
Combining Graph Attention Mechanism
and PageRank to Learn Graph-level

Representations
by

Lai Wei

B.Sc., Simon Fraser University University, 2019

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Lai Wei 2022
SIMON FRASER UNIVERSITY

Summer 2022

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name:

Degree:

Thesis title:

Committee:

Lai Wei

Master of Science

Combining Graph Attention Mechanism and
PageRank to Learn Graph-level Representations

Chair: Qianping Gu
Professor, Computing Science

Martin Ester
Supervisor
Professor, Computing Science

Manolis Savva
Committee Member
Assistant Professor, Computing Science

Oliver Schulte
Examiner
Professor, Computing Science

ii

Abstract

Graph convolutional neural networks (GCNs) have revolutionized the field of representation
learning on graph data with non-Euclidean properties. As one of its variants, Graph at-
tention networks (GATs) leverage masked self-attentional layers to specify different weights
when aggregating node features over the neighbourhoods of graphs. GATs have achieved the
state-of-the-arts results across many benchmarking datasets for the task of node classifica-
tion. However, this method is insufficient in learning graph-level representations for graph
classification,which is another important graph learning task. We propose a novel graph
pooling method (namely PagePool) to extend GATs to perform graph classification instead
of node classification. This method leverages both PageRank message passing algorithm
and the attention coefficients of GATs to propagate and calculate the feature-aware node
importance estimates (namely attentional PageRank). The attentional PageRank (attPR)
values can then be used to select nodes from graphs to get graph-level representations for
graph classification.

Keywords: Graph attention networks; Graph representation learning; Graph pooling;
Graph classification

iii

Table of Contents

Declaration of Committee ii

Abstract iii

Table of Contents iv

1 Introduction 1

2 Applications 3
2.1 Physics . 3
2.2 Chemistry and Biology . 3
2.3 Social Networks . 5
2.4 Image . 6
2.5 Text . 6
2.6 Generative Models . 7

3 Related Work 8
3.1 Graph Convolution . 8
3.2 Graph Pooling . 8
3.3 Graph Classification . 9
3.4 Attention Models . 9

4 Preliminaries 11

5 Proposed Method 13
5.1 Attentional PageRank . 13
5.2 PagePool . 15
5.3 Implementation Details . 16

6 Experiments 18
6.1 Datasets . 18
6.2 Baseline Methods . 19
6.3 Experimental Settings . 19

iv

6.4 Configurations . 20
6.5 Results and Analysis . 20

7 Future Research Directions 22
7.1 Deep Graph Embedding. 22
7.2 Dynamic Graph Embedding. 22
7.3 Scalability of Graph Embedding. 23
7.4 Interpretability of Graph Embedding. 23

8 Conclusion 24

Bibliography 25

Appendix A Code 31

v

Chapter 1

Introduction

In recent years, graph covolutional neural networks (GCNs) [43, 30, 24, 54] have revolution-
ized the field of graph representation learning through effectively learned node embeddings,
and achieved state-of-the-art results in many graph learning tasks, such as link prediction,
node and graph classification. GCNs propagate node feature information globally to the
entire graph following the spectral rule based on Weisfeiler-Lehman (WL) sub-tree kernel
[44]. As a variant of GCNs, graph attention networks (GATs) [48] calculate the attention
coefficients between every pair of nodes connected in each 1st-order neighborhood in the
graph using only the node features. GATs address some shortcomings of original GCNs by
enabling specifying different weights during the message passing of node information. GATs
achieve highly competitive results across node classification benchmark datasets. However,
the original GATs are potentially insufficient for graph classification as they were designed
to learn the node representations only. To make GATs also predict at the graph level, we
need to pool together the node representations in order to learn a representation of the entire
graph. This task is often referred as graph pooling. Similar to aggregation operations, graph
pooling can be regarded as mapping a set of node embeddings to a single graph embedding.
The permutation invariant aggregation operations for node embeddings are usually called
set pooling. Set pooling method can be simple reduction functions, such as taking the sum
(or mean) of the node embeddings with normalization approaches, as in GraphSAGE-pool
approach [20]. One downside of the set pooling methods is that they do not exploit the
graph topology at the pooling stage. The other type of graph pooling approaches manag-
ing to do this are often called graph coarsening. Graph coarsening approaches are inspired
by the pooling methods used in convolutional neural networks (CNNs) [8]. The key idea
of graph coarsening is to perform clustering algorithms over node presentations for graph
pooling. In practice, these coarsening pooling methods can be difficult to train, for they re-
quire the clustering functions to be differentiable, while most clustering algorithms are not.
To make graph pooling fully differentiable and allows us learn from the graph topology,
[61] proposes a novel SortPooling layer which takes unordered node embeddings learned
through graph convolution. Instead of performing set pooling or graph coarsening, it sorts

1

node embeddings learned by GCNs in a consistent order and retains a portion of nodes of
the input graph as the graph representation. SortPool can be combined with traditional
neural network to learn the graph representation in an end-to-end manner, and it deals
with input graphs of various sizes.

Inspired by the work of GATs and SortPool, we develop a selection-based graph pooling
method (termed as PagePool) that leverages the attention coefficients learned by the masked
self-attentional layer using features of every pair of nodes connected, and propagate their
normalized values following the message passing algorithm of PageRank [37] to calculate the
attentional PageRank (attPR) for every node of the graph. Unlike the traditional PageRank
calculation procedure considers only the graph topology, attPR is feature aware. We then
sort the learned node embeddings by their attPR values and select a portion of nodes to
pool from them. The proposed PagePool method can be integrated into most of graph
neural networks (GNNs) models, and it allows GNNs to learn the graph representation in
an end-to-end way. Our contributions can be summarized as follows:

• We propose a novel end-to-end graph pooling approach PagePool for graph repre-
sentation learning. It extends GATs to perform graph classification instead of node
classification.

• We propose a novel way to calculate feature-aware PageRank values for node ranking
in graphs with node features.

• We evaluate our method on several benchmarking datasets, and compare it with
competitive graph classification baselines to demonstrate its effectiveness.

The rest contents of this thesis are organized as follows: In chapter 2, we introduce the
applications of graph neural networks in the real world. In chapter 3, we provide a review
of some related work to this thesis. The preliminaries used in this paper and some relevant
backgrounds are introduced in chapter 4. Chapter 5 describes the graph pooling method
PagePool proposed by us in detail. Experiment settings and evaluation results are presented
in chapter 6. In chapter 7, we mention several promising future research directions of graph
representation learning. Chapter 8 concludes the entire thesis.

2

Chapter 2

Applications

Graph neural networks have been explored in a wide range of domains across supervised,
semi-supervised, unsupervised and reinforcement learning settings as figure 2.1 shows. In
this chapter, we give an introduction to applications of graph neural networks for physics,
chemistry and biology, social network, image, text and generative tasks.

2.1 Physics

Human intelligence can be understood by modeling real-world systems. To model a physical
system, one needs to model the pair-wise interactions between system objects. By repre-
senting the objects as nodes and pair-wise interactions as edges, the system can be viewed
as graphs. One example is robotics, where bodies and joints can be seen as nodes and edges.
The objective is to predict the next state of the bodies based on the current state of the
system and the principles of physics.

With studies and explorations of GNNs, GNN-based reasoning are applied on objects,
interactions, and physics effectively. [23] takes the trajectory of objects as input and infers
an explicit interaction graph, and learns a dynamic model simultaneously. The interaction
graphs are learned from former trajectories, and trajectory predictions are generated from
decoding the interaction graphs. To generate the robotic system graph, [42] propose a
GNN-based model that learns the policy of stably controlling the system by combining
reinforcement learning with GNNs.

2.2 Chemistry and Biology

Molecular Representation Learning. Molecular fingerprints is the most common way of
representing molecule structures. A simple fingerprint can be a one-hot vector, where each
binary value indicates whether a particular substructure exists or not. Such fingerprints can
be used for searching molecules, which is an important step of drug design using computers.
Extended-connectivity circular fingerprints (ECFP) [41] are standard tools in computational
chemistry. Circular fingerprints are generated from fingerprint vectors by encoding which

3

Figure 2.1: Application scenarios of graph neural networks in physics, chemistry and biology,
computer vision, social networks, natural language processing, and generation tasks. (Icons
made by Freepik from Flaticon)

4

substructures are present in a molecule in a way that is invariant to atom-relabeling, in
which nodes represent atoms, and edges represent bonds. By applying GNNs to molecule
graphs like circular fingerprints, we can learn better molecular representations. [10] propose
neural graph fingerprints (Neural FPs), which calculate substructure feature vectors via
GCNs and sum to get the molecular representations. MolCLR [52] is a self-learning model
for molecular representation learning. With three molecular graph augmentation strategies:
atom masking, bond deletion and subgraph removal, MolCLR learns informative molecular
representation with general GNN backbones.

Chemical Reaction Prediction. In organic chemistry, predicting chemical reaction
product is a fundamental problem. [9] propose the Graph Transformation Policy Networks to
encode the input molecules and generates an intermediate graph with a node pair prediction
network and a policy network.

Protein Interface Prediction. Proteins interact with each other though the interface,
which is formed by amino acid residues from each involving protein. Here, the goal is to
predict if particular residues constitute part of a protein. Overall, the state of a singe residue
depends on its neighboring residues. In the graph of proteins, the residues are represented as
nodes. [14] introduces a GCN-based model that learns ligand and receptor protein residue
representation and to combine them for making pair-wise classification. [57] invents a way
to extract and aggregate local and global node features for making better predictions.

Biomedical Engineering. One popular biomedical engineering task is to model the
drug and protein network and deal with different types of edges separately. [40] leverage
GCN and relation network to classify breast cancer sub-types. [65] propose a GCN-based
model to predict polypharmacy side effects.

2.3 Social Networks

Graph algorithms have been wide used to help solving tasks of social networks. With the
emergence of GNNs, problems of social networks can be better explored.

Recommendation Systems. User-item prediction is one of the classic problems for
recommendation system. Modeling users and user interactions as nodes and edges in a graph,
GNNs can naturally be applied to this problem. [3] propose GC-MC to apply GCNs on user-
item rating graphs to learn embeddings of users and items. [4] introduce PinSage to adopt
GNNs in web-scale scenarios, which builds computational graphs with weighted sampling
strategy for the bipartite graph to reduce repeated computation. Recommendation systems
also tries to incorporate user social networks to enhance recommendation performance.
GraphRec [13] learns user embeddings from both item side and user side. Going beyond
static social activities, [53] model homophily and influence effects by dual attentions.

5

2.4 Image

Graph neural networks can help solving many image tasks of computer vision that tradi-
tional CNNs do not deal very well with.

Reasoning. Reasoning in computer vision is to incorporate both spatial and semantic
information of images. Graphs can be generated to perform image reasoning. Visual question
answering is a typical reasoning task of computer vision, where the model is given text
questions and asked to return the answers about the image. The answers is believed to lie
in the spatial relations among objects of the images. [46] builds a question syntactic graph
and an image scene graph, then GNN is applied to learning the embeddings and make the
predictions. Building a knowledge graph, [36] manage to obtain finer spatial relation and
results with better interpretability. GNNs can help other reasoning applications like object
detection, interaction detection, and region classification. In object detection, [21] use GNNs
to calculate RoI features. In interaction detection [39], GNNs are used to perform message-
passing between humans and objects. [5] use GNNs to perform reasoning on graphs that
connects regions and classes in region classification.

Semantic Segmentation. The task of semantic segmantatiion is to assign a unique
label to each pixel of the image, which can be viewed as a dense classification problem. Tra-
ditional CNNs could fail on this task, because image regions are often not grid-like and need
to consider global information. GNNs is made to deal with irregular inputs. [31] build graphs
in the form of distance-based superpixel map and apply LSTM to propagate neighborhood
information globally to capture the long-term dependency with spatial connections. Futher
more, 3D semantic segmentation and point clouds classification require more geometric in-
formation and therefore are hard to be solved by a 2D CNN. [27] build superpoint graphs
and generate graph embeddings to to solve the 3D point cloud segmentation problem. [51]
model cloud point interactions through edges, then they compute the edge representation
vectors by feeding the coordinates of its terminal nodes. in the end, node embeddings are
learned by performing edge aggregation.

2.5 Text

Text tasks can be solved by graph neural networks on both the word-level and sentence-level.
Here, we introduce some GNN applications to text. Conventionally, the graph representation
of the text can often be achieved by transforming the text into a graph of word nodes, where
edges are built among nodes based on word occurrence in documents (document-word edges)
and word co-occurrence in the whole corpus (word-word edges).

Text Classification. Text classification is a popular and classical problem in natural
language processing. Representing a text as a graph of words can help capturing semantics
between non-consecutive and long distance words. [38] utilize a GNN-based model to first
transform text into graph-of-words, and then perform graph convolutional operations to

6

convolve the word graph. [58] view words of the text document to construct the corpus
graph, then use GCN to learn graph-level representations and classify the text.

Sequence Labeling. The task of sequence labeling is to assign a categorical label for
a sequence of observed variables (like words). One typical task is POS-tagging, in which
the words in a sentence are labeled by their part-of-speech. Another one is named entity
recognition (NER), where to predict if each word in a sentence belongs to a part of a named
entity. GNNs can be utilized to address the problem, if each variable in the sequence if
viewed as node and their dependencies as edges. [63] propose the sentence LSTM to predict
the sequence label. They achieved competitive results on both POS-tagging and NER tasks.

Fact Verification. Fact verification is a task requiring the model to verify given claims
based on the evidence extracted from the text. Multiple pieces of evidence need to be
reasoned for verifying the claim. [32] propose a GNN-based model KGAT to perform aggre-
gation and reasoning over evidence based on a fully-connected evidence graph. [64] create
an inner-sentence graph with the information from semantic role labeling and achieved
promising results.

2.6 Generative Models

Generative models are important to real-world graph applications like modeling social in-
teractions, discover chemical structures, and knowledge graph construction.

Some graph generative models generate graphs sequentially. [60] introduce GraphRNN
to generate the adjacency matrix of a graph by generating the adjacency vector of each node
step by step, which returns graphs with various numbers of nodes. [29] propose a method
that generates edges and nodes sequentially and makes use of GNNs to extract the hidden
features from the graph to make decision on the actions for the next step in the generation
process.

Some other generative models generate the graph adjacency matrix at once rather than
doing it sequentially. MolGAN [7] has a permutation-invariant discriminator to solve the
node variant problem in the graph adjacency matrix. It also applied a reward network for
reinforcement learning optimization towards desired chemical properties. [33] propose con-
strained variational auto-encoders to ensure the semantic correctness of generated graphs.
Graphite [19] integrates GNN into variational auto-encoders to encode the graph structure
and features into latent variables. More specifically, it uses isotropic Gaussian as the latent
variables and then uses iterative refinement strategy to decode from the latent variables.

7

Chapter 3

Related Work

In this chapter, we provide a review of some related work to this thesis.

3.1 Graph Convolution

Convolution operation on graphs can be defined in either the spectral or non-spectral do-
main. Spectral approaches focus on redefining the convolution operation in the Fourier
domain, utilizing spectral filters that use the graph Laplacian. Kipf and Welling proposed
a layer-wise propagation rule that simplifies the approximation of the graph Laplacian us-
ing the Chebyshev expansion method [8]. The goal of non-spectral approaches is to define
the convolution operation so that it works directly on graphs. In general non-spectral ap-
proaches, the central node aggregates features from adjacent nodes when its features are
passed to the next layer rather than defining the convolution operation in the Fourier do-
main. Hamilton et al. proposed GraphSAGE [20] which learns node embeddings through
sampling and aggregation. While GraphSAGE operates in a fixed-size neighborhood, Graph
Attention Network (GATs) [48], based on attention mechanisms [2], computes node repre-
sentations in entire neighborhoods. Both approaches have improved performance on graph-
related tasks.

3.2 Graph Pooling

Pooling layers enable CNN models to reduce the number of parameters by scaling down
the size of representations, and thus avoid overfitting. To generalize CNNs, the pooling
method for GNNs is necessary. Graph pooling methods can be grouped into the following
two categories: Global and hierarchical pooling. Global pooling methods use summation or
neural networks to pool all the representations of nodes in each layer. Graphs with different
structures can be processed because global pooling methods collect all the representations.
Gilmer et al. viewed GNNs as message passing schemes, and proposed a general framework
[18] for graph classification where entire graph representations could be obtained by utilizing

8

the Set2Set [49] method. SortPool [61] sorts embeddings for nodes according to the struc-
tural roles of a graph and feeds the sorted embeddings to the next layers. However, global
pooling methods do not learn hierarchical representations which are crucial for capturing
structural information of graphs. The main motivation of hierarchical pooling methods is
to build a model that can learn feature- or topology-based node assignments in each layer.
Ying et al. proposed DiffPool [59] which is a differentiable graph pooling method that can
learn assignment matrices in an end-to-end fashion. A learned assignment matrix in layer l,
S(l) contains the probability values of nodes in layer l being assigned to clusters in the next
layer l + 1. Here, nl denotes the number of nodes in layer l. gPool [15] is another hireachical
graph pooling method and it achieved performance comparable to that of DiffPool. gPool
requires a storage complexity of O(|V | + |E|) whereas DiffPool requires O(k|V |2) where
V , E, and k denote vertices, edges, and pooling ratio, respectively. gPool uses a learnable
vector p to calculate projection scores, and then uses the scores to select the top ranked
nodes. Projection scores are obtained by the dot product between p and the features of all
the nodes. The scores indicate the amount of information of nodes that can be retained.

3.3 Graph Classification

The goal of graph classification is to predict a label for the entire graph, which depends on
the representation of the entire graph rather than node embeddings that are often directly
obtained from GNNs. [61, 18] tackle the problem via aggregating node representations in a
flat, non-hierarchical manner. [45] seek to generate a hierarchical structure through running
deterministic graph clustering algorithms on node features. [35] obtains cluster assignments
by applying k-means algorithm. However, they are two-stage approaches, and cannot be
learned in an end-to-end fashion. [60] propose a sorting strategy to order the nodes whose
representations are then concatenated to feed into the final prediction architecture. [15]
propose trainable pooling layers that adaptively generate cluster assignments and can be
learned in a differentiable way. Graph Isomorphism Network (GIN) [55] is one of the most
powerful graph classification model builds upon the limitations of GraphSAGE, extending it
with arbitrary aggregation functions on multi-sets. The model is proven to be as theoretically
powerful as the Weisfeiler-Lehman test of graph isomorphism.

3.4 Attention Models

Inspired by the success of attention models in deep learning communities [47], graph learn-
ing researches have applied attention mechanism to graph neural networks. In recent years,
multiple attention-based GNNs have been proposed. They share the same fundamental idea
that attentions are calculated to make decision on most task-relevant parts, although they
define attentions in different ways and use attentions for various purposes. Attention mecha-
nism benefits GNNs via aggregating node information [48], integrating multiple models [30],

9

or guiding graph random-walk with importance [1]. Here, attention module has two merits
in our model: 1. it helps select discriminative nodes to form hierarchical graph structure; 2.
it generates the graph representation with attention-weighted pooling. In contrast to simpler
sequence-to-sequence models, Graph2Seq [56] is a method that can output a sequence given
a general graph. This can be applied to tasks where we are given a graph capturing various
relationships between different entities and are asked to answer a text query by reasoning
using the provided information. GRAM [6] applies attention to a medical ontology graph
to help learning attention-based graph embeddings for medical codes. While the problem
they studied is classifying a patient record (described by certain medical codes), where the
novelty is the application of attention on the ontology graph to improve model performance.

10

Chapter 4

Preliminaries

In this chapter, we give an introduction about the preliminaries used in this thesis and some
relevant backgrounds.

Let G = (V, E) where G denotes the undirected graph, where V is the set of nodes. In
total, the number is N = |V |. M = |E| is the set of edges, in total the number is |E|. The
graph topology of G is represented using an adjacency matrix A, where Ai,j = 1 if and only
if (i, j) ∈ E. G is associated with a node features matrix H = {�h1,�h2, ...,�hN } of size N × F

and a class label in {1, 2, ..., C}, where F is the dimension of node features and C is the size
of label set.

Graph attentional layer is used by GATs to calculate self-masked attention coefficients
and perform graph convolutions. Taking G and H as the inputs, the layer produces a set
transformed node features H ′ = {�h′1, �h′2, ..., �h′

N } as its output. As an initial step, a shared
linear transformation, parameterized by a weight matrix W of size F ×F ′ is applied to every
node. The self-attention is performed on the pairs of nodes connected: a shared attention
mechanism a to compute the attention coefficients

eij = a(W�hi, W�hj) (4.1)

eij indicates the importance of node j′s features to node i. The graph structure is injected
into the mechanism by using mask attention. Only compute eij for nodes j ∈ Ni, where
Ni is the first-order neighborhood of node i in the graph. To make coefficients comparable
across different nodes, the edge softmax function is used for normalization by destination
nodes in G:

αij = Edge_sotfmaxdst(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(4.2)

Once calculated, the normalized attention coefficients are used to compute a linear
transformation of the input node features, to serve as the final output features for each of
the node. A non-linearity σ is applied after.

11

�h′
i = σ

⎛
⎝ ∑

j∈Ni

aijW�hj

⎞
⎠ (4.3)

H ′ = {�h′1, �h′2, ..., �h′
N } can then be used as the final node representations for node

classification or passed as inputs of the next GAT layer to aggregate information from
higher-order neighborhoods.

PageRank is a message passing algorithm runs on a graph to measure the importance
of nodes in edge connectivity. In each iteration of this algorithm, node i first scatters its
PageRank value pri uniformly to its downstream nodes. The new pri is computed by ag-
gregating the received PageRank values from its neighbors, which is then adjusted by the
damping factor d:

pri =
(1 − d)

N
+ d ×

∑
j∈Ni

prj

D(j)
(4.4)

where D(j) is the out-degree of node j, and Ni are the neighboring nodes of i. pri

is passed along the directed edges iteratively until it is converged. Once converged, the
PageRank values can be viewed as estimates of node importance in the sense of graph
topology.

12

Chapter 5

Proposed Method

In this chapter, we introduce our graph pooling method PagePool, and describe how it will be
used with graph neural networks to learn graph-level representation for graph classification.

Problem Setting. A graph can be represented as G = (V, E), where V is the set of
nodes and E is the set of edges. Each node in the graph is associated with node features
and we use H of size N × F to denote the feature matrix, where N is the number of nodes
and F is the dimension of node features. The graph structural information is represented
by an adjacency matrix A of size N ×N . In the graph classification setting, we have a set of
graphs {Gi}, each Gi is associated with a label yi. The task of graph classification is to take
the graph (structural information and node features) as input and predict its corresponding
label.

To make the prediction, it is important to extract useful information from both graph
structure and node features. We aim to design a graph pooling method PagePool to lever-
ages both PageRank message passing algorithm and the attention coefficients of GATs to
propagate and calculate the feature-aware node importance estimates (namely attentional
PageRank), which can be used to select a fixed-size node embeddings as the graph-level
representation of the input graph for graph classification. In general, we aim to first learn
node representations of the input graph and aggregate them into the graph representation
that is predictive of its class label.

5.1 Attentional PageRank

PageRank returns a sorting of nodes according to the estimates of their importance in graph
topology, but it is not a feature-aware message passing algorithm. For a node i in G, it passes
its pagerank value pri to neighboring nodes equally by pri

D(i) during the message passing phase
without considering the feature importance of its neighbors. This is potentially insufficient,
because node features are also an important part of the graph. Making PageRank algorithm
feature-aware can be critical for finding the most important nodes in a graph. To solve this
problem, we propose a way to calculate attentional pagerank values exploiting both graph

13

Figure 5.1: One iteration of attentional pagerank message passing. βij stands for the nor-
malized attention coefficients for the node j of node i. Here, api indicates the attentional
pagerank value of node i.

topology and node features. Algorithm 1 provides an overview of the attentional pagerank
computation process.

Inspired by graph attentional layers, we first concatenate nodes features of every pair of
nodes in G, then calculate the masked self-attention coefficients by

eij = LeakyReLU(�aT [W�hi||W�hj]) (5.1)

We use a 1-layer multi-layer perceptron as the attention mechanism a, where || stands
for feature concatenation. We then normalize eij values within a 1-hop neighborhood using
the edge softmax function by the source nodes.

βij = Edge_sotfmaxsrc(eij) =
exp(eij)∑

k∈Nj
exp(ekj)

(5.2)

The normalized attention coefficients βij for the neighbors of node i can then be used
to weight the pagerank values of node i when passing to its neighbors j ∈ Ni. The one
iteration of attentional pagerank value api of node i is calculated by

api =
(1 − d)

N
+ d ×

∑
j∈Ni

βji × apj (5.3)

We repeat the calculation in equation 5.3 until api converges for all node i ∈ V , or
the maximum number of iteration n is reached. After the computation of api, we store the
attentional pagerank values in vector attPR of size N × 1. Figure 5.1 shows the message
passing procedure of attentional pagerank.

14

Algorithm 1 Attentional pagerank computation algorithm
Input: Graph G = (V ; E); Adjacency matrix A; Input node features H = {�hi, ∀i ∈ V };
Trainable graph attention function Gat (·) returns an attention coefficient matrix A′, for
A′

i,j = eij where Ai,j = 1; Edge_softmaxsrc(·) computes softmax over weights of incoming
edges by source nodes; Damping factor d; the max number of iterations n
Output: Attentional pagranks attPR for nodes in graph G

1: Initialize attPR to be an array of size N (N = |V |)
2: Initialize each attPR(i) to 1/N
3: Initialize attPR′ to be an array of N zeros
4: A′ ← Gat(A, H)
5: A′

i,j ← Edge_softmaxsrc(A′
i,j) for A′

i,j ∈ A′

6: m ← 0
7: while attPR′ �= attPR and m ≤ n do
8: attPR′ ← attPR
9: m ← m + 1

10: for i ← 0 to N − 1 do
11: for j ← 0 to N − 1 do
12: attPR(i) ← attPR(i) + A′

i,j × attPR′(j)
13: end for
14: end for
15: end while
16: return attPR

5.2 PagePool

One challenge of graph pooling is the need to deal with input graphs of different sizes, more
specifically different numbers of nodes, and set pooling is usually not a satisfying solution.
In traditional deep learning, CNNs deal with this problem by truncating or padding the
input images (or sequences) to the same size. However, this is typically hard to do with
graph data because of its non-euclidean properties. SortPool [61] addresses this problem by
sorting node embeddings according to their structural roles in the graph, and select a fixed-
number of node embeddings to form a graph representation. As attentional pagerank values
give us a more accurate estimate of node importance considering both graph topology and
node features, inspired by SortPool, we propose the PagePool method that selects a fixed-
number of nodes according to their attentional pagerank values to learn the graph-level
representation.

PagePool performs graph pooling on graph data in two steps: first, it selects the top-k
nodes from the input graph structure according to the attentional pagerank values calcu-
lated using masked self-attention coefficients. Second, it performs a global sum pooling on
the selected node embeddings to obtain a graph-level representation. The process can be
formulated as:

15

idx = ftopk(attPR, k),

Hg = σ

⎛
⎝ ∑

i∈idx

H ′
i

⎞
⎠ (5.4)

ftopk(∗) is a sorting function and returns indices of k nodes with the largest values of
the first argument, where idx is of size k × 1. H ′

i indicates the node embeddings learned by
GAT of node i, and Hg is the final graph representation of G. Hg is of size k × F ′, where
F ′ is the number of node feature dimensions after linear transformation. Hg is then fed to
a multi-layer perceptron (MLP) [17] followed by the softmax function for the class label
prediction. The classification and loss function are defined as follows

P = softmaxC(MLP (ZG)),

loss = −
∑
i∈C

yilog(Pi)
(5.5)

Here, C is the total number of classes, and yi ∈ Y is the true label for graph instance i.
For convenience, we call the GAT layers appended by PagePool GAT-PP.

Figure 5.2: Overview of GAT-PP. GAT-PP takes the input graph G, performs aggregation
and transformation of node features through calculating the masked self-attentional coef-
ficients. The PagePool layer calculates the attentional pagerank values of each node and
sorts their learned node embeddings accordingly. A global sum pooling is performed on the
node embeddings of the top-k nodes with the highest attentional pagerank values to obtain
Hg, the graph-level representation of G

5.3 Implementation Details

The GAT-PP layers were implemented using Deep Graph Library (DGL) [50], which is a
Python package built for easy implementation of various GNN models, on top of existing
deep learning frameworks. The details of GAT-PP’s python implementation can be found
in Appendix A Code.

16

Attentional PageRank. To compute the attentional pagerank values for the input
graph with node features, we leverage the get_attention function of the GATConv module
of DGL to compute and return the unnormalized attention coefficients between every pair
of nodes connecting to each other. To normalize the attention coefficients by source nodes
and assign weights to edges, we use the DGL function edge_softmax setting parameter
norm_by=’src’ and add normalized values to the edge features of the graph.

Message Passing. The initial attentional pagerank values are set the same as 5.3. To
perform the pagerank message passing for attentional pagerank values, we define a message
function pr_message_func computes messages only from source node features. We also
define the reduce function pr_reduce_func, which removes and aggregates the messages
from its mailbox, and computes its new pagerank values.

Node Sorting and Selection. After computing the final attentional pagerank values
for all the nodes, we sort them in the descending order regarding to the attentional pagerank
values and keep only the top-K nodes. This operation can be done by utilizing the DGL
function topk_nodes setting parameters k=K, sortby=-1.

17

Chapter 6

Experiments

This chapter describles the benchmarking datasets, baseline methods, and details of our
experimental settings.

6.1 Datasets

Following the literature on graph representation learning and graph classification [55, 61],
we use two bioinformatics datasets and two social network datasets as our benchmarks.
All four graph datasets are available in public [34] and frequently used to compare GNN
models.

PROTEINS contains the graph representations of protein structures, where nodes
represent secondary structure elements and edges represent proximity in 3D space. The
graph label indicates whether a protein is classified as enzyme or non-enzyme.

NCI1 is a cheminformatics dataset, where each graph represents a chemical compound:
each vertex stands for an atom of the molecule, and edges between vertices represent bonds
between atoms. The label of a graph indicates if the chemical is active or inactive against
lung cancer cells.

IMDB-BINARY is a movie collaboration dataset that consists of the ego-networks of
1,000 actors/actresses who played roles in movies in IMDB. In each graph, nodes represent
actors/actresses, and edges connect those who appear in the same movie. These graphs are
derived from the Action and Romance genres, where the graph labels indicate the classes
of genres.

Datasets PROTEINS NCI1 IMDB-B IMDB-M
Graphs 1113 4110 1500 1500

Avg. # Nodes 39.1 29.8 19.8 13.0
Node Features 3 37 1 1

Classes 2 2 2 3

Table 6.1: Statistics of datasets.

18

IMDB-MULTI is another movie dataset that consists of a network of 1000 actors
or actresses who played roles in movies in IMDB. In a graph, nodes represent actors or
actresses, and an edge connects two nodes when they appear in the same movie. These
graphs are derived from three genres: Comedy, Romance and Sci-Fiction, where the graph
labels indicate the classes of genres.

The statistics of our benchmarking datasets is summarized in table 6.1.

6.2 Baseline Methods

We compare our proposed GAT-PP model with some state-of-the-art GNN methods for
graph classification used in the work [11].

– GraphSAGE: is the earliest GNN model utilizing the idea of node feature aggregation
to learn the graph representation. We choose to use GraphSAGE with mean aggregator
as our baseline.

– DiffPool is an end-to-end trainable graph coarsening model that produces hierarchical
representations of graphs by repeatedly predicting cluster assignments.

– DGCNN is a GNN model that learns graph-level representations with SortPool. It
provides a way to use GNN modules and traditional deep learning modules together
in an end-to-end manner. It is the only baseline model utilizing sort-based pooling
strategy to learn graph-level representations.

– GIN Graph isomorphism networks (GIN) is a GNN model injects multiset functions
for neighbor aggreagation. GIN builds upon the limitations of GraphSAGE and is
proven to be as powerful as Weisfeiler-Lehman test.

– GAT-PR is a GNN model uses GAT layers for graph convolution and sort nodes by
the pre-computed traditional pagerank values for node selection and graph pooling.

6.3 Experimental Settings

All methods were trained and tested in the same way as described in the work [11]. We have
also added the node degree as an additional feature to all the datasets, since it was noted
as an important way to improve the graph classifiaction performance We use a 10-fold CV
for model assessment and an inner holdout technique with a 90%/10% training/validation
split for model optimization. After the model optimization, we train models on the whole
training fold, holding out a random fraction (10%) of the data to perform early stopping
monitoring the cross-entropy loss on validation set. To prevent models from over-fitting, we
implement the early stopping strategy with a patience n, where the training will be stopped
if the classification loss on the validation set has not been improved for n epoch. We report

19

the average classification accuracy and standard variance across the 10 folds within the
cross-validation.

6.4 Configurations

We trained all the methods for 1000 epochs using the Adam optimizer [22] with a learning
rate of 0.0001. The damping factor d of PageRank was set to 0.15, which is the com-
monly used default value [37]. For model optimization, we search though a bunch of hyper-
parameter combinations. We list the values that have been tried for each hyper-parameter:
(1) the number of hidden units at MLP layer ∈ {64, 128}, (2) the batch size ∈ {16, 32}, (3)
the dropout ratio ∈ {0, 0.5}, (4) the node feature embedding dimensions ∈ {32, 64}, (5) the
number of nodes to be selected from a graph (k), was set such that ∈ {60%, 70%} of graphs
in a dataset have more than k nodes for bioinformatics datasets, and set ∈ {80%, 90%} for
scocial network datasets. This is set the same way as used in SortPool [61], (6) the number
of GNN layers ∈ {3, 5}, (7) the patience for early stopping ∈ {50, 100}.

Due to the available computational resources and the amount of experiments to conduct,
we limited the time budget for one single training to 72 hours. For all the baseline methods
from the literature, we use the results reported by [11] for consistency, as we adopt the same
experimental setting.

6.5 Results and Analysis

Table 6.2 reports the graph classification accuracy and standard variances over 10 cross-
validation folds. for our proposed method GAT-PP, its simplified version GAT-PR, and five
competitive GNN baselines. GAT-PP achieved the best average cross-validation accuracy
on PROTEINS and IMDB-B and the second best accuracy on IMDB-M. It is surprising
that GAT-PP’s performance on NCI1 is not as competitive as expected given NCI1 has
the largest number of node features among the four benchmarking datasets. Hypotheti-
cally, PagePool should allow GNN models to learn better representations for graphs with
rich node features. We suspect that the somewhat disappointing performance is due to the
limitations of the GAT module. For instance, as [23] pointed out, the induced attention
functions of GATs are prone to over-fitting due to the increasing number of parameters and
the lack of direct supervision on attention weights. GATs also suffer from over-smoothing at
the decision boundary of nodes. We suppose that combing PagePool with a more advanced
version of GATs will lead to an improved performance. We also observe that GAT-PR per-
forms reasonably well compared to the baselines, although it uses merely the traditional
pagerank values for graph pooling, which shows the effectiveness of graph pooling done
by node ranking. Compared to GAT-PR, GAT-PP obtains a significant accuracy improve-
ment by considering the node features when performing pagerank message passing, which

20

Datasets PROTEINS NCI1 IMDB-B IMDB-M
GraphSage 73.0 ± 4.5 76.0 ± 1.8 68.8 ± 4.5 47.6 ± 3.5
DGCNN 72.9 ± 3.5 76.4 ± 1.7 69.2 ± 3.0 45.6 ± 3.4
DiffPool 73.7 ± 3.5 76.9 ± 1.9 68.4 ± 3.3 45.6 ± 3.4

ECC 72.3 ± 3.4 76.2 ± 1.4 67.7 ± 2.8 43.5 ± 3.1
GIN 73.3 ± 4.0 80.0 ± 1.4 71.2 ± 3.9 48.5 ± 3.3

GAT-PR 73.0 ± 4.8 73.1 ± 1.5 70.4 ± 4.0 46.9 ± 4.1
GAT-PP (ours) 74.5 ± 3.6 76.4 ± 2.4 72.8 ± 2.5 47.8 ± 3.5

Table 6.2: Summary of results in terms of 10-fold classification accuracy.

demonstrates the benefits of the attentional pagerank (attPR). DGCNN is the only base-
line model utilizing sort-based pooling. As results highlighted in table 6.2, GAT-PP out
performs DGCNN on PROTEINS, IMDB-B and IMDB-M, and achieves about the same
performance on NCI1, which demonstrates the effectiveness of our node sorting methods
based on attentional pagerank calculation.

We notice that GIN also performs decently on our benchmarks, especially on NCI1,
where it outperforms GAT-PP by 3.6% in terms of average classification accuracy. It makes
applying the PagePool idea to GIN layers an interesting future research direction too.
However, computational complexity may be a challenge, since GIN is not an attention-
based model like GAT. We have a limited the number of benchmarking datasets due to
the constraints of time and computational resources. To further increase the generality of
our results, the experiments could be repeated on the TUdatasets [34]. We also noticed
that the classification results in the last column are significantly worse than in the second
last column for all models. The classification accuracies diminish vastly because performing
three-class classification is much harder than the task of binary classification.

21

Chapter 7

Future Research Directions

Graph representation learning is a well-motivated topic. It is effective to convert graph
data into a low dimensional space in which important feature information is well preserved.
Graph analytic can provide researchers with a deeper understanding of the data with the
help of efficient graph embedding techniques. There are several future research directions
of graph representation learning which is worth mentioning.

7.1 Deep Graph Embedding.

GCNs and some of their adaptations have drawn great attention due to their superior
performance. However, the number of graph convolutional layers is typically not greater
than two. When there are more graph convolutional layers in cascade, the performance drops
significantly. It was argued in [28] that each GCN layer corresponds to graph Laplacian
smoothing since node features are propagated in the spectral domain. When a GCNs is
deeper, the graph Laplacian is over-smoothed and the corresponding node features become
obscure. Each layer of GCN usually only learns one-hop information, and two GCN layers
learn the first- and second- order proximity in the graph. It is difficult for a shallow structure
to learn global information. One solution to fix this problem is to conduct the convolution
in the spatial domain. For example, one can convert graph data into grid-structure data as
proposed in [16]. Then, the graph representation can be learned using multiple CNN layers.

7.2 Dynamic Graph Embedding.

Social graphs, such as graphs in Twitter, are always changing. Another example is graphs
of mobile users whose location information is changing along with time. To learn the rep-
resentation of dynamic graphs is an important research topic and it finds applications in
real- time and interactive processes such as the optimal travel path planning in a city at
traffic hours. Hyper-graphs is a good option for modeling such dynamics in graphs. Embed
the time sequence into each node can also be useful; for example, long-short-term-memory
(LSTM) can be used on each vertex to incorporate sequential changes.

22

7.3 Scalability of Graph Embedding.

With the rapid growth of social networks, which contain millions and billions of nodes and
edges, We expect to see graphs of a larger scale and higher diversity. How to embed large-
scale graph data efficiently and accurately is still an open problem. Deep neural network
models have the state-of-the-art performance. However, these methods suffer from low ef-
ficiency. They rely on modern GPU to find the optimal parameters. Better paradigms are
needed for processing large-scale graphs. One possibility is to use a feed-forward machine-
learning design to process the graph without BP. Another option is to use better graph
coarsening or partitioning method for data pre-processing.

7.4 Interpretability of Graph Embedding.

Most state-of-the-art graph embedding methods are built upon CNNs, which are trained
with backpropagation (BP) to determine the values of their model parameters. However,
the training complexity is very high. Some research was performed to lower the training
complexity such as quickprop [12]. However, training model parameters iteratively using BP
is still time consuming and hardware demanding. In addition, the interpretability has always
been an Achilles’ heel of CNNs, and has presented challenges for years. Some researchers
have tried to explain the interpretability of neural network models [25, 62]. The authors in
[26] attempt to explain CNNs using an interpretable and feed-forward (FF) design without
any BP. The work in [26] adopts a FFdata-centric approach to network parameters of the
current layer based on data statistics from the output of the previous layer in a one-pass
manner. It would be worthy to apply FF machine learning methods to graph embedding
tasks. An interpretable design as an alternative to advanced neural network architectures
can shed light on current graph embedding-related machine learning research.

23

Chapter 8

Conclusion

In this thesis, we have proposed a novel end-to-end graph pooling approach PagePool for
graph representation learning. It extends GATs to perform graph classification instead of
node classification. We have also proposed an effective way to calculate feature-aware PageR-
ank values for node ranking in graphs. Compared to PageRank, the attentional pagerank
computes node importances based not only on graph connectivity bust also on node fea-
tures. Compared to other graph pooling methods, PagePool provides a simple but effective
way to select the most important nodes when learning a graph-level representation suit-
able for the task of graph classification. In our experiments on four popular benchmarking
datasets, GAT-PP achieves state-of-the-art performance. As future work, we would like to
evaluate GAT-PP on more datasets and investigate which methods are most suitable for
which type of datasets. We would also like to study if PagePool can be used effectively with
non-GAT based graph neural networks.

24

Bibliography

[1] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alexander A Alemi. Watch your
step: Learning node embeddings via graph attention. Advances in neural information
processing systems, 31, 2018.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[3] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix
completion. arXiv preprint arXiv:1706.02263, 2017.

[4] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix
completion. arXiv preprint arXiv:1706.02263, 2017.

[5] Xinlei Chen, Li-Jia Li, Li Fei-Fei, and Abhinav Gupta. Iterative visual reasoning
beyond convolutions. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7239–7248, 2018.

[6] Edward Choi, Mohammad Taha Bahadori, Le Song, Walter F Stewart, and Jimeng
Sun. Gram: graph-based attention model for healthcare representation learning. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 787–795, 2017.

[7] Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small
molecular graphs. arXiv preprint arXiv:1805.11973, 2018.

[8] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. Advances in neural information
processing systems, 29:3844–3852, 2016.

[9] Kien Do, Truyen Tran, and Svetha Venkatesh. Graph transformation policy network
for chemical reaction prediction, 2018.

[10] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy
Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for
learning molecular fingerprints. Advances in neural information processing systems,
28, 2015.

[11] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison
of graph neural networks for graph classification. CoRR, abs/1912.09893, 2019.

25

[12] Scott E Fahlman et al. An empirical study of learning speed in back-propagation net-
works. Carnegie Mellon University, Computer Science Department Pittsburgh, PA,
USA, 1988.

[13] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation. In The World Wide Web Conference,
WWW ’19, page 417–426, New York, NY, USA, 2019. Association for Computing
Machinery.

[14] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface predic-
tion using graph convolutional networks. Advances in neural information processing
systems, 30, 2017.

[15] Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine
learning, pages 2083–2092. PMLR, 2019.

[16] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convo-
lutional networks. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 1416–1424, 2018.

[17] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences. Atmospheric environment,
32(14-15):2627–2636, 1998.

[18] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. Neural message passing for quantum chemistry. In International conference on
machine learning, pages 1263–1272. PMLR, 2017.

[19] Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative mod-
eling of graphs. In International conference on machine learning, pages 2434–2444.
PMLR, 2019.

[20] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 1025–1035, 2017.

[21] Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks
for object detection. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3588–3597, 2018.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[23] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.
Neural relational inference for interacting systems, 2018.

[24] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[25] C-C Jay Kuo. Understanding convolutional neural networks with a mathematical
model. Journal of Visual Communication and Image Representation, 41:406–413, 2016.

26

[26] C-C Jay Kuo, Min Zhang, Siyang Li, Jiali Duan, and Yueru Chen. Interpretable con-
volutional neural networks via feedforward design. Journal of Visual Communication
and Image Representation, 60:346–359, 2019.

[27] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation
with superpoint graphs. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4558–4567, 2018.

[28] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional
networks for semi-supervised learning. In Thirty-Second AAAI conference on artificial
intelligence, 2018.

[29] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning
deep generative models of graphs. arXiv preprint arXiv:1803.03324, 2018.

[30] Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence
neural networks. In Proceedings of ICLR’16, April 2016.

[31] Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, and Shuicheng Yan. Semantic
object parsing with graph lstm. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Computer Vision – ECCV 2016, pages 125–143, Cham, 2016. Springer
International Publishing.

[32] Zhenghao Liu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. Fine-grained fact
verification with kernel graph attention network. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 7342–7351, Online,
July 2020. Association for Computational Linguistics.

[33] Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid
graphs via regularizing variational autoencoders. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

[34] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. Tudataset: A collection of benchmark datasets for learning with
graphs. CoRR, abs/2007.08663, 2020.

[35] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenen-
baum, and Daniel L Yamins. Flexible neural representation for physics prediction.
Advances in neural information processing systems, 31, 2018.

[36] Medhini Narasimhan, Svetlana Lazebnik, and Alexander G. Schwing. Out of the box:
Reasoning with graph convolution nets for factual visual question answering, 2018.

[37] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[38] Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang, Yangqiu
Song, and Qiang Yang. Large-scale hierarchical text classification with recursively
regularized deep graph-cnn. In Proceedings of the 2018 World Wide Web Conference,
WWW ’18, page 1063–1072, Republic and Canton of Geneva, CHE, 2018. International
World Wide Web Conferences Steering Committee.

27

[39] Siyuan Qi, Wenguan Wang, Baoxiong Jia, Jianbing Shen, and Song-Chun Zhu. Learn-
ing human-object interactions by graph parsing neural networks, 2018.

[40] Sungmin Rhee, Seokjun Seo, and Sun Kim. Hybrid approach of relation network and lo-
calized graph convolutional filtering for breast cancer subtype classification. In Proceed-
ings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pages 3527–3534. International Joint Conferences on Artificial Intelligence
Organization, 7 2018.

[41] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chem-
ical information and modeling, 50(5):742–754, 2010.

[42] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin
Riedmiller, Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics
engines for inference and control, 2018.

[43] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Networks,
20(1):61–80, 2009.

[44] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and
Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning
Research, 12(9), 2011.

[45] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convo-
lutional neural networks on graphs. CoRR, abs/1704.02901, 2017.

[46] Damien Teney, Lingqiao Liu, and Anton van den Hengel. Graph-structured represen-
tations for visual question answering, 2016.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[48] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[49] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to
sequence for sets. arXiv preprint arXiv:1511.06391, 2015.

[50] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing
Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo
Zhao, Jinyang Li, Alexander J. Smola, and Zheng Zhang. Deep graph library: Towards
efficient and scalable deep learning on graphs. CoRR, abs/1909.01315, 2019.

[51] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Trans-
actions On Graphics (tog), 38(5):1–12, 2019.

[52] Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular
contrastive learning of representations via graph neural networks. Nature Machine
Intelligence, 4(3):279–287, 2022.

28

[53] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, and Guihai
Chen. Dual graph attention networks for deep latent representation of multifaceted
social effects in recommender systems. In The World Wide Web Conference, WWW
’19, page 2091–2102, New York, NY, USA, 2019. Association for Computing Machinery.

[54] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE transactions on neural
networks and learning systems, 32(1):4–24, 2020.

[55] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? arXiv preprint arXiv:1810.00826, 2018.

[56] Kun Xu, Lingfei Wu, Zhiguo Wang, Yansong Feng, Michael Witbrock, and Vadim
Sheinin. Graph2seq: Graph to sequence learning with attention-based neural networks.
arXiv preprint arXiv:1804.00823, 2018.

[57] Nuo Xu, Pinghui Wang, Long Chen, Jing Tao, and Junzhou Zhao. Mr-gnn: Multi-
resolution and dual graph neural network for predicting structured entity interactions.
In Proceedings of the Twenty-Eighth International Joint Conference on Artificial In-
telligence, IJCAI-19, pages 3968–3974. International Joint Conferences on Artificial
Intelligence Organization, 7 2019.

[58] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for
text classification. Proceedings of the AAAI Conference on Artificial Intelligence,
33(01):7370–7377, Jul. 2019.

[59] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. arXiv
preprint arXiv:1806.08804, 2018.

[60] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn:
Generating realistic graphs with deep auto-regressive models. In International confer-
ence on machine learning, pages 5708–5717. PMLR, 2018.

[61] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep
learning architecture for graph classification. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[62] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neu-
ral networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8827–8836, 2018.

[63] Yue Zhang, Qi Liu, and Linfeng Song. Sentence-state LSTM for text representation.
In Proceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 317–327, Melbourne, Australia, July 2018.
Association for Computational Linguistics.

[64] Wanjun Zhong, Jingjing Xu, Duyu Tang, Zenan Xu, Nan Duan, Ming Zhou, Jiahai
Wang, and Jian Yin. Reasoning over semantic-level graph for fact checking. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pages 6170–6180, Online, July 2020. Association for Computational Linguistics.

29

[65] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side
effects with graph convolutional networks. Bioinformatics, 34(13):i457–i466, 06 2018.

30

Appendix A

Code

from torch import nn
import dgl . f unc t i on as fn
from dgl . nn . f u n c t i o n a l import edge_softmax
import dgl . nn . pytorch as dglnn
from dgl import DGLGraph , topk_nodes , unbatch

class PagePooling_R (nn . Module) :
def __init__(s e l f , k) :

super (PagePooling_R , s e l f) . __init__ ()
s e l f . k = k

def pr_message_func (s e l f , edges) :
return { ’ ap ’ : edges . s r c [’ ap ’] , ’ beta ’ : edges . data [’ beta ’] }

def pr_reduce_func (s e l f , nodes) :
ap = th .sum(nodes . mailbox [’ ap ’] ∗ nodes . mailbox [’ beta ’] , dim=1)
return { ’ ap ’ : ap}

def att_pagerank (s e l f , g , damp) :
g . update_al l (

message_func=s e l f . pr_message_func ,
reduce_func=s e l f . pr_reduce_func
)

g . ndata [’ ap ’] = ((1 − damp) / g . ndata [’N ’]) + g . ndata [’ ap ’] ∗ damp

def forward (s e l f , g , f ea t , e , damp=0.15 , max_iter =500):
with g . l oca l_scope () :

g . edata [’ e ’] = e
g . edata [’ beta ’] = edge_softmax (g , g . edata [’ e ’] , norm_by=’ s r c ’)
g . ndata [’ deg ’] = g . out_degrees (g . nodes ()) . f loat ()
o ld = g . ndata [’ ap ’]
s e l f . att_pagerank (g , damp)

31

t o t a l _ i t e r = 1
while (th . equal (old , g . ndata [’ ap ’]) != True) and
(t o t a l _ i t e r <= max_iter) :

o ld = g . ndata [’ ap ’]
s e l f . att_pagerank (g , damp)
t o t a l _ i t e r += 1

g . ndata [’ hg ’] = th . cat ((f ea t , g . ndata [’ ap ’]) , 1)
hg = topk_nodes (g , ’ hg ’ , k=s e l f . k , sortby = −1)[0]
hg = hg . reshape (−1 , 1 , s e l f . k ∗ (f e a t . shape [−1]+1))
return hg

32

