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ABSTRACT 

Matching models to images is a very important task in image understanding. The 

generalized Hough transform (GHT) proposed by Ballard has been proven to be a very 

effective method for matching models of arbitrary shapes to images. It converts the 

problem of global pattern detection into a problem of local peak finding. However, the 

GHT has difficulty handling images with occlusions due to the reduced peak values when 

objects are partially occluded. It can easily make mistakes when images contain patterns 

similar to the model. Moreover, it is also very difficult to apply parallel processing. Thc 

unique peak spot results in contention when processors try to access it. In this thesis, An 

improved version of Ballard's GHT is proposed which provides a potentially more robust 

and systematic technique, the linear Hough transform, for solving the problems in the 

detection of partially occluded objects. We use a linear numeric pattern to replace the peak 

in the GHT and use the relationship between entries in the linear pattern to achieve high 

robustness. Partial matches of the linear pattern are used for partial object detection. 

Finally, we present a parallel version of our new technique to exploit the parallel 

computational power of array processors. High performance is achieved by taking 

advantage of the speed-up due to reduced contention in the accumulation process which 

results with our linear numeric pattern. 
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CHAPTER l 

INTRODUCTION 

Vision is a powerful sense for human beings. Through it, we are able to identify 

objects and learn their positions and thus collect tremendous amounts of information about 

our surrounding environment without any direct physical contact. It is not surprising that 

people have been trying to equip machines with the visual sense by using modern 

computing technology. 

Although we still know very little about how images are processed in the human 

vision system, some very significant progress has been made in developing computer 

vision systems. Many modern machines are equipped with different level vision systems 

which have been operated quite successfully in various environments. For example, an 

inspection robot arm that can selectively pick or separate parts on a conveyor belt in an 

assembly line (as shown in Figure 1.1) is a typical industrial application of computer vision 

technology. 

In industrial automation, there is a great interest in recognizing parts even if they are 

partially occluded. Although it is possible to use shakers and some custom machinery to 

separate, pelletize, or prearrange the parts for easy recognition, it is more flexible and 

convenient to use a vision system that can recognize the parts even though they may be 

partially occluded or placed in an arbitrary orientation. 



robot arm 

2 

camera 

Figure 1.1 Robot Arm Picking Parts On Assembly Line 

A very important task in image understanding is scene analysis. Its goal is to 

construct symbolic scene descriptions by extracting information from images or image 

sequences. Detecting the occurrences of objects with known shapes is a very essential part 

of the information extraction process. 

Figure 1.2 describes an industrial vision system and the links within the control unit 

of an industrial robot arm. The goal of such a vision system is to give a symbolic 

description of what is in the scene of the image. The machine, in this case a robot am1 
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equipped with the vision system, can be directed and can act intelligently in its environment 

by using the symbolic description. 

* * * * * * * * A  

Symbolic 
16 Scene .:I 

Figure 1.2 Links In An Industrial Robot Arm and Its Control Unit 

In a typical industrial application, the objects to be detected may not have well- 

defined analytical boundaries. Frequently, the model objects are described by templates. 

The obvious approach to solve this object detection problem is to use template matching 

[Duda73]. Some other early attempts to match a model template with the edge points in  

images have been suggested (e.g., Perk78, Perk80). But the slow speed of performing 

template matching has led to a number of investigations aimed at increasing its efficiency. 
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Several early methods have been studied (e-g., Nage72, Vand77). Ballard showed how to 

use the Generalized Hough Transform (GHT) to solve the problem [Ba1181]. 

The Hough Transform (HT) was initially proposed for detecting straight lines 

[Houg62]. The general idea of the Hough transform is to transfer the problem of a global 

pattern detection in image space into the easier to solve local peak detection problem in 

parameter space. This is achieved by determining specific values of parameters which 

characterize the line. Rosenfeld [Rose69], and Duda and Hart [Duda72) improved the 

technique and used it to detect circles. Kimme et a1 [Kimm75] and Tsuji et a1 [Tsuj78] 

extended it to detect ellipses. Ballard [Ball811 generalized the technique and showed how 

to use it to detect objects with arbitrary shapes. 

Ballard's Generalized Hough Transform (GHT) acquired considerable 

computational efficiency by taking full advantage of gradient orientation information of 

edge points. However, the GHT does not readily suggest the solution when the object 

sought was incomplete or partially occluded. 

There have been some studies on extending Ballard's work to detect partially- 

occluded objects. A typical approach is to apply the GHT on sub-object models 

compounded with multiresolution techniques [Davi82]. However, this type of approach 

lacks a systematic decomposition standard in dividing the object model into its sub-object 

models. Therefore, it is not a well defined approach for solving the problem. 

On the other hand, the GHT itself inherits some robustness problems in the sense 

of its effectiveness of finding clusters of similar transforms in order to match a model to an 
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image [Grim88], since noise and computational errors may transfer a similar pattern in an 

image into a peak in the parameter space which may be erroneously picked up by the GHT. 

Parallel computation has been attracting more and more interest among computing 

scientists as an approach to improve the speed of many kinds of computations. In 

computer vision, it is most desirable to build a super-fast vision system to meet the time 

requirement for many real applications. A vision system mounted onto a mobile robot is a 

typical example of an application of a real-time vision system (it is not desirable for a 

mobile robot to stand still for 20 to 30 minutes for just one image frame analysis to finish). 

The increasingly important role played by the Hough transform in image 

understanding makes improvement in its speed very meaningful. There have been many 

reports on parallel computation of Hough transforms for straight lines (e.g., Li9(), 

Cyph87, Rose88, Ibra86). But due to the irregularities of the object models dealt by GHT 

and the irregularities in performing the generalized Hough transform, the GHT can not 

readily handle the potential transform contentions in parameter space which result from the 

parallel processing of image points. 

This thesis studies a systematic approach to extending the GHT to detect partially- 

occluded objects and to improving the robustness of the GHT; there is also an exploration 

of parallel computation applied to the extended GHT. The thesis is organized into six 

chapters. Chapter Two contains a brief survey of the Hough transform technique and its 

applications. In Chapter Three, we present a new technique called the Linear Generalized 

Hough Transform which is more robust than the GHT and which is also capable of 
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detecting partially-occluded parts. Later in the chapter, we incorporate the V-GHT 

algorithm into a more general algorithm, the AV-GHT algorithm, to deal with more general 

cases. In Chapter Four, we explore the parallel computational power of a linear array 

processor when applied to our Linear GHT technique and the V-GHT algorithm developed 

in Chapter Three. Two parallel algorithms and an analysis of their efficiency are presented 

in this chapter. The first algorithm is based on a basic linear array processor architecture. 

and the second uses more advanced linear array architectures and demonstrates some 

techniques for resolving contentions. We also discuss the potential for a more powerful 

hardware architecture. In Chapter Five, we present our implementation and experimental 

results of the AV-GHT algorithm. Finally, we have concluding discussions and 

discussions on future research work in Chapter Six. 



CHAPTER 2 

SURVEY OF HOUGH TRANSFORM AND ITS 

GENERALIZATION 

The Hough Transform was first introduced by Paul Hough [Houg62] in 1962 for 

detecting complex patterns of points in binary images. It achieves this by determining the 

values of parameters which characterize these patterns. The HT is simply a special type of 

dual transformation technique used in searching for pattern matches in image analysis. 

Extended patterns are transformed so that they produce certain compact features in a space 

of possible parameter values. A search for the compact feature in the parameter space can 

be conducted more effectively and more efficiently than by template matching in image 

space [Ball8 1, Davi87al. 

This chapter is organized into three sections. We introduce the Hough transform in 

the first section and give a brief review of the development of the HT for detecting 

analytical shapes. In the second section, we describe Ballard's generalized Hough 

transform [Ball811 and review its applications. In section three, we show some 

architectures used for parallel Hough transform computation. 

2.1 The Hough Transform for Analytical Shapes 

To illustrate the way that the HT works, we suppose that there is a straight line in 

an image, and the line consists of a set of collinear points which can be defined by a 

relation, Il, such that 



where a and b are two parameters, the slope and the intercept, which characterize the line. 

Each parameter pair (a, b) in the parameter space is mapped to a set of points along a 

straight line in the image space (as shown in the figure 2.l(b)) by relation ll. The 

backprojection relation, 

T((x, y),(a, b)) = b + x a -  y = O  (2.2), 

maps each image point to a set of parameter values (a, b) which form a straight line in the 

parameter space. Colinear image points have the same slope-intercept value, so their 

corresponding lines in the parameter space all intersect at a common point (as shown in 

Figure 2.1 (b)). The coordinates of this point characterize the line in the image space, i.e., 

they give the value of slope and intercept of the straight line in image space. 

Suppose that an accumulator was set up in the parameter space such that each line 

will vote into a corresponding entry in the accumulator, and the common point where all the 

lines intersect will correspond to the peak in the accumulator (as shown in the figure 

2.l(c)). Thus HT transforms a global line detection problem in image space into a local 

peak detection problem in the parameter space. The determination of a local peak should be 

considerably easier than detecting extended point patterns in image space. 



(a) Image with 4 colinear points (b) Combination of Slope-Intercept 

(c) Accumulation Of Votes 

Figure 2.1 An Example Of Hough Transform 



There have been some variations suggested by several researchers. The most 

influential one was suggested by Duda and Hart [Duda72] who used a polar coordinate 

parameterization of straight lines: 

where 8 is the orientation of the line, and p is the distance from the origin of the image to 

the line. The advantage of the Duda and Hart method is that it uses only a finite amount of 

parameter space while the slope-intercept parameterization approach has problems handling 

lines with large slope when the line represented is close to the vertical direction, i.e., for 

the vertical lines, b = =. Wallace also suggested a bounded parameterization for lines 

[Wa1185]. His method used the parameters of the two intersecting points of extended line 

with image boundary. A point on the image boundary is measured by the distance along 

the boundary counterclockwise from the lower-left comer of the image. Davies suggested 

that a line can also be parameterized by its point of intersection with a normal vector from 

the image origin rDavi86aI. 

It is also very straightforward to extend the HT method of line detection to the 

detection of analytical curves. Given that a curve is characterized by n parameters, a,,...,%, 

a relation can be similarly defined by 

And the backprojection relation can be obtained by swapping the roles of variables 

(x,y) with parameters (a,,...,%) in Equation 2.4: 



This backprojection relation maps each image point in the image space onto a 

hypersurface in the n-dimensional parameter space. The common intersecting point of 

these hypersurface indicates a possible parameter combination of a,,...,%. 

Kimme, Ballard, and Sklansky [Kimm75] demonstrated the use of HT to detect 

circular arcs by using edge orientation information to constrain the ranges of parameters. 

This was the first time that edge orientation information was used in an HT procedure to 

reduce the computational cost. There have been many papers dealing with detecting other 

curves by using HT--an example is the detection of ellipses described in Tsuk83 and 

Tsuj78. 

In fact, the Hough transform can be viewed as an evidence-gathering process. 

Each edge point in an image makes "guesses" on all parameter combinations that could 

have produced it. Since the continuous parameter space is usually approximated by the 

union of a number of finite-sized regions, each associated with an entry in an array in a 

digital computer, such "guesses" are made by incrementing the accumulator entries that 

correspond to those parameter combinations. The size of the regions of parameters are 

chosen based on the precision requirements of the parameters. 

In the general case where parameter space is multidimensional, the backprojection 

relation will map an image point to a hypersurface in the multidimensional parameter space. 

All the hypersurfaces will intersect at a common point if the image contains the shape 

.ought and characterized by the combination of parameters represented by the intersecting 
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point in the parameter space. If all the entries corresponding to the regions that 

hypersurfaces pass are incremented, there will be a peak in the entry that corresponds to the 

intersecting point of hypersurfaces, Therefore, locating the peak in an accumulator array 

can be used to approximate the computation for the intersecting point of hypersurfaces. 

Peak detection is much easier and more efficient than matching patterns of points in the 

image domain. 

Illingworth and Kittler have recently done a good survey on the HT and its 

applications [Illi881. 

2.2 The Generalized Hough Transform 

Attempts to further extend the HT to detect arbitrary shapes have been made by 

several authors [Illi88]. In 1981, in his well-known paper [Ba1181], Ballard extended 

Merlin and Farbers' work [Mer175] and proposed the generalized Hough transform (GHT) 

for detecting arbitrary shapes of any orientation or scale [Ba1181]. His work obtained 

considerable computational efficiency by fully exploiting the edge orientation infomation. 

Suppose that we are given a model with a shape that cannot be expressed by 

analytical equations. In Ballard's GHT, the model was used to construct a so-called R- 

table. A polar coordinate system is established in the model by fixing a reference point and 

using it as the origin. The R-table records the positions of boundary points by their polar 

coordinate values. The rows of the R-table are indexed with the gradient angles of edge 

points. An example of such R-table construction is shown by Figure 2.2, where Figure 
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2.2(a) is the model with its polar coordinate system and Figure 2.2(b) shows the R-table 

for the model in Figure 2.2(a). 

(a) Geometry Used To Form The R-table 

(b) R-table 

Figure 2.2 An Example of R-table Used By The GHT 



Suppose that all the objects sought have the same scale and orientation as the 

model. Because of the way that the R-table was constructed, it is not difficult to imagine 

that given an edge point (x,y) with gradient orientation Q, the possible reference point is 

constrained at the locations of 

If a 2D array is used as an accumulator, which is called Hough space or parameter 

space, and equation (2.6) is applied on all edge points, then the entries that correspond to 

the reference points will accumulate the highest values (votes). The peak should be equal 

or close (due to errors) to the number of boundary points of the model since each correct 

edge point should contribute one vote to its reference point. 

In the case where the scale and/or orientation of objects in images are different from 

the model, different scaling and orientation have to be tested. The orientation and scaling 

that give the highest peak value determine the size and orientation of the object in the image. 

It also means that the parameter space will be increased by another 2 dimensions. It 

certainly will add more computational cost, but compared to template matching that is 

completely carried out in image space, the GHT is still very efficient. 

Davis [Davi82] suggested a hierarchical approach of the GHT. His method is to 

decompose the complex shapes into simpler shapes. Then the GHT is applied on each 

part, requiring the detection of compositing parts before detecting the composite. The 
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shape-recognition process is better controlled and carried out using a top down hierarchical 

approach. This makes the detection of a partial shape possible. 

Similarly, the GHT can also be viewed as an evidence-gathering process. Each 

image point votes for all the parameter combinations that could have produced it if it was 

part of the shape sought. The only difference between the GHT and the HT described 

before is that the GHT references a pre-constructed table (R-table) in its voting while the 

HT uses analytical functions. The GHT also puts more emphasis on the use of the 

orientation information of edge points, which further constrains the possible parameter 

combinations that could have produced the edge point and thus gives the GHT high 

computational efficiency. 

The efficiency of the GHT has attracted many researchers who study its 

applications under various environments. Adiv applied the GHT to match patterns in two 

different images resulting from motion [Adiv83]. He proposed to use coarse parameter 

resolution for large objects, and to partition the image into small sub-images for detecting 

small objects in order to reduce the computational cost and also to cope with the problem 

that small objects only produce small peaks in parameter space. He also proposed an 

iterative focusing approach to parameter estimation. 

In their attempt to extend the GHT to 3D [Ba1183], Ballard and Sabbath used the 

Hough technique for detecting groups of parameters sequentially and showed how to 

derive constraints within the groups. 



Kasif et a1 [Kasi83] have applied the GHT to match subgraphs derived from 

geographical maps. They compared the GHT with the other methods that could be used for 

solving the subgraph isomorphism problem and pointed out the possibility of implementing 

their method on a specially connected parallel machine for parallel processing. 

Henderson and Fai [Hend84] have used the GHT to detect objects in 3D data from 

a laser range-finding system. They reduced the computation for the transform to only a 

few possible matches by picking some suitable distinctive feature points for the transform. 

The technique is first to detect planar segments and then find matches with the models. 

Also, in 3D applications, Silberberg et a1 [Silb84] used the GHT in estimating the viewing 

parameters that match straight line segments with the model. 

Hakalahti et a1 studied the GHT for general shape detection fHaka84, Mori851. 

They used a two-stage GHT that makes and searches the Hough space from a coarse 

resolution to a fine one. They also incorporated both contour curvature and local image 

contrast information into the GHT. 

Dhome and Kasvand have used the idea of the GHT to detect 3D polyhedra 

[Dhom86]. In their method the polyhedra are represented by records containing attributes 

and relationships between adjacent pairs of planar faces. Images are segmented to 

construct similar records for candidate planar surfaces. These two record lists are 

compared to hypothesize all possible locations of objects. Their procedure is hierarchical 

and employs clustering techniques to identify the hypotheses that occured most frequently. 



Davies has published many papers on his studies of the GHT. He has used the 

GHT to detect both sharp and blunt corners [Davi86b]. He showed that the choice of 

reference point could have impact on both the accuracy of comer location and the sensitivity 

for corner detection. He discussed the best compromise of the two factors. In another 

paper, Davies also investigated the use of GHT to detect polygons of known size 

[Davi86c]. He proposed that savings on the size accumulator can be made by using the 

symmetric property. Later he examined the GHT and showed several factors involved in 

optimizing it [Davi87al. He suggested that because of sensitivity, each point in the 

parameter space should be weighted in proportion to the intensity of edge magnitude and in 

proportion to the a priori gradient. He pointed out the difference of object location and 

sensitivity of object detection and that in  order to reduce the computational cost, detection 

sensitivity is often sacrificed. To enhance the accuracy of the GHT in longitudinally 

localizing lines, Davies [Davi87b] used ideas similar to the CHough [Brow83]. The 

CHough is a Hough method proposed by Brown, which allows image edge points to 

contribute not only positively to the possible parameter combinations but also negatively to 

the impossible parameter combinations. Davies used two separate Hough spaces to 

accumulate positive evidence and negative evidence for line segments with known lengths. 

Line localization is improved by considering the difference between the positive Hough 

space and the negative Hough space. 

Illingworth and Kittler have recently done an extensive survey on the Hough 

transform [Illi88]. They showed that there were many advantages of the GHT over the 



direct template matching and that they could be summarized in the following four major 

categories: 

(1) Random noise in images contributes little to the peaks in Hough 

space, and therefore it has little effect on the shape detection 

results. 

(2) Because edge points vote independently, partial shape detection can 

be done by shape model decomposition, and very slightly 

deformed shapes can be recognized. 

(3) Because of the independent evidence gathering, any number of 

instances of the same shapes can be detected simultaneously in one 

image frame. 

(4) Parallel processing is possible since each edge point votes 

independently. 

~ l t h o u g h  there are these four major advantages with the GHT, some are only 

potentially useful. For example, to detect a partial shape a good decomposition of the 

model into sub-shapes that are capable of matching the partial shape is needed. There are 

also problems in parallellizing the GHT. For example, the reference point that accumulates 

the votes for all the points on the shape is the hot spot for causing contentions among PE's 

and there is no obvious way to solve this. 

While the GHT can tolerate slightly deformed shapes, Grimson and Huttenlocher 

[Grim881 have pointed out that it may also give false results since it is hard to know 

whether a peak is from a slightly deformed shape or  from a similar shape. They also 

contended that the GHT "will scale poorly, when applied to complex, cluttered scenes, or 

when using extended features that may be partially occluded." 



2.3 Architectures For The HT 

Illingworth's extensive survey [Illi88] published late in 1988 showed that almost all 

the attempts on parallel Hough transform were for straight line detection. Most of them 

have been restricted to the implementation of the p-8 line finding HT. The Hough space is 

distributed among participating Processing Elements, or PE's, such that each participating 

PE represents a certain group of p-8 combinations. Each PE computes the p-8 for its local 

image point and communicates with the PE that represents this p-8 combination. The 

studies have been focused on determining the best communication routing among PE's that 

give least contention. Little is known about parallel processing the GHT. 

The most commonly used architecture is either the mesh-array or the linear array 

which are both commercially available. They are running under Single-Instruction 

Multiple-Data mode and usually each PE is connected to its 2 or 4 or 8 neighbors and has 

its own local memory. There is a central control unit which decodes instructions and 

broadcasts to all PE's. All PE's concurrently execute the same instruction on their own 

data. Some of the architectures require that all of the PE's can only access one location in 

each PE's local memory at one time (e.g., AIS-5000 [Schm88]). The others provide 

indirect addressing mode for PE's to access different local memory locations 

simultaneously (e.g., The new generation AIS Wils881). The voting on such mesh-array 

architectures are usually through synchronized shiftings on all PE's to move each vote for 

any particular p-8 combination to its destination PE. 



Little, Blelloch, and Cass [Litt87] proposed a parallel HT implemented on the 

Connection Machine. The connection machine [Hi11851 is one of the first smoothly 

working prototypes of fully parallel machines. It very closely resembles the parallel 

machine model of the Shuffle-Exchange Network ISton711. It is based on a 12 

dimensional hypercube linkage of PE's which allow fast communications between any pair 

of PE's. Their paper concentrates on resolving the contentions in the voting process but 

fails to give a performance analysis. 

Olsen, Bukys, and Brown [Olse87] studied parallel implementation of the HT on a 

commercially available system called the "BBN Butterfly Parallel Processor". The BBN 

Butterfly Parallel Processor (Grow851 is based on a Multi-Instruction Multi-Data (MIMD) 

architecture and approximates the theoretical machine model called Parallel RAM (PRAM) 

[Wi1179]. Each processor in the BBN Butterfly is a Motorola 68000 microprocessor with 

a amount of local memory (1 MB each). The approximation for a global 

common memory is achieved by an internal switching network which allows any processor 

to access rapidly the local memory of any other processor. In their study, Olsen et a1 

achieved a speed-up factor of 80%, is . ,  if 100 PE's are used the speed-up is 80 times that 

of a single PE. 



CHAPTER 3 

LINEAR GENERALIZED HOUGH TRANSFORM 

Detecting a partially-occluded object is a difficult task. Ballard's GHT [Ball811 is a 

very effective method to detect a complete object. When it comes to detecting partial 

objects, the straightforward solution of using the GHT is to divide the model into small 

sub-ternplates, and apply the GHT to each such sub-template (e.g., Turn85, Davi82). 

However, this kind of sub-template GHT is limited in precision size to detect a partial 

object. The relationship among sub-templates varies from one method for division of sub- 

templates to another. It lacks a systematic approach and may easily cause confusion in real 

applications. 

In this chapter, we first introduce the concepts used in our extension of the GHT 

and describe a model information extraction process. we start with an object-detection 

algorithm that best demonstrates our idea. We discuss its merits and weaknesses and then 

present its robust version called the V-GHT algorithm, followed by an algorithm for 

detecting all unoccluded parts. However, to simplify the description of our algorithm, we 

assume that the orientation of objects is fixed1. 

1 Wc are not concerned with thc rotation and scaling handling in our V-GHT schcmc since they can 
be done by classical mcthods, LC., two more dimensions arc added into the parameter spacc. Although these 
methods are time-consuming, wc have not bccn ablc to improve upon thcrn. 



3.1 Preprocess model 

Assume that an image which contains a model of object to be located is given. It is 

desirable that when the information of the model is extracted individually for each boundary 

point (along the two dimensions), the relationship between these individual boundary 

points should also be organized at the same time and in a way that is not very complicated 

and allows the effective recovery of partial-object information. 

To  achieve the above two goals, we first set a reference axis on the given image 

model. Although the choice of such a reference axis is arbitrary, we choose a reference 

axis which cuts through the model object in the image and is parallel to the image border, 

and we also pick an arbitrary point on the reference axis as a reference point. One thing 

that should be commented upon here is that our choice of reference axis and reference point 

will not make our following discussion lose generality in any respect. Consider an X-Y 

coordinate system on an image plane; if there is another coordinate system, called x-y, 

which can be constructed from X-Y by first moving X-Y's origin to (Xo,Yo) and then 

rotating both axes $ degree counterclockwise as shown in Figure 3.1, a point P, (x, y), 

under the new coordinate system, has the following relation to the same point under the old 

coordinate system (X,, Y,): 



Figure 3.1 Relation between Two Coordinate Systems 

BY making our reference axis Y-axis and a line which is through the reference 

point on the Y-axis and perpendicular to the Y-axis as the X-axis, we can convert any other 

reference choice into our reference system by using the equation (3.1). Such coordinate 

conversion is independent of the GHT process, i.e., it will not affect the detection in any 

way except for its required conversion computation. 

After the reference axis and reference point are set, we can proceed to extract the 

information from the given model image with respect to the individual boundary points and 

the relationship among them. Since we have chosen the reference axis along the vertical 

direction, unless specified otherwise, we will use the Y-axis and reference axis 

interchangeably in our following discussion. 



3.1.1 Horizontal Information Extraction For Each Point 

The first step is to compute a gradient angle for each boundary point. Then, all the 

gradient angles are sorted, with each angle value only appearing once in the sorted 

sequence. A VX-table is defined as a 2D array whose rows correspond to the sorted 

gradient angle sequence, one row to each angle, i.e., rows of the VX-table are indexed by 

the gadient angles of boundary points. Each entry in a specific row of the VX-table is 

either empty or records a position of a boundary point which has the same gradient angle 

as the row's indexing angle. The position of a boundary point is represented by the 

distance from the point to the Y-axis, i.e., its X-coordinate value. The vertical distance 

from the point to the reference point, i.e., its Y-coordinate value, is not recorded. If more 

than two edge points from the same image column (same X-coordinate value) have the 

same gradient angle, only one is recorded into the VX-table. Therefore, the number of 

valid entries in a VX-table may be less than the number of object boundary points. 

So far, the horizontal information for each individual boundary point has been 

recorded into a table. The vertical information of object boundary points should also be 

extracted to complete our model pre-processing. We will define a concise vertical relation 

among object boundary points which can be used effectively and efficiently in the object 

detection. 

3.1.2 V-pattern Construction 

The following three properties define a relation called Vertical pattern (V-pattern) : 



(1) The V-pattern is a numerical array of one dimension, 

(2) the length of the array is equal to the length of the object 

perpendicularly projected onto the reference axis, and the V- 

pattern has the exact correspondence with the segment of the 

reference axis that the object is projected onto, and 

(3) the number of boundary points that are projected onto a single point 

on the reference axis is the value that is stored in the 

corresponding entry of the V-pattern. 

A thus defined V-pattern is in fact a subtotal of object boundary points with respect 

to each image row and keeps all these subtotals in the order as their row indices; therefore, 

the V-pattern is a relation along the reference axis of the object boundary points. Figure 

3.2 shows an example of an object, its V-pattern, and its VX-table. Now the model 

information preprocessing has been completed. We are ready to use this information for 

detections in future input images. 

3.2 Detection Algorithm 

Our new extension on the GHT is to use a linear pattern to replace the single 

reference point used in the GHT such that there will be a V-pattern accumulated in the 

Hough space if the image contains an object sought. In this section, we first give an 

algorithm called Planar V-pattern Generalized Hough Transform (PV-GHT) to demonstrate 

how our technique can be used to detect partially-occluded objects. Then we analyze the 

complexity of the algorithm and discuss its limitations. An example of the comparison of 



(c) VX-table 

Figure 3.2 An Example of Model Preprocessing 

expected accumulation results by the GHT and our Linear GHT technique is illustrated in 

Figure 3.3. To emphasize the difference between our technique and the GHT, only the 

contents in the enmes in Hough spaces that are of interest are shown. 



Figure 3.3 A Cornparsion of Accumulations In Hough Spaces 

3.2.1 The PV-GHT Algorithm 

Assuming that both scale and orientation of objects are fixed and the model (VX- 

table and V-pattern) for the object to be located has been constructed, the algorithm for 

locating an object can be described as follows: 



PV-GHT Algorithm: 

(1) Initialize a 2-D Hough space, A, to zero, i.e., 

A(x,y) = 0 for all (x,y). 

(2) Find all the edge points and compute their gradient angles, and for 
each edge point (x,y) with gradient angle $ do the following: 

For each VX-table entry for $, increment the accumulator 

array 

(3) For any positive integers i, j and k, if A(xi,yj), A ( X ~ , ~ ~ + ~ ) ,  ... , 
A(x,,yj+,,-,) has a complete match (or a partial match for a segment) 

with the V-pattern, then the object sought possibly existed 

(partially) in the input image. The column xi should be the 

reference axis of the (partial) object and the matched segment(s) 

should indicate the la.ation(s) of those object part(s). 

(4) Stop. 

3.2.2 Discussions On Match Findings 

The final search in the Hough space requires a set of rules to determine whether a 

segment of the V-pattern is matched to some segments of patterns accumulated in columns 

of Hough space. This may be trivial for ideal images where there are no distortions and 
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every object boundary is in perfect shape, although partial occlusions may exist. For such 

ideal images the final match finding becomes the finding of the longest common substrings 

between the V-pattern and the columns in the Hough space. The longest common 

substring problem has been solved [Ah0761 and the time complexity is linear to the length 

of the string searched. 

The practical applications often involve processing images that contain slightly 

deformed object boundaries and noises. Therefore the vote accumulation in the Hough 

space will not yield a perfect V-pattern even if there is an object sought is in the image. The 

non-ideal image leads to the need of studying tolerance criteria in match findings. In fact, 

this kind of problem is not unique to our problem: researchers in pattern recognitions have 

identified it and have been doing extensive studies in their attempts to solve it. For our 

case, a substantial statistical study covering a wide range of images might be necessary to 

produce a set of suitable rules for non-exact matching. However, this thesis will not 

attempt to solve this problem. 

From a logical point of view, a good non-exact match criterion aimed at detecting a 

non-ideal partial match of V-pattern must give reasonable consideration to the following 

issues: 

(1) Each entry in the V-pattern must be given a reasonable weight such 

that the entries corresponding to important features are given more 

weight than the entries corresponding to unimportant features. 

(2) There must be certain error tolermce for each entry. 

(3) There should be certain tolerance on the number of entries that do 

not satisfy the standard set by (2). 



(4) There should be a limit on minimum length or weight for a partial 

match. 

All of the above four issues should be solved together and consistently: none of 

them can be solved independent of the others. In our experiment, we took the approach 

that we deemed to be conservative and appropriate, which is described in Chapter 5 

(Implementation and Experimental Results) of this thesis. 

3.2.3 Complexities of the PV-GHT Algorithm 

The Hough space used in the PV-GHT algorithm is just a two dimensional NxN 

array based on the image size of NxN, so the PV-GHT algorithm has O(NZ) space 

complexity. Compared with the GHT proposed by Ballard, the PV-GHT algorithm has the 

same space complexity as the GHT. 

The running time differences between the PV-GHT algorithm and the GHT 

algorithm mainly depend on the matching algorithm. The vote accumulations in PV-GHT 

algorithm take a less or equal amount of time as the GHT because the VX-table used by the 

PV-GHT algorithm may contain less valid entries than the R-table (see Chapter 2) used by 

the GHT algorithm. However, in the worst case, the vote accumulation by the PV-GHT 

algorithm and the GHT take the same number of steps; the differences are merely locations 

to vote. For the GHT the voting destinations are the possible reference points, while for 

the PV-GHT the voting destinations are the possible reference axis. The worst-case time 

required for the voting step is 0(N2m), where m is the number of columns in the VX-table. 



As we discussed before, there can be two types of matching algorithms used in the 

PV-GHT algorithm. In real industrial applications, it is possible to take images in a fixed 

environment. If model images and non-model images are taken in such a fixed 

environment, it is very likely that we could have images wherein the object model in the 

model image is exactly the same or, at least, if there are any minor differences, they can be 

fixed by thresholding. In such an ideal match seeking case, we could employ very efficient 

numeric string matching algorithms presented in Ah076 for a complete V-pattern search in 

Hough space, and the time complexity is just O(N2) for a complete V-pattern search in a 

NxN Hough space. Under such ideal image assumption, the time complexity of the PV- 

GHT is exactly the same as the GHT algorithm. 

Seeking an exact match is an ideal case. Although it is possible, the majority of real 

images have certain distortions which cannot easily be fixed, so the matching has to try out 

all the possibilities which will result in 0(N2L) running time, where L is the length of V- 

pattern. Hence, in most practical cases where images are not ideal, the time complexity of 

the PV-GHT algorithm is O(NZL), which is a factor of L slower than the GHT. 

However, it allows a partially-occluded object to be detected through partial match finding. 

3.2.4 Robustness Discussion On The PV-GHT Algorithm 

The following example shows the limitation on the robustness of the PV-GHT 

algorithm. Assume that the alcabash-shape object shown in Figure 3.2(a) is the object 

sought, Figure 3.4(a) is an input image which contains two overlapping alcabash-shaped 

objects (their reference axes are also overlapping). If the PV-GHT algorithm is applied to 
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the image in Figure 3.4(a), the resulting accumulation in the column,which corresponds to 

the reference axis in the Hough space, is the result of overlapping the corresponding parts 

of two V-patterns (shown in Figure 3.4(c)). Hence the PV-GHT algorithm will fail to 

recognize the overlapped V-pattern, so the failure to detect objects will occur with the PV- 

GHT algorithm. 

Figure 3.4 Destroyed V-patterns by Overlapping 

One might argue that choosing a reference axis other than along the vertical 

direction for the alcabash-shaped object shown in Figure 3.2(a) will avoid the overlapping 

of reference axes for the two objects in Figure 3.4(a) and thus make the detection of objects 

possible. However, when more complicated cases arise, the PV-GHT algorithm may fail 

again: for example, when an input image has many of the same shaped objects which 
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overlap one another in every direction. So there is a need to separate every possible V- 

patterns that would accumulate in the Hough space. We will present more robust 

algorithms in the following subsections. 

3.3 A Robust Linear Generalized Hough Transform Algorithm 

As we have seen, one of the major limitations on the PV-GHT algorithm is caused 

by the overlapping V-patterns in the Hough space. The solution to such overlapping 

problems is to make the accumulation of V-pattern for each object distinct from each other. 

To achieve this goal, we combine the reference point technique used in the GHT and the 

linear pattern technique used in the PV-GHT . The unique reference point for each object is 

used to make the distinct place for the object's accumulation of V-pattern. In other words, 

the V-pattern will be accumulated on top of the object's reference point. So the Hough 

space required to accommodate such V-pattern accumulation becomes three dimensional. 

Figure 3.5 illustrates this idea. Intuitively, the V-pattern can be considered as "standing" 

on the reference point. 

By such expansion on the Hough space, the overlapping problem shown in Figure 

3.4 is solved since the V-patterns for the two overlapping objects will now "stand" on two 

distinct points, each corresponding to the reference point of an object. The new V-pattern 

accumulation for the two objects shown in Figure 3.4(a) is shown in Figure 3.6. 



Figure 3.5 V-pattern "Standing" On The Reference Point In Hough Space 

Figure 3.6 Non-overlapping Accumulation of V-patterns 



3.3.1 The V-GHT Algorithm 

As we intend to make each object correspond to a V-pattern in a unique position 

(the column on its reference point) in the Hough space, the VX-table has to be expanded so 

that the y-coordinate information is also recorded. For an edge point to locate its possible 

reference points, both x-coordinate and y-coordinate values need to be provided by the 

expanded VX-table. We call this expanded VX-table the VXY-table. The number of its 

valid entries is exactly the same as the number of model boundary points. Figure 3.7 

shows the VXY-table for the model in Figure 3.2(a). 

Figure 3.7 VXY-table built for Figure 3.2(a) 

Assume that the VXY-table and its V-pattern have been pre-computed, and the 

length of the V-pattern is L. The robust version of the PV-GHT algorithm is called V- 

pattern Generalized Hough Transform (V-GHT) algorithm. The V-GHT can detect a 

partially-occluded object and is presented below: 



V-GHT Algorithm: 

(1) Initialize a 3-D Hough space of size NxNxL, A, to zero, i.e., 

A(x,y,z) = 0 for all (x,y,z). 

(2) Find all the edge points and compute their gradient angles, and for 

each edge point (x,y) with gradient angle $ do the following: 

For each VX-table entry for @, increment the accumulator array 

(3) For any pair (xi,yi), if A(xi,yi,O), A(xi,yi,l), ..., A(xi,yi,L- 1) is a 

(partial) match with the V-pattern, then the object sought possibly 

existed (partially) in the input image and the (xi,y,) should be the 

reference point location of the (partial) object. 

The following correctness proof of the algorithm shows that the V-GHT Algorithm 

will detect the unoccluded parts of an object being sought. 

3.3.2 The V-GHT Algorithm Correctness Proof 

It is trivial to show that in the V-GHT algorithm, all the boundary points of the 

object sought will vote to to the column on the reference point, since the way that the 

VXY-table is constructed clearly indicates that the boundary points will "vote back" to the 

column on the reference point. However, it is not very clear that all the votes accumulated 
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in the column on the reference point in the Hough space are contributed only by the image 

points that belong to the boundary of the object sought. 

Lemma 3.1: 

An edge point will vote to the column on the reference point 

only if it is part of the shape sought, 

Proof: 

By formula (3.3), for a point P, (xp,yp), with gradient angle $, the votes 

accumulated will be on the columns that satisfy 

If (x,y) is the reference point (xr,yr) then (3.4) becomes 

(xp, yp = ( x, + ~(40, Yr + Y($) . (3.5) 

Since the coordinates of the reference point can be chosen arbitrarily, we 

choose it as the origin, i.e., (x,, y,) is set at (0,O). The equation (3.5) becomes 

which means that such point P must be a boundary point of the object 

sought.6 

This lemma is to show the purpose that the total votes accumulated in the column 

on the reference point in the Hough space can never exceed the total number of boundary 
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points of the object sought, and for non-ideal images, it is always less. An example in 

Figure 3.8 to demonstrates this. 

Figure 3.8 Example of Non-ideal Image 

In Figure 3.8, part of the image shown in Figure 3.8(b) is somehow deformed 

from the corresponding part of its model shown in Figure 3.8(a), where point a is shifted 

by one pixel due to the deformation and point g is a noisy spot. Figure 3.8(c) is the Hough 

space and the part of one slice which is of interest is enlarged and depicted explicitly. The 

entry with the number 5 is the one that lost one vote from point a, due to the distortion in 

the column on the reference point. The entries beside it accumulated votes contributed both 

by object boundary and noisy spot. This example shows that when the images to be 
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processed are non-ideal the approximation in the match findings is necessary. The 

approximation must consider each entry and its neighboring enmes together to compensate 

possible vote loss due to distortions. 

Because the V-pattern can be considered to be constructed by counting boundary 

points in each image row and lining up the results, and the object-detection technique is to 

find matches in the Hough space to the V-pattern, it is important to show that boundary 

points of the object sought will vote to the same entry in the Hough space if they are in the 

same image row. So we give the following lemma: 

Lemma 3.2: 

Entries in the column on the reference uoint have one to one 

corresuondence with image rows. 

Proof: 

For an entry A(xr,yr,zi) in the column on the reference point (xr,yr), any 

boundary point (x,y) voted to it should satisfy the condition that 

which means the object boundary points that voted to the same entry in the 

column on the reference point must be from the same image row and the object 

boundary points in the same row contribute to one particular entry in the column 

on the reference point.& 



This lemma implies that the whole Hough space can be horizontally "sliced" into L 

planes as shown in Figure 3.9: where L is the length of the V-pattern, all entries on each 

"slice" should only be checked for matching a particular entry in the V-pattern but none of 

the other enmes in the V-pattern. This property facilitates finding a good matching 

algorithm especially for non-ideal images. It fixes the pairs to be checked in the matching 

step. If an entry in the i-th plane of the Hough space fails to match the i-th entry in the V- 

pattern, there is no need to try to match any other entries in the V-pattern. 

Figure 3.9 Planes in the Hough Space have One-To-One 
Correspondence with the Entries in the V-pattern 

Theorem 3.1: 

The V-GHT algorithm will detect a ~art ial  obiect if a partial 

V-pattern is found in the Hough space by the matching step, 

Proof: 

By Lemma 3.2, there is one-to-one mapping between image rows and enmes in the 

column on the reference point. The absence of any part of the boundary curve from one 



4 1 

row should not affect the vote accumulation in the segment of entries in the column on the 

reference point that corresponds to the curve of other rows. (L 

By Theorem 3.1, we show that the V-GHT algorithm can be used to detect a 

partially-occluded object by finding the longest common substring between the V-pattern 

and the column on the reference point. The unoccluded case is only a special case of the 

occluded ones. However, when the end points of an unoccluded part are not in the same 

row, simply applying the V-GHT algorithm once to the input image will not find the 

maximum unoccluded part. (An example of this is shown in Figure 3.10.) In fact, several 

iterations of applying the V-GHT algorithm are needed, with each iteration using a different 

rotation of both the model image and the input image to recover all the unoccluded parts of 

the object. This will be discussed later in this chapter. 

Figure 3.10 An Example of the Unoccluded Part Found 



3.3.3 Complexity Analysis 

Assume that the size of the input image is NxN size, the VXY-table length is m, 

and the V-pattern length is L: 

Step one in the V-GHT algorithm takes 0 ( N 2 L )  since the Hough 

space required was N2L. 

Since there were at most 0(N2) edge points voting and each of which 

referred to at most O(m) entries in the VXY-table, the step two 

worst case running time is O(N2m). 

In the matching step, regardless of what type of matching algorithm or 

criteria are employed (i.e., an exact matching algorithm for ideal 

images or approximate matching by some heuristic standard for 

noisy images), each entry in the Hough space must be examined at 

least once. But in the V-GHT algorithm, there is no need to 

examine an entry twice since by Lemma 3.2, levels in the Hough 

space have a one-to-one correspondence with entries in the V- 

pattern. Therefore, step three in the V-GHT algorithm has 

0(N2L) time complexity. 

To summarize the above analysis, the time complexity of the V-GHT algorithm is 

In the GHT IBa11811, the voting process has the same time complexity as the voting 

process in  the V-GHT algorithm (step two). In fact, in the voting process the V-GHT does 

nothing more than the GHT but spreads the votes along a column on the point in the 3D 

Hough space, which otherwise would fall onto one point in the 2D Hough space with the 

GHT algorithm. Therefore, the worst case time complexity for the GHT is also 0(N2m). 

The V-GHT algorithm has the same order of worst case time complexity as the GHT 



43 

algorithm. But its real run time is a little longer than that of the GHT algorithm since it 

looks for matches in the 3D Hough space while the GHT searches a 2D Hough space for 

peaks. 

The space complexity for the V-GHT algorithm is 0(N2L), which is a factor of L 

higher than the GHT or PV-GHT. 

3.4 Recovering the Maximum Unoccluded Parts 

As discussed before, a partial V-pattern found in the search of Hough space by V- 

GHT algorithm does not necessarily indicate the piece of object found is the maximum 

unoccluded part. To find the maximum unoccluded part, a possible approach is to rotate 

both the model and the image so that the end points of the object part fall into the same row 

after the rotation. The example in Figure 3.1 1 demonstrates this idea, where object 0, 

which is partially occluded by an object B, is an occurrence of its model object M. From a 

partially matched V-pattern of vertical direction, we can find only the arc a->b on object 0 

(shown by Figure 3.11 (a)). To recover the arc a->b->c, which is the whole unoccluded 

boundary of object 0, the reference axis should be set in the direction which is 

perpendicular to a straight line through point a and c, as shown by Figure 3.1 1(b). Since 

there is no way of knowing the position of point a and c before we choose a reference axis 

and apply the V-GHT algorithm to the image, several reference axes of different directions 

have to be tried before the right one can be picked. In fact, it is not important to find the 

reference axis that is along the direction perpendicular to line through point a and c, if we 

can use one reference axis to find some part of arc a->b->c and use some other reference 



.............................. .......................... ....... 

I ..................... .................... ....... 
matched 
.segment 

reference 
axis 

( a )  

i 
reference 

axis 

I unmatched 
segment 

......... 
matched 
segment ......... 
unmatched 
segment . . . . . . . . . .  

reference 
axis 

matched 
segment . . . . . . . . . . . . . . . . . . . . . . . .  
unmatched 
segment 

I 
I 
I V-pattern 

reference 
axis 

( c )  

Figure 3.1 1 Finding Maximum Unoccluded Part 



45 

axes to find the rest of the part of arc a->b->c (as shown by Figure 3.1 l(c)), then we can 

achieve our goal of recovering the whole unoccluded part of object 0 by merging all the 

partial solutions together. 

The safest way to recover all the possible unoccluded pieces is to try every possible 

directional reference axis and put together the pieces found by each trial. However, such 

trials for all possible directional reference axes is not necessary. For most images, the trials 

on the reference axes in the x and y directions will suffice. Figure 3.1 1(c) is such an 

example. Usually the trials can be limited to the reference axes in as few as 2 to 4 

directions. 

The trial on each directional reference axis produces a partial result which is 

recorded in a binary matrix. The final result is achieved by merging all the partial solutions 

together through an "OR" operation. An example of such a merging procedure for the case 

shown in Figure 3.1 1 (c) is depicted in Figure 3.12. 

Figure 3.12 Final Result by "OR" Operation on all 
Partial Solutions 



If we still use the same reference point on the model object, the use of axes in  

different directions other than the vertical one which the VXY-table was built for, will not 

make the reformation of VXY-table necessary. Each boundary point will still vote into the 

column on the reference point and it will not matter in which direction the reference axis is 

set, i.e., for a boundary point (x,y) with gradient angle $, (x,, y,) = (x - x($), y - y($)) 

will still indicate the possible reference point. However, different reference axes 

correspond to different V-patterns and, therefore, different distribution of votes in the 

column on the reference point in the Hough space, since each V-pattern is the result of the 

projection of the model object onto a particular reference axis. Given a VXY-table, a V- 

pattern that corresponds to a reference axis obtained by rotating the vertical reference axis 

an angle of 8 counterclockwise can be computed by the following procedure: 

Procedure V-pattern - Construction(@) 

Initialize a one-dimensional array, V, to zero. 

For every valid entry (x,y) in the VXY-table do 

V[xsin@+yco.sO] = V[x.sinO+ycosO] + 1. 

/* The array V contains the result of the new V-pattern for direction 8 */ 

End - Of - Procedure. 

We can determine the vote distribution along the column on the reference point in  

the Hough space by method similar to as the computing of the V-pattern described above. 

Assuming that both the VXY-table and all the V-patterns in all directions, by an angular 

increment of z, have been pre-computed, the All directional V-pattern Generalized Hough 
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Transform (AV-GHT) algorithm, which recovers all the maximum partial pieces of an 

object sought, can be described as follows: 

AV-GHT Algorithm: 

(1) Initialize a 3-D Hough space, A, to zero, i.e., 

A(x,y,z) = 0 for all (x,y,z). 

(2) Initialize a binary image frame F to zero. 

(3) Find all the edge points in the input image and compute their gradient 

angles. 

(4) For i = 0 to 1 8012- 1 do 

for each edge point (x,y) with gradient angle Q do the 

following: 

For each VXY-table entry for $, increment the 

accumulator array 

Mark the bits in frame F for any corresponding partial match 

found in the Hough space with the V-pattern corresponding to 

the reference axis that was obtained by rotating the vertical axis 

an angle of 8. 

(5) The unoccluded parts of the object sought are indicated in frame F. 



Basically, the algorithm runs the accumulation and matching finding procedure 

employed by the V-GHT algorithm 18012 times, each time using a different reference axis 

and V-pattern, and merges all the solutions together. 

In most cases, it is not necessary to try every directional V-pattern to pick up every 

pixel that belongs to the unoccluded boundary part of the object sought. Two V-patterns 

by a directional difference of 22 will pick up all the pixels that can be recovered by the V- 

pattern falling in between them, which suggests that we can even use some larger 2 to 

speed up the process. 

3.5 Comparison of the Linear GHT with the GHT 

Grimson and Huttenlocher [Grim881 have pointed out that occlusions, noise, and 

distortion will cause some very serious problems in the GHT algorithm [Ball811 because, 

in the GHT scheme, the final decision on whether an object existed is totally dependent on 

the peak value itself. (The peak point would be the reference point of the object sought if i t  

existed.) Compared to the GHT scheme, the V-GHT scheme described in this chapter is 

more accurate since not only are the votes that contributed to the reference point 

considered, but the distribution of these votes along the column on the reference point is 

also tested to decide whether the object sought existed. The V-GHT algorithm can also be 

used to determine if part of the object sought existed. Such partial object detection can be 

achieved by the V-GHT algorithm without any modification to the algorithm or any extra 

computational cost. The V-GHT algorithm handles images with occlusions or without 

occlusions in the same way. However, such detection accuracy and the partial object 
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detection achieved by the V-GHT costs moderately more in computational overhead than 

the GHT. 

Another advantage of the V-GHT scheme over the GHT scheme is that it is more 

suitable for parallel processing. The bottleneck for the parallellization of the GHT scheme 

is that every boundary point of an object votes to the reference point; therefore the reference 

point is a hot spot and is difficult for parallel processing. The V-GHT scheme uses a linear 

pattern to replace the single reference point used in the GHT scheme--so the bottleneck has 

been loosened up. We will discuss the parallel processing issue further and present parallel 

algorithms in the next chapter. 



CHAPTER 4 

PARALLEL PROCESS THE LINEAR GENERALIZED 

HOUGH TRANSFORM 

The real time processing of images is required by some modern application systems 

and will become an essential requirement in many future image systems. For example, in 

robotics, the speed to process the images taken by video cameras mounted on mobile 

robots will critically affect the motion speed of the robot and, in many cases, the usability 

of such a robot. 

Image processing and analysis usually involves a substantial amount of 

computation. Often the computation consists of some very simple arithmetic operations 

performed on each pixel in an image frame. It is possible to use a Single Instruction 

Multiple Data, or a SIMD, machine to parallelize most of the computations in image 

processing and analysis. Each pixel in an image usually receives exactly the same set of 

operation instructions and in the same order as the other pixels in the same image. The 

instruction sequence is normally done by a "for-loop" covering every pixel in the image 

frame on a sequential machine. The only differences are the operands which depend on the 

locations and the pixels themselves. 

Parallel computing applied to image processing and computer vision has attracted 

considerable research attention in recent years [Reev84, Foun86, Cant871. Many 

investigations of parallel machine design and application and of theoretically advanced 
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algorithms have been carried out (e.g., Li90, Reev84, Foun86, Ca 

Hi1185, Batc80, Levi72, Rose83, Dyer81, Duff78). 

There have been a number of studies on parallelizing the Hough transform (e.g., 

[Li90, Cyph87, Rose87, Ibra861). Illingworth's recent extensive survey [Illi88] showed 

that almost all the attempts on parallel Hough transforms were for straight line detection. 

Most of them have been restricted to the implementation of p-8 line finding HT. Little is 

known on parallel processing the Generalized Hough Transform. 

Our goal in this chapter is to parallelize the Linear Generalized Hough Transform 

technique described in the last chapter, and especially to parallelize the V-GHT Algorithm. 

To analyze the performance improvement of subsequent algorithms presented in this 

chapter, we will first introduce parallel machine models and then propose algorithms based 

on them. This chapter is organized into two parts. In the first part, we use a parallel 

machine model called Linear Array Processors (LAP) which has been widely used for 

image processing. In the second part, we discuss some techniques for resolving voting 

contentions for potential implementations on a shared memory parallel machine 

architecture. 

4.1 Implementations on the Linear Array Processor 

In this section, we will develop and analyze parallel algorithms based on the V- 

GHT (the V-pattern GHT) scheme that can be implemented on the Linear Array Processors 

(LAP). The LAP belongs to the class of the mesh array architectures [Reev84]. 



There has been a substantial amount of work done on this model by many 

researchers in image processing. A number of machines in the class of mesh array 

architecture have been built and are commercially available, e.g., DAP [Mark80], CLIP 

[Duff73], MPP [Pott85], GAPP [Davi85], NON-VON [Ibra86], and AIS [Schm88]. 

Many practical intermediate-level image analysis algorithms have been implemented on 

commercially-available machines of mesh array architecture (e.g., Li90, Ibra86, Matt86, 

Duff85, Pott83). There have been many theoretical advances for mesh computer 

algorithms (e.g., Nass80, Mi1185, Cyph87). 

4.1.1 The Model Description 

There are some variants in the class of mesh array processor architectures used by 

researchers to implement their algorithms; we are most interested in those where the 

Processing Elements (PE's) have the ability to perform Independent Addressing ( / A )  

[Fish85, Dani831. (This will be explained by feature (3) in our following description.) 

We are interested in the following four features of a one-dimensional mesh array 

processor: 

(1) A Linear Array Processor consists of p processing elements which 

are linked into a ring structure. Each PE has a local memory 

which is sufficiently large to accommodate the memory 

requirement of the algorithm and a processing unit with the ability 

to perform typical operations such as reading, writing and 

arithmetic and Boolean operations. There are permanent 

identification numbers built in for each PE. 



(2) There is a central control uni t  with links to every PE. It reads 

instructions from its local memory, decodes them, and then 

broadcasts the control signals to every PE, such that all the 

operations are synchronized and the whole system operates in a 

Single Instruction stream, Multiple Data stream (SIMD) mode. 

(3) All the PE's have the ability to perform independent addressing: i.e., 

rather than all the PE's referencing the same memory location at a 

given time, they can reference different memory addresses 

simultaneously. The independent addressing can be realized by 

using indirect or implied address mode in the instructions issued 

by the central control unit during the SIMD execution. Each PE, 

after receiving such instruction, will fetch the content from its 

dedicated register or the memory location specified in the 

instruction and use it as the final memory address to be accessed. 

(4) There is a common read only memory which can be used to store a 

table and can be referenced by all PE's simultaneously, and there 

is an instruction issued by the central unit to every PE to make 

them reference the data in the corresponding entry of the table 

concurrently, based on the content in its specified memory 

location. 

Features (1) and (2) described above are the two very basic functions that are 

supported by all the machines with the mesh array processor architecture. The one- 

dimensional linear array processor is just a special type of mesh array architecture. The 

first algorithm presented in this chapter will be based on a linear array architecture that only 

supports features (1) and (2). So the algorithm will be suitable to be implemented on any 

machine that is in the class of mesh array architectures. 

The second algorithm presented in  this chapter will be based on a linear array 

architecture that supports all four of the features described above. We will show how the 



54 

computational efficiency of linear pattern generalized Hough transform is further improved 

on a more advanced architecture with features of independent addressing and common table 

lookups. However, the common table lookup function is not necessarily required. It can 

be easily realized by using the independent addressing function of PE's. Suppose that each 

PE has retained a copy of the common table in its local memory and has stored the address 

of the entry in the table which it wants to access in a dedicated register or a special memory 

cell, then an indirect addressing instruction issued from the central controller will enable all 

the PE's to access their desired table entries simultaneously. Such common table lookup 

function can reduce the parallel memory requirement since the whole system retains only 

one copy of a common table. It will not affect the time complexity of any algorithm. 

In fact, the machine that will meet the four specifications will become commercially 

available in the very near future. For example, the Applied Intelligent Systems Inc., in 

Ann Arbor, Michigan, USA, is developing a chip called "Centipede" to enhance their 

existing system AIS-5000 [Wils88]. The AIS-5000 system, manufactured by the AIS 

company, is currently commercially available and can provide three of the functions 

described above--the independent addressing is not available. For example, the AIS array 

processors can simultaneously update an image column based on the contents of a specified 

common table called the look-up table. Each PE simultaneously copies the content of the i- 

th entry in the specified common table into its image entry if the number in the image entry 

was i, (see AISm). Independent addressing will be added into the next generation of AIS 

system with the new customized PE chip, "Centipede". 



Some descriptions of similar machine models which can be found in published 

parallel image processing papers (e.g., Nass80, Mi1185, Cyph87). There is a very detailed 

model description in Cyph87 which is very close (except in the common table access) to 

our model, especially in the feature of independent addressing. 

In the rest of this section, we will first introduce our algorithm on the LAP 

architecture without the independent addressing function described by feature (3) in the 

above model description. Then we will show how the power of independent addressing 

can further improve the parallelism of PE's. 

4.1.2 V-pattern Accumulations in Distributed Hough Space 

Figure 4.1 N PEs Assigned to an NxN Image 



Given a one-dimensional array processor with N PE's which are linked into a ring 

and an input image frame of size NxN, we adopt the conventional way of assigning PE's to 

the image, i.e., each PE is assigned to a row in the image frame as shown by Figure 4.1. 

Figure 4.2 A DHS in a PE's Local Memory 
with the Corresponding Image Row 

The NxNxL 3D Hough space is distributed to N PE's. A 2D array of L rows 

by N columns in each PE's local memory is allocated. We call such a 2D array Distributed 

Hough Space (DHS). Each column of a DHS corresponds to an image point as shown in 

Figure 4.2. 

Since there is a total of N PE's, the total number of DHS is N and each of the DHS 

can be numbered according to the identification number built-in the PE that contains the 



DHS in its local memory. By lining up all the N DHS together according to their sequential 

numbers, a hypothetical NxNxL 3D array (shown in Figure 4.3) is formed which is 

equivalent to the 3D Hough space used in a V-GHT algorithm. 

Figure 4.3 3D Hypothetical Hough Space 

We define a Cross Intersect Plane ( U P )  in the hypothetical 3D Hough space to be 

a plane containing N columns, one column from each of the N DHS, and the N columns 

corresponding to an image column. An example of a CIP is illustrated in Figure 4.4. 

Normally, when implementing a sequential algorithm on an architecture like LAP, 

there is a large amount of time wasted in communication among PE's. The same thing will 

happen if the V-GHT algorithm were directly implemented on the LAP machine, since the 

PE's whose image rows contain some points which are part of the shape sought will vote 

and communicate with the PE that contains the reference point (the accumulated V-pattern 
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will be stored in the local memory of this PE). The PE that is in charge of a reference point 

becomes a hot spot, and every PE that wants to communicate with it has to wait through 

several steps of "shift". Such shift could require as many as O(N) steps for a vote to reach 

its destination PE holding the reference point. 

Figure 4.4 An Example of CIP 

For example, suppose there is an image edge point in the y-th row and the x-th 

column voting by reference to a VXY-table entry valued (a,b). According to the equations 

3.3, the voting destination is the entry (x-a, y-b,y) in the 3D hypothetical Hough space. 

Because the image point (x,y) was in the charge of the y-th PE and the voting destination 

(x-a, y-b, y) was in the DHS of the (y-b)-th PE's local memory, the vote must go through 

at least the minimum of b and (N-b) PE's to reach its destination. This is shown in Figure 

4.5. 



Figure 4.5 An Example of Vote Shifting 

To reduce the communication cost among PE's, it is desirable to restrict every PE's 

voting destination to its local memory as much as possible. This kind of restriction will 

reduce the communication cost by the voting process. The optimal case would be the one 

where voting only takes place within each PE's local memory, where the voting result is 

fast retrievable. 

The direct parallel implementation of the V-GHT scheme will allow the entire V- 

pattern to be accumulated in a single column of a CIP. It will require all the PE's to shift 

their votes to the PE that is in charge of the column containing the V-pattern. The key that 

makes no communication possible among PE's during voting is to use a diagonal 

directional 



Figure 4.6 Diagonal Directional V-pattern 
Compared with the Vertical One 

V-pattern seated on the reference point in a CIP instead of the V-pattern in a vertical column 

on the reference point as shown in Figure 4.6. This kind of diagonal V-pattern 

accumulation is made possible by the fact stated in the lemma 3.2 that there is a one-to-one 

mapping between image rows and horizontal planes in the Hough space. The diagonal V- 

pattern accumulation can be deemed to be the result of the combinations of two synthetic 

operations: the first one is accumulating a vertical V-pattern in a CIP and the second one is 

shifting each entry in the V-pattern by the "height" of the entry. 



4.1.3 The Algorithm on the Array Processors without Independent Add- 

ressing 

In this subsection, we will present our first Array Processor GHT (AP-GHT) 

algorithm which utilized the diagonal V-pattern technique described in the last subsection. 

The parallel machine model used in this subsection does not require each PE to perform 

either the independent addressing or common table look-ups. The central controller will 

look up the VXY-table entries one at a time. So the PE's will only access one, and the 

same, local memory location at a time to perform voting. This machine architecture is a 

very basic linear array processor. 

We will also discuss the validity of the algorithm and give a formal proof which can 

be easily extended to prove the subsequent algorithms presented in the later subsections. In 

fact, the algorithms given in the later subsections are just using the PE's independent 

addressing function to further improve computational performance. 

4.1.3.1 The Algorithm 

We assume that the VXY-table and its V-pattern have been pre-constructed with the 

length of L, and the VXY-table has d rows and m columns. The i-th entry in the j-th row 

whose index gradient angle is Qj in the VXY-table is denoted by VXY-table(@,);, and if the 

entry is not recording a 'nil' value then the recorded coordinate values in the entry are 

denoted by x(Q,); and Y ( Q ~ ) ~  respectively. We further assume that each of the N PE's has 

already been loaded with a corresponding image row and its neighboring informations so 



that it can determine whether the pixel is an edge point. Given the above assumptions and 

denotations, the Array Processor GHT (AP-GHT) algorithm that runs on the machine 

model described in section 4.1.1 (but without the independent addressing function) and 

parallels the V-GHT scheme described in the last chapter can be described as follows (the 

variables i, j, x and z are of integer type and serve as iteration counters in the algorithm 

description): 

AP-GHT Algorithm 

(1) For x = 1 to N do: 

Each PE performs the following operation at the same time: 

determine the x-th pixel in its local image row if it is an 

edge point and compute its gradient direction @ if it is an 

edge point. 

(2) For x = 1 to N do: 

For i = 1 to m do: 

For j = 1 to d do: 

Each PEy (y=l,  ..., N) that is in charge of an edge point 
(which is the x-th pixel in its local image row) (x,Qj) 

performs the following voting procedure at the same time: 

(VXY-table(@,); is received from the central controller) 

if VXY-table($); # 'nil' then 



endif 

(3) For x = 1 to N do: 

For z = 1 to L do: 

Each PEy (y=l, ..., N) compares its local A(x,z) with the 

corresponding z-th entry in the V-pattern then determines 

a match or a partial match, and shifts the partial result to 

its Preceding neighbor PE, i.e., PE,,-, (y=2 ,..., N) or 

PEN (y= 1). 

(4) Stop. 

We would like to note here that the equations (4.1) in the step (2) make the voting 

take place in each PE's local memory, i.e., there are no communications between any PE's 

involved. The correctness proof of the algorithm will show that after step (2) is completed 

there should be V-patterns appearing in the Hough space which can be detected by step (3) 

if the object(s) sought existed. 

The capability for each PE to perform independent addressing is not required in the 

AP-GHT algorithm. The entire contents of the VXY-table are looked up and sent by the 

central controller to all the PE's, one VXY-table entry at a time, and the PE's vote to just 

one local memory address at a time based on the VXY-table entry received. In step (3) of 

the above algorithm the search for V-pattern is carried out in the diagonal direction in 

CIP's, as shown by Figure 4.7. The search requires all of the N PE's to cooperate such 

that if a V-pattern is found there must be L consecutively numbered PE's, each compared to 

and found in just one entry of the V-pattern. 



The diagnal dircction to 
bc searched for the V-paltcrn 

PEs 
3D-Hough spacc formed 

N DHSs in PEs' local mcmory 

Figure 4.7 V-pattern Searching in the 
Hough Space by N PEs 

In a practical implementation, the matching information is pieced together by the 

PE's along the diagonal direction in a CIP. Each PE computes a partial solution which can 

be symbolically expressed as, e.g., "matched from 1 to 7" ,  then it is passed on to its 

preceding neighboring PE. During the next iteration the PE receives information from its 

succeeding neighboring PE, and, during present iteration, will carry on the comparison of 

its present entry in Hough space with the corresponding V-pattern entry, then put them 

together to get a new expended partial solution, e.g., "matched from 1 to 8", similar to 

present iteration. The new expended partial solution will again be passed onto the next 

preceding neighboring PE. This process continues until the whole V-pattern has been 
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compared once and then starts the search on the next CIP. There is a total of N CIP's to be 

searched. 

To give a concrete example of V-pattern searching, we associate a binary matrix B 

of size LxN to each CIP (also size LxN). We will concentrate our following discussions 

on searching just one CIP since the search of the other N-1 CIP's can be done in the same 

way. The entry (ij) in the binary matrix is set to 1 if, and only if, the entry (i,j) in the CIP 

matches the j-th entry in the V-pattern. An example of the binary matrix is shown in Figure 

4.8(a). This binary matrix can be constructed in O(L) steps by N PE's. 

The procedure to search the V-pattern is described as follows (z is the counter for 

iteration, and "first" and "last" are PE's' local variables to record matched segment): 

Procedure V-pattern Search (CIP) 

Set all PE's (first, last)=(nil, nil). 

For z = 1 to L do: (all PE,, y=l, 2 ,..., N, do at the same time) 

If B(y,z)=l then if first#nil then PE, shift (first, last+l) to PE,., ,&N 

else PE, shift (last+l, last+l) to PE,., ,, , 
else if first=nil then PEy shift (nil, nil) to PE,., ,, 

else declare (first, last) a matched segment. 

PE, receives (first, last) from PE,,, ,, , 



Note that the B(y,z) is in the PE,'s local memory. An example of the match 

searching process is shown in Figure 4.8(b). 

(b) 

Figure 4.8 An Example of Match Searching Process 



4.1.3.2 Discussions On Validity Of The AP-GHT Algorithm 

There are two things that are of particular interest and are also the most important 

properties for the AP-GHT algorithm: 

(1) There were no write conflicts among PE's, and during the voting 

process, each PE only works in its local memory without 

communicating with others. 

(2) After the voting process a V-pattern will indeed be formed in the 

diagonal direction in the Hough space if the object sought existed. 

The reason that the above two properties are so important is that the second is the 

goal we wanted to achieve while guaranteeing the first one. In other words, the first 

property gives the parallel efficiency to the AP-GHT algorithm while the second one 

guarantees the result is still correct. 

Lemma 4.1 

There are no write conflicts in  the AP-GHT algorithm and no 

communication between PE's in the voting; m-ocess. 

Proof 

There is no common memory to write, and step (2) of the AP-GHT 

algorithm has each PE perform voting only in its own local memory. # 

When using N processing units, the optimal speed-up is by an order of O(N) on the 

order of processing with only a single PE. One of the major problems for parallel 

processing is contentions in communication and memory access. Normally, efficiency is 



sacrificed for resolving the contention. This lemma shows that the contention problem has 

been cleanly solved in the AP-GHT algorithm. The next thing that must be shown is that 

the AP-GHT algorithm did produce the result expected. 

To show the AP-GHT algorithm did behave the way expected, we will first do 

some analysis. The major thing to be shown is that the expected diagonal V-pattern seated 

on the reference point in a CIP is formed after the voting process in the AP-GHT, 

algorithm if the image contains the object sought. 

Let us first put the N DHS together according to the sequential number of PE's that 

own the DHS's to form a hypothetical common memory for 3D Hough space. We 

introduce a dummy dimension y and replace equations (4.1) by 

It is not difficult to see that such replacement will not create any write conflict 

among PE's; each PEy (y=l ,..., N) will vote to A(x,,y,z,), i.e. the same place in its local 

memory. So this expended voting equation set does not violate the law of "no 

communication among PE's during the voting". 

Recall that in the lemma 3.2, we proved the property that the object boundary points 

in any particular row will vote into one and the same entry in the Hough space. Comparing 

equations (4.2) with equations (3.3), we can see that the only difference is in the y- 



69 

coordinate for the Hough space entry to be voted to. But such difference will not change 

the value in the entry except it is now in a different location in the Hough space because the 

object boundary points that voted to this entry were all in the same row and referenced 

entries in the VXY-table with the same y($) value. 

Using equations (4.2) to substitute for equations (3.2) in the V-GHT algorithm is 

just like shifting every entry A(x,y,z) in the accumulated V-pattern by y(Q) units in the y- 

axis direction. Since the entry's "height" z is also y($), such synchronized shifting is 

equivalent to a push to the accumulated V-pattern column into a 45O column in a CIP, i.e., 

diagonal direction as shown by Figure 4.6. At this time, if each PE takes back its own 

DHS from the conceptual assembled common memory, then it is just what we could have 

achieved after step (2) in the AP-GHT algorithm. Step (3) will fulfil such 450-slope-V- 

pattern finding. 

Formally, we have the following theorem to guarantee the correctness of the AP- 

GHT algorithm: 

Theorem 4.1 

The AP-GHT algorithm will detect the obiect sought if it 

existed in the input imarre. 

Proof 

It is trivial to prove by using the lemma 4.1 and the analysis we just made. (L 



4.1.3.3 T h e  Complexity Of T h e  AP-GHT Algorithm 

To show the costlefficiency of our parallel algorithm, we give the following 

complexity analysis for the AP-GHT algorithm described in this section (the notation used 

is the same as in section 3.2.4): 

(1) In step (I) ,  inside the for-loop the computation takes constant time, 

O(1). Since it takes N iterations to process all the pixels, the 

complexity of step (1) is O(N). 

(2) It takes O ( m d )  steps for an edge pixel to finish voting, and 

sequentially processing a N-pixel row by a single PE will take 

O(mdN) time. Therefore, the step (2) has the time complexity of 

O(mdN).  

(3) Comparing an entry in the Hough space with its corresponding entry 

in the V-pattern, and then putting the partial solutions together, 

takes a constant time, i.e., ()(I)  time, by a single PE. The two 

for-loops have time complexity O(NL). So the total running time 

for the step (3) is O W ) .  

To summarize the above analysis, the total time complexity of the AP-GHT 

algorithm is O ( N ( m d + L ) )  with N PE's on a NxN size image. Compared with the 

sequential algorithm of V-GHT described in the last chapter, which has O(NZ(m+L)) 

running time, the AP-GHT algorithm reduced the running time complexity of the V-GHT 

algorithm by a factor of N/d with N PE's. If the number of rows in the pre-constructed 

VXY-table is taken to be a constant, the speed-up achieved by the AP-GHT algorithm can 

be considered linear. 

Normally, the number of rows in a VXY-table is limited. We have: 



where z is the increment of angle used to scale the gradient orientations. In real 

applications, the z is set between 5 and 20 degrees, so d is a constant and normally lies 

between 18 and 120. Compared with normal image size of 512x5 12, i.e., N=5l2, the 

speed-up is 4 to 28 times. One must bear in mind that steps 1 and 3 of the AP-GHT 

algorithm are N times speed-ups. So the speed-up is more than 4 to 28 times, or in other 

words, the real running time of the AP-GHT algorithm on N PE's is much faster (4 to 28 

times) than the V-GHT algorithm running on a single PE. 

4.1.4 The Algorithm on the Array Processor with Independent Addressing 

We have just shown the parallel computational efficiency achieved on the one- 

dimensional array processor without requiring the independent addressing function. I t  

shows the parallel capability of our linear Hough transform technique. One of the 

advantages of our linear pattern GHT over the Ballard's GHT is its efficiency for parallel 

processing. In this subsection, we discuss how to use the independent addressing function 

of a linear array processor to reduce the AP-GHT algorithm's running time by a factor of d. 

In the AP-GHT algorithm, the central controller sends to all PE's d instructions 

with d VXY-table enmes ford distinct gradient angles, one at a time. Each PE votes only 

when it receives the VXY-table entry for the same gradient angle as its image point. 

Therefore each PE's efficiency is less than l/(d-1) in the AP-GHT algorithm. The 

efficiency can be improved when the central controller sends only an indirect addressing 

instruciion to all PE's such that all PE's can fetch their desired VXY-table entries and vote 



all at once. The following Independent Addressing Array Processor GHT (IAAP-GHT) 

voting procedure implements this idea. 

With the same assumptions made for the AP-GHT algorithm in section 4.1.3.1, the 

IAAP-GHT voting procedure that runs on the machine with full features (described in 

section 4.1.1) can be described as follows (the variables i, x and z are integer type serving 

as iteration counters in the algorithm description): 

IAAP-GHT Voting Procedure: 

For x = 1 to N do: 

For i = 1 to rn do: 

Each PE, (y= l ,  ..., N )  that is in charge of an edge point 
(which is the x-th pixel in its local image row) (x&) do: 

if VXY-table(o)i ;t 'nil' then 

endif 

It is worthwhile to mention that the synchronization among PE's is not mandatory 

in this IAAP-GHT voting procedure, although the IAAP-GHT voting procedure is 

designed for a SIMD machine. This means that the IAAP-GHT voting procedure can also 

be easily implemented on a non-SIMD machine. 



The correctness of the IAAP-GHT voting procedure can be proven in a way similar 

to the proof in section 4.1.3.2. 

It takes O(m) steps for an edge pixel to finish voting, and sequentially processing a 

N-pixel row by a single PE will take O(mN) time. Therefore, the IAAP-GHT voting 

procedure has the time complexity of O(mN). Compared with the AP-GHT algorithm, the 

voting complexity is reduced by a factor of d. This is because all of the PE's are allowed to 

read the VXY-table at the same time and perform voting to different local memory locations 

at the same time. 

The total time complexity of the AP-GHT algorithm is O(N(m+L)) with N PE's on 

a NxN size image if the IAAP-GHT voting procedure is being used. Compared with the 

sequential V-GHT algorithm described in the last chapter, which has O(NZ(m+L)) running 

time, the AP-GHT algorithm with independent addressing voting procedure reduces the 

running time complexity of the V-GHT algorithm by a factor of N with N PE's, and thus 

achieves a linear speed-up. In this sense, it is also an optimal parallel implementation of the 

sequential algorithm V-GHT in that it uses a one-dimensional array N processor. 

4.2 Discussions on the Use of a More Powerful Parallel Machine 

Advanced theoretical studies have long been proven to play an important role in the 

creation and evolution of computer systems. The Mesh-connected arrays of processors, 

which were first proposed more than thirty years ago [Unge58] for parallel image 

processing, is one such example. 



It is worthwhile to examine how our new Linear Pattern Generalized Hough 

Transform technique could exploit the parallel computational power of a shared memory 

machine architecture where a virtual global memory exists and is accessible to all PE's. 

There is possible contention through concurrent writing to one memory cell by 

more than one PE at one time. The way to solve such contentions is to arrange the access 

sequence so that write operations on any one location proceed one by one because of a 

particular structure in the data organization. 

When the VXY-table was introduced in the last chapter, there was no restriction 

imposed on its organization except that its rows were indexed by gradient angles of the 

object boundary points. There was no rule on the order in which the data should be 

recorded within each row and how data elements in different rows should relate to each 

other. Although this will not matter in  a sequential process of images, there are potential 

contentions in parallel processing caused by using such a VXY-table. To eliminate the 

potential contentions which result from using a VXY-table, we can re-organize the VXY- 

table imposing a rule: 

If two entries have the same y-coordinate values then they must be 

recorded into different columns in the table. 

Since the PE's will vote according to equation 4.3, the MP-table makes the PE's' 

voting destinations distinct from each other at any time. Therefore the contention-free 

parallel voting by NxN PE's is possible. This will lead to a possible linear speed-up 

implementation of the V-GHT on such an ideal shared memory parallel machine. 



CHAPTER 5 

IMPLEMENTATIONS AND EXPERIMENTAL RESULTS 

To test the object recognition algorithms developed in the previous chapters, an 

experimental object recognition system has been constructed and some interesting 

experiments have been performed on the system. 

5.1 System Implementation 

The core of our object detection system is based on the AV-GHT algorithm 

described in Chapter 3 which, compared to either the V-GHT algorithm or the PV-GHT 

algorithm, is capable of dealing with more general images and more robustness in the 

presence of occlusions or noises. It is implemented in C under UNIX environment and 

utilizes the International Image System (11s) for the purpose of digitizing input images and 

displaying output images. 

The structure of the system is shown in Figure 5.l(a), where the Edge Detection 

And Gradient Angle Comuuting is performed by applying the 3x3 gradient operators 

shown in Figure 5.1 (b). For the model image, one extra step is taken to remove those edge 

pixels that are not on the boundary of the object. This is done by using grey level 

information. The 360•‹ angle is divided into eight equal sections, i.e., 45O for each section 

as shown in Figure 5.1 (c). We define the directional neighbors as the two edge pixels 

whose gradient directions are in the same section and next to each other in such a direction. 

The Edge Thining is done by applying the following rule: 



input imagc 

(a) System Structure 

t 

(b) Edge Operators (c) Angle Division for Thining 

Figure 5.1 System Structure 



For any two directional neighboring edge pixels with the 

gradient angles having a difference of less than half of the 

section width, i.e., 22.50, the one with greater edge magnitude 

prevails. In the case of two edge pixels with equal 

magnitudes, the one coming first from the direction suppresses 

the other. 

The constructions of the VXY-table and the V-patterns for the vertical reference 

axis, its 20•‹, 40•‹, ...., 160•‹ rotations and the votings are as described in Chapter 3. We 

put equal weight on all entries of V-patterns and implemented the Matching in the Hough - 

S ~ a c e  with the following criteria: 

(1) An entry in V-pattern matches its corresponding entry in the Hough 

space if the two entries differ from each other by less than 25 

percent of the value in the V-pattern (tolerating small error on each 

entry), 

(2) contiguous unmatched entry pairs in a matched segment must be less 

than 5 in length and each unmatched pair must not differ more than 

2 or 50 percent of the value in the V-pattern (tolerating a certain 

amount of moderate error caused by breaks in a segment), and 

(3) a matched piece must exceed 15 percent of the length of the 

corresponding V-pattern (declaring a very small partial match is 

not meaningful). 

The above criteria are obtained through experiments on several relatively good 

quality images. The actual numbers chosen for the criteria are totally based on the images 

used in our experiments and had to be adjusted for each particular set of image data. We 

deem such a set of criteria to be conservative and appropriate. We take such a relatively 
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conservative standard because of the lack of statistical studies on those image qualities 

which cause deviations in the V-pattern accumulation. 

We used a NxN binary matrix to record the matched parts and kept updating it each 

time the match finding completed a rotation of the V-pattern. When all the rotations have 

been proccsscd the mamx contains all the unoccluded parts. 

5.2 Experimental Results 

A key is used as our model object for testing (shown in Figure 5.2(a)). The 

extracted boundary for the key model is shown in Figure 5.2(b). Two images of size 

256x256 have been tested, one for the no-occlusion case, the other for the occluding case 

( 4  

Figure 5.2 Model Key and its Boundary 



5.2.1 No-occlusion Case 

Figure 5.3(a) shows two keys without occlusion, one of the keys having the same 

boundary shape as the model key. Figure 5.3(b) shows the edge map obtained after 

applying the two gradient edge operators and the edge thining process on Figure 5.3(a). 

Figure 5.3(c) is the output of the frame which shows the whole boundary of the key which 

was recovered. Figure W a )  shows the V-pattern for the key model (the reference axis is 

the vertical axis). Figure 5.4(b) shows the column on the reference point in the Hough 

space. For display purposes, the vertical axes in  Figure 5.4 have been scaled by the square 

root of votes (the undesirable problem is that it  will exaggerate the errors of low value 

entries). It is not hard to see that all the basic features were preserved in the accumulated 

column in the Hough space. Figure 5.5 shows the votes accumulated in the columns on 

the four immediate neighboring points to the reference point. Apparently, the votes 

collected in those columns are not significant. 

5.2.2 The Occluding Case 

Figure 5.6(a) shows that the key with the same shape as the key model shown in 

Figure 5.2(a) is partially occluded by another differently shaped key. Our goal is to 

recover all the unoccluded boundary points of the key with the same shape as the key 

model. 



( 4  

Figurc 5.3 No Occlusion Case 
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Figure 5.4 V-pattern and the Matching Column in the Hough Space 
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Figure 5.5 Voting Result in Columns of 4 Immediate Neighbors 



Ballard's GHT [Ball811 cannot solve such an occlusion problem. The approach 

taken by Davis [Davi82] is to decompose the model into smaller subtemplates and apply the 

GHT on these submodels. However, Davis's approach does not suggest how a good 

decomposition of the model can be achieved so that the GHT could be used effectively to 

retrieve all the unoccluded parts. His method will leave a difficult model decomposition 

problem to the users who wanted to use his method to solve a problem like that shown in 

Figure 5.6(a). 

Our system, which is built on the linear Generalized Hough transform technique 

developed in Chapter 3, has cleanly solved the problem shown in Figure 5.6(a). Figure 

5.6(b) is the thinned edge map of Figure 5.6(a). Figure 5.6(c) is the final result in the 

output frame which contains all the recovered boundary pixels for the key of the same 

shape as the key model; apparently, i t  is successful. Figures 5.7(a) and (c) show the V- 

patterns obtained for the reference axes with 20•‹ and 1400 rotations respectively. Figures 

5.7(b) and (d) are the columns on the reference point in the Hough space for the 

corresponding rotation angles. Figure 5.7(b) corresponds to Figure 5.7(a), and Figure 

5.7(d) corresponds to Figure 5.7(c). (Intuitively, the V-pattern for the 200 rotation is able to 

recover the whole bottom piece and partial top piece in Figure 5.6(c), and the V-pattern for 

the 140•‹ rotation is able to discover the whole top piece and partial bottom piece in Figure 

5.6(c). The two pieces found separately are combined by an "OR" operation on the 

recording binary frame.) 
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Figurc 5.6 Occlusion Case 



50 100 150 200 

reference axis 

(a) Rotation: 20 degree. Pattern Length: 228 

votes 

reference axis 

@) Matched: 1-50, 178-228 



votcs 

reference axis 

(c) Rotation: 130 degree. Pattern Lcngth: 203 

rcfcrcnce axis 

(d) Matched: 1-40, 125-203 

Figure 5.7 Rotated V-patterns Used for Partial Matches 



CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

In this thesis, we have shown a useful extension to Ballard's GHT [Ba1181]. The 

essence of the new technique is to use a linear pattern to replace the single reference point 

used in the GHT. 

6.1 Conclusions 

The GHT proposed by Ballard has proven to be a very powerful tool in image 

analysis. It transforms the image points to the parameter combinations in the parameter 

space by letting the image points vote to the parameter combinations that could have 

produced them. It then determines the parameter combinations by searching for the peaks 

in the parameter space. It achieves computational efficiency in detecting arbitrary shapes by 

such problem transformation. It is not only more computationally efficient than the 

template matching in the image domain [Davi87a] but also more tolerant to certain shape 

deformations. 

However, the GHT has some inherited problems. The first one is its robustness. 

It may erroneously declare matches to the shapes similar to the model because the only 

standard to use for whether a match exists is the peak value. The second problem is in 

dealing with partially-occluded objects. Davis had suggested shape decomposition to solve 

the occlusion problem IDavi821. But his method required "good" decomposition first. The 

method will still fail if the partial object matches none of the decomposed parts completely. 
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His approach leaves the difficult task of model decomposition to the users. For example, 

for the testing images shown in Figure 5.2(a) and Figure 5.6(a), apparently, there would 

be no good decomposition solutions. The third problem is that the GHT is not suitable for 

parallel processing. All the points belonging to the shape will vote to the reference point. 

The reference point becomes a hot spot and causes much contention. 

Our new technique has the potential for solving all three problems with the GHT. 

The linear V-pattern (potentially) increased the robustness of the GHT by requiring that the 

votes accumulated on the reference point obey a certain linear distribution to declare a 

match. It also provided a systematic approach to deal with cases of occlusion. Partial 

matches of V-patterns to the Hough space shows the existence of partial objects. All partial 

objects can be detected via rotating reference axes. Our experimental system showed that 

the testing image of Figure 5.6(a) is cleanly solved by our linear generalized Hough 

transform technique; it would not be solvable by the GHT and would be extremely difficult 

to solve by Davis's method. We showed that the linear Hough technique achieves this 

through a reasonable increase over the GHT in space and time complexity. 

We have shown how the linear Hough technique can be implemented on two types 

of Linear Array architecture for parallel processing. The first algorithm, AP-GHT, is based 

on a very basic linear array processor. We have shown that the speed-up is N/d with N 

PE's, where d is a pre-determined constant representing the number of rows in the table 

constructed for the model. We also presented the second algorithm, IAAP-GHT, running 

on a linear array architecture with independent addressing functions. Our time complexity 
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analysis for the IAAP-GHT algorithm showed that a linear speed-up is achieved. In other 

words, when N PE's are used the time complexity is reduced by a factor of N. 

6.2 Proposed Future Research 

As we have mentioned before, the search for V-patterns in the Hough space should 

tolerate certain errors by using "non-exact" match scheme for real world images. The 

practical application of the linear Hough technique in various environments requires the 

design of heuristic criteria to determine the matches between the V-pattern and the voting 

patterns in Hough space. We hope that criteria can be found for various applications 

through statistical studies of images under those conditions, such that the error rate for a 

practical system using the linear GHT technique is kept at a reasonable level. 

The implementation of the linear Hough technique on a more powerful parallel 

machine to exploit its massive parallel processing power is also another very interesting 

topic. As we have suggested in Chapter 4, a powerful shared memory architecture will 

enable parallel processing within each image row as well as image columns. The parallel 

processing of image columns with a linear array architecture has been discussed in Chapter 

4. In Chapter 4, we also showed how concurrent writes to a single shared memory cell 

could be avoided. We also suggested that a linear speed-up is possible to achieve with an 

ideal shared memory parallel machine. It is worth studying its potential implementation on 

the existing parallel machine like the BBN Butterfly where concurrent shared memory 

accesses are constrained by limited switches. The discussion in section 4.2 shows some 

promise for solving this problem. 
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