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Abstract

The thesis focuses on applying contrastive loss in learning joint embeddings over multimodal data

and proves the effectiveness at a downstream task (retrieval). Previous work on joint representation

learning for 3D shapes and text has mostly focused on improving embeddings through modeling of

complex attention between representations, or multi-task learning. We show that with large batch

contrastive learning we achieve SoTA on text-to-shape retrieval without complex attention mecha-

nisms or losses. Prior work in 3D and text representations has also focused on bimodal representa-

tion learning using either voxels or multi-view images with text. We show that a trimodal learning

scheme can lead to even higher performance and better representations for all modalities.
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Chapter 1

Introduction

There has been a dramatic increase in the availability of 3D content in recent years. Improved

scanning hardware and reconstruction algorithms are beginning to democratize 3D content creation.

The growth in virtual and augmented reality applications has also driven demand for more synthetic

(i.e. human-designed) 3D content. It is no wonder that operating systems now natively support

viewing and editing 3D content (e.g., iOS/MacOS and Windows). In addition to curated 3D object

datasets for research [5, 14, 20, 49, 64], large repositories of 3D shapes provide both synthetic [54,

60, 61] and scanned objects [23].

As 3D assets become more and more pervasive, we need to have techniques that allow users to

easily and rapidly search through large 3D collections. In recent years, text to image search has seen

renewed interest due to improved architectures [9, 39, 41, 48] and objectives [16, 37, 48, 67] for

joint representation learning. On the other hand, there has been very little research on text-driven

3D content search.

The little prior work on text-to-shape retrieval has thus far not provided a systematic investiga-

tion of: 1) whether 3D information is necessary for text-to-shape retrieval, or whether it is sufficient

to leverage existing text-to-image retrieval methods; 2) whether there are benefits to incorporating

data with three modalities information; and 3) what kind of loss/contrastive learning setup should

be used for constructing joint text-shape embeddings.

Early work by Min et al. [43] compared the text query with text associated with the shape (this is

essentially just text-text retrieval). Chen et al. [7] were the first to create a joint embedding of text and

3D shapes for text-to-shape retrieval. Leveraging the ‘chairs and tables’ dataset introduced by Chen

et al. [7], followup work investigated improved methods for text-to-shape retrieval [28, 57]. This

line of work leveraged a triplet loss for metric learning over two modalities. We show that recent

contrastive learning algorithms [67] are sufficient to achieve SoTA performance while avoiding

more complex mechanisms, and result in a more flexible representation.

Most contrastive learning algorithms focus on one modality such as images [8, 26, 53, 55], or

two modalities [48]. There is far less literature on three or more modalities. Prior work on text to

shape retrieval either learns a joint representation with voxels and text, or multi-view images and

text, both of which are bimodal settings. Instead, we propose learning in a trimodal setting (with

1



three modalities): voxel, images and text. This does not require extra datasets as the multi-view

images can be rendered from 3D objects. We leverage these modalities to learn the joint embedding

space for all three modalities in an end-to-end fashion. The resulting retrieval results are better than

learning from bimodal settings.

1.1 Thesis contribution

Using our contrastive loss model, we conduct experiments on text-to-shape retrieval to examine the

effect of trimodal vs bimodal embeddings, batch size, and input representation (single view vs multi

view vs 3D voxels). We show that with careful tuning we can outperform recent methods that rely

on part-based segmentation of the 3D shapes. In summary, our main contributions are:

• We introduce a simple trimodal training scheme for text to 3D shape retrieval.

• We present experiments and analysis to provide insights on the effectiveness of using con-

trastive learning for cross-modal representation learning and downstream tasks.

• We achieve state-of-the-art performance on multiple retrieval metrics, outperforming existing

approaches with more complex methods by 2.31% on RR@1 (relative improvement of 29%).

This thesis is a joint work [51] with Han-Hung Lee, Ke Zhang and Dr. Angel X. Chang. My

responsibility includes: starting the Text2Shape project, building the training pipeline and bi-modal

loss, implementing the scripts for computing the evaluation metrics, and conducting experiments

on the Text2Shape and SNARE datasets. In addition, I also helped to collate part of the qualitative

examples and wrote the initial draft. My collaborator Han-Hung Lee not only proposed the tri-modal

loss, but also conducted experiments on the Text2Shape and ShapeNet C13 datasets and helped to

write the conference paper. Ke Zhang collated part of the qualitative examples, provided the T-

SNE visualization and conducted the manual analysis. As our mentor and supervisor for the whole

project, Dr. Chang prepared important data for us and assisted with paper writing. The descriptions

for the ShapeNet C13 dataset was provided by Dave Zhenyu Chen.

1.2 Thesis organization

This thesis is structured as follows: Chapter 2 discusses related work. Chapter 3 defines the text to

shape retrieval problem and explains our approach. Chapter 4 describes our text-to-shape retrieval

experiments on the Text2Shape dataset [7]. We describe the dataset, experiment settings, metrics as

well as provide quantitative and qualitative evaluations, and conduct error analysis. In Chapter 5, we

investigate how well our method can work on the reference game task and apply it to the SNARE

dataset [58]. Chapter 6 discusses the limitations of our method and concludes the thesis. Chapter 1,

most of Chapter 2, 3, 4, 6 are directly reproduced from the TriCoLo paper [51].
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Chapter 2

Related Work

There has been growing interest in connecting language to 3D representations for several tasks:

identifying 3D objects in scenes [2, 6, 33, 50, 66, 68], describing 3D objects [10, 29], using 3D

scene geometry augmentation in caption-driven image retrieval [63], generating [7] and disam-

biguating [1, 58] 3D shapes using natural language.

3D shape retrieval. Min et al. [43] were one of the first to address the problem of text to 3D shape

retrieval by comparing the text query with textual information associated with the shape. Their

approach was based purely on text, and relied on each shape having an associated description. Chen

et al. [7] was the first work to create a joint embedding of text and 3D shapes and use that for text-

to-shape retrieval. The joint embedding was constructed using a CNN encoder on voxels and GRU

encoders on text, and using a combined [53]triplet loss and learning by association [27] to align the

embedded representations. To improve retrieval performance, Han et al. [28] used a GRU to encode

image features from multiple-views to represent the shape, and use reconstruction losses (both intra

and inter modalities) in addition to triplet loss and classification loss to train the joint embedding.

In constrast, our work considers multi-view and voxel representation for the shape and does not

rely on any reconstruction losses. Tang et al. [57], the current state-of-the-art approach, proposed

to incorporate part-level information, and used point cloud representations for the shapes. In their

work, semantic part data was used to compute attention with words to model 3D part relationship

with the descriptions. However, obtaining semantic part information can be difficult, and because

attention is used both data modalities are required to compute the final representation which can

limit uses for other downstream tasks such as generation.

3D object disambiguation through language. The task of object disambiguation through language

(also known as a reference game) is related to our text to shape retrieval. The main difference

between the two tasks is a matter of scale. In shape retrieval, we are interested in retrieving all

objects that match a textual query from a large set of candidate objects. In contrast, in 3D object

disambiguation, there is a smaller set of objects (typically three) from which we want to select

the one that best matches the description. Reference games involving images and language have a

long history [13, 18, 22, 35, 44], but there is significantly less work that takes advantage of the 3D

nature of objects. Achlioptas et al. [1] used a speaker-listener model for selecting the correct object
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based on the text description from among three objects. They showed that a model combining 3D

features (from point clouds) with 2D features (from images) is better than just using 3D or 2D

features. More recently, Thomason et al. [58] showed that using multi-view images can improve the

disambiguation power of a model. Unlike this line of prior work, we focus on the problem of text to

3D shape retrieval and examine the benefit of combining multi-view images and colored 3D voxel

representations.

Joint embedding. Joint embedding spaces for text and images [16, 19, 37, 48, 62, 67] have en-

abled retrieval and generation between text and 2D images. Most joint embedding approaches use

contrastive learning. With the success of joint embeddings, researchers have also started to explore

combining more modalities [3, 4, 40, 42]. Work involving vision, audio, and language shows that

having multiple modalities can improve performance [3, 4, 42]. Liu et al. [40] introduce a general

data augmentation technique where modalities are disturbed to generate negative samples. These

lines of prior work are orthogonal to our work as we investigate the use of trimodal contrastive loss

on creating a joint embedding with 3D shape, language, and multiview images for text to shape

retrieval.

Contrastive learning. Wu et al. [65] proposed to learn representation using a instance discrimi-

nation task which does not rely on annotated class labels. They used noise contrastive estimation

(NCE) and memory bank to work around with the computational challenge brought by a huge num-

ber of instance classes. Oord et al. [45] proposed infoNCE loss which becomes a standard loss

function in the following contrastive learning work. Their method can learn meaningful representa-

tions for not only images domain but also audio, video, texts and in reinforcement learning domains.

Tian et al. [59] extended contrastive learning from two image views to multiple views. He et al. [31]

changed memory bank in [65] to a dynamic queue and proposed momentum encoder. Their unsuper-

vised method can outperform supervised couterpart on universally used datasets including PASCAL

VOC and COCO. Chen et al. [8] investigated the impact of different techniques on contrastive learn-

ing including different losses, larger batch size, various data augmentation, use of a projection head

and training time. Grill et al. [25] proposed a method which did not use negatives and learned only

from positives. It also did not use infoNCE but use MSE loss instead. He et al. [32] summarized

prior works and proposed a simple Siamese network that did not need a large batch size, momen-

tum encoder or negatives. They showed that using a critical stop-gradient operation can prevent the

network from model collapsing. He et al. [32] also showed the potential ability of masked learning.

Zhang et al. [67] showed that the NT-XEnt loss can be used to learn joint embeddings of images

and text in the biomedical domain. By training on large amounts of image and caption data, Rad-

ford et al. [48] demonstrated that contrastive learning can be very effective at learning good joint

multi-modal embeddings that can be used in a zero-shot manner.

4



Chapter 3

Text to Shape Retrieval

3.1 Problem statement

We tackle the problem of object retrieval given an input query sentence xt. Specifically we use the

Text2Shape [7] dataset which contains tables and chairs from ShapeNet [5] and provides several

text descriptions for each object. The text descriptions provide fine-grained information about the

appearance of the objects, for example whether a chair has armrests, whether tables have a rectan-

gular or round base, and texture appearance like color. However, it is also worth noting that some

sentences may be ambiguous in that there could be multiple objects that satisfy the description.

Accurate retrieval requires that we learn a good similarity measure between text description and 3D

shape. To this end, we learn a shared latent space to facilitate the process of text-shape alignment.

3.2 Approach

Inspired by recent developments in multimodal contrastive learning [3, 4, 40, 42], we leverage 3D

voxels and multi-view images with language to learn a shared embedding space using contrastive

learning. As illustrated in Fig. 3.1, we encode the different modalities with per-modality architec-

tures. Embeddings for the same object are then pulled closer, while those belonging to different

objects are pushed apart using contrastive loss.

3.2.1 Encoder models

We represent the input 3D voxels, text description and multi-view images as xv, xt and xi respec-

tively. For each modality m ∈ (v, i, t), we define an encoder fm that takes the input xm and outputs

an encoding um ∈ Rd. The text encoder ft is a Bi-directional Gate Recurrent Unit (Bi-GRU) [12]

which takes a text description xt ∈ RL×et and outputs the embedding ut ∈ Rd, where L and et

are the sentence and word embedding lengths respectively. For voxels we use a 3D CNN model fv

that takes a 3D input of xv ∈ Rrv×rv×rv×4 and outputs uv ∈ Rd where rv is the voxel resolution.

Finally, the image encoder takes M views of the object xi ∈ RM×ri×ri×3 through an MVCNN [56]

5
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Figure 3.1: Trimodal pipeline. Given the voxel shapes xv, input text description xt and rendered
images xi, 3D CNN, Bi-GRU and MVCNN transform them to feature vector uv, ut and ui which
are aligned in the hidden space. We then minimize a bidirectional contrastive loss to learn effective
shape representations, text representations and image representations that are close to each other if
they are from the same object.
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Figure 3.2: We introduce TriCoLo, a trimodal contrastive loss for text to 3D shape retrieval. We
take objects represented by 3D colored voxels, text descriptions, and multi-view images and jointly
use these three modalities to train a trimodal embedding space. This trimodal embedding allows us
to perform fine-grained text to shape retrieval.
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architecture with pretrained ResNet18 [30] backbone fi to obtain the image representation ui ∈ Rd

where ri is the image resolution.

3.2.2 Loss function

We adopt the bimodality loss from ConVIRT [67] for our approach. Specifically for two modal-

ities m1, m2 ∈ (v, i, t) so that m1 ̸= m2 and a batch size of N we construct N positive pairs

(um1j , um2j) for embeddings belonging to the same object and N2−N negative pairs (um1j , um2k)j ̸=k

for different objects. The contrastive loss is then applied symmetrically as shown below.

lm1→m2
j = − log

exp(⟨um1j
, um2j

⟩/τ)∑N
k=1 exp(⟨um1j

, um2k
⟩/τ)

(3.1)

lm2→m1
j = − log

exp(⟨um2j
, um1j

⟩/τ)∑N
k=1 exp(⟨um2j

, um1k
⟩/τ)

(3.2)

where τ ∈ R+ is a temperature parameter that controls the concentration of the distribution and

smoothness of softmax, and ⟨, ⟩ is the cosine similarity. This particular form of contrastive loss is

the NT-Xent (normalized temperature-scaled cross entropy loss, as named in Chen et al. [8] and

used by other work [45, 65]). Finally we calculate a weighted sum of lm1→m2
j and lm2→m1

j and

average over the minibatch.

L(m1, m2) = 1
N

N∑
j=1

(αlm1→m2
j + (1 − α)lm2→m1

j ) (3.3)

where α ∈ [0, 1]

Trimodal loss To extend the loss to three modalities we simply calculate the ConVIRT [67] loss

over all pair possibilities for the text, voxel and image representations. This gives the final loss:

Ltri = L(v, i) + L(v, t) + L(i, t) (3.4)

3.2.3 Retrieval

For the retrieval task we are given an input text description and we have to return the matching

object. To do this we can either calculate similarity between text and voxel representations or text

and image representations. Leveraging the fact that the joint embedding space is shared between all

three modalities in the trimodal model we can also retrieve objects by calculating similarity between

text and the sum of voxel and image representations. Our whole pipeline is shown in Fig. 3.2
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Chapter 4

Experiments on the Text2Shape Dataset

4.1 Dataset

We evaluate on the ‘chairs and tables’ dataset introduced in Text2shape [7]. This dataset contains

solid colored voxels from ShapeNet 3D shapes [5] and diverse, fine-grained descriptions from hu-

mans. The shapes are 6521 unique chairs and 8378 unique tables. Each 3D shape has an average of

5 captions. We follow the train/val/test split by Chen et al. [7] (see Table 4.1 for statistics).

4.2 Metrics

We follow prior work on text to shape retrieval [7, 28, 57] and use the standard metrics of Recall Rate

(RR@k) and Normalized Discounted Cumulative Gain (NDCG) [34] for quantitative comparisons.

RR@k deems a retrieval successful if the ground truth (GT) appears in the top k candidates. We

set k to 1 and 5. NDCG considers retrieval results with their relevance. We also evaluate using

Mean Reciprocal Rank (MRR). MRR is the average of reciprocal ranks which are the multiplicative

inverse of the rank of the GT.

We note that there are often multiple shapes that can match the text description. Since the text

description can be underspecified, we also measure the similarity of the top k retrieved shapes to the

GT shape. Following work in shape retrieval [38], we use a point-wise F1τ with τ = 0.1, 0.3, 0.5,

Modality Category Train Validation Test

Text
Chair 26257 3313 3206
Table 33520 4122 4246

Total 59777 7435 7452

Shape
Chair 5221 659 641
Table 6700 827 851

Total 11921 1486 1492

Table 4.1: Statistics for the ‘chairs and tables’ dataset [7] we use.
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Layer Kernel Stride Channels IN LR

conv1 3 2 32 Y Y
conv2 3 1 64 Y Y
max_pool2 3 2 - - -
conv3 3 1 128 Y Y
max_pool3 3 2 - - -
conv4 3 1 256 Y Y
max_pool4 3 2 - - -
conv5 3 2 512 Y Y
adaptive_avg_pool - - - - -
fc6 - - 512 N N

Table 4.2: Voxel encoder architecture for resolution 643

as well as the Chamfer Distance (CD), and (Abstract) Normal Consistency (NC) to calculate the

similarity of GT shape and retrieved shapes. F1τ is the harmonic mean of the fraction of points

from retrieved shapes within τ of a point from GT (point-wise precision), and the fraction of points

from GT within τ of a point from retrieved shapes (point-wise recall). We note that these are all

point-wise metrics, and we sample 10K points uniformly on the mesh surface of GT and retrieved

shapes for computing these metrics. Note that both CD and F1τ depend on the absolute scale of

meshes. To compute them, we follow Fan et al. [17] who define 1 unit as 1/10 of the largest length

of the ground truth’s bounding box and rescale the ground truth and retrieved meshes individually.

4.3 Implementation details

We use a one-layer bi-directional GRU [12] for the text encoder, and a 3D CNN architecture for

the voxel encoder. The vocabulary contains 3587 unique words and 1 pad token. We use the preto-

kenized and lemmatized text from Chen et al. [7]. For the Bi-GRU, we use word embedding size

of 256, and a hidden state size of 128. Word embeddings are initialized with a standard Normal

distribution. For the 3D CNN, we use a 5 Conv3D layers with input resolution 643. Tab. 4.2 shows

the architectural details. Here IN stands for Instance Normalization and LR stands for Leaky ReLU,

each layer of convolution is followed by normalization then activation. The first and last layer have

stride 2 and other layers are followed by max pooling operations. An adaptive pooling is placed

after the last convolution layer to ensure the spatial size is 23 before feeding into the final fully

connected layer. Note that for voxel resolution of 323 we change the stride of the last convolution

layer to 1. We do not conduct any experiments larger than 643 as the memory used for 3D CNNs

grows cubically.

For multi-view images we use the MVCNN [56] architecture with pretrained ResNet18 [30]

backbone. A fully-connected layer is added to ensure the output dimension for all encoders is 512.

Unless otherwise specified, training uses batch size 128, voxel resolution 643, image resolution 1282

and 6 images for the MVCNN. In preprocessing, we normalize the values in images and voxels from
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0-255 to 0-1. We implement our models using Pytorch [46] and train with the Adam optimizer [36].

Our learning rate is 0.0004 and experiments with other batch sizes use the linear scaling rule [24].

We train for a maximum of 20 epochs until convergence. We select the checkpoint that gives the

minimum loss on the validation set. With smaller models we use RTX 2080 Ti GPUs with 11GB of

memory for training, and for larger models with large batch size or three modalities we use V100

GPUs with 32GB of memory. Each experiment takes about 6-8 hours. We rendered the multiview

images from the mesh representation of those 3D shapes. More specifically, for the rendering setup

we use a Blender-based script1. The object is placed at the center (0, 0, 0). The camera is placed

at (0, 1, 0.6) with the focal length set to 35mm and the sensor width to 32mm while being pointed

towards the center (0, 0, 0). We modify the original script to only render 12 images by rotating the

camera 30 degrees per render with render resolution set to 224. The rendering engine used is the

Blender EEVEE rasterization engine with the Principled BSDF shader. For multiview experiments

using fewer images, we subsample so images are evenly spaced.

4.4 Models

Baselines We compare to Text2shape [7], Y2Seq2Seq [28] and Part2word [57] (end2end, part).

Text2shape [7] uses a triplet loss [53] with learning by association [27]. Y2Seq2Seq [28] uses a

view-based model and a triplet constraint. Part2word [57] uses point clouds as input instead of

voxels. The end-to-end model in Part2word uses PointNet [47] as the global feature encoder and

Bi-GRU as the text encoder. The part model in Part2word jointly embeds point clouds and text by

aligning parts from shapes and words from sentences. Both the end-to-end and the part-based model

use a semi-hard negative mining triplet ranking loss. In addition to baselines from prior work, we

use two random baselines: one computes the expected metric mathematically, and the other uses our

architecture with random weights.

Our models We train variants of our model with just two modalities (Bi) or all three modalities

(Tri). For the bimodal models, we only consider text and image (I), or text and voxels (V). During

retrieval, we compute the similarity of the text with image (I), or text with voxels (V), or in the

case of trimodal embedding, we use a combination of the image and voxel when computing the

similarity. We use I+V to denote that the retrieval was done by calculating similarity with text and

sum of image and voxel representations.
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RR@1 RR@5 NDCG@5

Random (expected) 0.06 0.30 0.20
Random (weights) 0.08 0.32 0.20

Text2shape [7] 0.40 2.37 1.35
Y2Seq2Seq [28] 2.93 9.23 6.05

Part2Word [57] (end2end) 7.13 22.63 14.94
Part2Word [57] (part) 7.94 23.89 16.03

Bi(I) (ours) 8.28 24.52 16.52
Bi(V) (ours) 8.73 26.10 17.53

Tri(I+V) (ours) 10.25 29.07 19.85

Table 4.3: Text to shape retrieval comparison against prior work on the test set. We report the recall
rate (RR@1, RR@5) and NDCG@5 as percentages. We train with a batch size of 128, 643 voxels,
and 6 multi-view images at a resolution of 1282 each. Our bimodal joint embedding (Bi(I), Bi(V))
trained using the NT-XEnt loss outperforms prior work, including Part2Word [57] which uses part
annotations during training. Our trimodal embedding (Tri(I+V)) further improves retrieval perfor-
mance.

RR@1(↑) RR@5(↑) NDCG@5(↑) MRR(↑) CD(↓) NC(↑) F10.1(↑) F10.3(↑) F10.5(↑)

Bi(I) 8.69 ± 0.38 25.29 ± 0.46 17.14 ± 0.42 17.63 ± 0.38 2.01 ± 0.02 0.62 ± 0.002 11.97 ± 0.20 34.37 ± 0.31 48.89 ± 0.36
Tri(I) 9.25 ± 0.46 26.24 ± 0.73 17.89 ± 0.59 18.36 ± 0.51 1.91 ± 0.02 0.63 ± 0.002 12.49 ± 0.21 35.56 ± 0.28 50.28 ± 0.29
Bi(V) 8.86 ± 0.16 26.41 ± 0.50 17.79 ± 0.30 18.34 ± 0.20 1.96 ± 0.02 0.62 ± 0.002 12.21 ± 0.09 35.01 ± 0.18 49.60 ± 0.24
Tri(V) 9.42 ± 0.30 27.90 ± 0.56 18.87 ± 0.40 19.26 ± 0.34 1.89 ± 0.03 0.63 ± 0.002 12.64 ± 0.13 35.75 ± 0.30 50.44 ± 0.37

Tri(I+V) 10.56 ± 0.43 29.50 ± 0.56 20.20 ± 0.49 20.46 ± 0.46 1.88 ± 0.02 0.63 ± 0.001 12.85 ± 0.17 36.02 ± 0.32 50.70 ± 0.35

Table 4.4: Comparison of bimodal and trimodal models for text-to-shape retrieval on the valida-
tion set. Having a trimodal embedding (Tri(I),Tri(V)) gives better performance than the bimodal
embeddings (Bi(I),Bi(V)). By summing the image and voxel representations from the trimodal em-
beddings (Tri(I+V)), we further improve retrieval performance.
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4.5 Quantitative evaluation

We conduct quantitative evaluations comparing our method to prior work, as well as examining the

choice of different loss functions and hyperparameters. We train models with different seeds and

report the mean and standard error across 7 runs.

Comparison with prior work We report the text-to-shape retrieval results in Tab. 4.3. The cur-

rent SoTA Part2word [57] assumes prior part segmentation knowledge to compute attention with

the word embeddings and trains using the triplet loss with negative sampling. In contrast, we do

not leverage any part prior knowledge, or attention mechanisms. Tab. 4.3 shows that our method

performs better on all retrieval metrics. Note that there are several differences in the prior work

compared to our own: the network architectures and specifics of the loss functions, as well as dif-

ferent input representations. Chen et al. [7] used 323 colored voxels, while Y2Seq2Seq [28] used

multi-view images, and Part2Word [57] used colored point clouds. To better understand what fac-

tors are important for improved performance, we conduct additional experiments to study the effect

of different modalities, loss functions, and hyperparameters.

Bimodal vs Trimodal We compare the trimodal joint embedding with bimodal ones (see Tab. 4.4).

The modalities in the parentheses indicate which representation was used to retrieve the 3D shapes

with respect to the text embeddings. We see that the trimodal embedding improves retrieval per-

formance across all metrics when retrieving by both images and voxels. We obtain the best result

if we sum the image and voxel embeddings. This indicates that the information in the voxels is

complementary to the multi-view images.

Loss function comparison To validate the choice of NT-Xent as our loss function, we compare

the performance of our model using a hinge-based triplet loss [53] instead of NT-Xent. We use

semi-hard negative mining with margin of 0.025. Semi-hard negatives have been shown to improve

performance for contrastive losses [8]. Specifically Tang et al. [57] showed it worked better than

either triplet-loss by itself or hard negatives for retrieval with the Text2Shape dataset. Our results

in Tab. 4.5 show that the text-to-shape retrieval performance with triplet loss is significantly lower

than that with NT-Xent. Overall, our findings are consistent with prior work [11]. Note that our

model outperforms Y2Seq2Seq [28] even with just triplet loss. We find that with NT-Xent loss, our

bimodal models surpass the performance of Part2Word [57].

Numbers of input images We compare performance of the bimodal models on the validation set

with different numbers of input images. We use the bimodal models as they are faster to train and

require less memory than the trimodal model. For Bi(I), we conduct experiments with number of

images ranging from 1 to 12, and find that performance increases as we increase the number of

images to 6, after which there are diminishing returns and even a small drop in performance (see

Tab. 4.6). The results indicate that multi-view images provide a benefit over a single view.

1https://github.com/panmari/stanford-shapenet-renderer
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RR@1(↑) RR@5(↑) NDCG@5(↑) MRR(↑)

Bi(I) 5.65 ± 0.57 18.87 ± 0.90 12.32 ± 0.77 13.41 ± 0.69
Bi(V) 5.66 ± 0.40 19.66 ± 0.56 12.70 ± 0.49 13.79 ± 0.49
Tri(I+V) 7.87 ± 0.37 24.15 ± 0.68 16.08 ± 0.55 16.74 ± 0.50

Table 4.5: Text-to-shape retrieval performance on the validation set using triplet loss with semi-hard
negative mining. The performance is lower compared to NT-Xent (Tab. 4.4).

# of images RR@1(↑) RR@5(↑) NDCG@5(↑) MRR(↑)

Bi(I)

1 7.14 ± 0.38 22.18 ± 0.77 14.78 ± 0.59 15.5 ± 0.53
3 8.02 ± 0.47 24.27 ± 0.74 16.27 ± 0.58 16.82 ± 0.53
6 8.69 ± 0.38 25.29 ± 0.46 17.14 ± 0.42 17.63 ± 0.38

12 8.54 ± 0.44 25.14 ± 0.57 16.98 ± 0.50 17.51 ± 0.46

Table 4.6: Comparison of number of images on shape retrieval for Bi(I) on the validation set. We
find that having multiple views is important for improved performance, but increasing the number
of images beyond 6 causes a slight decrease in performance. We believe that that 6 views is likely
to be sufficient to capture the necessary information, and increasing it further increases the number
of parameters and causes overfitting due to the limited size of the dataset.

Batch size We also compare batch sizes of 32, 64, 128 for Bi(I) and Bi(V) and find that performance

increases with increasing batch size from 32 to 128 (see Tab. 4.7). This is consistent with findings

from prior work on contrastive learning [8, 45]. However, the performance drops when the batch

size increases to 256 for Bi(I). For Bi(V), increasing the batch size to 256 makes little difference.

We hypothesize this is due to more false negatives in the batch since the text description may apply

to multiple shapes. Another reason may be that since our dataset size is small compared to image

datasets used in prior work [8, 48], having a big batch size might overfit our model. We also note

that variance is quite high between runs, which we again attribute to false negatives in the batch and

randomness introduced when sampling batches. However, more investigation is warranted.

Image and voxel resolutions We conduct experiments for different resolutions of images (642, 1282

and 2242) and voxels (323 and 643). In Tab. 4.9 we see that the performance increases with higher

resolutions. We limit our voxel experiments to 643 as the memory required for higher resolutions

grows cubically. It is also possible to use sparse convolutions to handle the higher resolution, but we

have focused our experiments on using solid voxelizations (the interior of each shape is filled with

voxels), for which it is unclear whether sparse convolutions would help significantly.

Zero-shot performance of CLIP Given the generalizability of CLIP [48] on several other datasets,

it is also interesting to check how it would perform in a zero shot transfer setting to the Text2Shape [7]

dataset. To use CLIP for our retrieval task, we first feed the 12 multi-view images of an object into

the image encoder for CLIP separately then average the vectors to get the image embedding. Specif-

ically we use the ViT-B/32 pretrained model from CLIP. For retrieval, we encode the text using the

CLIP text encoder and then retrieve relevant shapes by taking the dot product of the text and shape
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batch size RR@1(↑) RR@5(↑) NDCG@5(↑) MRR(↑)

Bi(I)
32 8.07 ± 0.20 23.68 ± 0.43 16.00 ± 0.31 16.67 ± 0.28
64 8.25 ± 0.31 24.52 ± 0.49 16.52 ± 0.32 17.09 ± 0.29

128 8.69 ± 0.38 25.29 ± 0.46 17.14 ± 0.42 17.63 ± 0.38
256 7.73 ± 0.22 23.46 ± 0.51 15.70 ± 0.36 16.36 ± 0.32

Bi(V)
32 7.41 ± 0.20 23.59 ± 0.41 15.60 ± 0.26 16.36 ± 0.24
64 8.35 ± 0.47 25.50 ± 0.44 17.06 ± 0.37 17.68 ± 0.38

128 8.86 ± 0.16 26.41 ± 0.50 17.79 ± 0.30 18.34 ± 0.20
256 8.81 ± 0.36 26.78 ± 0.51 17.96 ± 0.40 18.45 ± 0.37

Table 4.7: Comparison of batch-size on shape retrieval for Bi(I) and Bi(V) on the validation set. We
find that increasing the batch size increases the performance. However, for Bi(I), the performance
decreased for largest batch size we tried (256). This could be due to overfitting on the limited amount
of negative, or the presence of more noisy negatives in the large batch.

RR@1 RR@5 NDCG@5

Text2shape [7] 0.40 2.37 1.35
Y2Seq2Seq [28] 2.93 9.23 6.05

Part2Word [57] (part) 7.94 23.89 16.03
CLIP [48] 1.40 4.08 2.72

CLIP [48](Norm) 1.63 5.34 3.47

Table 4.8: Comparison of text to shape retrieval performance using CLIP zero shot against prior
work on the test set. We report the recall rate (RR@1, RR@5) and NDCG@5 as percentages. It can
be seen that CLIP has relatively good performance considering that it has not been trained on the
Text2Shape [7] dataset.
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resolution RR@1(↑) RR@5(↑) NDCG@5(↑) MRR(↑)

Bi(I)
64 7.41 ± 0.34 22.62 ± 0.50 15.13 ± 0.40 15.86 ± 0.35

128 8.69 ± 0.39 25.30 ± 0.47 17.15 ± 0.43 17.64 ± 0.39
224 8.85 ± 0.21 25.51 ± 0.36 17.31 ± 0.18 17.81 ± 0.17

Bi(V)
32 6.62 ± 0.24 21.81 ± 0.41 14.30 ± 0.28 15.20 ± 0.24
64 8.86 ± 0.16 26.41 ± 0.50 17.79 ± 0.30 18.34 ± 0.20

Table 4.9: Comparison of resolution settings on shape retrieval for Bi(I) and Bi(V) on the validation
set. We find that increasing the resolution increases the performance.

embeddings. We compare the unnormalized CLIP embedding as well as the normalized CLIP em-

bedding (Norm), which is equivalent to taking the cosine similarity as we do with our model. The

results can be seen in Tab. 4.8. Although its performance is not on par with recent SoTA, it is im-

pressive that it can beat the baseline method from the original Text2Shape [7] without being trained

on the dataset.

4.6 Qualitative evaluation

Custom sentences We tried several custom sentences which are not in the dataset. Fig. 4.1 shows

the best matching shapes each model predicts. This shows that our network is able to allow users to

easily and rapidly search through large 3D collections.

Sentences from the dataset
Fig. 4.2 shows successful retrievals of shapes using Tri(I+V), our best performing model. Our

model successfully grounds language describing shape (L-shaped, boxy), color (brown, greenish),

and texture (wooden). It can also handle negation (armless). Note that many shapes match the de-

scription despite not being the ground-truth shape, indicating that there are indeed many matching

shapes for a given description. For example, in row 5 the text describes a boxy look gray chair.

The retrieved shapes all match the description, but the last four would be negatives in our training

process and the retrieval metrics.

Failure cases
Fig. 4.3 shows example failure cases of our model. While the top 2 shapes in the first row

have a slot to keep things, the other retrieved shapes in the top 5 do not. The second row shows

the challenge of retrieving shapes with rare attributes. While there are many plain square wooden

table(s) in the dataset, there are far fewer tables that can be folded. So the network focuses more on

square wooden and ignores can be fold. We find that it is easier for the network to learn frequently

occurring characteristics such as shape and texture, but some descriptions (e.g. for articulations) are

likely too abstract and infrequent for our current approach.
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Bi(I) Bi(V) Tri(I+V)

a dark brown colored wooden table

a fashion chair

circular table with glass

rectangular table with glass

chair with arm

chair without arm

Figure 4.1: Retrieved shapes from test set using Bi(I), Bi(V), and Tri(I+V) for custom sentences.
Note that all models are able to retrieve shapes that match the color (dark brown) and material
appearance (wooden, glass), shape (circular, rectangular), and the presence and absence of arms
(last two rows).
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top1 top2 top3 top4 top5

1 an L-shaped dark brown colored wooden table.

17.31 6.60 20.34 GT 2.19

2 a luxurious gray leather modern concept plush
chair with stainless steel frame foots

GT 2.89 9.50 1.78 3.42

3 simple circular table with no leg and only one
circular base.

0.79 5.77 0.59 GT 6.32

4 This is greenish top wooden billiards table.

15.79 GT 8.04 19.59 3.18

5 this is a boxy look gray chair. It appears to be
made out of granite and is gray with 4 short legs
and a high, arched back.

GT 4.64 22.32 12.97 11.42

6 wooden armless dining room chair with open
nine-square back.

GT 19.36 13.31 18.78 12.38

Figure 4.2: Successful retrieval results on the test set with Tri(I+V). For each description, we use
our proposed model to retrieve the top-5 shapes. We show the F10.1 score (as a percentage) for each
retrieved shape and mark the ground-truth shape (indicated by green GT). The expected F1 score for
GT is 100. Shapes that are not a perfect match to the description are marked in dark orange (color
mismatch), and gold (shape detail mismatch). This figure shows that our network has good language
grounding ability overall. It can retrieve shapes that match L-shaped (row 1), stainless steel frame
foots (row 2), circular table (row 3), no leg (row 3), circular base (row 3), greenish top (row 4),
wooden (row 4), boxy look (row 5), gray (row 5), armless (row 6) and nine-square back (row 6).

17



GT top1 top2 top3 top4 top5

a desk with wooden color
on top and a slot for
keeping thing in between 6.63 4.87 0.0 0.0 0.0

plain square wooden
table that can be folded
for storage 1.62 1.69 1.65 15.94 1.27

Figure 4.3: Examples of failed retrievals on the test set with Tri(I+V). The ground truth (GT) is
shown in the first column, followed by the retrieved results with the F10.1 score for each. We see
that some descriptions do not accurately describe the GT shape (first row), and retrieval of shapes
with rare attributes such as being foldable is hard (second row).

match
color

mismatch
big

shape error
small

shape error
missing

part

Bi(I) 106 65 22 85 5
Bi(V) 103 67 26 76 5
Tri(I+V) 113 64 17 74 5

Table 4.10: Manual analysis of the top 5 results returned for 50 text queries. We group the results
into whether they perfectly match the description, or whether there is a mismatch in color or shape.
We confirm that Tri(I+V) has the best overall performance with the most perfect matches and the
least number of shape mismatches.

4.7 Error analysis

We conduct a manual analysis of the top 5 results returned for 50 text queries from the validation

set for Bi(I), Bi(V), and Tri(I+V). We count the number of query results (shapes) that match the

description exactly, and categorize the error into color mismatch, large shape mismatch, shape detail

mismatch, and missing part (see Fig. 4.4 for examples and Tab. 4.10 for analysis summary). As

expected from the quantitative results, Tri(I+V) has the most number of shapes that match the

description. With the limited number of queries we examined, all models have similar performance

on color and missing part. The Bi(I) model had difficulty getting small shape details correct, and

Tri(I+V) obtained the best performance on matching the overall shape.

4.8 Evaluation on ShapeNet 13 categories

To show the effectiveness of our method for retrieval beyond ‘chairs and tables’, we also collected

a set of descriptions for 11 additional categories of objects from ShapeNet [5]. Using a similar

setting as Chen et al. [7], we asked Amazon Mechanical Turk workers to provide descriptions

for a random set of 5 objects. We restricted workers to high quality workers (with acceptance rate
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a black desk chair with
two legs made of metal
piping which join under
the back of the chair
along with arm rests
and a split back rest

GT small shape
mismatch

large shape
mismatch color mismatch missing part

Figure 4.4: Examples of the four types of error we analyzed in our manual analysis.

Category Modality Train Validation Test Modality Train Validation Test

Table

Text

33613 4170 4144

Shape

6726 831 826
Chair 26254 3503 3387 5222 696 675
Sofa 12645 1565 1588 2521 311 316

Lamp 9249 1077 1293 1844 215 258
Loudspeaker 6417 850 707 1279 170 141

Cabinet 6374 743 816 1266 146 159
Display 4397 520 552 875 104 110
Bathtub 3535 360 397 703 72 79
Clock 2510 367 342 500 73 68

Bookshelf 1776 255 190 354 51 38
Trash bin 1451 145 125 289 29 25

File cabinet 1160 142 130 231 28 26
Bed 905 125 135 181 25 27

Total 110286 13822 13806 21991 2751 2748

Table 4.11: Statistics for the ShapeNet [5] C13 dataset we use.

of > 95% on more than 200 HITs) from countries that have English as a native language (US,

Canada, Great Britain, Australia). We collected up to 5 descriptions per object. This together with

the original ‘chairs and tables’ dataset, results in a dataset with over 138K descriptions for 27, 510
objects across 13 object categories (see Table 4.11 for statistics of each object category).

We use the same standard settings as in our experiments on the ‘chairs and tables’ dataset with

resolution 1282 and 643 for images and voxels respectively and a batch size of 128. The results

shown are over 1 run. Experiments on this ShapeNet C13 dataset shows a similar trend as for the

‘chairs and tables’ dataset, with Tri(I+V) outperforming Bi(I) and Bi(V) (see Table 4.12). Compar-

ison against CLIP and CLIP (Norm) show that the pretrained CLIP model is able retrieve relevant

shapes in a zero-shot setting on this broader set of shapes.

4.9 Evaluation on the Primitives dataset

We also verify our results on the primitives dataset introduced by Chen et al. [7]. The primitives

dataset is a diagnostic dataset consisting of simple shapes with different colors and sizes. Unlike
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RR@1(↑) RR@5(↑) NDCG@5(↑)

CLIP 1.69 5.85 3.77
CLIP (Norm) 2.23 7.3 4.76

Bi(I) 8.44 25.64 17.15
Bi(V) 8.87 27.91 18.52

Tri(I+V) 10.63 31.01 21.03

Table 4.12: Shape retrieval results on ShapeNet c13 val set. We observe a similar trend as on the
‘chairs and tables’ dataset with Tri(I+V) outperforming the other models

RR@1(↑) RR@5(↑) NDCG@5(↑)

Text2shape [7] 95.07 99.08 95.51
Y2Seq2Seq [28] 96.66 97.57 95.87

Bi(V) 98.18 99.78 99.18

Table 4.13: Shape retrieval quantitative results on primitives test set.

the ‘chairs and tables’ from ShapeNet [5], the descriptions are generated using templates and it is

known exactly what shapes each description should match On this simplified dataset, our model

clearly outperforms prior work as shown in Tab. 4.13. Here we do only one run from a random seed.

Note that the performance for primitives is already quite saturated, so we do not run other bimodal

models or trimodal models on it

4.10 Extending to shape-to-text retrieval

While our focus is text to shape retrieval, it is also possible to use our joint embedding for shape-

to-text retrieval. Tab. 4.14 shows that our trimodal embedding trained with NT-XEnt loss is able

to outperform prior work on shape-to-text retrieval. Fig. 4.5 shows some qualitative examples for

shape-to-text retrieval.

RR@1 RR@5 NDCG@5

Text2shape [7] 0.94 3.69 0.85
Y2Seq2Seq [28] 6.77 19.30 5.30

Part2Word [57] (end2end) 9.55 28.45 8.01
Part2Word [57] (part) 13.18 34.52 9.94

Bi(I) (ours) 11.91 32.69 9.37
Bi(V) (ours) 13.07 35.62 10.33

Tri(I+V) (ours) 16.33 42.52 12.73

Table 4.14: Shape to text retrieval comparison against prior work on the test set. We report the
recall rate (RR@1, RR@5) and NDCG@5 as percentages. We train with a batch size of 128, 643

voxels, and 6 multi-view images at a resolution of 1282 each. Our trimodal embedding (Tri(I+V))
outperforms prior work.
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the table is circular with three legs . the table is black and the legs stick out from the top.
a black color round shaped wooden table with three legs
a black colored round table with four slim shaped legs
black round metal outdoor table with long curled legs .
black round table three legs wooden material

a wooden chair red in color
it is a wooden chair . it is red in color .
a wooden chair with red colour back and seat with spindle and strong four legs
a red wooden kitchen chair with detached back and slightly rounded seat
this is wooden chair with four legs and it is in red texture light weight

this oval light wood topped table is on a dark wood base .
a wooden oval brown small table . it has a rectangular hole at the middle below the table top
seems like it has two legs .
an oval shaped table with two legs . it is also wooden and brown .
an brown oval table with three section base
brown color rectangle shape wood material and physical appearance table

a lounge style wooden chair for a porch .
a wooden deckchair that you can stretch your legs on
it is a white wooden adirondack beach chair .
rectangular resting swinging chair light brown coloured solid physical appearance wooden
with hands for resting
lawn chair made of wood with a reclining back and arm green in color .

rectangular blue table with wheels .
a light colour rectangular horizontal table top has blue colour four legs with centralized
ladder like bottom .
a two tiered table with bright blue surfaces . the top tier is a rectangle and the bottom tier a
slightly smaller rectangle with silver metal legs connecting them
blue colour rectangular shape wooden table with moving wheels
a bright cyan coloured table supported by four legs and there is another floor under the table
top . the legs has wheels

it is a gray rocking chair .
wooden rocking chair with armrests and gray cushion .
a wooden rocking chair with rest and back gray color cloth . a chair with wooden arms both
side .
gray technically designed chair with flat armrest and backrest .
a chair designed well .

Figure 4.5: Retrieved descriptions from test set using Tri(I+V) for example shapes. The ground-
truth description is shown in green. Parts of the descriptions that do not accurately match the shape
are underlined. The retrieved descriptions mostly match the input shape and can capture the color
black and overall shape well. However, the model has trouble with fine details (spindle, wheels),
part-level colors (light wood topped, arm green), and functionality (swinging, rocking).
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Chapter 5

Experiments on the SNARE Dataset

In addition to applying our method to text-to-shape retrieval, we also investigate how well it can

work on the reference game task, where given two shapes and a description, the goal is to deter-

mine which shape the description refers to. To explore this, we apply our method to the SNARE

dataset [58], which covers 262 shape categories. This also allows us to investigate how well our

method works on a broader range of shape categories (more than just the tables and chairs from the

Text2Shape dataset [7]).

5.1 Dataset

ShapeNet Annotated with Referring Expressions(SNARE) [58] is a benchmark for using natural

language referring expressions to distinguish 3D objects. The SNARE dataset is built on

ACRONYM [15], a dataset composed of 3D models selected from ShapeNetSem [5, 52] for the

robot grasp planning. The SNARE dataset contains 7,881 ACRONYM object models and over 50K

natural language referring expressions to distinguish between two objects. We show several exam-

ples from the SNARE dataset in the Fig. 5.1.

During the annotation process, crowdworkers from Amazon Mechanical Turk (AMT) are asked

to provide natural language expressions that can discriminately describe an object. Two ShapeNet

objects from the same category were presented side-by-side to AMT workers. These workers had

to answer the question: In order to differentiate Object A from Object B, how to describe Object A?

These AMT workers were asked to look at the object and provide visual expressions, or imagine

they are blindfolded and provide tactile expressions. Hence, visual expressions involve colors and

category, while tactile expressions involve shapes and contours. An example object with three visual

expressions and three tactile expressions is shown in Fig. 5.2.

The vocabulary of the SNARE dataset contains 6567 unique words. For the images, the SNARE

dataset uses the 8 views of rendered images for each model provided by ShapeNetSem [5, 52].

The cameras pointed towards the center of the object while changing the azimuth. The azimuth

angles are spaced by 45 degrees relative to the previous camera. We follow the train/val/test split

established by SNARE [58] (see Tab. 5.1 for statistics).
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Data Split # Cats # Objs # Ref Exps

Text2Shape
Train 2 11921 59777
Val 2 1486 7435
Test 2 1492 7452

Total 2 14899 74664

SNARE

Train 207 6153 39104
Val 7 371 2304
Test 48 1357 8751

Total 262 7881 50159

Table 5.1: Dataset breakdown statistics contrast for Text2Shape and SNARE.

referring expression Object A Object B ans

top of mantle is long, flat and narrow, back of
fireplace extends well backward.

tactile A

has a wide top area tactile A

beige counter visual B

black flat screen television visual A

Figure 5.1: Examples of SNARE dataset. Each entry includes one referring expression, one value
showing this expression is visual or tactile), two objects, and the referent object of this referring
expression.

visual
light brown bench
beige counter
brown storage area

tactile
has three compartments in the front
storage with 3 sections that open from the front
rectangle with openings toward ends

Figure 5.2: Sample of object and its visual/tactile referring expressions in SNARE. Visual expres-
sions focus on colors and category. Tactile expressions focus on contours and shapes.
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Object
Expr pizza topped with

pepperoni and basil
pizza with ham tall wardrobe

has six handles on
the front

positive negative negative negative

negative positive negative negative

negative negative positive negative

negative negative negative positive

Figure 5.3: Example of a batch with size 2. We load two entries each step. One entry gives two
referring expression and two objects. So in total there are four referring expressions and four objects.

5.2 Contrastive learning for SNARE

To train our model for SNARE dataset, we construct our training data as follows. We randomly

sample a minibatch of N tuples, each of which contains a pair of objects (Object A and Object B)

and a referring expression describing one of the objects. We then create additional positive pairs for

each tuple, by taking the distractor object (the object that does did not have a matching referring

expression) and randomly sampling a referring expression from the dataset that matched the dis-

tractor object. This way of building a minibatch results in 2N positive pairs. For negative samples,

rather than explicitly sampling them, for each positive pair, we treat the object paired with the other

2N − 1 referring expressions as negative. Fig. 5.3 gives an example of a batch with size 2.

After constructing positive pairs and negative pairs, we can apply the NT-Xent loss on these

pairs. For two modalities m1, m2 ∈ (v, i, t) so that m1 ̸= m2 and a batch size of N we construct

2N positive pairs (um1j , um2j) for embeddings belonging to the same object and (2N)2 − (2N)

24



negative pairs (um1j , um2k)j ̸=k for different objects. The contrastive loss is the same as the loss in

Chapter 3.

5.3 Implementation details

The architecture and hyperparameters in the network are exactly the same as the network we used

on Text2Shape dataset [7]. We use a one-layer BiGRU as the text encoder, a 3D CNN architecture

as the voxel encoder, and an MVCNN with a pretrained ResNet18 backbone as the image encoder.

We use random weights initialization for text encoder, pretrained weights for image encoder and

xavier [21] uniform weights initialization for voxel encoder.

For text input, we perform word tokenization by building a dictionary from unique word to in-

dex and mapping expressions to arrays. For voxel input, we generate colored solid voxels based

on the solid voxels provided by ShapeNetSem [5, 52]. For image input, we use the pre-rendered

screenshots provided as part of ShapeNetSem [5, 52]. We resize the original screenshots at resolu-

tion 512 × 512 to 128 × 128. ShapeNetSem [5, 52] provides 14 rendered images of each model,

6 canonical orientations (front, back, left, right, bottom, top) and 8 images rendered around every

object at 45 degree intervals. Thomason et al. [58] skip the first 6 canonical orientated images and

only use the remaining 8 images, which is also what we do to be consistent with SNARE [58].

Similar to TriCoLo, the range of values of images and voxels is normalized from 0-255 to 0-1.

We use Adam optimizer with learning rate 0.0004. Our model is trained for a maximum of 30 epochs

until convergence. The checkpoint that gives the best validation accuracy is saved. With batch size

128, we use 1 V100 GPU (32 GB of memory) to train our models. Training Bi(I) takes around 3

hours, training Bi(V) takes around 5 hours, and training Tri(I+V) takes around 6 hours.

5.4 Experiments

5.4.1 Models

We compare our bimodal and trimodal models on the SNARE dataset against CLIP [48] based

models introduced by Thomason et al. [58].

CLIP-based methods Thomason et al. [58] introduces three methods: zero-shot CLIP, Language-

View Match (MATCH) and Language Grounding through Object Rotation (LAGOR). Their zero-

shot CLIP method is a zero-shot classifier which uses embeddings from frozen transformer-based

sentence encoder and ViT-B/32 image encoder in CLIP [48]. The CLIP method identifies the re-

ferred object according to the larger cosine similarity between the text and image embeddings.

MATCH method adds a classification network after a frozen CLIP [48] backbone. Text embed-

dings and image embeddings from CLIP encoders are concatenated and pass through the multi-

layer perceptron (MLP). The MLP layers calculate a matching score for the expression and the

object. MATCH method can be interpreted as a fine-tuned CLIP method implemented by adding a

predictive head over a frozen CLIP backbone. The LAGOR method builds on top of MATCH and
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adds view estimation as an auxiliary loss. LAGOR uses a pretrained-MATCH module taking in two

images and learns an additional multi-layer perceptron to predict the view indices of the two input

images. Thomason et al. [58] trained MATCH method with single, two and eight views, and trained

LAGOR with two views. When training with less than 8 views, the views are randomly selected

from the 8 views at each step.

Our models We compare our bimodal models trained with text-image (Bi(I)), text-voxels (Bi(V)),

and all three modalities (Tri(I+V)). We provide Bi(I) with one, two, and eight images. Following

Thomason et al. [58] the views are chosen at random during each step for one image and two

images. We provide Bi(V) with texts and voxels at 643 resolution, and we provide Tri(I+V) with

texts, voxels at 643 resolution and all eight images. We choose the object as the model’s prediction

whose shape embedding has the larger cosine similarity to the given text embedding

5.4.2 Evaluation metrics

We follow prior work on the SNARE dataset and use the discriminative accuracy for quantitative

comparisons. We count how many predicted referents from the expression are correct and calculate

the accuracy of the validation set. We report the overall accuracy (acc(All)), as well as the accuracy

for the visual referring expressions (acc(Visual) and the tactile referring expressions (acc(Tactile)).

acc(All) = #Correct predictions
#All expressions

(5.1)

acc(Visual) = #Correct predictions given visual expressions
#Visual expressions

(5.2)

acc(Tactile) = #Correct predictions given tactile expressions
#Tactile expressions

(5.3)

5.4.3 Quantitative evaluation

Comparison with prior work Tab. 5.2 shows the comparison of our results and the results from

SNARE [58]. These numbers are in percentage. For Bi(I), our method is better than zero-shot CLIP

but a bit lower than MATCH method irrespective of the number of views used. For Bi(V), there

is an obvious drop in accuracy. The reason might be that our voxel encoder is a self-designed 3D

CNN, and we train it from scratch. However, methods in SNARE [58] use pre-trained CLIP ViT-

B/32 image encoder which has seen lots of images and categories, and has learned sufficient prior

knowledge. This voxel encoder also has a negative impact on the performance of Tri(I+V). While

the accuracy of Bi(I) with eight views is 78.2%, the accuracy of Tri(I+V) with eight views has a

significant decrease and reached to 73.5%.

26



referring expression Object A Object B ans pred

a white file cabinet tactile A A

short and wide wooden stand
visual A A

white cabinet with a brown door
visual B B

bin with lid visual A A

round speaker
tactile A A

clear transparent ruler visual B B

Figure 5.4: Visualization of successful predictions given by our best performing model Bi(I) with
two images. Our model can ground language about colors(white, brown), shapes(short, wide,
round), texture(wooden, transparent) and parts(lid).
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Model Views Visual Tactile All

Bi(V) - 79.7 65.3 72.6

CLIP Single 79.0±0.0 63.0±0.0 71.1±0.0
MATCH Single 88.4±0.4 73.3±0.6 80.9±0.4

Bi(I) Single 88.2 68.7 78.6

CLIP Two 81.0±0.0 64.1±0.0 72.6±0.0
MATCH Two 89.2±0.6 74.4±0.7 81.8±0.4
LAGOR Two 89.8±0.4 75.3±0.7 82.6±0.4

Bi(I) Two 88.5 70.2 79.5

ViLBERT Eight 89.5 76.6 83.1
CLIP Eight 83.7±0.0 65.2±0.0 74.5±0.0

MATCH Eight 89.2±0.9 75.2±0.7 82.2±0.4
Bi(I) Eight 88.4 67.8 78.2

Tri(I+V) Eight 82.3 64.5 73.5

Human(U) Eight 94.0 90.6 92.3
Human(M) Eight 100.0 100.0 100.0

Table 5.2: Accuracy on SNARE dataset. Shaded rows indicate our method.

5.4.4 Qualitative evaluation

Successful cases Fig. 5.4 shows successful discriminations when we use Bi(I) with two views, our

best performing model on this dataset. Our model successfully grounds language which describes

the color(white, brown, transparent), shape(short, wide, round) and texture(wooden).

Failure cases Through looking into all the failure cases when we use our best performing model

Bi(I) with two views, we identify several challenges. Fig. 5.5 shows it is difficult for Bi(I) to capture

tiny details because the resolution of images is too low to show the details clearly. For example,

knob, numbers and wheels are very small on the images, so there are only a small amount of pixels

showing them. Fig. 5.6 shows the challenge of understanding number of parts for our Bi(I) model.

For instance, both objects have the door handle in row 2, but the left object has only one handle and

the right object has three handles. Our model would predict the wrong drawer. Fig. 5.7 illustrates it

is demanding for our Bi(I) model to understand the articulation functions. To be specific, in Fig. 5.7

our model cannot discriminate the status of the drawer or door is open or closed.

28



referring expression Object A Object B ans pred

simple rectangle with knob near
bottom

tactile A B

ruler with numbers tactile A B

wheels are at base of can.
tactile A B

Figure 5.5: Examples of failure cases due to tiny details given by our best performing model Bi(I)
with two images. It is hard for the mdoels (and people) to notice knob on the cabinet (row 1),
numbers on the ruler (row 2), wheels on the can (row 3).

referring expression Object A Object B ans pred

Wardrobe with two doors tactile A B

box with one door handle tactile A B

speaker with four circles on it tactile A B

Figure 5.6: Examples of failure cases due to the number of parts given by our best performing model
Bi(I) with two images. In row 1, the Object A has two doors, while the Object B has many shelves.
In row 2, the Object A has only one handle, while Object B has three handles. In row 3, Object A
has four circles, while Object B has only two circles. When the two candidates share a common
part but have different number of it and the referring expressions specify this divergence, our model
failed to understand.
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referring expression Object A Object B ans pred

cabinet with closed drawers tactile A B

rectangular cabinet with both
doors open

tactile A B

down part is opened tactile A B

Figure 5.7: Examples of failure cases due to the articulation state given by our best performing
model Bi(I) with two images. In row 1, the drawers in the Object A are all closed, while one drawer
in the Object B is open. In row 2, both doors are open in the Object A, while only one door is open
in the Object B. In row 3, the two doors at the bottom of the left objects are open, while the door on
the right object is closed. When referring expressions involve the state of the door, drawer or other
articulations on the object, our model failed to understand the state.
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Chapter 6

Conclusion

In this thesis, we show our trimodal embedding outperforms the bimodal embeddings for text-to-

shape retrieval both on the ‘chairs and tables’ dataset from Text2Shape [7] as well as a larger dataset

from ShapeNet [5] with 13 categories (ShapeNet C13). We also demonstrate that contrastive loss is

able to build effective joint embeddings for the SNARE [58] dataset without requiring models to be

pretrained on CLIP [48]. But we point out that our work has several limitations:

• We have restricted our study to voxel-based 3D representations, with which it is often hard

to capture geometric details and fine-grained surface textures. It would be interesting to add

other modalities such as point clouds, depth images, and textured 3D polygonal meshes which

may help alleviate these limitations.

• One big challenge of incorporating additional modalities is the memory cost. Future work

might use momentum encoder [31] to work around this obstacle.

• In addition, we focused on a specific type of contrastive loss. It would be possible to consider

other contrastive losses, data augmentation, as well as introducing other loss terms such as

captioning loss and reconstruction loss. Also, the current contrastive loss ignores the fact that

there might be false negative pairs in a mini-batch due to the descriptions being ambiguous.

In our work, we showed that incorporating 3D voxels was useful to the text-to-shape retrieval

task on both the ‘chairs and tables’ Text2Shape dataset and ShapeNet C13. However, incorporating

3D voxels for the SNARE dataset was not as useful. We believe that this is because the 2D image

encoder was pre-trained on more data, and thus more robust. The 2D images also has higher reso-

lution and contained richer texture information which can be used for fine-grained disambiguation.

Nevertheless, we believe that having 3D (voxel) representation could potentially help with text-to-

shape retrieval and the investigation of joint language and 3D representations would be an important

direction. Unlike 2D images, 3D representations have spatial consistency, are not subject to occlu-

sions, and are helpful for view agnostic tasks. To thoroughly investigate this, more targeted datasets

and more fine-grained analysis is necessary.

In summary, we carried out a systematic study of contrastive losses for text to shape retrieval.

With careful tuning of hyperparamters, we show that using simple contrastive losses can outperform
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the current SoTA text to shape retrieval method which relies on extra annotation. In addition, we

proposed a trimodal contrastive loss which further improves over the text to shape retrieval SoTA by

considering both 2D and 3D representations. We believe our work can serve as a good foundation

for followup work in text to shape retrieval and will inspire further analysis of other datasets and

tasks.
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