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Abstract

Spin diffusion in an ultracold nondegenerate bosonic gas is significantly affected by quantum
collisions. In binary collisions of noncondensed indistinguishable particles, exchange sym-
metry can lead to a rotation of spins of the colliding particles. These spin-rotating collisions
change dynamical properties of a multi-domain spin structure. Our magnetically-trapped
two-level system is a quasi-one-dimensional pseudo-spin- 1

2 gas of 87Rb atoms.

This thesis work studies motion of domain walls as spin diffusion takes place in a spin-
independent potential. To investigate domain wall motion, we devised a solution to opti-
mally initialize the domains. We also developed an algorithm to analyze the experimental
data to extract domain wall information.

The experimental results in this work suggest that the main prerequisite for the domain
walls to move is asymmetry in the transverse spin distribution with respect to the wall
center. The data shows that transverse spin distribution and total population ratio of the
two states determine the type of motion a domain wall exhibits, and the path that it takes as
the system evolves. Domain walls in the three-domain systems studied in this work exhibit
a linear or oscillatory motion. To further understand domain wall motion, we also explored
domain wall dynamics in two-domain systems. The results of this work are a first step in
understanding why a domain wall moves, and how its trajectory can be controlled.

Keywords: Ultracold atoms; Spin diffusion; Domain wall motion; Nonequilibrium
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Chapter 1

Introduction

Trapped ultracold atoms provide a powerful experimental platform to explore physics in the
quantum regime. The strength of these systems arises from the high degree of control over
the experimental parameters, enabling physicists to relatively easily manipulate a system of
atoms.

Advancements in the field of ultracold atoms have been significant over the past decades.
Today, the field covers a broad range of topics. Some examples are precision clocks [1],
gravity sensors [2], and precision measurements in fundamental particle physics [3], just to
name a few.

Even before atoms are cooled to degeneracy, quantum mechanical aspects of their be-
havior become unignorable at ultracold temperatures. As an atom is cooled, its associated
thermal de Broglie wavelength that characterizes its spatial extent gets comparable to the in-
terparticle interaction range. Particle indistinguishability and wavefunction symmetrization
properties consequently lead to quantum effects [4].

In an ultracold nondegenerate Bose gas, spin dynamics is significantly affected by ex-
change interactions. In binary collisions of noncondensed indistinguishable particles, ex-
change symmetry can lead to a rotation of spins of the colliding particles [5]. This exchange
interaction leads to a wide spectrum of interesting dynamics such as spin waves in trapped
gases [6], localized collapse and revival of coherence [7], and spin self-rephasing and very
long coherence times in a trapped atomic ensemble [8].

Improvements in measuring techniques of ultracold systems have enabled physicists to
have greater experimental control. One of these advances has been the ability to have
spatial resolution in measuring a system’s dynamics [6], rather than just measuring the
ensemble properties as a whole [9]. In addition to measuring techniques, initialization and
control methods in ultracold atomic systems have been upgraded too. In the context of spin
systems, these advancements enable us to initialize the system with more complicated spin
profiles, and we have more control over the operating conditions as the dynamics evolves.

The McGuirk group has previously explored various topics involving spin diffusion in
an ultracold nondegenerate trapped rubidium-87

(87Rb
)

gas. Their previous work includes
optical excitation of nonlinear spin waves [10], longitudinal spin diffusion of two pseudospin
domains [11], and stability of two-domain spin structures and how it can be modified by an
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effective magnetic field [12]. One of the topics that has not been explored is motion of a
spin domain wall, which is investigated in this thesis.

The atomic system in this work is a bosonic cloud of ultracold trapped nondegenerate
weakly-interacting 87Rb atoms. The ensemble has a quasi-one-dimensional geometry with
pseudo-spin- 1

2 spin structure. This thesis explores displacement of spin domain walls as spin
diffusion, affected by a spin rotation effect, takes place in spin-independent potential. The
trajectory that a spin wall takes is a function of different initial parameters that determine
how spin is distributed across the atom cloud in the beginning of the dynamics. The main
focus of this thesis is on three-domain spin systems, but since the parameter space of these
systems is quite large, only a small subset is covered. There are also a few examples of spin
wall motion in two-domain clouds, illustrating the point that spin wall motion is a general
phenomenon.

The structure of this thesis is as follows. Chapter 2 explains the experimental procedures
in our apparatus, which involves the two techniques that we use to cool trapped atoms, and
how imaging of the ensemble is performed. Chapter 3 presents the background theory of
the system including how our pseudo-spin- 1

2 atoms can be mapped onto the Bloch sphere.
Chapter 3 also discusses a one-dimensional spin kinetic equation that, to a good degree, is
the governing equation of our spin system. Chapter 4 then uses the discussions in Chapters
2 and 3 to explain how the desired spin domains are initialized and how the governing
conditions of the dynamics are set. Chapter 5 covers the difficulties that were faced in spin
domain preparation and details of the method we developed to solve the problem. Chapter
6 presents an algorithm that was developed to extract information about spin wall motion.
Experimental data and the relevant discussions are given in Chapter 7. The last Chapter
draws some general conclusions and suggests ideas for future work.
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Chapter 2

Experimental procedures

This Chapter gives an overview of the apparatus with a description of the steps taken to
conduct experiments and obtain data. Figure 2.1 shows an overview of one cycle of the
experimental procedures involved in this thesis work. Initially atoms are loaded and laser
cooled in a magneto-optical trap (MOT) as the first cooling stage. Once enough atoms are
trapped and cooled in the MOT, we prepare the atoms for a mechanical transfer to a science
cell where evaporative cooling further decreases the temperature of the magnetically trapped
atoms. When the desired temperature is reached, the initial conditions of the experiment are
set and the experiment starts under controlled operating conditions. After the experiment,
the state of the atoms is changed using the adiabatic-rapid passage technique to prepare
them for imaging. Finally, we image the atom cloud using an absorption imaging method.
Parameter extraction and data analysis occur after the imaging. This Chapter explains the
essential features of each of these steps before and after the experiment stage. For further
details about these steps, see Ref. [13–16]. The experiment stage is discussed in detail in
Chapter 4 after discussing the background theory in Chapter 3.

Figure 2.1: Overview of one experimental cycle. Initially, atoms are loaded and cooled in a
magneto-optical trap (MOT). When the number of trapped atoms reaches a certain level,
loading stops and three intermediate steps (i.e. compressed-MOT, optical pumping, and
magnetic field increase) prepare the atoms to be mechanically transferred to a science cell,
where evaporative cooling further decreases the temperature of the atoms. The experiment
is then initialized and run. Finally, using the adiabatic-rapid passage (ARP) technique, the
atoms are prepared to be imaged. The last step is imaging. The dashed line on the diagram
means that at the end of every cycle, atoms in the science cell are dumped and new atoms
are loaded in a new cycle. To obtain a full data set, what typically changes in the cycles is
the evolution time at the experiment stage.

3



2.1 1st cooling step: laser cooling in a MOT

The key idea of the laser-cooling method is to slow neutral atoms by repeatedly targeting
them with photons. In addition to cooling the atoms, a MOT simultaneously traps the
atoms using an inhomogeneous magnetic field, which provides a position-dependent restoring
force [17]. Figure 2.2 shows schematics of a MOT comprised of two coils and three pairs of
counter-propagating laser beams. The coils are in an anti-Helmholtz configuration creating
a spatially-varying quadrupolar magnetic field, with a zero point at the center. The three
pairs of laser beams have opposite circular polarizations and intersect at the center of the
trap.

Figure 2.2: Schematic of a MOT setup. Two coils in anti-Helmholtz configuration create a
quadrupolar magnetic field confining the atoms. Three pairs of laser beams with each pair of
opposite circular polarization illuminate the atoms. The dark spot at the center represents
trapped atoms.

To understand how a MOT works, it is easier to start with a one-dimensional MOT;
a three-dimensional MOT is essentially an extension of that. To both cool and trap the
atoms, photons should target those atoms that are moving away from the trap center. A
moving atom in a spatially-varying magnetic field experiences both a Doppler shift of the
laser frequency and a spatially-varying Zeeman shift of its magnetic sublevels m. Figure 2.3
shows how a one-dimensional MOT simultaneously exploits these two phenomena.

The two counter-propagating laser beams have opposite circular polarizations and are
both red-detuned from the resonant frequency of stationary atoms. In this one-dimensional
MOT, when an atom moves to the right, it will scatter more photons from the left-propagating
beam because its polarization is set to be σ−, which excites the atom to a state with
∆m = −1. Photon absorption is polarization-dependent due to conservation of angular mo-
mentum. A similar process happens for an atom moving to the left and the right-propagating
beam with σ+ polarization, which excites the atom to a state with ∆m = +1. To make a
three-dimensional MOT, a similar structure is used in the other orthogonal axes. Although
in Fig. 2.3 the ground state has m = 0, in the cooling process of 87Rb in our system, the

4



ground state could occupy a non-zero Zeeman sublevel.

Figure 2.3: Trapping mechanism in a one-dimensional MOT. The trapping magnetic field
Zeeman-shifts energy levels of the excited state. The horizontal dashed line indicates the
energy of the incoming photons, which is red-detuned from the me = 0 state. Photons
coming from the two directions have opposite circular polarizations. As an atom moves
away from the trap center to the left, it will scatter more σ+ photons because the transition
me − mg = +1 is resonant with these photons on the left of the trap center. Since the
left-moving atom scatters more σ+ than σ− photons, it will be pushed back towards the
center of the trap. Right-moving atoms experience a similar opposing force from σ− photons
in the transition me − mg = −1.

The process that cools the atoms, i.e. slows them down, is as follows. After the atom
is excited by absorbing a counter-propagating photon, it experiences a momentum kick
opposite to its direction of motion. It then spontaneously emits a photon. This cycle
repeats many times, and the atom slows. A key point here is that the spontaneous emission
is isotropic; therefore, on average the momentum recoil the atom experiences by emitting
photons is zero, whereas the momentum kicks it receives from laser photons are towards the
center of the trap. Consequently, the velocity of the atoms in that direction decreases.

To cool atoms to lower temperatures, a cooling cycle is needed. This cycle is made of two
energy levels. A red-detuned laser excites a moving atom to the higher level, exerting an
opposing momentum kick, and then the atom isotropically emits a photon and de-excites.
This process repeats many times, leading to a decrease in the ensemble temperature. In
87Rb, the D2 transition

(
52S1/2 → 52P3/2

)
provides us with this cycle where a cooling laser

of wavelength 780 nm is about 20 MHz (about 3 linewidths) red-detuned from the transition
F = 2 → F ′ = 3 (prime notation refers to the excited state). States with F ′ = 3 only decay
to F = 2, but off-resonant excitation by the cooling laser transfers some atoms to F ′ = 2,
which can decay to F = 2 or F = 1. If the atom goes to the state with F = 1, it gets
out of the cooling cycle. To put it back into that cycle, a second laser, called the repump
laser, is used. This laser is locked to the transition F = 1 → F ′ = 2. Both the cooling
and repump lasers are locked via the saturation absorption spectroscopy technique (see
Ref. [14]). Transitions associated with the cooling and repump lasers are shown in Fig. 2.4.

The MOT duration is determined by comparing the voltage level of a photodiode that
captures the photons emitted by the MOT atoms to a preset threshold voltage. The voltage

5



Figure 2.4: D2 transition
(
52S1/2 → 52P3/2

)
of 87Rb in zero magnetic field. Cooling and

repump transitions for laser cooling Rubidium atoms are shown. The wavelengths of both
lasers are about 780 nm. The cooling laser is red-detuned (dashed line) and the repump
laser is on resonance with the transitions shown on the diagram.

level has a monotonic relation with the cloud density at the end of the second cooling stage,
and its value is chosen by the required operating density for the experiment. When the
photodiode signal reaches the threshold voltage, loading of atoms into MOT stops and the
apparatus prepares the trapped atoms to be transferred to the science cell where the second
cooling step takes place. The next Section summarizes the intermediate steps needed before
transferring the atoms.

2.2 Intermediate steps between the two cooling pro-
cesses

To perform the second cooling stage, namely evaporative cooling, one requirement is to have
a low collision rate with background atoms. However, this rate is high in the MOT cell;
therefore, atoms are mechanically transferred to an ultra-high vacuum science cell, which
is about half a meter away from the MOT cell. When the atoms are being moved to the
science cell, they remain trapped in the magnetic field of the MOT coils which are mounted
on a track.

Before the atoms are transported to the science cell, some intermediate steps are taken.
There are two important results that are achieved by these steps. One is that atoms are
transferred to one Zeeman sublevel. The other is that the cloud is compressed to a smaller
size, which helps avoid heating.

At the end of the laser-cooling process, atoms are in a mixture of Zeeman sublevels.
What we want is for the atoms to be in one internal state. Among the Zeeman sublevels
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involved in the laser cooling, the state |F = 1, mF = −1⟩ is a magnetically trappable state,
and at the end of the intermediate steps, atoms will be in this state with all the other states
removed from the trap.

To transfer the atoms to the science cell, we first compress the cloud. This stage is
referred to as a compressed MOT (CMOT). The reduction in cloud volume is needed because
later we want to ramp up the magnetic field to keep the cloud trapped, and if the cloud
size remains as large as it is at the end of MOT cooling, the increase in the magnetic field
gradient will lead to heating the cloud. The CMOT is achieved by further red-detuning the
cooling laser from the F = 2 → F ′ = 3 transition and reducing the intensity of the repump
laser. These modifications of the two lasers reduce the radiation pressure at the center of
the cloud. Detuning the cooling laser reduces the photon scattering rate of the atoms in the
F = 2 state and the reduction in repump intensity makes an atom spend less time in the
F = 2 state.

We then optically pump the atoms to the F = 1 hyperfine ground state. The cooling
laser does not address atoms that are in F = 1 (see Fig. 2.4); therefore, we can transfer the
atoms to this state simply by turning off the repump laser. When the repump laser is off,
the atoms that are excited to the F ′ = 2 state by the cooling laser will all eventually decay
to the F = 1 state and stay there. The cooling laser is then turned off too. The ground-
state atoms with F = 1 are in a mixture of Zeeman sublevels with mF = −1, 0, 1. Of these
sublevels, only mF = −1 stays trapped; mF = 0 is untrapped, and mF = 1 is anti-trapped.
Thus, the result of optical pumping is a cloud of atoms all in the state |F = 1, mF = −1⟩.
Next, we ramp the magnetic field to tighten the trap, and the cloud is then moved to the
science cell.

Figure 2.5 shows a summary of the intermediate steps between the two cooling processes.
After the MOT atoms get to the science cell, they are released from the MOT magnetic
field. The magnetic field of the science cell catches the atoms and evaporative cooling begins
immediately. Details of this cooling step are discussed in the next Section.

Figure 2.5: Diagram of the intermediate steps that are taken before the atoms are mechani-
cally transferred from the MOT cell to the science cell. A compressed-MOT (CMOT) makes
the atomic cloud smaller. Optical pumping takes the atoms to the state |F = 1, mF = −1⟩.
Finally, the MOT magnetic field is ramped to tighten the trap. The cloud is then mechan-
ically transferred to the science cell by moving the MOT coils, while it is being trapped in
the magnetic field of these coils. When the coils reach the science cell, atoms are released
from the MOT and caught by the magnetic field in the science cell.
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2.3 2nd cooling step: evaporative cooling in a Ioffe-Pritchard
trap

2.3.1 Magnetic trap in the science cell

The magnetic trap in the science cell is a hybrid Ioffe-Pritchard (HIP) trap. Instead of
using a pair of coils like the Ioffe-Pritchard magnetic trap [18], a pair of permanent magnets
are used for radially trapping the atoms by a quadrupole field in the radial direction. An
advantage of permanent magnets is that unlike coils they do not need a power source to
generate the magnetic field. Axial trapping of atoms is achieved by using two pairs of
coils: pinch coils that produce axial field curvature, and bias coils, which produce a uniform
magnetic field at the center of the cloud. Figure 2.6 schematically shows the structure of the
HIP trap. Pinch coils are the outer coils and bias coils are the inner ones. In each pair of
coils, the currents are in the same direction. The directions of the currents in the two pairs
are opposite to each other. The orientation of the permanent magnets is shown in Fig. 2.7.
They are oriented such that the resulting radial magnetic field from these magnets is in the
same direction as that of the quadrupolar field in the MOT so that atoms can be smoothly
transferred to the science cell.

Figure 2.6: Structure of the hybrid Ioffe-Pritchard (HIP) trap in the science cell. The arrows
next to the coils indicate direction of current, and the dark spot at the center represents
trapped atoms. Radial confinement is done by a pair of permanent magnets. The pinch
coils axially trap the atoms, and the bias coils control the bias field. The trapped ensemble
is not drawn to scale.

The resulting trapping magnetic potential near the center of the trap is an anisotropic
harmonic potential [18]

U = 1
2m

(
ω2

ρρ2 + ω2
zz2) , (2.1)

where m is the 87Rb mass and ρ (z) is the radial (axial) coordinate. The trap frequencies
in the radial direction (ωρ) and axial direction (ωz) are given by
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Figure 2.7: End-on view of the hybrid Ioffe-Pritchard trap showing permanent magnet
orientation, which generate magnetic field in the radial direction only.

ωρ =
√

mF gF µB

mB0
η , (2.2)

and

ωz =
√

mF gF µBβ

m
, (2.3)

where η is radial field gradient created by the permanent magnets, β is the axial field
curvature created by the pinch coils, gF is the Lande g-factor, µB is the Bohr magneton,
B0 is the bias magnetic field, and mF is the magnetic sublevel. The 3D harmonic trapping
potential causes the atom distribution at equilibrium to be Gaussian in both axial and
radial directions. However, depending on the ratio of the two trap frequencies, the Gaussian
widths in these two directions could be quite different.

To measure the radial and axial trap frequencies, a momentum kick is exerted on the
cloud to set it into oscillation in the corresponding direction. This momentum kick is
provided by a brief shift in the center of the magnetic trap, which is achieved by placing
a small coil near the atoms. The orientation of the coil determines the direction of cloud
oscillation, which in turn sets the direction of the trap center shift. The frequencies are
extracted from sinusoidal fits. Figure 2.8 shows examples of measurements of radial and
axial trap frequencies. The trap ratio is quite large: ωρ/ωz ≃ 37. This ratio in magnetic
confinement strength makes the cloud geometry highly elongated in the axial direction. The
fast radial frequency rapidly averages any radial dynamics, which makes the cloud effectively
a quasi-one-dimensional system.

2.3.2 Evaporative cooling

Evaporative cooling is the second cooling technique in our system. The key idea of this
method is to remove atoms that have energies higher than the average energy of the cloud,
while allowing the cloud to rethermalize through elastic collisions. Rethermalization of the
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(a)

(b)

Figure 2.8: Measurement data of (a) radial (ωρ) and (b) axial (ωz) trap frequencies. To
induce oscillations in the radial or axial direction, a momentum kick is exerted on the atom
cloud using an electromagnetic coil that is placed near the cloud. To extract the trap
frequency in each direction, a sinusoid is fit to the position of the center of the cloud. In
our system, ωz = 2π × 249.4 ± 0.1 Hz and ωρ = 2π × 6.72 ± 0.01 Hz, with the trap ratio
ωρ/ωz ≃ 37; therefore, the trapped ensemble is a highly elongated ellipsoid, making the
cloud geometry quasi-one-dimensional.

ensemble and removal of these more energetic atoms leads to a drop in the temperature of
the cloud [17].

Because the atoms are in a magnetic trap, they experience Zeeman shifts. The trapping
potential is a harmonic potential; therefore, the Zeeman shift of an atom grows as the atom
moves away from the trap center. In addition to this change in their Zeeman shift, atoms
that have higher kinetic energy spend more time on average near the edges of the cloud.
Using these two properties of atoms in the trap, we change the state of the more energetic
atoms by adjusting the frequency (f) of an rf synthesizer such that the state of these atoms
changes from the trapped state |1, −1⟩ to the untrapped state |1, 0⟩. By sweeping the rf
frequency from high to low, the more energetic atoms get removed from the trap. To allow
the ensemble to rethermalize, the rf frequency is therefore swept in a number of stages.
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The evaporation process in our system uses nine stages. In each stage the rf frequency is
decreased following the exponential form [13]

f (t) = (finit − f0) e−t/τ + f0 , (2.4)

where finit and τ are the initial frequency and the time constant of the evaporation stage,
respectively. f0 is the trap bottom frequency below which the entire cloud is evaporated. In
each evaporative cooling stage, half the energy of the cloud is removed. The functional form
of decreasing the rf frequency in Eqn. 2.4 is chosen to be an exponential drop so that the
cloud has time to rethermalize in each evaporation stage. Overall, in our experiment the
rf frequency is decreased from 60 MHz to about 2 MHz. Furthermore, the thermalization
rate is a function of collision rate, which varies as the density and temperature of the cloud
change through the evaporation stages. To account for that, the time constant τ is modified
accordingly in each exponential ramp.

The last evaporative cooling stage sets the temperature of the cloud. All the experi-
mental data in this thesis are taken at temperature T = 650 nK, which for densities in this
work (typically 2 × 1013 cm−3) means the temperature is above the critical temperature for
Bose-Einstein condensation. The experiment begins immediately after the last evaporation
stage. Details of experiment initialization and control are discussed in Chapter 4. Once an
experiment finishes, an adiabatic rapid passage step prepares the atoms to be imaged so
that cloud parameters can be extracted. These steps are discussed in the following Sections
of this Chapter.

2.4 Adiabatic rapid passage (ARP)

Information about the cloud properties at the end of an experiment is obtained by imaging
the atoms. A key point in imaging atoms is to have a high signal-to-noise ratio (SNR).
For this purpose, a cycling transition is needed. However, the state |F = 1, mF = −1⟩
does not have a corresponding excited state that forms a cycling transition. The state
|2, −2⟩ on the other hand makes a cycling transition with |3, −3⟩. For this reason, before
the imaging begins, we transfer the atoms from |1, −1⟩ to |2, −2⟩ via ARP. We use the
ARP method because the resonance frequency varies across the cloud due to the harmonic
trapping potential. To perform the ARP, the frequency of a microwave synthesizer is swept
through resonance of all atoms in state |1, −1⟩. The ARP process takes about 0.4 ms. It
should be noted that the state |2, −2⟩ is anti-trapped so the imaging should be done quickly
after ARP.

2.5 Imaging

The imaging method that we use is absorption imaging, in which a resonant probe laser
illuminates the atoms and a lens focuses their shadow as well as unabsorbed laser light
onto a camera. To make the probe laser resonant with the entire cloud, the inhomogeneous
magnetic field needs to become flat, which is achieved by increasing the strength of the bias
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magnetic field. Another step that needs to be taken before turning on the probe laser is to
allow the cloud to expand to avoid absorption saturation. The bias magnetic field is ∼ 3 G
during the experiment, and imaging is done in ∼ 100 G. Neither of these field values is
suitable for the expansion. In a low field, the cloud quickly expands into the inhomogeneous
regions of the trapping potential. In a high field, the cloud expands too slowly. We allow
the cloud to expand in an intermediate field of ∼ 50 G for about 5 ms. When the expansion
step is finished, the bias field is ramped to ∼ 100 G, and then the probe laser is turned on.
In addition to flattening the magnetic potential, ramping the field up also increases energy
separation of other sublevels from the probe transition frequency.

The probe laser is locked to the cycling transition |F = 2, mF = −2⟩ ↔ |F ′ = 3, m′
F = −3⟩

using the phase-locked loop (PLL) method (see Ref. [14] for further details). Figure 2.9 shows
the transitions involved in ARP and imaging.

Figure 2.9: Schematics of ARP and imaging transitions for atoms initially in
the state 5S1/2 |F = 1, mF = −1⟩. After the atoms are transferred to the state
5S1/2 |F = 2, mF = −2⟩ via ARP method, they are allowed to expand for about 5 ms
to avoid absorption saturation. The cycling transition 5S1/2 |F = 2, mF = −2⟩ ↔
5P3/2 |F ′ = 3, m′

F = −3⟩ is used for absorption imaging. The energy separations are not
drawn to scale.

Because the atoms in the state |2, −2⟩ are not trapped, they fall due to gravity. To
overcome this issue, a magnetic field from a shim coil is applied to counteract the downward
force of gravity.

During imaging, photons from the probe laser and a small percentage of isotropically
scattered photons from the atoms are captured by an electron-multiplying charge-coupled
device (EMCCD) camera. This imaging method is destructive, i.e. at the end of imaging,
atoms are lost from the trap and the experimental cycle must start over from the MOT
stage. The images taken by the camera are read by a computer for analysis.
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In each experimental cycle, there are three images that are required to account for
systematics associated with the absorption imaging technique. In the first image (“atom
image”), the probe laser is on and atoms are present. In the second image (“light image”),
atoms are not present but the laser beam is still on. In the third image (“dark image”),
there are no atoms and the laser beam is off.

Before cloud parameters such as temperature and number of atoms can be extracted
from the images, we need to address systematics and resolve issues in optical density (OD).
The beam of the probe laser has spatial intensity variations. These variations, along with
peak intensity, are extracted from the light image. The dark image is also needed because
there can always be some background light captured by the camera, in addition to the probe
laser light and the scattered photons from the atoms. Additionally, the dark image provides
a measure of the dark current and CCD biasing.

For each camera pixel, the measured optical density is given by Beer’s law with the dark
image intensity subtracted from the intensities of light and atom images:

ODmeasured = ln
(

Ilight − Idark

Iatoms − Idark

)
. (2.5)

There is always a minimum detected intensity because the probe light is not entirely reso-
nant with the cloud or can scatter from a path not passing through atoms. This minimum
intensity corresponds to a saturation OD (ODsaturation) that is observed when all the reso-
nant light is absorbed by the cloud. To measure ODsaturation, we image a very dense cloud
such that the OD distribution saturates and obtains a flat top. The value of the flat part is
ODsaturation, which is about 2.8 in our system. The modified optical density that accounts
for saturation effects is

ODmodified = ln
(

1 − e−ODsaturation

e−ODmeasured − e−ODsaturation

)
. (2.6)

The final correction is to account for saturation of the imaging transitions, which changes
the scattering rate. This correction makes the final processed OD

ODactual = ODmodified +
(
1 − e−ODmodified

) Iprobe

Isaturation
(2.7)

We set the probe intensity Iprobe to be ∼ 0.1 Isaturation to minimize the saturation correction
factor. Here, saturation intensity is Isaturation = 1.67 mW/cm2.

2.6 Extracting ensemble parameters

We find the cloud parameters following Ref. [13]. A nondegenerate cloud at equilibrium has
a Gaussian density distribution in a harmonic trapping potential. The fitting function is a
2D Gaussian

fGaussian = ODpeak e−(z−zc)2/2(z′
0)2

e−(y−yc)2/2(y′
0)2

, (2.8)

where z (y) is the axial (radial) coordinate, zc and yc are coordinates of the center of the
cloud, and z′

0 (y′
0) is the axial (radial) width of the cloud after expansion. The parameters to

be fit for each image are ODpeak, zc, yc, z′
0 and y′

0. Because of the cloud expansion, z′
0 is not

13



the actual axial Gaussian width. Denoting the trap frequency before and after expansion
as ω0 and ω respectively, the actual axial Gaussian width with expansion time texp is

z0 = z′
0ω√

ω2 + (ω2 + ω2
0) sinh2 (ωtexp)

. (2.9)

The trap frequency during the expansion does not change. Denoting the trap ratio by
α = ωρ/ωz, the peak density is

n0 = 1
(2π)3/2

Nα2

z3
0

, (2.10)

where N is the total number of atoms given by

N = 2πz0y0ODpeak/AC. (2.11)

For the specific imaging states that we use for 87Rb, the absorption cross-section (AC) is

AC = 1
2

(
3λ2

2π

)
1

1 + 4
(∆

Γ
)2 , (2.12)

where λ is the probe laser wavelength, and Γ is the natural linewidth. ∆ is the detuning
from resonance, but since the probe beam is on resonance, we have ∆ = 0. There is a factor
of 1/2 in front of Eqn. 2.12 because we drive a circular polarization transition with a linearly
polarized light. Finally, the cloud temperature is

T = mω2
zz2

0
kB

. (2.13)

The next Chapter discusses the background theory of our experimental system.
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Chapter 3

Background theory

This Chapter presents the relevant theoretical background for our system. Discussions
are split into two Sections. The first Section discusses interaction of a two-level system
with an oscillating electromagnetic field. It explains how we use Rabi π-pulses and π

2 -
pulses to manipulate the internal state of atoms in initializations and measurements. Next,
the important concept of the Bloch sphere is presented. It is then shown how our two-
level system is mapped onto the Bloch sphere. The second Section presents a 1D kinetic
equation for spin dynamics. It discusses the identical spin rotation effect, which is a result
of particle indistinguishability and wavefunction symmetrization in binary collisions. In our
nondegenerate ultracold gases, this rotation effect is the dominant factor that modifies spin
diffusion.

3.1 A two-level system in an oscillating electromagnetic
field

3.1.1 Rabi flopping

The Hamiltonian of a two-level system coupled to an electromagnetic field is

H =

−ℏω0/2 ΩRe−iωt

ΩReiωt ℏω0/2

 , (3.1)

where ω is the applied field frequency, ω0 is the atomic resonance frequency between the two
states, and t is the interaction duration. The strength of the coupling between the atom and
the field is signified by the Rabi frequency, ΩR. This Hamiltonian leads to what is called
Rabi flopping in which an atom oscillates between the ground state |1⟩ and the excited state
|2⟩ at frequency ΩR while interacting with an oscillatory electromagnetic field. We can find
the probability, P2 (t), of finding an atom in the excited state by solving the time-dependent
Schrodinger equation. For the initial conditions P1(t = 0) = 1 and P2 (t = 0) = 0, P2 (t) is
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given by

P2 (t) =
(

ΩR

Ω′
R

)2
sin2

(
Ω′

R

2 t

)
, (3.2)

where the effective Rabi frequency is

Ω
′

R =
√

Ω2
R + δ2, (3.3)

with δ ≡ ω − ω0 being the detuning of the field frequency from the transition frequency.
A π-pulse is defined as a pulse that is applied for a duration of tπ such that Ω′

Rtπ = π.
This condition makes the sine-squared term in Eqn. 3.2 equal to 1. Similarly, a π

2 -pulse is
defined such that Ω′

Rtπ/2 = π/2, making the sine-squared term equal to 1/2. Figure 3.1
depicts Rabi flopping for the case where there is no detuning

(
Ω′

R = ΩR

)
.

Rabi pulses can be used to modify the internal state of atoms. When the detuning is
zero and the atom is in state |1⟩, applying a π-pulse takes it to state |2⟩, and a π

2 -pulse
changes the state of the atom from |1⟩ to an equal superposition of the two states. The
amplitude and frequency of P2 (t) oscillations depend on the detuning. Maximum amplitude
and minimum oscillation frequency occur when the pulse is on resonance. As the detuning
increases, oscillations happen faster but amplitude decreases.

Figure 3.1: Probability of finding an atom in the excited state |2⟩ when it is initially in the
ground state |1⟩ and the Rabi pulse is on resonance, i.e. Ω′

R = ΩR. In this Rabi-flopping
phenomenon, when Ω′

Rt = π, the pulse is called a π-pulse and when Ω′

Rt = π/2, it is called
a π

2 -pulse. A resonant π-pulse maximizes the probability of finding the atom in the excited
state and a resonant π

2 -pulse changes the state of an atom from the ground state to an equal
superposition of the ground and excited states.

3.1.2 Bloch sphere representation of the spin state

The spin state |S⟩ of a two-level spin system can be represented as a vector S⃗ on a so-called
Bloch sphere, illustrated in Fig. 3.2. In this representation, the spin vector S⃗ is also referred
to as the Bloch vector. The Bloch sphere exists in an abstract three-dimensional space with
axes u − v − w. Evolution of the internal state of an atom can be visualized by the motion
of S⃗ in this representation. In our system, the axes of the Bloch sphere do not coincide with
the spatial coordinate axes because the states are not real spin-1/2 states. Our system is
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referred to as a peudo-spin-1/2, and like any other two-level system, it is possible to map it
onto the Bloch sphere.

The components of the spin vector along the axes of the Bloch sphere are

S⃗ = Suû + Sv v̂ + Swŵ . (3.4)

Here, Sw is referred to as the longitudinal spin component
(
S||
)
. (Su, Sv) are the two

components of the transverse spin
(

S⃗⊥

)
, which lies in the horizontal plane (the u−v plane)

of the Bloch sphere. The azimuthal angle ϕ of S⃗ is the relative phase between the transverse
spin components. The ground and excited states are the basis states where |1⟩ points to the
south pole of the Bloch sphere and |2⟩ to the north pole. When the spin state is an equal
superposition of the two basis states, we have

|S⟩ = 1√
2
(
|1⟩ + eiϕ |2⟩

)
, (3.5)

which lies in the equatorial plane of the Bloch sphere.

Figure 3.2: Bloch sphere representation of the spin state vector S⃗. In this visualization of
our two-level system, the south pole is associated with the ground state |1⟩ and the north
pole with the excited state |2⟩. A purely longitudinal spin state would lie on the w-axis and
a purely transverse spin state would exist in the u − v plane. The azimuthal angle (ϕ) is
the relative phase between the two transverse components.

When the atom interacts with an oscillating field, the effective Rabi vector can be thought
of as a torque vector, with components Ω⃗′

R = ΩRû + δŵ, acting on the spin state vector
according to

dS⃗

dt
= Ω⃗

′

R × S⃗. (3.6)

Eqn. 3.6 describes a motion in which the Bloch vector S⃗ precesses around the torque vector
Ω⃗′

R. During this precession, the tip of the Bloch vector remains on the sphere, so the mag-
nitude of S⃗ remains the same. In this picture, the transverse component of S⃗ is associated
with internal coherence.

When the coupling field is resonant, Ω⃗′

R points along the u-axis, and the spin state
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vector would precess around the u-axis of the Bloch sphere. A resonant π-pulse and π
2 -pulse

applied to a spin vector initially in the state |1⟩ are schematically shown in Fig. 3.3. If the
detuning is not zero (δ ̸= 0), Ω⃗′

R would point away from the u-axis. Depending on the sign
of detuning, it could point up or down, and applying a Rabi pulse would make S⃗ rotate
around Ω⃗′

R without fully going through state |2⟩.

(a) (b)

Figure 3.3: Depiction of resonant (a) π-pulse and (b) π
2 -pulse when initially the atom is in

the ground state |S⟩ = |1⟩. When a Rabi pulse is applied, the spin state vector S⃗ precesses
around the effective Rabi vector Ω⃗′

R. If there is no detuning, Ω⃗′

R points along the u-axis, and
Rabi pulses become resonant. Curved dashed lines indicate the trajectory of S⃗. Straight
dashed lines show the final state of the state vector, which is (a) the excited state |2⟩ for a
π-pulse, and (b) a pure transverse state for a π

2 -pulse.

3.2 Spin dynamics

3.2.1 Ultracold atoms

At a given temperature T , the spatial extent of the wave function of an atom with mass m

can be characterized by its thermal de Broglie wavelength

λdB =

√
2πℏ2

mkBT
, (3.7)

where kB is the Boltzmann constant. When λdB is larger than the two-body interaction
length, the binary collisions between indistinguishable particles lead to coherent exchange
interactions. In our system, the relevant collision length scale is the s-wave scattering
length a, which sets the effective range of interaction for two atoms. The thermal de Broglie
wavelength grows with decreasing temperature, and at ultracold temperatures, it can become
much larger than the scattering length. In this work, T = 650 nK is the typical operating
temperature, which gives λdB ≃ 233 nm. For 87Rb, the scattering length is about 100 times
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the Bohr radius, so a ≃ 5.3 nm; therefore, λdB ≫ a. This large ratio between the thermal de
Broglie wavelength and scattering length means that during collisions, the wave functions
of the two atoms have a large overlap, which necessitates wave function symmetrization
with respect to atom exchange due to the indistinguishability of the colliding particles. A
consequence of this symmetrization is a rotation of individual spins about their mean spin,
which appears as a spin-torque term in the governing spin kinetic equation that is discussed
next.

3.2.2 Spin Boltzmann equation

In the rest of this Chapter, the theory of spin diffusion of a two-level system trapped in
a harmonic potential is described. The discussions follow the work in Refs. [19, 20]. In
the notation here, the symbol ⊥ refers to the radial direction, and z represents the axial
direction of the trapped ensemble.

The mean-field interaction strength for two scattering particles of mass m is gij =
4πℏ2aij/m (i, j = 1, 2), where aij is the s-wave scattering length between the two states. For
87Rb, a11 = 100.9a0, a12 = 98.2a0, a22 = 95.6a0, where a0 is the Bohr radius [21]; therefore,
it is reasonable to make the approximations a11 ≃ a12 ≃ a22 ≡ a, and g11 ≃ g12 ≃ g22 ≡ g.
Accounting for the small differences in the scattering lengths leads to a slow decay in the
transverse spin in the order of 10 seconds or more [22].

To describe the dynamics of this ensemble of pseudo-spin-1/2 particles, a semiclassical
approach can be taken. In this approach, the motion of atoms is described in terms of
a phase-space distribution function, where the phase-space variables are position (r) and
momentum (p) of the atoms. The density distributions of atoms and spins are indicated by
f (r, p, t) and σ⃗ (r, p, t), respectively. The total number density is obtained from adding the
number density in each state, which is given by

n (r, t) = n1 (r, t) + n2 (r, t) =
∫

dpf (r, p, t) / (2πℏ)3
.

The spin density is given by

S⃗ (r, t) =
∫

dp σ⃗ (r, p, t) / (2πℏ)3
.

The longitudinal spin component represents the relative number density: Sw = n2 − n1.
Internal coherence is the magnitude (S⊥) of the transverse spin S⃗⊥ = S⊥eiϕ, and ϕ is the
relative phase between the components (Su, Sv) of the transverse spin.

The magnetic trapping potential is

Uext (r) = 1
2mω2

z

[
α2 (x2 + y2)+ z2] ,

where α is the trap aspect ratio. The effective center-of-mass potential is

Un (r, t) = Uext (r) + g11n1 (r, t) + g22n2 (r, t) + g12 [n1 (r, t) + n2 (r, t)] /2.
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The effective coupling field is given by

Ω⃗n (r, t) = Ω⃗
′

n (r, t) + g12

ℏ
S⃗ (r, t) , (3.8)

where

Ω⃗
′

n (r, t) = {Ωu (r) , Ωv (r) , Ωw (r) + ∆MF (r, t)} ,

with {Ωu, Ωv, Ωw} being the components of the coupling field vector Ω⃗ (r) (see below), and
∆MF is the mean-field frequency shift.

The coupled Boltzmann equations for f (r, p, t) and σ⃗ (r, p, t) are given by

∂f

∂t
+ p

m
· ∇f − ∇Un · ∇pf − ℏ

2
∑

i=u,v,w

∇Ωni · ∇pσi = ∂f

∂t

⌋
coll

, (3.9)

∂σ⃗

∂t
+ p

m
· ∇σ⃗ − ∇Un · ∇pσ⃗ − ℏ

2 ∇Ω⃗n · ∇pf − Ω⃗n × σ⃗ = ∂σ⃗

∂t

⌋
coll

. (3.10)

The right-hand sides of Eqn 3.9 and 3.10 are the elastic collision integrals, which are given
in Ref. [19].

It is possible to decouple Eqn. 3.9 and 3.10 by considering energy scales. In both of
these equations, the third and fourth terms scale like gn/kBT . At the operating conditions
in this work, the typical values are T = 650 nK and n0 = 2 × 1019 m−3 for temperature and
peak density, making kBT = 13.5 kHz × h and gn0 = 155 Hz × h; therefore, gn/kBT ≪ 1.
Dropping the third and fourth terms in both Boltzmann equations leads to their decoupling,
and the Boltzmann equation of the spin density distribution becomes

∂σ⃗

∂t
+ p

m
· ∇σ⃗ − ∇Uext · ∇pσ⃗ − Ω⃗n × σ⃗ = ∂σ⃗

∂t

⌋
coll

. (3.11)

In our system, α ≫ 1 (see Section 2.3), which makes the geometry of the system quasi-
one-dimensional. It is therefore preferable to convert Eqn. 3.11 into a one-dimensional
equation. Using the ansatz σ⃗ (r, p, t) = σ⃗ (z, p, t) h0 (r⊥, p⊥), where the static radial profile
is h0 = exp

[
−
(
p2

⊥/2m + mω2
⊥r2

⊥/2
)

/kBT
]
, and integrating over the phase-space variables,

Eqn. 3.11 further simplifies to the 1D spin Boltzmann equation

∂σ⃗

∂t
+ p

m

∂σ⃗

∂z
− ∂Uext

∂z

∂σ⃗

∂p
− Ω⃗n × σ⃗ = ∂σ⃗

∂t

⌋
1D

. (3.12)

The RHS of Eqn. 3.12 represents damping of excitations due to elastic collisions. In our
system, the observable is the spatial distribution of spin

S⃗ (z, t) = 1
2πℏ

∫
dp σ⃗ (z, p, t) . (3.13)

The spin-torque term Ω⃗n × σ⃗ in Eqn. 3.12 acts as an effective magnetic field, and makes the
dynamics non-linear. In the absence of an external coupling field, Ωu (z) = Ωv (z) = 0, and

Ωw (z) = ∆ (z) = Udiff (z) /ℏ, (3.14)
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is the frequency splitting between the two states across the ensemble. Udiff is the differential
potential, which is defined as the energy difference between the two states across the cloud.
These conditions therefore make

Ω⃗n × σ⃗ =
(

Udiffŵ × σ⃗ + gS⃗ × σ⃗
)

/ℏ. (3.15)

The cross-product S⃗ × σ⃗ in Eqn. 3.15 leads to the so-called identical spin rotation effect,
which is further discussed below.

When the differential potential is uniform, we can make another reference frame trans-
formation to make Udiff = 0. From this change, we get Ω⃗n = gS⃗/ℏ, which further simplifies
Eqn. 3.12 to

∂σ⃗

∂t
+ p

m

∂σ⃗

∂z
− ∂Uext

∂z

∂σ⃗

∂p
− g

ℏ
S⃗ × σ⃗ = ∂σ⃗

∂t

⌋
1D

. (3.16)

3.2.3 Identical spin rotation effect (ISRE)

The term S⃗ × σ⃗ in Eqn. 3.15 leads to rotation of the spins of two colliding particles around
their combined spin. The physical effect giving rise to this term is quantum particle indistin-
guishability [5]. Figure 3.4 schematically shows that for two colliding ultracold atoms, the
thermal de Broglie wavelength is larger than the scattering length. Thus, in a cold collision
it cannot be determined which particle scatters forward and which backward, leading to the
requirement of symmetrization of the two-body wave function. This symmetrization leads
to spin rotation of each colliding atom around their mean spin. This phenomenon is referred
to as the identical spin rotation effect.

The ISRE is essentially an exchange effect during a collision, which in general changes
the internal state of the two colliding atoms. An example of this process is depicted in
Fig. 3.5 in which two purely transverse spins with a relative phase difference moving in
opposite directions collide and, due to the ISRE, they end up with opposite longitudinal
components after the collision. Neither longitudinal nor transverse component of individual
spins is conserved by the ISRE. However, in a binary interaction governed by the ISRE,
the total spin and hence the total energy of the system remains the same because the spins
precess together around the net spin, conserving the total spin [23].

Orthogonal spins are not modified by the ISRE as the combined spin of the colliding
particles would be zero. Orthogonality here refers to states in the Hilbert space. With
regards to the ISRE, the ensemble is at equilibrium if the atoms are in a uniform binary
mixture of states |1⟩ and |2⟩.

On a macroscopic scale, the ISRE can modify transport properties of gases with internal
states [24]. It is not easy to predict the dynamics of the entire cloud based on the rotation
effect in a few collisions. In any case, the ISRE can convert binary collisions to collective
spin behavior. The strength of the ISRE can be quantified by the parameter

µ = gnτcl/ℏ , (3.17)

with the radially averaged mean-collision time given by [19]
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(a) (b)

Figure 3.4: Schematic illustration of collision of two (a) distinguishable and (b) indistin-
guishable atoms. Each small circle represents an atom. Since λdB ∝ 1/

√
T , the thermal

de Broglie wavelength λdB is smaller than the scattering length a at higher temperatures
T , and the colliding atoms are distinguishable as in (a). At ultracold temperatures like
(b), we have λdB ≫ a, and the atoms become indistinguishable in a collision, making it
necessary for the the wave function to be symmetrized with respect to a particle exchange.
The identical spin rotation effect is a consequence of this symmetrization.

τcl (z) ≃
[
16a2n (z)

√
πkBT/m

]−1
. (3.18)

In physical terms, the parameter µ is the ratio of the exchange frequency to the elastic
scattering rate. Since µ ∝ 1/

√
T , the ISRE strengthens as temperature decreases, and

becomes the dominant effect compared to classical elastic scattering.
The next Chapter uses the concepts presented in this and the previous Chapters to

discuss the steps for initializing spin-state profiles and measuring evolution of spin domains.
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(a)

(b)

(c)

Figure 3.5: Schematic example of the ISRE. Each Bloch sphere represents an atom with
a particular spin shown as an arrow. (a) Before the collision, the two spins are purely
transverse with a relative phase difference. (b) During the collision, the two spins precess
around their mean (the black arrow). (c) After the collision, the two spins have obtained
opposite longitudinal components. The degree of rotation of the spins in a collision depends
on the ISRE strength, which increases as the temperature decreases.
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Chapter 4

Spin profile preparation and
evolution

In Chapter 2, the steps before and after an experiment were explained. In particular, it
included the two cooling techniques, and the procedures for imaging the ultracold trapped
atoms. Chapter 3 discussed the relevant background theory for our system, including con-
cepts of π- and π

2 -pulses. This Chapter builds on the previous discussions to explain how
the experiment is actually initialized and controlled. After presenting the two-level system
in more detail, creation of uniform differential potentials across the cloud is described. The
invaluable Ramsey method of spectroscopy used for measuring the differential potential is
discussed, too. The patterning of light from a laser to “paint” spin textures on the cloud
is explained. Finally, initialization of spin profiles and measurement of the evolution of the
system is presented.

4.1 The experimental two-level system

The atomic species we use is rubidium-87. The experimental two-level system is made of
two magnetically trapped Zeeman sublevels of its hyperfine ground states, namely |1⟩ =
|F = 1, mF = −1⟩ and |2⟩ = |F = 2, mF = 1⟩, where F and mF denote the total angular
momentum and magnetic quantum numbers, respectively. The magnetic moments of these
two state are nearly the same, which makes them equally trapped by the magnetic field.

Since these two states are different by two units of angular momentum, they cannot be
coupled by a single photon transition. As shown in Fig. 4.1, the coupling is achieved by
a two-photon process in which a ∼ 6.8 GHz microwave photon and a ∼ 3 MHz rf photon
are used. Both photons are detuned from the intermediate state |F = 2, mF = 0⟩ by about
700 kHz so that excitations to this level are avoided. The Zeeman shifts across the cloud are
not uniform due to nonuniformity of the trapping potential. However, in small magnetic
fields both |1⟩ and |2⟩ states experience equal first-order Zeeman shifts; therefore, the spatial
inhomogeneities in Zeeman shifts are negligible and the same two photons can couple the
two Zeeman states across the cloud.
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Figure 4.1: Zeeman sublevels of the two ground hyperfine levels of the 5S1/2 manifold
of 87Rb. Trapped states |F = 1, mF = −1⟩ and |2, 1⟩ constitute the two-level system in
this work. The two states are coupled by a microwave photon and an rf photon, which are
detuned from the intermediate state |2, 0⟩ to avoid real transitions to that state. The energy
separations are not drawn to scale.

4.2 Cancellation spot

The differential potential can be written as Udiff = hf12, where f12 is the transition fre-
quency. The precession rate of the transverse spin around the longitudinal axis of the Bloch
sphere is a function of the differential potential. If there is no inhomogeneity in Udiff across
the cloud, the associated Larmor precession frequency can be eliminated by moving to an
appropriate rotating reference frame. However, in general Udiff varies with the axial position
z, and its spatial inhomogeneities can lead to smaller coherence times in the experiment. It
is thus desirable to make Udiff as uniform as possible.

There are three sources that contribute to the Udiff axial profile. One is the mean-field
shift, which is a result of collisional interactions between the atoms. Another is the Zeeman
shift produced by the trapping magnetic field. The third source is the ac Stark shift, which
can be induced by an off-resonant laser. In the work of this thesis, the laser light is only used
to prepare the initial spin profile of the cloud (see Section 4.4) and the beam is immediately
turned off after the initialization. In these cases, Udiff would only be set by the mean-field
and Zeeman shifts.

In general, the shifts from the mean-field and Zeeman effect do not cancel each other.
Through what is called a mutual compensation scheme [21], it is possible to adjust the effects
of the two energy-shifting schemes such that they would cancel each other. The rest of this
Section explains how the differential potential is made spatially uniform in our system, and
how it is measured using the Ramsey method of spectroscopy.
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4.2.1 Making Udiff uniform

Collisions between atoms can lead to a shift in their energy levels. This mean-field compo-
nent of the differential potential is given by [13]

∆MF (z) = 4πℏ2

m
{2a22n2 (z) − 2a11n1 (z) + 2a12 [n1 (z) − n2 (z)]} . (4.1)

As the atomic sample has a Gaussian density profile, the mean-field collisional shift, which
scales with the atomic density, also has a Gaussian profile.

Since the atoms are trapped in a magnetic field in the science cell, the degeneracy in
the magnetic quantum number mF is removed. For intermediate magnetic fields B, the
Breit-Rabi formula for J = 1/2 (which is the case for the 5S1/2 ground state considered
here) gives the shift in each mF energy level [13]

E

(
F = I ± 1

2 , mF

)
= −∆Ehf

2 (2I + 1) − gImF µBB ± ∆Ehf

2

√
1 + 4mF

2I + 1x + x2 , (4.2)

where

x = (gI + gJ) µBB

∆Ehf
. (4.3)

Here, gI and gJ are the nuclear and Lande g-factors, respectively. ∆Ehf is the hyperfine
splitting between the two states (F = 1 and 2) in zero B-field. For 87Rb, the nuclear spin
I = 3/2.

At a so-called magic spot of B0 ∼ 3.23 G, Eqn. 4.2 gives a minimum for the differential
potential. In the vicinity of the magic spot, the differential Zeeman shift is first-order inde-
pendent of B, so the transition frequency can be written as f12 (z) = fmin + b [B (z) − B0]2

where b is a constant and fmin is the transition frequency at the local minimum. The mag-
netic field near the magic spot can be approximated as B (z) = Bbias + 1

2 B′′z2. Hence,
f12 (z) can be written as

f12 (z) = fmin + b (Bbias − B0)2 + b

[(
B′′

2

)2
z4 + (Bbias − B0) B′′z2

]
. (4.4)

The quadratic term (Bbias − B0)2 in Eqn. 4.4 does not depend on z, so it can be absorbed
into fmin. About 100 mG away from B0, the term

(
B′′

2

)2
z4 can also be ignored, further

simplifying f12 (z) to
f12 (z) = fmin + b (Bbias − B0) B′′z2, (4.5)

showing that the differential Zeeman shift has a quadratic dependence on position near the
magic spot. The control parameter here is the bias magnetic field Bbias, and by changing
its value, the differential Zeeman shift can be adjusted.

Since the Zeeman shift has a quadratic profile and the mean-field shift has a Gaussian
profile, it is possible to approximately flatten the differential potential by adjusting the
trapping magnetic field or the density of the atoms in such a way that these two would
cancel each other. Figure 4.2 displays this mutual compensation schematically. With this
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method, a perfect cancellation is not possible as a parabola and a Gaussian do not exactly
cancel each other. In the work of this thesis, the density of the atoms is chosen first;
therefore, the parameter to be adjusted to obtain a uniform differential potential is the
bias magnetic field. If the density changes, the mean-field shift would also change, and the
counteracting Zeeman shift would occur at a different cancellation spot; thus the magnetic
field would have to be adjusted accordingly.

Figure 4.2: Schematic representation of the mutual compensation scheme. The Gaussian
mean-field shift and the roughly quadratic Zeeman shift almost cancel each other, which
makes the total differential potential across the ensemble approximately flat. The parameter
that we adjust is the magnetic field and hence the differential Zeeman shift.

4.2.2 Measuring Udiff with Ramsey spectroscopy

In this work, the differential potential is measured via the Ramsey method of spectroscopy.
Figure 4.3 shows a schematic of the procedures in this method, in which there are two Rabi
pulses with duration τ and a free evolution time of interval T in between. The pulses are
resonant two-photon pulses. To maximize the amplitude of the Ramsey fringes, both pulses
are π

2 -pulses. A π
2 -pulse takes an atom in spin state |1⟩ to the transverse plane with state

|S⟩ = 1√
2
(
|1⟩ + eiϕ |2⟩

)
. (4.6)

The amplitude of Ramsey fringes is a measure of the magnitude of the transverse component
of spin. A π

2 -pulse maximizes the transverse component, which improves the signal-to-noise
ratio.

During the evolution time, the frequency of the local oscillator generating the pulses
is ω. Denoting the resonant frequency of the atoms by ω0, the detuning is defined as the
difference between these two frequencies: δ = ω0 − ω. When δ ̸= 0, the transverse spin
accumulates phase with respect to the oscillator during the evolution time. The second
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Figure 4.3: Procedures in the Ramsey method of spectroscopy for measuring the differential
potential. The durations are not drawn to scale since τ ≪ T . To maximize the amplitude
of Ramsey fringes, both Rabi pulses are π

2 -pulses. Fringes are obtained by sampling at
different evolution time T .

Rabi pulse converts the accumulated phase into a probability distribution for the atom
being in the ground or excited state. For δ ≪ ΩR and τ ≪ T , the probability of finding an
atom in state |2⟩ after time T is given by

P2 (δ, T ) = 1
2 [1 + cos (δT )] . (4.7)

To obtain Ramsey fringes, data is acquired at different T values. A sinusoid is fit to find
the frequency. Figure 4.4 shows an example of a typical Ramsey measurement.

Figure 4.4: Example of a Ramsey measurement. A sinusoid is fit to extract parameters.

The evolution of the relative phase ϕ (z, t) is proportional to the relative energy difference
between the two states, i.e. the differential potential. Across the cloud, ϕ (z, t) is given by

ϕ (z, t) =
(

Udiff (z)
ℏ

)
t. (4.8)

Spatial variations of the differential potential can be effectively found by measuring the fre-
quency of Ramsey oscillations across the cloud. Figure 4.5 shows a flat differential potential
profile that has been obtained by adjusting the Zeeman shift to cancel the mean-field shift.
This cancellation is for an equal ratio of populations of the two states. Nonetheless, since
the s-wave scattering lengths are almost equal for the two states (a11 ≃ a12 ≃ a22), Udiff

remains fairly flat for other population ratios as well.
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Figure 4.5: Example of flat Udiff , achieved by adjusting the Zeeman shift to cancel the
mean-field collisional shift across the could. The common hyperfine splitting between the
two states has been subtracted. The red line is a fit to the central region, which has a slope
of 0 Hz/mm. Error bars are fit uncertainties to Ramsey oscillations as in Fig. 4.4. Error
bars away from the central region grow because the SNR drops towards the tails of the
Gaussian distribution of atoms. The fact that Udiff is less uniform toward the sides of the
cloud does not substantially affect the dynamics because the atom density is relatively very
small in those regions.

4.3 Making patterned light

In this work, off-resonant patterned light is used for initializing spin profiles. To make pat-
terned light, we use a laser beam and a digital micromirror device (DMD). To initialize spin
profiles, patterned light with appropriate laser beam intensity together with two-photon mi-
crowave pulses are used. Details of the procedures for spin profile initialization are discussed
in Section 4.4. This Section focuses on how the light is actually patterned.

A DMD is a matrix of mirrors that can be individually controlled to two possible rotation
angles, which are referred to as “on” and “off” positions. When an image is uploaded to the
DMD, each pixel corresponds to one mirror. The DMD image is uploaded to the memory
of the DMD before the experiment begins. The pattern of the image is chosen based on its
application.

Depending on the status of the DMD mirrors, the reflected light from the DMD takes
one of two paths: if the mirror is in the “off” position, the reflected light goes in a direction
that does not reach the atoms; if the mirror is in the “on” position, the reflected light goes
through a path that is eventually focused on the atoms by the DMD optics.

Figure 4.6 schematically shows the optical setup of the DMD. Laser light from a single-
mode fiber is passed through a collimating lens. The DMD reflects this collimated beam.
Positions of the DMD mirrors gives the reflected beam a specific pattern. The patterned
light passes through an imaging lens and illuminates the atom cloud. The two lenses are
achromatic doublets to reduce spherical aberrations. This setup is for direct imaging and
the magnification is ∼ 1/12.

Since the atom cloud is quasi-one-dimensional, the DMD patterns are made such that

29



Figure 4.6: DMD optical setup for direct imaging of the DMD pattern onto the atoms.
The DMD is illuminated by a collimated beam. Depending on the positions of the DMD
patterns, the reflect light obtains a specific pattern, which is then shined on the atoms.

all the mirrors in one column are either on or off; in other words, although the DMD is a 2D
matrix of mirrors, we effectively use it as a 1D array of mirrors. In this thesis, each column
of the DMD mirrors will be referred to as a “DMD bin.”

For certain reasons, one of which is explained in Chapter 5, it is sometimes needed to
make the Stark beam intensity have particular spatial variations. To make intensity profiles,
one needs a grayscale image. In places where pixels would be closer to white (black), the
intensity would be larger (smaller). The requirement, though, is that to make a grayscale
image, the mirrors of the DMD should be able to rotate to more than two possible positions.

One solution to produce an arbitrary grayscale pattern with the DMD is to binarize a
grayscale image. The idea is to make an image in which each pixel value is in the range of
0 to 2N − 1, where N is the number of pixel bits. Then, using an error diffusion algorithm,
the grayscale image is converted to a binary image so that each pixel would be 1 bit. The
number of required bits depends on the application. If variations in light intensity is large,
N should be larger to allow for smoother changes in the DMD image. For the work in this
thesis, N = 8 bits proved to be good enough. With 8 bits, the value of each pixel can be
in the range of 0 to 255, where 0 would be black, 255 would be white, and pixel values in
between would be shades of gray.

For the purpose of image binarization, there are various error diffusion kernels. In image
processing, a kernel is typically a small matrix that is used for various processes such as
finding the edges in an image. For this thesis work, the Sierra kernel was used because the
image distortions after binarization would be minimum. Further details about the DMD
can be found in Ref. [16].
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4.4 Spin profile initialization and evolution

4.4.1 Spin profile initialization

To initialize a spin profile, we take advantage of the ac Stark effect caused by off-resonant
laser light combined with a resonant cloud-wide π-pulse. When an atom is illuminated by
the laser light, it develops an induced electric dipole moment as a result of interaction with
the oscillating electric field of the light. The energy levels of the atom shift as a result of
the interaction between this induced moment and the electric field. Near the D1 and D2

lines of alkali atoms, the dipolar interaction is given by the dipole potential [25]

Udip (z) = πc2Γ
2ω3

0

(
2 + PgF mF

∆2,F
+ 1 − PgF mF

∆1,F

)
I (z) , (4.9)

where I (z) is the spatial profile of the laser intensity, Γ is the natural linewidth of the excited
state, P = {0, ±1} for linearly and circularly polarized light, and gF is the Lande g-factor. ω0

is the transition frequency, which is the center of the D-line doublet
(2S1/2 → 2P1/2, 2P3/2

)
.

∆1,F and ∆2,F denote the energy difference between the specific ground state 2S1/2, F and
the center of the hyperfine splitting of the excited states 2P1/2 and 2P3/2. The terms in
parentheses in Eqn. 4.9 show that both the D1 and D2 lines contribute to the total dipole
potential. However, for a detuning ∆ close to the D2 transition, ∆2,F ≪ ∆1,F , the dipole
potential simplifies to

Udip (z) = πc2Γ
2ω3

0

(
2 + PgF mF

∆2,F

)
I (z) .

To minimize the spontaneous scattering rate, ∆ should be chosen to be midway between the
cooling and repumper transition frequencies such that ∆(1)

2,F = −∆(2)
2,F , where the superscripts

refer to the spin states |1⟩ and |2⟩ [16]. This choice makes the detuning ∆ ∼ 3.4 GHz below
the cooling transition (see Fig. 2.4). The Stark laser is locked using the phase-locked loop
method (see Ref. [14] for further details).

When making patterned light, there will be dark and bright regions. In regions where
the pattern is dark, i.e. no light, the effective Rabi vector Ω⃗′

R points along the u-axis on the
Bloch sphere; therefore, a resonant π-pulse takes the atoms from state |1⟩ to |2⟩, as depicted
in Fig. 4.7(a). If there is light, the pulse will have a detuning from the transition |1⟩ → |2⟩,
and the vector Ω⃗′

R will be tilted away from the u-axis. Since the π-pulse is cloud-wide, in
the illuminated regions, the detuning should be such that the pulse rotates the spin state
vector |S⟩ = |1⟩ around Ω⃗′

R and brings it back to state |1⟩ at the end of the pulse duration
so that atoms remain in state |1⟩. Numerical simulations of the optical Bloch equations
show that the optimal detuning of the effective Rabi vector is

δ∗ =
√

3ΩR, (4.10)

which is obtained by adjusting the Stark laser beam intensity [16]. This detuning makes
the magnitude of the effective Rabi vector

∣∣∣Ω⃗′
R

∣∣∣ = 2ΩR (see Eqn. 3.3), which changes a
previously resonant π-pulse to be equivalent to a 2π-pulse on the detuned parts of the cloud
(the parts that are illuminated by the laser). For this optimal effective Rabi vector, a
resonant π-pulse would rotate a ground state Bloch vector |S⟩ = |1⟩ around Ω⃗′

R once and
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bring it back to the |1⟩ state without going through state |2⟩. The process is schematically
shown in Fig. 4.7(b).

On the edges of the patterned light, the intensity gradually goes from bright to dark. In
these small regions of the cloud, the pulse takes the state vector from |1⟩ into a superposition
of |1⟩ and |2⟩ with a smoothly changing transverse spin magnitude and phase. In these
regions the spin vector takes a helical path, and makes a helical spin domain wall.

(a) (b)

Figure 4.7: Schematic depiction of how a cloud-wide π-pulse changes state of the atoms
from |1⟩ (a) to |2⟩ at dark regions of the light pattern, and (b) back to |1⟩ at bright regions
of the pattern with optimal detuning. The light that reaches the cloud is patterned by the
DMD image. The change of the intensity from bright to dark is gradual and the pulse makes
the spins take a gradual helical path, creating a helical spin domain wall between adjacent
bright and dark regions of the light pattern.

In the beginning of spin profile initialization, all spins are in the state |1⟩, and the DMD
pattern is chosen based on what spin profile we want to create. For example, to make the
three-domain spin structure |2⟩ − |1⟩ − |2⟩, the patterned light must have a bright region in
the middle and must be dark on the two sides, and after applying a cloud-wide π-pulse, the
spin domains are constructed. Section 7.1 discusses how we characterize an initial three-
domain spin profile, which is the main spin structure in this work. To make other spin
profiles, we only need to change the DMD pattern accordingly.

4.4.2 Obtaining spin evolution data

To investigate evolution of the longitudinal spin, we start the system with the same initial
conditions in each experimental cycle and let it evolve under the same conditions. The
evolution is sampled by imaging the atoms at different times. For each evolution time, there
are two experimental cycles, one for each of the two states. To measure atoms in state |2⟩,
an additional π-pulse is applied before the imaging procedure to swap the state of the atoms
so that the ARP process transfers those atoms to the cycling transition for imaging (see
Section 2.4).

Due to dipolar relaxation during |2⟩ − |2⟩ collisions, atoms in this state can transfer to
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states that are not trapped, and therefore some of them exit the trap. To remove the effects
of this loss, we normalize the number of atoms in each state Ni (i = 1, 2) at time t to their
initial total number

Nnorm
i (z, t) ≡ Ni (z, t) ×

∑
z Ni (z, t = 0)∑

z Ni (z, t) (i = 1, 2) . (4.11)

We do the same normalization for N1 atoms too, although their population is almost con-
stant during the evolution periods that are considered in this work. The normalization
removes the loss effect absent in the dynamical equations and is an imaging enhancement
technique to highlight features in the experiment. The longitudinal spin at time t is then
found as

S|| (z, t) = Nnorm
2 (z, t) − Nnorm

1 (z, t) . (4.12)

To simplify notation, Ni will be used instead of Nnorm
i in the rest of this thesis; however, it

should be remembered that in all of the analysis in future Chapters, the normalized number
of atoms is used.

Figure 4.8 shows a typical example of longitudinal spin evolution for a three-domain
spin profile with uniform differential potential for short times. Blue (Red) is associated
with atoms whose longitudinal spin is towards the south (north) pole of the Bloch sphere.
White represents spin domain walls in which there is an equal number of atoms in the two
states. Further results and discussions are presented in Chapter 7.

Figure 4.8: Data showing evolution of longitudinal spin
(
S||
)

of a three-domain spin struc-
ture in a uniform differential potential. In each experimental cycle, the system is initialized
with the same conditions and allowed to evolve for various times. Atoms whose longitudi-
nal spin component is towards the south (north) pole of the Bloch sphere are shown with
blue (red) color. White color is associated with spin domain walls, where there is an equal
number of spins in the two states.

During the course of this work, finding the optimal detuning δ∗ for initializing spin
profiles became a challenging problem. Details of the problem and the solution that we
developed are presented in the next Chapter.
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Chapter 5

Correcting the intensity profile
of the Stark laser

Chapter 4 explained how we use the off-resonant light of a laser (referred to as the Stark
laser) to detune a π-pulse from the |1⟩ → |2⟩ transition for chosen regions of the cloud when
initializing a spin profile with patterned light. It was pointed out that numerical simulations
show that the optimal value of this optically-induced two-photon detuning is δ∗ =

√
3ΩR.

We use an acousto-optic modulator (AOM) device to control the intensity of the Stark
laser beam. The power of the rf signal going into the AOM modulates the intensity. The rf
power itself is adjusted by a control voltage, which will be referred to as the AOM control
voltage (VAOM). The input rf frequency of the AOM is fixed. Since VAOM sets the optical
detuning, and there is an optimal detuning, there is therefore an optimal VAOM (V ∗

AOM).
To find V ∗

AOM, one could scan the Stark laser intensity by changing VAOM and applying
a π-pulse at every new voltage. The intensity of the off-resonant laser light changes the
total number of atoms that appears in the image after applying the π-pulse. The total
population of state |1⟩ atoms (N1) can be plotted against VAOM. The first local maximum
in the population corresponds to δ∗, because when δ = δ∗, the maximum number of atoms
returns to state |1⟩ after rotating around Ω⃗′

R once (see Fig. 4.7(b)). The corresponding
voltage is V ∗

AOM. Figure 5.1 shows an example of finding this optimal voltage. In practice,
however, some challenges were faced in accomplishing this task. This Chapter discusses
these problems and details the method used to solve them.

5.1 The problem with the Stark laser intensity

The output of the optical fiber has a Gaussian profile. This beam expands quickly and is
passed through a collimating lens before reaching the DMD; therefore, it is expected that
all the atoms experience an almost equal optical detuning. However, that is not the case, as
the intensity of the Stark beam experienced by the atoms has spatial variations. Figure 5.1
shows the atom population only at the center of the cloud. When the intensity is not
spatially uniform, other parts of the cloud would reach the optimal detuning at different
VAOM values.

34



Figure 5.1: Population of atoms in state |1⟩ (N1) at the center of the cloud as a function
of VAOM that sets the intensity of the Stark laser. V ∗

AOM correspond to the first maximum
of the plot, which is located somewhere in the circled region. To obtain the plot, VAOM is
scanned, and at each voltage, a π-pulse is applied. The π-pulse would be resonant in the
absence of the laser light. In each case, all the atoms are initially in state |1⟩.

The variations in intensity could be due to different factors. One reason could be re-
fractions at the bottom surface of the science cell. Even small misalignment of the optics
between the DMD and the science cell could be another reason. A further reason could be
interference of the beam with itself, after reflecting from the top of the science cell. There
could also be reflections from outside the science cell. In any case, these and other possible
factors could introduce spatial variations in the detunings experienced by different parts of
the ensemble.

Figure 5.2 shows an example of measured detuning when the DMD image is uniform.
A uniform image means all the pixels have the same value, e.g. all pixels are white or have
the same shade of gray. To measure detuning across the cloud, we use the Ramsey method
that was explained in Section 4.2.2 for measuring Udiff , with the difference being that in
Fig. 4.3, the Stark laser is on during the evolution time. Since the DMD pattern is uniform,
illuminating the atoms with the Stark laser will show if the laser intensity experienced by
the atoms is non-uniform.

In principle, one could improve the Stark laser optics to decrease the spatial variations in
the intensity experienced by the atoms in the science cell. However, this is not an easy task.
Each time one of the knobs on the optics is tweaked, the best way to check the effect of the
changes made is to measure the detuning. Since the method of measurement is a Ramsey
scan, that would take about 40 minutes after each tweak. Tens of these tweaks could be
needed to finally obtain uniform intensity. To overcome this difficulty, we developed another
method that is explained in the rest of this Chapter.
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Figure 5.2: Detuning δ across the cloud introduced by the off-resonant Stark laser. To
obtain the data, a uniform image is uploaded to the DMD and the Stark laser is turned on
during the interrogation time of the Ramsey measurement. Each data point is the frequency
of Ramsey oscillations at the corresponding axial position with error bars extracted from
fit uncertainties. The dashed line is the optimal detuning δ∗ =

√
3ΩR for initializing a spin

pattern. In our system, ΩR ≃ 4.4 kHz. The variations in the detuning across the cloud
shows that the beam intensity illuminating the atoms is not uniform.

5.2 Solution idea

The problem of non-uniform beam intensity experienced by the atoms can be solved by
using a counteracting non-uniform DMD pattern. There are two ways to change the beam
intensity experienced by the atoms. One way is to change VAOM; another method is to
change pixel values (PVs) of the DMD pattern.

Since each pixel value of a DMD pattern can be an N -bit number, the PVs can cover
the range of values from 0 to 2N − 1. We have set N = 8 so the range of PVs is from
0 to 255. By keeping VAOM constant and changing the PVs, we can adjust the detuning
that atoms across the cloud experience. In this method, instead of scanning VAOM, the PVs
are scanned while VAOM is kept constant. Figure 5.3(a) shows how the detuning changes
as the PVs go from minimum to maximum. Note that the DMD pattern is still uniform;
what is changing is the value of the pixels of the DMD pattern in each scan. Figure 5.3(b)
shows how the detuning changes at a few specific axial bins as a function of pixel values,
illustrating the fact that the detunings at different positions follow a similar trend, but they
reach the optimal detuning at different pixel values.

The idea is to find the PV corresponding to δ∗ for each bin, and make a DMD pattern
based on those optimal PVs. Since these PVs will not be the same, the resulting DMD
pattern will be non-uniform. Figure 5.3(b) shows estimations of the optimal PVs at the
indicated positions. Although it is possible to do a detailed scan of the resulting detunings
at many PVs and estimate what the optimal PV for each bin should be, it is better to do
the process in two iterations with a reasonably small number of scans. The reason for that
and details of the process are described in the following Sections.

To make a “correcting pattern,” that is, a non-uniform DMD pattern that makes the
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detunings uniform and equal to δ∗ across the cloud, we must first map the positions of
the DMD bins onto the imaging camera bins. This process is explained first and then the
procedures for the two iterations of generating correcting patterns are described.

(a)

(b)

Figure 5.3: Detuning (δ) as a function of PV of uniform DMD images. In both plots, the
horizontal dashed lines indicate δ∗. (a) Ramsey measurements of δ across the cloud for
various DMD images. The variable is the PV of each image, which is shown in the legend.
As the PV increases, the intensity of the laser reaching the atoms increases, and therefore
the detuning gets larger. As a typical case, the data for PV = 255 is shown on the plot
and a smoothed line is drawn through the points to guide the eye. Smooth lines for other
PVs have been obtained in the same manner. (b) Detuning as a function of PV at three
specific axial positions, corresponding to the same color vertical lines in (a). As (b) shows,
the detuning has similar trends across the cloud, but different axial bins reach the optimal
detuning at different PVs. The dashed vertical lines in (b) show the approximate PV at the
corresponding axial position that makes the detuning at that position roughly equal to the
optimal detuning.
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5.3 Mapping imaging camera and DMD bins

Since the trapped ensemble is quasi-one-dimensional, it makes sense to speak of bins rather
than pixels; nonetheless, the two terms will be used interchangeably in this context. A
mapping between the bins of the DMD and the camera are needed because a shift by one
bin on the DMD is not one bin shift on the camera, due to the difference in the size of
their pixels. Moreover, the center of the DMD does not necessarily match the center of the
camera, though tweaking the optics could bring them closer by directing the beam towards
the center of the cloud, and hence the center of the camera.

The procedure of mapping the camera and DMD bins is as follows. A “small” pattern is
uploaded onto the DMD, where small is relative to the size of the cloud. VAOM is set to some
large value to make the laser intensity high. This large intensity across the cloud makes
the detuning large at every bin; therefore, the direction of the effective Rabi vector at every
position gets close to state |1⟩ on the Bloch sphere (see Fig. 5.4). The fact that the resulting
detunings across the ensemble is not uniform is not an issue here. That only means the
effective Rabi vectors at different axial positions are not the same, but since the detuning
is very large, the effective Rabi vector at each bin is still close to state |1⟩. The position of
the DMD pattern is then shifted from the DMD center in multiple steps, and each time a
π-pulse is applied. After each pulse, an image is taken. For each image, a Gaussian function
is fitted and the center is extracted. Plotting Gaussian centers against DMD pattern shifts
tells us how DMD and camera bins map onto each other. A linear function is fit to this
data to extract the slope and intercept, as shown in Fig. 5.5. These two parameters of the
mapping equation are then used to generate a correcting pattern based on approximated
optimal pixel values for each bin of the imaging camera. To get a more accurate mapping
equation, the shifts of the DMD pattern should cover a large range of the DMD bins.

Figure 5.4: Large detuning makes the effective Rabi vector point very close to the south
pole of the Bloch sphere. In this case, when a π-pulse is applied, atoms precess and remain
in a state that is very close to their original state of |1⟩. The dashed circle indicates the
precession path that the spin state vector S⃗ takes while the pulse is being applied.
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(a) (b)

(c) (d)

Figure 5.5: To map the pixels of the DMD and the imaging camera, a small DMD pattern
is shifted across the DMD with a large detuning, and a π-pulse is applied after every shift.
(a), (b), and (c) show examples of where the shifted DMD patterns appear on the camera.
Solid red lines are Gaussian fits. (d) shows the center of the fitted Gaussian as a function of
the shift in the DMD pattern. The dashed line in (d) is a linear fit. The slope and intercept
of this line relate positions of the DMD bins to the camera bins. In this example, the slope
is 1.7 µm/(DMD pixel) and the intercept is −3.8 µm. The magnification of the camera is
1.349 µm/(CCD pixel).

5.4 First iteration for making a correcting pattern

A condition for the “PV scanning” method to work is to have a large enough intensity such
that, at maximum pixel value, detunings of all the bins can reach the optimal detuning δ∗.
The DMD pattern to check this requirement is a cloud-wide white image, i.e. all the pixel
values are set to the maximum value of 255. An example of meeting this requirement is
shown in Fig. 5.6. The fact that the atoms at different positions have different detunings
due to non-uniformity of the beam intensity is not an issue here. What we want to be sure
of is that at some pixel value, whether maximum value or below that, it is possible to get to
the optimal detuning. If VAOM is not large enough, and thus the optical intensity is lower
than needed, there will be some bins for which it would not be possible to reach the optimal
detuning at any pixel value. If that problem happens, all we need to do is increase VAOM

until detunings get large enough.
It should be noted that setting a large VAOM to make the intensity high would not be a
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Figure 5.6: Detuning across the cloud in a case where beam intensity of the Stark laser is
large enough everywhere so that detuning at all positions is above the optimal detuning,
indicated by the dashed line.

good idea, although it would make it possible for the detunings at all the axial bins to reach
the optimal detuning at some pixel value. Making VAOM large would decrease the intensity
resolution achievable by changing the DMD pixel values. If the voltage is smaller, changing
pixel value by one unit would cause a smaller change in the intensity, and thus the detuning.
A good VAOM value is one that is large enough so that all the bins can reach the optimal
detuning, but not so large that all detunings are far above δ∗.

As Fig. 5.3(b) shows, the detuning for each axial bin is a monotonic function of the pixel
value. Instead of measuring detuning for many pixel values and then fitting a function such
as a second or third order polynomial, we can approximate the behavior of the detuning
by doing Ramsey measurements for only three pixel values and linearly interpolate between
those points.

For this method to work, there is still another requirement. The smallest pixel value
among these three points should be small enough so that the detuning of all the bins are
below the optimal detuning. This condition, plus the previous condition of surpassing δ∗,
ensures that by interpolating between the three points, at some pixel value, the detuning
will equal δ∗. There is no particular requisite of the pixel value of the middle point but
it is preferable to set it to the midpoint between the pixel values of the first and third
points to decrease the inaccuracy of the extracted optimal pixel value found from a linear
interpolation of the three points. Figure 5.7(a) shows an example of measuring detunings
across the cloud with three uniform DMD patterns, the PV for one of which is small enough
that detunings of all the bins remain below δ∗, and for one it is large enough that the
detunings are above δ∗.

Based on the estimated optimal PVs, an intensity correcting pattern can be generated by
a MATLAB code. The purpose of this correcting pattern is to make the detuning of all the
bins equal to the optimal detuning. The input data to the code is the set of three pixel values
and their resulting bin detunings as discussed above. For each bin, the code interpolates
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the detunings to find the pixel value for which the interpolated detuning has the smallest
distance to the optimal detuning δ∗. Figure 5.7(b) shows an example of first iteration results
for estimated optimal PVs across the cloud, which are based on the measurements shown in
Fig. 5.7(a).

The estimated pixel values are then used to generate a correcting pattern. Figure 5.7(c)
is the Ramsey measurement of detunings that checks the quality of the correcting pattern,
which should be contrasted with the detunings in Fig. 5.7(a) that were obtained with uniform
DMD patterns. The improvement in making the detunings more uniform and bringing them
closer to δ∗ is already noticeable.

Depending on which three points are originally chosen for interpolation, the quality of
the correcting pattern can change. If the points are far apart - for instance, if the pixel
values are 0, 128, and 255 - the quality of the correcting pattern will be lower. In any case,
this step serves as a first iteration. A second iteration with a slightly different method can
be done to improve the quality of the correcting pattern.

5.5 Second iteration for making a correcting pattern

The approximate optimal pixel values found from the first round can be used as the starting
point for a second round. This time, there will again be three measurements to do a new
and more accurate estimation of the optimal pixel values. The difference is that in each
measurement, the pattern is not made of a single pixel value for all the bins as was done in
Fig. 5.7(a). In this round, there are three non-uniform patterns. One is based on the results
of the first round, which is the “middle” pattern. The pixel values of this middle pattern
are raised and lowered to make “higher” and “lower” PV patterns. The magnitude of PV
shift should be smaller than the first round as this round is essentially a fine-tuning step.
Ramsey measurements of the detuning are done to obtain the detuning changes at each bin
for the higher and lower patterns. No measurement is needed for the middle pattern as it
has already been done at the end of the first round of measurements to check the quality of
the correcting pattern of the first iteration.

The remaining procedures of this iteration are then the same as the first iteration. Once
the Ramsey measurements of the lower and higher patterns are completed, the data is
interpolated again. Since the distance between the PVs is smaller this time, the approxi-
mation is more accurate. Finally a new correcting pattern is generated based on the new
approximation of the optimal pixel value at each bin.

Figure 5.8 shows an example of the steps taken in the second iteration. Figure 5.8(c)
illustrates the final result in this round showing the improvements in bringing the detuning
across the cloud much closer to the optimal value.

The advantage of finding the correcting pattern in two iterations, a coarse method fol-
lowed by fine tuning, is that over time there can be drifts in the system that would lower
the quality of the correcting pattern. However, when the changes are small, we would not
need the first iteration each time. We could just start from the last correcting pattern that
was made and use that as the middle pattern, so we would need the second iteration with
three points only. This is a quicker method than having one iteration in which we would
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(a)

(b)

(c)

Figure 5.7: Results of the first iteration for correcting the non-uniformity of the Stark
laser intensity reaching the atoms. (a) Three detuning measurements with uniform DMD
patterns with pixel values equal to 128, 192, and 255. (b) Estimated optimal pixel values
for making the detunings across the cloud uniform and closer to δ∗. These PVs are found
by interpolating the measurements shown in (a) for each bin, and estimating at what PV, δ
would be closer to δ∗. (c) Result of detuning measurement using the DMD pattern generated
based on the pixel values in (b).
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scan many pixel values each time.
After a good quality correcting pattern is obtained, it can be multiplied by other pat-

terns for making spin profile initializations used in this thesis. The correcting pattern is
independent of any spin profile. The same pattern could be used to make, e.g., a two-domain
or a three-domain spin profile.

5.6 A quicker way to check the quality of the correcting
pattern

With a Ramsey measurement, the quality of a correcting pattern can be checked. However, a
Ramsey measurement is a relatively long process. Since the information of the measurement
is extracted based on a sinusoidal fit, it would take around 40 minutes to sample enough
points for the fitting uncertainties to be small. However, our apparatus is stable enough
that a frequent check of the quality of the correcting pattern using the Ramsey method
is not needed. A quicker way to check the quality of the pattern is to simply check the
density profile obtained when the correcting pattern is used together with a π-pulse, and
to compare that to the density profile with no laser light present and no π-pulse applied.
If the correcting pattern has a high quality, a cloud-wide π-pulse rotates the initial state
vector |S⟩ = |1⟩ around the effective Rabi vector and brings it back to its original position.
Taking an image after that should produce a Gaussian density profile that is very similar
to the density profile of a cloud without any state vector manipulation. On the other hand,
if the quality of the correcting pattern has deteriorated over time, an image with correcting
pattern and π-pulse combination will show a density profile that has either a distorted
Gaussian profile or a Gaussian profile with a smaller amplitude compared to the original
profile. That is because we only image atoms in state |1⟩, so if there is something wrong
with the correcting pattern, a π-pulse will not bring all atoms back to their original state
and the resulting image will look different. For the sake of averaging, a few points should
be taken, which makes the entire process take about 10 minutes.

This Chapter covered the problems about non-uniform optical detunings across the cloud
caused by variations in the Stark laser intensity reaching the atoms, and the method that
we developed to solve this issue. The next Chapter presents the method that we developed
to extract information about the evolution of the spin system that would otherwise be hard
to obtain using standard fitting methods.
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(a)

(b)

(c)

Figure 5.8: Results of the second iteration in correcting the non-uniformity of the detun-
ing. (a) Three detuning measurements with non-uniform DMD patterns with pixel values
obtained by raising and lowering the pixel values in the “middle” pattern. The middle pixel
values are obtained in the first iteration. In this example, the middle PVs are changed by
±20 units for the higher and lower PVs. (b) Estimated optimal pixel values for making the
detunings across the cloud δ∗, found by interpolating the measurements shown in (a). (c)
Result of detuning measurement where the DMD pattern has been generated based on the
pixel values in (b). For convenience, plot scales have been kept the same as those in Fig 5.7.
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Chapter 6

An algorithm for extracting
spin domain wall information

To extract parameters about the evolution of the longitudinal spin component, the usual
way is to fit a function and look at the evolution of the fit parameters. For a spin profile
initialized with three spin domains, the phenomenological fitting function that we use is

S|| (z, t) = A tanh
(

z − zL

λL

)
tanh

(
z − zR

λR

)
exp

(
− (z − zG)2

2σ2
G

)
, (6.1)

where zG and σG are the Gaussian center and width obtained from a fit to the density
profile. The fit parameters are A, zL, zR, λL and λR, and they are all functions of time.
This Chapter discusses problems that arise when using a fitting method over the course of
the dynamics of the system. Next, it presents the method that we employ to avoid fitting
a function like Eqn. 6.1.

6.1 The problem with the fitting method

In early stages of the evolution of the spin system, Eqn. 6.1 is a suitable fitting function for
the profile of the longitudinal spin. However, relatively quickly, the profile evolves into a
form where the functional form of Eqn. 6.1 is no longer applicable as a good fitting function.
Figure 6.1 shows an example where this model is suitable near the beginning point of the
dynamics (Fig. 6.1(b)) but becomes unsuitable at a later time (Fig. 6.1(c)).

In principle, this problem could still be fixed using the fitting method. In Fig. 6.1, for
instance, at times later than around 60 ms, the profile transitions from three to five spin
domains. A function similar to Eqn. 6.1 but with four hyperbolic tangents could be used to
fit the data. However, in general this is not a good idea. In different data sets, transition
in the number of domains occurs at different times so we would have to check every set
individually and then determine where to change the fitting function. Another issue is that
the number of domains changes back from five to three at some later time, as it happens
around 120 ms in Fig. 6.1(a), and this second transition also happens at different times in
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(a)

(b)

(c)

Figure 6.1: An example showing problems with fitting method for extracting information
about longitudinal spin dynamics. (a) Spatio-temporal evolution of longitudinal spin where
the spin profile at the times indicated by the dashed lines are shown in the next two panels.
(b) and (c) are longitudinal spin at times t = 10 ms and t = 80 ms, respectively. As can be
seen, Eqn. 6.1 cannot be a suitable fit in (c).
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different data sets. Moreover, there could be cases where the profile of the spin could obtain
a complicated functional form that could be quite different from a function made of some
elementary functions such as Eqn. 6.1.

6.2 Solution idea

In the evolution of the longitudinal spin, the widths and centers of the spin domain walls
are what we typically look for. Analysis that comes later is based on the values of these
quantities. The center of a domain wall is where there is an equal superposition of the two
spin states, which makes S|| (z, t) = 0 - essentially a zero-crossing in a plot like Fig. 6.1(b)
or Fig. 6.1(c). In Eqn. 6.1, the λ’s are the widths of the left and right walls.

To locate a wall center, we could just find the zero-crossings of the longitudinal spin
profile at each sampling time, but the drawback would be the lack of any information about
the size of the wall. To maintain some information about the wall size, we can define a small
threshold around the zero line. The part of the spin profile that lies within this threshold
region would define the “wall region.” Figure 6.2 shows an example of using a threshold for
S|| (z, t) to define wall regions with certain wall centers and region sizes.

Figure 6.2: Example of using a threshold to extract information from S||. The horizontal
dashed lines at ±0.01 set the threshold and the parts of the signal that fall within these two
lines are defined as “wall regions.”

Since the threshold value is arbitrary, the size of the wall region is not a good approxima-
tion for the width of a wall. Furthermore, for the same threshold and wall width (constant
λ in Eqn. 6.1), the wall region grows as the wall center moves toward the cloud edge. This
increase in wall region size is due to the decrease in the signal size on the sides of the cloud.
Nonetheless, the wall region can still be used as an approximation of the uncertainty in the
wall center position, although in most cases it would be an overestimation. In general, the
wall region size can be used as an estimation of the wall width if the Gaussian distribution
is incorporated in the analysis. However, this idea is not followed in this work, and the size
of the wall region is only used as an estimation in the uncertainty of the wall position.

The rest of this Chapter discusses the more important features of this “threshold” method
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and how domain wall information is extracted using this method. A comparison between
the results of the threshold and fitting methods, in which Eqn. 6.1 would be applicable, is
shown at the end.

6.3 Details of the threshold algorithm

Before information about domain walls can be extracted with the threshold method, some
pre-processing steps are needed. This Section first explains these steps. Then, extraction
of domain-wall information is explained. Finally, wall center and wall region width are
calculated.

6.3.1 Smoothing longitudinal spin profile

In the process of extracting information about domain walls, the first step is to smooth the
spin data, which is done by a moving-average method. The smoothing span should be some
value that the smoothed data still keeps the overall profile of the original data so that its
salient features are not shifted by much. Figure 6.3(a) shows an example of the original
data (cyan line) overlapped by smoothed data (black line) with threshold shown as two
horizontal lines. The circled region in Fig. 6.3(a) is shown in Fig. 6.3(b) to better illustrate
why smoothing is helpful. The fact that the signal jumps in and out of the threshold region is
due to the noise in the images, and smoothing removes this issue, making the data smoothly
pass through the threshold region.

(a) (b)

Figure 6.3: Example of smoothing the longitudinal spin data using a moving-average
method. (a) Overlap of original data (cyan) by smoothed data (black). Horizontal dashed
lines set the threshold region for processing steps that come next. The circled region in
(a) is plotted in (b), showing that smoothing removes the noise in imaging, which makes
the data jump in and out of the threshold region. The smoothing span has been set to 20
points.
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6.3.2 Binarization of the longitudinal spin data matrix

Longitudinal spin evolution data is stored in a matrix where one dimension is the axial bin,
or equivalently axial position (z), the other axis is the sampling time (t), and the elements of
the matrix are S|| (z, t). At each sampling time, S|| (z, t) is first smoothed across the position
axis of the matrix. Then, the data matrix can be binarized based on a threshold. Figure 6.4
shows an example of this binarization step in which every element within the threshold is
changed to logical 1 (marked by vertical stripes on the figure) and the rest are set to logical
0. Both the smoothing span and the threshold are chosen constants. Binarization is done
only because it facilitates the future coding steps in the analysis, primarily because of the
built-in functions of MATLAB for handling binary matrices.

Figure 6.4: Illustration of how binarization of S|| at a specific time is performed. Blue
stripes are drawn for elements that fall within the threshold (shown as horizontal dashed
lines). These parts will be set to logical 1. The other parts will be set to logical 0.

Binarization of the entire spin data matrix is done in the same way as in Fig. 6.4, which
is at one specific time. The same threshold is used for the entire matrix. Figure 6.5 shows
an example of such binarization where black stripes represent logical 1 and white regions
show logical 0. The dynamics of domain walls is already clear; nonetheless, before extracting
quantities based on the binarized matrix at this step, it is helpful to first interpolate the
data along the time axis and then binarize the interpolated matrix. Main points about
interpolation are discussed in the next Section.

6.3.3 Interpolating the data along the time axis

After the data matrix is smoothed, instead of directly binarizing the data matrix, we linearly
interpolate its elements along the time axis. No interpolation is done along the position axis
of the matrix. One reason for temporal interpolation of the data is to facilitate the coding
for the analysis. Some MATLAB functions easily manipulate elements of a binary matrix
when those elements form a connected region. Due to the continuity of the dynamics of
the system, the domain wall position moves continuously too. That means interpolating the
data along the time axis can make the coding easier for the purpose of extracting information
about its features. Figure 6.6 illustrates an example of how interpolation can connect regions
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Figure 6.5: Example of binarization of an entire longitudinal spin data matrix. Black stripes
represent logical 1 and white regions show logical 0.

of features. It should be emphasized that the original features of the data matrix are not
changed as it is only an interpolation.

(a) (b)

Figure 6.6: Example of temporal interpolation of the longitudinal spin followed by binariza-
tion of the data matrix. Each domain wall becomes a connected region.

One should note that temporal interpolation reveals new features masked by the resolu-
tion of the original spin data matrix. This can happen when S|| at a certain axial position
changes its sign between two consecutive sampling times. Figure 6.7 shows an example of
how this could occur. In Fig. 6.7(a), features of the original data are shown and the dashed
rectangle surrounds a region in which no feature has been detected. In Fig. 6.7(b), the cor-
responding interpolated data is shown and features have emerged in the same rectangular
region. Figure 6.7(c) explains how interpolation can reveal features between measured data
points. The plots of S|| in Fig. 6.7(c) are at two consecutive sampling times, the solid line
is at t = 110 ms and the dotted line is at t = 120 ms. As can be seen, neither of the lines
fall within the threshold near the center of the cloud. Interpolation makes S|| pass through
the threshold region, and that makes it to be detected in the rectangle in Fig. 6.7(b).
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(a)

(b)

(c)

Figure 6.7: Illustrating how temporal interpolation of spin data matrix can reveal more
features in S||. (a) Detected domain wall in the original data with no features within the
region surrounded by the dashed rectangle. (b) Detected features of the interpolated data,
now showing features in the same rectangular region. (c) S|| (z, t) at the two consecutive
sampling times of 110 ms and 120 ms, showing that interpolation would make the function
pass through the threshold region (horizontal dashed lines) near the center of the cloud,
which causes emergence of new features.
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6.3.4 Extracting domain walls

Because the threshold method is based on whether S|| falls within the threshold region, it
will always capture regions that are not domain walls. That happens because of the overall
Gaussian profile of the density. The signal to noise ratio (SNR) drops as we move from the
center towards the edge of the cloud and so more portions fall within the threshold region.
This is a downside of this method but given our understanding of the system and how it
is initialized, it is generally easy to determine which detected features are only due to low
SNR and should therefore be ignored. The removing process simply sets 1’s to 0’s in those
low-SNR regions.

Most of the data of this work are about a spin system that is initialized with three
domains, and so there are two domain walls in the beginning. Due to dynamics of the
system, the positions of these two walls shift and move towards edges of the cloud where
the SNR is low. It becomes difficult to tell what is happening at those points, so we ignore
the data in those regions. There is no exact axial position that denotes low SNR regions.
We cut the detected features where the SNR is still reasonably high.

Figure 6.8 shows an example of the process of removing unwanted parts. In Fig. 6.8(a),
the dashed lines set the boundary for removing features. All the matrix elements in the left
and right regions indicated by the dashed lines are set to 0. Figure 6.8(b) shows the same
data after these unwanted features have been removed.

After removing parts based on chosen boundaries, there can still be some small regions
that are also wrongly detected as domain wall regions. These small parts are automatically
removed by defining an area threshold. If the area of the connected region is smaller than this
area threshold, it will be removed. Figure 6.8(c) shows an example where small unwanted
regions (the small black spots) in Fig. 6.8(b) have been removed. This step works because
the domain walls are continuous features and so they generally make connected regions with
a relatively large area, and therefore they will not be removed.

After all the noise features have been removed, the features of the binarized spatio-
temporal matrix of the longitudinal spin component are separated for further analysis. Fig-
ure 6.9 shows an example of separated pieces. If the system is initialized with three domains,
the separated regions typically consist of a left wall, a right wall, and a central region whose
boundary is determined by the dynamically created new domain walls. Depending on the
initial conditions, this central region could form a roughly elliptical area, or it may not be
created at all.

6.3.5 Calculating center and region size of the domain walls

The size of the wall region is found by calculating the difference between positions of the
leftmost and rightmost connected points that fall within the threshold region; then, the bin
separation (dz) is added. The addition is done because the wall region size is used as an
estimation of the uncertainty in the position of the wall center. For some cases, particularly
in the beginning of the evolution, there is just one point that falls within the threshold
region so the difference in positions of the leftmost and rightmost points is zero, resulting
in a zero uncertainty in wall center. Addition of dz solves this problem.
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(a)

(b)

(c)

Figure 6.8: Example of removing unwanted regions. (a) shows all the detected features. The
dashed lines indicate the chosen boundaries for keeping features. The detected features in
the low-SNR regions of left and right parts will be removed. (b) Result of removing regions
based on the set boundaries. (c) The small unwanted regions in (b) that were not removed
in the previous step are removed using an area threshold. Areas of domain wall regions are
relatively large due to the temporal interpolation, and therefore they are kept.
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(a)

(b)

(c)

Figure 6.9: Example of separating detected regions. (a) and (b) show motion of the initially
created left and right domain walls, respectively. (c) Dynamics of the central region with
domain walls created dynamically.

The center of the domain wall is found by averaging positions of the leftmost and right-
most connected points in the threshold region. The resulting value can be a few microns
different from the zero point, which is the true center of the wall. However, this is still a
good approximation for the position of the center of a domain wall given that the motion
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of the wall happens on scales of tens of microns.
Figure 6.10 shows examples of extracted domain wall dynamics for the left and right sides.

In these plots, the error bars represent the size of the wall region, which is in general an
overestimation of the uncertainty in the center position. For points closer to the beginning,
error bars are too small to be seen here.

(a) (b)

Figure 6.10: Example of extracted domain wall center position and width. Widths are
indicated as error bars, which are very small for points closer to the initial time. (a) Left
domain wall. (b) Right domain wall.

6.4 Comparison of the threshold and fitting methods

Figure 6.11 shows an example of the domain wall positions found using the threshold method
developed in this Chapter in comparison to their positions found using the fitting method
based on Eqn. 6.1. The comparison is done up to a point where the fitting still works well.
As was discussed in the beginning of this Chapter, the fitting works only for a relatively
short time interval before its functional form loses its quality as a good fitting function.
Since the threshold method is not based on fitting, it can still be used beyond that point.
As Fig. 6.11 shows, the wall positions found from the threshold method agree well with their
values found from the fitting method; their difference is just a few microns.

To extract information about domain wall dynamics, we also tested image processing
methods. In Fig. 6.1(a), for instance, domain walls have white color, which can be detected
by region detection methods in image processing. However, the threshold method proved
to be a better method here, mainly due to the level of control that we have over the
spin data matrix. In image processing methods, the data would be an image matrix, and
we would need to work based on pixel values, which in general made the processing less
straightforward.

55



(a) (b)

Figure 6.11: Comparison of domain wall positions found via the threshold method (circular
points) and the fitting method (square points) that is based on Eqn. 6.1. Error bars of
circular points indicate the width of the wall region, which is used as an approximation for
the uncertainty in the position of the wall. Error bars of square points are fit uncertainties.
Comparison is done up to a point where the fitting function could still work. The two
methods agree to a few microns. (a) Left wall center. (b) Right wall center.
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Chapter 7

Experimental data and
discussion

Chapter 5 explained a method to make the optical detuning of the atoms uniform when
they are illuminated by an off-resonant laser so that spin-domain initialization could be
done optimally. Chapter 6 discussed an algorithm that enables us to extract spin-domain
wall centers as the system evolves. This Chapter presents the experimental data and their
analysis.

The main focus of this Chapter will be on the analysis of the longitudinal spin data
obtained for systems that have been initialized with three spin domains. In all of the data
sets, the differential potential has been adjusted to be uniform via the compensating scheme
explained in Section 4.2, in which the Zeeman shift is adjusted to cancel the effect of the
mean-field shift. All the data is taken at peak density n0 = 2 × 1013 cm−3 and temperature
T = 650 nK.

Figure 7.1 shows an example of a spatio-temporal plot of the longitudinal spin dynamics.
Based on the type of motion that the domain walls exhibit, a phenomenological model is
suggested to fit the trajectory of the walls. Further analysis based on the fitted parameters is
presented later. It is shown how regimes of domain wall motion can be observed depending
on initial spin distribution. Examples of domain wall motion in two-domain systems are
also presented, which help us understand what initial conditions can lead to displacement
of a wall. Finally, it is shown that a three-domain system is capable of creating new domain
walls dynamically.

7.1 Characterizing initial longitudinal spin profiles

The DMD pattern to make a three-domain spin profile is a dark-bright-dark or bright-dark-
bright pattern. After applying a cloud-wide π-pulse, dark regions become state |2⟩ while
atoms in bright regions remain in state |1⟩. The three-domain data in this Chapter has the
configuration of |2⟩ − |1⟩ − |2⟩, for which the DMD image has the pattern dark-bright-dark
when initializing spin domains. In the following discussions, width of the central bright
region (d) refers to the size of this bright region of the DMD pattern.
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Figure 7.1: Spatio-temporal plot of longitudinal spin for a system initialized with three spin
domains. The blue color is associated with state |1⟩ (the south pole of the Bloch sphere) and
red indicates state |2⟩ (the north pole of the Bloch sphere). White curves are trajectories of
domain walls.

The initial profile of the longitudinal spin
(
S||
)

with three domains can be characterized
by the phenomenological model

S|| = A tanh
(

z − zL

λL

)
tanh

(
z − zR

λR

)
exp

(
− (z − zG)2

2σ2
G

)
. (7.1)

The atom density has a Gaussian distribution with mean zG = 0, and at temperature
650 nK, the Gaussian width is σG = 187 µm. zL and zR are the left and right domain wall
centers. λL and λR are the wall widths. The quantity that changes in the initial setup of
the experiment is the middle domain size (D), defined as the difference between the right
and left wall centers,

D ≡ zR (t = 0) − zL (t = 0) . (7.2)

In term of wall positions, initialization is symmetric with |zR| = |zL|. The left and right
wall widths are kept constant at λL ≈ 80 µm and λR ≈ 74 µm, noting that the left wall
is a few microns larger than the right one. There are at least two possible contributing
factors for this difference. One is that the optical detuning is not exactly at δ∗ =

√
3ΩR

and has some fluctuations along the axial direction. Another reason is that in the setup,
the microwave waveguide that is used in the two-photon pulse for creating the spin domains
is on one side of the cloud, which leads to a non-uniform Rabi frequency across the cloud.
This asymmetry in the initialization leads to an asymmetry in the dynamics, but the overall
behavior of the left and right walls are the same, which will be illustrated later.

Figure 7.2(a) shows an example of the initial configuration of a three-domain setup, and
the profile is characterized in Fig. 7.2(b) by fitting Eqn. 7.1 to N2 (z, t = 0) − N1 (z, t = 0).

Equation 7.1 fits the initial spin profile well for smaller middle domain widths. As D

increases, such as in Fig. 7.3(a) and Fig. 7.3(c) compared to Fig. 7.2(b), the fitting quality
of the model drops. However, if we exclude points from the central region in the fitting,
like Fig. 7.3(b) and Fig. 7.3(d), the fit wall width values approach those with a relatively
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(a) (b)

Figure 7.2: Characterization of the initial longitudinal spin profile with three domains. (a)
Distribution of the two states and the overall Gaussian distribution of the atom density
(N2 + N1). In general, N2 does not get to zero in the central region (or equivalently, N1
does not get to its maximum possible value) in the initialization. The primary reason is
probably the fact that we do not optimize the initialization in the radial direction. That
additional optimization would require more optical setup. (b) Determining properties of
the initial longitudinal spin by fitting Eqn. 7.1 to N2 − N1. The red line is the fit, and
D = 208 µm.

small middle domain size in which no point is excluded in the fitting. It is expected for all
the wall widths to be the same because the only change in the DMD image used to pattern
the light is an increase in the width of the central bright region of the pattern. Since the
edges of the bright region are kept the same, the wall sizes should also have the same values
for different D. The fitting method is only used for the initial point in the dynamics. For
S|| (z, t > 0), analysis will be based on the threshold method (discussed in Chapter 6). In
that method, there is no need to exclude any points to find the wall centers.

7.2 Creation of transverse spin

When we apply a π-pulse together with patterned light, transverse spin is necessarily created
at the edges of the bright regions of the DMD pattern. That is because the change in
light intensity is gradual. Where the intensity is at its optimally adjusted value, which is
the maximum intensity of the light pattern, the spin vector remains in state |1⟩ because
the π-pulse becomes a 2π-pulse. Where the light intensity is zero, the spin vector makes
a complete rotation to state |2⟩ after the π-pulse. In these two cases, there will be no
creation of transverse spin. In cases between them, transverse spin is generated with its
magnitude growing from 0, reaching a maximum, and then diminishing again. The phase of
the transverse spin obtains a gradient in the initialization process as the spin vector takes a
helical path through spin domain walls. Figure 7.4 schematically shows the rotation of the
transverse spin in a domain wall as viewed from the longitudinal axis of the Bloch sphere
(w-axis in Fig. 3.2). During evolution of the dynamics, the transverse spin precesses around
the w-axis at a rate proportional to the energy difference between the two states. Since we
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(a) (b)

(c) (d)

Figure 7.3: As the middle domain size increases, quality of the fitting model (Eqn. 7.1)
drops as shown in (a) for D = 285 µm and (c) for D = 343 µm. To solve this issue, points
from the center can be removed so that the fit goes through the domain wall. In (b), 100
data points have been excluded in the fit, and in (d), 180 points. Overall, there are 792
data points along the axial direction. As the fits get better by removing middle points from
the fit, the sizes of the left and right walls approach those of Fig. 7.2 where the fit quality
is good without removing any points. Values of D are found from fits with excluded points.

Figure 7.4: Schematic representation of the magnitude and orientation of the initial trans-
verse spin component across a domain wall viewed from the longitudinal axis of the Bloch
sphere. The direction of rotation of the transverse spin is opposite in the two walls. The
state vector takes a helical path as it goes from state |1⟩ to |2⟩.

make the differential potential uniform, all the spin vectors rotate at the same rate.
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7.3 Evolution of the system

Using the threshold method explained in Chapter 6, positions of domain wall centers as a
function of time are extracted. In the following discussions, various quantities obtained from
wall centers are analyzed. A bigger picture of the dynamics of the walls is given next. Then,
some two-domain systems are given for comparison to illustrate the point that motion of a
domain wall is not limited to three-domain systems. These examples also clarify the initial
conditions for wall displacement over the evolution of the system. At the end, an example
of dynamical creation of domain walls in a three-domain system is presented.

7.3.1 Dynamics of the left and right domain walls

Figure 7.5 shows examples of motions of domain walls for different middle domain sizes for
initializations similar to those in Fig. 7.2 and Fig. 7.3. What is common in their behavior
is an initial movement towards the center of the trap and then reversing their direction and
heading outward towards the edges of the cloud. This type of motion for a range of middle
domain widths resembles that of an unstable oscillation, so a phenomenological model of
the form

∆z = Aeγt sin (ωt) , (7.3)

is used as the fitting function, where {A, γ, ω} are the fitting parameters. Here, oscillation
growth rate (γ) and oscillation frequency (ω) are both positive, but amplitude (A) is allowed
to be negative to account for the π-shift in the initial phase of the oscillations. ∆z stands for
∆zL/R = zL/R (t) − zL/R (t = 0) for the left and right walls. Eqn. 7.3 fits well to the data.
Figure 7.6 shows examples of fitting this equation to the data of domain wall positions for
a few cases.

(a) (b)

Figure 7.5: Extracted positions of (a) left and (b) right spin domain wall centers for different
values of initial middle domain size (D). For initializations similar to Fig. 7.2 and Fig. 7.3,
the walls have the typical motion of first moving inward toward the trap center and then
reversing their direction, heading outward. Their motions resemble that of an unstable
oscillation.

A summary of fitting parameters of Eqn. 7.3 for a wide range of initial middle domain
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(a) (b)

(c) (d)

Figure 7.6: Examples of fitting Eqn. 7.3 to the wall positions for cases of D = 240 µm in
(a) and (b), and D = 313 µm in (c) and (d).
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(a)

(b)

(c)

Figure 7.7: Results of fitting Eqn. 7.3 to left and right domain wall trajectories for a wide
range of initial middle domain width D. None of the fit parameters shows a strong depen-
dence on D. The vertical bars are fit uncertainties.
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widths is shown in Fig. 7.7. What is interesting is that the fitting parameters, namely the
amplitude, oscillation growth rate, and oscillation frequency, all show only a weak depen-
dence on the size of the middle domain in this range, i.e. for a large range of the ratio of N2

to N1 in the initialization, overall behavior of each wall remains fairly the same. The width
of the Gaussian profile of density is about 190 µm, while the range of the middle domain
width is from 230 µm to 313 µm in Fig. 7.7. The ratio of the total populations in the two
states is defined by

η ≡

∑
z

N2 (z, t = 0)∑
z

N1 (z, t = 0) , (7.4)

where summation is taken over all axial bins. In this data set, η changes from 1.38 to
0.86 and passes through unity, but no remarkable change in the behavior of the system is
observed in this short-time part of the evolution.

Figure 7.8: Left domain wall motion for small, medium, and large middle domain widths.
Depending on the size of the initial domain, the wall can show a linear or an unstable
oscillatory motion. The red and blue lines are linear fits and the magenta line is a fit using
Eqn. 7.3. The right wall exhibits similar behavior.

The range of D values in Fig. 7.7 is a modest range of values. For D values that are out
of this range, signifying a small or large middle domain, behavior of the walls is drastically
different. Overall, the data shows three regimes of motion of a domain wall, as shown in
Fig. 7.8. For D values in the middle range, the motion is the typical unstable oscillation.
When D is relatively small or large, the motion becomes linear with slopes of opposite signs
for the two cases. For small and large initial population ratios, the motion is dominated
by the state that has the larger number of atoms. When state |1⟩ is in the middle and has
much smaller population, the region of state |2⟩ atoms expands by pushing the wall towards
the center of the cloud. When N1 is much larger in the beginning, state |1⟩ atoms prevail
and their domain expands by pushing the spin walls towards the edges of the cloud.

Plots in Fig. 7.9 illustrate how transition from oscillatory to linear motion for the left
wall occurs as η becomes smaller with D getting larger. There is no recognizable type of
motion between these two cases and Eqn. 7.3 would not be a good fitting model.
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(a) (b)

(c) (d)

Figure 7.9: Transition of the type of motion of the domain wall. As D (or equivalently η)
increases, the motion changes from an unstable oscillation to more like a linear evolution.

7.3.2 Turning points

Based on the fitted trajectories, the turning points of domain walls are found. The red
square in Fig. 7.10(a) is an example of where the wall reverses its direction of motion.
∆zturn is defined to be the distance a wall moves from its original position until it reaches
its maximum inward deviation. Figure 7.10(b) gives the values of these displacements.
Similarly, Fig. 7.10(c) shows values of tturn, which is the time it takes a wall to reach the
turning point. Since the fit parameters for each wall are almost equal within the middle
range of D values, it should be expected that the distance the left (right) wall shifts to the
right (left) before it turns its direction of motion is almost independent of the initial zL (zR).
For the same reason, it is expected for tturn not to vary much within this range of D values.
These expectations are confirmed by Fig. 7.10(b) and Fig. 7.10(c). The average time for the
left wall to reach the turning point is ∼ 29 ms and it is ∼ 32 ms for the right wall.
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(a)

(b)

(c)

Figure 7.10: ∆zturn and tturn vs. D. The range of D values is the same as in Fig. 7.7. (a)
Example showing location of the turning point of the left wall indicated by the red square.
(b) and (c) are ∆zturn and tturn vs. D, respectively. All the points in (b) and (c) are found
from fits to the wall trajectories. Square points are for the right wall, and circles for the
left wall. The results show that turning point displacements and times are only weakly
dependent on D for the given range.
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7.3.3 Velocities

Instantaneous velocity of the walls at time

t∗ ≡ ti+1 + ti

2

can be approximated by

v (t∗) = z (ti+1) − z (ti)
ti+1 − ti

, (7.5)

where i runs over the number of sampled times. Figure 7.11 shows the results of the
calculations as the ratio of instantaneous velocity to the thermal velocity (vth). At T =
650 nK, vth = 7.9 µm/ms. The plots confirm that the travel speed of spin information is
limited by the thermal velocity.

(a) (b)

Figure 7.11: Instantaneous velocities of domain walls scaled by thermal velocity for a range
of D. The range of D values is the same as in Fig. 7.7. It is expected that all the points
stay within the boundary ±1 as the speed of spin information cannot surpass vth.

On the edges of the cloud, the SNR drops, and it is not possible to draw conclusions
about the behavior of the walls in those regions. However, the trends of velocities suggest
two possibilities. One is that the velocity keeps increasing while the wall moves towards
the cloud edge until it reaches the end and essentially dies. Another possibility is that the
acceleration changes direction towards the cloud center, the velocity changes its direction
once more, and the wall continues by coming back towards the central region. The current
SNR in our system does not allow us to see which one is the case.

7.3.4 Initial impurity

In the initializations of the data shown so far, state |1⟩ atoms are always in the middle of
the cloud while the two sides consist of atoms in state |2⟩. However, due to imperfections
in our current domain preparation method, there are always some |2⟩ atoms in the central
region, making the middle domain “impure.” Impurity here only refers to the magnitude of
the longitudinal spin being less than its maximum due to the presence of a transverse spin
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component. Over the course of this work, we learned that the impurity significantly affects
the dynamics of the domain walls, and its effects are further explored below.

(a) (b)

Figure 7.12: Examples of impurity in the middle domain. Vertical dashed lines set the
boundaries in calculating β in Eqn. 7.6.

To quantify the initial impurity, we can define boundaries where N2 becomes approxi-
mately constant in the middle domain in the initial longitudinal profile. Examples are shown
in Fig. 7.12 where the boundaries are defined by the vertical dashed lines. The impurity (β)
is then defined by

β ≡

∑
z∈boundary

N2 (z, t = 0)∑
z∈boundary

N1 (z, t = 0) , (7.6)

where summation is taken over the axial bins within the boundary. We can add more
impurity by setting the detuning away from its ideal value of

√
3ΩR while keeping the

cloud-wide π-pulse resonant for the dark regions of the DMD patterns.

(a) (b)

Figure 7.13: Change in (a) total atom ratio (η) and (b) impurity in the central region (β)
as the initial middle domain width increases.

The changes in η and β for a range of the middle domain width that includes those in
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Fig. 7.7 are shown in Fig. 7.13. Behavior of η is as expected: as D increases over a relatively
large range, η drops significantly. β interestingly only drops by a small amount because N2

stays almost constant as D increases. The value of β is only slightly sensitive to where the
approximate boundary lines are drawn, and in any case, its value does not change by any
significant amount.

The small change in β is consistent with the results of fits for the wall motion shown in
Fig. 7.10. The amount a domain wall moves toward the center of the cloud is a function
of the impurity. Figure 7.14 shows how differences in initial impurity lead to different
trajectories of the walls. In Fig. 7.14(b), more impurity is added in the middle compared
to the initialization in Fig. 7.14(a), which increases the β value from 0.10 to 0.21. Left and
right wall centers are kept the same in both cases so that the middle domain width remains
identical. With this setup, the system is allowed to evolve. Figure 7.14(c) and Fig. 7.14(d)
show the extracted left and right wall positions, respectively. This example clearly illustrates
that more impurity in the center drags the walls further towards the center of the trap before
they head to the cloud edges. A similar change in the wall trajectory for larger impurity in
a two-domain system will be shown later.

(a) (b)

(c) (d)

Figure 7.14: Effect of initial impurity on wall trajectories. D is kept constant in (a) and
(b), but (b) has a larger impurity. (c) and (d) show the difference in left and right wall
trajectories, respectively. More impurity in the middle domain leads to larger displacement
of the walls towards the center before they reverse their direction of motion.
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7.3.5 Wall motion in a two-domain system

Spin domain wall motion is not limited to systems initialized with three domains. For
instance, it can also happen in a system with two domains, provided that the domains
are initialized asymmetrically, i.e. the initial position of the domain wall is not at the trap
center. Setting the wall off-center in the beginning breaks the symmetry in the population
ratio and the trap potential. Figure 7.15 shows two cases of a two-domain system where one
has a symmetric initialization and the other is asymmetric. Figure 7.15(b) shows a spatio-
temporal plot of the symmetric example, where the wall remains at the axis of symmetry,
indicated by the dashed line at z = 0. The initialization in Fig. 7.15(d) is asymmetric with
the wall initially at z = −65 µm, and as the system evolves, the wall displaces. In general,
in a two-domain system the wall moves towards the state that has a lower population of
atoms.

(a) (b)

(c) (d)

Figure 7.15: Illustrating how domain wall motion can also happen in an asymmetric two-
domain system. (a) Initial symmetric initialization and (b) its spatio-temporal plot showing
that the wall remains at its original position as the system evolves. (c) Initial asymmetric
initialization and (d) its evolution exhibiting gradual displacement of the wall toward the
smaller domain.

Similar to a system with three domains, impurity can affect the dynamics of a two-
domain cloud. Figure 7.16 shows two cases of asymmetric two-domain systems. The initial
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position of the wall center is the same in both cases. The difference is that the impurity in
Fig. 7.16(b) is larger than in Fig. 7.16(a). The result is that the wall moves further toward
the center in Fig. 7.16(d) versus Fig. 7.16(c). It is evident that the effect of impurity on the
dynamics is not merely limited to the trajectory of the wall. In the example here, we can
see that it also preserves the state of the domains for a significantly longer time, though the
width of each domain changes; in other words, impurity can also have a stabilizing effect
due to increased ISRE collisions.

(a) (b)

(c) (d)

Figure 7.16: Illustrating how impurity can change dynamics of a two-domain system. (a)
and (b) are initial profiles with small and large impurities, respectively. The wall center is
at the same position in both cases. (c) shows evolution of (a), and (d) corresponds to (b).
Similar to a three-domain system (Fig. 7.14), more impurity in a domain can drag the wall
further toward that side.

7.3.6 Emergence of new walls in a three-domain system

Another interesting phenomenon that the data shows is dynamic creation of new domain
walls, which occurs at longer evolution times. The original walls can move toward the edges
of the cloud while new walls emerge near the center of the cloud, an example of which is
shown in Fig. 7.17. During this transition, three domains can become five domains due to
emergence of the new walls.
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Figure 7.17: Example of dynamic creation of new domain walls in a three-domain system.
The initial walls move outward and a new domain (the red region at the center) appears. The
new domain is bounded by new walls that have emerged dynamically. During the transition
that happens around 50 ms to 80 ms, the new walls increase the number of domains from
three to five. Due to the low SNR at the sides of the cloud, we cannot conclusively state
whether the system continues with five domains.

The middle domain that is constructed by the new walls can have a different width from
the original middle domain. Figure 7.18 shows the inverse relationship between the initial
width of the middle domain and the width of the new middle domain. Initializing the middle
domain with a larger width results in a smaller middle domain formed by the new walls.

Dynamic creation of new domain walls and properties of the new middle domain are
interesting topics. One of our goals is to further investigate these topics in the future.
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(a) (b)

(c) (d)

Figure 7.18: Examples illustrating how a wider initial middle domain leads to a narrower
new middle domain that is created dynamically. (a) D = 268 µm, (b) D = 275 µm, (c)
D = 293 µm, and (d) D = 310 µm.
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Chapter 8

Conclusions and ideas for future
work

As was shown in the previous Chapter, the position of a domain wall can be a dynamic
feature of a spin system. It was shown that domain walls do not necessarily stay static
when the system evolves, both in two- and three-domain systems.

The data in this work suggest that the primary prerequisite for the walls to move is
asymmetry in the transverse spin distribution with respect to the wall center. Given that
in our system the atom density has a Gaussian profile, constructing a domain wall away
from the center of the trap breaks the local symmetry in the transverse spin distribution.
Figure 7.15 shows how moving the wall from the trap center in a two-domain system leads
to motion of the wall. In the three-domain systems studied in this work, there is necessarily
an asymmetry in the local transverse spin distribution around the centers of both walls,
even when the total population ratio of the two states is unity. In all of the examples that
have been shown for the three-domain systems, the walls displace as the system evolves. It
should be emphasized that this suggested prerequisite for the motion of a domain wall is a
subject for future studies.

The experimental results show that impurity is not the only factor that determines the
behavior of a domain wall. In Fig. 7.8, the impurity does not change much, yet the walls
belong to different regimes of motion (namely, linear and unstable oscillation). Another
determining factor is the total population ratio of the two states. For the cases where
the wall moves linearly, the middle domain size is very small or very large, which results
in a more imbalanced population ratio. In the cases where domain walls exhibit similar
oscillatory motions (Fig. 7.7), the impurity is almost constant and the population ratio is
closer to unity.

More transverse spin in a domain is seen as higher impurity in our system. In the
previous Chapter, it was shown how initial impurity can be used as a control parameter
to affect the trajectory that a domain wall takes. In an asymmetric two-domain system,
if a state has a smaller total population, the wall will move toward the side of that state.
However, if enough impurity is added to the other domain, the wall will first move toward
that domain before reversing its direction (Fig. 7.16). Figure 7.14 shows a similar effect in
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three-domain systems, where adding impurity makes the walls move further inward before
changing their directions.

In the rest of this Chapter, we present a few interesting topics that are feasible to explore
in our experimental system. One topic is the dynamic emergence of new domain walls that
was mentioned in the last Chapter. Figure 7.18 shows that the width of the dynamically
created middle domain can be different from that of the original middle domain, depending
on the initial width of the middle domain. It would be quite interesting to explore the
phenomenon of dynamic creation of new domain walls and geometrical properties of the
new middle domain.

Another topic to explore is the effect of the widths of the domain walls on the dynamics of
a three-domain system. In this work, the walls were kept at the same size in the initialization
while investigating how the size of the middle domain modifies the oscillatory motion of
domain walls. Figure 8.1 shows an example of the opposite case where the middle domain
size is kept constant and the walls are made larger in the initialization. The conditions of
larger walls in Fig. 8.1(b) as compared to Fig. 8.1(a) illustrates a stabilizing effect, though
the width of the domains change. Moreover, in this case the walls exhibit a stable oscillatory
motion as opposed to the unstable oscillatory motion seen in this work.

(a) (b)

Figure 8.1: Illustrating how domain wall widths can drastically change the dynamics. The
walls are initialized with a width of about (a) 75 µm and (b) 114 µm. The width of the
middle domain and the impurity are kept constant in the initialization of (a) and (b).

Previous work by the McGuirk group has shown that domains in a two-domain system
can be stabilized by applying a linear differential potential with a certain slope (see Ref. [12]).
The same stabilization technique can be applied to three-domain systems with a double-
linear potential that has a V-shape or an inverted V-shape potential. Figure 8.2 shows
an example in which the applied double-linear potential has stabilized the domains for at
least 200 ms. Both in Fig. 8.2 and in Ref. [12], the stabilizing potential is applied from the
beginning, i.e. before the walls start moving. A question that remains to be answered is
what potential would stabilize a moving wall? It is already clear that this problem is more
challenging because the slope of the required stabilizing potential depends on the width of
the wall, which is itself a dynamic quantity. As the system evolves, the width of the wall
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changes so it matters when the stabilizing potential is applied.

Figure 8.2: Example of experimentally stabilizing a three-domain system with a double-
linear differential potential.

The data in this work has shown different trajectories for domain-wall motion. One
general question that remains is this: if we want a domain wall to have a certain trajectory,
what should the initial conditions and the governing differential potential be? This question
is easier to explore in a two-domain system, and part of our ongoing work is in that direction.
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