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Abstract

CeCd3As3 and CeCd3P3 compounds that adopt the hexagonal ScAl3C3-type structure are
triangular lattice antiferromagnets. These compounds indicate antiferromagnetic ordering
below ∼0.5 K. Although the magnetic contribution to the specific heat Cm increases sig-
nificantly below 10 K, the electrical resistivity of CeCd3As3 and CeCd3P3 follows typical
metallic behavior that is inconsistent with Kondo lattice systems. Also, these compounds
display huge magnetic anisotropy due to the crystal electric field (CEF) effect. We have
undertaken a CEF analysis to understand their ground state properties. Based on CEF
analysis, the ground state is in mixed states of | ± 5/2⟩ and | ∓ 1/2⟩, with a dominant
| ∓ 1/2⟩ character. The CEF analysis in the presence of a molecular field gives a reasonable
agreement with experimental data and thus indicates that the moments of the Ce3+ ions in
the ab-plane are in close exchange interaction.

Keywords: Crystal electric field; Point charge model; Ce-based compounds; Triangular
lattice; Antiferromagnetism
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Chapter 1

Introduction

1.1 Rare-earths

Materials in the lanthanide series (from lanthanum to lutetium), often including scandium
and yttrium, show various magnetic and electronic properties that depend on the rare-earth
element. Moreover, rare-earth-based compounds offer the realization of rich physics such as
magnetism, superconductivity, Kondo effects, and large quantum spin fluctuations [1–6].
The electronic structure of the rare-earth elements is either of the form [Xe]4fn5d16s2

or [Xe]4fn+15d06s2. The 5d and 6s are the outer shells and their electrons participate in
chemical bonding, whereas the 4f shell is spatially localized and closer to the nucleus. Such
localized nature of the 4f shell is responsible for many interesting properties observed in
rare-earth-based materials [7]. The localized 4f orbital angular momentum L couples to the
spin state S, and hence the electronic state is no longer independently described by the L

and S state. Rather, the total angular momentum, J = L + S, becomes a good quantum
number.

It is well known that in rare-earths, magnetism originates from the partially filled 4f -
shell electrons. Since these electrons are well localized, their magnetic moments are large.
They are also characterized by strong single-ion magnetocrystalline anisotropy and rela-
tively low magnetic ordering temperatures. The spin-orbit coupled ground states (Hund’s
rule ground states) are strongly influenced by the single-ion crystal electric field (CEF).
By contrast, the magnetism exhibited by most transition metals is itinerant, which gives
rise to lower magnetic moments and higher ordering temperatures. The 3d shell electrons
experience much stronger CEF than the spin-orbit coupling, owing to the delocalized na-
ture of the 3d state. Under the CEF, the L state in the 3d electron systems precesses and
averages to zero, the orbital angular momentum is said to be quenched. Another way to
put it is that L states are not eigenfunctions of the crystal field potential. Thus, S (to some
approximation) is a good quantum number in the case of 3d systems [8].
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1.2 Competing energy scales in Ce-based intermetallic com-
pounds

Ce-based intermetallic systems have attracted considerable attention amongst the rare-
earth-based compounds because of their interesting ground state properties, such as mag-
netic ordering [9], the Kondo effect [10], heavy fermion behavior [11], and large quantum
spin fluctuations [12, 13]. Most of these phenomena originate from the 4f1 electron con-
figuration of Ce3+ ion which gives rise to charge and spin fluctuation. When the localized
4f -shell electrons are immersed in the sea of conduction electrons, Kondo screening can
develop, and many Ce-based compounds show such a state. However, the f -electrons carry
local moments, so the right way to describe the Ce-based Kondo lattice system is that
magnetism and the Kondo effect can coexist, which can lead to unconventional supercon-
ductivity [14,15], valence fluctuations [16], and quantum critical behavior [17–19]

One of the important energy scales in Ce-based intermetallic systems is associated with
the hybridization strength between localized 4f electrons and conduction electrons. The
hybridization strength is given by Γ = πV 2

fcN(ϵF ) [20], where Vfc is an appropriate average
over the hybridization matrix element and N(ϵF ) is the density of states at the Fermi level.
Another important energy scale, E4f , comes from the binding energy of the unperturbed
4f electrons [20].

Three cases can arise depending on which energy scale is dominant. The first case is when
Γ ≫ E4f . Here, the 4f electrons are strongly hybridized with the conduction electrons. In
this case, the 4f electrons are delocalized, lose their moments, and stay in an intermediate
valence state. Ce-based systems in this regime are non-magnetic [20].

In the second case for which Γ < E4f , there is a significant interaction between the
4f levels and the conduction bands which leads to the formation of Kondo singlets. In
this regime, Ce-based intermetallic compounds show a logarithmic increase of resistivity
(Kondo effect) and a highly enhanced electronic specific heat coefficient γ (heavy fermion
states) [20].

Lastly, when Γ ≪ E4f , the hybridization strength is negligible. In this regime, the 4f

electrons are well localized with a stable 3+ valence state in which many Ce-based sys-
tems display long-range magnetic ordering through the Ruderman-Kittel-Kasuya-Yoshida
(RKKY) indirect exchange interaction [20].

1.3 Crystal electric field effect

The investigation of the crystal electric field (CEF) effect for 4f rare-earth-based intermetal-
lic compounds is important to understand magnetism and magnetic materials both from
theoretical point of view and for applications. For 4f systems, the spin-orbit coupling is
stronger than the perturbation from the crystal field. However, the crystal field is still large
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enough to lift the degeneracy of the ground state J multiplet, leading to very strong single-
ion crystalline anisotropy− which is a preferential alignment of the magnetic moments in the
crystal field [7,21]. When the degeneracy is partially or completely lifted, a great impact on
magnetic susceptibility, specific heat, resistivity, and magnetization is expected. Therefore,
magnetic susceptibility, specific heat, magnetization, and neutron diffraction can be used
to obtain the CEF energy profile based on CEF theory.

The CEF theory involves the splitting of the energy states of an ion due to the elec-
trostatic influence arising from neighboring ions in the crystal [21–23]. This influences the
alignment of the magnetic moments in the crystal field, thus leading to a large anisotropy
as the moments would prefer to align in one direction than others. The ground state of
the 4f electrons is in a J multiplet with a (2J + 1)−fold degeneracy. The CEF can split
this degeneracy into various sub-states depending on the number of 4f electrons per ion
according to the Kramers theorem. This theorem states that if the electron number is odd,
then the total angular momentum J is half-integer. The minimum degeneracy in the ground
state is 2; such a state is a doublet. These systems are so-called Kramers ions. On the other
hand, if the electron number is even, then the total angular momentum J is an integer, and
the degeneracy can be totally lifted. But in general, there is a mixture of singlet, doublet,
triplet, and quartet states. These systems are so-called non-Kramers ions [21].

In addition, the CEF effect depends not only on the local symmetry of the 4f ions but
also on the charge distribution of the surrounding ions. A very simplistic approach to de-
scribing such a charge distribution is the point charge model. In this model, the surrounding
ions and the central ion are treated as point charges with electrostatic interaction between
them [24]. Clearly, this model has some drawbacks. The first is that the spatial distribution
of the charges of the ions is not put into consideration. Secondly, it neglects the exchange
interaction and screening between electrons and ions. Lastly, it does not take into account
the wavefunction overlap between the single-ion and the surrounding ions [24]. Nevertheless,
it has been very successful in describing, qualitatively, the magnetic properties of various
systems [25–29].

1.4 Magnetization and molecular field

A magnetic solid consists of a large number of atoms with magnetic moments. The magne-
tization M⃗ is defined as the magnetic moment per unit volume. For a linear material the
magnetization is proportional to the applied field H⃗.

M⃗ = χH⃗, (1.1)

χ is called the magnetic susceptibility and it represents the magnetic moment induced by
a magnetic field H⃗ per unit volume. When a magnetic field induces a magnetic moment
which opposes the applied magnetic field that caused it, such phenomenon is known as dia-
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magnetism. For a diamagnetic substance, there is a weak, negative magnetic susceptibility.
All materials show some degree of diamagnetism. Paramagnetism corresponds to a positive
susceptibility so that an applied magnetic field induces a magnetization which aligns parallel
with the applied magnetic field which caused it [30,31].

In some materials, there are interactions between magnetic moments that causes some
preferential alignment of spins in the absent of field, thus forming an ordered ground state.
In a ferromagnetic material, the magnetic moments are in parallel alignment. In an antifer-
romagnetic material, the adjacent magnetic moments lie in antiparallel alignment. Examples
of other ground states are spiral and helical structures in which the direction of the magnetic
moment precesses around a cone or a circle as one moves from one site to the next [30,31].
The interactions between magnetic moments can be described, approximately, as arising
from a molecular field H⃗m. The effect of the molecular field is to orient the spins even in the
absent of applied field. In the mean-field approximation each magnetic moment experiences
a molecular field proportional to the magnetization, and is given as

H⃗m = λM⃗, (1.2)

where λ is a constant (independent of temperature) that parametrizes the strength of the
molecular field. For a simple paramagnet placed in a magnetic field, the total field becomes
H⃗ + H⃗m. Hence, at low temperature the moments can be aligned by the internal molecular
field, even without any applied field being present.

The molecular field gives an approximate representation of the quantum mechanical
Heisenberg exchange interaction −

∑
ij JijS⃗i · S⃗j , where Jij represents the exchange integral

and is related to the overlap of the charge distributions of the ions i, j with spins S⃗i, S⃗j

respectively.

1.5 Specific heat measurement and the Schottky anomaly

Measured specific heat Cp has both the electronic and lattice components. To understand
the magnetic properties of materials it is important to extract the magnetic contribution of
the specific heat Cm. This can be done by performing two specific heat measurements. The
first measurements would be on the interested magnetic material, for example CeCd3As3.
The second specific measurement would be on a non-magnetic isostructural analouge, for
example LaCd3As3. Cm then is given as the difference between Cp for CeCd3As3 and Cp

for LaCd3As3.
Although Cp generally increases with temperature, in some cases, the plot of Cm as

a function of temperature T depict a broad peak (local maximum) at some temperatures.
This effect is known as Schottky anomaly. The Schottky anomaly is associated with discrete
energy levels coming from the splitting of energy states by effect such as crystal field,
Zeeman, or molecular field. The Schottky anomaly arises due to the thermal transitions

4



of electrons to excited energy levels. At zero temperature only the lowest energy level is
occupied, entropy is zero. As the temperature increases, the entropy increases as well. At
a temperature corresponding to the energy difference between the energy levels there is a
large build-up of entropy for a small change in temperature. This give rise to the broad
peak in the specific heat Cm.

1.6 Outline of thesis

This thesis is concerned with the regime where the crystal field is dominant and thus plays
a key role in describing the magnetic properties of various compounds. In general, the CEF
applies to any magnetic system (for example, transition compounds with a d character and
rare-earth compounds with an f character). In this thesis, the CEF effect in 4f systems
would be explored.

This thesis is organized as follows. Chapter 2 establishes the theoretical framework for
the CEF effect based on the point charge model. Chapter 3 presents the computational
implementation of the CEF model alongside the steps in making a good CEF fit. In Chap-
ter 4, the CEF analysis of CeCd3As3 and CeCd3P3 is presented and discussed. Lastly, a
conclusion of the study is made in Chapter 5.
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Chapter 2

Theoretical Background

In this chapter, a brief description of the point charge model is given, following Refs. [21,24].
Non-vanishing CEF parameters associated with the local point symmetries of magnetic
ions surrounded by point charges are presented. Also, some physical quantities that can be
calculated from the eigenvalues and eigenstates of the CEF Hamiltonian are introduced.

2.1 Point charge model

The CEF Hamiltonian can be built from the Coulomb interaction between the single mag-
netic ion and the neighboring ions in the crystal. In the simplest (point charge) model,
constituent ions in the crystal are assumed to be point charges, ignoring the spatial charge
distributions on the lattice.

Consider a 4f ion at position r⃗, close to the origin O, in a potential Vc produced by
surrounding point charges at positions R⃗i as shown schematically in Fig. 2.1. From electro-
magnetic theory, such a potential Vc obeys the Laplace equation ∇2Vc = 0, and hence can
be written as

Vc(r⃗) = 1
4πϵ0

∑
i

qi

|r⃗ − R⃗i|
, (2.1)

where 1/ | r⃗ − R⃗i | can be expanded in a series as

1
|r⃗ − R⃗i|

= 1√
(r2 + R2

i − 2rRi cos ω)
= 1

Ri

∞∑
n=0

(
r

Ri

)n

Pn(cos ω) , (2.2)

for all r < Ri, with ω denoting the angle between r⃗ and R⃗i. The Legendre-polynomials
Pn(cos ω) can be expressed in terms of spherical harmonics Y m

n as

Pn(cos ω) = 4π

2n + 1

n∑
m=−n

Y m
n (Ωr) Y m∗

n (ΩR) . (2.3)
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Figure 2.1: A 4f magnetic ion at a position r⃗ (brown circle) in a potential produced by eight
neighboring point charges (grey circles), R⃗i is the position of the ith neighboring charge
from the origin O. The angle between r⃗ and R⃗i is ω.

In order to avoid the complex numbers associated with the spherical harmonics, it is
important to cast Eqn. 2.3 in terms of tesseral harmonics, Zm

n , which are real, and defined
according to Ref. [24] as

Z0
n = Y 0

n , m = 0

Zm
n = 1√

2
[
Y −m

n + (−1)mY m
n

]
, m > 0

Zm
n = i√

2
[
Y m

n − (−1)mY −m
n

]
, m < 0 .

(2.4)

Inserting the tesseral harmonics into Eqn. 2.3 leads to

Vc(r⃗) =
∞∑

n=0

n∑
m=−n

rnZm
n (Ωr) 1

2n + 1
∑

i

qiZ
m
n (ΩR)

ϵ0Rn+1
i

. (2.5)

By making use of the definitions

γm
n = 1

2n + 1
∑

i

qiZ
m
n (ΩR)

ϵ0Rn+1
i

(2.6)

and

Hm
n =

N∑
j=1

rn
j Zm

n (θj , ϕj) , (2.7)

the CEF Hamiltonian can be expressed as
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HCEF = −|Q|
N∑
j

Vc(r⃗j) =
∑
n,m

γm
n Hm

n , (2.8)

where the charge Q = Ze of the ion, N is the total number of 4f ions, and r⃗j is the position
of the jth 4f ion. It is convenient to represent the matrix element of HCEF in terms of
equivalent operators, as shown below. For example, consider the H0

2 term which can be
expanded (using the definition in Eqn. 2.7)

H0
2 =

∑
j

r2
j

√
5

4π

1
2
(
2 cos2 θj − 1

)
=
∑

j

r2
j

√
5

4π

1
2

(
3z2 − r2

j

r2
j

)
. (2.9)

By making use of the following

x = r sin θ cos ϕ → Jx

y = r sin θ sin ϕ → Jy

z = r cos ϕ → Jz

r → |J⃗ |

and

xy → (1/2)(JxJy + JyJx)

J± = Jx ± iJy ,

the matrix element of H0
2 within the ground state multiplet |Γ⟩ of a 4f ion can be written

as

⟨Γ|H0
2 |Γ⟩ = ⟨Γ|

∑
j

r2
j

√
5

4π

1
2

(
3z2 − r2

j

r2
j

)
|Γ⟩

= 5
4π

1
2αJ⟨r2⟩⟨Γ|

(
3J2

z − J(J + 1)
)

|Γ⟩ ,

(2.10)

with the radial matrix elements defined by

⟨rn⟩ =
∫

|R4f (r)|2rn+2dr (2.11)

and αJ , known as the Stevens factors, are listed in Table 2.1. The radial matrix elements of
4f radial wave functions R4f have been calculated for different rare-earth atoms, as shown
in Refs. [21, 32,33].

8



Table 2.1: Rare-earth ions and their orbital (L), spin (S) and total angular momentum (J)
quantum numbers, Landé factor gJ , and Stevens factors: Θn = αJ , βJ , γJ (see Eqn. 2.18).
Table taken from Ref. [21].
ion L S J gJ αJ × 102 βJ × 104 γJ × 106

Ce3+ 3 1/2 5/2 6/7 −5.7143 63.4921 0.0000
Pr3+ 5 1 4 4/5 −2.1010 −7.3462 60.9940
Nd3+ 6 3/2 9/2 8/11 −0.6428 −2.9111 −37.9880
Pm3+ 6 2 4 3/5 0.7713 4.0755 60.7807
Sm3+ 5 5/2 5/2 2/7 4.1270 25.0120 0.0000
Eu3+ 3 3 0 − 0.0000 0.0000 0.0000
Gd3+ 0 7/2 7/2 2 0.0000 0.0000 0.0000
Tb3+ 3 3 6 3/2 −1.0101 1.2244 −1.1212
Dy3+ 5 5/2 15/2 4/3 −0.6349 −0.5920 1.0350
Ho3+ 6 2 8 5/4 −0.2222 −0.3330 −1.2937
Er3+ 6 3/2 15/2 6/5 0.2540 0.4440 2.0699
Tm3+ 5 1 6 7/6 1.0101 1.6325 −5.6061
Yb3+ 3 1/2 7/2 8/7 3.1746 −17.3160 148.0001

Table 2.2: List of radial matrix elements ⟨rn⟩ for n = 2, 4 and 6 for rare-earth ions [21].
ion ⟨r2⟩(Å2) ⟨r4⟩(Å4) ⟨r6⟩(Å6)
Ce3+ 0.3666 0.3108 0.5119
Pr3+ 0.3350 0.2614 0.4030
Nd3+ 0.3120 0.2282 0.3300
Pm3+ 0.2899 0.1991 0.2755
Sm3+ 0.2728 0.1772 0.2317
Eu3+ 0.2569 0.1584 0.1985
Gd3+ 0.2428 0.1427 0.1720
Tb3+ 0.2302 0.1295 0.1505
Dy3+ 0.2188 0.1180 0.1328
Ho3+ 0.2085 0.1081 0.1181
Er3+ 0.1991 0.0996 0.1058
Tm3+ 0.1905 0.0921 0.0953
Yb3+ 0.1826 0.0854 0.0863
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By defining Stevens operators Om
n according to Ref. [34], the operators which initially

have spatial dependence are simply proportional to angular momentum operators. For ex-
ample,

O0
2 =

(
3J2

z − J(J + 1)
)

. (2.12)

Note that the Stevens operators are different from the Stevens factors which are listed
in Table 2.1. For each tesseral harmonic function the Stevens operator can be defined by
substituting x, y and z by the components Jx, Jy and Jz, respectively. A complete list of
these Stevens operators is given in the Appendix of Ref [21]. In addition, the coefficients of
the polynomials in x, y and z in the definition of the tesseral functions (see the Appendix
of Ref. [21]) are denoted by pm

n ; for example p0
2 = 1

2

√
5

4π .
Hence the matrix elements of the ground state multiplet of the 4f ion yields

H0
2 =

∑
j

r2
j

√
5

4π

1
2

(
3z2 − r2

j

r2
j

)
(2.13)

→ p0
2αJ⟨r2⟩O0

2(J⃗). (2.14)

In general,

Hm
n =

∑
j

rn
j Zm

n (Ωj) = pm
n Θn⟨rn⟩Om

n (J⃗). (2.15)

This leads to the well known equation for the CEF Hamiltonian

HCEF =
∑
n,m

Bm
n Om

n (2.16)

where

Bm
n = −|Q|pm

n γm
n ⟨rn⟩Θn (2.17)

Θn =


αJ , if n = 2

βJ , if n = 4

γJ , if n = 6

(2.18)

Bm
n are known as the CEF parameters, and can be determined from Eqn. 2.17 in the point

charge model formalism. The variable γm
n is given in Eqn. 2.6. The additional parameters

Θn and ⟨rn⟩ are tabulated in Tables 2.1 and 2.2, respectively.
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2.2 CEF parameters and point group symmetry

The CEF parameters in the Hamiltonian of Eqn. 2.16 depend on the point symmetry of the
magnetic ion. In Eqn. 2.17, the full CEF parameters can be written as

Bm
n = −|Q|pm

n

1
2n + 1

∑
i

qiZ
m
n (ΩR)

ϵ0Rn+1
i

⟨rn⟩Θn , (2.19)

where Q = Ze is the charge of the central ion (as stated in the previous section); pm
n are the

coefficients of the tesseral harmonics (see the Appendix in Ref. [21]); Ri is the position of
the ith surrounding charge from the point of symmetry O; ⟨rn⟩ is the radial matrix element
of the central ion; qi is the charge of the ith surrounding charge; and Θn are the Stevens
factors defined in Eqn. 2.18 and listed in Table 2.1.

Using the relationship between the tesseral harmonics and the spherical harmonics
(Eqn. 2.4), Bm

n can be rewritten as

Bm
n =



−|Q|p0
n

1
2n + 1

∑
i

qiY
0

n

ϵ0Rn+1
i

⟨rn⟩Θn, if m = 0

−|Q|pm
n

1
2n + 1

∑
i

qi
1√
2 [Y −m

n + (−1)mY m
n ]

ϵ0Rn+1
i

⟨rn⟩Θn, if m > 0

−|Q|pm
n

1
2n + 1

∑
i

qi
i√
2 [Y m

n − (−1)mY −m
n ]

ϵ0Rn+1
i

⟨rn⟩Θn, if m < 0 .

(2.20)

In Eqn. 2.20 all other terms can be non-zero except for the spherical harmonic term, which
can be zero or non-zero depending on the point symmetry. Hence, the presence of the
CEF parameter, Bm

n , is dependent on whether the spherical harmonics, Y m
n , vanishes for a

particular n, m

For example, consider an ion with cubic point symmetry surrounded by eight neighboring
ions as shown in Fig 2.2. The ions are at the same distance d from the point of symme-
try, but their angular coordinates are different for each ion. There are ions at (d, θ, π/4);
(d, θ, 3π/4); (d, θ, 5π/4); (d, θ, 7π/4); (d, (π − θ), π/4); (d, (π − θ), 3π/4); (d, (π − θ), 5π/4);
(d, (π − θ), 7π/4), where θ = tan−1 √

2.
Begin by considering the term B2

2 . Since B2
2 depends on 1√

2

[
Y −2

2 + Y 2
2

]
, as seen in

Eqn. 2.20, this term needs to be expanded for each ion and then summed over all eight
contributions.

Employing the relation for the spherical harmonics [35], Y 2
2 ≈ sin2 θe2iϕ and Y −2

2 ≈
sin2 θe−2iϕ, the term can be simplified as

1√
2

[
Y −2

2 + Y 2
2

]
≈ sin2 θ

(
e−2iϕ + e2iϕ

)
= 2 sin2 θ cos(2ϕ) .

(2.21)
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Figure 2.2: A magnetic ion (brown circle) in a cubic point symmetry surrounded by eight
neighboring point charges (grey circles) at a fixed distance d from the origin O at varying
angular coordinates.

For the given cubic point symmetry ϕ = kπ
4 with k = 1, 3, 5, 7, cos(2ϕ) = 0. Therefore,

1√
2

[
Y −2

2 + Y 2
2

]
= 0 for each ion, so the B2

2 term completely vanishes. Using the same
procedure, it is easy to see that B−2

2 vanishes as well.
Having seen that in a cubic symmetry the B±2

2 term vanishes, consider the B4
4 term.

Here,

1√
2

[
Y −4

4 + Y 4
4

]
≈ sin4 θ

(
e−4iϕ + e4iϕ

)
= 2 sin4 θ cos(4ϕ) .

(2.22)

For a cubic symmetry with ϕ = kπ
4 (where k = 1, 3, 5, 7), cos(4π) = −1. The term

1√
2

[
Y −4

4 + Y 4
4

]
is non-zero, and therefore the B4

4 does not vanish. However, the B−4
4 pa-

rameter vanishes:

i√
2

[
Y −4

4 − Y 4
4

]
≈ i sin4 θ

(
e−4iϕ − e4iϕ

)
= −2i sin4 θi sin(4ϕ) ,

(2.23)

where sin(4ϕ) = 0 with ϕ = kπ
4 (k = 1, 3, 5, 7), yielding i√

2

[
Y −4

4 − Y 4
4

]
= 0.

By applying this procedure to all CEF parameters for eightfold coordination, the van-
ishing CEF parameters are B0

2 , B±1
2 , B±2

2 , B±1
4 , B±2

4 , B±3
4 , B−4

4 , B±1
6 , B±2

6 , B±3
6 , B−4

6 ,B±5
6 ,

and B±6
6 . Therefore, in this cubic point symmetry only the CEF parameters B0

4 , B4
4 , B0

6 ,
and B4

6 (see Table 2.3 cubic Td, O, Oh) need to be considered.

12



Such local symmetry considerations of the point charge (as seen for a cubic symmetry
case) require that some CEF parameters vanish while others are non-zero. This then allows
the compilation of Table 2.3, where the non-vanishing CEF parameters for all crystallo-
graphic point groups are given [21].

2.3 Determination of the CEF parameters

The CEF parameters can be determined from first principles using the point charge model
through Eqn. 2.17. In Eqn. 2.17 the CEF parameters do not depend on the crystal structure
but highly rely on the local point symmetry of the magnetic ion. However, there is often
a discrepancy between the theoretical calculation and the experimental result due to de-
viations from perfect crystalline material. For example, the lattice parameters and atomic
positions in the model are not exactly the same as those in a real sample, and the point
charge model itself ignores the spatial charge distributions of constituent ions. Hence, in
general, the CEF parameters determined from a theoretical first-principles calculation do
not reliably capture experimental data.

A more reliable method to determine CEF parameters is by fitting the experimental
data, such as those obtained from neutron scattering and magnetic susceptibility, where the
initial set of CEF parameters can be either obtained from the calculations of Eqn. 2.17 or
deduced from the magnetic susceptibility measurement. The latter procedure is used in this
thesis. It has been shown that the anisotropic magnetic susceptibility is mainly related to
the first term of the CEF parameter B0

2 . In other words, the B0
2 parameter gives a measure

of the strength of the magnetocrystalline anisotropy and can be expressed in terms of the
paramagnetic Weiss temperatures. For example, the B0

2 term in tetragonal systems [36,37]
is given by

B0
2 = (θa − θc)

10kB

3(2J − 1)(2J + 3) , (2.24)

where kB is the Boltzmann constant and J is the total angular momentum quantum number
for a free rare-earth ion. The variables θa and θc are the paramagnetic Weiss temperatures
for field applied along the a-axis and c-axis, respectively. θa and θc are obtained from the
high temperature magnetic susceptibility data. By using Eqn. 2.24, one can find B0

2 , and
then set it as a starting point for performing CEF fit. When eigenvalues and eigenstates of
the CEF Hamiltonian are determined by fitting the magnetic susceptibility curves, physical
observables such as magnetization, entropy, specific heat, and neutron spectra can be cal-
culated. In the following, equations describing these physical properties are presented. In
addition, a detailed procedure for this fitting scheme is discussed in Chapter 3, Computa-
tional methodology.
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2.4 Calculating physical properties from CEF

When the CEF parameters Bm
n are determined from the fit of magnetic susceptibility data,

other physical quantities associated with CEF effects can be calculated. In this section, the
relationships for deriving magnetization and entropy are presented.

2.4.1 Magnetization and magnetic susceptibility

The CEF Hamiltonian given in Eqn. 2.16 is not sufficient to calculate the magnetization.
Two additional terms are necessary. The first term is to account for the external field’s
coupling to the ions’ magnetic moments. Such a term is expressed as the Zeeman effect. The
second term originate from the interaction between magnetic moments through a molecular
field λM , λ is the molecular field parameter and M corresponds to the magnetization.

Mathematically, the total Hamiltonian takes the form

H = HCEF − gJµBJi(Hi + λiMi) (i = x, y, z − directions). (2.25)

The first term HCEF is the CEF Hamiltonian given by Eqn. 2.16, the second term is
the Zeeman interaction, and the third term is the molecular field term. Ji is the angular
momentum operator in the i = x, y, z−components, gJ is the Lande g-factor, and µB is the
Bohr Magneton. The eigenvalues, En, and eigenstates, |Γn⟩, are determined by diagonalizing
the total Hamiltonian H.

The magnetization is given by the expectation value of the magnetic moments

Mi = gJµB

∑
n

⟨Γn|Ji|Γn⟩e
−En
kBT

Z
, (2.26)

where Z =
∑

n e
−En
kBT is the partition function. In the absence of a molecular field, the

magnetization is given by Eqn. 2.26, where En and |Γn⟩ are determined by diagonalizing
the Hamiltonian only with the CEF and Zeeman term.

However, when the molecular field term λiMi is considered, the magnetization Mi (given
in Eqn. 2.26) can be determined as follows. Note that on the right hand side (RHS) of
Eqn. 2.26, En and |Γn⟩ are gotten by diagonalizing the total Hamiltonian given in Eqn. 2.25
which depends on Mi. In other words, the RHS of Eqn. 2.26 is a function of Mi (f(Mi)).
Hence, in the presence of molecular field, Eqn. 2.26 can be re-written as:

Mi = f(Mi) (2.27)

Equation 2.27 is a nonlinear equation in which Mi can be calculated through a root-finding
method.

In the absence of the molecular field term, the magnetic susceptibility can be calculated
by
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χi
CEF = ∂Mi

∂Hi
, (2.28)

where Mi is the magnetization (calculated when λi = 0) along the applied field direction
and Hi is the applied field in three directions (i = x, y, z).

The magnetic susceptibility including the molecular field contribution is given by

χ−1
i =

(
χi

CEF

)−1
− λi . (2.29)

2.4.2 Specific heat and entropy

The specific heat can be calculated from the free energy of the system, F = −kBT ln Z, by
using the relation

Cm = −T
∂2F

∂T 2 . (2.30)

The calculated specific heat only reflects the Schottky contributions which originate from
the thermal population of the various CEF energy levels.

The magnetic entropy measures the degrees of freedom of a particular system. From
thermodynamic relations, the magnetic entropy, defined as Sm = kB ln Z, can be obtained
by

Sm = −∂F

∂T
. (2.31)
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Chapter 3

Computational Methodology

The previous chapter introduces the theoretical framework for CEF effect based on the
point charge model. Physical property calculations under the influence of CEF effects can be
implemented by various computational programs [38–43]. These programs are often limited
to fit only certain types of data and to calculate only specific physical quantities.

Recently, the PyCrystalField program based on the point charge model [44] has been
developed, which provides capabilities for calculating and fitting various kinds of experimen-
tal data, like inelastic neutron spectrum, susceptibility, magnetization, and specific heat.
Because the PyCrystalField is written in Python, it is easy to modify.

To adapt the PyCrystalField program to this thesis work, some modifications have
been carried out. In this chapter, these modifications are discussed. In addition, a general
procedure of carrying out a fit to experimental data and calculating relevant thermodynamic
properties are presented. Lastly, multiple examples are shown to verify whether the modified
CEF program works well.

3.1 Modification of program

3.1.1 Susceptibility fitting

The CEF excitations in a system can be captured by multiple experimental data. One way to
obtain the CEF parameters is to fit the inelastic neutron spectrum, which is default method
of fitting in the PyCrystalField package. On the other hand, the magnetic anisotropy arising
from CEF effects is usually captured in susceptibility measurements. Thus, a fitting of the
susceptibility data is another approach to determining the CEF parameters. In this thesis
work, rather than fitting neutron spectrum data, we fit inverse susceptibility curves instead.
This modification can be easily made since the PyCrystalField program offers the freedom
to fit various kinds of experimental data.

The least-square cost function for fitting experimental data is modified from the neutron
spectrum to inverse magnetic susceptibility. Note that the least-square cost function conven-

17



tionally denoted as χ2 is denoted here as ∆2 to avoid confusion with magnetic susceptibility
χ. The least-square cost function ∆2 is given as

∆2 =
(
χ−1

data − χ−1
cal

)2
, (3.1)

where χ−1
data is the experimental inverse susceptibility and χ−1

cal is the calculated inverse
susceptibility that can be determined using Eqn. 2.28 or Eqn. 2.29.

3.1.2 Global minimization

The least-square cost function, ∆2, should be minimized to yield relevant CEF parameters.
The aim of minimizing ∆2 is to find unique sets of CEF parameters that reproduce the
experimental data. There are several procedures to minimize ∆2 while carrying out the
CEF fit. With the help of the Scipy Python library, the PyCrystalField program incorporates
both local and global minimization procedures. The local approach is very sensitive to the
initial set of CEF parameters and does not yield a unique set of CEF parameters. However,
the global optimization algorithm searches for a global minimum by performing random
perturbations over basins followed by a minimization on each basin, yielding a unique set of
CEF parameters. Thus, in this thesis work, the global minimization technique based upon
the basin-hopping algorithm [45] is used to fit magnetic susceptibility curves to obtain the
CEF parameters.

3.1.3 Molecular field

In many magnetic systems, it is important to account for the exchange interaction between
magnetic ions. The magnetic moments interact with one another through a molecular field
which is proportional to the average magnetization. Now, it is known that the origin of the
molecular field is a quantum mechanical exchange interaction. The PyCrystalField program
does not include the exchange interaction in the Hamiltonian. Therefore, the molecular field
term based on the mean-field approximation [30,31] is incorporated.

The full Hamiltonian H, including the Zeeman term and molecular field term, is used
in the program as follows

H =
∑
n,m

Bm
n Om

n − gJµBJiHi − gJµBJiλiMi (i = x, y, z − directions). (3.2)

The last term represents the molecular field contribution. λiMi is called the molecular field,
where the effective molecular interaction is parameterized as λi. The eigenvalues and eigen-
states can be determined by diagonalizing the full Hamiltonian H. The net magnetization
Mi can be determined by solving Eqn. 2.27 using a root-finding technique such as the secant
method or the Newton method.
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Figure 3.1: A schematic diagram of the CEF fitting procedure

3.2 Fitting procedure

A step-by-step process of performing a CEF fitting with the modified program is presented
below.

1. Obtain the initial guess of the CEF parameters. Estimate leading CEF parameter (for
example B0

2 term given in Eqn. 2.24) from the inverse magnetic susceptibility curves.
Other CEF parameters can be initialized to zero.

2. Properly choose the temperature range for fitting based on the inverse magnetic sus-
ceptibility data χ−1

data (see section 3.4 on details for selecting temperature ranges).

3. Diagonalize the Hamiltonian to obtain the energy eigenstates and eigenvalues and
calculate the inverse susceptibility, χ−1

cal .

4. Determine the CEF parameters by minimizing the error function given in Eqn. 3.1.

5. Calculate magnetic susceptibility, magnetization, and specific heat by using the de-
termined CEF parameters.

6. If the molecular field is not necessary, skip this step. Otherwise, include the molecular
field term (Eqn. 2.29) and recalculate the physical quantities with λi.

7. Compare plots of the above calculated physical quantities to experimental data. If
there is a good agreement, the best CEF and molecular field parameters are deter-
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mined. If not, the process is repeated from step 2 until there is a consistency between
the calculated and measured data.

A schematic diagram of this fitting procedure is shown in Fig. 3.1.

3.3 Program tests

As with any new program, it is important to ensure that the program is reliable to work
with. The CEF program must be robust enough to handle various kinds of input data
and be able to compute the correct output. In this section, we present the validity of the
modified CEF program tested by comparing with some literature results. First, the code
for numerical calculations is checked with already known CEF schemes. Next, the code for
global minimization is tested.

3.3.1 CEF calculation of CeAgSb2 magnetic properties

To check the CEF numerical calculations, we choose the CEF scheme of CeAgSb2. The
CEF analysis of the magnetic properties of CeAgSb2 has been previously carried out [28].
Such analysis shows that the anisotropy in the high field magnetization is well explained
by the presence of CEF. In particular, magnetization isotherms of CeAgSb2 show complex
metamagnetic transitions that arise from CEF energy level crossings [28].

CeAgSb2 crystallizes in the tetragonal ZrCuSi2−type structure (P4/nmm) and the Ce
ions in this structure have a tetragonal point symmetry. In this configuration, the CEF
Hamiltonian needs only B0

2 , B0
4 , and B4

4 CEF parameters. Note that there are no B0
6 and B4

6
terms in the Hamiltonian, which are typically required for the tetragonal point symmetry.
This is because the sixth-order Stevens factor, γJ , vanishes for Ce3+ (J = 5/2), see
Table 2.1.

We reproduce the magnetic susceptibility, specific heat, and magnetization (at 1.5 K and
20 K) calculations, as shown in Figs. 3.2 (a)−(d). The reported values of the parameters
from Ref. [28] are used: B0

2 = 7.55 K, B0
4 = −0.02 K, B4

4 = −0.64 K, λx = −28 mole/emu
for H ∥ ab, and λz = 0 for H ∥ c. After diagonalizing the Hamiltonian, the eigenstates and
eigenvalues are identical with those in Ref. [28]. The shape and magnitude of the anisotropic
inverse susceptibility curves are well reproduced, as shown in Fig. 3.2 (a). The magnetic part
of the specific heat indicates a broad maximum around 30 K, consistent with the previous
report, as displayed in Fig. 3.2 (b). In addition, the metamagnetic transitions are captured
very well (see Fig. 3.2 (c)). Thus, the program works well for numerical calculations of the
physical quantities of CeAgSb2.
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Figure 3.2: CEF calculation of the physical properties of CeAgSb2 based on our CEF pro-
gram as compared with the CEF scheme of Ref. [28]. Open symbols are from the reference
calculations (digitized) and thin-black lines are calculations from our CEF program. (a)
Inverse susceptibility plot. (b) Magnetic specific heat. (c) Magnetization at T = 1.5 K. (d)
Magnetization at T = 20 K.
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Figure 3.3: CEF fitting results for CeIr3Ge7 from Ref. [46]. Green lines are CEF calculations
from the reference. (a) Inverse magnetic susceptibility at 1 T, grey lines are Curie-Weiss
fits. (b) Isothermal magnetization at T = 1.8 K.

3.3.2 CEF fitting of CeIr3Ge7

Next, we check the code for global minimization with the results of CeIr3Ge7, taken from
Ref. [46]. Figure 3.3 shows the inverse magnetic susceptibility and magnetization of CeIr3Ge7

plots from Ref. [46], where green lines represent their CEF calculations. Notice that un-
like the magnetic susceptibility result (Fig. 3.3(a)), the CEF calculation for magnetization
poorly agree with the the experimental data, as shown in Fig. 3.3(b).

Their CEF parameters (see Table 3.1), obtained by fitting the inverse magnetic suscep-
tibility curves, are B0

2 = 34.40 K, B0
4 = 0.82 K, and B3

4 = 67.30 K, resulting in a very
large CEF energy level splittings of the first (374 K) and second excited level (1398 K).

Table 3.1: CeIr3Ge7: Comparing the CEF parameters, eigenvalues, and eigenstates.
Ref. [46] Present CEF scheme

CEF parameters (K):
B0

2 34.40 35.80
B0

4 0.82 0.99
B3

4 67.30 69.00
Energy level splitting:

374 K and 1398 K 343 K and 1434 K
Ground state:

|Γ⟩ 0.54| ± 5/2⟩ − 0.84| ∓ 1/2⟩ 0.54| ± 5/2⟩ ∓ 0.84| ∓ 1/2⟩
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from Ref. [46]. (a) Inverse magnetic susceptibility at 1 T. (b) Isothermal magnetization at
T = 1.8 K.

In particular, due to the B3
4 term the ground state wavefunctions are mixed between the

| ± 5/2⟩ and | ∓ 1/2⟩ given as |Γ⟩ = 0.54| ± 5/2⟩ − 0.84| ∓ 1/2⟩ [46].
To reproduce these results using our CEF fitting scheme, we first digitized the exper-

imental data in Ref. [46] and then fit the inverse susceptibility data following the steps
outlined in Sec. 3.2. Figure 3.4(a) shows the fit of the inverse magnetic susceptibility. The
characteristics of the inverse magnetic susceptibility curves can be described by the CEF
effect, especially the hump around 200 K, which are consistent with the results shown in
Fig. 3.3(a). For the isothermal magnetization, CEF calculations in this study reproduced
the essential features of the magnetization curves, as shown in Fig. 3.4(b). The almost linear
field dependence of M(H) for H ∥ c is captured by our CEF fit. For H ∥ ab, the Brillouin
function-like magnetization curve is reproduced. In this study, the CEF parameters are ob-
tained to be B0

2 = 35.80 K, B0
4 = 0.99 K, and B3

4 = 69.00 K, which are consistent with
those obtained in Ref. [46]. The energy level splittings have values of 343 K and 1434 K,
and the ground state is given as |Γ⟩ = 0.54| ± 5/2⟩ ∓ 0.84| ∓ 1/2⟩, which are also consistent
with the reference (see Table 3.1). The small difference in magnitude between their reported
CEF profile (CEF parameters and energy levels) and the CEF profile in this present study
maybe due to the use of digitized data in carrying out our fitting. Therefore, the consistency
of our CEF profile with the reference results indicate that our fitting scheme works well.

It is important to note that, although the CEF profile and inverse magnetic suscep-
tibility plot are well reproduced, there is disagreement between the magnetization plots
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(see Fig. 3.3(b) and Fig. 3.4(b)). To check this discrepancy, we used the CEF parameters
of Ref. [46] to re-calculate their magnetization. The magnetization curves calculated does
not match the reference calculations shown in Fig. 3.3(b). Hence, this discrepancy most
probably comes from the nature of the numerical calculations employed in Ref. [46].

We also tested our modified CEF program with other rare-earth based compounds (other
than Ce-based compounds), such as ErAl2Ge2 [47], PrRhIn5 [29], TbRhIn5 [29] compounds.
For ErAl2Ge2 [47], the CEF Hamiltonian was based on a hexagonal site symmetry for the
Er ions, where the CEF parameters are B0

2 , B0
4 , B0

6 , and B6
6 . Using the reported CEF

parameters with molecular field parameters, our program reproduced their susceptibility,
magnetization, and specific heat plots. Also, our program also works well in reproducing
the CEF results of PrRhIn5 [29] and TbRhIn5 [29] in the presence of molecular field, where
Pr and Tb ions have tetragonal symmetry with five CEF parameters: B0

2 , B0
4 , B4

4 , B0
6 , and

B4
6 .

Therefore, based on the tests using these several rare-earth ions and symmetries, we have
evaluated our modified program to perform well in calculating and fitting CEF parameters.

3.4 General comments on making a good CEF fit

In this chapter, we have described the CEF program that implements the CEF calculation
and fitting. In addition, we presented some examples to evaluate the accuracy of our fitting
scheme. Here, we shall comment on important factors that are necessary to make successful
CEF fit.
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Figure 3.5: CeIr3Ge7 CEF fitting performed based on two different fitting ranges. The
data was gotten from Ref. [46]. (a) Inverse magnetic susceptibility at 1 T. (b) Isothermal
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First, in some magnetic systems the inclusion of exchange interaction to the CEF Hamil-
tonian is crucial in reproducing the magnetic properties. Hence, a good CEF fit can be only
achieved if exchange interaction is taken into account.

Another important factor in producing a good CEF fit is the tuning of the temperature
range of the inverse susceptibility data. As stated in Sec. 3.1.1, our CEF program fits the
experimental data of inverse magnetic susceptibility to obtain a set of CEF parameters.
Since the inverse magnetic susceptibility depends on temperature, the set of fitted CEF
parameters would depend on fitting ranges of temperatures.

Figure 3.5 shows the CEF fits based on two different fitting ranges: one with the fitting
range 150 K − 600 K and the other one with the range 2 K − 600 K. As shown in Fig. 3.5(a),
for H ∥ ab, the calculated magnetic susceptibility curves for both temperature ranges well
follow the experimental data. For H ∥ c it is obvious that χ−1(T ) for fitting 2 K − 600 K
gives a better description of experimental data than that for fitting 150 K − 600 K. However,
when magnetization curves are compared, the fitting range of 150 K − 600 K gives a better
agreement with the experimental data, as shown in Fig. 3.5(b). Hence, one can choose the
150 K − 600 K fitting range as it better describes both χ−1(T ) and M(H) experimental
data. Therefore, it is crucial to ensure that the temperature range used in the fitting gives
the best set of CEF parameters.

However, in some cases, it is even more difficult to come to a conclusion of the best fitting
range with only two sets of experimental data. A way around this difficulty is to compare
the CEF calculations to additional experimental data like specific heat and neutron spectra.
Hence, rather than having only some experimental data well reproduced, the best fitting
range is that which gives CEF calculations that modestly describe all the experimental
data: inverse susceptibility, magnetization, specific heat, and neutron spectra.

25



Chapter 4

Results and Discussion

In Chapters 2 and 3, the CEF theoretical framework and its numerical implementation are
introduced and explained with representative examples. In this chapter, the magnetic prop-
erties of CeCd3X3 (X = P and As) under the influence of CEF effects are presented as the
main results of the thesis work. A strong easy plane magnetic anisotropy has been observed
in CeCd3X3 compounds. Our analysis of their magnetic susceptibility, magnetization, and
specific heat data showed that the observed anisotropy can be explained by a CEF model
with Ce3+ ions in trigonal symmetry. In particular, the reliability of our CEF analysis on
CeCd3As3 is accessed by comparing with the CEF analyses of earlier reports.

4.1 Physical properties of CeCd3X3

Geometrically frustrated insulating magnets with 4f electrons provide opportunities to
study unconventional order parameters such as spin liquid states [48–54]. When 4f elec-
trons are located in triangular lattices (TL), spin-orbit coupling enhances quantum fluctua-
tions and promotes nonlocal excitations without magnetic ordering characterized by highly
anisotropic interactions between 4f moments [55–60]. Several f -electron materials with TL
structures have shown rich phenomena. A spin liquid state has been proposed in insulating
YbMgGaO4 [5,61–64] and NaYbS2 [65,66]. The low carrier density system YbAl3C3 shows
a gap in the magnetic excitation spectrum due to the dimerization of the f electrons in
Yb3+ pairs [67–70]. In particular, the easy-plane antiferromagnets CeCd3X3 (X = P and
As) have been recently discovered as a new class of TL system, with a low antiferromagnetic
ordering temperature and extremely low carrier density [71–75].

The family of compounds with the formula CeM3X3 (M = Al, Cd, and Zn and X

= C, P, and As) have been investigated for their robust ground state properties arising
from the interplay between a geometrically frustrated lattice, CEF, and magnetic exchange
interactions [69, 71–77]. These compounds show a very large magnetic anisotropy due to
the strong CEF acting on Ce3+ ions. CeCd3X3 materials adopt the hexagonal ScAl3C3-
type structure (space group P63/mmc) with the Ce atoms having trigonal (D3d) point
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Figure 4.1: Schematic of crystal structure of CeCd3X3 (X = P, As) in the hexagonal
ScAl3C3-type structure (P63/mmc, 194) (a) 2D-layered structure showing the crystal unit
cell with the atomic positions, Ce atoms are located in the 2a Wyckoff position. (b) Ce
atoms forming two-dimensional triangular lattices. (c) Ce atom in a trigonal (D3d) point
symmetry surrounded by P/As atoms.

symmetry [73–76]. In this crystal structure, the Ce layers are well separated by the Cd
and X atoms, forming a layered 2D triangular lattice (TL) in the ab-plane [73–76] as
depicted in Fig. 4.1. From thermodynamic and transport property measurements, CeCd3X3

have been characterized as extremely low-carrier-density metallic systems, with strong easy-
plane magnetic anisotropy and antiferromagnetic ordering below TN ∼0.42 K [72, 75]. As
temperature decreases, Cm significantly increases below 10 K and indicates a λ-like peak at
0.42 K, a signature of antiferromagnetic ordering. At the magnetic ordering temperature,
roughly 40% of R ln(2) entropy is recovered, implying a doublet ground state resulting from
CEF splitting of localized Ce ion energy levels. The highly enhanced specific heat below
10 K and the reduced magnetic entropy at TN are reminiscent of Kondo lattice materials.
However, the electrical resistivity of CeCd3X3 shows no maximum or logarithmic upturns
resulting from the Kondo scattering of conduction electrons from magnetic Ce3+ moments,
where the resistivity of CeCd3X3 is the same as that of LaCd3X3. Therefore, the Kondo
screening may not be responsible for these observations. We expect that an absence of
Kondo screening in these materials is due to the low carrier density: there are simply not
enough carriers to screen the f -electron moments.

In the present study, we use the CEF scheme to clarify the anisotropic magnetic prop-
erties of CeCd3X3. For CeCd3As3, two independent CEF analyses [46, 73] showed some
discrepancies in their studies, by way of inconsistent energy level splittings and different
first excited state wave functions. Unlike CeCd3As3, no CEF analysis has been carried out
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for CeCd3P3. Therefore, this thesis is motivated by the unclear conclusion of the CEF profile
of CeCd3As3 and a lack of the CEF analysis on CeCd3P3. At high temperatures, the mag-
netization and specific heat measurements of these compounds can be well explained by the
CEF effects, while further studies are necessary to understand low temperature magnetism
with a CEF-derived Kramers doublet ground state.

4.2 Determination of CEF parameters

The CEF Hamiltonian, based on the point charge model, assumes that the magnetic ions
are well localized with a stable valence state. The valence state of CeCd3X3 can be deduced
from the effective moment of Ce3+ ions. Figures 4.2 (a) and (b) show the inverse magnetic
susceptibility, χ−1 = H/M , curves of CeCd3P3 and CeCd3As3, respectively, together with
their polycrystalline averages (χpoly = 2/3χab + 1/3χc). At sufficiently high temperatures,
magnetic susceptibility curves follow the Curie-Weiss (CW) behavior: χ(T ) = C/(T − θp),
where C is the Curie constant and θp is Curie-Weiss temperature. For H ∥ c (magnetic
hard axis) χ(T ) barely follows the CW law above ∼300 K and shows a broad maximum
around ∼150 K, implying large CEF energy level splittings. By applying the CW law to
the polycrystalline averaged curves, the effective moments of CeCd3P3 and CeCd3As3 are
estimated to be µeff = 2.51 µB and µeff = 2.54 µB, respectively, which agree very well
with the value µeff = 2.54 µB of free Ce3+ ion. From the effective moment values, it is
reasonable to assume that Ce ions in these compounds are well localized with 3+ valence
state.

For CeCd3X3 systems, the Ce atoms occupy the 2a Wyckoff position and has a trigonal
symmetry, as depicted in Fig. 4.1(c). In this configuration, the CEF Hamiltonian requires
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Figure 4.2: (a) CeCd3A3 inverse magnetic susceptibility χ−1(T ) at 1 kOe for H || ab, H
|| c, and polycrystalline average. (b) CeCd3P3 inverse magnetic susceptibility χ−1(T ) at
1 kOe for H || ab, H || c, and polycrystalline average. Solid lines are from the fits of the
Curie-Weiss law to the data.
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only three parameters [78, 79]: B0
2 , B0

4 , B3
4 (see Table 2.3). Note that thermodynamic and

transport measurements of these compounds indicate a possible structural phase transition
below 200 K [69, 72, 75], thus requiring additional CEF parameters below this transition
temperature to account for the change in the local environment of the Ce atoms. However,
the effect of structural distortion is negligible in the the magnetic susceptibility curves, which
shows a smooth evolution through the structural phase transition temperature. Therefore,
in our CEF analysis, the trigonal symmetry of the Ce atoms is still used below the phase
transition temperature.

As presented in Eqn. 2.24 the B0
2 parameter gives a measure of the magnetocrystalline

anisotropy and can be expressed in terms of the paramagnetic Weiss temperatures [37,46].
From the Curie-Weiss fit (see Fig.4.2), anisotropic Weiss temperatures of CeCd3As3 are
estimated to be θab = 9.3 K and θc = −283 K. For CeCd3P3, θab = 9.3 K and θc = −248 K
are obtained. We can now use these values to estimate the leading CEF parameters, B0

2 =
30.48 K for CeCd3As3 and B0

2 = 26.75 K for CeCd3P3, as a starting point for evaluating
the CEF scheme.

4.3 CEF scheme of CeCd3As3

For CeCd3As3 the CEF parameters and energy profile are summarized respectively in Ta-
ble 4.1 and Fig. 4.3. As shown in Fig. 4.3 the 2J + 1 degenerate levels for J = 5/2 of Ce3+

split into three Kramers doublets with energy level splittings ∆1 = 242 K and ∆2 = 553 K.
The ground state and second excited state are in an admixture of | ± 5/2⟩ and | ∓ 1/2⟩
states. However, the first excited state is a pure | ± 3/2⟩ state.
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Table 4.1: CeCd3As3: Comparing the CEF parameters of three studies
Present studya Ref. [73]b Ref. [46]c

CEF parameters (K):
B0

2 18.55 11.50 11.60
B0

4 -0.08 -1.40 -0.50
B3

4 23.02 12.00 8.00

aExchange interaction is based on molecular field: λab = −5.7 mole/emu and λc = 1.0 mole/emu

bExchange interaction is based on nearest neighbour spin Hamiltonian see Ref. [73]

cExchange interaction was not considered

This study K.E. Avers et al. J. Banda et al.
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Figure 4.3: Comparison of the CEF energy level splitting and eigenstate of CeCd3As3 for
three different schemes/studies. Scheme 1 is from this present work, with the coefficients
of the eigenstates given as α = 0.44, β = 0.90, γ = −1. Scheme 2 is from Ref. [73], with
α = 0.32, β = 0.95, γ = 1. Scheme 3 is from Ref. [46], with α = 0.28, β = 0.96, γ = 1.
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Figure 4.4 displays the anisotropic magnetic susceptibility curves, magnetization isotherms,
and specific heat of CeCd3As3, together with the CEF calculations. At first, without molec-
ular field contributions, we discuss the CEF effects on the thermodynamic properties of
CeCd3As3. In Fig. 4.4 (a), solid lines represent the CEF fit to the magnetic susceptibility
data with λi = 0. The CEF fit generally agrees with the inverse magnetic susceptibility,
as the large anisotropy between crystallographic directions is captured. Although a tiny
misalignment is seen for the temperature range between 225 K and 350 K, a good fit is
obtained for measurements below 220 K. For H ∥ ab, the broad hump around 25 K is well
reproduced. The CEF model aligns very well with the magnetization isotherm, M(H), for
H ∥ c at 1.8 K, whereas there is an inconsistency between the CEF calculation and M(H)
for H ∥ ab, as shown in Fig. 4.4 (b). Cm at H = 0 and 90 kOe is presented in Figs. 4.4
(c) and (d), respectively. In zero field, the broad maximum around 100 K from the Schot-
tky contribution is roughly reproduced by the CEF model. Note that the additional peak
around 130 K is an anomaly attributed to a structural phase transition, as discussed in
Ref. [72]. The Cm below the peak is well captured by the CEF calculation, but the CEF
calculation is not consistent with the experimental data above the peak. This inconsistency
at high temperatures is caused by the very large subtraction error in calculating Cm (=
Cp[CeCd3As3] − Cp[LaCd3As3]), as explained in Ref. [72]. The sharp rise of Cm below 10 K
and the sharp peak at TN = 0.42 K [72] are not captured by the CEF model. The origin
of these low temperature behaviors is suggested to be due to the combination of magnetic
frustration and antiferromagnetic ordering [72]. At H = 90 kOe for H ∥ ab, the overall
shape of the Cm is captured by the CEF model, but the maximum temperature is higher
than that of experimental data.

The CEF model without λi does not adequately reproduce M(H) and Cm data for
H ∥ ab. In order to account for the mismatch, the molecular field interactions between
Ce3+ ions are incorporated (see the Sec. 3.1.3 in Chapter 3). The dashed-lines in Fig. 4.4
represent the CEF model in the presence of the molecular field terms λab = −5.7 mole/emu
and λc = 1 mole/emu. By introducing the molecular terms, the magnetic susceptibility
curves show a slightly better agreement of the CEF calculation to the experimental data at
high temperatures. However, as can be clearly seen, the M(H) curve for H ∥ ab is captured
by the combination of the CEF scheme and molecular field interactions. Moreover, although
the absolute value of the maximum in Cm at 90 kOe is slightly higher, the position of the
maximum temperature is well reproduced by the CEF model (Fig. 4.4(c)). These results
point to the importance of including the exchange interactions between Ce3+ magnetic ions.
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Since the CEF analysis of CeCd3As3 has been reported in Refs. [46, 73], the present
work on CeCd3As3 is compared with the CEF results from earlier studies [46,73]. The CEF
parameters are summarized in Table 4.1. The energy level splittings, and corresponding
eigenstates are shown in Fig. 4.3.

In Fig. 4.3, for all 3 schemes, the ground state is in a mixed states of | ± 5/2⟩ and
| ∓ 1/2⟩ with a higher probability in the | ∓ 1/2⟩ state. This requires a mixing angle θ in
the wave function: cos(θ)| ± 5/2⟩ + sin(θ)| ∓ 1/2⟩. The obtained mixing angle is roughly
similar for all three studies: 64◦ in this study, 72◦ in Ref. [73], and 74◦ in Ref. [46]. Unlike
the ground state that is the same for all 3 studies, the excited states |Γ2⟩ and |Γ3⟩ do not
entirely agree for all 3 reports. The |Γ2⟩ and |Γ3⟩ excited states for this study and that of
Ref. [46] are consistent. That is, the |Γ2⟩ excited state is in a pure state of | ± 3/2⟩ and the
|Γ3⟩ excited state is in a mixed state of | ± 5/2⟩ and | ∓ 1/2⟩. However, in Ref. [73] there is
a clear swap of these excited state wave functions. This disagreement between the excited
states of Ref. [73] and the two other reports, is suggested to be due to their relative higher
magnitude of |B0

4 |. (As shown in Table 4.1 |B0
4 | = 1.4 K for Ref. [73], this is larger than |B0

4 |
value of 0.08 K and 0.5 K of this present work and that of Ref. [46] respectively). In fact,
we confirmed that any |B0

4 | > 0.7 K would result in the |Γ2⟩ being in a mixed state and
the |Γ3⟩ being in a pure state, just as the case of Ref. [73]. Another important distinction
among these 3 studies is in the energy level splitting presented in Fig. 4.3. The energy level
splitting from the ground to the first excited state is comparable for all studies. However,
the energy eigenvalue for the second excited state indicates a discrepancy, where the value
in Ref. [46] is roughly two times smaller than that of the other two studies.

Using the CEF parameters presented in Table 4.1, χ−1(T ) and M(H) curves for three
studies are compared and plotted in Fig. 4.5. The plots from this study (Fig. 4.5(a) and
(b)) are calculated by including the the molecular field contribution. Fig. 4.5(c) and (d)
are the results taken from Ref. [73], where the CEF scheme is obtained in the present of
an antiferromagnetic exchange interaction based on a mean-field approach [73, 80]. Lastly,
solid lines in Figs. 4.5(e) and (f), taken from Ref. [46], represent the CEF calculations,
where the CEF parameters are obtained by fitting the magnetic susceptibility curves to
only CEF Hamiltonian (no exchange interaction term was included). As can be seen from
the plots, the calculated χ−1(T ) curves for all three studies are similar, especially that
they capture the broad hump in the curves for H ∥ c. It has to be noted that the CEF
calculation in Ref. [73] shows a significant deviation from the experimental data, which was
reported to be due to the measurement errors arising from the very small sample size [73].
In addition, the minor difference in experimental magnetic susceptibility curves is mainly
due to the different sample quality. The large magnetic anisotropy in M(H) curves can be
well described by CEF models for all three studies. However, the CEF model with exchange
interactions gives a better description of experimental data, implying the importance of the
exchange interaction in CeCd3As3.
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Figure 4.5: (a) χ−1(T ) of this present study. (b) M(H) of this present study. (c) χ−1(T ) of
Ref. [73]. (d) M(H) of Ref. [73].(e) χ−1(T ) of Ref. [46]. (f) M(H) of Ref. [46]. In all plots
open/solid symbols are measurement data whereas solid lines are CEF calculations. Note
that, K. E. Avers, et al. reported two data types. The open symbols are from their own
measurements upto 7 T fields Ref. [73], whereas the solid symbols are data gotten from
Ref. [71].
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Figure 4.6 shows the magnetic part of the specific heat, calculated by the CEF param-
eters for all three schemes/studies. The open symbols represent experimental data from
this study. Solid lines, dashed lines, and dotted lines are CEF calculations from the present
study, Ref. [73] and Ref. [46], respectively. As shown in the figure, when subtle differences
are ignored, the high temperature maximum is captured by all three calculated curves.
This implies that the high temperature maximum in Cm is due to the CEF effects and the
ground state doublet is well isolated from the first and second excited states. When the
measurement uncertainty and different sample quality are considered, the best CEF param-
eters among three CEF parameter sets cannot be selected from the comparison of specific
heat. Therefore, further measurements such as inelastic neutron scattering are necessary to
distinctly specify the best CEF model in this system. Nevertheless, it is clear from the CEF
analysis that the large enhancement of Cm below 10 K cannot be explained by the Schottky
contribution.

4.4 CEF scheme of CeCd3P3

We now turn to the CEF analysis for CeCd3P3, following the same procedure applied to
CeCd3As3. The isostructural compounds CeCd3P3 and CeCd3As3 show remarkably similar
magnetic properties, implying that their local CEF environments are in close resemblance.

35



Table 4.2: CeCd3P3: CEF parameters, Eigenvectors and Eigenvalues
CEF parameters

B0
2 (K) B0

4 (K) B3
4 (K) λi (mole/emu)

20.90 -0.03 26.00 λab = −6.2,
λc = 0.3

Energy levels and states
E (K) | − 5

2⟩ | − 3
2⟩ | − 1

2⟩ |1
2⟩ |3

2⟩ |5
2⟩

0 0.0 0.0 ∓0.897 0.0 0.0 0.442
0 0.442 0.0 0.0 ±0.897 0.0 0.0

257 0.0 -1.0 0.0 0.0 0.0 0.0
257 0.0 0.0 0.0 0.0 -1.0 0.0
621 -0.897 0.0 0.0 ±0.442 0.0 0.0
621 0.0 0.0 ±0.442 0.0 0.0 0.897

Hence, it is expected that the CEF parameters will be quite similar for both compounds,
giving rise to very similar CEF energy level splittings and eigenstates.

Table 4.2 shows a summary of CEF fit results of CeCd3P3. As expected, the obtained
CEF parameters, eigenstates, and eigenvalues for CeCd3P3 are very similar to the case for
CeCd3As3 (see Table 4.1 and Fig. 4.3). The positive B0

2 term indicates that the magneti-
zation lies in easy plane as seen in Fig. 4.7(b). The large B3

4 term implies a mixed ground
state with | ± 5/2⟩ and | ± 1/2⟩, just like the case for CeCd3A3. The first excited state is
in a pure state of | ± 3/2⟩ and the second excited state is in an admixture of | ± 5/2⟩ and
| ± 1/2⟩ states. The energy level splittings correspond to 257 K for the first excited state
and 621 K for the second excited state.

Figure 4.7 shows the magnetic susceptibility, magnetization, and specific heat curves
together with the CEF calculations. In the absence of molecular field terms, the CEF calcu-
lations (solid lines) agree very well with the experimental H/M curves, as shown in Fig. 4.7
(a). Notably, as with the case for CeCd3As3, the CEF model captures the broad hump
around 30 K. Also, Cm in zero field agrees with the CEF fit at high temperatures, as shown
in Fig. 4.7(c), implying the high temperature broad maximum (Schottky anomaly) is due
to the CEF effects. However, the CEF calculation does not align with the M(H) curve for
H ∥ ab at 1.8 K, displaying the same characteristic with that of CeCd3As3. In addition, the
CEF calculation does not agree with the experimental Cm data at H = 90 kOe as it appears
to shift rightwards. This indicates that in addition to the Zeeman effect other contribution
must be considered.

In order to capture the experimental data in a better way, the molecular field terms are
added into the Hamiltonian and the results are plotted in Fig. 4.7 (dashed lines). Although
the calculation of magnetic susceptibility is hardly affected (almost no change), the inclusion
of the molecular field terms greatly alters the M(H) curve calculation for H ∥ ab and
adequately captures the experimental M(H) behavior as as shown in Fig. 4.7(b). In addition,
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Figure 4.7: CeCd3P3 magnetic properties and CEF fits. Open symbols are from experimental
measurements. Solid lines represent the CEF fit with no molecular field contribution. Dashed
lines are CEF fit with molecular field (λab = −6.3 mole/emu, λc = 0.3 mole/emu). (a)
Inverse magnetic susceptibility at a field of 1 kOe. (b) Isothermal magnetization as a function
of field at 1.8 K. (c) Magnetic specific heat at zero field. (d) Magnetic specific heat at a
field of 90 kOe along H ∥ ab
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the CEF calculation with molecular field terms properly captures the low temperature
maximum in Cm at H = 90 kOe (see Fig. 4.7(c)). Therefore, we conclude that the CEF model
in the present of the molecular field interaction should be used to describe the experimental
data for CeCd3P3. As expected from the layered crystal structure, the absolute value of λab

is greater than λc, implying a strong exchange interaction in the ab-plane.
The obtained values of CEF parameters of CeCd3P3 are slightly larger than those of

CeCd3As3. The slight difference in the values of their CEF parameters is quite surprising.
When the distance between Ce3+ and nearest P/As atoms is considered, the difference
between Ce-As distance (3.05 Å) and Ce-P distance (2.96 Å) is about ∼9 pm, which may
not be large enough to lead to quite different CEF energy level splittings [72,73,75].

4.5 CEF in other Ce-based trigonal systems

The significance of B3
4 CEF parameter has been observed in Ce-based antiferromagnets such

as CeAuSn, CeIr3Ge7, CePtAl4Ge2, CeCd3As3 and CeCd3P3, where Ce ions are in a local
trigonal environment [46,78,79,81]. These compounds indicate a huge magnetic anisotropy
with the ab-plane being the magnetic easy plane, which can be qualitatively explained by
CEF effects. In addition, a relatively low magnetic ordering temperature is observed in this
family of materials.

A detailed CEF analysis based on both the magnetic susceptibility and inelastic neutron
scattering data of hexagonal CeAuSn indicates a mixture of the | ± 5/2⟩ and | ∓ 1/2⟩ CEF
ground state doublet, a pure | ± 3/2⟩ doublet as the first excited state, and a mixture of
the | ± 5/2⟩ and | ∓ 1/2⟩ as the second excited doublet state, with energy level splitting of
∼345 K and ∼440 K [78,81]. The obtained CEF parameters from the analysis of magnetic
susceptibility and neutron scattering are B0

2 = 16.21 K, B0
4 = −0.64 K, and B3

4 = 15.32
K [81] and B0

2 = 11.01 K, B0
4 = −0.58 K, and B3

4 = 19.66 K [78], respectively. Both analyses
clearly show a significant B3

4 contribution corresponding to a large mixing angle, consistent
with CEF analysis of CeCd3As3 and CeCd3P3.

The CEF investigation of the rhombohedral CeIr3Ge7 compound shows very similar
CEF eigenstates and eigenvalues with those of other compounds. However, in CeIr3Ge7,
the reported CEF parameters (B0

2 = 34.4 K, B0
4 = −0.82 K, B3

4 = 67.3 K) are slightly
larger than that of other compounds, inducing a huge energy level splittings of 374 K and
1398 K [46]. It has been suggested that the exceptionally large CEF splitting can be related
to the contribution of 5d ligands of Ir atoms [46].

In addition, the CEF analysis on rhombohedral CePtAl4Ge2 antiferromagnet has also
been conducted [79]. Unlike the above mentioned compounds, the ground state and the
second excited state of CePtAl4Ge2 are not in a mixed configuration of |5/2⟩ and |1/2⟩
states. The sign and magnitude of B0

2 (= 13.26 K) and B0
4 (= −0.3 K) CEF parameters in

CePtAl4Ge2 are comparable to that of CeAuSn, CeIr3Ge7, and CeCd3X3 (X = P and As).
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However, because the B3
4 term responsible for mixing is exceptionally small in CePtAl4Ge2

system (B3
4 = 0±0.02 K), the ground state and second excited state is in a pure |±1/2⟩ state

and a pure |∓5/2⟩ state, respectively. The small value of B3
4 term implies a relatively smaller

magnetic anisotropy in CePtAl4Ge2, which is clearly reflected on its magnetic susceptibility
data [79].

4.6 Summary and outlook

At high temperatures, the observed physical properties of CeCd3X3 compounds can be
understood by considering the CEF effects. When the temperature becomes comparable to
the CEF splitting, excited CEF levels get thermally populated and become relevant. It is
clear from the CEF analysis that the large anisotropy in the magnetic susceptibility and
magnetization, and the high temperature electronic Schottky anomaly in the specific heat
are explained by energy level splittings of the J = 5/2 Hund’s rule ground state of Ce3+

ions into three doublets. Note that the validity of the CEF Hamiltonian must be verified
below the (structural) phase transition temperature Ts = 127 K for CeCd3P3 [75] and Ts =
136 K for CeCd3As3 [72]. In addition, inelastic neutron scattering experiments are required
to resolve the discrepancies among the three independent CEF analyses for CeCd3As3.

Although our CEF analysis on CeCd3X3 compounds provides a comprehensive picture
at high temperatures, a number of unanswered questions remain at low temperatures. When
the temperature is much lower than the CEF splitting, the lowest Kramers doublet is only
relevant to explain the observed magnetic ordering at TN = 0.42 K and the upturn in Cm

below 10 K. It is obvious that the temperature dependence and absolute value of Cm below
10 K cannot be explained by the electronic Schottky contribution (see Figs. 4.4 (c) and 4.7
(c)). Since magnetization isotherms at T = 1.8 K for both compounds are mostly reproduced
by CEF calculation with the ground state wave function, the reduction of the magnetization
is due to the CEF effect, implying that the Kondo screening in both compounds is negligible.
This is consistent with the electrical resistivity results of CeCd3X3. Hence, as suggested in
Refs. [72,75], the enhancement of the specific heat below 10 K is probably related to either
the magnetic frustration in triangular lattices [71–75] or simply the magnetic fluctuations
observed in insulating antiferromagnets [82].

The transport property measurements of CeCd3X3 suggest that an RKKY interaction
may be responsible for the magnetic ordering. However, it would have to be mediated by a
small number of conduction electrons, given the remarkably high resistivity value and low
carrier density of these compounds. It has been suggested that the superexchange interaction
in low carrier density YbAl3C3 compound becomes dominant instead of the RKKY interac-
tion, where the carrier concentration is estimated to be n ∼0.01 per formula unit [67]. When
the carrier concentrations of CeCd3As3 (n ∼ 0.003 per formula unit) [72] and CeCd3P3 (n ∼
0.002 per formula unit) [75] compounds are considered, it is not unreasonable to assume
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that the superexchange interaction may be responsible for the antiferromagnetic ordering
below 0.42 K. The partial H − T phase diagram of these compounds, especially the field-
induced increase of TN , is also similar to that of 2D insulating triangular lattice systems
with easy-plane anisotropy [54, 83]. In addition, the low temperature specific heat results
of CeCd3As3, grown by chemical vapor transport (CVT), can be explained by anisotropic
exchange Hamiltonian for an insulating, layered triangular lattice [73]. Note that the flux-
grown CeCd3As3 [72] shows a metallic behavior, whereas the CVT grown CeCd3As3 [73]
indicates a semiconducting behavior. However, except for the resistivity, there are no no-
ticeable differences between these samples in terms of magnetization and specific heat. For
CeCd3X3, the field-induced increase of TN and extremely low carrier density suggest the
superexchange mechanism for the magnetic ordering, where the lowest Kramers doublet is
responsible for the dominant magnetic properties.
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Chapter 5

Conclusion

In summary, the PyCrystalField CEF program has been modified to improve CEF fitting
by way of incorporating exchange interaction via the molecular field approximation. Using
this modified CEF program a set of fitted CEF parameters were obtained for CeCd3As3

and CeCd3P3 and their physical properties were analyzed. The fitted CEF parameters are
B0

2 = 18.55 K, B0
4 = −0.08 K, B3

4 = 23.02 K for CeCd3As3 with energy level splittings of
242 K and 553 K. Those of CeCd3P3 are B0

2 = 20.90 K, B0
4 = −0.03 K, B3

4 = 26.00 K, with
energy level splittings of 257 K and 621 K. The large B3

4 values of both compounds give
a ground state which is mixture of | ± 5/2⟩ and | ∓ 1/2⟩ states, with a dominant | ∓ 1/2⟩
character. The magnetic susceptibility data matches the CEF calculations of both CeCd3As3

and CeCd3P3. The isothermal magnetization curves at 1.8 K are readily reproduced when
the exchange interaction terms are added to the Hamiltonian. For both compounds, the
broad maximum in the magnetic specific heat is well explained by the Schottky anomaly.
At high temperatures, our CEF analysis provides a satisfactory description of the magnetic
properties of CeCd3As3 and CeCd3P3, where the striking similarity of the CEF profile of
both compounds implies a very close resemblance of their crystal field environment. At low
temperatures, further measurements such as magnetization, nuclear magnetic resonance
(NMR), and neutron scattering are necessary to provide further insight into the nature of
magnetism below TN and the role of anisotropic exchange interactions in the triangular
motif. Furthermore, our CEF analysis on CeCd3As3 is compared to those of two earlier
studies. Such comparison of the three studies shows inconsistent CEF energy levels and
eigenstates, requiring further studies.
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Y. Ōnuki, Anisotropic, thermal, and magnetic properties of CeAgSb2 : Explanation
via a crystalline electric field scheme, Phys. Rev. B 67, 064403 (2003).

[29] N. Van Hieu, T. Takeuchi, H. Shishido, C. Tonohiro, T. Yamada, H. Nakashima,
K. Sugiyama, R. Settai, T. D. Matsuda, Y. Haga, M. Hagiwara, K. Kindo, S. Araki,
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