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Abstract

Many problems in combinatorics and computer science use algebraic methods in their solutions,
even if they do not look inherently algebraic. Polynomial methods [49], rank arguments [16], and
spectral graph theory [48] are among the most popular techniques in this area.

In this thesis, we study two different problems in discrete math and theoretical computer science,
and show two results using algebraic methods.

In the first part of the thesis, we study the game of Cops and Robbers [10]. Specifically, we present
several families of abelian Cayley graphs whose cop number are asymptotically optimal. More
precisely, we present several constructions of families of abelian Cayley graphs G on n vertices
whose cop number is Ω(

√
n). This complements the recent result of Bradshaw [12], who proved

that for all abelian Cayley graphs on n vertices the cop number is at most O(
√

n).

In the second part of the thesis, we study explicit constructions of tree codes [46, 45]. We fo-
cus on applying techniques from linear algebra to prove existence of certain combinatorial objects,
whose explicit construction implies tree codes with constant rate. More specifically, we study lower-
triangular totally-non-singular matrices. These matrices are the key ingredients in all recent con-
structions of tree codes [18, 34].

Keywords: Cops and Robbers; Cayley graphs; Meyniel conjecture; Tree codes; Coding theory;
Interactive communication
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Part I

The Game of Cops and Robbers and
Meyniel Extremal Cayley Graphs
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Abstract

We study the game of Cops and Robbers, where cops try to capture a robber on vertices of a graph.
Meyniel’s conjecture states that for every connected graph G on n vertices, the cop number of G

is upper bounded by O(
√

n), i.e., that O(
√

n) cops suffice to catch the robber. We present several
families of Abelian Cayley graphs that are Meyniel extremal, i.e., graphs whose cop number is
Ω(

√
n). This proves that the O(

√
n) upper bound for Cayley graphs proved by Bradshaw [12] is

tight up to a multiplicative constant. In particular, this shows that Meyniel’s conjecture, if true, is
tight to a multiplicative constant even for abelian Cayley graphs.

In order to prove the result, we construct Cayley graphs on n vertices with Ω(
√

n) generators that
are K2,3-free. In particular, this implies that the Kövári, Sós, and Turán theorem [30], stating that
any K2,3-free graph of n vertices has at most O(n3/2) edges, is tight up to a multiplicative constant
even for Abelian Cayley graphs.

Keywords: Cops and Robbers; Cayley graphs; Meyniel conjecture
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Chapter 1

Introduction

The game of cops and robbers was first introduced by Nowakowski and Winkler [35], and indepen-
dently by Quilliot [43]. Cops and Robbers is a two player game played on an undirected, finite,
simple, connected graph G = (V, E). The first player, called the cops player, has c cops, and second
player, the robber, has 1 robber. The game starts with the first player placing each cop in a vertex
in G; then, the second player chooses the initial vertex for the robber. The players play in alternate
rounds, where in each turn of the cops the first player moves each cop along an edge to an adjacent
vertex or keeps it in its current position, and in robber’s turn the robber may move along an edge
to an adjacent vertex or stay in place. The cops win if after some finite number of rounds, one of
the cops captures the robber by occupying the same vertex as the robber. Otherwise, if the robber
can avoid this situation forever, the robber wins the game. The minimum value of c for which the
cops have a winning strategy is called the cop number of G, and is denoted by c(G). We say a graph
is k-cop-win when c(G) = k. The game of cops and robbers was initially studies by Nowakowski
and Winkler [35], and independently by Quilliot [43] for the case of c = 1 cop, and later generalized
by Aigner and Fromme [25] to more cops.

It is clear that for an n-vertex graph we have c(G) ≤ n since the cops player can place a
cop on every vertex of the graph. Another trivial bound can be obtained by the size of minimum
dominating set of a graph. A subset of vertices of G is called a dominating set if every edge in the
graph has an endpoint in that set. The cops can capture the robber in the first round by putting
one cop on each vertex of a dominating set. This shows that the cop number of a graph is bounded
from above by the size of its minimum dominating set. However, this bound is far from being tight.
For example, consider a path of n vertices and n − 1 edges. The minimum dominating set of Pn is
�n/3�, while its cop number is 1. Indeed, by starting with a cop at any vertex and going towards
the robber in each rounds will result in capturing the robber. It is not hard to see that trees are
1-cop-win as well, and cycles are 2-cop-win.

Meyniel’s conjecture, mentioned in Frankl’s paper [22], states that for any connected n-vertex
graph G it holds that c(G) = O(

√
n).

3



Conjecture 1.1 (Meyniel’s Conjecture). There exist an absolute constant K such that for every
graph G of order n it holds that

c(G) ≤ K · √
n.

A weaker conjecture is the following.

Conjecture 1.2 (Weak Meyniel’s Conjecture). There exist ε > 0 and an absolute constant K such
that for every graph G of order n it holds that

c(G) ≤ K · n1−ε.

Despite considerable attention this problem has received recently, even the weaker conjecture
remains open. The best known upper bound, proved independently by [31, 47, 24], is the following.

Theorem 1.3. The cop number of any graph on n vertices is upper bounded by n/2(1+o(1))
√

log2(n).

Sharper results are known for special classes of graphs.

Theorem 1.4 ([25]). For any planar graph, c(G) ≤ 3

For random graphs [5, 6, 7, 32, 39, 40, 41], Meyniel’s conjecture has been proven to be true. The
binomial random graph G(n, p) is defined as a graph with vertex set [n] such that each possible
edge appears with probability p.

Theorem 1.5 ([40]). Let ε > 0 and suppose that p(n−1) ≥ (1/2+ε)logn. Let G = (V, E) ∈ G(n, p).
Then a.a.s

c(G) = O(
√

n)

The diameter of a graph is the greatest distance between any pairs of vertices of the graph.
Hosseini [27] showed that if we bound the diameter we can achieve better bounds.

Theorem 1.6. If G is a connected graph with order n and diameter d, we have:

c(G) ≤ n
1− 1

log(d)+1 +o(1)

For diameter 2, [50] showed that
√

2n cops is enough. However, they conjecture that it can be
reduced to

√
n.

There are sharper bounds for graphs with bounded genus [44, 11], Cayley graphs [13, 12, 23],
and more. For a survey of known related results see [10].

There are several works in the literature [39, 2, 8] describing Meyniel extremal families of graphs,
i.e., families of graphs whose cop number is Ω(

√
n) where n is the number of vertices in the graph.

The following theorem is the key idea in most of these works.
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Theorem 1.7. Let G be a graph with minimum degree δ and girth ≥ 8t − 3. Then c(G) > δt.
In particular, the case of t = 1 corresponds to graphs with no triangles or 4-cycles, in which

case we get c(G) > δ.

Our work contributes new examples of Meyniel extremal families. Specifically, we present several
Meyniel extremal families of abelian Cayley graphs.

Abelian Cayley graphs are very structured, symmetric graphs. More formally, let G be a finite
group, and let subset S be a symmetric subset of G, i.e., satisfying the property that if a ∈ S, then
−a ∈ S. The Cayley graph associated with (G, S), denoted by C(G, S), is the graph whose vertices
are the elements of G, and there is an edge between g and h if and only if g − h ∈ S. We say that
a Cayley graph C(G, S) is abelian if the underlying group G is abelian.

Frankl [23] proved that for any connected abelian Cayley graphs it holds that c(C(G, S)) ≤
�(|S| + 1)/2�. Recently, Bradshaw [12] showed that the cop number of any connected abelian Cayley
graph on n vertices is bounded by 7

√
n. Later they improved the bound to almost 0.9424

√
n + 7

2
[12]. In this work we prove a lower bound that matches Bradshaw’s result up to a multiplicative
constant. In particular, if Meyniel’s conjecture is true, then it is tight to a multiplicative constant
even for abelian Cayley graphs.

Finding algorithms to check whether a graph G is k-cop-win is also an interesting direction.
If k is fixed and not part of the input of the algorithm, the problem of finding whether the input
graph G of size n is k-cop-win or not can be solved in time O(nO(k)) and therefore in polynomial
time [4][17][9]. The case where k is an input of the algorithm is proved to be NP-hard [21] and
EXP-complete [28]. The polynomial algorithm for the fixed k case can be used for every k not
larger than the bound in Theorem 1.3, and this gives a subexponential algorithm for computing
the cop number of a graph [21].
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Chapter 2

Meyniel Extremal Families of Cayley
Graphs

In this chapter, we present the main result of this part of the thesis by showing several examples of
Meyniel extremal families of abelian Cayley graphs, i.e., abelian Cayley graphs on n vertices whose
cop number is Ω(

√
n).

Theorem 2.1 (Meyniel Extremal Families of Cayley Graphs). There exist graph families that are
Meyniel extremal. More specifically, we have graph families satisfying the properties below.

1. Let n be a sufficiently large integer, and let G1 = Zn be the additive group modulo n. There
exists a set of generator S1 ⊆ Zn of size |S1| ≥ √

n/8 − O(n0.2625) such that the graph
Γ1 = C(Zn, S1) has cop number c(Γ1) ≥ |S1|/3 ≥

√
n

3
√

8 − O(n0.2625) ≥ 0.1178
√

n − O(n0.2625).

2. Let p be an odd prime, and let k ∈ N be a positive even integer. Consider the abelian group
G2 = Z

k
p of order n = pk. There exists a set of generators S2 ⊆ Z

k
p of size |S2| = pk/2 + 1

such that the graph Γ2 = C(G2, S2) has cop number c(Γ2) ≥ |S2|/3 >
√

n/3 > 0.3333
√

n.

3. Let p be an odd prime. Consider the abelian group G3 = Z5 ×Zp ×Zp of order n = 5p2. There
exists a set of generators S3 ⊆ G3 of size |S3| = 2p such that the graph Γ3 = C(G3, S3) has
cop number c(Γ3) = �(|S3| + 1)/2� = p + 1 >

√
n/5 > 0.4472

√
n.

2.1 Our Methods

We prove our results by presenting a family of Cayley graphs C(G, S) on |G| = n vertices that
are K2,t-free for some value of t. This shows an example of a family of abelian Cayley graphs that
achieves (up to a multiplicative constant) the bound of Kövári, Sós, and Turán [30] for (a special
case of) the Zarankiewicz problem, stating that any K2,3-free graph on n vertices has at most
O(n1.5) edges. Specifically, we describe examples of Cayley graphs on n vertices with a generating
set of size Ω(

√
n) that are K2,3-free. Apply the following lemmas on these constructions in order

to lower bound their cop number.
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Lemma 2.2. Fix t ≥ 3. If G = (V, E) is a K2,t-free graph of minimum degree δ, then c(G) ≥ δ/t.

Lemma 2.3. Fix t ≥ 3. If G = (V, E) be a {C3, K2,t}-free graph of minimum degree δ, then
c(G) > (δ + 1)/(t − 1).

Aigner and Fromme [25] showed that if G does not contain C3 and C4 then c(G) ≥ δ holds.
Frankl [23] showed that if G does not contain C3 and K2,3 then c(G) ≥ (δ + 1)/2. Bonato and
Burgess [8] also proved similar results.

Proof of Lemma 2.2. We prove that if the number of cops is less than δ/t, then the robber can
avoid the cops forever. Specifically, we prove the following claim.

Claim 2.4. For every C ⊆ V of size |C| < δ/t and for every v ∈ V \C there is some u ∈ N(v)∪{v}
that is not dominated by C, i.e., u /∈ D(C), where D(C) = ∪c∈CD(c), and D(c) = {c} ∪ N(c) are
the vertices at distance at most 1 from c.

Proof of Claim 2.4. Note that since G is K2,t-free, every c ∈ C dominates at most t neighbours of
v, i.e., |N(v)∩D(c)| ≤ t.1 Thus, the number of vertices in {v}∪N(v) that are dominated by C is at
most |{v} ∪ (∪c∈C(N(v) ∩ D(c))) | ≤ 1 + t|C|. Therefore, if |C| < δ/t, then the number of vertices
in {v} ∪ N(v) that are dominated by C is strictly less than 1 + δ ≤ 1 + deg(v), and hence there is
some u ∈ N(v) ∪ {v} that is not dominated by C.

This implies that (i) in the initial round, given the locations C ⊆ V of the cops, the robber can
choose a vertex u so that u /∈ D(C), and hence the cops cannot reach u in the first round; (ii) in
the subsequent rounds, given the locations C of the cops, if the robber is in the vertex v then it can
move to some u ∈ N(v) so that u /∈ D(C), and hence the cops capture it in the next round.

Proof of Lemma 2.3. The proof of Lemma 2.3 is analogous to the above. The only difference is the
analogue of Claim 2.4 for {C3, K2,t}-free graphs.

Claim 2.5. For every C ⊆ V of size |C| ≤ δ/(t − 1) and for every v ∈ V \ C there is some
u ∈ N(v) ∪ {v} that is not dominated by C, i.e., u /∈ D(C).

Proof of Claim 2.5. Note that since G is {C3, K2,t}-free, every c ∈ C dominates at most t − 1
neighbours of v, i.e., |N(v) ∩ D(c)| ≤ t − 1.2 Furthermore, since G is C3-free and v /∈ C, if v ∈ D(c),
then c dominates no neighbour of v. Thus, the number of vertices in {v}∪N(v) that are dominated
by C is at most (t − 1)|C|. Therefore, if |C| ≤ δ/(t − 1), then the number of vertices in {v} ∪ N(v)
dominated by C is at most δ ≤ deg(v), and hence ∃u ∈ N(v) ∪ {v} not dominated by C.

1If c is not a neighbour of v, then it can dominate at most t − 1 other neighbours of v. Otherwise it can dominate
at most t − 1 neighbours of v other than itself.

2If c is not a neighbour of v, then it can dominate at most t − 1 other neighbours of v. Otherwise it can dominate
no neighbour of v other than itself.
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−s′ −s

d

d + s d + s′

d + s + s′

Figure 2.1: A trivial cycle

The rest of the proof is exactly as in the proof of Lemma 2.2.

We will also need the following observation on Cayley graphs. Let Γ = C(G, S) be a Cayley
graph with a symmetric set of generators S. A 4-cycle (or a K2,2) in Γ is a collection of 4 edges
corresponding to some generators a, b, c, d ∈ S such that a + b + c + d = 0 (the elements are not
necessarily distinct). Observe first that any Cayley graph Γ trivially contains a 4-cycle. Indeed, for
any s, s′ ∈ S and any d ∈ G and d′ = d + s + s′ the vertices {d, d′} ∪ {d + s, d + s′} span a K2,2.
Such 4-cycles in Γ will be called “trivial”, as they correspond to the trivial four tuple of elements
in S whose sum is zero, namely, s + s′ + (−s) + (−s′) = 0.

The following observation will be used several times in this paper.

Observation 2.6. Let Γ = C(G, S) be a Cayley graph with a symmetric set of generators S. If Γ
contains no non-trivial 4-cycles, then Γ is K2,3-free.

Proof. Suppose toward contradiction that Γ contains a copy of K2,3 with vertices {d, d′} on one
side, and {t1, t2, t3} on the other side. Then S contains the generators {s1 = t2 − d, s2 = d′ − t2},
and their negations, {−s1, −s2}. Since the 4-cycle (d, t2, d′, t1) it trivial, it must be the case that the
edge (t1, d) is labeled with −s2 and t1 = d + s2 Similarly, since the 4-cycle (d, t2, d′, t3) it trivial, it
must be the case that the edge (t3, d) is labeled with −s2 and t3 = d + s2 This implies that t1 = t3

are the same vertex, contradicting the assumption that Γ contains a contains a copy of K2,3. See
Fig. 2.2.

We will also need the following simple number theoretic lemma.

Lemma 2.7. Let p ≥ 3 be a prime, and let a, b, c, d be integers such that

a + b ≡ c + d mod p

a2 + b2 ≡ c2 + d2 mod p .

Then either (a ≡ c mod p and b ≡ d mod p) or (a ≡ d mod p and b ≡ c mod p).

8



−s2

−s1

s1

s2
−s1

−s2

d

t1 t2 t3

d′

Figure 2.2: Why there can’t be any K2,3 in graphs with no non-trivial 4-cycle: If the left cycle and
the right cycle are both trivial, then t1 = t3.

Proof. Suppose that a 
≡ c mod p, and therefore b 
≡ d mod p. Then equation a2+b2 ≡ c2+d2 mod p

implies that (a − c)(a + c) ≡ (d − b)(d + b) mod p, and since a − c ≡ b − d 
≡ 0 mod p, it follow that
a + c ≡ b + d mod p. this gives us the following system of equations.

a − c ≡ d − b mod p

a + c ≡ d + b mod p .

It is easy to see that all solutions must satisfy a ≡ d mod p and b ≡ c mod p, as required.

In this section we prove Theorem 2.1 and Theorem 3.1.

2.2 Proof of Meyniel Extremality of Family 1

In this sections we will prove Item 1 of Theorem 2.1.
Fix a prime number p ≥ 5. For all a ∈ N define sa = (p2 + (a2 mod p)p + a) mod 8p2, where

a2 mod p is treated as an integer in {0, 1, . . . , p−1}. Note that p2 ≤ sa ≤ 2p2−2 for all 0 ≤ a ≤ p−1
(where sa is treated as integer).3. Define the sets S+ = {sa : a ∈ {0, 1, . . . , (p − 1)/2}}, S− = −S+,
and let S = S+ ∪ S−.

Lemma 2.8. The set S satisfies the following properties.

1. sa 
= sa′ for all 0 ≤ a < a′ ≤ (p − 1)/2. In particular, |S| = p + 1.

2. For any s1, s2, s3 ∈ S it holds that 2 ≤ |s1 + s2 + s3| < 6p2.

3Indeed, for 0 ≤ a ≤ p−2 we have sa ≤ p2 +(p−1)p+a ≤ 2p2 −2, and for a = p−1 we have sa = p2 +p+(p−1) ≤
2p2 − 2.
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3. Let s1 ≥ s2 ≥ s3 ≥ s4 be elements in S such that s1 + s2 + s3 + s4 = 0. Then s1 = −s4 and
s2 = −s3.

Proof. For Item 1 observe that all sa’s are distinct, as they are distinct modulo p, and analogously,
all elements in S− are distinct. It is also clear that S+ and S− are disjoint.

For Item 2, let a1, a2, a3 ∈ {0, 1, . . . , (p−1)/2} be such that si ∈ {±sai} for all i = 1, 2, 3. Suppose
first that s1, s2, s3 ∈ S+, i.e., si = sai for all i = 1, 2, 3. Then the sum s1 + s2 + s3 = sa1 + sa2 + sa3

is between 3p2 and 3(2p2 − 2) < 6p2. Similarly, if s1, s2, s3 ∈ S−, then si = −sai for all i = 1, 2, 3,
and hence −6p2 < −3(2p2 − 2) ≤ s1 + s2 + s3 ≤ −3p2, as required.

Next, consider the case where two elements are in S+ and one is in S−. Then, the sum of the
corresponding elements is sa1 + sa2 − sa3 ≥ p2 + p2 − (2p2 − 2) ≥ 2, as required. The case of one
element in S+ and two elements in S− is similar.

For Item 3 consider the cases based on how many elements si’s are in S+ or in S−.

• If all four elements are in S+ or all four elements are in S−, then their sum cannot be zero.

• If three elements are in S+ and one element is in S−, then their sum cannot be zero, as
s1 + s2 + s3 + s4 ≥ 3p2 − (2p2 − 2) = p2 + 2 > 0. Similarly, if three elements are in S− and
one element is in S+.

• Finally, consider the case where s1, s2 ∈ S+ and s3, s4 ∈ S−. Let a1, a2, a3, a4 ∈ {0, 1, . . . , (p−
1)/2} be such that s1 = sa1 , s2 = sa2 , s3 = −sa3 , s4 = −sa4 , and hence sa1 + sa2 = sa3 + sa4 .
Observe that by definition of sai this implies

a1 + a2 ≡ a3 + a4 mod p

a2
1 + a2

2 ≡ a2
3 + a2

4 mod p .

By Lemma 2.7 all solutions to this system of equations satisfy (a1 = a3, a2 = a4) or (a1 =
a4, a2 = a3). Therefore, the assumption s1 ≥ s2 ≥ s3 ≥ s4 implies that a1 = a4 and a2 = a3.
This completes the proof of Lemma 2.8.

We are now ready to prove Item 1 of Theorem 2.1. Fix an integer n. Baker, Harman, and Pintz
proved in [3] that for all sufficiently large x, there exists a prime between x − x0.525 and x. In
particular, for x =

√
n/8 there exists a prime p such that

√
n/8 − (n/8)0.2625 ≤ p ≤ √

n/8.
Let S1 = S ∪ {−1, 1} be the set of generators in Zn, where S = S+ ∪ S− is as above. Note that

|S1| ≥ |S| = 2p, and Γ1 is connected since S1 is a generating set of Zn as 1 ∈ S1.

Claim 2.9. The Cayley graph Γ1 = C(Zn, S1) is {C3, K2,4}-free.

Proof. By definition, Γ1 contains a C3 if and only if there are three elements in S1 whose sum is
0 in Zn. It follows from Lemma 2.8 that he sum of any 3 elements in S is between 2 and 6p2, and
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hence cannot be 0 in Zn. It is also easy to see there are no s1, s2 ∈ S such that |s1 − s2| = 1, and
hence, Γ1 in C3-free.

Next we show that Γ1 is K2,4-free. Recall that a 4-cycle in Γ1 is a collection of four edges
corresponding to four elements a, b, c, d ∈ S1 such that a + b + c + d = 0. Also, recall that a 4-cycle
is called “trivial” if the sum is of the form s + s′ + (−s) + (−s′) = 0.

Note that if s1 + s2 + s3 + s4 ≡ 0 mod n, then s1 + s2 + s3 + s4 = 0 as an integer, because
|s| < 2p2 for all s ∈ S1 and n ≥ 8p2. Therefore, by Lemma 2.8 Item 3 any nontrivial 4-cycle in
Γ1 must contain an edge (d, d + s) such that s ∈ {−1, 1}. Furthermore, by Lemma 2.8 Item 2 it
follows that any nontrivial 4-cycle in Γ1 must contain at least two such edges. This implies that Γ1

is K2,4-free.

By applying Lemma 2.2, we get c(Γ1) ≥ |S1|/3 = p
3 ≥

√
n

3
√

8 − O(n0.2625), as required.

2.3 Proof of Meyniel Extremality of Family 2

In this section we prove Item 2 of Theorem 2.1.
For the proof we consider the finite field GF(pk), and treat Zk

p as the additive group of GF(pk).
Let q = pk/2. Recall that p is an odd prime and k is even, and hence q is an odd prime power.
Define the set of generators to be

S2 = {s ∈ GF(pk) : sq+1 = 1} ,

where the power sq+1 is in the field GF(q2). Note that since q is odd, S2 is, indeed, symmetric as
for all s ∈ S2 we have (−s)q+1 = (−1)q+1 ·sq+1 = 1, and hence −s ∈ S2. Also note that |S2| = q +1,
since the multiplicative group of GF(pk) is a cyclic group of order pk −1 = q2−1, and hence contains
a generating element α of order q2 −1 = (q+1)(q−1). Therefore S2 = {α(q−1)i : i ∈ {0, 1, 2, . . . , q}}.

Claim 2.10. The graph Γ2 = C(G2, S2) is K2,3-free. In particular, for all a1, b1, a2, b2 ∈ S2 such
that a1 
= −b1, a2 
= −b2, and {a1, b1} 
= {a2, b2} it holds that a1 + b1 
= a2 + b2.

Proof. If d1, d2 are distinct elements of GF(q2), then the number of vertices in Γ2 adjacent to both
d1, and d2 is equal to the number of solutions of the below system of equations.

(x − d1)q+1 = 1

(x − d2)q+1 = 1 ,

or equivalently

(x − d1)(xq − dq
1) = 1

(x − d2)(xq − dq
2) = 1 .

11



This is a special case of system of equations (4) in [29] (K = GF(pk), t = 2, aij = dqi−1

j , xi =
xqi−1

, bj = 1). Thus, according to Theorem 3 in [29], the system of equations has at most t! = 2
solutions. Therefore, the Cayley graph C(G2, S2) is K2,3-free.

For the “in particular” part, note that if we had two distinct pairs {a1, b1} and {a2, b2} with
a1 
= −b1 and a2 
= −b2 such that a1 + b1 = a2 + b2, then we would get a copy of K2,3 in Γ2 with
the vertices {d1 = 0, d2 = a1 + b1} on one side and {a1, b1, a2} on the other side.

Finally, observe that S2 is a generating set for Z
k
p. Indeed, by the “in particular” part of

Claim 2.10 the set S2 spans at least
(|S2|

2
)

=
(q+1

2
)

> q2/2 elements of G, as for any pair a, b ∈ S2

with a 
= −b produces a different sum in G2. Since the number of elements spanned by S2 divides
q2, it must be the case that S2 generates the entire group Z

k
p, and hence C(Zk

p, S2) is connected.
Using Lemma 2.2, we conclude that c(Γ2) ≥ |S2|/3 = (q + 1)/3 >

√
n/3, as required.

2.4 Proof of Meyniel Extremality of Family 3

In this section we prove Item 3 of Theorem 2.1.
Consider the abelian group G3 = Z5 × Zp × Zp of order n = 5p2. Define the set of generators

S3 = {(1, a, a2) : a ∈ Zp} ∪ {(−1, −a, −a2) : a ∈ Zp}, where a2 is taken modulo p. Note that S3 is
indeed a symmetric set of size |S3| = 2p.

Let Γ3 = C(G3, S3) be the corresponding Cayley graph. We show below that Γ3 is {C3, K2,3}-
free, and hence by Lemma 2.3 we conclude that c(Γ3) ≥ |S3|/2 = p, as required.

Claim 2.11. The graph Γ3 is connected and {C3, K2,3}-free.

Proof. Observe that Γ3 has no triangles because there are no three elements in S whose sum is 0
in the first coordinate.

Next we claim that Γ3 is K2,3-free. This is done by proving that Γ3 contains no non-trivial
4-cycles. Indeed, let s1, s2, s3, s4 ∈ S3 be four generators such that s1 + s2 + s3 + s4 = 0 in
G3, By looking at the first coordinate (to Z5), it must be the case that two of the si’s are in
{(1, a, a2) : a ∈ Zp} and two are in {(−1, −a, −a2) : a ∈ Zp}. Assume without loss of generality
that s1 = (1, a, a2), s2 = (1, b, b2), s3 = (−1, −c, −c2), s4 = (−1, −d, −d2) for some a, b, c, d ∈ Zp.
Therefore, if s1 + s2 + s3 + s4 = 0, then a + b ≡ c + d mod p and a2 + b2 ≡ c2 + d2 mod p. Therefore,
by Lemma 2.7 we either have (a = c and b = d) or (a = d and b = c). Therefore, Γ3 contains only
trivial 4-cycles, as required. Therefore, by Observation 2.6 the Cayley graph Γ3 is K2,3-free.

In order to see that Γ3 is connected, note that the elements spanned by S3 form a subgroup
of G3, and hence 5p2 is divisible by |span(S3)|. Since Γ3 contains no non-trivial 4-cycles, it follows
that the number of elements spanned by S3 is |span(S3)| ≥ |{s + s′ : s, s′ ∈ S3, s′ 
= s}| ≥ (|S3|

2
) ≥(2p

2
)

= p(2p − 1), and hence S3 spans the entire group G3.

12



By Lemma 2.3 the cop number of Γ3 is c(Γ3) ≥ (|S3| + 1)/2 ≥ (2p + 1)/2. On the other hand,
according to [23, Theorem 1] we have c(Γ3) ≤ �(|S3| + 1)/2� = �(2p + 1)/2� = p + 1. Therefore,
c(Γ3) = p + 1.

It is worth noting that all the constructions in Theorem 2.1 are examples of sidon sets in finite
groups [1][36].
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Chapter 3

Cayley Graphs of any Group with
High Cop Number

In this chapter we prove that for any abelian group G of order n, such that n is not divisible by 2
or 3, there exists a set of generators S ⊆ G such that the cop number of the corresponding Cayley
graph C(G, S) is lower bounded by Ω(n1/3).

Theorem 3.1. Let G be any abelian group of order n that contains no elements of order 2 or 3.
There exists a symmetric set of generator S ⊆ G of size |S| = Ω(n1/3), such that the Cayley graph
Γ = C(G, S) is connected and its cop number is c(Γ) ≥ |S|/2 ≥ Ω(n1/3).

Let G be an abelian group of order n such that G has no elements of order 2 or 3. We construct
a generating set S ⊆ G using Algorithm 1. Before describing the algorithm we make the following
notation.

Notation 3.2. For a subset S ⊆ G let F1(S) = {a + b + c : a, b, c ∈ S}, F2(S) = {a : ∃b, c ∈
S s.t. b + c + a + a = 0}, and F3(S) = {a : a + a + a ∈ S}. Define FS = F1(S) ∪ F2(S) ∪ F3(S).

Claim 3.3. Let S ⊆ G be a symmetric set, and suppose that S has no non-trivial 4-cycles. Then,
for any s∗ ∈ G \ FS the set S ∪ {s∗, −s∗} has no non-trivial 4-cycles.

Proof. Observe first that S ⊆ F1(S), as for any s ∈ S we have s = s + s + (−s) ∈ F1(S). In
particular S ⊆ FS , and thus if S ∪ {s∗, −s∗} contains a non-trivial 4-cycle a + b + c + d = 0, then
at least one of the elements must be in {s∗, −s∗}.

Note that for any three elements a, b, c ∈ S we have a + b + c in F1(S) ⊆ FS , and s∗, −s∗ /∈ FS .
Therefore S∪{s∗, −s∗} does not contains a non-trivial 4-cycle with exactly one element in {s∗, −s∗}.

Suppose now that two of the elements {a, b, c, d} are in {s∗, −s∗}. Since the 4-cycle is non-
trivial, it must be that the two of the elements are equal. Without loss of generality suppose that
a = b = s∗. But then s∗ ∈ F2(S), and hence a + b + c + d = 0 cannot be a non-trivial 4-cycle with
two edges outside S.

14



Similarly, if three of the elements a, b, c, d belong to {s∗, −s∗}, we may assume without loss of
generality that a = b = c = s∗. But this implies that s∗ ∈ F3(S), and hence a+ b+ c+d = 0 cannot
be a non-trivial 4-cycle with three edges outside S.

Finally, since G does not contain elements of order 2, it is impossible that all four elements
a, b, c, d belong to {s∗, −s∗}.

This completes the proof of Claim 3.3

We are now ready to describe the algorithm.

Algorithm 1 Constructing a generating set S of a group G

S0 ← a minimal generating set of G
S ← S0 ∪ −S0
while G 
= FS do

Choose an arbitrary element s ∈ G \ FS

S ← S ∪ {−s, s}
end while
return S

For the analysis observe first that in the end of each iteration we have |FS | ≤ |S|3 + |S|2 + |S|.
Indeed, we have (i) |F1| ≤ |S|3 = k3, (ii) |F2| ≤ |S|2 = k2, as G has no elements of order 2, and
(iii) |F3| ≤ |S| = k, as G has no elements of order 3. Therefore, since the algorithm ends when
|FS | = n, it follow that the output is a set S of size Ω(n1/3).

Note first that since S contains a generating set of G, the graph Γ = C(G, S) is connected. Also,
note that since S0 is a minimal generating set of G, the set S before the loop contains no non-trivial
4-cycles. Indeed, it is not difficult to see that if G contains no elements of order 2, and S0 ∪ −S0

contains a non-trivial four cycle a + b + c + d = 0, then S0 contains a strict subset generating G.
By Claim 3.3 in each iteration of the algorithm, S does not contain a non-trivial 4-cycles in

any iteration, and hence, by Observation 2.6 in the end of the algorithm the graph Γ = C(G, S) is
K2,3-free. Therefore, by Lemma 2.2 c(Γ) ≥ |S|/3 ≥ Ω(n1/3), as required.
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Chapter 4

Final Remarks and Open Problems

We showed in Theorem 2.1 several classes of Meyniel extremal Cayley graphs. Our Theorem 3.1
shows a weaker result for general groups, namely, that any group satisfying certain mild conditions
has a Cayley graph of order Ω(n1/3). This raises the following natural question.

Question 4.1. Is it true that any group G has a Cayley graph that is Meyniel extremal?

Question 4.2. Pralat [39] showed a family of graphs on n vertices whose cop number ≥ √
n/2 ·

(1 − o(1)). It would be interesting to find a family of Cayley graphs matching these parameters.

Question 4.3. Finding bounds on cop number for non-abelian Cayley graphs is an open problem.
It would be interesting to extend the O(

√
n upper bound of Bradshaw [12] to non-abelian Cayley

graphs.

Question 4.4. Improving the coefficient in the best known upper bound of graphs with diameter 2,
and the exponential factor of the bound for graphs of diameter 3 and 4 is also a nice direction. The
current best known bounds for graphs of diameter 2, 3, 4 is respectively

√
2n, n

4
7 +o(1), n

3
5 +o(1)[50][27].

Question 4.5. For planar graphs it is well-known that the cop number is at most 3(Theorem 1.4).
For directed planar graphs however, there is no good upper bound.

Question 4.6. Finding properties of minimal k-cop-win graphs is an important direction. For k = 3
it is known to be the Peterson graph, but for k = 4 it is open.
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Part II

Good Linear Tree Codes
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Abstract

Tree codes are combinatorial structures for encoding information in interactive coding theory. Schul-
man defined them in [46, 45] and proved that there exist infinite family of tree codes that have both
constant distance and constant alphabet. However, giving an explicit construction of tree codes has
remained an outstanding open problem since then. Recently, Cohen, Haeupler, and Schulman [18]
introduced an explicit construction of a family of tree codes with constant distance but over alpha-
bet of polylogarithmic size. This was a major breakthrough over a two-decade-old construction that
has an exponentially larger alphabet of size poly(n). In this work, we show how proving a stronger
version of one of the theorems in their paper can lead to an explicit construction of tree codes with
constant distance and constant alphabet and we give a probabilistic argument to show that this
theorem should be true. We show how totally k-non-singular matrices can be used to construct
good tree codes and we give random construction of such matrices.

Keywords: Tree codes; Coding theory; Coding for interactive communication; Totally non-singular
matrices
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Chapter 5

Introduction

5.1 Interactive Communication

The standard setting of interactive communication is the following. Two parties (Alice and Bob) are
given two strings x, y ∈ {0, 1}n, and they aim to compute f(x, y) ∈ {0, 1} by communicating as few
bits as possible. In the setting of coding for interactive communication the channel that the parties
are communicating over is noisy. The parties goal in this setting is to compute f(x, y) correctly
with high probability despite the noise and, again, sending as few bits as possible. The interactive
communication is performed by a protocol π = (πA, πB), where πA, πB are algorithms run by Alice
and Bob respectively. At each round, each of them determines the next bit that the party should
send, and is a function of the party’s input and the message the party has received so far (the
transcript). For example, in the first round Alice sends πA(x, 1, ∅), and Bob sends πB(y, 1, transB).
After n rounds, Alice and Bob decide on their output and send πA(x, transA), πB(y, transB) re-
spectively. Tree codes are one of the coding schemes that given a noiseless protocol π0 constructs a
noise-resilient protocol π1 that computes the same function.

The goal of interactive coding schemes is to build a protocol CSε that given a noiseless protocol
π builds a protocol CSε(π) = πε that is resilient to a noisy channel of error rate ε. That is,
the protocol is resilient to arbitrary noise that changes up to ε fraction of the bits sent over the
communication channel. In this text, we assume the noise of the protocol is bounded by parameter
ε as opposed to other models, including Binary symmetric models, in which every bit is flipped
with probability ε.

In general, encoding used in these machines is required to satisfy a set of properties.

1. Being online: The encoding of each transmission can only depend on previous transmissions.
That’s because each party should communicate one transmission at a time.

2. Distance: Like the standard coding model, the encoding of two different sequences of trans-
missions should have high distance with respect to their length so that the parties will be
able to eventually decode the message they have received.
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Regular error-correcting codes cannot be used in this setting to encode the entire communication
because they are not online. Also, they can’t be used to encode each transmission. If the adversary
corrupts only single transmission, the entire communication will be erroneous.

It is also worth noting that we just study non-adaptive protocols, in which the turn of speech
is fixed, and particularly alternating protocols, where Alice speaks at odd rounds and Bob speaks
at even rounds.

5.2 Tree Codes

Tree codes are combinatorial structures first introduced by Schulman[45] as a building block for
interactive coding schemes over noisy channels.

In this section we formally define Tree Codes. In the next section, we describe how they are
used in a coding scheme for interactive communication.

Definition 5.1. Let F be a field, n, l ∈ N, and z, z1, z2 ∈ F
n. We define

• [n] = {1, . . . , n}

• z[i,j] = (zizi+1...zj), ∀i, j ∈ [n]

• split(z1, z2) = mini{z1i 
= z2i}

• weight(z) = |{i : zi 
= 0}|

• δ(z1, z2) = weight(z1 − z2)/n

• δ[i,j](z1, z2) = |{k ∈ [i, j] : z1k

= z2k

}|/(j − i + 1)

Definition 5.2 (Tree code definition without tree). A function TC : Σn
in → Σn

out is called a tree
code with distance δ if it has following properties:

• It is online. i.e. for every i in [n] and every x in Σn
in, TC(x)i only depends on x1, x2, ..., xi

• For every x, y ∈ Σn
in with s = split(x, y) and every 1 ≤ l ≤ n − s, δ[s,s+l](x, y) ≤ δ.

Tree codes are defined using trees in the original paper [45], which is equivalent to the Defini-
tion 5.2. We will also bring the definition using trees, but we mostly use Definition 5.2.

Definition 5.3 (Tree code definition using tree). A d-ary tree code of length n over alphabet Σ
with distance δ is a rooted d-ary tree of length n with edges labeled with elements of Σ that satisfies
the following property:

• For every two vertices u 
= v at the same depth k, with the lowest common ancestor lca(u, v)
at depth k − �, let Pu and Pv be the concatenation of the labels on the unique path from
lca(u, v) to u and v respectively. Then, δ(Pu, Pv) > δ.
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The rate of a d-ary tree codes is 1/ logd(|Σ|). We say a tree code is asymptotically good if it
has non vanishing rate and distance. In the original paper [45] Schulman proved that for any fixed
d ∈ N and δ ∈ [0, 1], there exist a d-ary tree code with distance δ over an alphabet of constant size
c(d, δ). In particular,

Theorem 5.4. [45] For every δ < 1 and d ∈ N, there exist a d-ary tree code of distance δ over
alphabet Σ of size (cd)1/(1−δ) for some c < 6.

Schulman gave three different proofs for this theorem, all of which probabilistic. In [37], they
gave another probabilistic proof whit slightly better probability of success but still constant. Most
recently, [19] proved that for d = 2, there exist tree codes with positive distance (δ = 0.136) and
alphabet of size as small as 4. Furthermore, they showed that for constant distance bounded away
from 0, the alphabet size cannot be 3 or less. Using the results of [42] on how lower triangular
totally-non-singular matrices can be used to construct tree codes, we present another probabilistic
proof of existence of tree codes.

Despite all the attention the tree codes have received since their introduction, no explicit con-
struction of tree codes with constant alphabet and constant distance have been found. By explicit
construction we mean an algorithm that given the first i bits of a message m computes the ith bit
of the encoding given by the tree code in polynomial time. The trivial construction of constant-
distanced tree codes uses alphabet of size 2n (by encoding the whole path leading to each node).
In an unpublished manuscript, Evans, Klugerman, Schulman [20] built a construction of tree codes
with alphabet of size polynomial in the depth of the tree. Best rated tree codes are introduced in
the recent work of [18] where they build tree codes with alphabet of size O(log(n)). In [14], they
give an explicit construction in subexponential time O(2ε) but with alphabet size O(1/ε). There
are also candidate constructions based on unproved conjectures in [33][51].

Tree codes were originally introduced as a machinery for coding for interactive communication.
However, other applications have been found for it since their introduction by Schulman.

5.3 Tree Codes as a Machinery Used in Coding for Interactive
Communication

Tree codes are used as a machinery that allow the parties communicating on a noisy channel to
eventually decode correctly the message they have received. That is, they detect earlier errors as
time goes by. They encode messages in a way that two different messages are encoded the same
until they have a difference at some point. As soon as the disagreement occurs, the distance between
the encoding of the rest of the messages is guaranteed to be larger than a fixed number.

To be able to design protocols for interactive communication over noisy channels, it is helpful
to define the Pointer Jumping problem (see Fig. 5.1). In this problem, the input is a complete
binary tree T of depth 2n. Party A has a subset of edges EA (the blue edges) with exactly one

21



A

B

A

B B

A

B B

B

A

B B

A

B B

Figure 5.1: Pointer Jumping Problem

edge coming out of every vertex at odd levels, and no edge coming out of vertices at even levels.
Similarly, party B has a subset of edges EB (the red edges) that has exactly one edge coming out
of each vertex at even levels, and no edge coming out of vertices at odd levels. The goal is to find
the unique path from root to a leaf with edges from EA ∪ EB. Each vertex represents the sequence
of bits transmitted so far and each edge of EA or EB outgoing from vertex v represents the bit the
party would send if communicated messages so far are represented by v. It is easy to see that this
is just another interpretation of the interactive communication model.

In his original paper [45], Schulman used tree codes to build a coding scheme that is resilient
to error rate of 1/240. In [15], Braverman and Rao improve on Schulman’s work to handle larger
error rates. Their protocol is resilient to errors that corrupt at most 1/4 − ε symbols. These results
are for when the alphabet size of the channel is constant. When the channel is binary, [15] built a
protocol that is resilient to 1/8 − ε fraction of errors at the cost of increasing the communication
length by a constant factor. They conjecture that 1/8−ε is the best achievable resilience. However,
this is still an open problem.

The idea behind the coding scheme of Braverman and Rao is that they keep track of all the
edges they have received so far from the other party, and find the unique rooted path that only
crosses those edges and their own edges. Then, they send the unique edge they have that extends
this path encoded with a tree code. More formally, let Bi be the set of edges that Bob has sent
up to round i, and let B′

i be the set of edges Alice has decoded from the messages of Bob up to
round i. Define Ai and A′

i similarly for the edges that Alice sends and Bob decodes up to round i

respectively. At this point, if it’s Alice’s turn, she finds the unique rooted path, Pi that is a subset
of A∪B′

i and communicates the unique edge ei ∈ A that extends Pi. For sending ei, she encodes the
entire data she has communicated so far, a1a2 . . . ai−1ei by a tree code and sends the last symbol
of it. On Bob’s turn he sends his next bit using the analogous strategy.

In their coding scheme, Alice simulates algorithm 2 which takes as input a protocol π0, of length
n0, a noise resilience parameter ε, and an input x with Ex as the set of possible replies by Alice.
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Figure 5.2: There was an error in the first symbol sent by A replacing a with e. Then B responded
with c and A responded with d. In the end A thinks they reached the green leaf, but B thinks the
reach the red leaf.

Also, a d-ary tree code with distance α = 1 − ε, depth n = n0/ε, d = O(n), and encoding and
decoding algorithms TCencT and TCdecT . Bob simulates the symmetric algorithm.

Algorithm 2 The Braverman-Rao simulation
SA ← ∅
recv ← ∅
for i = 1 to n = n0/ε do

S̃B ← TCdecT (recv)
if Ex ∪ S̃B has a unique rooted path P then

ei ← the lowest edge in Ex ∩ S̃B not in SA

SA = SA ∪ ei

else
ei ←⊥

end if
send the last symbol of TCencT (e1, e2, . . . , ei)
receive symbol r from Bob
recv ← recv ◦ r

end for
Output the unique rooted path of length n0 defined by EX ∪ S̃B

Let sA and rA be the words that Alice sends and receives respectively. And let sB and rB

be the words that Bob sends and receive. Also let δA = δ(rA, sB) and δB = δ(rB, sA). For any
r, s ∈ Σn with split t, let I be the set of all indices i ∈ [n] where δ[t,i](r, s) ≤ α. They show that if
δ(r, s) = β, then |I| ≥ (1 − β/α)n. Thus, there will be at least |IA| ≥ (1 − 2δA

1−ε)n indices i such that
δ[t,i](rA, sB) ≤ α/2. Also, IB = {i ∈ [n] : δ[t,i](rB, sA) ≤ α/2} has size at least (1 − 2δA

1−ε)n elements,
so in these rounds the parties correctly decode the message received to them by that round. Recall
that the protocol has noise resilience parameter ε, so δA, δB ≤ ε, and |IA|, |IB| ≥ (1 − 2ε

1−ε)n. This
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gives that |IA ∩ IB| ≥ εn, so in at least εn = n0, iterations Alice and Bob both have decoded the
correct set of edges and communicated the next outgoing edge of the rooted path.
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Chapter 6

Tree Code Construction; Random and
Explicit

In this section, we show how to construct tree codes using lower-triangular totally k-non-singular
matrices. We start with the definition of totally k-non-singular matrices.

Definition 6.1. Let k, n ∈ N and A ∈ N
n×n, we say A is k-non-singular, if for every nonzero

vector v ∈ Z
n with |vi| ≤ k, Av 
= 0. And we say A is totally k-non-singular (totally non-singular),

when every submatrix of A is k-non-singular (non-singular).

For the tree code application, we will need a restricted variant of the definition above. Specifi-
cally, we will need the definition of lower triangular totally k-non-singular.

Definition 6.2. Let d1, d2, n, m ∈ N with d1 ≤ n, d2 ≤ m, and let A be a n × m matrix. For a set
of rows r1 < r2 < · · · < rd1 ∈ [n] and a set of columns c1 < c2 < · · · < cd2 ∈ [m] we denote the
submatrix formed by these rows and columns by A[r1,...,rd1 :c1,...,cd2 ].

We call a lower triangular matrix A, lower triangular totally k-non-singular if every submatrix
of A whose diagonal is not above the diagonal of A is k-non-singular. The following is the more
formal definition.

Definition 6.3. A matrix A ∈ N
n×n is said to be lower triangular totally k-non-singular, if

1. A is lower triangular, i.e. Ai,j = 0 for all i < j; and

2. for every s ≤ n, 1 ≤ r1 < · · · < rs ≤ n, and 1 ≤ c1 < · · · < cs ≤ n with c1 ≤ r1, c2 ≤
r2, . . . , cs ≤ rs it holds that A[r1,...,rs:c1,...,cs] is k-non-singular.

Lower triangular totally non-singular matrices are defined in a similar way.

Linear tree codes over algebraic fields are defined in similar way to linear error correcting codes.
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Definition 6.4 (Linear tree codes). Let Σin and Σout be finitely dimensional vector spaces over
fields F1 and F2 respectively, and TC : Σn

in → Σn
out be a tree code. We say TC is linear if and only

if TC(x + y) = TC(x) + TC(y) for every x, y ∈ Σn
in

Finally, given a lower triangular matrix A we can define a tree code as follows.

Definition 6.5. Let S ⊆ Z, and A ∈ Z
n×n be a lower triangular matrix. We define TCA : Zn →

(Z2)n to be the linear tree code such that for every x ∈ Z
n

TCA(x) =

⎡
⎢⎢⎢⎢⎢⎣

x1, (Ax)1

x2, (Ax)2

. . .

xn, (Ax)n

⎤
⎥⎥⎥⎥⎥⎦

That is, TCA(x) computes the matrix-vector multiplication, and concatenates the result with x

coordinate-wise. Moreover, we define TC
(S)
A : Sn → (Z2)n to be the TCA when the input alphabet

is reduced to only S.

6.1 Good Tree Codes and Triangular Totally k-non-singular Ma-
trices

Pudlak [42] reduced the problem of constructing asymptotically good tree codes to constructing a
lower triangular totally non-singular matrix A over any field F with polynomially many elements.
Here, we show that in this case the condition of being totally nonsingular can be relaxed to k-totally
nonsingular with proper k.

Theorem 6.6. Let k ∈ N and A ∈ N
n×n be a lower triangular totally 2k-nonsingular matrix. Set

S = {−k, −k + 1, . . . , 0, . . . , k − 1, k}, then TC
(S)
A has distance greater than 1/2.

For every x, y ∈ (N2)n we define Δ̃(x, y) to be the hamming distance of x, y when considered as
elements in N

2n, and δ̃(x, y) = Δ̃/2n. We define another distance parameter for any tree code TC

with output alphabet N2, δ̃T C := min(δ̃[s,s+l](TC
(S)
A (x), TC

(S)
A (y))), where min is over all l ∈ N and

x, y ∈ Sn with s = split(TC
(S)
A (x), TC

(S)
A (y)) and l ≤ n − s. It is easy to verify that δT C ≥ δ̃T C .

Proof. We prove that TC
(S)
A has δ̃ > 1/2.

Since TCA is linear, it is enough to show that for every x ∈ {−2k, −k + 1, . . . , 0, . . . , k − 1, 2k}n

with the first non-zero index s, and every l ∈ [n − s], where TC
(S)
A (x) = y, if we view y[s,s+l] as an

string in N
2, it has at most l zeros. To this end, lets define Cx,l and Rx,l as follows:

Cx,l := {j ∈ [s + l] : xj 
= 0} = {j1, j2, . . . , jc}
Rx,l := {i ∈ [s, s + l] : (Ax)i = 0} = {i1, i2, . . . , ir}
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First we prove that |Rx,l| < |Cx,l| and since the number of nonzero elements in TC
(S)
A (x)[s,s+l] (as

a sequence in N
2n) is exactly |Cx,l| + (l − |Rx,l|), we conclude that number of nonzero elements in

TC
(S)
A (x)[s,s+l] (when viewed as a sequence in N

2) is at least l. Now, we prove that |Rx,l| < |Cx,l|.
Assume the opposite is true, and let t be the largest index in [r] such that i1 ≥ j1, . . . , it ≥ jt and
either it+1 < jt+1 or t + 1 = r + 1. Note that since j1 = s ≤ i1, such index exists. Now, consider the
submatrix AS = A[i1, . . . , it : j1, . . . , jt]. According to the definition of t, it’s diagonal is not above
the diagonal of A so should be 2k-non-singular. However, Ax[j1,...,jt] = 0. This is a contradiction
and concludes that |Rx,l| < |Cx,l|.

6.2 Random Construction of Totally k-non-singular Matrices

Theorem 6.7. Let A ∈ N
n×n be a random lower triangular matrix that is constructed by putting

0 on entries above the diagonal, and other entries are chosen independently uniformly at random
from {1, . . . , T}. If T > kn3, then with high probability, A is lower triangular totally k-non-singular.

Proof of Theorem 6.7. Fix some d ≤ n, x ∈ N
d with |xi| ≤ k, and fix r1 < r2 < · · · < rd ∈ [n], and

c1 < c2 < · · · < cd ∈ [n] where ci ≤ ri. It is easy to see that ∀i ∈ [d] : Pr[A[ri:c1,...,cd]x = 0] ≤ 1
T , so

Pr[A[r1,...,rd:c1,...,cd]x = 0] ≤ ( 1
T )d. Using the union bound over all d < n, x ∈ N

d with |xi| ≤ k, and
all r1, . . . , rd, c1, . . . , cd described as above, the probability that there exist a submatrix of A below
the lower triangular that is k-non-singular is at most

n∑
d=1

kd(
1
T

)d

(
n

d

)2

≤
n∑

d=1
(

k

kn3 )d

(
n

d

)2

≤
n∑

d=1
(

1
n3 )d × n2d =

1
n − 1

→ 0

Corollary 6.8. There exist tree codes TCA : [n]n → [n5]n with distance δ > 1/2 constructed by a
matrix A satisfying conditions in Theorem 6.7 with k = n.

In the next chapter, we discuss how assuming Conjecture 7.1 will give us an explicit construc-
tion of a binary tree code with positive distance and constant rate. Since the only difference of
Corollary 6.8 with Conjecture 7.1 is that it’s not explicit, Corollary 6.8 gives us a random con-
struction of asymptotically good binary tree codes. Unlike all previous random constructions, the
above method has vanishing failure probability. However, it has the same problem as all previous
methods, no method is known to verify in polynomial time that the constructed structure builds
a good-distanced tree code (Note that to exhaustively check that all submatrices are non-singular
takes time O(2n).) We don’t know if it is possible to check total non-singularity of a matrix in
polynomial. A related topic to totally-non-singular matrices is totally (strictly) positive matrices,
the class of all matrices that all their minors are (strictly) positive (totally positive and strictly
totally positive triangular matrices are defined in the same way as totally non-singular matrices).
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There is a rich literature in this topic, and it is proved that testing that a matrix is strictly to-
tally positive (also triangular strictly totally positive) can be done in O(n2) time [26](see also [38]
theorem 2.8). Strictly totally positive is a stronger condition than total non-singularity and is a
sufficient property to build constant distance tree codes. However, all known integer strictly totally
positive matrix structures have elements of exponential order which is not good enough if we want
to have tree codes with constant alphabet size. In [26], they prove that a lower triangular matrix is
strictly totally positive if and only if all minors of submatrices of consecutive leading columns and
consecutive rows are positive. This reduces the complexity of verifying that a triangular matrix is
strictly totally positive from O(2n) to O(n2). It is an interesting problem to find a similar test for
totally non-singular matrices.

Question 6.9. Given a lower triangular matrix, is it possible to check in poly time if it is a totally
non-singular matrix?

6.3 Random Construction of tree codes of polynomial alphabet
size without using totally k-non-singular matrices

Building totally k-non-singular matrices are not the only way to generate random construction of
good tree codes of polynomial alphabet size. In the following theorem we give another random
construction of tree codes without using such matrices.

Theorem 6.10. For every n ∈ N there exist an n × n lower-triangular matrix M with elements
before the diagonal in range {1, 2, ..., n9} that is a generating matrix of code c : Zn → Z

n with the
following property:

For every z ∈ {−2n, −2n + 1, ..., 0, , ..., 2n}n with s = mini{zi 
= 0}, and every l with s + l ≤ n

weights,s+l(Mz) ≥ l/2.

Proof of Theorem 6.10. Let M be a lower triangular n×n random matrix where the elements in row
i ≤ n not above the main diagonal are chosen uniformly at random from [n9]. Let c be the tree code
with generating matrix M and let δ∗ = minl∈[n−s],z∈{−2n,−2n−1,...,0,,...,2n}weight(Mzs,s+l), where s

is the index of the first non-zero element in Mz. Let’s calculate the probability that δ∗ < 1/2.
Fix z ∈ {−2n, ..., 0, ..., 2n}n, and s, l ∈ [n] such that s+ l ≤ n. The probability that (Mz)i = 0 is

at most 1/n9 for each i ∈ [n]. Let Xi be a Boolean random variable that indicates whether Mzi = 0
or not, and let X =

∑s+l
i=s Xi. The probability that each Xi = 1 is at most 1/n9 so the expected

value of X is at most l/n9. We use Chernoff bound to give an upper bound on the probability that
at least l/2 of the elements of Mz[s,s+l] is 0.
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Pr[X > l/2] = Pr[X − l/n9 > l/2 − l/n9]

= Pr[X − l/n9 > l/n9(n9/2 − 1)]

= Pr[X − μ > μ(n9/2 − 1)]

≤ (
en9/2−1

(n9/2)n9/2 )μ

≤ (
en9/2

(n9/2)n9/2 )l/n9

≤ (
e

(n9/2)
)l/2

≤ (2e)l/2

(n4.5)l

≤ 1
n4l

Using union bound over s, l and z’s, the probability that δ∗ < l/2 is at most

n∑
s=1

n−s∑
l=1

1
n4l

× nl =
n∑

s=1

n−s∑
l=1

1
n3l

≤ n2

n3 =
1
n

→ 0
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Chapter 7

Alphabet Reduction Machine

In this section, we show that how assuming Conjecture 7.1 will give us a binary tree code with
constant alphabet and constant distance (Theorem 7.3). The proof here is very similar to the proof
in [18] but with different parameters.

Conjecture 7.1. For every constant δ ≥ 0 there exist a function p : Z → Z such that p(n) =
O(log(n)) and an explicit tree code TCZ : ZN → Z

N with distance δ, such that ∀t ∈ N and z ∈
Z
N, |TCZ(z)t| ≤ 2p(t)· max(z2

0 , ..., z2
t )

Corollary 7.2. For every integer n ≥ 1 there exist a function p : Z → Z such that p(n) = O(log(n))
and an explicit tree code TCp(n) : ({0, 1}p(n))n → ({0, 1}3p(n))n with distance 1/2.

Proof of Corollary 7.2. Let TCZ : ZN → Z
N be a tree code from Conjecture 7.1 with distance δ. If

we bound the domain to ({0, 1}p(n))n, we will have each z2
i ≤ 22p(n), and since t ≤ n, we will have

|TCZ(z)t| ≤ 2p(n) × 22p(n) which is equivalent to the range being ({0, 1}3p(n))n, so the restriction of
TCZ to the domain ({0, 1}p(n))n gives the function TCl : ({0, 1}p(n))n → ({0, 1}3p(n))n with distance
1/2.

0c2p(n) ECC(TCp(n)(m)1) . . . ECC(TCp(n)(m)l−1)

TCe(m1))[1,p(n)] TCe(m2))[1,p(n)] . . . TCe(ml))[1,p(n)]

0c1p(n) TCe(m1m2))[p(n),2p(n)] . . . TCe(ml−1ml))[p(n),2p(n)]

Figure 7.1: TC(m). The number of blocks is l = n/p(n).
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Theorem 7.3. Assuming conjecture Conjecture 7.1, there exist a constant c ∈ N and an algorithm
A, where for every n ∈ N algorithm A computes a constant-distanced tree code TC : {0, 1}n → [c]n

in polynomial time.

Proof of Theorem 7.3. Let p : Z → Z be the function in Conjecture 7.1. To be able to use the
tree code in Corollary 7.2, we partition every m ∈ {0, 1}n to blocks of length p(n) in other words,
we write it as m = (m1, ..., mn/p(n)) where mi ∈ {0, 1}p(n). The idea is to apply tree code of
Corollary 7.2 to m, interpreted as an element of ({0, 1}p(n))n/p(n). However, this will just guarantee
distance of the the code as elements of ({0, 1}3p(n))n/p(n) and that only means there is enough
different blocks in the code of two different strings, not enough different bits. To overcome this
issue, we also use an error correcting block code on each block of the output code to guarantee
distance between corresponding blocks that are different. We also use tree codes with constant
distance and alphabet of length p(n) to gaurantee distance within a block. So the building blocks
in the construction of TC are the following:

1. let TCp(n) : ({0, 1}p(n))n/p(n) → ({0, 1}3p(n))n/p(n) be the tree code from Corollary 7.2. Recall
that TCp(n) has distance 1/2.

2. Let TCe : ({0, 1})2p(n) → ({0, 1}c1)2p(n) be a tree code with distance 1/2 that we find using
brute force algorithm (Note that since p(n) is of order log(n) the brute force takes polynomial
time.)

3. Let ECC : {0, 1}3p(n) → ({0, 1}c2)p(n) be an error correcting block code with distance 5/6.
By Lemma 3.2 in [18], c2 is constant.

We define TC(m) = (tc(3)
1 , tc

(3)
2 , ..., tc

(3)
n ), where tc

(3)
1 = ({0}c2p(n), TCe(m1), {0}c1p(n)), and for

i ∈ {2, ..., n/p(n)}:

eci = (ECC(TCp(n)(m)i−1)) (7.1)

tc
(1)
i = (TCe(mi))[1,p(n)]) (7.2)

tc
(2)
i = (TCe(mi−1mi))[p(n),2p(n)]) (7.3)

tc
(3)
i = (eci, tc1

i , tc2
i ) (7.4)

To analyze the distance, suppose x, y ∈ {0, 1}n and s = split(x, y), d ≤ n − s. Let S be the block
that the split occurs, and t be the index of the split in that block. i.e. S = �s/p(n)�, and t is the
remainder of s mod p(n). Also, let d1 = min(d, p(n) − t), d2 = �d−d1

p(n) �, and d3 = d − d1 − d2p(n).

Note that dist(x, y)|s,s+d1] ≤ d1
2 due to tc

(1)
S , and dist(x, y)[Sp(n),(S+d2)p(n)] ≤ d2

2 × 5p(n)
6 = 5d2p(n)

12
due to TCp(n) and ECC. Suppose d2 > 0, since d3 ≤ p(n), d = d1 + d2p(n) + d3 ≤ 2d1 + 2d2p(n), so

dist(x, y)s,s+d ≥ d1
2

+
5d2p(n)

12
≥ 5(d1 + d2p(n))

12
≥ 5

12
× d

2
=

5d

24
(7.5)
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And if d2 = 0, we have dist(x, y)[s,s+d1+d3] ≥ d1+d3
2 = d

2 due to tc(2), so in any case dist(x, y)s,s+d ≥
5d
24 .
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Chapter 8

Open Problems and Future Work

• Is there any explicit Binary tree code with constant distance and constant alphabet size?

• Is there any polynomial-time test for checking if a lower-triangular matrix is totally-non-
singular? Is this problem NP-Complete? Note that if there is a polynomial-time test for
checking if a lower-triangular matrix is totally-non-singular, then we could construct good
tree codes by taking a random lower-triangular matrix and verifying that it is indeed totally-
non-singular.

• Is there any n × n lower triangular totally positive matrix with elements of order O(poly(n))?
Is there any random algorithm for generating them? Such randomized algorithm can be useful
since checking if a matrix is totally positive can be done in polynomial time.
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