) =

1 if there exists a ∈ A such that i ∈ Sa,

0 otherwise.

Note that fi’s are monotone and submodular. Furthermore, define F : 2n → R+ to be
F (A) = ∑

i∈[N] fi(A) which is monotone and submodular as well. Now the Max Coverage
problem is equivalent to maxA⊆[n],|A|≤k F (A). For each submodular function fi, the corre-
sponding pi is

pi = max
A⊆[n],|A|≤k

fi(A)
F (A) = max

Sa∈E,i∈Sa

fi({a})
F ({a})

= max
Sa∈E,i∈Sa

1
F ({a}) = max

Sa∈E,i∈Sa

1
|Sa|

.

We can compute all the pi’s in O(∑ |Si|) time, which is the input size. Then we can construct
a sparsifier in O(N) time. In total, the time required for sparsification is O(∑ |Si|+N). On
the other hand, for this case we have

N∑
i=1

pi =
N∑
i=1

max
Sa∈S,i∈Sa

1
|Sa|

≤
n∑
i=1

|Si|
|Si|

= n.

By Lemma 7.3.2, this upper bound provides that our algorithm constructs an ϵ-sparsifier
of size at most O(kn/ϵ2). Algorithm 6 improves the running time of the GreedyAlg from
O(knN) to O(k2n2/ϵ2). Furthermore, Algorithm 6 returns a set A of size at most k such
that (1− 1/e− ϵ)OPT ≤ F (A). (OPT denotes F (S∗) where S∗ = argmaxS⊆E,|S|≤k F (S).)

Facility Location problem. Let I be a set of N clients and E be a set of facilities with
|E| = n. Let c : I × E → R be the cost of assigning a given client to a given facility. For
each client i and each subset of facilities A ⊆ E, define fi(A) = maxj∈A c(i, j). For any
non-empty subset A ⊆ E, the value of A is given by

F (A) =
∑
i∈I

fi(A) =
∑
i∈I

max
j∈A

c(i, j).

For completeness, we define F (∅) = 0. An instance of the Max Facility Location problem is
specified by a tuple (I, E, c). The objective is to choose a subset A ⊆ E of size at most k

173

maximizing F (A). For each submodular function fi, the corresponding pi is

pi = max
A⊆E,|A|≤k

fi(A)
F (A) = max

A⊆E,|A|≤k

max
j∈A

c(i, j)

F (A) = max
j∈E

c(i, j)
F ({j})

It is clear that pi’s can be computed in O(|I| · |E|) time, which is the input size. In this
case, we have

∑
i∈I

pi =
∑
i∈I

max
j∈E

c(i, j)
F ({j}) ≤

|E|∑
j=1

∑
i∈I

c(i, j)

F ({j}) =
|E|∑
j=1

F ({j})
F ({j})

= |E| = n.

Hence, by Lemma 7.3.2, our algorithm construct a sparsifier of size O(kn/ϵ2). Algorithm 6
improves the running time of the GreedyAlg from O(knN) to in O(k2n2/ϵ2). Furthermore,
Algorithm 6 returns a set A of size at most k such that (1− 1/e− ϵ)OPT ≤ F (A).

Remark 7.5.1. [153] sparsify an instance of the Facility Location problem by zeroing out
entries in the cost matrix — this is not applicable to the general setting. The runtime of
the GreedyAlg applied on their sparsified instance is O(nN/ϵ). This runtime is huge when
N is large — the regime we care about. Moreover, we can first construct our sparsifier and
apply the algorithm of [153] on it.

7.5.3 Submodular function minimization

Besides the applications regarding submodular maximization, our sparsification algorithm
can be used as a preprocessing step for submodular minimization as well. In many applica-
tions of the submodular minimization problem such as image segmentation [198], Markov
random field inference [83, 134, 215], hypergraph cuts [214], covering functions [203], the
submodular function at hand is a decomposable submodular function. Many of recent ad-
vances on decomposable submodular minimization such as [73, 8] have leveraged a mix of
ideas coming from both discrete and continuous optimization. Here we discuss that our
sparsifying algorithm approximates the so called Lovász extension, a natural extension of a
submodular function to the continuous domain [0, 1]n.

Lovász extension. Let x ∈ [0, 1]n be the vector (x1,x2, . . . ,xn). Let π : [n] → [n] be a
sorting permutation of x1,x2, . . . ,xn, which means if π(i) = j, then xj is the i-th largest
element in the vector x. Hence, 1 ≥ xπ(1) ≥ · · · ≥ xπ(n) ≥ 0. Let xπ(0) = 1 and xπ(n+1) = 0.
Define sets Sπ0 = ∅ and Sπi = {π(1), . . . , π(i)}. The Lovász extension of f is defined as follows
fL(x) = ∑n

i=0(xπ(i) − xπ(i+1))f(Sπi). It is well-known that fL(x) = maxy∈B(f)⟨y,x⟩.

174

For a decomposable submodular function F = ∑
i∈D fi, its Lovász extension is

FL(x) =
n∑
j=0

∑
i∈D

(xπ(j) − xπ(j+1))fi(Sπj).

Recall the definition of pi’s (7.2), they can be expressed in an equivalent way in terms of
permutations as follow

pi = max
A⊆E

fi(A)
F (A) = max

π
max
j∈[n]

fi(Sπj)
F (Sπj) . (7.10)

Furthermore, note that FL(x) is a linear combination of F (S), S ⊆ E. Given these, we
prove Algorithm 4 outputs a sparsifier that not only approximates the function itself but
also approximates its Lovász extension.

Theorem 7.5.2. Algorithm 4 returns a vector w with expected size at most O(B·n2

ϵ2) such
that, with probability at least 1− δ, for F ′ = ∑

i∈D wifi it holds that

(1− ϵ)F ′L(x) ≤ FL(x) ≤ (1 + ϵ)F ′L(x) ∀x ∈ [0, 1]n.

Remark 7.5.3 (Relation to spectral sparsification of graphs). The cut function of a graph
G = (V,E) can be seen as a decomposable submodular function F (S) = ∑

e∈E fe, where
fe(S) = 1 if and only if e∩ S ̸= ∅ and e∩ (V \ S) ̸= ∅. The goal of spectral sparsification of
graphs [201] is to preserve the quadratic form of the Laplacian of G, which can be rephrased
as
∑
e∈E f

L
e (x)2. In contrast, our sparsification preserves FL(x) = ∑

e∈E f
L
e (x). Although

we can construct a sparsifier that preserves
∑
e∈E f

L
e (x)2 in the general submodular setting,

we adopted the one used here because, in many applications where submodular functions are
involved, we are more interested in the value of

∑
e∈E f

L
e (x) than

∑
e∈E f

L
e (x)2, and the

algorithm for preserving the former is simpler than that for preserving the latter.

Because our algorithm gives an approximation on the Lovász extension, it can be used
as a preprocessing step for algorithms working on Lovász extensions such as the ones in
[8, 73]. For instance, it improves the running time of [8] from Õ(Tmaxflow(n, n+N) log 1

ϵ) to
Õ(Tmaxflow(n, n + n2

ϵ2) log 1
ϵ) in cases where each submodular function fi ∈ D acts on O(1)

elements of the ground set which implies B = maxi |B(fi)| is O(1). An example of such
cases is hypergraph cut functions with O(1) sized hyperedges.

Next we discuss several examples for which computing pi’s is a computationally efficient
task, thus achieving a polynomial-time algorithm to construct sparsifiers. Recall that the
cut function of a graph G = (V,E) can be seen as a decomposable submodular function. In
this case, computing each pe for an edge e = st ∈ E is equivalent to finding the minimum
s-t cut in the graph, which is a polynomial time task. A more general framework is the
submodular hypergraph minimum s-t cut problem discussed in what follows.

175

Submodular hypergraphs [151, 221]. Let H be a hypergraph with vertex set V and
set of hyperedges E where each hyperedge is a subset of vertices V . A submodular function
fe is associated to each hyperedge e ∈ E. In the submodular hypergraph minimum s-t cut
problem the objective is

minimizeS⊂V
∑
e∈E

fe(e ∩ S) (7.11)

subject to s ∈ S, t ∈ V \ S. This problem has been studied by [213] and its special cases
where submodular functions fe take particular forms have been studied with applications
in semi-supervised learning, clustering, and rank learning (see [151, 213] for more details).
Examples of such special cases include:

• Linear penalty: fe(S) = min{|S|, |e \ S|}

• Quadratic Penalty: fe(S) = |S| · |e \ S|

We refer to Table 1 in [213] for more examples. These examples are cardinality-based, that
is, the value of the submodular function depends on the cardinality of the input set (see
Definition 3.2 of [213]). It is known that if all the submodular functions are cardinality-
based, then computing the s-t minimum cut in the submodular hypergraph can be reduced
to that in an auxiliary (ordinary) graph (Theorem 4.6 of [213]), which allows us to compute
pe’s in polynomial time.

Remark 7.5.4. Our sparsification algorithm can also be used to construct submodular
Laplacian based on the Lovász extension of submodular functions. Submodular Laplacian
was introduced by [221] and has numerous applications in machine learning, including in
learning ranking data, clustering based on network motifs [150], network analysis [220], and
etc.

7.6 Experimental results

In this section, we empirically demonstrate that our algorithm (Algorithm 5) generates a
sparse representation of a decomposable submodular function F : 2E → R+ with which we
can efficiently obtain a high-quality solution for maximizing F . We consider the following
two settings.

Uber pickup. We used a database of Uber pickups in New York city in May 2014
consisting of a set R of 564,517 records1. Each record has a pickup position, longitude and
latitude. Consider selecting k locations as waiting spots for idle Uber drivers. To formalize
this problem, we selected a set L of 36 popular pickup locations in the database, and

1Available at https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

176

https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city

2 4 6 8 10 12 14 16
k

0.9982

0.9985

0.9988

0.9990

0.9992

0.9995

0.9998

1.0000
Re

la
tiv

e
pe

rfo
rm

an
ce

ε= 0.1
ε= 0.5
ε= 1
ε= 2
ε= 4

2 4 6 8 10 12 14 16
k

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

pe
rfo

rm
an

ce

ε= 0.1
ε= 0.5
ε= 1
ε= 2
ε= 4

(a) Uber pickup (b) Discogs

Figure 7.1: Relative performance of the greedy method on sparsifiers.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
ε

10−2

10−1

100

Re
la

tiv
e

siz
e

10−2

10−1

100

Re
la

tiv
e

ru
nt

im
e

Discogs (size)
Uber pickup (size)
Discogs (runtime)
Uber pickup (runtime)

Figure 7.2: Relative size of sparsifiers and relative runtime of the greedy method on sparsi-
fiers.

constructed a facility location function F : 2L → R+ as F (S) = ∑
v∈R fv(S), where fv(S) =

maxu∈L d(u, v) − minu∈S d(u, v) and d(u, v) is the Manhattan distance between u and v.
Then, the goal of the problem is to maximize F (S) subject to |S| ≤ k.

Discogs [143]. This dataset provides information about audio records as a bipartite
graph G = (L,R;E), where each edge (u, v) ∈ L× R indicates that a label v was involved
in the production of a release of a style u. We have |L| = 383 and |R| = 243, 764, and |E| =
5, 255, 950. Consider selecting k styles that cover the activity of as many labels as possible.
To formalize this problem, we constructed a maximum coverage function F : 2L → R as
F (S) = ∑

v∈R fv(S), where fv(S) is 1 if v has a neighbor in S and 0 otherwise. Then, the
goal is to maximize F (S) subject to |S| ≤ k.

Figure 7.1 shows the objective value of the solution obtained by the greedy method
on the sparsifier relative to that on the original input function with its 25th and 75th

177

percentiles. Although our theoretical results do not give any guarantee when ϵ > 1, we tried
constructing our sparsifier with ϵ > 1 to see its performance. The solution quality of our
sparsifier for Uber pickup is more than 99.9% even when ϵ = 4, and that for Discogs is
more than 90% performance when ϵ ≤ 1.0. The performance for Uber pickup is higher than
that for Discogs because the objective function of the former saturates easily. These results
suggest that we get a reasonably good solution quality by setting ϵ = 1.

Number of functions and speedups. Figure 7.2 shows the size, that is, the number of
functions with positive weights, of our sparsifier relative to that of the original function and
the runtime of the greedy method on the sparsifier relative to that on the original function
with their 25th and 75th percentiles when k = 8. The size and runtime are decreased by
a factor of 30–50 when ϵ = 1. To summarize, our experimental results suggest that our
sparsifier highly compresses the original function without sacrificing the solution quality.

178

7.7 Missing proofs

7.7.1 Proof of Claim 7.3.3

Proof.

∑
i∈D

pi =
∑
i∈D

max
A⊆E

fi(A)
F (A) =

∑
i∈D

max
A⊆E

fi(A)∑
j∈D

fj(A)

=
∑
i∈D

max
A⊆E

max
y∈B(fi)

⟨y,1A⟩∑
j∈D

max
y∈B(fj)

⟨y,1A⟩

≤
∑
i∈D

max
A⊆E

∑
y∈B(fi)

⟨y,1A⟩∑
j∈D

1
|B(fj)|

∑
y∈B(fj)

⟨y,1A⟩

≤
∑
i∈D

max
A⊆E

max
e∈A

∑
y∈B(fi)

y(e)∑
j∈D

1
|B(fj)|

∑
y∈B(fj)

y(e)

=
∑
i∈D

max
e∈E

∑
y∈B(fi)

y(e)∑
j∈D

1
|B(fj)|

∑
y∈B(fj)

y(e)

≤
∑
i∈D

∑
e∈E

∑
y∈B(fi)

y(e)∑
j∈D

1
|B(fj)|

∑
y∈B(fj)

y(e)

=
∑
e∈E

∑
i∈D

∑
y∈B(fi)

y(e)∑
j∈D

1
|B(fj)|

∑
y∈B(fj)

y(e)

≤
∑
e∈E

max
j∈D
|B(fj)|

∑
i∈D

∑
y∈B(fi)

y(e)∑
j∈D

∑
y∈B(fj)

y(e)

≤
∑
e∈E

max
j∈D
|B(fj)|

∑
i∈D

∑
y∈B(fi)

y(e)∑
j∈D

∑
y∈B(fj)

y(e)

=
∑
e∈E

max
j∈D
|B(fj)| = n · (max

j∈D
|B(fj)|).

7.7.2 Proof of Theorem 7.4.1

Proof. The proof is almost identical to the proof of Lemma 7.3.1. We prove that for every
S ∈ I with high probability it holds that (1 − ϵ)F ′(S) ≤ FL(S) ≤ (1 + ϵ)F ′(S). Observe

179

that by our choice of pi and wi we have E[F ′(S)] = F (S), for all subsets S ∈M. Consider
a subset Sk. Using Theorem 7.2.2, we have

P
[
|F ′(Sk)− E[F ′(Sk)]| ≥ ϵE[F ′(Sk)]

]
(7.12)

= P
[
|F ′(Sk)− F (Sk)| ≥ ϵF (Sk)

]
(7.13)

≤ 2 exp
(
−ϵ2F (Sk)

3a

)
(7.14)

where a = maxi wifi(Sk). We bound the right hand side of (7.14) by providing an upper
bound for a.

a = max
i

wifi(Sk) = max
i

fi(Sk)
κ · pi

= max
i

fi(Sk)
κ ·max

A∈I
fi(A)
F (A)

≤ max
i

fi(Sk)
κ · fi(Sk)

F (Sk)

= F (Sk)
κ

.

Given the above upper bound for a and the inequality in (7.14) yields

P
[
|F ′(Sk)− F (Sk)| ≥ ϵF (Sk)

]
≤ 2 exp

(
−ϵ

2F (Sk)
3a

)

≤ 2 exp
(
− ϵ2F (Sk)

3F (Sk)/κ

)
= 2 exp

(
−κϵ2

3

)

Recall that κ = 3 log(2nr+1/δ)/ϵ2. Note that there are at most nr sets in a matroid of rank
r. Taking a union bound over all nr subsets yields that Algorithm 5 with probability at
least 1− δ returns a sparsifier for F over the matroid. Similar to Lemma 7.3.2, ∑i∈D pi ≤
n · (maxi∈D |B(fi)|), and having κ = 3 log(2nr+1/δ)/ϵ2 gives

E[size(w)] ≤
∑
i

κpi ≤ O
(
rn

ϵ2
·max
i∈D
|B(fi)|

)
.

7.7.3 Proof of Theorem 7.4.2

Proof. The proof is almost the same as that of Theorem 3.5 (Theorem 3.5 in [10]). Therefore,
we only explain modifications we need to handle a matroid constraint.

In the algorithm used in Theorem 3.5, given a monotone modular function f : 2E → R+,
a monotone submodular function g : 2E → R+, and a threshold c ∈ R+, we iteratively solve

180

the following problem:

minimize f(X),
subject to g(X) ≥ c.

(7.15)

We say that an algorithm for solving (7.15) a (σ, ρ)-bicriterion algorithm if it outputs X ⊆ E
such that f(X) ≤ σf(X∗) and g(X) ≥ ρc, where X∗ is the optimal solution. It is shown
in [10] that a (σ, ρ)-bicriterion algorithm for constant σ and ρ leads to an O(

√
n log n)-

approximation algorithm for maximizing g(X)/f(X).
If we have an additional matroid constraintM = (E, I), we need a bicriterion algorithm

for the following problem:

minimize f(X),
subject to g(X) ≥ c,

X ∈ I.
(7.16)

To solve (7.16), we consider the following problem.

maximize g(X),
subject to f(X) ≤ d,

X ∈ I.
(7.17)

This problem is a monotone submodular function maximization problem subject to an
intersection of a matroid constraint and a knapsack constraint (recall that f is modular),
and is known to admit α-approximation for some constant α [51]. Then by computing an
α-approximate solution X for every d of the form 2i, and take the minimum d such that
g(X) ≥ α · c, we obtain a (1, α)-bicriterion approximation to (7.16), as desired.

7.7.4 Proof of Theorem 7.5.2

Proof. It follows from the fact that FL(x) is a linear combination of F (S), S ⊆ E. More
precisely, for a decomposable submodular function F = ∑

i∈D fi, its Lovász extension is

FL(x) =
n∑
j=0

∑
i∈D

(xπ(j) − xπ(j+1))fi(Sπj) (7.18)

=
n∑
j=0

(xπ(j) − xπ(j+1))
∑
i∈D

fi(Sπj) (7.19)

=
n∑
j=0

(xπ(j) − xπ(j+1))F (Sπj) (7.20)

Now since our sparsifier approximates F (S) for all subsets S ⊆ E we have

181

(1− ϵ)F ′(Sπj) ≤ F (Sπj) ≤ (1 + ϵ)F ′(Sπj) 0 ≤ j ≤ n (7.21)

Finally, (7.20) and (7.21) yield the following

(1− ϵ)F ′L(w) ≤ FL(x) ≤ (1 + ϵ)F ′L(x) ∀x ∈ [0, 1]n.

182

Chapter 8

Submodular optimization under
privacy

8.1 Introduction

The need for efficient optimization methods that guarantee the privacy of individuals is wide-
spread across many applications concerning sensitive data about individuals, e.g., medical
data, web search query data, salary data, social networks. Let us motivate privacy concerns
by an example.

Example 8.1.1 (Feature Selection [138, 171]). A sensitive dataset D = {(xi, Ci)}ni=1 consists
of a feature vector xi = (xi(1), . . . ,xi(m)) associated to each individual i together with a
binary class label Ci. The objective is to select a small (e.g., size at most k) subset S ⊆ [m]
of features that can provide a good classifier for C. One particular example for this setting
is determining collection of features such as height, weight, and age that are most relevant
in predicting if an individual is likely to have a particular disease such as diabetes and HIV.
One approach to address the feature selection problem, due to [138], is based on maximizing
a submodular function which captures the mutual information between a subset of features
and the class label of interest. Here, it is important that the selection of relevant features
does not compromise the privacy of any individual who has contributed to the training
dataset.

Differential privacy is a rigorous notion of privacy that allows statistical analysis of sen-
sitive data while providing strong privacy guarantees. Basically, differential privacy requires
that computations be insensitive to changes in any particular individual’s record. A dataset
is a collection of records from some domain, and two datasets are neighboring if they differ
in a single record. Simply put, the requirement for differential privacy is that the compu-
tation behaves nearly identically on two neighboring datasets; Formally, for ϵ, δ ∈ R+, we
say that a randomized computation M is (ϵ, δ)-differentially private if for any neighboring

183

datasets D ∼ D′, and for any set of outcomes S ⊆ range(M),

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ.

When δ = 0, we say M is ϵ-differentially private. Differentially private algorithms must be
calibrated to the sensitivity of the function of interest with respect to small changes in the
input dataset.

In this chapter we consider designing a differentially private algorithm for maximiz-
ing nonnegative and monotone submodular functions in low-sensitivity regime. Whilst, a
cardinality constraint (as in Example 8.1.1) is a natural one to place on a submodular
maximization problem, many other problems, e.g., personalized data summarization [170],
require the use of more general types of constraints, i.e., matroid constraints. The problem
of maximizing a submodular function under a matroid constraint is a classical problem [70],
with many important special cases, e.g., uniform matroid (the subset selection problem, see
Example 8.1.1), partition matroid (submodular welfare/partition problem). We consider the
following.

Problem 8.1.2. Given a sensitive dataset D associated to a monotone submodular func-
tion FD : 2E → R+ and a matroid M = (E, I). Find a subset S ∈ I that approximately
maximizes FD in a manner that guarantees differential privacy with respect to the input
dataset D.

Furthermore, we consider a natural generalization of submodular functions, namely,
k-submodular functions. k-submodular function maximization allows for a richer problem
structure than submodular maximization. For instance, coupled feature selection [199], sen-
sor placement with k kinds of measures [179], and influence maximization with k topics can
be expressed as k-submodular function maximization problems. To motivate the privacy
concerns, consider the next example. More examples are given in Section 8.5.2.

Example 8.1.3 (Influence Maximization with k Topics). For k topics, a sensitive dataset
is a directed graph G = (V,E) with an edge probability piu,v for each edge (u, v) ∈ E,
representing the strength of influence from u to v on the i-th topic. The goal is to distribute
these topics to N vertices of the graph so that we maximize influence spread. The problem
of maximizing influence spread can be formulated as k-submodular function maximization
problem [179]. An example for this setting is in viral marketing where dataset consists of a
directed graph where each vertex represents a user and each edge represents the friendship
between a pair of users. Given k kinds of products, the objective is to promote products
by giving (discounted) items to a selected group of influential people in the hope that large
number of product adoptions will occur. Here, besides maximizing the influence spread, it
is important to preserve the privacy of individuals in the dataset.

184

Problem 8.1.4. Given a sensitive dataset D associated to a monotone k-submodular func-
tion FD : (k+1)E → R+ and a matroidM = (E, I). Find S = (S1, . . . , Sk) with

⋃
i∈[k] Si ∈ I

that approximately maximizes FD in a manner that guarantees differential privacy with re-
spect to the input dataset D.

8.1.1 Overview of our contributions

Submodular Maximization: For maximizing a nonnegative monotone submodular func-
tion subject to a matroid constraint, we show that a modification of the continuous greedy
algorithm [48] yields a good approximation guarantee as well as a good privacy guaran-
tee. Following the same idea, we maximize the so-called multilinear extension of the input
submodular function in the corresponding matroid polytope, denoted by P(M). However,
in order to greedily choose a direction, it requires to have a discretization of the matroid
polytope. Fortunately, due to [221], an efficient discretization can be achieved. That is, we
can cover a polytope with a small number of balls in polynomial time. Having these in
hand, we prove the following.

Theorem 8.1.5. Suppose FD is monotone with sensitivity ∆ and M = (E, I) is a ma-
troid. For every ϵ > 0, there is an (ϵr(M)2)-differentailly private algorithm that, with high
probability, returns S ∈ I with quality at least (1− 1

e)OPT −O
(√

ϵ+ ∆r(M)|E| ln |E|
ϵ3

)
.

For covering C of P(M), the algorithm in Theorem 8.1.5 makes O(r(M)|E||C|) queries
to the evaluation oracle. We point out that C has a size of roughly |E|1/ϵ2 . In Section 8.4,
we present an algorithm that makes significantly fewer queries to the evaluation oracle.

Theorem 8.1.6. Suppose FD is monotone and has sensitivity ∆ and M = (E, I) is a
matroid. For every ϵ > 0, there is an (ϵr(M)2)-differentailly private algorithm that, with
high probability, returns S ∈ I with quality at least (1− 1

e)OPT−O
(√

ϵ+ ∆r(M)|E| ln(|E|/ϵ)
ϵ3

)
.

Moreover, this algorithm makes at most O(r(M)|E|2 ln |E|
ϵ) queries to the evaluation oracle.

k-submodular Maximization: To the best of our knowledge, there is no algorithm for
maximizing k-submodular functions concerning differential privacy. We study Problem 8.1.4
in Section 8.5. First, we discuss an (ϵr(M))-differentially private algorithm that uses the
evaluation oracle at most O(kr(M)|E|) times and outputs a solution with quality at least
1/2 of the optimal one.

Theorem 8.1.7. Suppose FD : (k + 1)E → R+ is monotone and has sensitivity ∆. For
any ϵ > 0, there is an O(ϵr(M))-differentially private algorithm that, with high probability,
returns a solution X = (X1, . . . , Xk) ∈ (k + 1)E with

⋃
i∈[k]Xi ∈ I and FD(X) ≥ 1

2OPT−
O(∆r(M) ln |E|

ϵ) by evaluating FD at most O(kr(M)|E|) times.

This 1/2 approximation ratio is asymptotically tight due to the hardness result in [119].
Applying a sampling technique [168, 171, 179], we propose an algorithm that preserves the

185

same privacy guarantee and the same quality as before while evaluating FD almost linear
number of times, namely O

(
k|E| ln r(M) ln r(M)

γ

)
. Here, γ is the failure probability of our

algorithm.

8.1.2 Related work

Gupta et al. [94] considered an important case of Problem 8.1.2 called the Combinato-
rial Public Projects (CPP problem). The CPP problem was introduced by Papadimitriou,
Schapira, and Singer [180] and is as follows. For a data set D = (x1, . . . , xn), each individual
xi submits a private non-decreasing and submodular valuation function Fxi : 2E → [0, 1].
Our goal is to select a subset S ⊆ E of size k to maximize function FD that takes the par-
ticular form FD(S) = 1

n

n∑
i=1

Fxi(S). Note that in this setting, the sensitivity can be always

bounded from above by 1
n . Gupta et al. showed the following.

Theorem 8.1.8 ([94]). For any δ ≤ 1/2, there is an (ϵ, δ)-differentially private algorithm
for the CPP problem under cardinality constraint that, with high probability, returns a so-
lution S ⊆ E of size k with quality at least (1− 1

e)OPT−O(k ln (e/δ) ln |E|
ϵ).

There are many cases which do not fall into the CPP framework. For some problems, in-
cluding feature selection via mutual information (Example 8.1.1), the submodular function
FD of interest depends on the dataset D in ways much more complicated than averaging
functions associated to each individual. Unfortunately, the privacy analysis of Theorem 8.1.8
heavily relies on the assumption that the input function FD = 1

n

∑n
i=1 Fxi(S) is the aver-

age of Fxi ’s, and does not directly generalize to arbitrary submodular functions. Using a
composition theorem for differentially private mechanisms, Mitrovic et al. [171] proved the
following

Theorem 8.1.9 ([171]). Suppose FD is monotone and has sensitivity ∆. For any ϵ > 0,
there is a (kϵ)-differentially private algorithm that, with high probability, returns S ⊆ E of
size k with quality at least

(
1− 1

e

)
OPT−O

(
∆k ln |E|

ϵ

)
.

In the same work [171], authors considered matroid constraints and more generally p-
extendable constraints.

Theorem 8.1.10 ([171]). Suppose FD is monotone with sensitivity ∆ and let M = (E, I)
be a matroid. Then for any ϵ > 0, there is an (ϵr(M))-differentially private algorithm that,
with high probability, returns a solution S ∈ I with quality at least 1

2OPT−O
(

∆r(M) ln |E|
ϵ

)
.

k-submodular Maximization: The terminology for k-submodular functions was first in-
troduced in [117] while the concept has been studied previously in [54]. Note for k = 1 the
notion of k-submodularity is the same as submodularity. For k = 2, this notion is known
as bisubmodularity. Bisubmodularity arises in bicooperative games [27] as well as variants

186

of sensor placement problems and coupled feature selection problems [199]. For uncon-
strained nonnegative k-submodular maximization, [217] proposed a max{1/3, 1/(1 + a)}-
approximation algorithm where a = max{1,

√
(k − 1)/4}. The approximation ratio was

improved to 1/2 in [119]. They also provided k/(2k − 1)-approximation for maximiza-
tion of monotone k-submodular functions. The problem of maximizing a monotone k-
submodular function was considered in [179] subject to different constraints. They gave
a 1/2-approximation algorithm for total size constraint, i.e., |⋃i∈[k]Xi| ≤ N , and 1/3-
approximation algorithm for individual size constraints, i.e., |Xi| ≤ Ni for i = 1, . . . , k. [195]
proved that 1/2-approximation can be achieved for matroid constraint, i.e., ⋃i∈[k]Xi ∈ I.

8.2 Preliminaries

Multilinear extension. The multilinear extension f : [0, 1]E → R of a set function
F : 2E → R is

f(x) =
∑
S⊆E

F (S)
∏
e∈S

x(e)
∏
e ̸∈S

(1− x(e)).

There is a probabilistic interpretation of the multilinear extension. Given x ∈ [0, 1]E we
can define X to be the random subset of E in which each element e ∈ E is included
independently with probability x(e) and is not included with probability 1−x(e). We write
X ∼ x to denote that X is a random subset sampled this way from x. Then we can simply
write f as

f(x) = EX∼x[F (X)].

Observe that for all S ⊆ E we have f(1S) = F (S). The following is well known:

Proposition 8.2.1 ([48]). Let f : [0, 1]E → R be the multilinear extension of a monotone
submodular function F : 2E → R. Then

1. f is monotone, meaning ∂f
∂x(e) ≥ 0. Hence, ∇f(x) = (∂f

∂x(1) , . . . ,
∂f

∂x(n)) is a nonnegative
vector.

2. f is concave along any direction d ≥ 0.

k-submodular functions. Given a natural number k ≥ 1, a function F : (k+ 1)E → R+

defined on k-tuples of pairwise disjoint subsets of E is called k-submodular if for all k-tuples
S = (S1, . . . , Sk) and T = (T1, . . . , Tk) of pairwise disjoint subsets of E,

F (S) + F (T) ≥ F (S ⊓ T) + F (S ⊔ T),

187

where we define

S ⊓ T = (S1 ∩ T1, . . . , Sk ∩ Tk),

S ⊔ T =
(

(S1 ∪ T1) \
(⋃
i ̸=1

Si ∪ Ti

)
, . . . , (Sk ∪ Tk) \

(⋃
i ̸=k

Si ∪ Ti

))
.

Matroids polytopes and coverings. Recall that a pair M = (E, I) of a set E and
I ⊆ 2E is called a matroid if

1) ∅ ∈ I,

2) A ∈ I for any A ⊆ B ∈ I, and

3) for any A,B ∈ I with |A| < |B|, there exists e ∈ B \A such that A ∪ {e} ∈ I.

We call a set in I an independent set. The rank function rM : 2E → Z+ of M is

rM(S) = max{|I| : I ⊆ S, I ∈ I}.

An independent set S ∈ I is called a base if rM(S) = rM(E). We denote the set of
all bases by B and rank of M by r(M). The matroid polytope P(M) ⊆ RE of M is
P(M) = conv{1I : I ∈ I}, where conv denotes the convex hull. Or equivalently [71],

P(M) = {x ≥ 0 : x(S) ≤ rM(S) ∀S ⊆ E} .

Note that the matroid polytope is down-monotone, that is, for any x,y ∈ RE with 0 ≤ x ≤ y
and y ∈ P(M) then x ∈ P(M).

Definition 8.2.2 (ρ-covering). Let K ⊆ RE be a set. For ρ > 0, a set C ⊆ K of points is
called a ρ-covering of K if for any x ∈ K, there exists y ∈ C such that ∥x− y∥ ≤ ρ.

Theorem 8.2.3 (Theorem 5.5 of [221], paraphrased). Let M = (E, I) be a matroid. For
every ϵ > 0, we can construct an ϵB-cover C of P(M) of size |E|O(1/ϵ2) in |E|O(1/ϵ2) time,
where B is the maximum ℓ2-norm of a point in P(M).

8.2.1 Differential privacy

The definition of differential privacy relies on the notion of neighboring datasets. Recall
that two datasets are neighboring if they differ in a single record. When two datasets D,D′

are neighboring, we write D ∼ D′.

Definition 8.2.4 ([66]). For ϵ, δ ∈ R+, we say that a randomized computation M is (ϵ, δ)-
differentially private if for any neighboring datasets D ∼ D′, and for any set of outcomes
S ⊆ range(M),

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ.

188

When δ = 0, we say M is ϵ-differentially private.

In our case, a dataset D consists of private submodular functions F1, . . . , Fn : 2E →
[0, 1]. Two datasets D and D′ are neighboring if all but one submodular function in those
datasets are equal. The submodular function FD depends on the dataset D in different
ways, for example FD(S) =

n∑
i=1

Fi(S)/n (CPP problem), or much more complicated ways
than averaging functions associated to each individual.

Differentially private algorithms must be calibrated to the sensitivity of the function of
interest with respect to small changes in the input dataset, defined formally as follows.

Definition 8.2.5. The sensitivity of a function FD : X → Y , parameterized by a dataset
D, is defined as

max
D′:D′∼D

max
x∈X
|FD(x)− FD′(x)|.

A function with sensitivity ∆ is called ∆-sensitive.

Composition of differential privacy. Let {(ϵi, δi)}ki=1 be a sequence of privacy param-
eters and let M∗ be a mechanism that behaves as follows on an input D. In each of rounds
i = 1, . . . , k, the algorithm M∗ selects an (ϵi, δi)-differentially private algorithm Mi possibly
depending on the previous outcomes M1(D), . . . ,Mi(D) (but not directly on the sensitive
dataset D itself), and releases Mi(D). The output of M∗ is informally referred as the k-
fold adaptive composition of (ϵi, δi)-differentially private algorithms. For a formal treatment
of adaptive composition, see [68, 69]. We have the following guarantee on the differential
privacy of the composite algorithm.

Theorem 8.2.6. [44, 67, 69] The k-fold adaptive composition of k (ϵi, δi)-differentially
private algorithms, with ϵi ≤ ϵ0 and δi ≤ δ0 for every 1 ≤ i ≤ k, satisfies (ϵ, δ)-differential
privacy where

• ϵ = kϵ0 and δ = kδ0 (the basic composition), or

• ϵ = 1
2kϵ

2
0 +

√
2 ln 1/δ′ϵ0 and δ = δ′ + kδ for any δ′ > 0 (the advanced composition).

Exponential Mechanism. One particularly general tool that we will use is the exponen-
tial mechanism of [166]. The exponential mechanism is defined in terms of a quality function
qD : R → R, which is parameterized by a dataset D and maps a candidate result R ∈ R to
a real-valued score.

Definition 8.2.7 ([166]). Let ϵ,∆ > 0 and let qD : R → R be a quality score. Then,
the exponential mechanism EM(ϵ,∆, qD) outputs R ∈ R with probability proportional to
exp

(
ϵ

2∆ · qD(R)
)
.

189

Theorem 8.2.8 ([166]). Suppose that the quality score qD : R → R is ∆-sensitive. Then,
EM(ϵ,∆, qD) is ϵ-differentially private, and for every β ∈ (0, 1) outputs R ∈ R with

Pr
[
qD(R) ≥ max

R′∈R
qD(R′)− 2∆

ϵ
ln
(|R|
β

)]
≥ 1− β.

8.2.2 Probability distributions

Let P be a probability distribution over a finite set E. For an element e ∈ E, we write P (e)
to denote the probability that e is sampled from P .

Let P and Q be two distributions over the same set E. The total variation distance and
the Hellinger distance between P and Q are

dTV(P,Q) = 1
2
∑
e∈E
|P (e)−Q(e)| and

h(P,Q) = 1√
2

√√√√∑
e∈E

(√
P (e)−

√
Q(e)

)2
,

respectively. It is well known that dTV(P,Q) ≤
√

2h(P,Q) holds.
For two distributions P and Q, we denote by P ⊗ Q their product distribution. The

following is well known:

Lemma 8.2.9. Let P1, . . . , Pn and Q1, . . . , Qn be probability distributions over E. Then,
we have

h(P1 ⊗ P2 ⊗ · · · ⊗ Pn, Q1 ⊗Q2 ⊗ · · · ⊗Qn)2 ≤
n∑
i=1

h(Pi, Qi)2.

Finally, we use the following result due to Hoeffding in order to bound the error of our
sampling step in Section 8.4.

Theorem 8.2.10 (Hoeffding’s inequality [115]). Let X1, . . . , Xn be independent random
variables bounded by the interval [0, 1] : 0 ≤ Xi ≤ 1. We define the empirical mean of these
variables by X̄ = 1

n(X1 + · · ·+Xn). Then

Pr[X̄ − E[X̄] ≥ t] ≤ exp(−2nt2).

8.3 Differentially private continuous greedy algorithm

In this section we prove Theorem 8.1.5. Throughout this section, we fix (private) monotone
submodular functions F1, . . . , Fn : 2E → [0, 1], ϵ, δ > 0, and a matroid M = (E, I).

Let x∗ ∈ P(M) be a maximizer of fD. We drop the subscript D when it is clear
from the context. Our algorithm (Algorithm 7) is a modification of the continuous greedy
algorithm [48].

190

Algorithm 7 Differentially Private Continuous Greedy
1: Input: Submodular function FD : 2E → [0, 1], dataset D, matroid M = (E, I), and
ϵ > 0 and ρ ≥ 0.

2: Let Cρ be a ρ-covering of P(M), and fD be the multilinear extension of FD.
3: x0 ← 0, ϵ′ ← ϵ

2∆ .
4: α← 1

T , where T = r(M).
5: for t = 1 to T do
6: Sample y ∈ Cρ with probability proportional to exp

(
ϵ′⟨y,∇fD(xt−1)⟩

)
.

7: Let yt−1 be the sampled vector.
8: xt ← xt−1 + αyt−1.
9: Output: xT

8.3.1 Approximation guarantee

Lemma 8.3.1. For every x,v ∈ [0, 1]E with ∥v∥2 ≤ ρ and x + v ∈ [0, 1]E, we have
|f(x)− f(x + v)| ≤ 4 4

√
|E|√ρ.

Lemma 8.3.2. Suppose y ∈ [0, 1]E satisfies ∥y − x∗∥2 ≤ ρ. Then for any x ∈ [0, 1]E, we
have ⟨y,∇f(x)⟩ ≥ f(x∗)− f(x)− C8.3.2

√
ρ for some constant C8.3.2 > 0.

Proof. First, we show
⟨y,∇f(x)⟩ ≥ f(y)− f(x).

Let us consider a direction d ∈ [0, 1]E such that d(e) = max{y(e)−x(e), 0} for every e ∈ E.
Then, we have

⟨y,∇f(x)⟩ ≥ ⟨d,∇f(x)⟩

≥ f(x + d)− f(x)

≥ f(y)− f(x),

where the first inequality follows from y ≥ d and ∇f(x) ≥ 0, the second inequality follows
from the concavitity of f along d, and the third inequality follows from x + d ≥ y and the
monotonicity of f . By Lemma 8.3.1, we have

f(y) ≥ f(x∗)− 4 4
√
|E|√ρ,

which yields the desired result with C8.3.2 = 4 4
√
|E|.

Theorem 8.3.3. Suppose FD is ∆-sensitive and Cρ is a ρ-covering of P(M). Then Algo-
rithm 7, with high probability, returns xT ∈ P(M) such that

fD(xT) ≥
(

1− 1
e

)
OPT−O

(
C8.3.2ρ+ ∆r(M) ln |E|

ϵρ2

)
Moreover, the algorithm evaluates fD at most O (r(M) · |Cρ|) times.

191

Proof. Clearly Algorithm 7 evaluates f at most O (r(M)|Cρ|) times. Observe that the algo-
rithm forms a convex combination of T vertices of the polytope P(M), each with weight α
hence xT ∈ P(M). In what follows, we focus on the quality of the output of the algorithm.
Suppose y′ ∈ Cρ with ∥y′ − x∗∥2 ≤ ρ. By Theorem 8.2.8, with probability at least 1− 1

|E|2 ,
we have

⟨yt,∇f(xt)⟩ ≥ argmax
y∈Cρ

⟨y,∇f(xt)⟩ −
2∆
ϵ

ln(|E|2|Cρ|)

≥ ⟨y′,∇f(xt)⟩ −
2∆
ϵ

ln(|E|2|Cρ|)
By Lemma 8.3.2

≥ f(x∗)− f(xt)− C8.3.2
√
ρ− 2∆

ϵ
ln(|E|2|Cρ|)

By a union bound, with probability at least 1 − 1
poly(|E|) , the above inequality holds for

every t. In what follows, we assume this has happened. Further, let us assume that t is a
continuous variable in [0, T]. We remark that discretization of t in our algorithm introduces
error into the approximation guarantee. However, this can be handled by sufficiently large
T , say, r(M) as in Algorithm 7, and small step size α [48]. In what follows t is assumed to
be continuous and we write dxt

dt = αyt, hence

df(xt)
dt

=
∑
e

∂f(xt(e))
∂xt(e)

dxt(e)
dt

= ∇f(xt) ·
dxt
dt

= α⟨yt,∇f(xt)⟩

≥ α
(
f(x∗)− f(xt)− C8.3.2

√
ρ− 2∆

ϵ
ln(|E|2|Cρ|)

)
,

where the first equality follows from the chain rule. Let β = f(x∗)−C8.3.2
√
ρ−2∆

ϵ ln(|E|2|Cρ|).
Solving the following differential equation df(xt)

dt = α(β − f(xt)) with f(x0) = 0 gives us
f(xt) = β(1− e−αt). For α = 1

T , t = T we obtain

f(xT) = β(1− e−1)

=
(

1− 1
e

)
f(x∗)−O

(
C8.3.2

√
ρ+ 2∆

ϵ
ln(|E|2|Cρ|)

)
=
(

1− 1
e

)
f(x∗)−O

(
C8.3.2

√
ρ+ ∆

ϵ
(ln |E|+ ln |E|

(
B
ρ

)2

)
)

=
(

1− 1
e

)
f(x∗)−O

(
C8.3.2

√
ρ+ ∆

ϵ

(
B

ρ

)2
ln |E|

)
(B2 ≤ r(M))

≥
(

1− 1
e

)
f(x∗)−O

(
C8.3.2

√
ρ+ ∆r(M) ln |E|

ϵρ2

)
Remark 8.3.4. As already pointed out in the proof of Theorem 8.3.3, the discretization of
t introduces error into the approximation guarantee yielding (1 − 1/e − 1/poly(|E|))OPT.

192

However, this can be shaved off to (1 − 1/e)OPT by sufficiently large T [48]. Moreover,
evaluating f (even approximately) is expensive. To achieve the nearly optimal approximation
guarantees, the evaluation error needs to be very small and in a lot of cases, the error needs
to be O(1/|E|) times the function value. As a result, a single evaluation of the multilinear
extension f requires Ω(|E|) evaluations of F (see [72] for recent improvement). Therefore,
our algorithm requires O(r(M)|E||Cρ|) evaluation of F .

Remark 8.3.5. From a fractional solution x∗, we can obtain an integral solution s ∈ {0, 1}E

such that f(s) ≥ f(x∗). Such an integer solution corresponds to a vertex of P(M) and hence
a discrete solution S ∈ I. This can be done using the so-called swap rounding [50].

8.3.2 Privacy analysis

Theorem 8.3.6. Algorithm 7 preserves O(ϵr(M)2)-differential privacy.

Proof. Let D and D′ be two neighboring datasets and FD, FD′ be their associated functions.
For a fixed yt ∈ Cρ, we consider the relative probability of Algorithm 7 (denoted by M)
choosing yt at time step t given multilinear extensions of FD and FD′ . Let Mt(fD | xt)
denote the output of M at time step t given dataset D and point xt. Similarly, Mt(fD′ | xt)
denotes the output of M at time step t given dataset D′ and point xt. Further, write
dy = ⟨y,∇fD(xt)⟩ and d′

y = ⟨y,∇fD′(xt)⟩. We have

Pr[Mt(fD | xt) = yt]
Pr[Mt(fD′ | xt) = yt]

=
exp(ϵ′ · dyt)/

∑
y∈Cρ

exp(ϵ′ · dy)
exp(ϵ′ · d′

yt
)/∑y∈Cρ

exp(ϵ′ · d′
y)

= exp(ϵ′ · dyt)
exp(ϵ′ · d′

yt
) ·
∑

y∈Cρ
exp(ϵ′ · d′

y)∑
y∈Cρ

exp(ϵ′ · dy) .

For the first factor, we have

exp(ϵ′ · dyt)
exp(ϵ′ · d′

yt
) = exp

(
ϵ′(dyt − d′

yt
)
)

= exp
(
ϵ′(⟨yt,∇fD(xt)−∇fD′(xt)⟩)

)
≤ exp

(
ϵ′∥yt∥1∥∇fD(xt)−∇fD′(xt)∥∞

)
= exp

(
ϵ′
∑
e∈E

yt(e) ·
(

max
e∈E

E
R∼xt

[
FD(R ∪ {e})− FD(R)− FD′(R ∪ {e}) + FD′(R)

]))

≤ exp(O(ϵ′ · r(M) · 2∆)) = exp(O(ϵ · r(M)))

Note that the last inequality holds since yt is a member of the matroid polytope P(M) and
by definition we have ∑e∈E yt(e) ≤ rM(E) = r(M). Moreover, recall that FD is ∆-sensitive.

193

For the second factor, let us write βy = d′
y − dy to be the deficit of the probabilities of

choosing direction y in instances fD′ and fD. Then, we have∑
y∈Cρ

exp(ϵ′ · d′
y)∑

y∈Cρ
exp(ϵ′ · dy) =

∑
y∈Cρ

exp(ϵ′ · βy) exp(ϵ′ · dy)∑
y∈Cρ

exp(ϵ′ · dy)

= Ey[exp(ϵ′ · βy)] ≤ exp
(
O(ϵ′ · r(M) · 2∆)

)
= exp

(
O(ϵ · r(M))

)
.

The expectation is taken over the probability distribution over y selected at time t in
instance with input D. Recall that we choose y with probability proportional to exp(ϵ′dy).
By a union bound, Algorithm 7 preserves O(ϵTr(M)) ≤ O(ϵr(M)2)-differential privacy.
To obtain an integral solution from a fractional solution, we use swap rounding technique
(see Remark 8.3.5) which does not depend on the input function and hence preserves the
privacy.

Note that the privacy factor in the work of [171] is O(ϵr(M)). However, our privacy
factor is O(ϵr(M)2), this is because we deal with the multilinear extension of a submodular
function rather than the function itself (which is different from the previous works).

Theorem 8.3.7 (Formal version of Theorem 8.1.5). Suppose FD is ∆-sensitive and Algo-
rithm 7 is instantiated with ρ = ϵ

|E|1/2 . Then Algorithm 7 is (ϵr(M)2)-differentially private
and, with high probability, returns S ∈ I with quality at least

FD(S) ≥
(

1− 1
e

)
OPT−O

(√
ϵ+ ∆r(M)|E| ln |E|

ϵ3

)
Example 8.3.8 (Maximum Coverage). Let G = (U, V,E) be a bipartite graph, and B be a
budget constraint. In Maximum Coverage problem, the goal is to find a set S of B vertices in
U so that the number of vertices in V incident to some vertex in S is maximized. The edges
incident to a vertex v ∈ V are private information about v. If we instantiate Theorem 8.3.7
on this problem, the privacy factor is ϵB2 and the additive error is O(∆B|U | ln(|U |)/ϵ3),
where ∆ is the maximum degree of a vertex in V . To have a meaningful privacy bound,
we set ϵ≪ 1/B2, and the additive error becomes ∆B7|U | ln(|U |). However, OPT could be
Ω(|V |), which is much larger than the additive error when |V | ≫ |U |. Indeed, by optimizing
ρ, we can improve the additive error to O(∆B3|U | ln(|U |)), which will be more practical.

8.4 Improving the query complexity

In this section, we improve the number of evaluations of F from O(r(M)|E|1+(r(M)
ϵ

)2) to
O(r(M)|E|2 ln |E|

ϵ). In Algorithm 7, in order to choose a point with probability proportional
to exp(⟨y,∇f(x)⟩), it requires to compute Z = ∑

z∈Cρ

exp(⟨z,∇f(x)⟩). This summation needs

194

evaluating (⟨z,∇f(x)⟩) for all z in Cρ. One way of improving the query complexity of this
step is as follows. Partition Cρ into a number of layers such that points in each layer are
almost the same in terms of the inner product ⟨·,∇f(x)⟩. Now, instead of choosing a point
in Cρ, we carefully select a layer with some probability (i.e., proportional to its size and
quality of points in it) and then choose a point from that layer uniformly at random. Of
course, to estimate the size of each layer, we need to sample a sufficiently large number of
points from Cρ.

Definition 8.4.1 (layer). For a point x ∈ Cρ and µ > 0, let the i-th layer to be Lx
µ,i =

{z ∈ Cρ | (1 + µ)i−1 ≤ exp
(
⟨z,∇f(x)⟩

)
< (1 + µ)i}, for 1 ≤ i ≤ k, where

k =

log1+µ

max
y∈Cρ

exp
(
⟨y,∇f(x)⟩

)
min
y∈Cρ

exp
(
⟨y,∇f(x)⟩

)

 .

For a layer Lx
µ,i let |Lx

µ,i| denote the number of points in it, and define Z̃ ∈ R and Z̃i ∈ R
for each i ∈ [k] as follows:

Z̃ =
∑
i∈[k]
|Lx
µ,i|(1 + µ)i−1 and Z̃i = |Lx

µ,i|(1 + µ)i−1.

Then, a layer Lx
µ,i is chosen with probability Z̃i

Z̃
. Note that we do not want to spend time

computing the exact value of |Lx
µ,i| for every layer, instead, we are interested in efficiently

estimating these values. By Hoeffding’s inequality [115], to estimate |Lx
µ,i|/|Cρ| with additive

error of λ with probability at least 1 − θ, it suffices to sample Θ(ln(1/θ)/λ2) points from
Cρ. Hence, by a union bound, if we want to estimate |Lx

µ,i|/|Cρ| with additive error of λ for
all i = 1, . . . , k with probability at least 1 − θ, it suffices to sample Θ(ln(k/θ)/λ2) points
from Cρ.

Corollary 8.4.2. Let Cρ be a ρ-covering of P(M) and xt be a point in P(M). Algorithm 8
estimates |Lxt

µ,i|/|Cρ| with an additive error λ8.4.2 with probability at least 1− θ8.4.2.

Lemma 8.4.3 (Analogous to Theorem 8.2.8). At each time step t, Algorithm 8 returns
yt−1 such that for every β ∈ (0, 1) and ξ = ln

(
|Cρ|(1+kλ|Cρ|)(1+µ)ϵ′

β

)
we have

Pr
[
⟨yt−1,∇f(xt−1)⟩ ≥ max

z∈Cρ

⟨z,∇f(xt−1)⟩ − 2∆
ϵ
ξ

]
≥ 1− β.

Theorem 8.4.4. Suppose FD is ∆-sensitive and Cρ is a ρ-covering of P(M). Then Algo-
rithm 8, with high probability (depending on θ8.4.2), returns xT ∈ P(M) such that

f(xT) ≥
(

1− 1
e

)
OPT−O

(
C8.3.2

√
ρ+ ln(1 + µ) +

(∆r(M)
ϵρ2

)
(ln |E|+ ln(kλ8.4.2))

)

195

Algorithm 8 Improved Differentially Private Continuous Greedy Algorithm
1: Input: Submodular function FD : 2E → [0, 1], dataset D, a matroid M = (E, I), and
ϵ, µ, ρ, λ, θ > 0.

2: Let Cρ be a ρ-covering of P(M), and fD be the multilinear extension of FD.
3: x(0)← 0, ϵ′ ← ϵ

2∆ .
4: for t = 1 to T = r(M) do
5: C ′

ρ ← Sample Θ(ln(k/θ)/λ2) points from Cρ uniformly at random.
6: Define Lxt−1

µ,i as in Definition 8.4.1, and estimate each |Lxt−1
µ,i | using C ′

ρ.
7: Let L̃xt−1

µ,i denote the estimated value.
8: Set Z̃i ← L̃

xt−1
µ,i (1 + µ)ϵ′(i−1) and Z̃ ←

∑
i∈[k]

L̃
xt−1
µ,i (1 + µ)ϵ′(i−1)

9: Let L be the chosen layer Lxt−1
µ,i with probability proportional to Z̃i

Z̃
.

10: Let yt−1 be a point sampled uniformly at random from L.
11: xt ← xt−1 + αyt−1.
12: Outout: xT

Theorem 8.4.5. Algorithm 8 preserves O
(
ϵr(M)2)-differential privacy.

Theorem 8.4.6 (Formal version of Theorem 8.1.6). Suppose FD is ∆-sensitive and Al-
gorithm 8 is instantiated with ρ = ϵ

|E|1/2 , µ = eϵ, λ8.4.2 = 1/
√
|E|, θ8.4.2 = 1/|E|2. Then

Algorithm 8 is (ϵr(M)2)-differentially private and, with high probability, returns S ∈ I with
quality at least

FD(S) ≥
(

1− 1
e

)
OPT−O

(
√
ϵ+

∆r(M)|E| ln(|E|
ϵ)

ϵ3

)
.

Moreover, it evaluates FD at most O(r(M)|E|2 ln(|E|
ϵ)) times.

8.5 k-submodular function maximization

In this section, we study a natural generalization of submodular functions, namely k-
submodular functions. Associate (S1, . . . , Sk) ∈ (k + 1)E with s ∈ {0, 1, . . . , k}E by Si =
{e ∈ E | s(e) = i} for i ∈ [k] and define the support of s as supp(s) = {e ∈ E | s(e) ̸= 0}.
Let ⪯ be a partial ordering on (k + 1)E such that, for s = (S1, . . . , Sk) and t = (T1, . . . , Tk)
in (k + 1)E , s ⪯ t if Si ⊆ Ti for every i ∈ [k]. We say that a function F : (k + 1)E → R+

is monotone if F (s) ≤ F (t) holds for every s ⪯ t. Define the marginal gain of adding
e ̸∈

⋃
ℓ∈[k] Sℓ to the i-th set of s ∈ (k + 1)E to be

∆e,iF (s) = F (S1, . . . , Si−1, Si ∪ {e}, Si+1, . . . , Sk)− F (S1, . . . , Sk).

The monotonicity of F is equivalent to ∆e,iF (s) ≥ 0 for any s = (S1, . . . , Sk) and e ̸∈⋃
ℓ∈[k] Sℓ and i ∈ [k].

196

Algorithm 9 Differentially private k-submodular maximization with a matroid constraint
1: Input: monotone k-submodular functions FD : (k + 1)E → [0, 1], a matroid M =

(E, I), and ϵ > 0.
2: x← 0, ϵ′ ← ϵ

2∆
3: for t = 1 to r(M) do
4: Let Λ(x) = {e ∈ E \ supp(x) | supp(x) ∪ {e} ∈ I}
5: Choose e ∈ Λ(x) and i ∈ [k] with probability proportional to exp(ϵ′∆e,iFD(x)).
6: x(e)← i.
7: Output: x

Our goal is maximizing a monotone k-submodular function under matroid constraints.
That is, given a monotone k-submodular function FD : (k + 1)E → R+ and a matroid
M = (E, I), we want to solve the following problem.

max
x∈(k+1)E

FD(x) subject to
⋃
i∈[k]

Xi ∈ I

The following are known due to [195]. They may have appeared in other literature that we
are not aware of.

Lemma 8.5.1 ([195]). For any maximal optimal solution o we have |supp(o)| = r(M).

Lemma 8.5.2 ([195]). Suppose A ∈ I and B ∈ B (recall B denotes the set of bases) satisfy
A ⊆ B. Then, for any e ̸∈ A satisfying A ∪ {e} ∈ I, there exists e′ ∈ B \ A such that
B \ {e′} ∪ {e} ∈ B.

Having Lemma 8.5.1, our algorithm runs in r(M) iterations and at each iteration chooses
an element e with probability proportional to exp(ϵ′∆e,iFD(x)) and adds e to supp(x). The
analysis for the approximation guarantee is similar to the ones in [119, 179, 195, 217] and
relies on Theorem 8.2.8.

Theorem 8.5.3. Suppose FD has sensitivity ∆. Then Algorithm 9, with high probability,
returns x ∈ (k + 1)E such that supp(x) ∈ B and FD(x) ≥ 1

2OPT−O(∆r(M) ln |E|
ϵ).

The privacy guarantee follows immediately from the ϵ-differential privacy of the expo-
nential mechanism, together with Theorem 8.2.6.

Theorem 8.5.4. Algorithm 9 preserves O(ϵr(M))-differential privacy. It also provides
(1

2r(M)ϵ2 +
√

2 ln 1/δ′ϵ, δ′)-differential privacy for every δ′ > 0.

Clearly, Algorithm 9 evaluates FD at most O(k|E|r(M)) times. Next theorem summa-
rizes the results of this section.

Theorem 8.5.5. Suppose FD has sensitivity ∆. Then Algorithm 9, with high probabil-
ity, outputs a solution x ∈ (k + 1)E such that supp(x) is a base of M and FD(x) ≥
1
2OPT−O(∆r(M) ln |E|

ϵ) by evaluating FD at most O(k|E|r(M)) times. Moreover, this algo-
rithm preserves O(r(M)ϵ)-differential privacy.

197

Algorithm 10 Improved differentially private k-submodular maximization with a matroid
constraint

1: Input: monotone k-submodular functions FD : (k + 1)E → [0, 1], a matroid M =
(E, I), ϵ > 0, and a failure probability γ > 0.

2: x← 0, ϵ′ ← ϵ
2∆

3: for t = 1 to r(M) do
4: R ← a random subset of size min{ |E|−t+1

r(M)−t+1 log r(M)
γ , |E|} uniformly sampled from

E \ supp(x).
5: Choose e ∈ R with supp(x) ∪ {e} ∈ I and i ∈ [k] with probability proportional to

exp(ϵ′∆e,iFD(x)).
6: x(e)← i.
7: Output: x

8.5.1 Improving the query complexity

By applying a sampling technique [168, 179], we improve the number of evaluations of F
from O(k|E|r(M)) to O(k|E| ln r(M) ln r(M)

γ), where γ > 0 is a failure probability. Hence,
even when r(M) is as large as |E|, the number of function evaluations is almost linear in
|E|. The main difference from Algorithm 9 is that we sample a sufficiently large subset R
of E, and then greedily assign a value only looking at elements in R.

Theorem 8.5.6. Suppose FD has sensitivity ∆. Then Algorithm 10, with probability at

least 1− γ, outputs a solution with quality at least 1
2OPT−O

(
∆r(M) ln |E|

γ

ϵ

)
by evaluating

FD at most O
(
k|E| ln r(M) ln r(M)

γ

)
times.

Similar to Theorem 8.5.4 and using the composition Theorem 8.2.6, Algorithm 10 pre-
servesO(ϵr(M))-differential privacy. It also provides O

(
1
2r(M)ϵ2 +

√
2 ln 1/δ′ϵ, δ′

)
-differential

privacy for every δ′ > 0. In summary, we have

Theorem 8.5.7. Suppose FD has sensitivity ∆. Then, with probability at least 1 − γ, Al-
gorithm 10 returns a solution x ∈ (k + 1)E such that supp(x) ∈ B and FD(x) ≥ 1

2OPT −

O

(
∆r(M) ln |E|

γ

ϵ

)
by evaluating FD at most O

(
k|E| ln r(M) ln r(M)

γ

)
times. Moreover, this

algorithm preserves O(ϵr(M))-differential privacy.

8.5.2 Motivating examples

Example 8.5.8. Suppose that we have m ad slots and k ad agencies, and we want to
allocate at most B(≤ m) slots to the ad agencies. Each ad agency i has a “influence graph”
Gi, which is a bipartite graph (U, V,Ei), where U and V correspond to ad slots and users,
respectively, and an edge uv ∈ Ei indicates that if the ad agency i takes the ad slot u (and
put an ad there), the user v will be influenced by the ad. The goal is to maximize the number
of influenced people (each person will be counted multiple times if he/she is influenced by

198

multiple ad agencies), based on which we get revenue from the ad agencies. This problem
can be modeled as k-submodular function maximization under a cardinality constraint (a
special case of matroid constraints), and edges incident to a user v in G1, . . . , Gk are sensitive
data about v.

Example 8.5.9. Another example comes from (a variant of) facility location. Suppose that
we have a set E of n lands, and we want to provide k resources (e.g., gas and electricity)
to all the lands by opening up facilities at some of the lands. For each resource type i and
lands e, e′ ∈ E, we have a cost ci(e, e′) of sending the resource of type i from e to e′. For
a set S ⊆ E, let ci(e, S) = mine′∈S ci(e, e′), which is the cost of sending a resource of type
i to e when we open up facilities of type i at lands in S. Assume we cannot open two
or more facilities in the same land. Then, the goal is to find disjoint sets S1, . . . , Sk with∑
i |Si| <= B for some fixed B that maximize ∑e

∑
i(C − ci(e, Si)), where C is a large

number so that the objective function is always non-negative. This problem can be modeled
as k-submodular function maximization under a cardinality constraint, and the costs ci(e, ·)
are sensitive data about e.

8.6 Missing proofs from section 8.3

Proof of Lemma 8.3.1. We have

|f(x)− f(x + v)|

=
∣∣∣∣∣ ∑
S⊆E

F (S)
(∏
e∈S

x(e)
∏
e ̸∈S

(
1− x(e)

)
−
∏
e∈S

(
x(e) + v(e)

) ∏
e ̸∈S

(
1− x(e)− v(e)

))∣∣∣∣∣
≤
∑
S⊆E

∣∣∣∣∣ ∏
e∈S

x(e)
∏
e ̸∈S

(
1− x(e)

)
−
∏
e∈S

(
x(e) + v(e)

) ∏
e ̸∈S

(1− x(e)− v(e))
∣∣∣∣∣. (8.1)

Now, we define probability distributions {Pe}e∈E and {Qe}e∈E over {0, 1} so that Pe(1) =
x(e) and Qe(1) = x(e) + v(e), respectively, for every e ∈ E. Note that

g(x(e)) = h(Pe, Qe)2

=
(√

x(e)−
√

x(e) + v(e)
)2

+
(√

1− x(e)−
√

1− x(e)− v(e)
)2

199

is a convex function with domain x(e) ∈ [0, 1−v(e)]. The maximum value for this function
happens at x(e) = 0 and x(e) = 1− v(e). Further its minimum is at x(e) = [1− v(e)]/2.

h(Pe, Qe)2 = g(x(e))

≤ g(0)

= g(1− v(e))

= 2− 2
√

1− v(e)

≤ v(e)2 + v(e)

≤ 2v(e) (for v(e) ∈ [0, 1])

Letting P = ⊗
e∈E Pe and Q = ⊗

e∈E Qe, we have

(8.1) ≤ 2 · dTV(P,Q)

= 2
√

2 · h(P,Q)

≤ 2
√

2
√∑
e∈E

h(Pe, Qe)2 (By Lemma 8.2.9)

= 2
√

2
√∑
e∈E

2v(e)

= 4
√
|v|1

≤ 4
√√
|E|∥v∥2

≤ 4 4
√
|E|√ρ

8.7 Missing proofs from section 8.4

8.7.1 Proof of Lemma 8.4.3

Proof of Lemma 8.4.3. Let OPT = maxz∈Cρ⟨z,∇f(xt−1)⟩ and qt(z) = ⟨z,∇f(xt−1)⟩ for
every z ∈ P(M). Further, let yt be the output of the algorithm and L̃

xt−1
µ,i denote the

200

estimated size of the i-th layer.

Pr
[
q(yt) ≤ OPT −

2∆
ϵ
ξ

]
≤

Pr[q(yt) ≥ OPT − 2∆
ϵ ξ]

Pr[q(yt) = OPT]

≤
exp

[
ϵ′
(
OPT − 2∆

ϵ ξ + ln(1 + µ)
)]

k∑
j=1

L̃
xt−1
µ,j (1 + µ)ϵ′(j−1)

×

k∑
j=1
|Lxt−1
µ,j |(1 + µ)ϵ′(j−1)

exp(ϵ′OPT)

=
exp

[
ϵ′
(
OPT − 2∆

ϵ ξ + ln(1 + µ)
)]

exp(ϵ′OPT) ×

k∑
j=1
|Lxt−1
µ,j |(1 + µ)ϵ′(j−1)

k∑
j=1

L̃
xt−1
µ,j (1 + µ)ϵ′(j−1)

Consider the first term,

exp
[
ϵ′
(
OPT − 2∆

ϵ ξ + ln(1 + µ)
)]

exp(ϵ′OPT) = exp
[
ϵ′
(
−2∆

ϵ
ξ + ln(1 + µ)

)]
= exp(−ξ) exp

(
ϵ′ ln(1 + µ)

)
= exp(−ξ)(1 + µ)ϵ′

Consider the second term. By Corollary 8.4.2, the algorithm estimates |Lxt−1
µ,j |/|Cρ| within

additive error λ8.4.2 with probability at least 1− θ8.4.2 = 1− β. Therefore,

k∑
j=1
|Lxt−1
µ,j |(1 + µ)ϵ′(j−1)

k∑
j=1

L̃
xt−1
µ,j (1 + µ)ϵ′(j−1)

≤

k∑
j=1

(L̃xt−1
µ,j + λ8.4.2|Cρ|)(1 + µ)ϵ′(j−1)

k∑
j=1

L̃
xt−1
µ,j (1 + µ)ϵ′(j−1)

≤ 1 +

k∑
j=1

(λ8.4.2|Cρ|)(1 + µ)ϵ′(j−1)

k∑
j=1

L̃
xt−1
µ,j (1 + µ)ϵ′(j−1)

≤ 1 +
k∑
j=1

λ8.4.2|Cρ|
L̃

xt−1
µ,j

≤ 1 + kλ8.4.2|Cρ|

Therefore, putting both upper bounds together yields

Pr
[
q(yt) ≤ OPT −

2∆
ϵ
ξ

]
≤ exp(−ξ)(1 + µ)ϵ′(1 + kλ8.4.2|Cρ|)

201

As there are at most |Cρ| outputs with quality OPT − 2∆
ϵ ξ their cumulative probability is

at most

|Cρ|(1 + kλ8.4.2|Cρ|)(1 + µ)ϵ
′
exp(−ξ) = |Cρ|(1 + kλ8.4.2|Cρ|)(1 + µ)ϵ

′
β

|Cρ|(1 + kλ8.4.2|Cρ|)(1 + µ)ϵ′

= β.

8.7.2 Proof of Theorem 8.4.4

Proof of Theorem 8.4.4. Suppose y′ ∈ Cρ with ∥y′−x∗∥2 ≤ ρ. Let β = 1
|E|2 . By Lemma 8.4.3,

with probability at least 1− 1
|E|2 , we have

⟨yt,∇f(xt)⟩ ≥ argmax
y∈Cρ

⟨y,∇f(xt)⟩ −
2∆
ϵ
ξ

≥ ⟨y′,∇f(xt)⟩ −
2∆
ϵ
ξ

≥ f(x∗)− f(xt)− C8.3.2
√
ρ− 2∆

ϵ
ξ (by Lemma 8.3.2)

By a union bound, with probability at least 1 − 1
poly(|E|) , the above inequality holds for

every t. In what follows, we assume this has happened. As in the proof of Theorem 8.3.3,
suppose t is a continuous variable and define dxt

dt = αyt.

df(xt)
dt

=
∑
e

∂f(xt(e))
∂xt(e)

dxt(e)
dt

= ∇f(xt) ·
dxt
dt

= α⟨yt,∇f(xt)⟩

≥ α
(
f(x∗)− f(xt)− C8.3.2

√
ρ− 2∆

ϵ
ξ

)
,

Solving the differential equation with f(x0) = 0 gives us

f(xt) = (1− e−αt)
(
f(x∗)− C8.3.2

√
ρ− 2∆

ϵ
ξ

)
.

For α = 1
T and t = T we obtain

f(xT) = (1− e−1)
(
f(x∗)− C8.3.2

√
ρ− 2∆

ϵ
ξ

)
= f(x∗)(1− e−1)−O

(
C8.3.2

√
ρ+ 2∆

ϵ
ξ

)
.

202

Recall that ξ = ln
([
|Cρ|(1 + kλ8.4.2|Cρ|)(1 + µ)ϵ′

]
/β
)

and β = 1/|E|2. Next we give an
upper bound for the error term.

O

(
C8.3.2

√
ρ+ 2∆

ϵ
ξ

)
= O

(
C8.3.2

√
ρ+ 2∆

ϵ
ln(|E|2|Cρ|) + 2∆

ϵ
ln(1 + µ)ϵ′ + 2∆

ϵ
ln(kλ8.4.2|Cρ|)

)
= O

(
C8.3.2

√
ρ+ ln(1 + µ) + 2∆

ϵ

[
ln(|E|2|Cρ|) + ln(kλ8.4.2|Cρ|)

])
= O

(
C8.3.2

√
ρ+ ln(1 + µ) + ∆

ϵ
(B
ρ

)2(ln |E|+ ln(kλ8.4.2))
)

Note that by letting µ = eϵ − 1 we get ln(1 + µ) = ϵ. Moreover, we get k ≤ r(M)
ϵ .

8.7.3 Proof of Theorem 8.4.5

Proof of Theorem 8.4.5. Let M denote Algorithm 8. Let D and D′ be two neighboring
datasets and FD and FD′ be their associated functions. Suppose C ′

ρ(D, t) denotes the set of
sampled points at time step t given dataset D. Similarly, C ′

ρ(D′, t) denotes set of sampled
points at time step t given dataset D′. Samples are drawn uniformly at random and inde-
pendent from the input function. Hence, Line 5 of M is 0-differentially private. Therefore,
we assume C ′

ρ(D, t) = C ′
ρ(D′, t) = St for every time step t. Define k, k′ as follow:

k =

log1+µ

max
y∈Cρ

exp
(
⟨y,∇fD(x)⟩

)
min
y∈Cρ

exp
(
⟨y,∇fD(x)⟩

)

k′ =

log1+µ

max
y∈Cρ

exp
(
⟨y,∇fD′(x)⟩

)
min
y∈Cρ

exp
(
⟨y,∇fD′(x)⟩

)

Note that the layers might be different. Let us use Li(D) and Li(D′) for the i-th layer
given dataset D and D′, respectively. Further, L̃i(D) and L̃i(D′) denote the estimated size
of the i-th layer.

For a fixed y ∈ Cρ, we consider the relative probability of M choosing y at time step
t given multilinear extensions of FD and FD′ . Let Mt(fD | xt) denote the output of M
at time step t given dataset D and point xt. Similarly, Mt(fD′ | xt) denote the output of
M at time step t given dataset D′ and point xt. Further, write dy = ⟨y,∇fD(xt)⟩ and
d′

y = ⟨y,∇fD′(xt)⟩.
Suppose y ∈ Li(D) given dataset D, and y ∈ Li′(D′) given dataset D′. Then, we have

203

Pr[Mt(fD | xt) = y]
Pr[Mt(fD′ | xt) = y] = Pr[y ∈ St | D]

Pr[y ∈ St | D′] ×
|L̃i(D)|(1+µ)ϵ′(i−1)

|L̃i(D)|
|L̃i′ (D′)|(1+µ)ϵ′(i′−1)

|L̃i′ (D′)|

×

k′∑
j=1

L̃j(D′) exp(ϵ′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ϵ′ · (1 + µ)j−1)

= (1 + µ)ϵ′(i−1)

(1 + µ)ϵ′(i′−1) ×

k′∑
j=1

L̃j(D′) exp(ϵ′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ϵ′ · (1 + µ)j−1)
(8.2)

The second equality holds since points are sampled uniformly at random from Cρ in
Line 5.

Lemma 8.7.1. Let D,D′ be neighboring datasets and F be ∆-sensitive. Suppose z ∈ Cρ is
a point in Lj(D). Then

(1 + µ)ϵ′(j−1) exp(−ϵr(M)
2) ≤ exp(ϵ′⟨z,∇fD′(xt)⟩)

< (1 + µ)ϵ′j exp(ϵr(M)
2)

Proof. Since z ∈ Cρ is a point in Lj(D), then (1 + µ)j−1 ≤ exp(⟨z,∇fD(x)⟩) < (1 + µ)j .
Since FD is ∆-sensitive hence fD is ∆r(M)-sensitive (recall the proof of Theorem 8.3.6).
Therefore,

exp(⟨z,∇fD′(xt)⟩) ≤ exp(⟨z,∇fD(xt)⟩+ ∆r(M)) < (1 + µ)j exp(∆r(M)) (8.3)

(1 + µ)j−1 exp(−∆r(M)) ≤ exp(⟨z,∇fD(xt)⟩ −∆r(M))) ≤ exp(⟨z,∇fD′(xt)⟩) (8.4)

(8.3), (8.4)⇒ (1 + µ)j−1 exp(−∆r(M)) ≤ exp(⟨z,∇fD′(xt)⟩) < (1 + µ)j exp(∆r(M))
(8.5)

(8.5)⇒ (1 + µ)ϵ′(j−1) exp(−ϵr(M)
2) ≤ exp(ϵ′⟨z,∇fD′(xt)⟩) < (1 + µ)ϵ′j exp(ϵr(M)

2)

(8.6)

The interpretation of (8.5) is that if a point z ∈ St appears in layer Lj(D) then it can
be in any of the layers Lp(D′) for

(j − 1) + log1+µ[exp(−∆r(M))] ≤ p < j + log1+µ[exp(∆r(M))]1.

1Note that in low-sensitivity regime, where ∆ ≪ r(M), we have j − 1 ≤ p < j.

204

In a sense, the same argument in Claim 8.7.2 shows that ⌊k′

k ⌋ = 1. Now, we are ready to
provide an upper bound for (8.2).

Consider the first term (1+µ)ϵ′(i−1)

(1+µ)ϵ′(i′−1) . Recall that y ∈ Li(D) given dataset D, and y ∈
Li′(D′) given dataset D′. By Lemma 8.7.1, we have

(1 + µ)ϵ′(i−1) exp(−ϵr(M)
2) ≤ exp(ϵ′⟨z,∇fD′(xt)⟩).

Therefore,

(1 + µ)ϵ′(i−1)

(1 + µ)ϵ′(i′−1) ≤
(1 + µ)ϵ′(i−1)

(1 + µ)ϵ′(i−1) exp(− ϵr(M)
2)

= exp(ϵr(M)
2)

Now, we provide an upper bound for the second term of (8.2):

k′∑
j=1

L̃j(D′) exp(ϵ′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ϵ′ · (1 + µ)j−1)
≤

k∑
j=1

L̃j(D) exp(ϵr(M)) exp(ϵ′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ϵ′ · (1 + µ)j−1)

=
[exp(ϵr(M))]

k∑
j=1

L̃j(D) exp(ϵ′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ϵ′ · (1 + µ)j−1)

≤ exp(ϵr(M))

By a union bound and composition Theorem 8.2.6, Algorithm 8 preserves O(ϵTr(M)) ≤
O(ϵr(M)2)-differential privacy. The heart of the above inequality is that, given the set of
sample points, the layers defined for both instances are almost identical.

Claim 8.7.2. k′

k ≤ 1 + 2∆r(M)
k ln(1+µ) .

205

Proof.

k′ = log1+µ

max
y∈Cρ

exp
(
⟨y,∇fD′(x)⟩

)
min
y∈Cρ

exp
(
⟨y,∇fD′(x)⟩

)

≤ log1+µ

max
y∈Cρ

exp
(
⟨y,∇fD(x)⟩+ ∆r(M)

)
min
y∈Cρ

exp
(
⟨y,∇fD(x)⟩ −∆r(M)

)

≤ log1+µ

max
y∈Cρ

exp
(
⟨y,∇fD(x)⟩

)
min
y∈Cρ

exp
(
⟨y,∇fD(x)⟩

)

+ log1+µ exp(2∆r(M))

= k + 2∆r(M)
ln(1 + µ)

= k

(
1 + 2∆r(M)

k ln(1 + µ)

)
.

8.8 Missing proofs from section 8.5

8.8.1 Proof of Theorem 8.5.3

Proof of Theorem 8.5.3. Consider the j-th iteration of the algorithm. Let (e(j), i(j)) be the
pair chosen in this iteration. Further, let o be the optimal solution and x(j) be the solution
after the j-th iteration. Note that |supp(x(j))| = j for j ∈ [r(M)]. We define a sequence of
vectors o(0) = o,o(1), . . . ,or(M), as in [119, 179, 195, 217], such that

1. x(j) ≺ o(j) for all 0 ≤ j ≤ r(M)− 1,

2. x(r(M)) = o(r(M)),

3. O(j) := supp(o(j)) ∈ B for all 0 ≤ j ≤ r(M).

For the sake of completeness, let us describe how to obtain o(j) from o(j−1) assuming
x(j−1) ≺ o(j−1) and O(j−1) ∈ B. Let X(j) = supp(x(j)). x(j−1) ≺ o(j−1) implies that
X(j−1) ⊊ O(j−1) and e(j) is chosen to satisfy X(j−1) ∪ {e(j)} ∈ I. By Lemma 8.5.2, there
exists e′ ∈ O(j−1) \X(j−1) such that O(j−1) \ {e′} ∪ {e(j)} ∈ B.

Now let o(j) = e′ and define o(j−1/2) as the vector obtained by assigning 0 to the o(j)-th
element of o(j−1). We then define o(j) as the vector obtained from o(j−1/2) by assigning i(j)

to the e(j)-th element. Therefore, for vector o(j) we have O(j) ∈ B and x(j) ≺ o(j).
By Theorem 2 in [195], if we always selected (e(j), i(j)) with e(j) ∈ Λ(x), i ∈ [k] and

maximum ∆e,if(x), we would have

F (x(j))− F (x(j−1)) ≥ F (o(j−1))− F (o(j)).

206

Instead we use the exponential mechanism which, by Theorem 8.2.8, selects (e(j), i(j)) within
2∆
ϵ ln |Λ(x(j))|

β from the optimal choice with probability at least 1− β. Therefore,

F (x(j))− F (x(j−1)) ≥ F (o(j−1))− F (o(j))− 2∆
ϵ

ln |Λ(x(j))|
β

with probability at least 1− β. Given this, one can derive the following:

F (o)− F (x(r(M))) =
r(M)∑
j=1

F (o(j−1))− F (o(j))

≤
r(M)∑
j=1

(
F (x(j−1))− F (x(j)) + 2∆

ϵ
ln |Λ(x(j))|

β

)

= F (x(r(M)))− F (0) + r(M)
(

2∆
ϵ

ln |Λ(x(j))|
β

)

= F (x(r(M))) + r(M)
(

2∆
ϵ

ln |Λ(x(j))|
β

)
,

which means Algorithm 9 returns x = x(r(M)) with quality at least 1
2OPT − r(M)(2∆

ϵ

ln |Λ(x(j))|
β) with probability at least 1− r(M)β. Having β = 1

|E|2 , |Λ(x(j))| ≤ |E| gives us

F (x) ≥ 1
2OPT−O

(∆r(M) ln |E|
ϵ

)
.

8.8.2 Proof of Theorem 8.5.6

Proof of Theorem 8.5.6. Let R(j) be R in the j-th iteration, o be the optimal solution and
x(j) be the solution after the j-th iteration. Further, let X(j) = supp(x(j)),O(j) = supp(o(j)),
and

Λ(x)(j) = {e ∈ E \ supp(x(j)) | supp(x(j)) ∪ {e} ∈ I}

We iteratively define o(0) = o,o(1), . . . ,or(M) as follows. If R(j) ∩ Λ(x)(j) = ∅, then
we regard that the algorithm failed. Else we proceed as follows. By Lemma 8.5.2, for any
e(j) ∈ R(j)∩Λ(x)(j), there exists e′ such that e′ ∈ O(j−1)\X(j−1) andO(j−1)\{e′}∪{e(j)} ∈ B.
Now let o(j) = e′ and define o(j−1/2) as the vector obtained by assigning 0 to the o(j)-th
element of o(j−1). We then define o(j) as the vector obtained from o(j−1/2) by assigning i(j)

to the e(j)-th element. Therefore, for vector o(j) we have O(j) ∈ B and x(j) ≺ o(j).
If the algorithm does not fail and o(0) = o,o(1), . . . ,or(M) are well defined, or in other

words, if R(j) ∩ Λ(x)(j) is not empty for every j ∈ [r(M)], then the rest of the analysis is
completely the same as in Theorem 8.5.3, and we achieve an approximation ratio of (roughly)
1/2. Hence, it suffices to show that R(j) ∩ Λ(x)(j) is not empty with a high probability.

207

Lemma 8.8.1. With probability at least 1 − γ
r(M) , we have R(j) ∩ Λ(x)(j) ̸= ∅ for every

j ∈ [r(M)].

Analogous to the analysis in Theorem 8.5.3, for every time step 0 ≤ j ≤ r(M), with
probability at least 1− γ

r(M) we have

F (x(j))− F (x(j−1)) ≥ F (o(j−1))− F (o(j))− 2∆
ϵ

ln(r(M)|Λ(x(j))|
γ

).

By a union bound over j ∈ [r(M)], with probability at least 1− γ, it follows that

F (x) ≥ 1
2OPT−O

(∆r(M) ln(|E|/γ)
ϵ

)
.

Applying a similar argument as in [179], the number of evaluations of f is at most

k

r(M)∑
t=1

|E| − t+ 1
r(M)− t+ 1 ln r(M)

γ
= k

r(M)∑
t=1

|E| − r(M) + t

t
log r(M)

γ

= O

(
k|E| ln r(M) ln r(M)

γ

)
Proof of Lemma 8.8.1.

Pr[R(j) ∩ Λ(x)(j) = ∅] =
(

1− r(M)− supp(x(j))
|E \ supp(x(j))|

)|R(j)|

≤ exp
(
−r(M)− j + 1
|E| − j + 1

|E| − j + 1
r(M)− j + 1 ln r(M)

γ

)
= exp

(
− ln r(M)

γ

)
= γ

r(M)

208

Chapter 9

Conclusion

In this thesis we focused on the CSPs and related problems arising from them that span
over various research areas in mathematics, computer science, and machine learning. Our
ultimate goal is to fully understand the power and limitations of universal algebraic tech-
niques for theses problems and provide a unifying algorithmic framework that deals/solves
such problems. While we have achieved this goal to some extend and taken important steps
towards this goal, there still are several intriguing and challenging questions that need to be
addressed. Here we provide a list of such problems and propose them as future directions.

Combinatorial IMPs. The study of CSP-related Ideal Membership Problems is in its
infancy, and pretty much all research directions are open. These include expanding the range
of tractable IMPs. A number of candidates for such expansions are readily available from
the existing results about the CSP. There are however several questions that seem to be
more intriguing; they mainly concern with relationship between the IMP, CSP and other
problems.

The first one is how the tractability of the IMP can be used in applications such as
Nullstellensatz and SOS proofs. The several results we obtain here barely scratch the surface.
Establishing connections of this kind seem important, because it would allow for using a
much larger toolbox than the usual Gröbner Basis. Note also that constructing an explicit
Gröbner Basis beyond Boolean case is getting very hard very quickly; such techniques may
be not very useful in more general cases.

One of the principal techniques in solving the CSP is constraint propagation, that is,
the study how local interaction between constraints may tighten them, and even sometimes
refute the existence of a solution. In some cases such as IMPs with the dual-discriminator
polymorphism, computing the S-polynomial, and therefore constructing a Gröbner Basis
is equivalent to establishing so-called (2, 3)-consistency. This however is not the case in
general. On the other hand, constraint propagation is done through some very simple pp-
definitions, and so Theorem 2.2.4 (1) and its proof imply that there likely are some parallel
constructions with polynomials and ideals.

209

The main tool for solving restricted degree problems IMPd(Γ) is constructing a d-
truncated Gröbner Basis, in which the degrees of polynomials are also bounded by d. It
is interesting what effect restricting the degree of polynomials in a generating set has on
the properties of the underlying CSP. More precisely, if I(P) is the ideal corresponding
to a CSP instance P, and Id(P) is the ideal generated by the truncated Gröbner Basis,
then Id(P) can be translated back, to a less constrained CSP P ′. What is the connection
between P and P ′? For example, every instance P of CSP(Γ) where Γ is Boolean and
has a semilattice polymorphism, then P is equivalent to a Horn- or AntiHorn-Satisfiability.
Restricting the degrees of polynomials in Id(P) is apparently equivalent to removing all
clauses of length more than d in P.

Approximation of VCSPs and MinHOM. Here we established several positive results
for (constant) approximability of the MinHOM problem for digraphs and gave a complete
classification of the approximable cases for graphs. We conjecture, see Conjecture 6.1.6,
that the class of DAT-free digraphs (i.e., digraphs with bounded width) is the right class
of digraphs that establishes the dichotomy for approximation of the MinHOM. Hence, a
major open problem is to verify this conjecture. Another natural question is whether our
approximation factors can be improved, in particular, if they can be independent of the
size of H. Another interesting question would be studying the MinHOM problem for hy-
pergraphs i.e. relational structures. While the focus of our work is on digraphs, one can
consider the minimum cost homomorphism problem for hypergraphs or equivalently VC-
SPs. That is, characterizing hypergraphs H for which MinHOM(H) admits a constant factor
approximation.

Strong inapproximability results are known for special cases of MinHOM. It is a classical
result that Vertex Cover has a 2-approximation algorithm and inapproximability results are
also known. The authors of [63] proved that it is NP-hard to approximate Vertex Cover
within factor 1.3606. Later, the factor was improved to (

√
2 − ϵ) for any ϵ > 0 [132].

Moreover, assuming UGC, Vertex Cover cannot be approximated within any constant factor
better than 2. While such inapproximability of special cases of the MinHOM are known, to
the best of our knowledge, there is no work that studies inapporixmability of MinHOM in
a unifying framework. We therefore propose the following problems: what are the classes of
digraphs for which MinHOM is APX-complete? Is there an universal constant δ such that
the inapproximability of the MinHOM is bounded away from 1 by at least δ for all digraphs
H for which MinHOM is APX-complete? Answering similar questions for hypergraphs is
an interesting research direction.

Sparsification and differential privacy for VCSPs. We presented sparsification and
differentially private algorithms for a very important class of VCSPs, namely submodular
functions, that appear in numerous applications in machine learning and data mining. We

210

believe our sparsification technique will be useful in studying sparsification of VCSPs and
characterizing the tractable cases. Thus, an important step towards understanding sparsi-
fication of VCSPs is to understand the limitations (e.g., in terms of time complexity) and
effectiveness of the importance sampling technique.

Our approach to design differentially private algorithms for submodular functions is
rather ad hoc and it is perhaps unlikely to extend it to general VCSPs. Hence, in order
to address the privacy issue for VCSPs, a new way of thinking is required. The main tool
for exact solvability of VCSPs and their approximation are the so-called basic LP and
basic SDP. These two are among the most fundamental and powerful tools in algorithmic
design. An important problem that is required to be addressed here is solving LPs and SDPs
under differential privacy. Note that, not only is this problem of great interest because of
applications of LPs and SDPs, but also is the key step towards achieving a full understanding
of VCSPs for which we can design efficient differentially private algorithms. Hsu et al. [116]
provide a differentially private algorithm for solving LPs in restricted settings. To the best
of our knowledge, no differentially private algorithm is known for solving SDPs.

211

Bibliography

[1] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsifica-
tion, spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS), pages 5–14, 2012.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Spectral sparsification in
dynamic graph streams. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, (APPROX/RANDOM), pages 1–10, 2013.

[3] Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff,
and Qin Zhang. On sketching quadratic forms. In Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science (ITCS), pages 311–319,
2016.

[4] Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of ap-
proximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst.
Sci., 54(2):317–331, 1997.

[5] Albert Atserias, Andrei A. Bulatov, and Víctor Dalmau. On the power of k -
consistency. In Proceedings of the 34th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 279–290, 2007.

[6] Albert Atserias and Joanna Ochremiak. Proof complexity meets algebra. ACM Trans.
Comput. Log., 20(1):1:1–1:46, 2019.

[7] Per Austrin. Towards sharp inapproximability for any 2-csp. In Proceedings of the
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
307–317, 2007.

[8] Kyriakos Axiotis, Adam Karczmarz, Anish Mukherjee, Piotr Sankowski, and Adrian
Vladu. Decomposable submodular function minimization via maximum flow. In
Proceedings of the 38th International Conference on Machine Learning (ICML), pages
446–456, 2021.

[9] Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, and Olivier Gauwin. Efficient
enumeration for conjunctive queries over x-underbar structures. In Proceedings of the
24th International Workshop Computer Science Logic (CSL), 19th Annual Conference
of the EACSL, pages 80–94, 2010.

[10] Wenruo Bai, Rishabh K. Iyer, Kai Wei, and Jeff A. Bilmes. Algorithms for optimizing
the ratio of submodular functions. In Proceedings of the 33nd International Conference
on Machine Learning (ICML), pages 2751–2759, 2016.

212

[11] Ramakrishna Bairi, Rishabh K. Iyer, Ganesh Ramakrishnan, and Jeff A. Bilmes. Sum-
marization of multi-document topic hierarchies using submodular mixtures. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
(ACL), pages 553–563, 2015.

[12] Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of
sparsification for graphs and hypergraphs. In Proceedings of the 60th IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 910–928, 2019.

[13] Amotz Bar-Noy, Mihir Bellare, Magnús M. Halldórsson, Hadas Shachnai, and Tami
Tamir. On chromatic sums and distributed resource allocation. Inf. Comput.,
140(2):183–202, 1998.

[14] Libor Barto. The dichotomy for conservative constraint satisfaction problems revis-
ited. In Proceedings of the 26th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 301–310, 2011.

[15] Libor Barto. Constraint satisfaction problem and universal algebra. ACM SIGLOG
News, 1(2):14–24, 2014.

[16] Libor Barto. The constraint satisfaction problem and universal algebra. Bull. Symb.
Log., 21(3):319–337, 2015.

[17] Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local
consistency methods. J. ACM, 61(1):3:1–3:19, 2014.

[18] Libor Barto, Andrei A. Krokhin, and Ross Willard. Polymorphisms, and how to
use them. In The Constraint Satisfaction Problem: Complexity and Approximability,
volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017.

[19] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan
sparsifiers. SIAM J. Comput., 41(6):1704–1721, 2012.

[20] Paul Beame, Russell Impagliazzo, Jan Krajícek, Toniann Pitassi, and Pavel Pudlák.
Lower bound on hilbert’s nullstellensatz and propositional proofs. In Proceedings
of the 35th IEEE Annual Symposium on Foundations of Computer Science (FOCS),
pages 794–806. IEEE Computer Society, 1994.

[21] Thomas Becker and Volker Weispfenning. Gröbner bases. In Gröbner Bases, pages
187–242. Springer, 1993.

[22] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2)
time. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(STOC), pages 47–55, 1996.

[23] András A. Benczúr and David R. Karger. Randomized approximation schemes for
cuts and flows in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015.

[24] Arpitha P. Bharathi and Monaldo Mastrolilli. Ideal membership problem and a ma-
jority polymorphism over the ternary domain. In Proceedings of the 45th International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 13:1–
13:13, 2020.

213

[25] Arpitha P. Bharathi and Monaldo Mastrolilli. Ideal membership problem for boolean
minority. CoRR, abs/2006.16422, 2020.

[26] Arpitha P. Bharathi and Monaldo Mastrolilli. Ideal membership problem for boolean
minority and dual discriminator. In Proceedings of the 46th International Symposium
on Mathematical Foundations of Computer Science (MFCS), pages 16:1–16:20, 2021.

[27] Jesús M Bilbao, Julio R Fernández, Nieves Jiménez, and Jorge J López. A survey
of bicooperative games. In Pareto Optimality, Game Theory And Equilibria, pages
187–216. Springer, 2008.

[28] V.G. Bodnarchuk, L.A. Kaluzhnin, V.N. Kotov, and B.A. Romov. Galois theory for
post algebras. i. Kibernetika, 3:1–10, 1969.

[29] Richard C. Brewster, Tomás Feder, Pavol Hell, Jing Huang, and Gary MacGillivray.
Near-unanimity functions and varieties of reflexive graphs. SIAM J. Discrete Math.,
22(3):938–960, 2008.

[30] Bruno Buchberger. Bruno buchbergerÃ¢s phd thesis 1965: An algorithm for finding
the basis elements of the residue class ring of a zero dimensional polynomial ideal.
Journal of Symbolic Computation, 41(3):475 – 511, 2006. Logic, Mathematics and
Computer Science: Interactions in honor of Bruno Buchberger (60th birthday).

[31] Andrei A. Bulatov. Tractable conservative constraint satisfaction problems. In Pro-
ceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS), page
321, 2003.

[32] Andrei A. Bulatov. H-coloring dichotomy revisited. Theor. Comput. Sci., 349(1):31–
39, 2005.

[33] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Log., 12(4):24:1–24:66, 2011.

[34] Andrei A. Bulatov. Conservative constraint satisfaction re-revisited. J. Comput. Syst.
Sci., 82(2):347–356, 2016.

[35] Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Proceedings of the
58th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages
319–330, 2017.

[36] Andrei A. Bulatov and Víctor Dalmau. A simple algorithm for mal’tsev constraints.
SIAM J. Comput., 36(1):16–27, 2006.

[37] Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. Inf. Comput., 205(5):651–678, 2007.

[38] Andrei A. Bulatov and Peter Jeavons. An algebraic approach to multi-sorted con-
straints. In Proceedings of the 9th International Conference on Principles and Practice
of Constraint Programming (CP), pages 183–198, 2003.

[39] Andrei A. Bulatov, Peter Jeavons, and Andrei A. Krokhin. Classifying the complexity
of constraints using finite algebras. SIAM J. Comput., 34(3):720–742, 2005.

214

[40] Andrei A. Bulatov, Andrei A. Krokhin, and Benoît Larose. Dualities for constraint sat-
isfaction problems. In Complexity of Constraints - An Overview of Current Research
Themes [Result of a Dagstuhl Seminar], volume 5250 of Lecture Notes in Computer
Science, pages 93–124. Springer, 2008.

[41] Andrei A. Bulatov and Akbar Rafiey. On the complexity of csp-based ideal member-
ship problems. CoRR, abs/2011.03700, 2020.

[42] Andrei A. Bulatov and Akbar Rafiey. The ideal membership problem and abelian
groups. In Proceedings of the 39th International Symposium on Theoretical Aspects
of Computer Science (STACS), pages 18:1–18:16, 2022.

[43] Andrei A. Bulatov and Akbar Rafiey. On the complexity of csp-based ideal mem-
bership problems. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), page 436–449, 2022.

[44] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications,
extensions, and lower bounds. In Proceedings of the 14th International Conference on
Theory of Cryptography (TCC), pages 635–658, 2016.

[45] S. Burris and H.P. Sankappanavar. A course in universal algebra, volume 78 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1981.

[46] Samuel R. Buss and Toniann Pitassi. Good degree bounds on nullstellensatz refuta-
tions of the induction principle. In Proceedings of the 11th Annual IEEE Conference
on Computational Complexity (CCC), pages 233–242, 1996.

[47] Silvia Butti and Stanislav Zivný. Sparsification of binary csps. SIAM J. Discret.
Math., 34(1):825–842, 2020.

[48] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM J. Comput.,
40(6):1740–1766, 2011.

[49] Anamay Chaturvedi, Huy Le Nguyen, and Lydia Zakynthinou. Differentially private
decomposable submodular maximization. In Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI), pages 6984–6992, 2021.

[50] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding
via exchange properties of combinatorial structures. In Proceedings of the 51th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 575–584, 2010.

[51] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maxi-
mization via the multilinear relaxation and contention resolution schemes. SIAM J.
Comput., 43(6):1831–1879, 2014.

[52] Yu Chen, Sanjeev Khanna, and Ansh Nagda. Near-linear size hypergraph cut sparsi-
fiers. In Proceedings of the 61st IEEE Annual Symposium on Foundations of Computer
Science (FOCS), pages 61–72, 2020.

[53] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzo. Using the groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing (STOC), pages 174–183, 1996.

215

[54] David A. Cohen, Martin C. Cooper, Peter Jeavons, and Andrei A. Krokhin. The
complexity of soft constraint satisfaction. Artif. Intell., 170(11):983–1016, 2006.

[55] David A. Cohen, Martin C. Cooper, Peter G. Jeavons, Andrei A. Krokhin, Robert
Powell, and Stanislav Zivny. Binarisation for valued constraint satisfaction problems.
SIAM J. Discrete Math., 31(4):2279–2300, 2017.

[56] Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron
Sidford, and Adrian Vladu. Almost-linear-time algorithms for markov chains and
new spectral primitives for directed graphs. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 410–419, 2017.

[57] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science (ITCS), pages
181–190, 2015.

[58] Martin C. Cooper, David A. Cohen, and Peter Jeavons. Characterising tractable
constraints. Artif. Intell., 65(2):347–361, 1994.

[59] David Cox, John Little, and Donal OShea. Ideals, varieties, and algorithms: an in-
troduction to computational algebraic geometry and commutative algebra. Springer
Science & Business Media, 2013.

[60] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of
boolean constraint satisfaction problems, volume 7 of SIAM monographs on discrete
mathematics and applications. SIAM, 2001.

[61] Víctor Dalmau, Andrei A. Krokhin, and Rajsekar Manokaran. Towards a charac-
terization of constant-factor approximable finite-valued csps. J. Comput. Syst. Sci.,
97:14–27, 2018.

[62] Alicia Dickenstein, Noaï Fitchas, Marc Giusti, and Carmen Sessa. The membership
problem for unmixed polynomial ideals is solvable in single exponential time. Discret.
Appl. Math., 33(1-3):73–94, 1991.

[63] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex
cover. Annals of Mathematics, 162(1):439–485, 2005.

[64] Shahar Dobzinski and Michael Schapira. An improved approximation algorithm for
combinatorial auctions with submodular bidders. In Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1064–1073, 2006.

[65] Delbert Dueck and Brendan J. Frey. Non-metric affinity propagation for unsupervised
image categorization. In Proceedings of the IEEE 11th International Conference on
Computer Vision ICCV, pages 1–8, 2007.

[66] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni
Naor. Our data, ourselves: Privacy via distributed noise generation. In Proceedings of
the 25th Annual International Conference on the Theory and Applications of Crypto-
graphic Technique (EUROCRYPT), pages 486–503, 2006.

216

[67] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing (STOC), pages 371–380,
2009.

[68] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[69] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential
privacy. In Proceedings of the 51th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 51–60, 2010.

[70] Jack Edmonds. Matroids and the greedy algorithm. Math. Program., 1(1):127–136,
1971.

[71] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combi-
natorial Optimization - Eureka, You Shrink!, pages 11–26, 2001.

[72] Alina Ene and Huy L. Nguyen. Towards nearly-linear time algorithms for submodular
maximization with a matroid constraint. In Proceedings of the 46th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 54:1–54:14,
2019.

[73] Alina Ene, Huy L. Nguyen, and László A. Végh. Decomposable submodular function
minimization: Discrete and continuous. In Proceedings of the 31st Conference on
Neural Information Processing Systems (NeurIPS), pages 2870–2880, 2017.

[74] Alina Ene, Jan Vondrák, and Yi Wu. Local distribution and the symmetry gap:
Approximability of multiway partitioning problems. In Proceedings of the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 306–325, 2013.

[75] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. Efficient
computation of zero-dimensional gröbner bases by change of ordering. J. Symb. Com-
put., 16(4):329–344, 1993.

[76] Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list
homomorphisms. Journal of Graph Theory, 42(1):61–80, 2003.

[77] Tomás Feder, Pavol Hell, Peter Jonsson, Andrei A. Krokhin, and Gustav Nordh.
Retractions to pseudoforests. SIAM J. Discrete Math., 24(1):101–112, 2010.

[78] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through datalog and group theory. SIAM
J. Comput., 28(1):57–104, 1998.

[79] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through datalog and group theory. SIAM
J. Comput., 28(1):57–104, 1998.

[80] Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J.
Comput., 39(1):122–142, 2009.

217

[81] Uriel Feige and Jan Vondrák. Approximation algorithms for allocation problems:
Improving the factor of 1 - 1/e. In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 667–676, 2006.

[82] Arnold Filtser and Robert Krauthgamer. Sparsification of two-variable valued con-
straint satisfaction problems. SIAM J. Discret. Math., 31(2):1263–1276, 2017.

[83] Alexander Fix, Thorsten Joachims, Sung Min Park, and Ramin Zabih. Structured
learning of sum-of-submodular higher order energy functions. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), pages 3104–3111, 2013.

[84] D. Geiger. Closed systems of function and predicates. Pacific Journal of Mathematics,
pages 95–100, 1968.

[85] Krzysztof Giaro, Robert Janczewski, Marek Kubale, and Michal Malafiejski. A 27/26-
approximation algorithm for the chromatic sum coloring of bipartite graphs. In Pro-
ceedings of the Approximation Algorithms for Combinatorial Optimization, 5th Inter-
national Workshop (APPROX), pages 135–145, 2002.

[86] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, 1995.

[87] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, 1995.

[88] Ryan Gomes and Andreas Krause. Budgeted nonparametric learning from data
streams. In Proceedings of the 27th International Conference on Machine Learning
(ICML), pages 391–398, 2010.

[89] João Gouveia, Monique Laurent, Pablo A. Parrilo, and Rekha R. Thomas. A new
semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs.
Math. Program., 133(1-2):203–225, 2012.

[90] João Gouveia, Pablo A. Parrilo, and Rekha R. Thomas. Theta bodies for polynomial
ideals. SIAM J. Optim., 20(4):2097–2118, 2010.

[91] Dima Grigoriev. Tseitin’s tautologies and lower bounds for nullstellensatz proofs.
In Proceedings of the 39th Annual Symposium on Foundations of Computer Science
(FOCS), pages 648–652, 1998.

[92] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and
polynomial identity testing: The ideal proof system. J. ACM, 65(6):37:1–37:59, 2018.

[93] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and
its consequences in combinatorial optimization. Comb., 1(2):169–197, 1981.

[94] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.
Differentially private combinatorial optimization. In Proceedings of the 31st Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1106–1125, 2010.

218

[95] Gregory Z. Gutin, Pavol Hell, Arash Rafiey, and Anders Yeo. A dichotomy for mini-
mum cost graph homomorphisms. Eur. J. Comb., 29(4):900–911, 2008.

[96] Gregory Z. Gutin, Arash Rafiey, and Anders Yeo. Minimum cost homomorphisms to
semicomplete bipartite digraphs. SIAM J. Discrete Math., 22(4):1624–1639, 2008.

[97] Gregory Z. Gutin, Arash Rafiey, Anders Yeo, and Michael Tso. Level of repair anal-
ysis and minimum cost homomorphisms of graphs. Discrete Applied Mathematics,
154(6):881–889, 2006.

[98] Wolfgang Gutjahr, Emo Welzl, and Gerhard J. Woeginger. Polynomial graph-
colorings. Discrete Applied Mathematics, 35(1):29–45, 1992.

[99] Magnús M. Halldórsson, Guy Kortsarz, and Hadas Shachnai. Minimizing average
completion of dedicated tasks and interval graphs. In Proceedings of the Approxi-
mation, Randomization and Combinatorial Optimization: Algorithms and Techniques
(APPROX/RANDOM), pages 114–126, 2001.

[100] Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[101] Pavol Hell, Jing Huang, Ross M. McConnell, and Arash Rafiey. Interval-like graphs
and digraphs. In Proceedings of the 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 68:1–68:13, 2018.

[102] Pavol Hell, Jing Huang, Ross M McConnell, and Arash Rafiey. Min-orderable di-
graphs. SIAM Journal on Discrete Mathematics, 34(3):1710–1724, 2020.

[103] Pavol Hell, Monaldo Mastrolilli, Mayssam Mohammadi Nevisi, and Arash Rafiey.
Approximation of minimum cost homomorphisms. In Proceedings of the 20th Annual
European Symposium on Algorithms Algorithms (ESA), pages 587–598, 2012.

[104] Pavol Hell and Jaroslav Nesetril. On the complexity of H -coloring. J. Comb. Theory,
Ser. B, 48(1):92–110, 1990.

[105] Pavol Hell and Jaroslav Nesetril. Graphs and homomorphisms. Oxford University
Press, 2004.

[106] Pavol Hell and Mayssam Mohammadi Nevisi. Minimum cost homomorphisms with
constrained costs. In Proceedings of the Computing and Combinatorics - 22nd Inter-
national Conference (COCOON), pages 194–206, 2016.

[107] Pavol Hell, Akbar Rafiey, and Arash Rafiey. Bi-arc digraphs and conservative poly-
morphisms. arXiv preprint arXiv:1608.03368, 2016.

[108] Pavol Hell and Arash Rafiey. The dichotomy of list homomorphisms for digraphs.
In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1703–1713, 2011.

[109] Pavol Hell and Arash Rafiey. The dichotomy of minimum cost homomorphism prob-
lems for digraphs. SIAM J. Discrete Math., 26(4):1597–1608, 2012.

[110] Pavol Hell and Arash Rafiey. Monotone proper interval digraphs and min-max order-
ings. SIAM J. Discrete Math., 26(4):1576–1596, 2012.

219

[111] Grete Hermann. Die frage der endlich vielen schritte in der theorie der polynomideale.
Mathematische Annalen, 95(1):736–788, 1926.

[112] David Hilbert. Über die darstellung definiter formen als summe von formenquadraten.
Mathematische Annalen, 32(3):342–350, 1888.

[113] David Hilbert. Ueber die theorie der algebraischen formen. Mathematische annalen,
36(4):473–534, 1890.

[114] David Hilbert. Über die vollen invariantensysteme. Mathematische annalen,
42(3):313–373, 1893.

[115] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[116] Justin Hsu, Aaron Roth, Tim Roughgarden, and Jonathan R. Ullman. Privately solv-
ing linear programs. In Proceedings of the 41st International Colloquium on Automata,
Languages, and Programming (ICALP), pages 612–624, 2014.

[117] Anna Huber and Vladimir Kolmogorov. Towards minimizing k-submodular functions.
In Proceedings of the 2nd International Symposium on Combinatorial Optimization
(ISCO), pages 451–462, 2012.

[118] Pawel M. Idziak, Petar Markovic, Ralph McKenzie, Matthew Valeriote, and Ross
Willard. Tractability and learnability arising from algebras with few subpowers. SIAM
J. Comput., 39(7):3023–3037, 2010.

[119] Satoru Iwata, Shin-ichi Tanigawa, and Yuichi Yoshida. Improved approximation al-
gorithms for k-submodular function maximization. In Proceedings of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 404–413, 2016.

[120] Klaus Jansen. Approximation results for the optimum cost chromatic partition prob-
lem. J. Algorithms, 34(1):54–89, 2000.

[121] Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints.
J. ACM, 44(4):527–548, 1997.

[122] Christopher Jefferson, Peter Jeavons, Martin J. Green, and M. R. C. van Dongen.
Representing and solving finite-domain constraint problems using systems of polyno-
mials. Annals of Mathematics and Artificial Intelligence, 67(3):359–382, Mar 2013.

[123] Tao Jiang and Douglas B West. Coloring of trees with minimum sum of colors. Journal
of Graph Theory, 32(4):354–358, 1999.

[124] Peter Jonsson and Gustav Nordh. Introduction to the maximum solution problem.
In Complexity of Constraints - An Overview of Current Research Themes [Result of
a Dagstuhl Seminar]., pages 255–282, 2008.

[125] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral
hypergraph sparsifiers of nearly linear size. In Proceedings of the 62nd IEEE Annual
Symposium on Foundations of Computer Science (FOCS), pages 1159–1170, 2021.

220

[126] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards
tight bounds for spectral sparsification of hypergraphs. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 598–611,
2021.

[127] David R. Karger and Matthew S. Levine. Random sampling in residual graphs. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC),
pages 63–66, 2002.

[128] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 137–146, 2003.

[129] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The ap-
proximability of constraint satisfaction problems. SIAM J. Comput., 30(6):1863–1920,
2000.

[130] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The ap-
proximability of constraint satisfaction problems. SIAM J. Comput., 30(6):1863–1920,
2000.

[131] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inap-
proximability results for max-cut and other 2-variable csps? In Proceedings of the
45th Symposium on Foundations of Computer Science (FOCS), pages 146–154, 2004.

[132] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and
grassmann graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 576–589, 2017.

[133] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs.
In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science
(ITCS), pages 367–376, 2015.

[134] Pushmeet Kohli, Lubor Ladicky, and Philip H. S. Torr. Robust higher order potentials
for enforcing label consistency. Int. J. Comput. Vis., 82(3):302–324, 2009.

[135] Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and con-
straint satisfaction. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 205–213, 1998.

[136] Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolinek. The complexity of
general-valued csps. In Proceedings of the IEEE 56th Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 1246–1258, 2015.

[137] Andreas Krause and Daniel Golovin. Submodular function maximization. Tractability,
3:71–104, 2014.

[138] Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information
in graphical models. In Proceedings of the 21st Conference in Uncertainty in Artificial
Intelligence (UAI), pages 324–331, 2005.

221

[139] Andreas Krause and Carlos Guestrin. Near-optimal observation selection using sub-
modular functions. In Proceedings of the 22nd AAAI Conference on Artificial Intel-
ligence (AAAI), pages 1650–1654, 2007.

[140] Leo G. Kroon, Arunabha Sen, Haiyong Deng, and Asim Roy. The optimal cost chro-
matic partition problem for trees and interval graphs. In Proceedings of the Graph-
Theoretic Concepts in Computer Science, 22nd International Workshop (WG), pages
279–292, 1996.

[141] Ewa Kubicka and Allen J. Schwenk. An introduction to chromatic sums. In Computer
Trends in the 1990s - Proceedings of the 1989 ACM 17th Annual Computer Science
Conference, Louisville, Kentucky, USA, February 21-23, 1989, pages 39–45, 1989.

[142] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K. Vishnoi. On
lp-based approximability for strict csps. In Proceedings of the 22nd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1560–1573, 2011.

[143] J. Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd In-
ternational World Wide Web Conference (WWW), Companion Volume, pages 1343–
1350, 2013.

[144] Benoît Larose. Algebra and the complexity of digraph csps: a survey. In The Con-
straint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl
Follow-Ups, pages 267–285. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[145] Monique Laurent. Semidefinite representations for finite varieties. Math. Program.,
109(1):1–26, 2007.

[146] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in õ(vrank) iterations and faster algorithms for maximum flow. In
Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 424–433, 2014.

[147] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-
linear time. SIAM J. Comput., 47(6):2315–2336, 2018.

[148] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the
MAX 2-sat and MAX DI-CUT problems. In Proceedings of the 9th International
Conference on Integer Programming and Combinatorial Optimization (IPCO), pages
67–82, 2002.

[149] Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In Proceedings
of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 127–136, 2013.

[150] Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applica-
tions. In Proceedings of the 31st Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 2308–2318, 2017.

[151] Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, cheeger in-
equalities and spectral clustering. In Proceedings of the 35th International Conference
on Machine Learning (ICML), pages 3020–3029, 2018.

222

[152] Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summariza-
tion. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 510–520, 2011.

[153] Erik M. Lindgren, Shanshan Wu, and Alexandros G. Dimakis. Leveraging sparsity for
efficient submodular data summarization. In Proceedings of the 30th Annual Confer-
ence on Neural Information Processing Systems (NeurIPS), pages 3414–3422, 2016.

[154] László Lovász. On the shannon capacity of a graph. IEEE Trans. Inf. Theory, 25(1):1–
7, 1979.

[155] László Lovász. Semidefinite programs and combinatorial optimization. In Recent
advances in algorithms and combinatorics, pages 137–194. Springer, 2003.

[156] Gary MacGillivray and Jacobus Swarts. The ck-extended graft construction. Discrete
Applied Mathematics, 159(12):1293–1301, 2011.

[157] Aleksander Madry. Fast approximation algorithms for cut-based problems in undi-
rected graphs. In Proceedings of the 51th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 245–254, 2010.

[158] Michael W. Mahoney. Randomized algorithms for matrices and data. Found. Trends
Mach. Learn., 3(2):123–224, 2011.

[159] Konstantin Makarychev and Yury Makarychev. Approximation algorithms for csps.
In The Constraint Satisfaction Problem: Complexity and Approximability, pages 287–
325. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[160] Dániel Marx. Graph colouring problems and their applications in scheduling. Peri-
odica Polytechnica Electrical Engineering (Archives), 48(1-2):11–16, 2004.

[161] Monaldo Mastrolilli. The complexity of the ideal membership problem for constrained
problems over the boolean domain. ACM Trans. Algorithms, 17(4):32:1–32:29, 2021.

[162] Monaldo Mastrolilli and Arash Rafiey. On the approximation of minimum cost ho-
momorphism to bipartite graphs. Discrete Applied Mathematics, 161(4-5):670–676,
2013.

[163] Ernst W. Mayr. Membership in plynomial ideals over Q is exponential space complete.
In Proceedings of the 6th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), pages 400–406, 1989.

[164] Ernst W Mayr and Albert R Meyer. The complexity of the word problems for com-
mutative semigroups and polynomial ideals. Advances in mathematics, 46(3):305–329,
1982.

[165] Ralph N McKenzie, George F McNulty, and Walter F Taylor. Algebras, lattices,
varieties, volume 383. American Mathematical Soc., 2018.

[166] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 94–103, 2007.

223

[167] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast con-
strained submodular maximization: Personalized data summarization. In Proceedings
of the 33rd International Conference on Machine Learning (ICML), pages 1358–1367,
2016.

[168] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák,
and Andreas Krause. Lazier than lazy greedy. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI), pages 1812–1818, 2015.

[169] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed
submodular maximization. J. Mach. Learn. Res., 17:238:1–238:44, 2016.

[170] Baharan Mirzasoleiman, Morteza Zadimoghaddam, and Amin Karbasi. Fast dis-
tributed submodular cover: Public-private data summarization. In Proceedings of
the 30th Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 3594–3602, 2016.

[171] Marko Mitrovic, Mark Bun, Andreas Krause, and Amin Karbasi. Differentially private
submodular maximization: Data summarization in disguise. In Proceedings of the 34th
International Conference on Machine Learning (ICML), pages 2478–2487, 2017.

[172] Marko Mitrovic, Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Data
summarization at scale: A two-stage submodular approach. In Proceedings of the 35th
International Conference on Machine Learning (ICML), pages 3593–3602, 2018.

[173] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

[174] T.S. Motzkin. The arithmetic-geometric inequality, inequalities (proc. sympos. wright-
patterson air force base, ohio, 1965), 1967.

[175] George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approximating
the maximum of a submodular set function. Math. Oper. Res., 3(3):177–188, 1978.

[176] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis
of approximations for maximizing submodular set functions - I. Math. Program.,
14(1):265–294, 1978.

[177] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of ap-
proximations for maximizing submodular set functions—i. Math. Program., 14(1):265–
294, 1978.

[178] Ryan O’Donnell. SOS is not obviously automatizable, even approximately. In Pro-
ceedings of the 2017 ACM Conference on Innovations in Theoretical Computer Scienc
(ITCS), pages 59:1–59:10, 2017.

[179] Naoto Ohsaka and Yuichi Yoshida. Monotone k-submodular function maximization
with size constraints. In Proceedings of the 29th Annual Conference on Neural Infor-
mation Processing Systems (NIPS), pages 694–702, 2015.

[180] Christos H. Papadimitriou, Michael Schapira, and Yaron Singer. On the hardness of
being truthful. In Proceedings of the 49th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 250–259, 2008.

224

[181] Dona Papert. Congruence relations in semi-lattices. J. London Math. Soc., 39:723–
729, 1964.

[182] Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. A coverage-
based approach to recommendation diversity on similarity graph. In Proceedings of
the 10th ACM Conference on Recommender Systems (RecSys), pages 15–22, 2016.

[183] Pablo A Parrilo. An explicit construction of distinguished representations of polyno-
mials nonnegative over finite sets. IfA AUT02-02, ETH Zürich, 2002.

[184] Pablo A Parrilo. Exploiting algebraic structure in sum of squares programs. In
Positive polynomials in control, pages 181–194. Springer, 2005.

[185] George M Phillips. Interpolation and approximation by polynomials, volume 14.
Springer Science & Business Media, 2003.

[186] EL Post. The two-valued iterative systems of mathematical logic. number 5 in annals
of math. Studies. Princeton Univ. Press, 1941.

[187] Akbar Rafiey, Arash Rafiey, and Thiago Santos. Toward a dichotomy for approxima-
tion of h-coloring. In Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 91:1–91:16, 2019.

[188] Akbar Rafiey and Yuichi Yoshida. Fast and private submodular and k-submodular
functions maximization with matroid constraints. In Proceedings of the 37th Interna-
tional Conference on Machine Learning (ICML), pages 7887–7897, 2020.

[189] Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular func-
tions. In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI),
pages 10336–10344, 2022.

[190] Prasad Raghavendra. Optimal algorithms and inapproximability results for every
csp? In Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC), pages 245–254, 2008.

[191] Prasad Raghavendra and David Steurer. How to round any CSP. In Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 586–594, 2009.

[192] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares
proofs. In Proceedings of the 44th International Colloquium on Automata, Languages,
and Programming, (ICALP), pages 80:1–80:13, 2017.

[193] Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Com-
plex., 7(4):291–324, 1998.

[194] Fred Richman. Constructive aspects of noetherian rings. Proceedings of the American
Mathematical Society, 44(2):436–441, 1974.

[195] Shinsaku Sakaue. On maximizing a monotone k-submodular function subject to a
matroid constraint. Discrete Optimization, 23:105–113, 2017.

225

[196] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of
the 10th Annual ACM Symposium on Theory of Computing (STOC), pages 216–226,
1978.

[197] Abraham Seidenberg. Constructions in algebra. Transactions of the American Math-
ematical Society, 197:273–313, 1974.

[198] Ishant Shanu, Chetan Arora, and Parag Singla. Min norm point algorithm for higher
order MRF-MAP inference. In Proceedings of the 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5365–5374, 2016.

[199] Ajit P. Singh, Andrew Guillory, and Jeff A. Bilmes. On bisubmodular maximiza-
tion. In Proceedings of the 15th International Conference on Artificial Intelligence
and Statistics (AISTATS), pages 1055–1063, 2012.

[200] Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proceed-
ings of the 30th Annual ACM-SIAM Symposium on Discrete (SODA), pages 2570–
2581, 2019.

[201] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J.
Comput., 40(4):981–1025, 2011.

[202] Aravind Srinivasan. Improved approximations of packing and covering problems. In
Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC),
pages 268–276, 1995.

[203] Peter Stobbe and Andreas Krause. Efficient minimization of decomposable submod-
ular functions. In Proceedings of the 24th Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 2208–2216, 2010.

[204] Matthew J. Streeter and Daniel Golovin. An online algorithm for maximizing submod-
ular functions. In Proceedings of the 22nd Annual Conference on Neural Information
Processing Systems (NeurIPS), pages 1577–1584, 2008.

[205] Ágnes Szendrei. Clones in universal algebra. Les presses de L’universite de Montreal,
1986.

[206] Rustem Takhanov. A dichotomy theorem for the general minimum cost homomor-
phism problem. In Proceedings of the 27th International Symposium on Theoretical
Aspects of Computer Science (STACS), pages 657–668, 2010.

[207] Johan Thapper and Stanislav Zivný. The complexity of finite-valued csps. J. ACM,
63(4):37:1–37:33, 2016.

[208] Johan Thapper and Stanislav Zivný. The limits of SDP relaxations for general-valued
csps. ACM Trans. Comput. Theory, 10(3):12:1–12:22, 2018.

[209] Sebastian Tschiatschek, Rishabh K. Iyer, Haochen Wei, and Jeff A. Bilmes. Learning
mixtures of submodular functions for image collection summarization. In Proceedings
of the 28th Annual Conference on Neural Information Processing Systems (NeurIPS),
pages 1413–1421, 2014.

226

[210] Hannes Uppman. The complexity of three-element min-sol and conservative min-cost-
hom. In Proceedings of the 40th International Colloquium on Automata, Languages,
and Programming (ICALP), pages 804–815, 2013.

[211] Hannes Uppman. Computational complexity of the extended minimum cost homomor-
phism problem on three-element domains. In Proceedings of the 31st International
Symposium on Theoretical Aspects of Computer Science (STACS), pages 651–662,
2014.

[212] Marc R.C. van Dongen. Constraints, Varieties, and Algorithms. PhD thesis, Depart-
ment of Computer Science, University College, Cork, Ireland, 2002.

[213] Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Hypergraph cuts with general
splitting functions. CoRR, abs/2001.02817, 2020.

[214] Nate Veldt, Austin R. Benson, and Jon M. Kleinberg. Minimizing localized ratio cut
objectives in hypergraphs. In Proceedings of the 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), pages 1708–1718, 2020.

[215] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Joint optimization of seg-
mentation and appearance models. In ICCV, pages 755–762, 2009.

[216] Jan Vondrák. Optimal approximation for the submodular welfare problem in the
value oracle model. In Proceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC), pages 67–74, 2008.

[217] Justin Ward and Stanislav Zivny. Maximizing bisubmodular and k-submodular func-
tions. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1468–1481, 2014.

[218] Benjamin Weitz. Polynomial proof systems, effective derivations, and their applica-
tions in the sum-of-squares hierarchy. PhD thesis, UC Berkeley, 2017.

[219] Angelika Wiegele. Nonlinear optimization techniques applied to combinatorial opti-
mization problems. na, 2006.

[220] Yuichi Yoshida. Nonlinear Laplacian for digraphs and its applications to network
analysis. In Proceedings of the 9th ACM International Conference on Web Search and
Data Mining (WSDM), pages 483–492, 2016.

[221] Yuichi Yoshida. Cheeger inequalities for submodular transformations. In Proceedings
of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2582–2601, 2019.

[222] Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Proceedings of the 58th
IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 331–
342, 2017.

227

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Constraint Satisfaction Problems
	Ideal Membership Problem and CSPs
	Valued Constraint Satisfaction Problems
	Approximation of VCSPs and Minimum Cost H-coloring
	Sparsification of VCSPs and submodularity
	VCSPs under differential privacy

	Ideal Membership Problem and CSPs
	Preliminaries
	Ideals, varieties and the Ideal Membership Problem
	The ideal-CSP correspondence
	The Ideal Membership Problem
	IMP and Gröbner Bases

	Overview of our contributions

	Algebraic approach to IMP
	Expanding the constraint language
	Constant relations and the search problem
	Primitive positive definability
	Primitive positive interpretability

	Polymorphisms and algebras
	Polymorphisms and a necessary condition for tractability
	Algebras and a better necessary condition

	Multi-sorted CSPs and IMP
	Multi-sorted problems
	Multi-sorted languages, pp-definability and interpretability
	Multi-sorted polymorphisms
	Proof of Theorem 3.3.3
	Proof of Theorem 3.3.7

	Sufficient conditions for tractability of IMP
	The dual-discriminator
	Semilattice polymorphisms
	Affine operations I: linear system in GF(p)
	Affine operations II: CSPs over Abelian groups
	Abelian groups
	PP-interpretations in Abelian groups
	Constructing a system of linear equations
	Solving the IMP
	Gröbner Bases for the problem over roots of unity

	Gröbner Bases for linear system in GF(p) via conversion technique
	Gröbner Basis conversion
	Expansion in a basis of p-expressions
	The correctness of the conversion algorithm
	Proof of Theorem 4.5.4

	Finding membership proofs and applications
	The IMP with indeterminate coefficients
	Sufficient conditions for tractability of IMP
	A framework for constructing d truncated Gröbner Bases

	Finding a proof and the substitution technique
	Reduction by substitution
	Applications of reduction by substitution

	SOS proofs: bit complexity and automatability
	SOS proofs on quotient ring
	Automatability on quotient ring
	Automatability and CSP-based ideals

	Theta bodies for combinatorial ideals

	Approximation of minimum cost H-coloring
	Introduction
	Overview of our contributions

	Preliminaries
	LP for digraphs with a min-max-ordering
	LP for digraphs with a min-ordering
	Approximation for digraphs with a min-ordering
	Analyzing the approximation Ratio

	Approximation for digraphs with a k-min-ordering
	A dichotomy for graphs

	Sparsification of submodular functions
	Introduction
	Overview of our contributions
	Related work

	Preliminaries
	Constructing a sparsifier
	Constructing a sparsifier under constraints
	Applications
	Submodular function maximization with cardinality constraint
	Two well-known examples
	Submodular function minimization

	Experimental results
	Missing proofs
	Proof of Claim 7.3.3
	Proof of Theorem 7.4.1
	Proof of Theorem 7.4.2
	Proof of Theorem 7.5.2

	Submodular optimization under privacy
	Introduction
	Overview of our contributions
	Related work

	Preliminaries
	Differential privacy
	Probability distributions

	Differentially private continuous greedy algorithm
	Approximation guarantee
	Privacy analysis

	Improving the query complexity
	k-submodular function maximization
	Improving the query complexity
	Motivating examples

	Missing proofs from section 8.3
	Missing proofs from section 8.4
	Proof of Lemma 8.4.3
	Proof of Theorem 8.4.4
	Proof of Theorem 8.4.5

	Missing proofs from section 8.5
	Proof of Theorem 8.5.3
	Proof of Theorem 8.5.6

	Conclusion
	Bibliography

