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Abstract 

Force myography (FMG) is a non-invasive wearable technology that can detect 

underlying muscle volumetric changes when muscles contract.  Common industrial 

physical human robot interaction (pHRI) tasks, such as object handling or transportation, 

mostly require hand forces to interact with machines. An FMG band made of force 

sensing resistors (FSRs) wrapped around an upper limb can be used to read muscle 

contractions during such activities. Including human feedback via FMG biosignals can be 

challenging yet practical in interactive pHRI environments. Therefore, the aim of this 

thesis was to investigate recognizing human intentions of interaction with a robot by 

estimating applied forces in dynamic motion using FMG technique. Initially in objective 1, 

real-time interactions with a 2-DoF linear robot (2D-pHRI platform) were investigated. 

Estimating interactive forces via intra-subject machine learning models was examined to 

manipulate the robot in any intended direction. In practice, a generalized (inter-subject) 

transfer learning model is preferable to recognize a new human worker instantly. Hence, 

in objective 2, domain adaptation and domain generalization were investigated using 

multiple source data collected over a long period (long-term data) from a 2D-pHRI 

platform. A few calibration (target training) data finetuned the model to quickly adapt out-

of-distribution, unseen (target test) 2D-pHRI data. A study was conducted in objective 3 

to interact with a 7-DoF serial robot during a challenging 3D collaborative task. Cross-

domain generalization demonstrated that a transfer learning model pretrained with the 

2D-pHRI long-term multiple source domains could improve force estimations in the 3D-

pHRI platform. However, adequate and labeled data in practice is scarce. This was 

addressed in objective 4 by generating real-like synthetic FMG biosignals via domain 

randomization technique.  By implementing a self-training technique, an unsupervised 

adversarial model pretrained with few labeled datasets and large amount of unlabeled 

synthetic data could estimate interaction forces during pHRI with a 7-DoF serial robot.  

Therefore, using force myography as the only bio feedback could improve daily 

HRI experiences using long-term source data, calibration data, or synthetic data- labeled 

or unlabeled for faster adaptations. In addition, FMG-based force estimation could 

enhance safe collaboration by avoiding unwanted contact or impact force from the 

manipulator. We believe these findings will contribute to the development of a discrete 

wearable FMG device for practical pHRI, rehabilitation, or prosthetic control applications. 
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Executive Summary 

In common industrial collaborative tasks such as moving objects, human workers 

commonly use hand forces to interact with machines. In the literature, there are only a few 

studies where applied force is estimated using biosignals such as the surface 

electromyography (sEMG) technique. Practical challenges associated with using 

biosignal-based control designs include redundant degrees of freedom of the human arm 

in the workspace, the tools involved, and individual-specific muscle contractions during 

certain human robot interaction (HRI) tasks. As a contemporary technology like the 

conventional sEMG technology, force myography (FMG) is a non-invasive, wearable 

technique that often utilizes force sensing resistors (FSRs). The off-the-shelf FSRs can 

detect resistance changes when pressure is applied on their surfaces. An FMG band 

wrapped around an upper or lower limb can be used to detect underlying muscle 

volumetric changes when the muscle contracts. For gesture recognition, prosthetic 

control, finger movements regression, rehabilitations, activities in daily life (ADL), grasping 

forces and human-machine interactions (HMI), FMG bio-signals are comparable to 

traditional sEMG biosignals. However, there is a gap in the literature when estimating 

human exerted forces during physical HRI (pHRI) tasks using the FMG technique.  Hence, 

in this thesis, we have investigated human robot interactions and collaborations via force 

myography biosignals in recognizing interactive applied forces in dynamic motions using 

data-driven models. We considered physical interactions with a robot using human applied 

hand force, so reading FMG signals from upper limb of a participant was the obvious 

choice. 

In this thesis, the research goal was achieved via four objectives. In the first 

objective, a preliminary study on interactive force estimation to manipulate a linear robot 

(a biaxial stage) using force myography signals derived from 32 channels was 

investigated. In this 2D interactive planar workspace, interactions occurred in five different 

dynamic motions (1D-X, 1D-Y, 2D-diagonal/DG, 2D-square/SQ and 2D-diamond/DM). 

These motions were examined to understand human intentions of manipulating the robot 

in any intended direction. These motions were selected to enable the gradual addition of 

more complex muscle activities and arm movements with more shoulder and arm 

abduction, adduction, flexion, and extension, which also covered the whole 2D surface. 

Intra-session (training and testing in same session) supervised machine learning methods 
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(support vector regressor and kernel ridge regressor) were found effective in real-time 

force estimations (R2: 90%- 94% in 1D and 82% - 91% in 2D motions). However, a 

separate trained model was required for each participant to manipulate the robot in a 

certain direction, i.e., an individual model for each participant for each motion.  

The potential application of a wearable FMG band for human workers in industrial 

pHRI workspaces requires general applicability to all workers for control and safety 

aspects of their work. A trained model that can estimate dynamic hand force via FMG 

signals is preferable for any individual in any intended motion during pHRI. Hence, the 

second objective was to investigate a generalized model to recognize applied forces for 

out-of-distribution (OOD) target data via domain adaptation and domain generalization. 

Two separate 2D-pHRI studies were conducted where a large volume of multiple source 

domains collected over a long period of time was utilized. These population data were 

collected over long period of time in multiple sessions during real-time interactions 

between several participants and the linear robot in selected motions (1D-X, 2D-

diagonal/DG, 2D-sqaure/SQ and 2D-sqaure of different sizes/SQ-diffSize). A generalized 

model trained with the long-term FMG distributions predicted unseen target data in 

repetitive usage or during interactions with a new participant (Study 1: unseen, unlearnt 

target test data # R2: 90%- 94% [1D-X], 80%-85% [2D-DG] and Study 2: unseen, similar 

target test data # R2: 88% [2D-SQ], 89% [2D-SQ-diffSize]).  

Objectives 1 and 2 were conducted in an interactive 2D-pHRI environment with 32 

FMG channels on the forearm and upper arm positions. However, conducting human robot 

collaborative tasks in 3D using FMG biosignal proved to be challenging. The procedure 

required human participants to handle objects or tools by applying adjustable forces with 

redundant degrees-of-freedom in arm trajectories, which needed investigation. Hence, in 

objective 3, the focus was on investigating an HRC task of moving a wooden rod in 

collaboration with a Kuka LBR IIWA 14 robot. Initially, pHRI with the 7-DoF Kuka robot 

was investigated by estimating grasping forces in dynamic motion interactions in certain 

directions of the 1D, 2D and 3D workspace. A 16-channel FMG forearm band was used 

to capture the muscle readings during the task. An intra-session trained deep learning 

model moderately estimated the forces, which required further improvement. Having more 

participants or collecting more inter-session data during the HRC task with the Kuka robot 

was not practical or possible due to time constraints. On the other hand, a large volume 

of source data (long-term data) collected over a long period of time from other pHRI 
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platforms can be useful providing adequate training data. A cross-domain generalization 

(CDG) technique was useful when using unrelated source and target data that allows a 

pretrained model to transfer knowledge between different platforms/systems. 

Furthermore, it generalized the trained model beyond source distributions. However, it 

was not studied in bio-signal-based HRI tasks. Therefore, in this   objective 3, we 

conducted an FMG-based HRC task of moving the wooden rod using the supervised CDG 

technique. Multiple long-term source data collected over a long period of time from the 

2D-pHRI platform were used in pretraining a transfer learning model with CDG and was 

evaluated on the target 3D-HRC task for the first time. The pretrained model performed 

better in simple 1D grasping interactions (R2: 79-87%) while its performance slightly 

improved during collaborative task of moving the rod in 3D (R2: ≈60-63%). 

The studies conducted in objective 1, 2, and 3 utilized labeled training data via 

supervised, traditional, or deep learning algorithms. However, in real-world pHRI 

applications, obtaining enough training data, having more participants, or labeling all data 

are not always possible. In the case of unlabeled data, unsupervised learning can be an 

option which does not need labeled data. It   learns latent feature distributions and may 

generate labels based on the learning process. In recent pHRI studies, there is a growing 

interest in using limited amounts of labeled data with large quantities of unlabeled data for 

realistic predictions. Semi-supervised or weakly supervised learning can be useful and 

needs only a few labeled training datasets and may perform similar/close to the supervised 

learning. For scenarios where training data is hard to collect or there is no previous data 

available from other related sources, synthetic data could be a favorable alternative. 

Therefore, in the final objective, unsupervised adversarial learning was used for 

generating synthetic data via domain randomization. Knowledge from the latent feature 

distributions was transferred via semi-supervised learning during intra-session test data 

evaluation. For this investigation, pHRI with the Kuka robot in 1D (X, Y and Z directions) 

was investigated using 16-channel forearm FMG signals. The proposed model performed 

(R2: 77%-84%) like the supervised model (R2: 78%-88%) even with fewer labeled training 

datasets (labeled vs unlabeled = 1:4) and a large volume of unlabeled, generated synthetic 

FMG data (real vs syn. = 1: 2.5). 

Recognizing interactive forces in any intended dynamic arm motion via FMG 

signals would be beneficial in practical HRI scenarios. Because it would help 

understanding human intentions of interactions during collaborative tasks. Long-term 
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FMG-based force estimation via domain adaptation and generalization approaches are 

particularly effective in daily application where finetuning with a few calibration dataset can 

recognize unseen HRI target data. Furthermore, cross-domain generalization using one 

arm band can be useful where source and target HRI platforms are totally different from 

each other. Scarcity of labeled data in real-world applications can be dealt with by careful 

synthetic data generation using adversarial learning and self-training approaches. 

Therefore, the use of the wearable FMG band for recognition of human activities can 

enhance pHRI quality in safe collaborations, rehabilitation applications, or prostheses 

control to interact with machines on a daily basis.  

This papers-based thesis is organized into 7 chapters. The introductory chapter 1 

describes motivations, research goal and objectives, and expected contributions. Chapter 

2 describes a literature review of HRI and force myography signal, experimental setups 

and methodologies involved during the studies. Chapter 3-6 describe the detailed studies 

conducted in objectives 1-4 in a consecutive manner, which were published in peer-

reviewed journals. The thesis concludes in chapter 7 with discussion of observations 

made, limitations and future work with concluding remarks. 
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Chapter 1.  
 
Introduction 

This thesis is a papers-based manuscript with published articles in peer-reviewed 

journals. Specifically, chapters 3, 4, 5 and 6 are excerpts from the published papers. 

Chapters 1 and 2 introduce the subject and provide background information to facilitate 

the understanding of the subsequent chapters 3-6.  

The material presented in this chapter is extracted, reproduced, and modified with 

permission from the following papers:  

[56] U. Zakia and C. Menon, "Estimating Exerted Hand Force via Force 

Myography to Interact with a Biaxial Stage in Real-Time by Learning Human Intentions: A 

Preliminary Investigation", Sensors, vol. 20, no. 7, (22pp), Apr. 2020. 

[57] © [2021] IEEE with permission. U. Zakia and C. Menon, "Toward Long-

Term FMG Model-Based Estimation of Applied Hand Force in Dynamic Motion During 

Human–Robot Interactions," in IEEE Transactions on Human-Machine Systems, vol. 51, 

no. 4, pp. 310-323, Aug. 2021, doi: 10.1109/THMS.2021.3087902. 

[58] U. Zakia and C. Menon, “Force Myography-Based Human Robot 

Interactions via Deep Domain Adaptation and Generalization,” Sensors. 2022; 22(1):211. 

https://doi.org/10.3390/s22010211. 

[59] © [2022] IEEE with permission. U. Zakia and C. Menon, “Human Robot 

Collaboration in 3D via Force Myography based Interactive Force Estimations using 

Cross-Domain Generalization,” IEEE Access, Mar. 2022, doi: 

10.1109/ACCESS.2022.3164103. 

[60] © [U. Zakia, A. Barua, X. Jiang, and C. Menon, “Unsupervised, Semi-

Supervised Interactive Force Estimations During pHRI via Generated Synthetic Force 

Myography Signals,” IEEE Access, June 2022, doi: 10.1109/ACCESS.2022.3187115.61. 

Sections of this chapter are reprinted or adapted from the above articles for 

clarification and to fit the formatting and scope of this document. 
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1.1. Chapter Overview 

In this chapter, the motivation behind the research work is outlined, and research 

questions and objectives are defined.  Finally, the structure of this thesis is explained. 

1.2. Motivation 

The use of human robot interaction (HRI) in manufacturing environments has 

allowed increased productivity of industries utilizing assembly lines [1-3]. A variety of 

measures, such as vision system (cameras, image/depth sensors, tracking systems), 

ultrasonic or wideband/RF transceivers, proximity detections (capacitive, inductive, 

infrared, or magnetic sensors) are implemented for surveillance, monitoring, and sharing 

the workplace with robots [4-7]. These tools can be either attached to the robot or installed 

in the workspace. However, proper supervision can be impeded due to the obstructions 

of signals, limited signal ranges, and difficulties with installations of monitoring devices 

within the workspace. Besides, the dynamic, and unpredictable environment during HRI 

collaborations introduces uncertainties that increase the risks of injuries to the workers [8-

10]. To enhance human-machine interactions, an input signal from the human worker 

directly to the robot would help implementing better collaboration and enhance a safe 

working environment for the worker. 

In physical human robot collaboration (HRC), human workers commonly use hand 

forces during activities such as object handling or transportation tasks to interact with 

machines. These interactions require dynamic arm movements where the force 

interactions occur through hand movements [Figure 1.1]. Predicting human intentions 

through body movements such as human hand force and arm motions have been studied 

extensively to facilitate such collaborative tasks with robots [11-14]. Commercially 

available force/toque sensors can accurately measure applied forces during collaborative 

tasks. These sensors can be attached directly to the robot body allowing full tactile 

sensation. However, they are expensive, bulky, and restricts the free movements of a 

human worker in the workspace. Hence, indirect force measurements are preferred for 

recognizing applied hand forces during interactions. Utilizing wearable sensing devices 

based on biosignals provides the worker more flexibility in movements and insight about 

their intentions. So, the current research focuses on including biosignals for understanding 

human activities during interactions with machines [15, 16]. Among such biosignals, the 
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traditional surface electromyography (sEMG) has been studied over the last few decades. 

It is a non-invasive technique that can interpret electrical activities associated with muscle 

contraction variations under the skin. This technique has been studied for gesture 

recognition, hand force recognition, prosthetic limb controls, rehabilitation applications and 

human-robot interactions [17-28].  

Recently, an innovative wearable sensing system integrating the force myography 

(FMG) technique has gained interest. Force myography (FMG) is a non-invasive 

technology that often utilizes force sensing resistors (FSRs) to detect resistance changes 

when pressure is applied [29]. FSRs are small, easy to use, inexpensive and durable, 

which is essential for any wearable device.  An FMG band wrapped around upper or lower 

limbs can detect muscle volumetric changes during certain activities. As a contemporary 

technique to sEMG, FMG signals have proven their use in similar research of finger and 

gesture recognition, isometric grasp/hand force recognition, prosthetic upper limb control, 

rehabilitation applications, and assistive solutions for elders in their activities in daily life 

(ADL) [30-42]. This technique was found comparable and sometimes better than sEMG in 

similar applications. Recent research has shown the FMG technique has advantages 

compared to sEMG in terms of lower cost, simple signal processing, easy incorporating in 

a wearable device and a better choice for human machine interfacing compared to sEMG 

[43-45].  

 

Figure 1.1. Human worker applies force during a collaborative task with a serial robot. 
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In the literature, a few studies were conducted to estimate hand force or position 

for improving human-robot interactions via biosignals such as sEMG [22,23]. However, 

there is a lack of studies in the literature on conducting human robot collaborative tasks in 

3D via FMG-based force estimations. Recognizing interactive forces in dynamic motions 

with biosignals is challenging due to the dynamic nature of the task, tools involved and the 

redundant degree-of-freedom of the human arm in 3D. Studying the use of FMG in the 

recognition of certain human intention in the manipulation of robots in any intended 

direction would be useful. In practical pHRI applications, obtaining enough training data, 

having more participants, or labeling all data are not practical or always possible. 

Therefore, using existing source data in training a generalized model to recognize out-of-

distribution, out-of-domain, the same or cross platform HRI applications could be helpful 

in the recognition of human activities in unseen scenarios. Also, generating real-like 

synthetic FMG data in realizing forces in dynamic motion via unsupervised learning could 

provide a viable solution in industrial HRC activities.  Since force myography can be a 

potential technique for pHRI applications and there is a gap in research to address these 

practical challenges, FMG-based force control requires investigation. Therefore, the focus 

of this thesis was to investigate human robot collaboration by recognizing interactive 

forces in dynamic motion via force myography signals. Using FMG biosignals as the only 

input in learning human activities appears promising for safe interactions.  

1.3. Research Question  

Can force myography estimate human upper-extremity activities to interact with robots? 

By estimating human upper-extremity activities, we mean: 

• estimating applied hand force in dynamic motion, 

• recognizing arm motion during interactions with machine. 

 

Including FMG biosignals in physical human robot interactions will: 

• facilitate collaborative activities, 

• avoid complexity of dynamic hand modelling. 
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1.4. Research Goal and Objectives  

The research goal of this thesis was to develop force myography based pHRI 

system by recognizing interactive force in dynamic motions. During interactions with a 

robot via compliant collaboration, a human participant exerted forces to its end-effector 

and the robot moved in the same trajectory, which required impedance control. Learning 

human intentions during the interactions can be achieved using the FMG technique, 

however, it had certain challenges. Hence, this thesis is described as objectives and 

methods to achieve the research goal while proposing solutions to overcome inherent 

challenges of the dynamic environment. The overall goal of this thesis is divided into four 

objectives that answer four research questions as follows: 

Research question 1:  

• Can we estimate applied hand force in an intended direction in 2D via force myography 

signals? 

Objective 1: Estimating applied hand force in certain motion via FMG signals during 

interactions with a linear robot  

To understand human activities by estimating exerted hand force via FMG signals, 

a preliminary study was conducted where human participant manipulated a biaxial stage 

that resembled a simple 2-dof planar robotic arm or a linear robot. Two FMG bands (32-

channel) wrapped around forearm and upper arm muscles were used for intra-session 

force estimations. Interactive forces during five different arm motions were considered. 

These motions were examined for understanding human intentions of manipulating the 

linear robot in any direction. Supervised machine learning techniques via a simple 

interactive setup with constrained protocol allowed dynamic force estimations in real time.  

Research question 2:  

• Can an FMG-based regression model estimate interactive hand force in unseen 2D 

scenarios?  

Objective 2: Training a long-term FMG-based generalized model to estimate applied 

hand force in unseen scenarios  
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To investigate if an FMG-based regression model could predict new, unlearned 

target sample data that would be out-of-distribution (OOD) of the population data, we 

conducted two separate studies. In the 1st study (objective 2A), a dataset was collected 

in multiple sessions over a long period of time where several participants interacted with 

the linear robot and applied forces in five different intended motions.  A generalized model 

trained with the long-term multiple source domains was then evaluated for predicting 

OOD, unseen target data. In this study, two target scenarios were evaluated where: 1) a 

participant applied forces in a new, unseen arm motion, and 2) an unknown, new 

participant applied forces in a learnt motion.  In the 2nd study (objective 2B), multiple 

session force data from interactions between a participant and the linear robot in a certain 

complex arm motion were used in pretraining a deep learning model. This model was 

evaluated in estimating forces via 1) domain adaptation for repeated interactions between 

the same participant and the robot, and 2) domain generalization where unseen (OOD) 

participants interacted with the robot in a similar way. Supervised machine learning and 

deep learning techniques were implemented in these studies. 

In this objective, a 32-channel FMG-based regression model trained with a long-

term dataset was used in estimating forces for unseen/unlearned sample data using the 

forearm and upper arm FMG bands. This technique generalized the trained model, 

reduced training, and fine-tuned the model with a small amount of instantaneous, 

calibration data.    

Research question 3:  

• Can FMG signals estimate applied hand force in 3D dynamic motion during a 

collaborative task with a serial robot? 

Objective 3: Performing a collaborative task with a robotic arm in 3D via FMG-based 

force estimation  

To validate force estimations in dynamic motion, a practical collaborative task such 

as transporting a wooden rod in 3D with a 7-DoF Kuka robot was conducted. For the 

challenging task of force estimation in dynamic 3D motion with 16-channel FMG signals, 

a supervised cross-domain generalization (CDG) method with deep transfer learning was 

investigated. In this study, multiple long-term source data from the 2D-pHRI platform 

(objective 1) was used in pretraining a transfer learning model with CDG. The proposed 
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model was evaluated on the target 3D-HRC task for the first time using fine-tuned 

calibration data. FMG-based pHRI with the Kuka robot was also investigated in estimating 

grasping forces in certain directions of the 1D, 2D and 3D workspace. Using fewer FMG 

channels and learning interactive forces in motions from forearm muscle belly was 

considered appropriate for practical industrial approaches.   

Research question 4:  

• Can an FMG-based transfer learning model trained using a few, unlabeled source data 

estimate interactive forces in dynamic motion?  

Objective 4: Estimating interactive forces via FMG signal using unsupervised 

adversarial learning with domain randomization and self-training 

To estimate interactive forces, unsupervised transfer learning was investigated in 

situations when obtaining enough training data, having more participants, or labelling all 

data was not possible. This critical approach enabled training a deep convolutional neural 

network quickly with a relatively smaller amount of data instead of training the model from 

scratch. In this study, an adversarial machine learning technique was used to mislead a 

model with malicious input and real-like synthetic data was generated via an 

unsupervised, generative adversarial network (GAN) to build adequate a training dataset. 

Domain randomization was implemented to minimize the reality gap between the real-like 

synthetic data and the real data via a few unique transformation techniques. Domain 

adaptation was implemented for transferring knowledge using the GAN discriminator 

model where the source and target domains had the same feature space but different 

distributions. A semi-supervised self-training approach with a few labeled real data and 

pseudo-labeled synthetic data helped pretraining of a transfer learning model to evaluate 

target data. For this study, interactions with the Kuka robot in 1D was evaluated using 

forearm FMG signals. This study showed unsupervised, adversarial learning via domain 

adaptation could be a viable solution where supervised learning would not be applicable 

to interact with industrial robots. 

1.5. Thesis Structure 

This thesis contents are structured in consequent chapters as described below: 
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• Chapter 2 provides background study on human robot interactions and the force 

myography technology explored in force estimations in the literature. The machine 

learning approaches and techniques adopted in this thesis are described. The FMG 

bands, robots and force control mechanism developed using the data-driven model 

are discussed also.  

• Chapter 3 describes the study conducted in accomplishing Objective 1. The 

methodology, the hardware and the software developed for real-time interactions with 

a linear robot in this study are discussed. Data analysis methods used, and the results 

obtained are discussed at the end of the chapter.  

• Chapter 4 outlines the two separate studies conducted to answer the research 

question of Objective 2. In Objective 2A, the first study on transfer learning using long-

term multiple source domains (from interactions between a linear robot and several 

participants) in predicting unseen target data (unseen participants or unseen motion 

interactions) is presented. The second study on deep domain adaptation and domain 

generalization via multiple session data (from interaction with a linear robot and one 

participant) in estimating unseen target data (unseen session or unseen participants) 

is discussed in Objective 2B. Each study is described in terms of the materials, 

methods and experimental setups with the protocols followed. Observations and 

results are reported and discussed in subsequent studies.  

• Chapter 5 describes the study conducted to fulfill Objective 3. Materials and 

experimental setup for performing a collaborative task with a Kuka robot via cross-

domain generalization method are explained in this chapter. Results of the study are 

reported and discussed towards the end of the chapter.  

• Chapter 6 outlines the study approach adopted to accomplish Objective 4. The 

unsupervised learning approach used in real-like synthetic FMG bio data generation 

are explained in detail. The transfer learning method in pretraining a model via self-

training is discussed followed by evaluation of the target data (interactions with a Kuka 

robot in 1D) with a data analysis method. Results obtained are discussed at the end 

of the chapter.  

• Chapter 7 discusses observations and conclusions drawn based on results of the four 

studies explained in Chapters 3 to 6. It explains how the objectives are fulfilled and 
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points out limitations and future works that can be done based on the findings of this 

thesis. 

1.6. Contribution 

This thesis investigated applied forces in collaborative tasks between a human 

worker and a robot using FMG biosignals. Force sensing resistors (FSRs) in a wearable 

band (FMG band) were used to capture FMG biosignals because they are cheap, durable, 

reliable, and off-the-shelf. The non-invasive, easy to wear FMG bands provided flexibility 

and comfort during human movements within the workspace. With careful method 

selections and control designs as discussed in this thesis, the ability to interpret human 

intended directions of interactions using FMG biosignals became viable in platform 

independent HRC applications.  

Contributions of this thesis were:  

• estimating interactive hand forces using data-driven approaches instead of 

developing complex hand modeling,   

• addressing the real-world problem of inadequate training data by utilizing 

existing data collected over a long period of time,   

• quickly calibrating the ready-to-use FMG band with a small amount of 

instantaneous data using a transfer learning technique,  

• providing a way to bridge between different HRI platforms via domain 

adaptation, domain generalization and cross-domain generalization 

methods to estimate interactive forces either from forearm or upper arm 

muscle readings for a first-time or repeated user,  

• generating real-like synthetic FMG biosignals to supplement the severe 

data scarcity problem using the domain randomization method,   

• estimating forces from unlabeled data using unsupervised and semi-

supervised adversarial learning techniques, 
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• implementing compliant collaboration to enable the robot to follow 

trajectories of human intended interactions and prevent the human 

participant from getting injured or trapped by the robot.  

This thesis work generated the following publications:  

[56]   U. Zakia and C. Menon, "Estimating Exerted Hand Force via Force 

Myography to Interact with a Biaxial Stage in Real-Time by Learning Human Intentions: A 

Preliminary Investigation", Sensors, vol. 20, no. 7, (22pp), Apr. 2020. 

[57] © [2021] IEEE with permission. U. Zakia and C. Menon, "Toward Long-

Term FMG Model-Based Estimation of Applied Hand Force in Dynamic Motion During 

Human–Robot Interactions," in IEEE Transactions on Human-Machine Systems, vol. 51, 

no. 4, pp. 310-323, Aug. 2021, doi: 10.1109/THMS.2021.3087902. 

[58] U. Zakia and C. Menon, “Force Myography-Based Human Robot 

Interactions via Deep Domain Adaptation and Generalization,” Sensors. 2022; 22(1):211. 

https://doi.org/10.3390/s22010211. 

[59] © [2022] IEEE with permission. U. Zakia and C. Menon, “Human Robot 

Collaboration in 3D via Force Myography based Interactive Force Estimations using 

Cross-Domain Generalization,” IEEE Access, Mar. 2022, doi: 

10.1109/ACCESS.2022.3164103. 

[60] © [2022] IEEE with permission. U. Zakia, A. Barua, X. Jiang, and C. Menon, 

“Unsupervised, Semi-Supervised Interactive Force Estimations During pHRI via 

Generated Synthetic Force Myography Signals,” submitted in IEEE Access, June 2022, 

doi: 10.1109/ACCESS.2022.3187115. 

[61]   U. Zakia and C. Menon, ""Dataset on Force Myography for Human Robot 

Interactions", MDPI Data (submitted June 2022). 

Including human bio feedback in a robotic control scheme can be used to improve 

safe collaboration with the robot by using FMG signals. If a safety issue arises such as to 

avoid unwanted contact or impact force from the manipulator, the participant can push the 

robot to move it away further in a certain direction.  
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Likewise, we believe the supervised domain adaptation and generalization 

methods using a few instantaneous calibration data or the unsupervised adversarial 

transformation techniques in generating real-like synthetic data can be useful for other 

types of biosignals for overcoming similar design constraints. Such concepts and methods 

are mainly used in image processing or in natural language processing (NLP) applications. 

However, to implement FMG biosignal-based HRI, modified versions of these methods 

were adapted in this thesis. A version of modified generalized zero shot learning (GZSL) 

was used here where a few target training datasets were included in the training/finetuning 

process. Transfer learning methods were modified for pHRI implementation, such as: for 

domain adaptation, a model trained with 1D-X interactions of 5 participants with the biaxial 

stage was tested on a new participant interacting in 1D-X. For domain generalization, the 

model trained with 5 participants interacting in 1D-Y, 2D-diagonal, 2D-square and 2D-

diamond with the biaxial stage was tested on a new participant interacting with the biaxial 

stage in 1D-X. And for cross-domain generalization, the model trained with 1D-X, Y, 2D-

diagonal, 2D-square and 2D-diamond interactions of 5 participants with biaxial stage was 

tested on a new participant interacting with Kuka robot in 1D-X. 

So, using force myography biosignals as the only input in learning human activities 

appears promising in pHRI, developing safe collaborations, rehabilitation applications, or 

prostheses control to interact with machines on daily basis. 
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Chapter 2.  
 
Literature Review, Materials & Methods 

The material presented in this chapter is excerpted, reproduced, and modified with 

permission from the following papers:  

[56] U. Zakia and C. Menon, "Estimating Exerted Hand Force via Force 

Myography to Interact with a   Biaxial Stage in Real-Time by Learning Human Intentions: 

A Preliminary Investigation", Sensors, vol. 20, no. 7, (22pp), Apr. 2020. 

[57] © [2021] IEEE with permission. U. Zakia and C. Menon, "Toward Long-

Term FMG Model-Based Estimation of Applied Hand Force in Dynamic Motion During 

Human–Robot Interactions," in IEEE Transactions on Human-Machine Systems, vol. 51, 

no. 4, pp. 310-323, Aug. 2021, doi: 10.1109/THMS.2021.3087902. 

[58] U. Zakia and C. Menon, “Force Myography-Based Human Robot 

Interactions via Deep Domain Adaptation and Generalization,” Sensors. 2022; 22(1):211. 

https://doi.org/10.3390/s22010211. 

[59] © [2022] IEEE with permission. U. Zakia and C. Menon, “Human Robot 

Collaboration in 3D via Force Myography based Interactive Force Estimations using 

Cross-Domain Generalization,” IEEE Access, Mar. 2022, doi: 

10.1109/ACCESS.2022.3164103. 

[60] © [2022] IEEE with permission. U. Zakia, A. Barua, X. Jiang, and C. Menon, 

“Unsupervised, Semi-Supervised Interactive Force Estimations During pHRI via 

Generated Synthetic Force Myography Signals,” IEEE Access, June 2022, doi: 

10.1109/ACCESS.2022.3187115. 

Sections of this chapter are reprinted or adapted from the above articles for 

clarification and to fit the formatting and scope of this chapter. 
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2.1. Chapter Overview 

In this chapter, background study and literature review on related research work 

briefly outlined. The materials, experimental setups and methods followed to address the 

research questions in this thesis are summarized too.  

2.2. Human robot interactions 

In the last 60 years, robots are being employed in the automotive industries. The 

assembly lines of car manufacturer companies rely on the industrial robots to increase 

quality and capacity while reducing production time and costs. Engaging robots in the 

heavy, difficult, and dangerous works have relieved human workers and offer better safety. 

Also, health hazards such as musculoskeletal disorders resulting from lifting, twisting and 

repetitive motions can be prevented with the aid of robots performing those tasks. In the 

last few decades, human robot interaction (HRI) has been observed as a growing interest 

in the manufacturing environments. Since industrial robots are heavy machineries, despite 

the safety measurements, there are possible threat of injuries for human workers. 

Statistics reveal that the common injuries for human workers occur in the wrists or hands 

(38%) as exposures to immense mechanical forces by the robots [9, 10].  

HRI emphasizes the needs of safety precautions as a ground rule. Various safety 

measures are implemented in the industrial workplaces where human workers are present 

with robots. To prevent collisions between humans and uncaged robots, a vision system 

is used to detect humans around the workspace of a robot [4]. While cameras can be used 

for this purpose, they are still bulky and require high computational resources. An 

alternative technique is to use ultrasonic transceivers that are usually directional and 

should be arranged into an array to obtain a reliable image of the surroundings [5-6]. Even 

though humans are relatively large targets, the amount of ultrasound reflections from them 

is quite small because humans absorb most of the ultrasonic energy. Another family of 

proximity detector are capacitive sensors, which can be employed to detect the presence 

of a wide variety of materials [7]. A challenge of using capacitive sensors is their relatively 

short range which is typically between 10μm to few tens of centimeters. Magnetic sensors 

may also be used for proximity detection. However, the main limitation of typical magnetic 

sensors is that they only detect conducting materials over short ranges [7].  
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2.2.1. Learning human activities in HRI 

To understand human activities, recent research focus on including human 

biosignals during collaborative tasks. Wearable safety devices for workers monitoring 

biosignals can help adopting safety designs in the industrial environment. AB Research 

report suggests that enterprise wearable devices will be dominating in workplaces and by 

2021, wearable devices would be around 154 million [46]. Popular wearable devices are 

targeted for industrial and consumer markets such as body sensors, smart glasses, smart 

watches, fitness trackers, smart clothing, wearable cameras etc. Among these wearable 

sensing systems, many techniques mainly aim at detecting collisions of the hand with 

moving objects. Therefore, both position and applied force of the hand should be 

monitored. A data-glove, such as the Cyber glove [47] which incorporates both inertial 

measurement units (IMUs) and flexible bend sensors, could be used to measure the 

position. However, data-gloves limit the tactile sensation of the user’s fingers.  

Human robot interactions are carried out for performing collaborative tasks where 

human interacts with a robot mainly through object handling/takeover, reaching for 

 

Figure 2.1.Human robot collaborations. Reproduced from [22, 25, 52, 53, 54] with permissions. 
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different objects on a workbench, reaching predetermined targets, object transporting, as 

shown in Figure 2.1. To understand human intentions, arm motions are learned through 

vision systems such as 3D depth sensor, 3D camera, motion tracking sensors, 

biomarkers, tactile sensors, IMU sensors, force sensors [48-54]. These sensors can be 

attached to the robot’s body (end-effector, joints, or surface) or around the environment 

within the workspace. In research, some of these sensors are attached to human body to 

include biosignals to understand human activities during interactions. Biosignals can be 

measured, monitored continuously, and offers better user mobility while providing bio 

feedback.  

Learning human intentions during collaborative tasks with robots is vital in a 

dynamic and uncertain environment. Much research is carried out to understand human 

physiological activities by continuously measuring and monitoring biosignals. A variety of 

biosignals such as, electroencephalogram (EEG), electrocardiogram (ECG), 

electromyogram (EMG), electrooculogram (EOG) are well known examples of biosignals. 

Among these, the sEMG signals have been studied in learning human intentions to 

enhance collaborative interactions during physical HRI (pHRI) [22-28], as shown in Figure 

2.2. Machine learning techniques (such as artificial neural network (ANN), 3D 

convolutional neural network (CNN), support vector regression (SVR), linear discriminant 

analysis (LDA), K-nearest neighbor (KNN)) are implemented for estimating motion 

intention is integrated into adaptive impedance control. 

 

Figure 2.2. sEMG signals to understand human activities during collaborative task. Reproduced from 
[55] with permission. 
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Human robot collaboration requires sharing the workspace while complementing 

each other. The robot can perform a regular task efficiently and effectively while the human 

partner can provide reasoning to understand environments and uncertainties involved.  

Understanding human intention of motion is critical in control design during physical 

collaboration. Human activity can be defined as intentional, purposive, conscious, and 

subjectively meaningful sequences of actions. In this regard, to make the robot track a 

prescribed trajectory is not applicable. Utilizing impedance control scheme [64], the robot 

can be in compliant collaboration by changing its motion according to the applied hand 

force of the human partner during interactions. Intentions of changing motion will act as a 

load, so applied hand force in intended motion needs to be estimated and integrated into 

the robot control.  

2.3. Force measurements using myography techniques 

Over the past several decades, many studies have been carried out to characterize 

dynamic and kinematic aspects of human movements. In particular, force measurements 

of human body have become an important aspect in various fields, including human-robot 

interaction (HRI), rehabilitation, and neuromuscular diagnostics. Using commercially 

available force/torque sensors to monitor direct force measurements of human body is 

advantageous. Even though this method frees the hand and allows full tactile sensation, 

attaching these transducers to the robot’s body can limit human movements within the 

workspace. In addition, they are bulky, expensive, and requires special signal processing 

equipment. So, these sensors are hard to be wearable on human body to detect hand 

force. Thus, indirect force measurement is appropriate for free human movements.  

Wearable sensing systems incorporating myography sensors are considered as a 

good alternative of the direct force measurement methods. Examples of these wearable 

systems include surface electromyography (sEMG) and force myography (FMG) signals. 

sEMG is a good source of information about muscle activity by registering electrical activity 

due to muscle contraction. This is a non-invasive technique that can interpret electrical 

activities associated with muscle contraction variations under the skin. This typical 

technique has been studied for gesture recognition, hand force recognition, prosthetic limb 

controls, rehabilitation applications, and in pHRI [17-28]. But the electrical signals that the 

sEMG electrodes are measuring is weak and requires extensive signal processing. These 

electrodes require an accurate placement and excellent contact to the skin. In addition, 
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complex signal processing is required to make use of the signals.  

The contemporary FMG signal has gained momentum in innovative and novel 

device design over the typically dominated sEMG. Figure 2.3. shows an FMG band using 

off-the-shelf 8 force sensing resistors (FSRs) of approximately 30 cm long. Voluntary 

muscle changes are read from the FSRs with voltage divider circuit through a DAQ (b) 

and are passed to a computer for further processing [29]. Engaging force myography 

signals using machine learning techniques for a variety of applications such as gesture 

recognition, prosthesis control, grasp force, isometric hand force, rehabilitations are found 

very promising [30-42], as shown in Figure 2.4.  

Research shows that FMG is low cost, easy to implement, simple signal 

processing, and a better choice for human machine interfacing (HCI) [43]-[45]. This 

technique has several advantages such as: (1) robust to external electrical interference 

and sweating, (2) does not require for sensors to be placed at specific anatomical points 

on the body or extensive skin preparation, (3) does not require complex signal processing 

like sEMG, (4) cost effective method of tactile sensing, with off-the-shelf discrete force-

sensing resistors, and (5) provides repeatability and less variable in time. Thus, FMG 

technique can be a viable alternative to the traditional sEMG technique. Although sEMG 

signals are studied in human robot collaboration over the last few decades, there is a 

research gap in FMG based pHRI by learning human intentions. Therefore, in this 

 

Figure 2.3. (a) A wearable FMG band, (b) data communication to a computer using DAQ, and (c) bands 

placements in upper and lower limb. Reproduced from [29],[30] with permissions. 
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research, human activities were estimated via FMG technique. 

2.4.  Materials and Equipment 

This section discusses the materials, equipment and experimental setups used in 

this thesis. The rationalities behind each setup are also explained. Using higher or lesser 

no. of FMG channels and their positions on upper extremities were investigated for 

suitable practical situations. Interactions in 1D and 2D planes with a simple linear robot 

that had 2-DoF were investigated for recognizing human actions. Interactions with a 7-

DoF Kuka robot in 1D, 2D and 3D planes were further investigated to understand FMG-

based force estimations and associated challenges in industrial applications.  

2.4.1. Upper arm and Forearm FMG Bands 

Two custom-made wearable FMG bands, as shown in Figure 2.5 were specifically 

developed by the author for the studies conducted in this thesis to read muscle 

contractions from forearm and upper arm positions during interactions. These positions 

were selected based on the previous studies in the literature [40] that could provide useful 

 
Figure 2.4. Some applications of FMG signals. Reproduced from [32, 33, 38, 40] with permissions.  
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information of the exerted human grasping forces in dynamic motions. Two FMG bands 

on the forearm and upper arm positions were used to maximize muscle volumetric 

readings during interactions with a biaxial stage (linear robot). These data were used in 

objective 1, and 2 and 3. One forearm FMG band was used during interactions with a 

Kuka robot and was used in objective 3 and 4. The use of one band was reasonably 

chosen considering a human worker’s comfort and ease of wearability while reading 

enough interactive force data with lesser channels, appropriate in a practical industrial 

scenario.  

The FMG band was made of FSRs whose resistances changed as the muscles 

contracted. The FSRs exhibited high resistances (~10 MΩ) at no pressure, and their 

resistances decreased as the pressure increased (during interactions). These sensors had 

an active area of 14.7 mm, actuation forces less than 15 g, and a pressure sensitivity 

range of 100–200 psi (pound of forces per squar Figure 2.6 shows the biaxial stage with 

a gripper securely placed on the planar horizontal surface of a table. e inches) and could 

easily sense muscle contractions in the underlying skin. Each band had 16 FSRs (TPE 

502C, Tangio Printed Electronics, Vancouver, Canada) [62], approximately 30 cm long, 

and were wrapped around forearm and upper arm muscles. Using voltage dividers to 

extract signals from these sensors, two data acquisition (DAQ) devices with a 16-channel 

analog input (NI USB 6259 and 6341, National Instruments, Austin, TX, US)) were used 

for FMG data acquisition from these bands at 50 Hz.  

 
 

Figure 2.5. Custom-made Force myography bands. Reproduced from [56] with permission. 
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2.4.2. Biaxial Stage / Linear robot (2D-pHRI) 

Data collected during interactions with a custom-setup of a linear robot/ biaxial 

stage was used in studies conducted for research objective 1, 2 and 3. This simple setup 

was used for applied force interactions in 1D and 2D planes. Understanding human 

intentions to manipulate the linear robot in any directions of 1D was carried out at first and 

then were followed by complex interactions in dynamic motions in the 2D plane.  

The linear robot had two perpendicular linear stages (X-LSQ450B, Zaber 

Technologies, Vancouver, BC, Canada)] in X and Y directions on a planar surface. Both 

linear stages had built-in motor controllers for desired translational movements [63]. The 

biaxial setup used in this thesis resembled a 2-DoF robotic arm (XY-plane). It was a type 

of gantry-positioning stage sometimes known as a linear or cartesian robot. The stages 

had 450 mm travel distance, support up to 1 m/s speed and 100 N thrust; these were 

chosen because of high stiffness and back drivability. Binary communication protocol is 

used to exchange commands between the biaxial stage and the FMG-based real-time 

integrated controller at 9.6 kbps. A customized 3D printed knob was designed and created 

using ABS material and was used as a gripper mounted on top of the biaxial stage; this 

allowed participants to grab the gripper/knob and applied forces to slide it on the planar 

surface during real-time interactions. External forces acting upon the biaxial stage were 

measured using a 6-axis force torque sensor (mini45, ATI industrial automation, Apex, 

NC, USA) [64]. It is placed inside the gripper/knob to measure true label data of exerted 

hand forces during interactions. Figure 2.6 shows the biaxial stage with a gripper securely 

placed on the planar horizontal surface of a table. We did not conduct the study using 

 
Figure 2.6. A 2-DoF linear robot/ biaxial stage. Reproduced from [56] with permission. 

 

Stage 2

Stage 1

Gripper (FT sensor mounted 

inside)
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vertical placement of the biaxial stage because the pHRI study was also conducted with 

an industrial Kuka robot in a variety of 1D, 2D and 3D planes covering all. So, conducting 

interactions with the biaxial stage on a vertical surface was not necessary and would have 

been time-consuming. 

For the real-time control design, a traditional admittance control scheme was 

implemented [65]. Therefore, external forces applied to a gripper/knob were translated 

into torques at each joint, and the stage moved to a new position based on the calculated 

displacement. The kinematics of the considered biaxial stage was shown as: 

         (𝒙
𝒚
) =  (𝟏   𝟎

𝟎   𝟏
) (𝒅𝒙

𝒅𝒚
)            (2.1) 

where x and y were the end positions of the gripper, and dx and dy were the displacements 

of the biaxial stage in the x- and y-directions, respectively. Actual and estimated hand 

forces (N) were first converted to velocities (mm/s) for the motor controllers of the stage 

and then as micro steps (displacements) per seconds according to Equation (2.2) as in 

the documents from Zaber technologies, which was written as [63]: 

 𝑫𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕𝒙, 𝒚 =  𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚𝒙, 𝒚/(𝑴𝒊𝒄𝒓𝒐𝒔𝒕𝒆𝒑𝒔𝒊𝒛𝒆𝒙, 𝒚/𝟏𝟎𝟎𝟎/𝟏. 𝟔𝟑𝟖)     (2.2) 

Interaction between a participant and the biaxial stage in real time is shown 

schematically in Figure 2.7. The participant could freely slide the gripper on the entire 

 

Figure 2.7. Top view of a human participant wearing FMG bands on upper extremity (UE) interacts 
with the biaxial stage by grasping the gripper/ knob. Reproduced from [56] with permission. 
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workspace by an exerted hand force. All mechanical devices were synchronized properly 

for real-time operation, and fine tunings were implemented to reduce the stiffness and 

smooth control of the manipulator. These measurements helped reducing muscles fatigue 

by smooth interaction with the biaxial stage while avoiding damages to the hardware. 

The real-time FMG-based integrated controller was implemented as a LabVIEW 

interface (LabVIEW 2014, National Instrument, Austin, Texas, USA) that controlled the 

mechanical system components. It used MATLAB scripts (MATLAB, MathWorks, Natick, 

 
(a) 

 
(b) 

Figure 2.8. Labview interface of the RT FMG-based integrated controller: (a) control pane of FMG-based 

force estimation, (b) display pane of a target motion pattern to follow and maintain muscle volumetric contraction 

(MVC). Reproduced from [56] with permission.  
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MA, USA) to implement regression models for force estimation with FMG signals, as 

shown in Figure 2.8. 

Controlling the biaxial stage in real time with dynamic forces exerted by human 

hands involved careful system design considerations. The allowed external forces applied 

to stage were between 3 and 90 N, and certain ranges of MVC (30% and 80%) were 

maintained to keep the limits of the maximum thrust for proper operations of the linear 

stages. The smooth sliding of the gripper was ensured for the participant’s comfort and 

ease of control. An HP Zbook laptop (HP, Palo Alto, California, USA) with Intel Core i7 

was used for implementing the real-time FMG-based integrated controller. The higher data 

acquisition rate (50 Hz), high-speed computations, and data transmission to the biaxial 

stage (9.8 kbps) with a minimal time delay (within 8ms) made the real-time control 

achievable.  

2.4.3. Kuka robotic arm (3D-pHRI) 

Studies conducted in objective 3 and 4 used the 7-DoF Kuka robotic arm for 

implementing FMG-based human-robot interactions in 1D, 2D, and 3D planes. This setup 

 

Figure 2.9. Experimental setup of pHRI & HRC with the Kuka robot, reproduced from [59] @[2022] IEEE 
with permissions.  

(a) by grasping a cylindrical gripper attached as the EEF, (b) collaboratively moving a wooden rod from 

point A to point B attached at the EEF of the robot. 
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represented real-world situations where interactions could occur in any directions as both 

human arm and the robotic arm could have redundant degree of freedom (DoF) of 

trajectories in the 3D space.  

The advanced KUKA LBR IIWA 14 R820 collaborative robot featured a 14 kg 

payload, with 820 mm reach and Protection Class IP54 rating [66]. It had built-in torque 

sensors in all joints and had its own controller known as ‘Kuka Sunrise Cabinet’. The Kuka 

robot was securely mounted on a table and its surroundings were caged for safety 

measures. For pHRI activities, a custom-made cylindrical gripper was attached as the end-

effector of the robot via a customized adapter developed by the author (Figure 2.9 (a)). A 

6-axis FT sensor (NI DAQ 6259, National Instruments, Austin, TX, US) was placed 

between the gripper and the adapter for true label generation. The orientation of the 

gripper was always at {0, pi, 0}, thus the gripper-handle pointed downwards for easy 

human grasps.  

For HRC activities, a wooden rod was attached to the robot for bearing the load 

during a collaborative HRC task in 3D space (Figure 2.9(b)). The 45 cm rectangular 

wooden rod was attached to the flange of the robot. The rod was firmly connected at one 

end [oriented at fixed angle {0, pi, 0}] via a custom-made adapter developed by the author 

while the other end was parallel with the horizontal X dimension in the 3D plane, free to 

grasp and apply force. The rod weighed approximately 5 lb including the adapter. The 6-

axis FT sensor via NI DAQ 6259 was placed in between the adapter and the end-effector 

for true force readings. Interaction forces were applied at the tip of the cantilever rod. 

Compliant collaboration using torque control was implemented where the robot 

moved in space proportional to the applied human forces and directions. MATLAB scripts 

were written (MATLAB, MathWorks, Natick, MA, USA) using Kuka Sunrise Toolbox to run 

externally on a desktop PC (Intel Core i7 processor and Nvidia GTX-1080 GPU) with V-

REP robot simulator and to communicate with Kuka Sunrise Controller. It allowed a 

participant to move the wooden rod from point A to point B in a half-circular 3D path where 

displacements and trajectories were governed by the applied forces and directions. 

For safe interactions, the Kuka robot would react to minimum of 2N of external 

forces while the maximum forces in X, Y, Z was within 15N to 25N. The 7-axis joint speed 

limits were set to {50, 50,70, 75, 70, 75, 75} degree/s while maximum speed of forced 
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move was kept at 70 cm/s. For force control, desired joint angles were read from the V-

Rep simulator from Coppelia Robotics using inverse kinematics and sent to the Kuka 

Sunrise Controller, current position and orientations of the EEF was collected from the 

Kuka Sunrise Controller, and the desired EEF position was generated based on the EEF 

force and position, as shown schematically in Figure 2.10.  In 3D, the displacements were 

calculated such as: 

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑥, 𝑦, 𝑧 = (speed_forced_move ∗ EEF_force_current/abs_force) ∗ s_interval      (2.3) 

where speed_forced_move was set at 70 cm/s, EEF_force_current was the external force 

readings, abs_force was the magnitude of the current force exerted on the flange, and 

sampling interval (s_interval) was 0.025s.  

The displacements range of the Kuka robot was kept within certain boundaries 

during interactions in 1D (X, Y, Z directions), 2D (XY, YZ, XZ planes) and 3D (XYZ plane), 

as shown in Table 2-1. These values were the selected boundaries in X, Y and Z directions 

for each type of HRI interactions with the Kuka robot. Even when the interaction was in 

1D-X, the set boundaries in X, Y and Z allowed human participant and the Kuka robot to 

interact comfortably within a narrow, 6-axis rectangular area instead of strictly following 

one path trajectory in a certain direction. 

2.5. Participants  

In objective 1, 10 right-handed healthy participants (9 males and 1 female) with the 

mean age of 33 voluntarily took part. In objective 2, 15 healthy participants (12 males and 

 

Figure 2.10. Force control implementing compliant collaboration with the Kuka robot via external 
interactive applied force. 
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3 females) voluntarily participated for the 1st study. In the 2nd study, a total of 6 participants 

(all males) volunteered in this study. In objective 3, 6 participants (all males) volunteered 

as end-users. Finally, in objective 4, one healthy adult (male) participated. In some cases, 

time was limited, and it was hard to find volunteers. In objective 1, 2A, 2B, 3, and 4, a total 

of 10, 15, 6, 6 and 1 participants, respectively, voluntarily contributed to the studies. There 

was statistical significance for the sample sizes in objective 1-3. In objective 4, we did a 

pilot study with 1 participant only and did not run significance testing on the sample size.  

All participants were healthy, right-handed and their average age was 33±8 years. 

Demographics of the participants are given in Table 2-II. Generally, participants had no 

prior knowledge about the FMG technique. All participants acknowledged the study 

protocol and gave their written consent as approved by the Office of Research Ethics at 

Simon Fraser University, Canada. 

Participants ranging from 22 years to 47 years of age, of diverse ethnicities and 

Table 2-I: Trajectory boundaries set for safe interactions with Kuka robot 

In 1D:   In 2D: In 3D:  

For 1D-X  

In X direction: from 0.4 to 0.7 m,      
In Y direction: from -0.3 to 0.2m,    
In Z direction: from 0.4 to 0.42m 

For Y#  

In X direction: from 0.6 to 0.6 m,     
In Y direction: from -0.35 to 0.2m, 
In Z direction: from 0.4 to 0.4m 

For Z 

In X direction: from 0.6 to 0.7 m,     
In Y direction: from -0.3 to 0.2m,     
In Z direction: from 0.25 to 0.7m 

 For XY  

In X direction: from 0.45 to 0.65 m,                                
In Y direction: from -0.3 to 0.2m,                                     
In Z direction: from 0.4 to 0.42m 

For YZ # 

 In X direction: from 0.6 to 0.62 m, In Y 
direction: from -0.3 to 0.2m, In Z direction: from 
0.3 to 0.45m 

For XZ  

In X direction: from 0.45 to 0.65 m, In Y 
direction: from -0.1 to 0.25m, In Z direction: 
from 0.3 to 0.5m 

X Dimension: 0.2: 0.6 m 

Y Dimension: -0.5:0.5 m 

Z Dimension: 0.2:0.7m 

 

In summary:  

X: 100-300mm 

Y: 400-500mm 

Z: 200-700mm 

 In summary:  

X: 450-650mm 

Y: 100-500mm 

Z: 300-500mm 

In summary: 

X: 200-600mm 

Y: 50-   500mm 

Z: 200-700mm 
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different demographics were involved. Results indicated that the machine learning models 

generated in these studies were capable of recognized applied forces in certain directions 

of arm motions despite their demographic variations. 

2.6. Methodologies 

The data driven approaches and machine learning algorithms used in this thesis 

are discussed in this section. For regression analysis, initially we implemented traditional 

machine learning algorithms via supervised learning and then gradually moved towards 

deep learning algorithm via supervised transfer learning approaches. In the final stage of 

the thesis, adversarial algorithm via semi-supervised (few labelled training data) and 

unsupervised learning (unlabelled training data) was implemented. Therefore, we started 

with simple approaches and progressively focused on complex methods to estimate 

interactive forces via force myography signals.  

To solve real-world data scarcity scenario, few concepts and methods were 

investigated. For generalization of a trained model, generalized zero-shot learning and 

transfer learning were found effective via quick calibration (retraining a pretrained model 

with a few target training data). Three different transfer learning approaches such as 

domain adaptation, domain generalization and cross-domain generalization were 

investigated for FMG-based pHRI. These approaches focused on solving situations that 

became gradually difficult.      

2.6.1. Regression algorithms 

In this thesis, we progressively investigated supervised, semi-supervised and 

unsupervised machine learning algorithms from objective 1 towards objective 4. The 

traditional machine learning algorithms were studied and found effective for intra-subject 

analysis. While for transfer learning approaches (model generalization), deep learning 

Table 2-II. Demographics of the participants. Reproduced from [56] with permission. 

Feature 
Age 
(year) 

Height (cm) Arm length (cm) Upper arm (cm) Forearm (cm) 

Mean 33 175 74 29 27 

Standard deviation 8 5 4 3 3 

Mode 35 178 78 29 27 
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algorithms were found appropriate for fine-tuning with calibration data. Transfer learning 

allowed using a pretrained model during evaluation; this saved time in collecting a few 

target training data only and facilitated faster finetuning of the model within few seconds 

for recognition of the target test data. Unsupervised generative adversarial network and 

semi-supervised self-training algorithms in the final stage of the thesis proved as realistic 

and reliable approaches in industrial pHRI environments. 

A. Supervised learning 

In objective 1, two supervised regression models, the support vector regressor 

(SVR) and the kernel ridge regressor (KRR) were used [67]. The popular, traditional SVR 

algorithm was also used in the 1st study of objective 2. In the 2nd study of objective 2 and 

objective 3, the convolutional neural network (CNN) algorithm was implemented. Hence, 

studies conducted in objective 1 to 3 used supervised learning technique. All these 

algorithms were implemented from scratch using MATLAB running in external laptop or 

desktop in Windows platform. 

i) Traditional Machine Learning Algorithms 

For force estimation during interactions with the biaxial stage, the SVR and the 

KRR were chosen among several other machine learning techniques (such as the 

multidimensional SVR (MSVR) and the general regression neural network (GRNN)). The 

SVR is a well-known regressor useful for the regression of real-time signals, while the 

KRR is reported to perform better with small datasets [68]. The selected features and 

hyperparameters were chosen carefully to create relevant separation among hyperplanes 

such as L2 regularizers, and penalty functions (Cost and Lambda), as shown in Table 2.III. 

Data preprocessing, i.e., scaling both training and test datasets (between 0 and 1), was 

required. The enhanced performances of the selected radial basis function (RBF) kernel 

features (also known as Gaussian kernel) of both algorithms were observed. The 

regressors differed in the loss functions, as the SVR used an epsilon-insensitive function 

and the KRR used a least squared error function. The best values for Cost (C) and Gamma 

(G) of the SVR model were obtained by grid searches. The regularization penalty (lambda) 

and the kernel width parameter of the KRR were selected through trial and error. These 

algorithms were preferred because of lower computational time, special features of the 

SVR and the KRR (such as a higher number of support vectors and kernel trick), and 

ability to handle real instantaneous data. Therefore, real-time training and testing of force 
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estimations in motions were possible with their appropriate features and provided 

reasonably higher performances.  

 ii) Deep Learning Algorithm 

The popular deep learning algorithm, convolutional neural network [69] 

implemented in objective 2B and 3 had different network architectures for learning the 

discriminative feature distributions collected from the 2D-pHRI and 3D-pHRI platforms. 

The CNN models with different architecture were generated from scratch using MATLAB 

and Python in Windows platform. Detailed discussions are presented in relevant chapters. 

Figure 2.11 shows the proposed FMG-CNN architecture used in Objective 2B. 

Raw FMG signals were used for training and evaluating trained model for supervised 

domain adaptation (SDA) and supervised domain generalization (SDG). For 2D-pHRI, two 

separate models such as Model X and Model Y were constructed from scratch using 

MATLAB code to estimate forces in X and Y direction. In both model’s architecture, an 

Table 2-III. Regression models parameters. Reproduced from [56] with permission. 

Model Hyperparameters ranges  Parameter selection MATLAB toolbox 

Support vector regressor 
(SVR) 

Cost = 20, Gamma = 1 Grid search livsvm 

Kernel ridge regressor 
(KRR) 

Lambda = 1,  

Kernel width parameter = 0.9 
Trial & Error Kernel methods toolbox 

 

 

Figure 2.11. Proposed FMG-CNN architecture (Model X, Y). Reproduced from [58] with permission. 
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input layer of input size 1 × 32 with “zerocenter” normalization was used. Both models had 

conv1 and conv2 convolutional blocks. Raw data was preprocessed using minmax scaling 

before passing to the input layer. In each convolution block, the conv layer was followed 

by a Relu and a batch normalization layer. For Model X, 32 filters were used in the conv1 

block, while 64 filters were used for Model Y. The conv2 layer had 16 filters in both models. 

A fully connected layer with 20 connections followed the conv layers, and finally, a 

regression layer was used to map the instant force. Batch normalization helped to alleviate 

the internal covariance shifting present during training, as changes happened in input 

distributions of layers due to parameter changes in previous layers. Filters sized 3 × 3 with 

a stride of 1 and a padding of 1 were used. During evaluation, fine-tuning occurred in the 

final fully connected layer. For both pretraining and fine-tuning, stochastic gradient 

descent (SGD) was implemented as the optimizer. Stochastic gradient descent helped to 

find the model parameters that corresponded to the best fit between predicted force and 

actual force. It’s an imprecise but powerful technique and was found suitable for our 

regression problem. A learning rate (LR) of 1E-04 and maximum epoch (E) of 40 were 

used in pretraining, while LR = 1E-05 with E = 60 was used during evaluation. MSE loss 

was used for validation of the training process. 

In objective 3, an FMG-based deep convolutional neural network (FMG-DCNN) 

architecture was proposed for pretraining a transfer learning model with cross-domain 

generalization (TL-CDG). For FMG-based HRC in 3D, three separate models (Model X, Y 

and Z) were pretrained for predicting applied forces in that direction. For pHRI in 1D (either 

in X, Y or Z direction), only one relevant model was developed using MATLAB code and 

pretrained. Input data was normalized (minmax scaling) and passed to the input image 

layer [image size 1×34 with ‘zerocenter’ normalization]. Few convolutional blocks were 

customized "in house" particularly for this problem using MATLAB code and were 

implemented sequentially where each block had a conv2d layer followed by a ReLu and 

a batch normalization layer. For Model X and Y, two convolutional blocks (conv1 and 

conv2) were used while three blocks (conv1, conv2 and conv3) were used in Model Z. 32 

and 16 filters in Model X, 64 and 32 filters in Model Y and 32, 16, 8 filters in Model Z were 

used in the consecutive convolution layers, respectively. Two fully connected layers (FC1 

and FC2) with 20 and 10 connections followed the conv blocks in consecutive order. A 

final regression layer mapped the instant force from the incoming feature spaces. The 3×3 

filters with a stride of 1 and a padding of 1 were used in each conv2d layer. For 



31 

optimization, stochastic gradient descent (SGD) was implemented with a learning rate 

(LR) of 1E-05 for maximum 60 epochs during pretraining.  

B. Unsupervised learning 

Unsupervised and semi-supervised learning techniques were implemented in 

objective 4. Here we studied pHRI scenarios where labelled data were scarce, or data 

were unlabeled. To address such a real-world problem, we used unsupervised and semi-

supervised approaches that required no labels or very few labels. The unsupervised, 

generative adversarial network (GAN) [70] model was implemented in this study. For the 

semi-supervised learning, a weakly supervised self-training approach was implemented. 

i) Generative adversarial network 

In the GAN architecture, two separate models were engaged as discriminator 

(model D) and generator (model G). The model G was engaged in generating fake FMG 

signals while model D was employed to learn the discriminative feature distributions of 

both real and fake signals and classify them accordingly. We used this architecture to 

generate real-like synthetic FMG data and accumulate adequate training data for 

pretraining a transfer learning model. For model G, inputs were either noise signals (NS ∈ 

{XN}) or transformed FMG signals (TS ∈ {ΧTs}) with shapes of (1, 100, 1), or aggregated 

noise and transformed signals. Model D received real FMG signals (DC ∈ {ΧC1, ΧC2}) and 

fake FMG signals/synthetic data (DSJ ∈{SD}) generated by model G, where both inputs to 

model D were shapes of (1,16,1).  

Model G Architecture 

Three successive convolutional 2D transposed (conv2DTranspose) layers [no. of 

filters: 128, 64, 1 and filter size: (1, 5), (1, 10), and (1, 5)] were implemented with strides 

of (1, 1), (1, 4), and (1, 2) and the ‘same’ padding. Each conv2DTranspose layer was 

followed by a batch normalization layer and a leaky ReLu layer. For the final output of fake 

generated signal (SD) of a shape of (1,16, 1), the tanh activation function was used. This 

architecture was used in 1D-X, Y and Z dimensions. 

Model D Architecture 

Two convolutional (conv) blocks were implemented via Python code sequentially 

where each block had a conv2D layer followed by a leaky ReLu and a dropout layer with 
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a rate of 0.3 to reduce overfitting. Convolutional 2D (conv2D) layers were implemented 

with strides of (1, 2) and the ‘same’ padding. The number of filters used in the conv blocks 

for 1D-X dimension was 32, 16, 1, while it was 128, 64, 1 in 1D-Y and Z dimensions with 

the same filter sizes of (1, 5), (1, 10), and (1, 5) in each dimension. The convolutional 

blocks were followed by three dense layers of 20, 10 and 1 neurons for 1D-X while only 

one dense layer of 1 neuron was used for 1D-Y, and Z. A sigmoid function was used to 

classify the real input and the generated signals.  

ii) Self-Training  

In this method, several steps were followed for semi-supervised learning where 

training data were mostly unlabeled. A few labeled training data were used in step 1 to 

pretrain the discriminator model (D). In step 2, this model was evaluated in predicting 

pseudo-labels for the large volume of unlabeled data. With the labeled and pseudo-labeled 

data, the model was retrained again in step 3. Finally, in step 4, the model was evaluated 

on target test data.   

2.6.2. Data Driven Concepts and Approaches 

In this thesis paper, a few concepts were explored in developing data-driven 

models for practical implementations. Specially, model generalization was investigated as 

a viable solution in daily, regular usage of the FMG band. A generalized model that could 

estimate forces in dynamic motion for any participant or in any intended direction was 

desirable to simulate real-life applications. The generalized zero-shot learning method was 

studied because of transient nature of the FMG biosignals and was found effective for 

recognizing instantaneous signals. Real-world data scarcity was overcome by several 

transfer learning approaches. Such as, domain adaptation and domain generalization 

methods were studied during pHRI in 2D while cross-domain generalization was 

investigated for cross-platform pHRI application between 2D and 3D workspace. Hence, 

these methods gradually and successfully addressed step by step the practical limitations 

and difficulties associated with FMG-based HRI applications.         

A. Generalized zero-shot learning 

In machine learning, the ability of a trained model to fit unseen test data without 

compromising performance is essential for many real-world applications. To predict 
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categories or regressing new, unlearned test samples, zero-shot learning (ZSL) can be 

implemented where the trained model transfers knowledge learnt from the source 

(training) distribution to the target (test) distribution. Hence, in zero-shot learning (ZSL), a 

model trained with source distribution attempts to predict test samples from a target 

domain that it has never seen before (source distribution ≠ target distribution) [71]. This 

approach allows a model to perform better with lower generalization error when the ‘new 

input sample data’ (test data) has some similarity to the model population data (training 

data) [72]. 

The generality to correctly predict such out-of-distribution (OOD) samples (test 

data) is doable when training data includes all possible distribution, which is practically not 

feasible.  Specially, it was difficult to implement ZSL in practical FMG-based applications. 

As FMG was a transient, non-stationary time-series biosignal, and was affected by arm 

posture and motion of limb movements or physiological changes (sweats, tiredness), 

variations were always present in the streaming signal. Therefore, a generalized approach 

was followed in objective 2A that enabled both seen/learned source samples and 

unseen/unlearned test samples available during evaluation, hence known as generalized 

ZSL [73]. It bridged the gap between seen source domain and unseen target domain by 

leveraging their semantic information. Including few calibration data (target training data) 

with large volume of long-term multiple source distributions improved model’s generality 

in predicting unseen target data. 

B. Transfer Learning Techniques  

Since an FMG biosignal is subjective-specific and sensitive to sensor position 

changes/band displacement each time a band is donned on a participant, it is treated as 

a different domain. To overcome such inherent challenges and to recognize unseen test 

data, domain adaptation, domain generalization and cross-domain generalization 

concepts were adapted, and codes were written in MATLAB or Python for implementing 

transfer learning in this thesis [74-76]. These methods have been successfully applied in 

image processing, but there are very few studies in bio-signal-based pHRI and hence 

were investigated. 

i) Domain Adaptation 

Domain adaptation reuses part of a model pretrained with large pools of source 
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domains to predict different but related target domain where both domains have same 

feature spaces with different distributions. During test phase, this enables the model to 

predict similar, unseen, new target data. In objective 2B and 4, transductive transfer 

learning (few target data available/seen) via supervised domain adaptation (SDA) [77, 78] 

was investigated for inter-session (training and testing in different sessions) and intra-

session (training and testing in same session) evaluations during interactions, 

respectively.  

ii) Domain Generalization 

On the other hand, domain generalization uses a pretrained model with source 

domains and attempts to predict unseen target data [78]. It is particularly beneficial to 

mitigate gaps between different domains where knowledge about the target domain is 

absent [77, 78].  Inductive transfer learning (target data not available/unseen) via 

supervised domain generalization (SDG) for inter-participant evaluation was investigated 

in objective 2B. 

iii) Cross Domain Generalization 

Cross domain generalization (CDG) can be promising for unrelated source and 

target data that allows a pretrained model to transfer knowledge between different 

platforms/systems. Furthermore, it generalizes beyond the source distributions [79-80]. 

Cross-domain generalization is studied in image classifications, vision system, natural 

language processing, medical diagnosis, machine fault detects, etc. and is found effective 

[81-84]. The CDG technique has been investigated in few studies conducted on human 

machine interfaces (HCI) and rehabilitations with surface electromyography (sEMG) or 

electro encephalography (EEG) biosignals [85-89]. Hence, it is studied in FMG biosignals 

based on HRI tasks for the first time in objective 3. 

Transfer learning Process 

Transfer learning is the state-of-the-art technique that enables pretraining a model 

by learning discriminative features of source distributions to predict unseen target tasks 

by using the learnt knowledge via fine-tuning. A brief approach for transfer learning 

followed in objective 2B is shown in Figure 2.12. In this framework, the model learned 

discriminative features of the multiple source domains during pretraining. While fine-

tuning, the last three layers of the saved model helped in adapting to converge quickly in 
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recognizing target distribution. During evaluation, fine-tuning occurred in the final fully 

connected layer.  

a) Pretraining a deep learning model 

In objective 2B and 3, long-term multiple source distributions from the 2D-pHRI 

platform were used in pretraining a transfer learning model. In objective 4, the 

discriminator of the GAN model was pertained with real and synthetic data. These models 

were developed in MATLAB and Python code. 

b) Fine-tuning 

Fine-tuning the last layers of the pretrained model with few ‘target training data’ 

(calibration data) was used in adapting in recognizing target domain. Using few calibration 

data, these models were evaluated in recognizing inter-session and inter-participant target 

data (objective 2B), inter-domain target data (objective 3) and intra-session target data 

(objective 4). Table 2-IV shows the pretrained models and their hyper parameters during 

fine-tuning processes.  

Transfer learning via domain adaptation and generalization has been studied in 

image processing mainly. For this thesis, as we have discussed, we modified these 

techniques to study FMG biosignal based HRI, which was far more challenging. We 

introduced cross-domain generalization in HRI studies for the first time. We also adapted 

a modified version of generalized zero-shot learning that helped knowledge transfer 

 

(a)                                                                                          (b) 
Figure 2.12.FMG-based transfer learning: (a) estimating applied interactive forces via SDA and SDG and (b) 

fine-tuning process of the pretrained SFMG-DTL model. Reproduced from [58] with permission. 
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among unrelated source and target data. 

2.7. Performance Matrices 

Statistical tools [90] such as the co-efficient of determination (R2) and co-efficient 

of correlation (Coeff), root mean square error (RMSE), and normalized RMSE (NRMSE) 

were used to evaluate performances of the ML models.  

 

Co-efficient of determination (R2) was obtained by: 

                                 𝑅2 =
Explained variation

Total variance
                                                                                          (2.4) 

 

It was used to determine the correlations or dependencies of the dependent variable on 

the independent variable. R2 values varied between 0 and 1 indicating how good the 

regression predictions could fit the test data. 

Correlation coefficient (Coeff) was determined between the matrix of pairwise 

variables of the true and the predicted values incurred by the model such that:  

                    𝑅 = (
1 𝜌(𝐴, 𝐵)

𝜌(𝐵, 𝐴) 1
),                                                                                       (2.5)  

where the Pearson correlation coefficient 𝜌 was calculated between A and B variables. It 

had values between -1 and 1 indicating strong and positive relationship between the 

variables.  

Table 2-IV. Transfer Learning 

Research Objective Pretrained Model pHRI Hyper parameters & optimizers 

Objective 2B FMG-CNN for domain 
adaptation and 
generalization 

Tr. time: ~30-45 min 

2D-pHRI: 

Model X 

Model Y 

SDG optimizer 

LR = 1E-05 

Epoch = 60 

Objective 3 FMG-DCNN for cross 
domain generalization 

Tr. time: ~1 Hr. 

3D-pHRI: 

Model X 

Model Y 

Model Z 

SDG optimizer 

LR = 1E-05 (X, Z),  

LR = 1E-06 (Y)   

Epoch = 60 

Objective 4 Self-trained FMG-DCGAN 

Tr. time: ~1 Hr.   

1D-pHRI: 

Model X 

Model Y 

Model Z 

Adam optimizer 

LR = 1E-04 

Epoch = 500 
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RMSE was calculated based on: 

                            𝑅𝑀𝑆𝐸 = √
1

𝑛
𝛴𝑖(𝑌𝑒𝑠𝑡 − 𝑌𝑡𝑟𝑢𝑒)2                                                                            (2.6) 

where n was number of samples, Ytrue was the true data and Yest was the prediction made 

by the regression model at an instant i. 

NRMSE was determined by the fraction of RMSE to the observed range of the 

measured data such that:  

                                 𝑁𝑅𝑀𝑆𝐸 =
RMSE

𝑚𝑒𝑎𝑛(𝑌)
                                                                                               (2.7) 

where Y was the measured data. 

One-way ANOVA with single-factor and multivariate tests and two-way ANOVA 

[90] with repeated measures were performed (IBM SPSS 2.0, NY, USA) in objective 1. A 

single-factor ANOVA was used to observe the separability of FMG signals during arm 

flexions and extensions. A two-way ANOVA with repeated measures [41] was performed 

to assess if arm motion patterns significantly related to the accuracy of regression 

methods. Two one-sided test (TOST) [90], an equivalence test, was conducted in objective 

2B. In objective 4, t-test was conducted to compare samples for the mean generated by 

two variables. 

2.8. Summary 

In this thesis, FMG-based pHRI was investigated via combinations of no. of FMG 

channels, regression models and data-driven approaches. Such as, 32-channels FMG 

signals from upper arm and forearm positions were used capturing maximum muscle 

contraction reading during interactions in 1D and 2D with the linear robot. In industrial 

applications, lesser no. of channels is appropriate for reducing design complexities. 

Therefore, during interactions with the Kuka robot in 1D, 2D, and 3D, a 16-channels FMG 

band was wrapped in forearm position that could read the necessary information. The 

forearm position was also suitable for easy wear and comfort for the human participant. 

The pHRI setup was a simple biaxial stage in the beginning while the complex 7-DoF serial 

robotic arm was chosen later to verify the proposed objectives and methods. Table 2-V 

summarizes the overall setup and methods implemented in the four objectives. The 
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selected algorithms and methods were simple in the beginning of the thesis and then 

progressively became complex, state-of-the-art techniques that were appropriate for real-

world scenarios. All algorithms were developed from scratch for the studies conducted in 

this thesis using MATLAB and Python in Windows platform. 

 

Table 2-V. Progressively selected experimental setups, methods, and techniques 

 Objective 1 Objective 2A Objective 2B Objective 3 Objective 4 

FMG band Two bands on 
forearm and upper 
arm 

Two bands on 
forearm and upper 
arm 

Two bands on 
forearm and upper 
arm 

Two bands on 
forearm and upper 
arm 

One band on 
forearm 

One band on 
forearm 

Robotic 
platform 

2-DoF linear robot 2-DoF linear robot 2-DoF linear robot 2-DoF linear robot 7-DoF serial robot 

7-DoF serial robot 

No. of 
participants 

10  15 6 6 1 

Regression 
algorithms 

Traditional ML 
algorithms: SVR, 
KRR, MSVR, GRNN 

Traditional ML 
algorithms: SVR 

Deep transfer 
learning: CNN 

Deep transfer 
learning: CNN 

Adversarial 
leaning: GAN, 
self-training 

Data driven 
concepts 

Supervised learning Supervised, 
Generalized zero-
shot learning 

Supervised, 
Transfer learning 
via domain 
adaptation, 
domain 
generalization  

Supervised, 
Transfer learning 
via cross-domain 
generalization 

Unsupervised, 
Semi-supervised, 
transfer learning 

Programming 
language 

LabVIEW interface 
with embedded 
MATLAB scripting 

LabVIEW interface 
with embedded 
MATLAB scripting 

MATLAB 

 

MATLAB 

 

Python  

Toolboxes & 
Platforms 

LabVIEW 2014 & 
MATLAB 2018 with 
statistics and 
machine learning 
toolbox running on 
HP Zbook laptop 
with Intel Core i7  

LabVIEW 2018 & 
MATLAB 2019 with 
statistics and 
machine learning 
toolbox running on a 
desktop PC  

(Intel Core i7 
processor and Nvidia 
GTX-1080 GPU). 

MATLAB 2020 
with deep learning 
toolbox, neural 
network toolbox, 
image processing 
toolbox running on 
a desktop PC 
(Intel Core i7 
processor and 
Nvidia GTX-1080 
GPU). 

MATLAB 2021 with 
deep learning 
toolbox, neural 
network toolbox, 
statistics and 
machine learning 
toolbox, signal 
processing toolbox, 
Kuka Sunrise 
toolbox running on 
a desktop PC (Intel 
Core i7 processor 
and Nvidia GTX-
1080 GPU). 

Python 3.7 and 

Tensorflow 
running on a 
desktop PC (Intel 
Core i7 processor 
and Nvidia GTX-
1080 GPU). 

Performance 
metrics 

R2, NRMSE, one-
way ANOVA test, 
two-way ANOVA 
with repeated 
measures 

R2, NRMSE, two 
one-sided test 
(TOST) 

R2, NRMSE,  

t-test 

Coeff, R2, RMSE, 
NRMSE 

R2, NRMSE,  

t-test 
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Chapter 3.  
 
Learning Human Intentions of Interactions in a 
certain direction  

The material presented in this chapter is reproduced, extracted, and modified with 

permission from the following paper: 

[56] U. Zakia and C. Menon. (2020, Apr.). Estimating exerted hand force via force 

myography to interact with a biaxial stage in real-time by learning human intentions: a 

preliminary investigation. Sensors. 20(7), doi: 10.3390/s20072104. 

Sections of this chapter are reprinted or adapted from the above article to fit the formatting 

and scope of this chapter. 

3.1. Chapter overview 

This chapter explains the study conducted towards fulfilling the first objective to 

assess possibility of using FMG signals in estimating applied forces during interactions 

with a linear robot (biaxial stage). A real-time admittance control with human biosignal via 

force myography in the loop was developed using SVR and KRR machine learning (ML) 

algorithms. Five different motion patterns that were statistically significant were 

investigated in this study to understand human intentions of interactions. Ten healthy 

participants wearing forearm and upper arm FMG bands interacted with the linear robot in 

real-time evaluations via estimated interactive forces in the intended motion and were 

found statistically significant. 

3.2. Introduction 

In physical HRIs (pHRIs), interactions between humans and robots mostly occur 

through hand activities such as object handling or transportation tasks in simple and fixed 

trajectories. These require dynamic arm movements, while force interactions occur with 

hands. Learning human intentions such as realizing human hand forces and arm motions 

have been studied extensively to facilitate these collaborative tasks [11–14]. There are 

few studies to estimate hand forces or positions via sEMG technique for improving 
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human–robot interactions. However, there is a gap in research for FMG-based HRI 

control. Therefore, our objective was to investigate recognising exerted hand forces in 

certain motion during collaboration with a simple linear robot via FMG signals. 

In this study, real-time applied hand force estimation in dynamic two-dimensional 

(2D) arm motions using FMG was investigated for the first time. A variety of simple and 

complex isotonic arm movements were studied as intended motions that involved shoulder 

abduction/adduction and elbow flexion/extension. A novel scheme was implemented to 

interact with a biaxial stage via FMG-based force estimations in an intended arm motion. 

Learning human intention was defined as an exerted hand force in a motion in a desired 

path trajectory during interactions. In a real-time scenario, a participant wearing two FMG 

bands grasped a custom-made gripper mounted to a stage and interacted with an exerted 

force in an intended motion in the XY-plane. In addition, the biaxial stage adjusted its 

velocity with the estimated exerted hand force, so that the gripper would slide accordingly 

in the same trajectory, thus ensuring compliant collaboration. Among several supervised 

machine learning techniques (see Appendix A1), two well-established techniques such as 

the support vector regressor (SVR) and the kernel ridge regressor (KRR) with their 

selected features, were implemented and written in MATLAB code for force estimation 

from FMG readings, and their performances were observed separately. 

3.3. Methodologies 

3.3.1. Real-Time FMG-Based Integrated Control 

In this study, human robot collaboration was observed, as a participant interacted 

with a biaxial stage via applied force in an intended arm motion, as described in Section 

2.4.2. Two wearable FMG bands on the upper extremity read muscles contraction during 

interactions. The collaborative task was defined as to manipulate the biaxial stage by 

grasping its gripper and apply forces while moving arm in an intended trajectory. Using an 

admittance control scheme, the biaxial stage would adjust its velocity proportionate to the 

applied force, and the gripper would slide in the same path. Five different 1-degree-of-

freedom (1-DoF) and 2-DoF arm trajectories were selected as intended motions. For 

simplicity, the collaborative task would be termed as 1-DoF/2-DoF interactions throughout 

the chapter. Each arm motion with a grasping force had its unique characteristics 
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represented by multichannel FMG signals. Thus, to identify a variety of intended motion 

patterns, these signals could represent muscle groups active in interaction. 

An interactive control using a supervised regression algorithm (developed in 

LabVIEW interface and MATLAB scripting) estimated an applied hand force in a dynamic 

arm motion with FMG signals, converted it to the speed and sent the estimated data to 

the biaxial stage (according to equation 2.1, 2.2), thus allowing participants to manipulate 

the stage by grasping its gripper in the same trajectory. For the supervised training, force 

sensor (mounted inside the gripper) data was used as a true label data generator. The 

data acquisition and design aspect of this proposed integrated control is shown in Figure 

3.1. During the real-time data collection for training, the biaxial stage was manipulated by 

the force sensor reading of the exerted hand force. During the real-time test phase, the 

integrated controller allowed participants to manipulate the biaxial stage with FMG-based 

estimated hand forces. The user interface provided visual feedback to the participants 

about the target arm motion pattern and the exerted force to maintain muscle volumetric 

contraction (MVC) in certain ranges.  

3.3.2. Dynamic Arm Motion Patterns 

Five different dynamic arm motions (denoted as M1, …, M5), i.e., “x-direction (X)”, 

“y-direction (Y)”, “diagonal (DG)”, “square (SQ)”, and “diamond (DM)” motions, in the 

 

Figure 3.1. FMG-based real-time (RT) force control of a biaxial stage: the data collection and training 
phase are shown in green color, and the RT test phase is shown in magenta color. Reproduced from [56] 

with permission. 
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manipulator’s cartesian space were considered as intended path trajectories for a 

participant to interact. These arm trajectory paths included both simple and complex arm 

movements and were chosen to cover the workspace of the biaxial stage. During 

interactions, a participant always kept his/her hand grasping the gripper with his/her elbow 

parallel to the horizonal plane with no specific instructions of grasp moment production. 

These interactions had 1-DoF and 2-DoF motions, such that the elbow and shoulder 

rotations were confined in the horizontal plane. The arm movements required shoulder 

abduction/adduction and elbow flexion/extension while his/her hand grasped the gripper, 

such that the wrist joint torque direction was in coincidence with the elbow joint torque. 

Each arm trajectory required unique combinations of elbow and shoulder movements and 

had spatial-temporal effects vary continuously with a changed direction of motion. For 2-

DoF motions, more muscle contractions and expansions happened, while arm movements 

became progressively frequent, as described below. For data collection and evaluation, 

all arm motions were performed continuously for a certain time in a sinusoidal motion on 

the planar surface, with directions as indicated with arrows in Table 3-I. 

Intended 1-DoF Arm Motion Patterns 

For X motions, the participant grabbed the gripper/knob mounted on top of linear 

stage 1 and exerted a hand force in the X-axis only. For Y motions, the gripper was placed 

on top of the linear stage 2, and the participant grabbed the gripper and then an exerted 

hand force in the y-axis only. This intended interaction motion pattern required changing 

the hardware setup and dismounting linear stage 1 in the x-axis. 

Intended 2-DoF Arm Motion Patterns 

For DG, SQ, and DM interactive arm motions, the participant grasped the gripper 

and applied a hand force in one of these arm trajectories (Table 3-I). The applied force in 

a motion allowed the biaxial stage to adjust its velocity, and the gripper would slide in the 

Table 3-I. Five interactive arm motion patterns. Reproduced from [56] with permission. 

 

X Y Diagonal Square Diamond 

     

 



43 

same path in the XY planar space. The interaction would continue anticlockwise for a 

certain time. Clockwise movements were not investigated because all participants were 

right-handed which facilitated easy interactions in anti-clockwise movements of their arms 

as they sat on the chair. 

3.4. Protocol 

In this study, 10 participants interacted with the manipulator in five arm motion 

patterns separately. For each intended motion, there were a data collection phase, two 

training phases, and two testing phases, termed as a cycle and was described as 

Algorithm I in Table 6. Training and testing were performed twice for evaluating the two 

regression algorithms (SVR and KRR) separately. This process was repeated for all five 

interactive motions and required for around 1.5 hours to complete one cycle. Because of 

this time-consuming nature of the study, only few arm motions with limited directions were 

investigated. Intended interactions in a certain motion within participants were randomly 

chosen with periodical rests and controlled MVCs [91]. During training and test phases, 

regression algorithms were selected randomly. The randomization of motions and 

regressors helped to avoid observer-expectancy effects during investigation. During a 

cycle, the FMG bands were never removed, when interactions happened in one intended 

motion. As FMG signals were transient and nonstationary, removing the band would 

require data collection and training again, as the positions of the sensors would change. 

3.4.1. Data Collection Phase  

At the beginning of the data collection session, the participant sat comfortably on 

a specialized chair in front of the biaxial stage with his/her shoulder and back straight, 

while the chair was locked in position, as shown in Figure 3.2. Two custom designed FMG 

bands were placed on the forearm and upper arm positions of the participant’s dominant 

right hand. The data collection phase started by measuring the maximum force that the 

participant could exert during an intended arm motion for 20 seconds. Based on this 

measurement, visual feedback alerted the participant to maintain MVCs above 30% and 

below 80% for both the x- and y-directions. Table 3-II shows the algorithm steps followed 

during the data collection phase that was written in LabVIEW and MATLAB. 
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The controller also provided visual feedbacks displaying target arm motion 

patterns to follow. Next, the participant exerted forces to the gripper to manipulate the 

biaxial stage in an intended motion pattern. This was repeated 5 times, while for each 

repetition 400 records (1 record: 1 × 32 FSR channels and 1 × Fx or Fy in 1-DoF or both 

in 2-DoF of the label data) of raw data were collected without any filtering. Periodical rests 

between repetitions allowed the participants to comfort and relax their muscles. For each 

motion pattern, 2000 records (400 records * 5 repetitions) of training data were collected 

and saved in comma-separated values (csv) files. In this phase, the biaxial stage was 

controlled by readings from the force sensor. This phase required around 15 minutes to 

complete (with periodic rests between repetitions), although the actual data collection 

duration was less than 10 minutes.  

3.4.2. Training Phase 

Once the data collection was done, the next step was to train models using the 

regression algorithms. The force sensor data were used as true labels for FMG-based 

force mapping. The collected FMG data were normalized and preprocessed before 

training using the min-max scaling method. For 1-DoF movements, each regressor 

generated one trained model (either model X or model Y) to estimate hand forces in one 

direction of an arm motion (X/Y). While for 2-DoF movements (DG/SQ/DM), each 

 

Figure 3.2. A participant wearing FMG bands interacts with the biaxial stage using an RT FMG-based 
integrated controller. Reproduced from [56] with permission. 
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regressor generated two trained models for the x- and y-directions (both model x and 

model y) to estimate forces simultaneously. Models were trained online by calling 

MATLAB scripts in the LabVIEW interface (Figure 2.9) while the participant relaxed, and 

all trained models were saved; this usually required 2–3 minutes. Training accuracies and 

errors were displayed on the LabVIEW interface. The training process was conducted 

separately for both regressors and were selected randomly. Offline five-fold leave-one-out 

cross-validations (LOOCVs) were carried out later for comparing real-time test accuracies. 

Table 3-II. Algorithm I: Logic flow of RT FMG-based integrated control. Reproduced from [56] with 
permission. 

Real-time (RT) FMG-based admittance control of a biaxial stage by an estimated hand force in an intended arm motion pattern 

Input:  Forearm and upper-arm FMG signals, x = [x1, x2, …, x32] 

        True labels from a force sensor, y = [Fx, Fy] 

Output: FMG-based estimated force, y’ = [Fx’, Fy’] to control the velocity of the biaxial stage 

Initialization: z seconds, n data samples, r repetitions, m reg.model {SVR, KRR}  

1:    for z do  

2:          Compute maximum voluntary contraction (MVC) in a planar surface 

3:    end for 

4: Target_forceH ⃪ above MVCs of 30% and below MVCs of 80% 

5: Display ⃪ (Target_forceH, Intended_motion)  

6: while (RT_Data_collection_phase = = true) do  

7:       r = 1; 

8:       repeat  

9:            for n samples do 

10:                   while ( exerted_force = = true) do 

11:                  Collect x and y and save them in comma-separated values (csv) format 

12:          end for 

13:          r = r + 1; 

14:    until r = 5;  

15:  end while 

16:  while (RT_Training_phase = = true) do  

17:       Select m reg_model 

18:       Select r rep csv files 

19:       Trained_model ⃪ {x, y} 

20:  end while 

21:   while (RT_Test_phase = = true) do       

22:                                             Select m reg_model        

23:          while (exerted_force = = true) do 

24:                                               FMG-based estimated force, y’⃪ Equation (2.1) 

25:            Velocity of the biaxial stage ⃪ Equation (2.2)          

26:           end while   

27:  end while   
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3.4.3. Test Phase 

The test phase was followed immediately after training; and the trained models 

were evaluated to estimate forces in real time. Instantaneous test data (FMG data) arriving 

at the LabVIEW interface were normalized with the scaling values used in the training 

phase and sent to the regressor, and an exerted hand force was estimated in a dynamic 

arm motion. The same collaborative task was performed as before, i.e., participants 

manipulated the stage by grasping its gripper to slide it on the planar surface with an FMG-

based estimated force in a certain arm motion and the biaxial stage followed the trajectory 

immediately. This phase lasted around 2 minutes, and 1000 records of the test data 

(labeled FMG signals and estimated hand forces) were collected. The test phase was 

conducted separately for both regressors. Figure 3.3 shows the actual exerted forces (true 

label generator from a force sensor reading) and the estimated force with FMG signals, 

while a participant was interacting with the stage in X and Y motions in real time with both 

regressors separately. These plots of real-time test evaluations (true vs. estimated forces) 

were visible in the control pane of the LabVIEW interface (Figure 2.9(a)). Table 3-III shows 

the training data used by the two regressors and the test data (estimated force) collected 

during the real-time evaluation of each of them.  

 

Figure 3.3. RT test phase, where a participant interacted with the biaxial stage by FMG-based 
estimated hand forces in intended X and Y arm motions with FMG signals. Reproduced from [56] with 

permission. 
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3.5. Results  

3.5.1. Real-Time FMG-Based 1-DoF Interactions  

Figure 3.4(a) shows the performance accuracies of the regressors in estimating 

hand forces in intended X interactive motions with FMG signals. The real-time test 

accuracies were around 94% and 92% for the SVR and the KRR, respectively, which were 

comparable with the cross-validation accuracies (around 95%). In intended Y motions, the 

cross-validation accuracies of hand force estimations were also above 95% for both 

regressors, although in real time the test accuracies were around 91% and ~90% for the 

SVR and the KRR, respectively, as shown in Figure 3.4(b). For both intended arm motions, 

the regressors obtained training accuracies higher than 95%. 

Table 3-III. Training data and test data (estimated forces collected during real-time interactions). 
Reproduced from [56] with permission. 

Collaborative task 
Training data  

(Labeled FMG signals)  

Test Data (estimated forces and 

labeled FMG signals)  

A participant interacting with the stage by sliding its 

gripper with an exerted hand force in an intended 

motion 

2000 records or 

68,000 data samples  

1000 records or 

36,000 data samples 

 

  

                        (a)                              (b) 

Figure 3.4. Performances of regressors estimating FMG-based hand forces during intended one-
degree-of freedom (1-DoF) arm motions: (a) x-direction only; and (b) y-direction only. Reproduced from 

[56] with permission. 
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3.5.2. Real-Time FMG-Based 2-DoF Interactions  

Performance evaluations of the regressors in estimating hand forces during three 

different arm motion patterns (DG, SQ, and DM) for the participants (denoted as P1, …, 

P10) are reported as box plots in Figure 3.5 (a–c), respectively, with training accuracies for 

all patterns higher than 90%. The accuracies of the cross-validations for the DG arm 

motion pattern were around 94% for both regressors, while the real-time test accuracies 

were 88% and 91% for the SVR and the KRR, respectively. For the SQ patterns, the 

accuracies of the cross-validations were 87–89%, while in real-time tests the accuracies 

were 84% and 86% secured by the SVR and the KRR, respectively. For the DM patterns, 

the real-time test accuracies of the SVR and the KRR were 82% and 85%, respectively; 

the cross-validation accuracies were approximately 88–92% for both the regressors.  

Performance evaluation of the regressors during force estimation in the real-time 

test phase in terms of R2 and NRMSE are reported in Table 3-IV as median values 

(rounded to ceiling values), which were reasonably notable with higher accuracies and 

  

 

 
Figure 3.5. Performances of regressors estimating FMG-based hand forces during intended two-degree-
of-freedom (2-DoF) arm motions: (a) diagonal; (b) square; and (c) diamond. Reproduced from [56] with 

permission. 
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lower errors. 

3.5.3. Comparison of Force Estimations in Dynamic Motions  

Figure 3.6 shows the mean distributions of the test accuracies of the regression 

models in force estimations for five different motions. Both regressors (SVR and KRR) 

provided better estimation in 1-DoF arm motions (R2 ≥ 90%) than 2-DoF arm motions (R2 

≥ 82%). During the 1-DoF interactions, the SVR outperformed the KRR because of model 

simplicity. While for the 2-DoF interactions, the force estimations in the x- and y-directions 

were required simultaneously. This required high computational power, considerable 

memory allocation, and fast communication between the integrated controller and the 

biaxial stage. Moreover, lower accuracies obtained in the 2-DoF patterns compared to in 

the 1-DoF arm motions might be due to the increased level of the elbow and shoulder 

rotations resulting in faster muscle fatigue. For the 2-DoF interactions, the KRR slightly 

outperformed the SVR in DG and SQ trajectories, although the results were quite 

comparable. While the SVR required considering all the support vectors of the trained 

models to estimate, the KRR could provide better prediction with limited samples available 

in real-time force estimation [65]. Among the 2-DoF arm motion patterns, both the KRR 

and the SVR performed better in DG patterns because of simpler arm motions and fewer 

muscle contractions/expansions than in the other two patterns. Although the regressors 

had lower accuracies in the DM patterns compared to in the other two patterns, real-time 

force control was achievable with satisfactory accuracies.  

With different demographic data, each participant manipulated the stage at his/her 

own comfortability during an intended motion. For a real-time environment, the regressors 

had estimated forces that varied among 1-DoF and 2-DoF motions (R2 = 82‒94%). The 

Table 3-IV. Real-time performance evaluation: R2 and NRMSE. Reproduced from [56] with permission. 

Data 
sample  

ML 

model 

Test accuracy (R2) Test error (NRMSE) 

X Y DG* SQ* DM* X Y DG* SQ* DM* 

Tr: 2000 

records 

SVR 0.94± 

0.04 

0.91 

± 0.04 

0.88± 

0.07 

0.84

± 

0.09 

0. 82 

±  

0.09 

0.10± 

0.05 

0.11± 

0.03 

0.10± 

0.03 

0.10± 

0.04 

0.11± 

0.03 

Te:1000 

records 

KRR 0.92± 

0.03 

0.90 

± 0.05 

0.91± 

0.07 

0.86

± 

0.09 

0. 85 

±  

0.10 

0.10± 

0.04 

0.12± 

0.017 

0.09± 

0.02 

0.10± 

0.04 

0.13± 

0.02 

*DG, SQ, and DM stand for diagonal, square and diamond motion patterns. 
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more complex the arm motion, the harder it became to estimate force in dynamic motions. 

Studies have shown that changing arm positions adversely influenced the performances 

of the regression algorithms over the population [92-93], as observed in this study. 

The mean absolute error (MAE) shown in Table 3-V was also used to compare the 

regression algorithms’ accuracies in force estimations. The lower the MAE was, the more 

accurate the regression model was. The MAEs of the SVR were higher than those of the 

KRR for the DG and SQ patterns, but that of the SVR was lower for the DM patterns 

compared with that of the KRR. The results indicated that the KRR and the SVR were 

comparable in the 2-DoF motions while the SVR slightly outperformed the KRR in the 1-

DoF motions. 

3.5.4. Significance in Estimations 

An investigation was done to study main effects if there was a significant relation 

between the arm motion patterns and the accuracies of the regressors. The within-subject-

 

Figure 3.6. Performances (average R2) of the SVR and the KRR in estimating exerted forces with FMG 
signals during different arm motions. Reproduced from [56] with permission. 

 

 

Table 3-V. Mean absolute errors (MAE) of regression models in different arm motions. Reproduced from 
[56] with permission. 

 X Y Diagonal Square Diamond 

SVR 0.1091 0.1114 0.1055 0.1092 0.1188 

KRR 0.1174 0.1154 0.0997 0.1069 0.1262 
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effects tests for arm motion patterns showed statistical significance in different patterns 

(F(4,36) = 9.681, p = 0.000). However, it was found that there was no significant difference 

between the regression models (F (1,9) = 0.0251, p = 0.877), and no significant 

interactions between the arm motion patterns and the regression models (F (4,36) = 1.144, 

p = 0.352). The post-hoc tests showed statistical significance as X arm motions had 

performance improvements of 10.3% and12.1% than those of SQ and DM arm motions, 

respectively. Likewise, the performance of the Y patterns was 7.4% and 9.2% higher than 

those of SQ and DM motions, respectively. Pair-wise comparisons of X–SQ and X–DM 

were statistically significant, while those of Y–SQ and Y–DM were marginally significant, 

as observed from the corrected p-values reported in Table 3.VI. 

The one-way ANOVA [89] showed that participants’ ages did not significantly 

affect the performances of the regression models (F = 0.578, p = 0.875). There was no 

relation between the FMG-based force estimation and the participant’ age. 

Recognizing different arm motion patterns in two dimensions with real-time FMG 

signals was interesting and challenging because of the dynamic nature of motions and 

individual-specific muscle contractions. As a preliminary study, a simple interactive setup 

with a constrained protocol allowed investigating force estimations in a variety of complex 

motions with FMG signals. These motions were examined for understanding human 

intentions of manipulating a stage in any direction. The admittance control strategy 

implemented in this investigation utilized supervised machine learning methods. In many 

interactive control systems, complex human arm dynamics modeling is required [30]; while 

this study showed possible interactions without such modeling. Real-time evaluations 

were conducted for 10 participants interacting with the biaxial stage in 5 different intended 

motions using two different ML models. Hence, this study showed the viability of using 

FMG biosignals to estimate applied forces in dynamic motion during interactions with a 

planar robot. In addition, FMG-based force estimation could be beneficial in implementing 

Table 3-VI. Two-way repeated measures ANOVA. Reproduced from [56] with permission. 

Arm motion patterns Mean difference SD Corrected p-value 

X–SQ 0.103 0.013 0.000 

X–DM 0.121 0.019 0.000 

Y–SQ 0.074 0.022 0.048 

Y–DM 0.092 0.026 0.049 
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safe collaboration while working with a robot. If safety issues arise such as to avoid 

unwanted contacts or impact forces from the manipulator, participants can force the robot 

to move it further away in a certain direction. Therefore, using FMG biosignals as the only 

input in learning human activities appears promising. 
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Chapter 4.  
 
Long-term FMG Model-based Force Estimation  

The material presented in this chapter is excerpted, reproduced, and modified with 

permission from the following papers: 

[57] © [2021] IEEE with permission. U. Zakia and C. Menon, "Toward Long-Term FMG 

Model-Based Estimation of Applied Hand Force in Dynamic Motion During Human–Robot 

Interactions," in IEEE Transactions on Human-Machine Systems, vol. 51, no. 4, pp. 310-

323, Aug. 2021, doi: 10.1109/THMS.2021.3087902. 

[58] U. Zakia and C. Menon, “Force Myography-Based Human Robot Interactions via 

Deep Domain Adaptation and Generalization,” Sensors. 2022; 22(1):211. 

https://doi.org/10.3390/s22010211 

Sections of this chapter are reprinted or adapted from the above two articles to fit the 

formatting and scope of this chapter. 

4.1. Chapter Overview 

In this chapter, studies conducted to reach research objective 2 are discussed. 

The goal was to investigate generalization of a trained model with long-term data collected 

over a period several months. Generalized zero-shot learning and transfer learning via 

domain adaptation, domain generalization techniques were implemented with traditional 

SVR algorithm and state-of-the-art CNN algorithm. Several participants interacted with the 

linear robot in this 2D-pHRI platform.  

4.2. Introduction 

Determining human intentions of applied forces in dynamic motion in objective 1 

was found effective in real-time interactions with a linear robot. Although the study showed 

impressive results in recognizing applied forces in dynamic motion during HRI, it had a 

few shortcomings. First, a separate regression model was trained for predicting force 

applied by each participant for one specific motion. Second, separate training datasets 
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were needed if motions were different because of variations in muscle contractions. This 

required collecting adequate training datasets each time an individual interacted using a 

different motion (task) with the robot. Additionally, retraining from scratch was necessary 

occasionally when FMG bands were taken off and put back on later due to the non-

stationary, transient, and individual-specific nature of FMG signals. Collection of another 

training dataset was time consuming and impractical for regular use. Moreover, intra-

session FMG-based pHRI required collecting adequate labelled training data, which was 

biased and impractical in real scenarios. In addition, each session data was affected by 

transient, instantaneous signals, sensor position shift, physiological changes, limb 

motions, and postures each time an FMG band was donned. Such domain shifts and lack 

of adequate data severely limited inter-session or inter-participant performance 

evaluations.  

Potential application of a wearable FMG band for human workers in industrial HRI 

workspaces would require general applicability to all workers for control and safety 

aspects. A trained model that can estimate dynamic hand force via FMG signals is 

preferable for all individuals in any intended motion during pHRI. However, obtaining such 

a trained model is feasible only with large volume of diversified population dataset. 

Therefore, in objective 2, two separate studies were conducted on generalization of a 

trained model feasible in FMG-based HRI applications. In study 1 (Objective 2A), multiple 

source domains collected during interactions between several participants and a linear 

robot in 5 different intended motions over long period of time was used to train a 

generalized model. This model was evaluated on real-time out-of-distribution target data 

to predict forces: i) in unseen, unknown dynamic motion, and ii) applied by an unseen, 

unknown participant. In the second study (Objective 2B), long-term source data were 

collected during interaction between one participant and the linear robot in an intended 

motion. A transfer learning model with domain adaptation and domain generalization was 

investigated for recognizing applied forces in certain motion for: i) inter-session evaluation 

(for the repeated user), and ii) inter-participant evaluation (for unseen, unknown 

participant).     
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4.3. Objective 2A  

Study 1: Towards Long-term FMG Model-based Force 
Estimation during Human-Robot Interactions    

To investigate generalization, a novel calibrated FMG-based model was proposed 

in this study where population data (multiple source domains) was collected over long 

period of time during real-time interactions between several participants and a linear robot 

(a biaxial stage). The viability of the proposed long-term calibrated FMG (LCFMG) model 

was based on the ability to recognize real-time (RT) unlearned ‘new input sample data’ 

(target domain) that were out-of-distribution (OOD) compared to the ‘learned’ population 

data. By ‘unlearned’, we meant estimating hand force either in ‘a new unlearned motion’ 

or for ‘a new unlearned participant’. By ‘learned’ we referred to the population data 

available to form a long-term ‘baseline dataset’ (aggregated multiple source distributions) 

for generalization. The proposed model was evaluated in estimating forces in a) scenario 

1: unlearned/ unseen motion, and b) scenario 2: unlearned/ unseen participant. As real-

time test data (target domain) in these scenarios were quite different from baseline 

dataset, few calibration data were required for practical evaluation of the model, thereby 

implementing a generalized zero-shot learning (GZSL) method for the proposed model 

[72, 73], as discussed in Sections 2.6.2.A and 2.7.1. Recognizing unseen scenarios using 

calibration data for domain adaptation is a relatively unexplored area in FMG-based HRI. 

These calibration data were distinct from the long-term population dataset and similar to 

test samples. In other words, the target training data or the calibration data were different 

than the source data and were similar to the target test data. Several combinations of 

population data and calibration data were used to train few long-term calibrated FMG-

based (LCFMG) models. Performances of these LCFMG models were evaluated in real-

time and compared to each other.  A few models were also trained with ‘new input sample 

data’ only (no population data), as was mentioned in [56]. These models were termed as 

‘specialized trained models (STMs)’ hereinafter and were compared with the proposed 

LCFMG models for performance evaluation.  

Two main trends were considered for training the FMG-based regression models:  

1) creating the proposed generalized long-term FMG-based calibrated regression 

models with minimum calibration data, LCFMGs, and  
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2) administering extensive data collection sessions to record FMG data from each 

new participants/new motion performing several repetitions to create specialized trained 

models, STMs. 

4.3.1. Methodology 

The proposed framework utilized a fully supervised multiple domain adaptation 

with a modified generalized zero-shot learning method where both source and target 

distributions were somewhat different but had the same feature spaces. In this study, our 

objective was to train a model with multiple source distributions [baseline dataset 

aggregated from a full/subset of ‘reference dataset’ only, and/or ‘learnt participant dataset’ 

only, (Section 4.3.2)] and evaluate new, unseen real-time test samples [target domain: 

unseen motion (scenario 1) / unseen participant (scenario 2)], as shown in Figure 4.1. 

 For FMG- based real-time interaction, instantaneous signals were required to 

represent muscle contractions. In recognizing unseen real-time test samples, a modified 

GZSL in adapting knowledge transfer helped where a few test samples were included in 

the aggregated multiple source distributions. Therefore, fewer ‘new input sample data’ or 

calibration data (applied force in an intended motion) was collected from a participant at 

the beginning of an evaluation period. These data were like the real-time test samples 

(target domain) and was aggregated with baseline source distribution for training 

purposes, as described in Section 4.3.2. As the seen calibration data was like the unseen 

RT test data, the model could learn what was expected from target domain and predicted 

 
 

Figure 4.1. Implementing modified generalized zero-shot learning with multiple source domain adaptation 
in FMG-based HRI. Reproduced from [57] © [2021] IEEE with permission. 
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better. Therefore, the essence of the proposed framework was using real-time calibration 

data to fine-tune the training distribution. This special case of generalized ZSL of multiple 

domain adaptation framework bridged the gap between source and target distributions. 

Introducing few calibration datasets allowed the model to learn seen target samples to 

some extent; this provided the model with better predictability on unseen test samples 

captured from the target domain in real-time. A LabVIEW interface was developed for 

control and communication, and MATLAB code was written for training and evaluating the 

proposed model, i.e., a support vector regressor (SVR) model was created and evaluated 

on Windows platform. The SVR model was customized using the LIBSVM library and 

appropriate cost (C) and gamma (G) functions was determined using grid search.   

4.3.2. Long-Term Calibrated FMG-based (LCFMG) Model 

The ability of the proposed model to predict out-of-distribution (OOD) data was 

evaluated in, a) scenario 1 # unseen motion: a learned participant applying force in a ‘new, 

unlearned’ motion, and b) scenario 2 # unseen To verify the capability of the proposed 

framework, a 5-fold cross validation (CV) on the training dataset [baseline dataset 

augmented with calibration data] was conducted where the data set was split into 5 folds.  

participant:  a ‘new, unlearned’ participant applying force in a learned motion. In this 

 

Figure 4.2. Proposed framework for Long-term calibrated FMG model. Reproduced from [57] © [2021] 
IEEE with permission.  
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context, ‘learned’ referred to the aggregated multiple source distributions acquired from a 

‘reference dataset’ and/or a ‘learnt participant dataset’. In the case of ‘unlearned’, 

no/negligible ‘new input sample data’ were included in the training dataset and referred to 

as the ‘calibration dataset’. Figure 4.2 shows the proposed framework of the model. 

In this study, a total of fifteen (15) participants (P1-P15) contributed voluntarily. 

Source domains collected from the first five participants (P1-P5) formed a ‘reference 

dataset’ for generalization. The other 10 participants (P6-P15) contributed to evaluate the 

proposed framework in real-time. Among them, three participants (P6-P8) contributed to 

collect ‘learnt participant dataset’ and to evaluate model performance in scenario 1; while 

the remaining seven participants (P9-P15) took part in scenario 2 for evaluation. To 

recognize unseen/unknown motion or unseen/unknown participant in the two scenarios 

[as described in Section 4.3.3.A and 4.3.3.B], a training dataset was formed using different 

source distributions:  

I. Long-term baseline dataset 

A ‘long-term baseline dataset’ or simply ‘baseline dataset’ (aggregated multiple 

source distributions) was accumulated from a ‘reference dataset (subset/full)’ only, and/or 

a ‘learnt participant dataset (subset)’ only.  

• Reference dataset DS1:  

Multiple source domains were aggregated into a reference dataset. It was a 

collection of data from two FMG bands placed on the forearm and upper arm of five 

participants (P1, P2, P3, P4, P5) capturing muscle contractions during interactions with the 

linear robot. Participants applied forces in dynamic motions, namely X direction (M1), Y 

direction (M2), Diagonal (M3), Square (M4), and Diamond (M5) in the XY plane 

demonstrating both simple and complex planar motions. These diverse pools of multiple 

source domains offered better generalization in domain adaptation. The reference dataset 

(full/ subset) was used in both scenario 1 and 2 in recognizing unseen test samples.  

• Learnt participant dataset DS2:  

To recognize unseen motion in scenario 1, a few source distributions were 

collected from volunteering participants (P6-P8). For each participant, a separate ‘learnt 

participant dataset’ was created during interactions in five different motions (M1, M2, M3, 
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M4, M5). This helped to generalize source domains collected from a participant for target 

domain adaptation. Participants (P6-P8) in scenario 1 were termed as ‘learned’ because 

some known or seen data from the ‘learnt participant dataset’ (subset of it) was used in 

training, as described in Section 4.3.3. A. 

Both the ‘reference dataset’ and ‘learnt participant dataset’ were collected over a 

long period of time before the evaluation period; and hence ‘long-term’ was used to 

describe this model.  

II. Calibration dataset DSRT 

The ‘calibration dataset’ was collected at the beginning of the real-time evaluation 

period of the framework. It was called the ‘new input sample data’ (0, 1 or 2 repetitions of 

0, 400 or 800 samples data where a participant interacted with the robot for a certain time 

in each repetition). To evaluate the proposed models, force estimation in two intended 

motions: ‘X direction (M1)’ and ‘Diagonal (M3)’ were considered. So, either in scenario 1 or 

2, calibration data collected from a participant (P6-P15) in an intended motion determined 

the real-time intended motion for interaction during evaluation via MATLAB code. SVR 

was customized, appropriate cost and gamma functions was determined using grid search   

4.3.3. Training dataset formation  

To evaluate the proposed long-term calibrated FMG-based model implementing 

GZSL multiple domain adaptation, baseline dataset and calibration dataset were 

aggregated in various combinations to train few models and predict unseen test samples. 

Several cases were investigated to obtain a possible solution in real-world FMG-based 

HRI scenarios, as described below:  

A. Scenario 1: Estimating Force in Unlearned Motion MU 

In this scenario, the applied force in a new unlearned motion MU (U=1,3) was 

attempted by a learned participant PL (L=6,7,8) to interact with the biaxial stage, as shown 

schematically in Figure 4.3. ‘New input sample data’ from executions of such a motion 

were used to create a ‘calibration dataset’. Two cases were considered in scenario 1:  
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Baseline dataset 

1 

Calibration 
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Baseline dataset 

1 

Calibration 

dataset  

Calibration 

dataset 

Baseline dataset 

2 

Baseline dataset 

2 

Calibration 

dataset 

Case i # Intra-Participant:  

The ‘baseline dataset 1’ for intended motion M1 was formed from a subset of a 

‘learnt participant dataset’ i.e., FMG data of applied force in four motions: M2, M3, M4, M5 

by a participant, PL (L=6,7,8). Similarly, force exerted in M1, M2, M4, M5 motions by a 

participant PL (L=6,7,8) contributed to the ‘baseline dataset 1’ for intended motion M3. The 

Intra-Participant training dataset was formed by equation (4.1), and (4.2).  

Training dataset [MU =1] ⃪   {M2, M3, M4, M5}𝑃𝐿
   ∪   {M1}𝑃𝐿

                                          (4.1) 

Training dataset [MU =3]   ⃪ {M1, M2, M4, M5}𝑃𝐿
   ∪   {M3}𝑃𝐿

                                         (4.2) 

Case ii # Inter-Participant:  

The ‘baseline dataset 2’ in this case was formed by augmenting ‘baseline dataset 

1’ from Intra-Participant with a subset of reference dataset. Such as, for intended motion 

M1, FMG data from five participants (P1-P5) interacting in M2, M3, M4, M5 motions were 

used. According to equation (4.3) and (4.4), Inter-Participant training datasets were 

formed.  

Training dataset [MU =1] ⃪ {M2,M3,M4,M5}𝑃1,𝑃2,𝑃3,𝑃4,𝑃5,𝑃𝐿
 ∪  {M1}𝑃𝐿

                                 (4.3) 

Training dataset [MU =3] ⃪ {M1,M2,M4,M5}𝑃1,𝑃2,𝑃3,𝑃4,𝑃5,𝑃𝐿
 ∪  {M3}𝑃𝐿

                                 (4.4) 

 
Figure 4.3. Schematic of scenario 1: long-term calibrated FMG-based model generation to recognize a new 

unlearned motion (M1) reproduced from [57] © [2021] IEEE with permission. 
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In each case, no/few calibration data (‘new input sample data’: PL interacting with the robot 

in unlearned motion MU) of zero, one, or two repetitions (0, 400, 800 samples) augmented 

with baseline datasets resulted in the LCFMG-0, LCFMG-1, LCFMG-2 trained models, 

respectively. To compare the performance of these models, specialized trained models 

(STM-1, STM-2, and STM-5) were generated with different repetitions (1, 2 and 5) of 

calibration datasets of an unlearned intended motion, MU (U=1,3), performed by PL 

(L=6,7,8). 

B. Scenario 2: Estimating force for Unlearned Participant PU 

In this scenario, a new unlearned participant, PU (U=9,…,15), with no prior 

information, interacted with the biaxial stage in a learned intended motion, ML (L=1,3). For 

generalization, the reference dataset (subset/full) was used. A ‘new input sample data’ 

from execution of the intended motion was used as the ‘calibration dataset’. To construct 

the training dataset, two cases were considered: 

Case i # Intra-Motion:  

The ‘baseline dataset 1’ included a subset of the reference dataset of FMG data 

collected from five participants (P1-P5) applying force in an intended motion ML (L=1,3). 

The Intra-Motion training dataset was formed according to equations (4.5), and (4.6).   

Training dataset [ML =1]    ⃪    {M1}𝑃1,𝑃2,𝑃3,𝑃4,𝑃5
     ∪     {M1}𝑃𝑈

                                                     (4.5) 

Training dataset [ML =3]    ⃪    {M3}𝑃1,𝑃2,𝑃3,𝑃4,𝑃5
   ∪   {M3}𝑃𝑈

                                                         (4.6) 

Case ii # Inter-Motion:  

The full reference dataset was used as the ‘baseline dataset 2’. According to 

equations (4.7) and (4.8), the Inter-Motion training dataset was formed. 

Training dataset [ML=1] ⃪{M1,M2,M3,M4,M5}𝑃1,𝑃2,𝑃3,𝑃4,𝑃5
∪   {M1}𝑃𝑈

                                 (4.7) 

Training dataset [ML=3] ⃪{M1,M2,M3,M4,M5}𝑃1,𝑃2,𝑃3,𝑃4,𝑃5
 ∪   {M3}𝑃𝑈

                                (4.8) 

Long-term calibrated FMG-based models for these cases were trained by including no/few 

calibration data (‘new input sample data’: unlearned PU interacting with the robot in 

intended motion MU) of zero, one, or two repetitions (0, 400, or 800 samples) augmented 
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with the baseline dataset resulted in the LCFMG-0, LCFMG-1, LCFMG-2 models, 

respectively. A schematic of this scenario is illustrated in Figure 4.4. For performance 

comparison, specialized trained models (STM-1, STM-2, and STM-5) were generated 

using different repetitions (1, 2 and 5) of the calibration dataset in an intended motion ML 

(L=1,3) performed by a new participant PU (U=9,…,15). 

4.3.4. Study Protocol 

The study spanned over two separate periods of a) ‘long-term training data 

collection period’, followed by b) ‘real-time evaluation period’ of the proposed models.  

Datasets collected in these two periods and formation of the training dataset is shown in 

Table 4-I for intended motion M1. 

A. Long-term training data collection period  

The multiple source domains i.e., the baseline datasets [‘reference dataset’ from 

P1-P5 and ‘learnt participant dataset’ from P6-P8] required for different scenarios were 

collected in this period. These datasets were collected in multiple sessions over a few 

days where several participants (P1-P8) interacted with the robot. The baseline dataset 

was considered as the offline training dataset used for generalization and domain transfer 

knowledge. In this period, only the data collection phase was executed. In each training 

  

 

 

Figure 4.4. Schematic of scenario 2: long-term calibrated FMG-based model generation to recognize 
unlearned participant applying force in motion (M1). Reproduced from [57] © [2021] IEEE with permission.  
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data collection session, participant applied force in an intended motion during interaction 

and was considered as a separate source domain.   

At the beginning of a session, a participant wearing the two FMG bands sat 

comfortably on a chair in front of the biaxial stage with his/her shoulder and back straight 

on a chair locked in position. For compliant collaboration, the participant grasped the 

gripper and applied force in an intended motion and continued repeatedly until 400 data 

samples/sensor were collected; this was termed as one ‘repetition’. Five repetitions were 

performed to collect a total of 2000 samples of ‘source domain sample data’ from each 

sensor. Collected data were labeled and saved for later use in training the models. This 

phase lasted for approximately 12-15 minutes. 

Table 4-I. Training datasets used in scenario 1 and 2 (intended motion: M1), reproduced from [57] © [2021] 
IEEE with permission  

 Long-term multiple source dataset collection phase Real-time evaluation phase 

 Reference 
dataset 

Learnt participant 
dataset 

Baseline dataset Calibration 
dataset 

Training  

Dataset  

Real-time 
target data 

   
   

   
   

   
   

   
  S

ce
n

ar
io

: 
1 

 

 

 

 

 

 

R = {∑Pi 

∑Mi}i
n [n =5] 

 

5 
participants 

(P1-P5)  

5 motions 
{M1-M5} 

2000 
samples/m
otion for 
each 
participant 

 

Q = {PL ∑Mi} n
i 

 

3 participants 
PL(P6-P8)  

5 motions {M1-

M5} 

2000 
samples/motion 
for each 
participant  

4*2000 
samples/ PL 

Q1 ∈ Q     [for M 

i = 1] 

Q2 ∈ Q     [for M 

i = 3] 

Case 1: B = Q1  

Here, Q1 = {PL ∑Mi+1} n
i+1 

8000 samples/ PL [1 
participant * 4 motions * 
2000 samples/motion] 

 

C = PL {Mi} 

 

PL(P6-P8)  

Intended 
motion, Mi 

= 1  

0/ 400/ 
800 
samples 

 

 

 

 

 

 

 

 

Ds =  

B ∪ C 

 

DT = PL{Mi} 

 

PL(P6-P8) 

Intended 
motion, 
Mi = 1 

600 
samples 
(online) 

Case 2: B = A ∈ R ∪ Q1  

Here, A = {∑Pi ∑Mi+1}i+1
n [(P1-

5){M2:M5}] 

48000 samples [5 
participants * 4 motions * 
2000 samples/motion + 

8000 samples/ PL] 

   
   

   
   

   
   

   
 S

ce
n

ar
io

: 
2

 

 

 

 

 

None 

Case 1: B = D ∈ R  

Here, D = Mi=1 {∑Pi}i
n [(M1) {P1: 

P5}] 

10000 samples [ 1 motion * 
5 participants * 2000 
samples/motion] 

C = PU {Mi} 

 

PU (P9-P15) 

Intended 
motion, Mi 

= 1  

0/ 400/ 
800 
samples 

 

DT = PU{Mi} 

 

PU (P9-

P15) 

Intended 
motion, 

Mi = 1  

600 
samples 

(online) 

Case 2: B = R  

50000 samples [ 5 motions 
* 5 participants * 2000 
samples/motion] 

#*samples collected per sensor/ FMG channel 
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B. Real-time evaluation period 

Ten participants (P6-P15) contributed to the real-time evaluation of the proposed 

LCFMG models. During this period, a separate session was conducted for each participant 

in investigating a single scenario (two cases) for two intended motions (M1, M3), as shown 

in Figure 4.5. Six LCFMG models and three STM models were evaluated for one 

participant in a scenario (1 or 2) in one intended motion (M1/M3)]. This required around 90 

minutes to complete evaluation for each participant for the two intended motions. A 

calibration dataset was collected at the beginning of the evaluation period. To evaluate 

the proposed models in each motion, three phases were executed consecutively: 

• calibration data collection phase in which participants interacted with the biaxial in an 

intended motion,  

• model training phase in which several long-term calibrated FMG-based models were 

trained by merging different combinations of baseline and calibration datasets of 

acquired FMG data as described in Section 4.3.3 (A & B), and 

• test phase in which the performance of the long-term calibrated FMG-based models 

were evaluated in real-time to estimate user-applied forces in dynamic motion. 

1) Calibration Data Collection Phase 

Labelled FMG data were collected same way as described in Section 4.3.4.A. For 

compliant collaboration, a participant sat comfortably with their arm parallel to the 

horizontal space, grasped the gripper of the robot, applied force in an intended motion (M1 

or M3) and continued interaction repeatedly until 400 samples were collected in one 

‘repetition’. Five repetitions were executed to collect a total of 2000 samples of ‘new input 

sample data’ from each sensor. Among these, repetition 1 and 2 only were used as 

‘calibration data’. Collecting 2 repetitions of calibration data required approximately 5 

minutes while the whole session was conducted in 12-15 minutes. 

2) Model Training Phase 

During this phase, several models were trained while the participant sat 

comfortably and relaxed with the FMG bands still wrapped around his/her arm. The 

training dataset for each model augmented the baseline dataset with ‘calibration data’ of 

0, 400, or 800 samples of ‘new input sample data’. Three separate long-term models 
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(LCFMG-0, LCFMG-1, LCFMG-2) were trained for each case in one scenario, as 

described in Section IV. For two cases in one scenario, six separate long-term calibrated 

FMG-based models (Scenario 1: Intra-Participant-LCFMG-0/1/2 and Inter-Participant-

LCFMG-0/1/2, Scenario 2: Intra-Motion-LCFMG-0/1/2 and Inter-Motion-LCFMG-0/1/2) 

were trained. Also, three specialized trained models (STM-1, STM-2, STM-5) were 

generated using only ‘new input sample data’ (1, 2 and 5 repetitions or 400, 800, 2000 

samples from calibration dataset) for performance evaluations. Table 4-II lists a detailed 

description of baseline and calibration datasets, number of samples collected from each 

sensor, and the model generated for each scenario and case.  

3) Test Phase 

A block diagram of the real-time test phase summarizing the procedure followed 

to evaluate the performance of the trained models is shown in Figure 4.6 [also in Figure 

4.3, 4.4]. After the models were trained, each of them (six LCFMG models and three STM 

models for one motion in a scenario) was evaluated separately, as listed in Table 4-II. 

During this phase, the robot was controlled by the estimated FMG-based applied force in 

motion predicted by the LCFMG model on incoming real-time test data. The estimated 

 

 

Figure 4.5. Applied forces and displacements during interaction between a contributing participant (P6) 
and the linear stage in real-time evaluation. Reproduced from [57] © [2021] IEEE with permission. 
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force was mapped into displacements for the biaxial stage. This allowed complaint 

collaboration where the robot followed the same trajectory as the intended motion. Each 

trained model was evaluated approximately for 120 seconds. 

4.3.5. Results 

Two outcome measures: co-efficient of determination (R2) and normalized root 

mean square error (NRMSE) were used to evaluate the performance of the long-term 

calibrated FMG-based trained models. Performance of the different models in real-time 

test phases are reported in this section as box plots of R2 and NRMSE with median values 

in Figure 4.8-4.11 and listed in Table 4-II.  

To verify the capability of the proposed framework, a 5-fold cross validation (CV) 

on the training dataset [baseline dataset augmented with calibration data] was conducted 

where the data set was split into 5 folds. In the initial repetition, the first fold was used for 

evaluating the model while the remaining folds were used to train the model. This process 

was repeated to test each fold individually. Cross validation was carried out for each 

participant (P6-P15) in each intended motion (M1 and M3).  Inter-participant-2 and Inter-

Motion-2 cases were considered where baseline datasets had larger labelled multiple 

source distributions (Table 4-II). Training data was shuffled for uniform distribution after 

aggregating baseline and calibration data. CV Accuracies (R2) in estimating force in each 

dynamic motion (M1 and M3) are reported separately in the boxplot shown in Figure 4.7. 

In both scenarios, median values of cross-validation accuracies were quite higher 

 

 

Figure 4.6.   Real-time test phase evaluating a long-term calibrated FMG model in recognizing unlearned 
motion or unlearned participant reproduced from [57] © [2021] IEEE with permission. 
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(R2≈90%) and approximately the same for both ‘X’ and ‘Diagonal’ motions across 

participants. This verified the applicability of generality and implementation of GZSL with 

domain adaptation in recognizing new, unseen, real-time test data. 

As explained in the previous sections, two different cases of Intra/Inter-Participant 

and Intra/Inter-Motion were considered in each scenario. During the real-time evaluation, 

the model LCFMG-0 trained with no calibration data, failed to estimate user-applied forces 

(average R2<0.45, average NRMSE>0.3) in each case. Therefore, the Intra/Inter-

Participant-LCFMG-0 and the Intra/Inter-Motion-LCFMG-0 models are not discussed in 

the following sections. 

A. Scenario 1: Unlearned Motion MU  

Real-time evaluation of the long-term models in scenario 1 showed that Inter-

Participant-LCFMG-2 performed better in force estimation for both unlearned motions 

(M1=X-direction, M3=Diagonal). Inclusion of two repetitions of calibration data boosted the 

performance (Figure 4.11); this was noticeable in the case of M3 (R2 = 0.85 with LCFMG-

2 vs. R2 = 0.67 for LCFMG-1). Comparison of the performance of the long-term models 

with the specialized trained models showed competitive advantages of the proposed 

model. The Inter-Participant-LCFMG-2 outperformed STM-2 and was comparable with 

STM-5 in estimating user-applied forces in the ‘X-direction’ motion (M1). This long-term 

 

                                          (a)                                                          (b) 
 

Figure 4.7. 5-fold cross validation accuracies on training dataset for: (a) Inter-Participant-2 in Scenario 1, 
and (b) Inter-Motion-2 in Scenario 2 reproduced from [57] © [2021] IEEE with permission. 
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calibrated FMG-based model also outperformed both STM-2 and STM-5 during ‘Diagonal’ 

 
(a) Unlearned pattern: X direction (M1) 

 

 
 

(b) Unlearned pattern: Diagonal (M3) 
 

  

  
(a) Unlearned participant performing X direction (M1) pattern 

 

  
(b) Unlearned participant performing Diagonal (M3) pattern 

 
 

   
(a) Unlearned motion pattern: X direction (M1) 

 

 
(b) Unlearned motion pattern: Diagonal (M3) 

 

 

  

 
(a) Unlearned participant performing X (M1) pattern 

 

  
(b) Unlearned participant performing Diagonal (M3) pattern 

 

 

Figure 4.11.Real-time evaluation of scenario 1: Co-efficient of 
determination (R2) values are reported for each trained model. 

Figure 4.11. Real-time evaluation of scenario 2: Co-efficient of 
determination (R2) values are reported for each trained model. 

Figure 4.11. Real-time evaluation of scenario 1: Normalized 
root-mean-square error (NRMSE) values are reported for each 

trained model. 

Figure 4.11. Real-time evaluation of scenario 2: Normalized root-
mean-square error (NRMSE) values are reported for each 

trained model. 

Reproduced from [57] © [2021] IEEE with permission. 
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motion (M3) (highlighted in ‘gray’ in Table 4-II).  

Comparing the real-time performance of different models in both cases of this 

scenario showed that in most cases, LCFMG-2 outperformed LCFMG-1 as observed by 

a smaller average NRMSE (Table 4-II) and lower range of error variations (Figure 4.8). 

The Inter-Participant-LCFMG-2 model was superior to STM-2 and STM-5 in estimating 

the user-applied forces during the two intended motions M1 and M3 (Table 4-II). In addition, 

the range of variations of NRMSE with Inter-Participant-LCFMG-2 was less than that of 

the STM-2 model (Table 4-II) during M1. 

B. Scenario 2: Unlearned Participant PU 

Real-time evaluation results of Scenario 2 where unlearned participants interacted 

with the stage in the intended motions of M1 and M3 (X-direction, Diagonal) are illustrated 

in Figure 4.9. In both Intra- and Inter-Motion cases, LCFMG-1 and LCFMG-2 showed 

comparable performances, although LCFMG-1 did not perform well for all participants. In 

both intended motions, the Inter-Motion-LCFMG-2 model performed better and was 

comparable with specialized trained models STM-2 and STM-5, as observed in Table 4-II 

and Figure 4.9. 

Calculating NRMSE in the real-time evaluation of this scenario showed similar 

results like scenario 1. In most cases, LCFMG-2 outperformed LCFMG-1, STM-2, and 

STM-5 with a lower NRMSE. These errors are presented in boxplots of Figure 4.10 and 

reported in Table 4-II.   
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 Table 4-II. Summary of training datasets in Long-Term Calibrated FMG-based Model reproduced from [57] 
© [2021] IEEE with permission. 
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C. Comparative analysis 

A comparison of the performance of different models is illustrated in Figure 4.12. 

The long-term calibrated FMG-based models generally acquired better prediction 

accuracies and lower standard deviations in contrast to the specialized trained models. 

This superior performance was clearly noticed when comparing LCFMG-2 models with 

the STM-2 and STM-5 models in Figure 4.12. The Inter-Participant-LCFMG-2 model in 

scenario 1 (recognizing new, unseen motion) and Intra-Motion-LCFMG-2 model in 

scenario 2 (recognizing new, unseen participant) performed better among the models. It 

is worth noting that the LCFMG-2 model obtained high prediction accuracies with limited 

information, i.e., only two repetitions of calibration of ‘new input sample data’. 

The TOST equivalence test showed that Inter-Participant-LCFMG-2 was 

equivalent to STM-5 (scenario 1: ‘unlearned motion’) with hypothesized mean difference 

of 0.71 at 5% significance level. Similarly, Intra-Motion-LCFMG-2 was found equivalent to 

STM-5 (scenario 2: ‘unlearned participant’) with hypothesized mean difference of 0.707 at 

5% significance level. However, it was difficult to be conclusive with a smaller population 

size, as in this study.  

In both scenarios for ‘Diagonal’ intended motion, the Inter-Participant/Intra-Motion-

LCFMG-1 model did not perform well, as indicated in Figure 4.13. To interact in a 

 
(a) Scenerio1: unlearned motion MU= X-direction 

 
(b) Scenerio1: unlearned motion MU= Diagonal 

 
(c) Scenerio2: unlearned participant PU performing motion 

ML= X 

 
(d) Scenerio2: unlearned participant PU performing motion 

ML= DG 

 

Figure 4.12. Comparison of performance of different models in estimating user-applied forces during 
different movement patterns. Reproduced from [57] © [2021] IEEE with permission.  



72 

‘Diagonal’ motion pattern, a participant had to apply enough force to cause displacements 

in both X and Y dimensions. Recognizing applied force in a ‘Diagonal’ motion in the planar 

space required simultaneous predictions from two models (Model X: applied force in X 

dimension, and Model Y: applied force in Y dimension) from same real-time observations. 

For compliant collaboration, substantially higher estimation accuracies were required in 

each dimension; otherwise, the participant might lose control of the gripper. With a lower 

calibration dataset (400 samples), recognition became relatively tricky during real-time 

test phase because slight deviations in applied forces, arm motion speed or posture 

affected the model performance due to uncertainties involved during interactions. 

Therefore, a model trained with too little calibration data might fail to learn possible 

motions. In scenario 1, the Inter-Participant-LCFMG-1 model obtained quite low 

accuracies in the X-dimension (R2≈50%) for two participants (P7, P8), and the average 

accuracy across participants was only 67%.  Also, the Intra-Motion-LCFMG-1 model did 

not well work for each contributing participant in scenario 2. Observations showed that for 

at least one participant (P13), the model estimated poorly in the Y-dimension (R2≈60%). 

 
(a) Scenerio1: Inter-Participant- LCFMG -1 (Mu: Diagonal) 

 
(b) Scenario 1: Inter-Participant-LCFMG-2 (Mu: Diagonal) 

 
(c) Scenerio 2: Intra-Motion-LCFMG-1 (ML: Diagonal) 

 
(d) Scenerio 2: Intra-Motion-LCFMG-2 (ML: Diagonal) 

 

Figure 4.13. Effects of calibration dataset in estimating force in ‘Diagonal’ motion in Scenario 1 and 2 
(reported for best models only) reproduced from [57] © [2021] IEEE with permission. 
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Therefore, the LCFMG-1 model might lead to uncomfortable interactions as it occasionally 

failed to obtain significant estimation accuracies in both X, Y dimensions during ‘Diagonal’ 

motion.  

In both scenarios in any intended motion, the LCFMG-1 model obtained lower 

performance accuracy compared to the LCFMG-2 model. Including 1 repetition of 

calibration data was good in few instances, but 2 repetitions were better with improved 

estimation accuracies ensuring smooth interactions in both ‘X’ and ‘Diagonal’ motions. 

Considering the good performance of the LCFMG-2 models being comparable to the STM-

5 model, it was decided that there was no need to include more calibration data. Although 

extending training dataset with more calibration data might further improved the estimation 

accuracy, it would require a longer data collection session; this might compromise real-

time functionality.  So, minimal usage of the calibration data was also pursued in this study 

for faster training in practical situations without compromising user comfort while acquiring 

higher estimation accuracies.  

It was worthy to acknowledge that the real-time performance of an FMG based 

model varied greatly due to its inherent subject-specific nature. During the real-time 

evaluation period, continuous inbound test data was subject to individual variances such 

as sudden deviations in arm motion, posture or changed applied forces. Also, it was 

noticed that physiological attributes (arm length, forearm and upper arm perimeter, 

sweats, skin hair, fatigue) affected each participant’s muscle contraction readings 

(better/poor observations in calibration and test data samples). Variations in the calibration 

data in the intended motion (‘X’, ‘Diagonal’) along with these phenomena impacted model 

performance; hence larger deviations were seen, as depicted in Figure 4.13. Using a small 

calibration dataset, the model worked well for most unlearnt participants, while showed 

moderate performance for a few others. But when compared to STM-2, the Inter-

Participant/Inter-Motion-LCFMG-2 model was superior. 

In all scenarios, the Inter-Participant/Inter-Motion-2 model was more generalizable 

compared to the Intra-Participant/Intra-Motion-2 model. Aggregating calibration data with 

these diverse multiple sources provided a versatile and unique training dataset, applicable 

to the contributing participant only.  Furthermore, calibration data in the ‘X direction’ and 

‘Diagonal’ intended motions were quite different. It was the calibration data that 

determined which intended motion the model would recognize. In scenario 1 for the Inter-
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Participant-2 model, although a same reference dataset was used for all participants, 

training data became different because of the unique ‘learnt participant dataset’ and 

calibration data. The ‘learnt participant dataset’ provided enough seen data from a 

contributing participant. Similarly, during recognition of unseen participant motion, Inter-

Motion-2 model used two repetitions of calibration data (800 samples) aggregated with a 

large, diversified reference dataset for training. Apart from the calibration data, this trained 

model had no data from a new, unseen participant. Although CV accuracies were ≈90% 

in ‘X’ or ‘Diagonal’ for both Inter-Participant-2 and Inter-Motion-2 models, the real-time 

accuracies were 94%, 90% in ‘X’ and 85%, 80% in ‘Diagonal’ motions, respectively. These 

gaps between the offline model performances with real-time evaluations (specifically in 

M3: ‘Diagonal’) were observed in another similar research project using sEMG biosignals 

[30]. It was interesting to note that for ‘X’ motion, the generalized trained model performed 

well because of a simpler computation in one dimension only. However, larger standard 

deviations were observed for ‘Diagonal’ motion because more complex predictions were 

required simultaneously in X and Y dimensions (Inter-Participant-2: 85±5%, and Inter-

Motion-2: 80±7%) across all participants (P6-P15). Results indicated that adding ‘learnt 

participant dataset’ in scenario 1 was worthy in recognizing unseen ‘Diagonal’ motion, 

however, it was practically not easy to collect.  

On the contrary, Inter-Motion-2 model was more practical to implement. This 

approach allowed a new, unseen worker interacted with a robot without spending a longer 

training time in collecting large training data. The Inter-Motion-2 would be particularly 

useful in FMG-based applications for a first-time user. Therefore, the Inter-Motion-

LCFMG-2 model is recommended for the real-world HRI environment. The model will 

allow any new worker interacting with a robot in an intended motion such as the ‘X 

direction’ or ‘Diagonal’. This versatile model would work for other simple motions too. 

Interestingly, the model did not distinguish a repeated user from a new user, meaning that 

any worker (unseen or seen) would be treated as an unseen participant. This was realistic 

because even for a repeated user, new calibration data was required for domain 

adaptation between the source and target data. By aggregating calibration data from 

previous, repeated use, the Inter-Motion-LCFMG-2 can become personalized (converting 

gradually towards Inter-Participant-LCFMG-2) for an individual where human interactions 

with machines are desirable on a regular basis. 
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4.4. Objective 2B  

Study 2: Estimating interactive forces via supervised 
domain adaptation and generalization 

In study 1 (objective 2A), inter-participant domain generalization via traditional 

support vector regressor (SVR) was investigated [56]. In that study, we did not investigate 

deep transfer learning or intra-session evaluations when a participant interacted with a 

robot on regular basis. 

Therefore, in this second study, deep transfer learning was implemented where 

interactions were expected to occur on regular basis to overcome limitations of intra-

session evaluation [76,77,94]. Transductive transfer learning (few target data 

available/seen) via supervised domain adaptation (SDA) for inter-session evaluation and 

inductive transfer learning (target data not available/unseen) via supervised domain 

generalization (SDG) for inter-participant evaluation was investigated. Domain adaptation 

reuses part of a model pretrained with large pools of source domains to predict different 

but related target domain where both domains have same feature spaces with different 

distributions. On the other hand, domain generalization uses a pretrained model with 

source domains and attempts to predict unseen target data. It is particularly beneficial to 

mitigate gaps between different domains where knowledge about the target domain is 

absent [74,78]. These methods have been success-fully applied in image processing, but 

there are very few studies in bio-signal-based pHRI because of transient and dynamic 

nature of bio feedback and hence needs to be investigated. In a repetitive FMG-based 

pHRI application between a participant and a robot, previous intra-sessions data could 

contribute building a large dataset. Due to the transient signal, sensors shift, and dynamic 

interactive environment, each session’s data were unique even when the task (applied 

force in certain motion) was the same. Therefore, the focus of this study was to investigate 

whether these multiple-source data could improve the user experience in daily interactions 

utilizing domain adaptation by pretraining a model and fine-tune via transfer learning. We 

further investigated the impact of domain generalization for a different pHRI task between 

the robot and several other participants (applied interacting force in another motion) using 

the same pretrained model. Such cross-subject evaluation became more challenging due 

to signal variability between the target distribution and the multiple intra-sessions source 

distributions. Fine-tuning the pretrained model via transfer learning could leverage the gap 
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between the source and tar-get domain. For both SDA and SDG, few calibration data 

(target training data) was used for fine-tuning the model to adapt instantaneous state of 

the signal captured during the dynamic interactions. 

An FMG-based convolutional neural network (FMG-CNN) architecture was 

proposed to investigate pHRI between several human participants and a linear robot/stage 

via do-main adaptation and generalization. This architecture was used as a nonlinear 

regression model to map applied forces from instantaneous FMG signals during 

interactions, as shown in Figure 4.14. For transfer learning, multiple source distributions 

were used to pre-train a unified supervised FMG-based deep transfer learner (SFMG-

DTL) model during the training phase. These multiple sources of FMG distributions 

(source distribution: Ds) were collected in several sessions during regular pHRI activities 

between one human participant and the linear robot while the participant applied hand 

forces in a certain dynamic SQ-1 motion (source task: Ts). The SFMG-DTL model was 

assessed on separate cases during the evaluation phase on target domain 1 for 

supervised domain adaptation (case i: SDA) and on target domain 2 for supervised 

domain generalization (case ii: SDG). In case i, inter-session target domain 1 (Dt-SDA) was 

evaluated where the same participant (intra-subject) interacted with the linear robot in SQ-

1 motion (Tt-SDA). While in case ii, inter-participant target domain 2 (Dt-SDG) was assessed 

separately for five (5) other participants (cross-subject) interacting with the linear robot in 

SQ-2 motions (Tt-SDG). In the beginning of evaluation for both cases, a few calibration data 

(target training data) were collected to fine-tune the pretrained model in recognizing target 

distribution. Intra-session evaluations on target domains (target training and target test 

data) were conducted using FMG-CNN architecture for comparing performances of SDA 

and SDG cases. Several machine learning algorithms, such as support vector regression 

(SVR) and multi-dimensional support vector regression (MSVR), were also used for 

performance comparison in domain adaptation. 

Major contributions of this study were: 

• Investigating feasibility of deep transfer learning technique in repetitive 

FMG-based pHRI applications utilizing inter-session FMG data for the first time, 

• Proposing a unified transfer learner for both supervised domain adaptation 

and do-main generalization, 
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• Leveraging periodical calibration as needed with less data than normally 

required, and 

• Proposing a nonlinear FMG-CNN regression architecture for mapping 

applied force from FMG signals without requiring biomechanical modelling of the human 

arm. 

The FMG-CNN model was written and developed in MATLAB code running on a 

Desktop PC (Intel Core i7 processor and Nvidia GTX-1080 GPU).   

4.4.1. Materials and Methods 

A. Source and Target Domain 

In this study, multiple source domains, Dsi = {i = 1, 2, 3}, were used for pretraining 

a deep transfer learning model. Source domain Dsi = {χsj, Ysj} had data matrix χsj ∈ RNsj 

× SC such that i ∈ {1, 2, 3}, j ∈ {1, 2, ..., NS}, SC = {c1, ..., c32} (c: 32 FMG channels, SC = 

dimensionality of feature vectors, and NS: number of samples), and labels Ysj = {Fsjx, Fsjy, 

f (·)} [f (·) was a predictive function, and Fsjx, Fsjy were label space of applied forces in X 

and Y dimensions such that f : χsj → Fsj-x and f : χsj → Fsjy]. All distributions were 

 

Figure 4.14. The proposed SFMG-DTL transfer learning model for estimating applied force during pHRI on 
a planar workspace with a linear robot. Reproduced from [58] with permission. 
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homogenous and balanced. Target domain Dt = {χt} had data matrix χt ∈ RNt × SC [SC: 

dimensionality of feature vectors, and Nt: number of samples in target domain]. Calibration 

data, Cd ∈ {Xc, Yc} [Yc = {Fcx, Fcy, f (·)}], a small subset of Dt, was used as target training 

data. A transfer learner pretrained with Dsi and fine-tuned with Cd predicted force label 

spaces, Yt = {Ftx, Fty, f (·)}, from target test distribution: {χt
*} ∈ Dt. In case of domain 

adaptation, source and target domains were different, but source and target tasks of 

applied force estimations in SQ-1 motion were same (Ds ≠ Dt, Ts = Tt) {Ts, Tt: applied 

interactive forces in SQ-1 motion}). While in domain generalization, both source and target 

domains and tasks were different (Ds ≠ Dt, and Ts ≠ Tt, where Ts: applied forces in SQ-1 

motion and Tt: applied force in ‘SQ-2′ motion). Acronyms used in this article are listed in 

Table 4-III. 

B. Applied Interaction Force Estimation 

At an instant of time, t, instantaneous raw input target test signals SC arriving at 

the model (with a δ of µ parameter set) with a probability Pt (St
C) mapped estimated applied 

force Fxt’ and Fyt’ (forces in X and Y dimensions) in a dynamic motion such that: 

𝑓𝑥(⋅) = 𝐹𝑥𝑡
′ = 𝛿, (𝑠𝑡

𝐶 , 𝜇1) (4.9) 

  𝑓𝑦(⋅) =  𝐹𝑦𝑡
′ = 𝛿, (𝑠𝑡

𝐶 , 𝜇2)  (4.10) 

To find best parameter space µ, loss function was computed: 

μ1  =  L(𝐹𝑥𝑡
′  −  𝐹𝑥𝑡  ) = arg min

µ1
∑ ( 𝐹𝑥𝑘 −    𝐹𝑥𝑘

′ )2𝑡

𝑘=1
  (4.11) 

Table 4-III. Acronyms used. Reproduced from [58] with permission. 

Acronyms Meaning Acronyms Meaning 

SDA Supervised domain 
adaptation 

SQ-1  Interaction force in square motion with variable sizes in 
domain adaptation 

SDG Supervised domain 
generalization 

SQ-2  Interaction force in square motion in domain generalization 

Ds Source domain Dt-SDA, Tt-SDA Target domain and target task in inter-session SDA 

Dt Target domain Dt-SDG, Tt-SDG Target domain amd target task in inter-participant SDG 

Ts Source task Dsi Multiple source domains 

Tt Target task Fxt
’  Estimated applied forces in X dimension 

Cd Calibration data Fyt
’  Estimated applied forces in Y dimension 

 



79 

μ2  =  L(𝐹𝑦𝑡
′  −  𝐹𝑦𝑡  ) = arg min

µ2
∑ ( 𝐹𝑦𝑘 −  𝐹𝑦𝑘

′  )
2𝑡

𝑘=1
  (4.12) 

Mean square error (MSE) was used to calculate average squared difference 

between estimated and real value. MSE for a single observation was: 

where R was the number of responses; Fxk, Fyk were the target output; and Fxk’, Fyk’ 

were the network’s prediction for response k. 

C. The proposed SFMG-DTL model 

For transfer learning, a unified framework for SDA and SDG based on the FMG-CNN 

architecture (Figure 2.11). In this framework, the model learned discriminative features of 

the multiple source domains during pretraining. While fine-tuning, the last three layers of 

the saved model helped in adapting to converge quickly in recognizing target distribution. 

During evaluation, fine-tuning occurred in the final fully connected layer (Figure 2.12). 

For both pretraining and fine-tuning, stochastic gradient descent (SGD) was implemented 

as the optimizer. A learning rate (LR) of 1E-04 and maximum epoch (E) of 40 were used 

in pretraining, while LR = 1E-05 with E = 60 was used during evaluation. MSE loss was 

used for validation of the training process. 

4.4.2. Experimental Setup 

A total of 6 participants (P1, …, P6) volunteered in this study. FMG-based pHRI 

was investigated where a human participant collaborated with a linear robot/biaxial stage, 

as shown in Figure 4.16. Interactions occurred by applying force at the end-effector of the 

robot. Two FMG bands (32 feature space) were used to read muscle contractions during 

interactions. These bands were wrapped around the forearm and upper arm muscle belly.  

𝑀𝑆𝐸𝑥 =  ∑
( 𝐹𝑥𝑘−  𝐹𝑥𝑘

′ )
2

𝑅

𝑅

𝑘=1

  (4.13) 

𝑀𝑆𝐸𝑦 = ∑
( 𝐹𝑦𝑘−  𝐹𝑦𝑘

′ )
2

𝑅

𝑅

𝑘=1

  (4.14) 
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4.4.3. Protocol 

Figure 4.17 shows the training and evaluation phases followed in this study to 

investigate the proposed SFMG-DTL transfer learning model. Both source and target 

distributions and model hyper parameters used are summarized in Table 4-IV.  

During the training phase, source distributions were collected and used for 

pretraining the model, while in the evaluation phase, separate target domains for SDA and 

SDG were collected and evaluated separately, as discussed below. 

A. Training Phase 

Multiple-Source Data Collection 

Multiple training data collection sessions were conducted in three (3) different 

sessions during interactions between participant P1 and the linear robot. The collaborative 

task was conducted by applying hand force in a dynamic square motion SQ-1 of varying 

sizes on the planar surface, as shown in Figure 4.16 (e). Participant P1 sat in front of the 

linear robot/biaxial stage comfortably on a chair locked in position. 

 
Figure 4.15. Setup used for data collection and evaluation of SFMG-DTL. Reproduced from [58] with 

permission. 

(a) linear robot with gripper and end-effector on top, (b) two FMG bands, (c) interaction force in square motion SQ-1 
with variable sizes in domain adaptation, (d) interaction force in square motion SQ-2 in domain generalization, and (e) 

participant P1 interacting with the robot by applying force in dynamic SQ-1 motion. 
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Two FMG bands were donned on the forearm and upper arm on the participant’s 

dominant right hand [Figures 4.14 and 4.16(e)]. A total 14 cycles of data were collected 

during these sessions, where 600*32 samples of data were collected in a cycle. In each 

cycle, participant grasped the gripper and applied interactive force in a dynamic square 

motion, defined as the source task (TSDA = applied force in SQ-1 motion). Applying forces 

in a non-uniform anti-clockwise square motion with gradually increasing displacement 

area on the planar surface [Figure 4.16(c)] were repeated continuously to complete one 

cycle. 

Pretraining Deep Learning Model 

For domain adaptation and generalization, the proposed FMG-CNN architecture 

was used for pretraining the unified SFMG-DTL transfer learner model. The model was 

trained to predict applied forces in X and Y dimensions simultaneously from a distribution. 

Two separate models (Model X, Model Y) were generated for estimating forces in X and 

Y dimensions and saved as .mat file for use in evaluation sessions. 

 

Figure 4.16. SFMG-DTL: unified transfer learning framework for SDA and SDG. Reproduced from [58] 
with permission. 
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B. Evaluation Phase 

Case i: evaluating intra-subject/inter-session target domain (Dt-SDA, Tt-SDA) via domain 

adaptation (Ds ≠ Dt, Ts ≈ Tt) 

Inter-session evaluation was investigated to see if multiple session data from a 

repetitive user (intra-subject/participant) could be useful in practical applications. In this 

target task, participant P1 interacted with the linear robot in similar motion speed and 

pattern SQ-1 following same source data collection protocol. For domain adaptation, first, 

a few calibration data were collected as target training data (1200 × 32 samples) for fine-

tuning and formed target dataset 1. The transfer learner was thus retrained to adapt a new 

target domain. It was then evaluated on 400 × 32 samples of target test data. 

Case ii: Evaluating cross-subject/inter-participant target domain (Dt-SDG, Tt-SDG) via domain 

generalization (Ds ≠ Dt, Ts ≠ Tt) 

For domain generalization, five participants (P2:P6) contributed to evaluate the 

pretrained SFMG-DTL model. Target distributions were collected from each participant 

during a collaborative task that allowed interaction with the robot applying force in a 

uniform square motion (TSDG = applied force in SQ-2 motion), as shown in Figure 4.16 (d). 

For each participant, a total 4 cycles of target data (400 × 32 samples/cycle) were collected 

with similar source data collection protocol, and it was termed as target dataset 2. Leaving 

one out cross-validation (LOOCV) was implemented where 3 cycles were used as target 

training data for fine-tuning the SFMG-DTL model, and 1 cycle was used as target test 

data. 

Table 4-IV. Source and target domains. Reproduced from [58] with permission. 

Pretraining Phase Evaluation Phase  

Source  

Domain 

Hyper 

Parameters 

Target 

Domain 

Hyper 

Parameters 

Fine 

Tuning 

Target Test 
Data 

𝐷𝑠𝑖 = 

{Xs, Ys} {P1}, 

where,  

𝐷𝑠𝑖 = {𝐷𝑠1 ∪ 𝐷𝑠2 ∪ 𝐷𝑠3} 

= 8400x32 samples,  

TSDA: applied force  

in SQ-1 motion 

SGD 

Epochs: 40    

LR: 1E-4 

case i. Dt-SDA = 

{Xs, Ys} {P1} where  

TSDA: applied force  

in SQ-1 motion SGD 

Epochs: 60    

LR: 1E-5 

Cd =  

{Xc, Yc} 

1200x32 

samples 

Dt =  

{Xt, Yt} 

400x32 
samples 

 

case ii. Dt-SDG = 

{Xs, Ys} {P2, …, P6}, where  

TSDG: applied force  

in SQ-2 motion 
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4.4.4. Results 

For transfer learning in SDA and SDG, the SFMG-DTL pretrained model was 

evaluated with two separated target domains (in both cases, calibration data/target 

training data (1200 × 32 samples) and target test data (400 × 32 samples) were of same 

amount). Figure 4.17 shows plots of target domain 1: FMG test distributions and the 

model’s performance of force estimations in X and Y dimensions during SDA. 

A. Supervised Domain Adaptation 

Supervised domain adaptation was investigated for inter-session FMG data for 

repetitive pHRI application with participant P1. The results obtained for R2 and NRMSE 

with the SFMG-DTL model along with other models are reported in Figure 4.18. The 

proposed deep transfer learner (MSE loss ≈ 5.8) outperformed in estimating force in the 

selected motion SQ-1 in terms of higher accuracies (R2 ≈ 89%) and lower error (NRMSE 

≈ 0.10) than other algorithms, including intra-session baseline SDA (FMG-CNN model with 

target training data and target test data only). Among these models, MSVR performed 

poorly (R2 ≈ 52%) despite using a single model to predict force in both X and Y dimensions. 

Both baseline SDA and SVR showed similar results in predicting force (R2 ≥ 81%). 

Reported values were averaged for Model X and Model Y in estimation accuracies and 

losses. 

  
(a) (b) 

Figure 4.17. Target dataset 1 used in SDA. Reproduced from [58] with permission.  

(a) target test FMG data; (b) true forces and estimated forces in X and Y dimensions estimated by the 
retrained SFMG-DTL learner. 
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B. Supervised Domain Generalization 

Supervised domain generalization was evaluated for inductive transfer learning 

where the target distributions were unseen to the pretrained model. An inter-

participant/cross-subject test was carried out for five participants (P2:P6) individually. For 

comparison, intra-session baseline SDG, using leave one out cross-validation (LOOCV) 

with target training data and target test data, was executed for each participant. The 

SFMG-DTL model obtained comparable estimation accuracies (R2 ≥ 88%) similar to the 

  

(a) (b) 

Figure 4.19. Performances of ML and DL models in case i: on target dataset 1 (supervised domain 
adaptation). Reproduced from [58] with permission. 

(a) estimation accuracies (R2) and (b) error in estimation (NRMSE). Averaged values (Model X and 
Model Y) are reported for SVR, intra-session, and SFMG-DTL. 

 

 

  

(a) (b) 
Figure 4.18. Performances of ML and DL models in case ii: on target dataset 2 (supervised domain 

generalization). Reproduced from [58] with permission. 

(a) estimation accuracies (R2) and (b) error in estimation (NRMSE). Averaged values (Model X and 
Model Y) are reported for both intra-session and SFMG-DTL. 
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baseline SDG model (R2 ≤ 86%) across participants. Thus, performance with transfer 

learning obtained 2.4% improvement in estimating forces in dynamic SQ-2 motion. 

Moreover, the SFMG-DTL model encountered an error in estimation (NRMSE ≈ 0.6) that 

was 3.75% lower than the intra-session model across participants (mean MSE loss ≈ 

5.14N). Individual results of R2 and NRMSE (averaged for Model X and Model Y) are 

reported in Figure 4.19 for all five participants. 

C. Viability of SDG 

In this case, estimation accuracies and errors obtained by SFMG-DTL model were 

found comparable with intra-session evaluation of baseline SDG for participants P2 and 

P6, while it performed better for P3–P5. Although the overall performance improvement was 

limited, it was interesting that the SFMG-DTL model improved accuracies in estimating 

 

Figure 4.20. Comparing SFMG-DTL model with intra-session evaluation on case ii: target dataset 2 
model in estimating forces in X and Y dimensions in domain generalization. Reproduced from [58] with 

permission. 
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force in the Y dimension compared to the baseline SDG model for some participants, as 

shown in Figure 4.20. A t-test was carried out with a 95% confidence level to compare 

performances of the intra-session and the SFMG-DTL model. Estimation accuracies (R2) 

in Y-dimension via the SFMG-DTL model were found statistically significant. This would 

improve designing FMG-based HMI in future practical applications. 
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Chapter 5.  
 
Force Myography based Human Robot Collaboration 
in 3D  

The material presented in this chapter is excerpted, reproduced, and modified with 

permission from the following paper: 

[59] © [2022] IEEE with permission. U. Zakia and C. Menon, “Human Robot 

Collaboration in 3D via Force Myography based Interactive Force Estimations using 

Cross-Domain Generalization,” IEEE Access, Mar. 2022, doi: 

10.1109/ACCESS.2022.3164103. 

Sections of this chapter are reprinted or adapted from the above article to fit the formatting 

and scope of this document. 

5.1. Chapter Overview 

This chapter discusses the study conducted to achieve research objective 3. The 

goal was to investigate interactive force estimation during a collaborative task with a Kuka 

robot in 3D. Cross domain generalization method was implemented in this study to transfer 

learnt knowledge from 2D-pHRI long-term multiple source domains to estimate interactive 

forces from 3D-HRC target data. 

5.2. Introduction 

A few studies are conducted recently where FMG biosignal was used for applied 

force estimations during physical human-robot interaction (pHRI) activities [56-58]. In [56], 

pHRI between several participants and a fixed linear robot was investigated using intra-

session data. For each participant, a task-based ML model was trained with instantaneous 

applied force readings in a selected dynamic motion. Such individual-specific, intra-

session biased model predicted interactive forces (94%>R2>82%) well in real-time during 

same session. Interestingly, pHRI with inter-session FMG data via domain adaptation and 

generalization in planar workspace were recently investigated and were found effective 

with improved force estimations [57, 58]. In these 2D-pHRI studies, a generalized model 
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trained with long-term FMG distributions could predict unseen target data in repetitive 

usage or during interactions with a new participant.  The source and target domains in 

these studies had same interactive 2D-pHRI environment and system setup with 32 FMG 

channels on forearm and upper arm positions.  

In this study, FMG-based pHRI with a 7-DoF Kuka robot was investigated by 

estimating grasping forces in dynamic motion for the first time. Initially, a cylindrical gripper 

attached as the end-effector (EEF) was used for hand grasps to interact in certain 

directions of 1D, 2D and 3D workspace. In each case, an intra-session convolutional 

neural network (CNN) model could estimate grasping forces in dynamic interactions. 

There are hardly any studies in literature conducting human robot collaborative task in 3D 

via FMG-based force estimations. Due to the dynamic nature of the task, tools involved 

and redundant resolution of human arm in 3D, force estimation via this transient biosignal 

is challenging. Hence, in this study, we mainly focused on investigating an HRC task of 

moving a wooden rod in collaboration with the Kuka robot. A 16-channel FMG band was 

used to capture the muscle readings during the task. Intra-session trained model in this 

3D-HRC task moderately estimated forces during evaluation; and hence required further 

improvements.  

In practice, a generalized trained model with reduced dependencies on intra-

session data is more desirable. Having more participations or collecting more inter-session 

data during the HRC task with the Kuka robot was not possible or practical due to time 

constraints. On the other hand, a large volume of long-term data from the other pHRI 

platform, i.e., the biaxial stage, could be useful to reduce dependencies on intra-session 

data. Interestingly, cross-domain generalization (CDG) can be promising for unrelated 

source and target data that allows a pretrained model to transfer knowledge between 

different platforms/systems. Furthermore, it generalizes beyond the source distributions 

[79-80]. Cross-domain generalization is studied in image classifications, vision system, 

natural language processing, medical diagnosis, machine fault detects, etc. and is found 

effective [81-85]. The CDG technique has been investigated in few studies conducted on 

human machine interfaces (HCI) and rehabilitations with surface electromyography 

(sEMG) or electro encephalography (EEG) biosignals [86-89]. However, it is not studied 

in biosignals based on HRI tasks. Previously, FMG-based domain adaptation was 

examined with the same source and target platforms [58]. However, the platform-
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independent FMG-based HRI via cross-domain generalization required further 

investigation [58].  

Therefore, in this study, we conducted FMG-based HRC task of moving the 

wooden rod using the supervised CDG technique. Multiple long-term source data from a 

2D-pHRI platform was used in pretraining a transfer learner with CDG (TL-CDG) and was 

evaluated on a target 3D-HRC task for the first time. In an initial ‘training phase’, the long-

term source domains (Dsi) were collected when interactions occurred between several 

participants and a fixed linear robot via 32-channel FMG bands. In this 2D-pHRI platform 

(pHRIsi), participant interacted by grasping a knob-like gripper/end-effector in the planar 

surface. In addition, a secondary pool of multiple source domains (Dsj) via 16-channel 

FMG-based 3D-pHRI platform (pHRIsj) were also collected. In this 3D-pHRI, interactions 

occurred between a participant and a Kuka robot applying forces in 1D, 2D and 3D 

workspace while grasping a cylindrical gripper/end-effector. The secondary source data 

was used for comparative purposes only. Three separate TL-CDG models were pretrained 

with Dsi data (TL-CDG-1), Dsj data (TL-CDG-2), and aggregated Dsj data (TL-CDG-3). 

These models were evaluated on two separate cross-platform (pHRIt) target domains 

where a participant interacted with the Kuka robot such that: case i) HRC task of moving 

a wooden rod in 3D environment (target domain Dt3D), as shown in Table 5-I, and case ii) 

 

 
Figure 5.1. Cross-domain generalization via FMg-based TL-CDG-1 transfer learner in evaluating target 
HRC domain, Dt3D (moving a wooden rod with Kuka robot in 3D). Reproduced from [59] © [2022] IEEE 

with permission.  
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HRI in 1D motions by grasping a cylindrical end-effector (target domain Dt1D-X, Y), as shown 

in Table 5-I.   

The primary goal was to investigate the 2D-based TL-CDG-1 transfer learner’s 

ability to predict out-of-domain HRC target data from unseen 3D pHRI platform, as shown 

in Figure 5.1. Hence, all pretrained TL-CDG models were evaluated in case i while the TL-

CDG-1 model was evaluated in case ii only. Therefore, the main focuses of this study 

were: 

1. investigating FMG-based HRC with a Kuka robot in 3D, 

2. investigating HRC activities using reduced FMG channels and reduced intra- 

         session training data dependency, and 

3. investigating FMG-based deep transfer learning with cross domain generalization  

         in HRC for the first time where Ds ≠ Dt, Ts ≠ Tt, and pHRIs ≠ pHRIt. 

Table 5-I. HRI/HRC Experimental Setup Reproduced from [59] © [2022] IEEE with permission.  
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5.3. Problem Statement 

5.3.1. Transfer learning for Unseen Target Domain 

In this study, transfer learning was investigated pretraining a cross-domain transfer 

learner using a primary set of five (i=1,…,5) different long-term source domains such that 

Dsi∈{Χsi, Ysi-X,Y,Z } (Χsi, Ysi-X,Y,Z were 32 feature spaces, and true force labels in 3D, 

respectively) collected from a 2D-pHRI (pHRIsi) platform. A secondary set of seven 

(j=6,…,12) source domains Dsj∈{Χsj, Ysj-X,Y,Z} were also collected (Χsj,  Ysj-X,Y,Z: 16 feature 

spaces, and applied force labels, respectively) during interactions in a 3D-pHRI (pHRIsj) 

platform.   Each source domain Ds had a feature space of Χs ∈ RNs×FMG
C where Ns = no. of 

samples, FMGC = {1, 2, ..., C} (C = 32, 16 for Dsi and Dsj) and true force labels of FXs, FYs, 

FZs in X, Y, Z directions, respectively.  Applying feature engineering, a new input feature 

space Xs* was constructed such that: 

𝑋𝑆
∗ = [𝑋𝑆, 𝑋𝑆

̅̅ ̅, 𝜎(𝑋𝑆)] , for Dsi, and  

𝑋𝑆
∗ = [𝑋𝑆, 𝛾(𝑋𝑆), 𝑋𝑆

̅̅ ̅, 𝜎(𝑋𝑆)] , for Dsj                            (5.1) 

 

where X𝑆
̅̅ ̅, 𝛾(XS) and σ(XS) were the average, up sampled matrix, and variance of Xs, 

respectively. Therefore, all source domains became homogenous and balanced vectors 

(34×Ns for each domain) suitable for deep CNN architecture. Target domain Dt∈{Χt, Yt-

X,Y,Z} had feature space of Χt ∈RN
t
×FMG

C where Nt = no. of samples, FMGC = {1, 2, ..., C}(C 

= 16 FMG channels) and Yt-X,Y,Z: true labels of applied forces in X, Y, Z directions (FXt, FYt, 

FZt). For evaluation, a new feature space was reconstructed as:  

  𝑋𝑡
∗ = [𝑋𝑡 , 𝑋𝑡

̅̅ ̅, 𝛾(𝑋𝑡), 𝜎(𝑋𝑡)]                                      (5.2)                                               

where 𝑋𝑡
̅̅ ̅, 𝛾(Xt) and σ(Xt) were the average, up sampled matrix (up sampled to 32 

channels) and variance of Xt, respectively. Hence, the target distributions had total feature 

spaces of (34×Nt) like the source domains for force mapping during evaluation. Adding 

few more features increased data variabilities in the feature spaces for a deep learning 

model to learn discriminative features better. 

For the source task Ts, true labels of applied interaction forces (Ys: FX, FY, FZ) were 

standardized according to:  
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𝑌𝑠
∗ = (𝑌𝑠 − 𝑌𝑠

~) 𝜎(𝑌𝑠)     ⁄                                      (5.3) 

where Ys
~ and σ(Ys) were the average and variance of Ys, respectively. Due to the planar 

workspace of Dsi domains, FZ was at minimal values (0.1N) as the force interactions were 

one-directional (1D) and two-directional (2D) only. A proposed deep transfer learning ‘TL-

CDG’ model with a ф of Ω parameter based on a unique CNN architecture (Section 2.6.1) 

was used as feature extractor on {𝑋𝑆
∗, 𝑌𝑠

∗} and the trained model with learnt weights were 

saved to evaluate target domain Dt.  

At an instant time, t, the pretrained TL-CDG model was used to evaluate target input 

FMGC signals {𝑋𝑡
∗} which was split into calibration data {𝑋𝐶

∗⸦𝑋𝑡
∗} and validation data 

{𝑋𝐷
∗⸦𝑋𝑡

∗}. The calibration data (target training data) {𝑋𝐶
∗, YC-X,Y,Z} was used to retrain the 

model for target adaptation. Afterwards, for target task Tt {𝑌𝐷−𝑋,𝑌,𝑍
′ , ꭍ (·)}, a predictive 

function, ꭍ(·) estimated interaction forces in the X, Y and Z directions on validation set 

(target test data) {𝑋𝐷
∗ } at a time t such that:  

𝑓𝑥(⋅) = 𝐹𝑋𝐷
′ = ф, (𝑋𝐷

∗  , Ω1)                                                    (5.4) 

𝑓𝑦(⋅) = 𝐹𝑌𝐷
′ = ф, (𝑋𝐷

∗  , Ω2)                             (5.5) 

𝑓𝑧(⋅) = 𝐹𝑍𝐷
′ = ф, (𝑋𝐷

∗  , Ω3)                                                   (5.6) 

The model attempted to find the best parameter space Ω, which was determined by 

computing the loss function using force label space YD-X,Y,Z(𝐹𝑋𝐷 , 𝐹𝑌𝐷 , 𝐹𝑍𝐷) of target test 

data: 

Ω1 = L(𝐹𝑋𝐷
′ − 𝐹𝑋𝐷)  = arg min

Ω1
∑ (𝐹𝑋𝐷

′ − 𝐹𝑋𝐷)2𝑡

𝑞=1
                            (5.7)      

Ω2 = L(𝐹𝑌𝐷
′ − 𝐹𝑌𝐷) = arg min 

Ω2
∑ ( 𝐹𝑌𝐷

′ − 𝐹𝑌𝐷 )2   
𝑡

𝑞=1
                                                     (5.8) 

Ω3 = L(𝐹𝑍𝐷
′ − 𝐹𝑍𝐷) = arg min

Ω3
∑( 𝐹𝑍𝐷

′ − 𝐹𝑍𝐷)2

𝑡

𝑞=1

                                                              (5.9) 

Root mean square error (RMSE) determined the average squared difference between 

the estimated and the real value. RMSE for a single observation was: 
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R𝑀𝑆𝐸𝑥 =  ∑
( 𝐹𝑋𝐷

′ −𝐹𝑋𝐷)
2

𝑊

𝑊

𝑞=1

                                                                                             (5.10) 

𝑅𝑀𝑆𝐸𝑦 = ∑
( 𝐹𝑌𝐷

′ −𝐹𝑌𝐷)
2

𝑊

𝑊

𝑞=1

                                                                                              (5.11)  

 

𝑅𝑀𝑆𝐸𝑧 = ∑
( 𝐹𝑍𝐷

′ −𝐹𝑍𝐷)
2

𝑊

𝑊

𝑞=1

                                                                                               (5.12)  

where W was the number of responses, 𝐹𝑋𝐷 , 𝐹𝑌𝐷 , 𝐹𝑍𝐷 were the target force labels, and 𝐹𝑋𝐷
′ , 

𝐹𝑌𝐷
′  , 𝐹𝑍𝐷

′  were the predicted forces for a response q.  

5.3.2. The TL-CDG model 

In this study, an FMG-based deep convolutional neural network (FMG-DCNN) 

architecture was proposed (as described in chapter 2) for pretraining a TL-CDG model. 

For FMG-based HRC in 3D, three separate models (Model X, Y and Z) were pretrained 

for predicting applied force in that direction using appropriate Equations (5.4) -(5.6). For 

pHRI in 1D (either in X, Y or Z direction), only one relevant model was pretrained. A 

homogenous matrix of 34 features was used as input for the model using Equation (5.1), 

as described in Section II.A.1. Input data was normalized (minmax scaling) and passed to 

the input image layer [image size 1×34 with ‘zerocenter’ normalization]. For optimization, 

stochastic gradient descent (SGD) was implemented with a learning rate (LR) of 1E-05 for 

maximum 60 epochs during pretraining.  

For transfer learning, each pretrained model was finetuned by reinitializing a fully 

connected layer before the final regression layer and retrained the model with target 

training data. The retrained model was evaluated on target test data with SGD optimizer, 

an LR of 1E-05 (1E-06 for Model Y) for a maximum of 60 epochs. MSE loss [Equation 

(5.10) -(5.12)] was calculated to evaluate model performance in force estimations. 



94 

5.4. Protocol  

A total of 6 participants volunteered as end-users in this study who had no prior 

knowledge about FMG technique. All participants were healthy, right-handed and their 

average age was 33±8 years. In the supervised cross-domain generalization protocol, 

training phase of long-term FMG data collection was followed by evaluation phase as 

discussed below: 

1. Training Phase 

In this initial phase, multiple source domains were collected over a period of 

several months, and then several TL-CDG models were pretrained. 

A. Long-term Multiple Source Data Collection 

i) Primary Source Domains Dsi {i=1, 2, …,5} 

Five participants (P1, P2, …, P5) wearing two FMG bands on their forearm and 

upper arm on the dominant hand interacted with a fixed linear robot. Participants sat in 

front of the robot on a fixed-positioned chair. Each participant interacted with applied 

forces in five dynamic motions (source tasks, Tsi {i = 1, 2, …, 5}) such as 1D ‘X’(Ds1), ‘Y’ 

(Ds2), while ‘Diagonal’(Ds3), ‘Square’ (Ds4) and ‘Diamond’ (Ds5) in 2D plane in separate 

sessions, as shown in Table 5-I. These interactions included arm flexions, extensions and 

arm abduction, adductions in the planar space. For interactions in the 2D plane 

(‘Diagonal’, ‘Square’ and ‘Diamond’ motions), forces FX and FY acted in X and Y directions 

with FZ being at a constant value in the Z direction. In 1D interactions, only FX or FZ acted 

in ‘X’ or ‘Y’ direction.  A total of 50,000×32 FMG samples data were collected for the five 

source domains (Ds1, Ds2, …, Ds5). Each participant performed 5 ‘repetitions’ (1 repetition: 

continuing interaction via applied force in a certain motion for approximately 1 min.) for 

each interactive task resulting in 2,000×32 samples. More information on the data 

collected in this setup are available in [10]. All distributions and dynamic motions were 

different in these primary sources (Ds1≠Ds2 ≠ Ds3 ≠ Ds4 ≠Ds5, Ts1≠Ts2 ≠ Ts3 ≠ Ts4 ≠Ts5).  

ii) Secondary source domains Dsj {j=6, 7, …,12} 

In these source data collections, participant (P6) wearing a 16 channel FMG band 

on dominant (right) forearm stood steadily in one position in front of the Kuka robot, 

grasped the cylindrical gripper and applied forces in 1D [Ds6 = ‘X’, Ds7 = ‘Y’ and Ds8 = ‘Z’ 
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dimensions], 2D [Ds9 = ‘XY’, Ds10 = ‘YZ’ and Ds11 = ‘XZ’ plane] and 3D plane [Ds12 ‘XYZ’], 

as shown in Table 5-I. For compliant collaboration, trajectories of the Kuka robot were 

bounded by a 6-axis rectangular plane for an individual task [Table 5-I]. For each 

interaction in 1D, 2D, 3D, 5 repetitions of sample data were collected for training and 

evaluation purposes. Approximately, a total of 44,000×16 FMG samples data were 

collected from these source domains where all distributions and tasks were different (Ds6≠ 

Ds7≠ Ds8≠ Ds9≠ Ds10≠ Ds11≠ Ds12, Ts6≠ Ts7≠ Ts8≠ Ts9≠ Ts10≠ Ts11≠ Ts12).  

 

B. Pretraining Deep Learning Models 

For cross domain generalization, three deep learning TL-CDG models were 

pretrained using the FMG-DCNN architecture such that: a) TL-CDG-1: using Dsi domains 

only, b) TL-CDG -2: using Dsj domains only, and c) TL-CDG -3: using Dsi and Dsj domains 

(Dsi U Dsj). All pretrained models had three separate models (Model X, Model Y, Model 

Z) for estimating interactive forces (Fx, Fy and Fz) in 3D motions, while only one model was 

 

Figure 5.2. Transfer learning steps with TL-CDG-1 model for target domain, Dt1D-Y: HRI in 1D-Y 
(traversing arm while grasping cylindrical EEF in right and left directions). Reproduced from [59] © 

[2022] IEEE with permission.  

 

Dsi ( i =1,2,.,5) 
2D-pHRI via 32 FMG channels

Dc {

16-bit Calibration (target training) data

Dt {

16-bit test data

Conv block1 Conv block2

Conv block1 Conv block2

Conv block1 Conv block2 Conv block3

3. Evaluating cross-domain, cross-platform 
target test data 

1. Pretraining FMG-DCNN arch. with long-term 
2D-pHRI data

2. Finetuning with calibration (target 
training) data

34-bit feature space34-bit feature space34-bit feature space

TL-CDG-1 model
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used in 1D (Model X for 1D-X, and Model Y for 1D-Y). These models were saved as .mat 

files for evaluation phase.  

2. Evaluation Phase 

In this final phase, the two target domains: case i) HRC in 3D to move a wooden rod 

from point A to B (Dt3D), and case ii) pHRI in simple motions in 1D (Dt1D=X, Y) with cylindrical 

gripper were evaluated separately. In both cases, collected target data (5 repetitions: 

~6,400×16 FMG data) were divided into target training data (first 4 repetitions) and target 

test data (last repetition).  

A. Case i: Target domain, Dt3D (HRC in 3D) 

In each repetition, participant P6 wearing 16 channels forearm FMG band stood in front 

of the Kuka robot, grasped the free end of the wooden rod and moved it collaboratively 

with the robot from point A to B and from point B to A repeatedly. The movements 

continued for a certain time (~2 min.) for one ‘repetition’ in a half-circular 3D trajectory path 

as the participant applied forces within his comfort zone. This was carried on 5 times 

collecting 5 repetitions of data, as shown in Figure 5.1, and Table 5-I. All three pretrained 

TL-CDG models were finetuned with the target training data. The retrained target learner 

was then evaluated on target test data, thus resembling usual intra-session evaluation.  

B. Case ii: Target domain, Dt1D-X, Y (pHRI in 1D) 

To observe how FMG-based generalization would impact pHRI with simple 

interactions, this special case was investigated with the TL-CDG-1 model only. This 

pretrained model was evaluated during pHRI between participant P6 with Kuka robot in 

1D-X and 1D-Y directions separately. Source domains Ds6 and Ds7 (~6,400×16 samples) 

were treated as Dt1D-X and Dt1D-Y where the first 4 repetitions were used for finetuning the 

TL-CDG-1 model, and the final repetition was used for model evaluation.  

During the primary source distributions, Dsi, the interactive task was done on the 

horizontal plane with the biaxial stage. The tasks in secondary source distributions, Dsj, 

and the target distributions, Dt3D or Dt1D-X, Y were done in the vertical plane during 

interactions with the Kuka robot. This was clearly an example of transferring knowledge 

between two separate HRI platforms. Also, interactions with the Kuka were set within 
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certain boundaries in the 3D space which allowed dynamic or tilted arm movements 

instead of rigid, fixed motions. 

5.5. Results  

Pretraining the TL-CDG models and evaluations on target domain Dt3D (case i: 

HRC in 3D) and Dt1D-X, Y (case ii: pHRI in 1D) were carried out with MATLAB scripts using 

deep learning toolbox, neural network toolbox, statistics and machine learning toolbox, 

signal processing toolbox running on a desktop PC (Intel Core i7 processor and Nvidia 

GTX-1080 GPU). Force estimations in target domains were evaluated using R2 and Coeff 

while error in predictions was measured using RMSE and NRMSE, as reported of one 

minute evaluation for both case i and case ii in Table 5-II. Intra-session evaluation on the 

target domains (trained with 4 repetitions, tested on 5th repetition) were carried out using 

the baseline FMG-DCNN network to compare performances of the transfer learners in 

domain generalizations, as included in Table 5-II. 

Table 5-II. Performances of TL-CDG Models. Reproduced from [59] © [2022] IEEE with permission.  

Target domain Pretrained Model R2 Coeff RMSE NRMSE 

Case i 

Dt3D: HRC with Kuka in 3D  

(moving a wooden rod from 
point A to point B) 

TL-CDG-1  

X: 0.70 

Y: 0.59 

Z: 0.59 

X:0.84 

Y:0.76 

Z:0.77 

X:6.26 

Y:4.50 

Z:3.12 

X:0.12 

Y:0.13 

Z:0.13 

63% 79% 4.6N 0.13 

TL-CDG -2 

X: 0.67 

Y: 0.64 

Z: 0.48 

X:0.82 

Y:0.80 

Z:0.70 

X:6.58 

Y:4.13 

Z:3.54 

X:0.13 

Y:0.12 

Z:0.15 

60% 77% 4.75N 0.13 

TL-CDG-3  

X: 0.68 

Y: 0.55 

Z: 0.61 

X:0.82 

Y:0.74 

Z:0.78 

X:6.41 

Y:4.75 

Z:3.03 

X:0.16 

Y:0.15 

Z:0.14 

61% 78% 4.73N 0.15 

Baseline FMG-DCNN 

X: 0.58 

Y: 0.53 

Z: 0.57 

X:0.76 

Y:0.73 

Z:0.76 

X:7.30 

Y:4.76 

Z:3.28 

X:0.13 

Y:0.14 

Z:0.14 

56% 75% 5.11N 0.14 

Case ii 

Dt1D-X: pHRI with Kuka in 1D-X  

(interacting by grasping the 
cylindrical gripper) 

TL-CDG-1 86% 93% 3.58N 0.14 

Baseline FMG-DCNN 77% 88% 4.72N 0.18 

Dt1D-Y: pHRI with Kuka in 1D-Y 

(interacting by grasping the 
cylindrical gripper) 

TL-CDG-1 79% 89% 5.79N 0.11 

Baseline FMG-DCNN 66% 81% 7.28N 0.14 
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5.5.1. Case i: HRC in 3D (Target domain Dt3D) 

In this case, among the TL-CDG pretrained models, the TL-CDG-1 model was 

moderate in force estimation (R2≈63%, Coeff≈80%, RMSE≈4.6N, NRMSE≈0.128) while 

TL-CDG-2 and TL-CDG-3 models had similar accuracies (SDG-TL-2: R2≈60%, 

Coeff≈77% and TL-CDG-3: R2≈62%, Coeff≈79%) in force estimations and losses (SDG-

TL-2: RMSE≈4.8N, NRMSE≈0.13 and TL-CDG-3: RMSE≈4.7N, NRMSE≈0.13). These 

reported results were obtained by averaging corresponding values of Model X, Y, Z of 

each TL-CDG model. An intra-session baseline FMG-DCNN model with same target 

training and target test data obtained lower performance than the transfer learners 

(R2≈55%, Coeff≈75%, RMSE≈5.2N, NRMSE≈0.14, where avg. values were obtained from 

X, Y, Z models). Hence, TL-CDG models clearly outperformed the baseline model with 

higher estimation accuracies and lower errors.    

5.5.2. Case ii: pHRI in 1D (Target domain Dt1D)  

In this case, TL-CDG-1 model was found effective in force estimations in X and Y 

dimensions once finetuned. Higher accuracies (X: R2≈ 86%, Coeff≈93%, and Y: R2≈ 79%, 

Coeff≈89%) and lower losses (X: RMSE≈ 4.2N, NRMSE≈ 0.165, and Y: RMSE≈6.8N, 

NRMSE≈0.13) were obtained by the TL-CDG-1 model than the intra-session baseline 

FMG-DCNN model (X: R2≈77%, Coeff≈88%, RMSE≈ 3.6N, NRMSE≈ 0.14, and Y: 

R2≈66%, Coeff≈81%, RMSE≈ 5.8N, NRMSE≈ 0.11). Although the baseline model 

estimated forces well, but the TL-CDG-1 model performed surprisingly well by transferring 

knowledge learnt from the 2D-pHRI long-term distributions.  

Observations showed that intra-session baseline FMG-DCNN model with 34 

feature space could obtain R2≈56% in 3D force estimations while the TL-CDG models 

moderately improved accuracies in estimations [R2↑ (2─8) %, Coeff ↑ (2─7) %], with slight 

decrease in error [RMSE ↓≈ (0.2-0.5) N]. Among the pretrained models, the TL-CDG-1 

model performed comparatively better in both simple and complex interactions in 1D and 

3D. Clearly, the TL-CDG-1 model achieved significant improvements in estimation 

accuracies in 1D-HRI [R2 in 1D-X (~10%↑), 1D-Y (~12%↑)], and in complex 3D-HRC [R2 

in 3D-XYZ (~8%↑)]. Figure 5.3 shows target test FMG distributions during 1D and 3D 

interactions and the models’ performances plotted in bar plot and boxplot for ease of 

visualization. Since TL-CDG-2 and TL-CDG-3 models were already pretrained with source  
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             a) Dt1D-X: target distribution in 1D-X                               d) TL-CDG-1: force estimations in 1D-X                                          

      
                      b) Dt1D-Y: target distribution in 1D-Y                                          e) TL-CDG-1: force estimations in 1 

     

                 c) Dt3D-XYZ: target distribution in 3D-XYZ                          f) TL-CDG-1: force estimations in 3D-XYZ                            

                

                      g) TL-CDG-2: force estimations in 3D-XYZ                                    h) TL-CDG-3: force estimations in 3D-XYZ 

Figure 5.3. Few samples of target FMG distributions (a, c, e) and performances of the SDG-TL models 
(b, d: bar plot result for Model X and Y in 1D, and f, g, h: boxplot results for Model X, Y, Z in 3D). 

Reproduced from [59] © [2022] IEEE with permission.  
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distributions of pHRI in 1D-X and 1D-Y, these were not investigated for case ii. HRI with 

Kuka in 1D-Z and 2D (XY, YZ, XZ) were not investigated due to time constraints. 

Furthermore, the constant Z dimension values in Dsi restrained further exploration on this 

matter. 

Source domains Dsi{1,..5} and target domains Dt3D, Dt1D-X,Y were different and the 

target data were totally unseen and out-of-distribution for the TL-CDG-1 model. 

Observations showed that this model could still predict OOD and unseen target data from 

a different HRI environment. Although, without fine-tuning with calibration data, the model 

would fail in estimating 3D-HRC task. Interestingly, the TL-CDG-1 model could predict 

simple 1D interactions fairly well. One reason could be that the source data used in 

pretraining this model had applied forces in arm flexion, extension, and arm abduction, 

adduction on the planar surface. Similar arm postures were also present in 1D-pHRI with 

Kuka robot. This phenomenon might help in the future design of an FMG-based HMI 

control system with safety mechanism. In a safety measures design, the TL-CDG 

pretrained model can be used for finetuning quickly with fewer target data for any 

participant. In a hazardous situation where human safety in pHRI might be breached, this 

can enable the participant to apply force on the robot and push away the robot from her/his 

proximity. Therefore, the proposed system can be implemented in human-robot safe 

collaborations in practical scenarios.     

Initially, pHRI with Kuka robot by grasping the cylindrical gripper was investigated 

in this study using baseline FMGCNN architecture described in Section 2.4.3 and 2.6.1. 

Separate intra-session model was trained with first 4 repetitions and evaluated on last 5th 

repetition for 1D (X, Y, Z directions), 2D (XY plane, YZ plane, XZ plane) and 3D (XYZ 

plane). The intra-session models were examined training with source distributions of 34 

channel extended feature space based on Section 5.3.1 and with raw 16 channel feature 

space to explore the effect of feature engineering. These results are summarized in Table 

5-III. Although the baseline FMG-DCNN model could estimate similar with 16 or 34 feature 

space distributions, it was interesting to observe that the cross-domain TL-CDG-1 model 

with 34 feature space improved collaborative task performance of moving the wooden rod 

3D, as well as improved grasping interactions in simple 1D-pHRI. Apparently, this TL-

CDG-1 model could moderately improve grasping force estimation accuracies with lower 

errors during pHRI in 3D where cylindrical gripper was the end-effector (avg: R2≤57%, 

Coeff≤76%, NRMSE≤0.153, RMSE≤8.1N) with improvements. Including more features 
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improved model performance during the collaborative target task of moving the wooden 

rod in 3D with the additional features, as described in Section 5.3.1. Also, having more 

features did not necessarily mean having unique features to improve the model learning 

process. This was observed in grasping interactions using a cylindrical gripper with 

comparative results using either 16 or 34 features. Collecting more inter-session training 

data from secondary sources could improve 3D-pHRI or 3D-HRC experiences for a shared 

task but requires more investigations in future.  

Table 5-III. pHRI with Kuka: Intra-Session Evaluation with Baseline FMG-DCNN! model. Reproduced 
from [59] © [2022] IEEE with permission.  

pHRI with Kuka 
(Grasping a 
cylindrical gripper) 

Feature 
engineering 

Intra-session 
models 

R2 Coeff RMSE NRMSE 

 

 

pHRI in 1D 

(X, Y, Z) 

34 feature 
space 

 X:      Model X 

 Y:      Model Y 

 Z:      Model Z 

 

≥66%, 
≤79% 

 

≥81%, 
≤89% 

 

≥4.7N, 
≤8.9N 

 

≥0.14, 
≤0.18 

16 feature 
space 

 X:      Model X 

 Y:      Model Y 

 Z:      Model Z 

 

≥78%, 
≤81% 

 

≥88%, 
≤90% 

 

 

≥4.0N, 
≤8.0N 

 

≥0.11, 
≤0.16 

 

 

 

pHRI in 2D  

(XY, YZ, XZ) 

34 feature 
space 

XY:    Model X 

           Model Y 

YZ:    Model Y 

           Model Z 

XZ:    Model X 

           Model Z 

 

 

≥64%, 
≤87% 

 

 

≥80%, ≤ 
93% 

 

 

≥5.2N, 
≤12.4N 

 

 

≥0.12, 
≤0.40 

 

 

16 feature 
space 

XY:    Model X 

           Model Y 

YZ:    Model Y 

           Model Z 

XZ:    Model X 

           Model Z 

≥64%, 
≤87% 

 

≥80%, 
≤93% 

 

 

≥5.6N, 
≤12.2N 

≥0.09, 
≤0.16 

pHRI with Kuka in 
3D (XYZ) 

34 feature 
space 

XYZ:  Model X 

           Model Y    

           Model Z 

 

≥43%, 
≤64% 

 

≥65%, 
≤80% 

 

≥4.8N, 
≤15N 

 

≥0.13, 
≤0.19 

16 feature 
space 

XYZ:  Model X 

           Model Y    

           Model Z 

≥46%, 
≤63% 

 

≥68%, 
≤80% 

 

 

≥4.4N, 
≤15.9N 

≥0.12, 
≤0.20 

 

HRC with Kuka in 3D 
(XYZ) 

(Moving a wooden 
rod in collaboration) 

 

34 feature 
space 

XYZ:  Model X 

           Model Y    

           Model Z 

≥53%, 
≤59% 

≥73%, 
≤77% 

 

≥3.28N, 
≤7.30N 

≥0.13, 
≤0.14 

 

16 feature 
space 

XYZ:  Model X 

           Model Y    

           Model Z 
≥51%, 
≤63% 

≥85%, 
≤90% 

 

≥3.08N, 
≤6.06N 

≥0.12, 
≤0.17 

! Baseline FMG-DCNN model trained with 4 repetitions of target training data and evaluated on 5th repetition of target test data. 
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In this study, cross-domain generalization was observed during human robot 

interactions via the force myography technique. Transfer learning allowed the FMG-based 

TL-CDG model to predict unseen, unrelated and out-of-domain target data (Ds ≠ Dt, Ts ≠ 

Tt) on a different workspace (pHRIs ≠ pHRIt). The source and target domains were 

distinctly dissimilar because of muscle readings captured by either 32 or 16 FMG channels 

positioned in different arm locations and separate HRI environments (different 1D/2D/3D 

workspaces, participant’s body posture during interactions, knob/cylinder/wooden rod as 

end-effectors). Since the gripper orientation and shapes were different, grasping forces 

and arm postures became distinctive. Also, participants applied interactive forces within 

their comfortable ranges (usually within 15N-40N) which was not constant. During the 

sessions, FMG bands were put on approximately same positions but were not exact; 

hence, sensors position shifts were possible in different sessions. Also, winding forces to 

wrap the band around the limb was kept at the user’s comfort. Furthermore, collecting 5 

repetitions of intra-session data were proven sufficient in capturing enough variabilities 

present during the interactions. Also, time required for one session was approximately 12-

20 minutes and one repetition of interactions was less than 2min; these reduced muscle 

fatigue and ensured participant’s comfort. In addition to the discussions and observations 

made in this chapter, chapter 7 discusses the overall observations that helped in 

developing effective knowledge transfer during physical interactions with a robot. 
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Chapter 6.  
 
Unsupervised, Semi-supervised Interactive Force 
Estimations via Generated Synthetic FMG Signals 

The material presented in this chapter is reproduced, excerpted, and modified with 

permission from the following paper: 

[60] © [2022] IEEE with permission. U. Zakia, A. Barua, X. Jiang, and C. Menon, 

“Unsupervised, Semi-Supervised Interactive Force Estimations During pHRI via 

Generated Synthetic Force Myography Signals,” IEEE Access, June 2022, doi: 

10.1109/ACCESS.2022.3187115. 

Sections of this chapter are reprinted or adapted from the above article to fit the formatting 

and scope of this chapter. 

6.1. Chapter Overview 

In this chapter, the investigation carried for objective 4 is discussed. In industrial 

physical human robot interaction (pHRI) applications, data is scarce, labels are usually 

unavailable or time consuming to generate. Semi-supervised learning can be useful 

because unlike the supervised learning which needs labeled data, it can work with a few 

labeled and mostly unlabeled data. Hence, in this study, we proposed a dual-phased 

algorithm based on semi-supervised adversarial learning where few training data were 

labeled. Then, this algorithm was used to estimate human applied forces during 

interactions with a Kuka robot in 1D-X, Y, Z directions via force myography, respectively. 

6.2. Introduction 

in real-world pHRI applications, obtaining enough training data, having more 

participants, or labelling all data are not always possible. In the case of unlabeled data, 

unsupervised learning can be an option which does not need labeled data. It learns latent 

feature distributions and may generate labels based on the learning process. Also, semi-

supervised or weakly supervised learning can reduce the dependencies on labeled 

training data where only a few labeled training datasets are available. In recent pHRI 



104 

studies, there is a growing interest to use limited amounts of labeled data with large 

quantities of unlabeled data for realistic predictions [94-96]. Semi-supervised learning can 

be useful in such cases that utilizes few labeled training datasets to achieve similar 

performance like supervised learning with fully labeled data set. For scenarios where 

training data hard to collect or there is no previous data from other related sources are 

available, synthetic data could be a favorable alternative. The generative adversarial 

network (GAN), originally proposed by Ian Goodfellow [70] has been a proven technique 

in synthetic image generation, but not many biosignals are synthesized using this 

architecture. As a bio-signal, an FMG signal is transient, individual-specific, and each 

session’s data are affected by control factors such as sensor position shifts, limb motions, 

and postures during activities. There are serious concerns if a reality gap occurs when the 

generated synthetic data do not follow the real domain di is more challenging to generate 

synthetic FMG biosignals to control HRI because of higher risks associated with wrong 

predictions and hence, needs to be investigated. A domain randomization approach can 

be adapted to mitigate the reality gap [98-99]. This approach can make the simulated data 

as diverse as possible so that the real data would appear as another variation to the model 

[99, 100]. Data augmentation is a form of domain randomization that is applied on the 

collected data and performs certain refinements or transformations to render real-like 

environmental changes. Adapting carefully selected transformations that represent certain 

control factors affecting FMG signals can introduce wide variations in data and refine the 

synthetic data generation through the GAN making them more realistic [100].  

In this study, we propose a two-phased ‘unsupervised, self-trained FMG-based 

deep convolutional GAN (unsupervised, self-trained FMG-DCGAN)’ algorithm where 

unsupervised adversarial learning was used for understanding the latent feature 

distributions followed by semi-supervised learning to evaluate intra-session test data. For 

the investigation, pHRI application between one participant and a Kuka LBR IIWA 14 robot 

in 1D (X, Y and Z dimensions) was considered. In its initial phase, an unsupervised FMG-

based deep convolutional generative adversarial network (unsupervised FMG-DCGAN) 

model was implemented where both the generator and the discriminator were 

convolutional neural networks (CNNs). A set of transformation functions for data 

augmentation was used to implement domain randomization adding variabilities in the 

synthetic data. Employing cosine similarity as a benchmark score, each transformation 

function was investigated in generating real-like synthetic data and a GAN model was 
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saved for the next phase. In the final phase, each GAN model generated with different 

transformation functions was evaluated. The discriminator of each GAN with weights from 

initial phase was pretrained with a few real labeled training data and later was used to 

generate pseudo-labels for both unlabeled real training data and unlabeled synthetic data. 

The model was further trained with all real training (labeled and pseudo-labeled) and 

generated synthetic data (pseudo-labeled) and was called the self-trained FMG-DCGAN 

model. Finally, this model was evaluated on test data in estimating applied instantaneous 

forces during interactions.  Using the cosine similarity score and generated synthetic data 

volume as decision criteria, the best model with the optimal transformation function was 

identified.  

Major contributions in this study were: 

1. investigating real-like synthetic FMG data generation using domain 

randomization via data augmentation, and obtaining the appropriate 

technique in this case,   

2. investigating unsupervised and semi-supervised learning techniques 

where training data were scarce or large volumes of data were not 

available, and 

3. implementing these techniques in challenging FMG-based pHRI using one 

FMG forearm band for user comfort and to reduce complexities of 

processing the data. 

6.3. Protocol  

One healthy adult (P1) participated in this study with his written consent as 

approved by the Office of Research Ethics, Simon Fraser University, British Columbia, 

Canada. A 16 channel FMG band was donned on the participant’s dominant forearm and 

was not removed during a session. For pHRI with the Kuka robot, P1 stood steadily in 

position in front of the robot, grasped the cylindrical gripper and applied interactive forces 

in simple dynamic 1D motions, as shown in Figure 6.1a. Separate sessions were 

conducted to interact in 1D ‘X’, ‘Y’ and ‘Z’ dimensions (Figure 6.1.b-d). In 1D-X, dynamic 

motion during applied force was front and back and vice versa (displacement in X: 0.4m); 

in 1D-Y, motion was from right to left and vice versa (displacement in Y: 0.55m); while in 
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1D-Z, motion was moving the gripper up and down and vice versa (displacement in Z: 

0.45m). These motions required arm flexion, extension, abduction, and adduction, were 

continued for a certain time (approximately 90s of interactions without fatigue) while 

termed hereinafter as a ‘repetition’. Dynamic motions during the interactions were confined 

in a 6-axis rectangular plane set through MATLAB script.  

For each interaction session in 1D, 2 repetitions of sample data (DC ∈ {ΧC1, ΧC2}) 

were collected for training (source distribution DC) and 1 repetition (DT ∈ {XT, YTt}) for 

evaluation purpose (target distribution DT). All distributions of DC and DT had feature 

spaces of Χ ∈ RN×M where N = number of samples and M = 16 FMG channels. 

Approximately, a total of 4,000×16 FMG samples were collected for training and testing. 

 

Figure 6.1.  Experimental setup of the study. Reproduced from [60] @ [2022] IEEE with permission.  

a) pHRI between a participant and Kuka robot in 1D , b) dynamic interactions in 1D-X bounded by ranges 
of motions within a 6-axis rectangular area, c) dynamic interactions in 1D-Y bounded by ranges of 

motions within a 6-axis rectangular area, d) dynamic interactions in 1D-Z bounded by ranges of motions 
within a 6-axis rectangular area, e) directions of interactions in 3D, f) Cylindrical gripper and a 6-axis 

force/torque sensor attached to robot’s flange via an adapter, g) custom-made 16-channel FMG band 
used on forearm during interactions. Reproduced from [60] © [2022] IEEE with permission. 
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The source data were used for training the GAN and to calibrate the FMG signals for both 

generating the synthetic data and training the proposed model.  

6.4. Unsupervised, Semi- supervised Self-trained FMG-
DCGAN Algorithm 

The proposed algorithm was developed in two consecutive phases where the final 

phase was dependent on the outcome of its initial phase, as shown in Figure 6.2. An 

unsupervised FMG-DCGAN architecture was introduced in phase I for real-like synthetic 

data generation. In phase II, a self-trained FMG-DCGAN model was investigated for 

estimating instantaneous applied forces.  

 

Figure 6.2. The proposed dual-phased unsupervised, self-trained FMG-DCGAN algorithm. Reproduced 
from [60] © [2022] IEEE with permission. 
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6.4.1. Phase I: Generating synthetic FMG data 

The unsupervised FMG-DCGAN architecture had a generator (model G) and a 

discriminator (model D) where convolutional and convolutional-transpose layers were 

implemented respectively, similar to the original DCGAN architecture [101]. The FMG-

DCGAN model was proposed for synthetic data (DSJ ∈{SD}) generation from unlabeled real 

FMG data (DC ∈ {ΧC1, ΧC2}) of 3200×16 samples.  A few techniques were adapted in this 

initial phase to reduce the reality-gap between the real and the synthetic data as much as 

possible and is discussed below.    

• Domain Randomization via data augmentation 

A variety of transformation functions t(x)s were generated that could potentially 

mimic situations where sensor position shifts, unused sensors or sensors that capture low 

signals could occur during the data collection process when an FMG band was donned 

on upper extremities. These are shown in Figure 6.3 and discussed below. 

• Temporal cutout, t(xtc): a random contiguous section (consecutive any 3 channels) of 

the time-series signal (every 50ms of cutout window) was replaced with zeros. 

 

 

Figure 6.3.  Domain randomization: a variety of transformation functions investigated. Reproduced 
from [60] © [2022] IEEE with permission.  
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• Sensor dropout, t(xsd): any random three FMG channels were set to zeros in every 

10ms input of the time-series signal. 

• Spatial shift, t(xss): 16 FMG channels data were right-shifted by 1 for every 10ms input 

of the time-series signal. 

• Noise, t(xn): random zero-mean gaussian noise (3200, 100) was generated and used 

as input.  

• Signal mixing, t(xsm): random noise t(xn) was used in conjunction with t(xtc), t(xsd), and 

t(xss) to produce mixed signals t(xsm-ntc), t(xsm-nsd), t(xsm-nss), respectively. 

The transformation functions took real data of image shape of (1,16,1) as input, 

transformed the signal, and finally reshaped the transformed data as TS (1,100,1) for input 

to model G.  Padding with mean values of the corresponding 16 features was used for 

reshaping the transformed data. The other input was the noise signal (3200, 100), which 

was also reshaped as NS (1,100,1) before feeding into model G.   

• Cosine similarity score 𝝈(𝒔) 

Cosine similarity score measures the cosine of the angle between two n-

dimensional vectors (DC and SD) projected in a multi-dimensional space. Its range is 

between 0 to 1. It is defined as: 

       𝜎(𝑠) = cos(𝐷𝐶 , 𝑆𝐷) = (𝐷𝐶 ⋅ 𝑆𝐷) ∕ (‖𝐷𝐶‖ ∗ ‖𝑆𝐷‖)                 (6.1) 

where DC.SD is the dot product and || DC ||*|| SD || is the cross product of the lengths 

of the two vectors DC and SD. Higher values indicates more similarities between the 

vectors. 

i. The proposed FMG-DCGAN architecture  

In this architecture, model G was engaged in generating fake FMG signals while 

model D was employed to learn the discriminative feature distributions of both real and 

fake signals and classify them accordingly. For model G, inputs were either noise signals 

(NS ∈ {XN}) or transformed FMG signals (TS ∈ {ΧTs}) with shapes of (1, 100, 1), or 

aggregated noise and transformed signals, as discussed in Section II.C.1. Model D 

received real FMG signals (DC ∈ {ΧC1, ΧC2}) and fake FMG signals/synthetic data (DSJ 
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∈{SD}) generated by model G, where both inputs to model D were shapes of (1,16,1). Only 

those generated fake signals were considered as synthetic data for the next phase that 

obtained higher cosine similarity scores σ(s) along with greater generated-to-input-data 

ratio (δ). 

Model G architecture 

Three successive convolutional 2D transposed (conv2DTranspose) layers [no. of 

filters: 128, 64, 1 and filter size: (1, 5), (1, 10), and (1, 5)] were implemented with strides 

of (1, 1), (1, 4), and (1, 2) and the ‘same’ padding. Each conv2DTranspose layer was 

followed by a batch normalization layer and a leaky relu layer. For the final output of fake 

generated signal (SD) of a shape of (1,16, 1), the tanh activation function was used. This 

architecture was used in 1D-X, Y and Z dimensions. 

Model D architecture 

Two convolutional (conv) blocks were implemented sequentially where each block 

had a conv2D layer followed by a leaky relu and a dropout layer with a rate of 0.3 to reduce 

overfitting. Convolutional 2D (conv2D) layers were implemented with strides of (1, 2) and 

the ‘same’ padding. The number of filters used in the conv blocks for 1D-X dimension was 

32, 16, 1, while it was 128, 64, 1 in 1D-Y and Z dimensions with the same filter sizes of 

(1, 5), (1, 10), and (1, 5) in each dimension. The convolutional blocks were followed by 

three dense layers of 20, 10 and 1 neurons for 1D-X while only one dense layer of 1 

neuron was used for 1D-Y, and Z. Appropriate number of dense layers were obtained by 

trial and error due to the separate architectures of 1D-X, Y and Z models. A sigmoid 

function was used to classify the real input and the generated signals.  

GAN Loss & Optimization 

Real data and fake data were labeled as 0 and 1 respectively to calculate losses 

of model D and model G using binary cross entropy (BCE) loss. The Adam optimizer with 

a learning rate (LR) of 1E-04 and Beta1, Beta2 = 0.9, 0.999 was used for both G and D 

models during training. An initial training was performed with model D. For training the 

FMG-DCGAN in generating real-like synthetic data, output from model D was expected to   

be 1 for real data and 0 for fake data. Therefore, the total loss for model D was calculated 

as the sum of the loss from the real data used in training model D and the loss from the 

synthetic data generated by model G. On the contrary, to maximize model G’s 
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performance in convincing model D that the generated data were real, GLoss was 

calculated and back propagated to improve G. Therefore, GLoss had similar values with 

flipped labels. DLoss and GLoss were set up such that: 

𝐷𝐿𝑜𝑠𝑠
= 𝑙𝑜𝑔(𝐷(𝑥)) + 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑡(𝑥))))                             (6.2) 

    𝐺𝐿𝑜𝑠𝑠
= 𝑙𝑜𝑔 (𝐷 (𝐺(𝑡(𝑥))))                                                      (6.3) 

where, D(x) was the output from model D on an instance of training dataset x at time i, 

G(t(x)) was the generated data, D(G(t(x))) was the model D’s output on the generated data 

at instant i, and t(x) was the transformed signal used as input to the Model G. The DLoss 

and the GLoss were back propagated to improve model D in discriminating better between 

real and fake signals and to improve model G in generating better quality signal that could 

fool model D, respectively. Both models were trained until they reached convergence 

when model D no longer could distinguish between the real and the fake data, and 

diversified data were generated where fake data were as good as real data by preventing 

mode collapse (1.5>GLoss>0.8 and 0.7>DLoss>0.5). 

ii. Selecting optimal t(x) via 𝝈(𝒔) and δ 

Cosine similarity score was implemented to compare the real data with the 

generated fake data from model G. Each fake data was compared with all real data, σ(s) 

was calculated, and the mean value of these scores was generated. Only those synthetic 

data were saved as future training data that obtained a score of σ(s)>0.8, i.e., similarity 

between fake data and real data would be at least 80%. Data was normalized for score 

comparison between the real data and the synthetic data, where each synthetic data was 

compared with all 3200×16 real samples, DC. Transformation function that could generate 

more real-like synthetic data (σ(s)>0.8 with maximum δ) was used to optimize the model 

performance. Each transformation function was implemented separately, synthetic data 

was generated, performance was evaluated, and a model was saved with its weights for 

the next phase.  

6.4.2. Phase II: Self-trained FMG-DCGAN model  

In this phase, calibration/target training data (few labeled real data, and a few 

unlabeled real data) and a large amount of generated real-like synthetic data (unlabeled) 

were used. This phase began by pretraining model D from phase I. A small amount of 
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labeled source data (DC1 ⊂ DC) and a large volume of unlabeled data (mainly synthetic 

data (DSJ) and few real data (DSI ⊂ DC)) were used in self-training.  Finally, the model was 

evaluated on target test data, DT.  For finetuning, a fully connected layer was used to 

replace the last layer of model D for regressing force estimations. Several steps were 

followed in generating a self-trained FMG-DCGAN model using an Adam optimizer with 

learning rate, LR =1E-04 and epoch, E = 500 to calculate mean squared error (MSE) 

losses, as discussed below.  

i. Pretraining Model D via Transfer Learning  

In step 1, the saved model D from phase I was finetuned with a few labeled ‘target 

training data’ or ‘calibration data’ (DC1∈ {ΧC1, YTC1}). This helped the model to adapt 

learning real target distributions and converge quickly and was termed hereafter as the 

‘pretrained FMG-DCGAN’ model. 

The pretrained FMG-DCGAN model was used in step 2 to generate pseudo labels 

YPC for the unlabeled real data, DSI ∈ {ΧC2} and pseudo labels YPS for unlabeled synthetic 

data, DSJ ∈ {SD}.  

In step 3, the pretrained model was further trained with all true labeled and pseudo 

labeled real and synthetic data (DC1∈ {ΧC1, YTC1} Ս DSI∈ {ΧC2, YPC} Ս DSJ∈ {SD, YPS}) and was 

termed as the self-trained FMG-DCGAN model.  

ii. Estimating Interactive Force with Self-Trained FMG-DCGAN model 

The self-trained FMG-DCGAN model was used to predict interactive force on 

target test data (DT∈ {XT, YTt}) of instantaneous FMG signals in every 10ms window size.  

At an instant time, t, target test input FMG signals {XT} were used for validation purpose. 

Hence, for target task Tt {YTt, ꭍ(·)}, a predictive function ꭍ(·) was used to estimate interaction 

forces in 1D such that,ꭍ: XT → 𝐹𝑡
′.  

   𝑓𝑥(⋅) = 𝐹𝑡
′ = γ, (𝑋𝑇  , φ)                                                       (6.4) 

The model attempted to find the best parameter space φ from the proposed parameter 

set γ which was determined by computing the loss function using the true force label 

space YTt: 

   φ = L(𝐹𝑥𝑡
′ − 𝐹𝑥𝑡)  = arg min

φ
∑ (𝐹𝑡

′ −  Y𝑇𝑡)2𝑡

𝑞=1
                   (6.5) 
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6.5. Results 

The performance of the proposed algorithm was evaluated using the mean cosine 

similarity score (𝜎̅(𝑠)) and the generated-to-input-data ratio (δ) in phase I, while R2, RMSE 

and NRMSE were used in phase II (using Python 3.7 and Tensorflow with GTX1060).    

For pHRI in 1D motions in X, Y and Z dimension, separate FMG-DCGAN model was 

implemented to generate synthetic data and evaluated on corresponding target 

distributions. Each FGM-DCGAN model (both Model D and G) with unique t(x) were saved 

as h5 files with their weights for future use in phase II. To compare the proposed model 

performance, a baseline CNN model using model D architecture employing supervised 

learning was generated using the same calibration/target training data, DC ({ΧC1, YTC1} Ս 

{ΧC2, YTC2}) with true labels (3200×17 samples) and was evaluated on same target test 

data, DT (600×17 samples). Performance evaluations of 1D-X, Y and Z are reported in 

Table 6-I, 6-II and 6-III, respectively. Approximately E < 33 epochs with a runtime of t(E) 

< 0.35 seconds were required to generate synthetic data in each dimension.  
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A. pHRI in 1D-X 

In phase I, transformation functions, t(xtc), t(xsd) t(xss), and t(xn) generated unlabeled 

synthetic data SD in the ranges of 2300×16 to 3100×16 samples with 𝜎̅(𝑠) > 88%. In the 

case of signal mixing, t(xsm-ntc), t(xsm-nsd) and t(xsm-nss) generated synthetic data in the range 

of 4600×16 to 6300×16 samples with 𝜎̅(𝑠) > 89%. In phase II, for each transformation 

functions, a separate self-trained FMG-DCGAN model was pretrained and evaluated on 

the unseen target test data in 1D-X (600 × 16 samples).  In all cases, it achieved 

impressive performances in force estimations (R2 > 73%, NRMSE < 0.175 and RMSE < 

3.5N). The baseline model using supervised learning had R2 > 81%, NRMSE < 0.14 and 

RMSE < 3N. These results are reported in Table 6-I.  

Table 6-I. Model Performance in Force Estimations during pHRI in 1D-X. Reproduced from [60] © [2022] 
IEEE with permission. 

   Phase I Phase II 

pHRI                 T(x) Input for 
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Labeled real 
data 
(DC1∈{ΧC1,Y

TC1}) + 
pseudo-
labeled real 
data 
(DSI∈{ΧC2, 
YPC}) + 
pseudo-
synthetic 
data 
(DSJ∈{SD, 
YPS}):  
 
1600×17 + 
1600×17 + 
SD ×17 
samples 

  
 
 
 
 
 
DT: 
600×16 
sample
s 
  
  
  
  
  
  

77.15% 0.15 3.2N 

Sensor 
dropout 

t(xsd) 2915×16 
samples 

0.91 88.13% 75.84% 0.17 3.3N 

Spatial 
shift 

t(xss) 3196×16 
samples 

0.99 90.76%  77.58% 0.16 3.2N 

Noise t(xn)   NS ∈ {XN}: 
3200×16 
samples 
 

3118×16 
samples 

0.97 92.09% 
 

74.54% 0.17 3.4N 

Noise 
with 
temporal 
cut out 

t(xsm-

ntc) 

Unlabeled real  
FMG data  
(DC ∈ {ΧC1, 
ΧC2}) +Noise 
(NS ∈ {XN}): 
6400×16 
samples  

5983×16 
samples 

0.93 90.76%  73.64% 0.17 3.5N 

Noise 
with 
sensor 
drop out 

t(xsm-

nsd) 
4682×16 
samples 

0.73 92.18%  74.42% 0.17 3.4N 

Noise 
with 
spatial 
shift 

t(xsm-

nss) 
6397×16 
samples 

0.99 89.50% 77.32% 0.15 3.2N 

Baseline CNN model (supervised learning with model D arch.) 81.72% 0.14 2.9N 
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B. pHRI in 1D-Y 

In phase I, transformation functions, t(xtc), t(xsd) t(xss), and t(xn) generated unlabeled 

synthetic data SD in the ranges of 2300×16 to 4200×16 samples with a similarity score of 

𝜎̅(𝑠) > 83%. Signal mixing transformation functions, t(xsm-ntc), t(xsm-nsd) and t(xsm-nss) 

generated synthetic data in the range of 5900 × 16 to 6300 × 16 samples with 𝜎̅(𝑠) > 84%. 

In phase II, separate self-trained FMG-DCGAN model was pretrained and evaluated for 

each t(x) on the unseen target test data in 1D-Y (600 × 16 samples). The proposed model 

achieved good performances in force estimations (R2 > 75%, NRMSE < 0.16 and RMSE 

< 6.0N) while the baseline model had R2 > 78%, NRMSE < 0.15 and RMSE < 5.6N, as 

reported in Table 6-II.    

Table 6-II. Model Performance in Force Estimations during pHRI in 1D-Y. Reproduced from [60] © [2022] 
IEEE with permission. 

   Phase I Phase II 

pHRI                 T(x) Input for 
GAN 
Training 
(unlabeled) 

Generate
d 
Syntheti
c FMG 
Data 
{SDx16} 

Generate
d- to-
input-data 
ratio, δ 

Cosine 
Similarit
y score, 
σ ̅(s) 

Calibratio
n/target 
training 
data 

Target 
test 
data 

R2 NRM
SE 

RMSE 

1D-Y 
  
  
  
  
  
  
  

Tempor
al cut 
out 

t(xtc) Unlabeled 
real FMG 
data  
(DC ∈ {ΧC1, 
ΧC2}):    
3200×16 
samples  

3129×16 

samples 

0.98 85.68%    
 
 
Labeled 
real data 
(DC1∈{ΧC1

,YTC1}) + 
pseudo-
labeled 
real data 
(DSI∈{ΧC2, 
YPC}) + 
pseudo-
synthetic 
data 
(DSJ∈{SD, 
YPS}):  
 
1600×17 
+ 
1600×17 
+ 
SD ×17 
samples 

  
 
 
 
 
DT: 
600×16 
sample
s 
  
  
  
  
  
  

75.17% 0.16 5.9N 

Sensor 
dropout 

t(xsd) 2358×16 
samples 

0.74 84.52% 

   

75.42% 0.15 5.8N 

Spatial 
shift 

t(xss) 2388×16 

samples  

0.75 85.63%  75.10% 0.16 5.9N 

Noise t(xn) NS ∈ {XN}: 
3200×16 
samples 

3121×16 
samples 

0.97 83.98% 

 

77.94% 0.14 5.6N 

Noise 
with 
tempora
l cut out 

t(xsm-

ntc) 

Unlabeled 
real  
FMG data  
(DC ∈ {ΧC1, 
ΧC2}) +Noise 
(NS ∈ {XN}): 
6400×16 
samples  

5985×16 

samples 

0.94 84.93% 76.13% 0.15 5.8N 

Noise 
with 
sensor 
drop out 

t(xtc) 4561×16 
samples 

0.71 81.59%  78.49% 0.15 5.5N 

Noise 
with 
spatial 
shift 

t(xsd) 6325×16 
samples 

0.99 84.78%  77.19% 0.15 5.7N 

 Baseline CNN model (supervised learning with 
model D arch.) 

78.15% 0.15 5.6N 
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C. pHRI in 1D-Z 

Transformation functions, t(xtc), t(xsd) t(xss), and t(xn) generated unlabeled synthetic data 

SD in the ranges of 1500×16 to 2600×16 samples with avg 𝜎̅(𝑠) > 81% in phase I. For 

signal mixing, t(xsm-ntc), t(xsm-nsd) and t(xsm-nss) generated synthetic data in the range of 

4800×16 to 6100×16 samples with 𝜎̅(𝑠) > 83%. In phase II, for each transformation 

functions, the self-trained FMG-DCGAN model achieved impressive performances in 

force estimations (R2 > 73%, NRMSE < 0.175 and RMSE < 3.5N) on the unseen target 

test data in 1D-Z (600 × 16 samples). The reported results for the baseline model were R2 

> 88%, NRMSE < 0.11 and RMSE < 5.8N, as shown in Table 6-III.     

Table 6-III. Model Performance in Force Estimations during pHRI in 1D-Z. Reproduced from [60] © [2022] 

IEEE with permission. 

   Phase I Phase II 

pHRI                 T(x) GAN tr. 
FMG 
Data 
(unlabele
d) 

Generated 
Synthetic 
FMG data 
{SDx16} 

Generate
d- to-
input-
data 
ratio, δ 

Cosine 
Similar
ity 
score, 
σ ̅(s) 

Calibration/ 
Target 
Training Data 

Targe
t Test 
Data 

R2 NRM
SE 

RMSE 

1D-Z 
  
  
  
  
  
  
  

Temporal 
cut out 

t(xtc) Unlabeled 
real FMG 
data  
(DC ∈ 
{ΧC1, 
ΧC2}):    
3200×16 
samples 

1541×16 

samples 

0.480 83.42%   
 
 
Labeled real 
data 
(DC1∈{ΧC1,YTC1

}) + pseudo-
labeled real 
data (DSI∈{ΧC2, 
YPC}) + 
pseudo-
synthetic data 
(DSJ∈{SD, 
YPS}):  
 
1600×17 + 
1600×17 + 
SD ×17 
samples   
  
  

  
 
 
 
 
 
 
DT: 
600×1
6 
sampl
es 
  
  
  
  
  
  

85.13% 0.11 6.4N 

Sensor 
dropout 

t(xsd) 1763×16 
samples 

0.550 81.53% 83.35% 0.12 6.8N 

Spatial 
shift 

t(xss) 2704×16 

samples 

0.845 82.46% 84.77% 0.11 6.5N 

Noise t(xn) NS ∈ {XN}: 
3200×16 
samples 
 

1705×16 
samples 

0.532 84.10%  83.19% 0.12 6.8N 

Noise 
with 
temporal 
cut out 

t(xsm-

ntc) 

Unlabeled 
real  
FMG data  
(DC ∈ {ΧC1, 
ΧC2}) +Noise 
(NS ∈ {XN}): 
6400×16 
samples  

5743×16 
samples 

0.897 85.70%  84.12% 0.12 6.6N 

Noise 
with 
sensor 
drop out 

t(xsm-

nsd) 
4861×16 
samples 

0.759 84.76%  84.85% 0.11 6.5N 

Noise 
with 
spatial 
shift 

t(xsm-

nss) 
6134×16 
samples 

0.958 83.95% 84.3% 0.18 6.6N 

 Baseline CNN model (supervised learning with 
model D arch.) 

88.17% 0.11 5.8N 
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6.6. Discussion 

In this study, collecting training data (only a few were labeled) and evaluating test 

data with the proposed algorithm were conducted in the same session to simulate and 

compare to a situation where data collection in various sessions is costly, difficult, or 

impossible. Hence, the training data and test data had similar feature distributions, similar 

tasks, and the same sensor positions on the targeted limb. Therefore, domain 

randomization was implemented so that variations could be introduced such that it might 

become another session dataset for the model. During the adversarial training, real data 

that were transformed for generating synthetic data, were also used in pretraining the 

semi-supervised model. Due to the signal mix in phase I, investigated transformation 

functions modified and randomized the real distribution such that the model could learn 

better the latent features. Only during phase II, was the model introduced to the real 

feature distributions for pretraining. Therefore, implementing these functions helped 

reduce overfitting too.   

Observations showed that the FMG-DCGAN model generated more synthetic data 

when transformation functions t(xsm) based on signal mixing used. Specifically, signal 

mixing of noise with spatial shift (t(xsm-nss)) generated a large volume of synthetic data 

(6400x16>SD>6100x16 samples) in each 1D interactions of X, Y and Z dimensions with 

greater generated-to-input-data ratio (99%>δ>89%) and mean similarity score in the range 

of 90%>𝜎̅(𝑠)>84%. The volume of such synthetic data was almost double the calibration 

data collected during real-time interactions. A transformation function that used noise 

mixing with temporal cut out (t(xsm-ntc)) also obtained impressive results 

(6000x16>SD>5700x16 samples, 94%>δ>89%, and 91%>𝜎̅(𝑠)>84%). Therefore, 

Transformation function t(xsm-nss) ranked highest, while t(xsm-ntc) ranked second in all pHRI 

scenarios. A statistical t-test was conducted to compare samples for the mean generated 

by the two functions t(xsm-nss) and t(xsm-ntc). The selected transformation function t(xsm-nss) 

was found to be statistically significant (-4.75, 0.005) at a 95% confidence level. Hence, it 

was obviously the better choice to optimize the model in generating maximum outcome. 

Figure 6.4 (a, b) shows the performance comparison of the proposed model for each 

transformation function with the baseline model in terms of the accuracies and error (R2 

and RMSE). 
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The baseline model was trained with labeled 3200x16 samples of real data while 

the self-trained FMG-DCGAN was trained with >9000x16 samples (1600x16 real labeled 

data aggregated with ~6200x16 pseudo-labeled synthetic data and 1600x16 real pseudo-

labeled data). Therefore, the proposed model was trained with labeled data and pseudo-

labeled data that had a ratio of approximately 1:4. Both the self-trained FMG-DCGAN and 

the baseline model were evaluated on the same target test data. For 1D-X, Y and Z, the 

baseline model achieved force estimation accuracies in R2 of 82%, 78% and 88%, 

respectively.  On the contrary, the unsupervised, semi-supervised self-trained model with 

t(xsm-nss) accomplished impressive accuracies in 1D-X, Y, and Z as R2 of 77.32%, 77.19% 

and 84.27%, respectively, as shown in Figure 6.4 (c).  

 

        (a)          (b) 

 

(c) 

 

Figure 6.4. Performance evaluation of unsupervised, self-trained FMG-DCGAN model with different 
transformation functions compared to the supervised baseline model. Reproduced from [60] © [2022] 

IEEE with permission.  

a) plot of R2 in 1D-X, Y, Z, b) RMSE in 1D-X, Y, Z (pink dot: unsupervised self-trained FMG-DCGAN 
model with txsm-nss, yellow dot: supervised baseline model), and c) boxplot of self-trained FMG-

DCGAN model with t(xsm-nss) in 1D-X, Y, Z compared to supervised baseline model in 1D-X, Y, Z (R2 
& RMSE).  
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Chapter 7.  
 
Observations & Concluding Remarks 

The material presented in this chapter is excerpted, reproduced, and modified with 

permission from the following papers:  

[56] U. Zakia and C. Menon, "Estimating Exerted Hand Force via Force 

Myography to Interact with a       Biaxial Stage in Real-Time by Learning Human Intentions: 

A Preliminary Investigation", Sensors, vol. 20, no. 7, (22pp), Apr. 2020. 

[57] © [2021] IEEE with permission. U. Zakia and C. Menon, "Toward Long-Term 

FMG Model-Based Estimation of Applied Hand Force in Dynamic Motion During Human–

Robot Interactions," in IEEE Transactions on Human-Machine Systems, vol. 51, no. 4, pp. 

310-323, Aug. 2021, doi: 10.1109/THMS.2021.3087902. 

[58] U. Zakia and C. Menon, “Force Myography-Based Human Robot Interactions 

via Deep Domain Adaptation and Generalization,” Sensors. 2022, 22(1):211. 

https://doi.org/10.3390/s22010211. 

[59] © [2022] IEEE with permission. U. Zakia and C. Menon, “Human Robot 

Collaboration in 3D via Force Myography based Interactive Force Estimations using 

Cross-Domain Generalization,” IEEE Access, Mar. 2022, doi: 

10.1109/ACCESS.2022.3164103. 

[60] © [2022] IEEE with permission. U. Zakia, A. Barua, X. Jiang, and C. Menon, 

“Unsupervised, Semi-Supervised Interactive Force Estimations During pHRI via 

Generated Synthetic Force Myography Signals,” IEEE Access, June 2022, doi: 

10.1109/ACCESS.2022.3187115. 

Sections of this chapter are reprinted or adapted from the above articles for 

clarification and to fit the formatting and scope of the chapter. 
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7.1. Chapter Overview 

This chapter discusses the observations made during the studies performed in this 

thesis. Future work and directions and practical applicability of the FMG-based human 

robot interactions are discussed in the concluding remarks.   

7.2. Observations 

The studies in objective 1-4 revealed some observations that might be useful in 

developing FMG-based real-world applications in future.  

7.2.1. Forearm & upper arm FMG bands 

Proper placement of the FMG bands to read the maximum useful information 

derived from muscle contractions (elbow and shoulder flexion/ extension/ adduction/ 

abduction) were selected in accordance with previous studies [102]. For the 2-DoF planar 

workspace, interactions with the biaxial stage required participants to perform a 

combination of elbow and shoulder rotations in the planar space. By positioning the bands 

on the upper-arm (biceps, triceps brachii muscles) and forearm (brachioradialis and 

extensor carpi radialis muscles), the reading of muscle movements was improved. It was 

observed in objective 1 that using one of the bands either on the upper-arm or forearm 

was not enough for force estimation of motions (efficiencies dropped to R2 ≤ 45%). The 

unique characteristics of each arm motion when performing a grasping force was better 

captured with more multichannel FMG signals. To recognize versatile complex arm 

motions in the experimental setup, the 32-multichannel FMG bands provided better 

estimations. 

7.2.2. Impact of 32 vs. 16-channel FMG technique 

For the target HRI studies using the Kuka robot, only one FMG band was used with a 

smaller number of channels (16 feature space) to compare the impact of knowledge 

transfer from source domains (32 feature space) that had more FMG channels. Mapping 

interaction force in 3D with one forearm FMG band with a small amount of training data 

was a challenging task, which was reflected in the intra-session evaluation in objective 3. 

However, the cross-domain generalization allowed the models to predict moderately well 
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in 3D motions and better in 1D motions, as shown in Table 5-III. Furthermore, including 

additional features improved discriminative feature learning process of the model.  Such 

generalization also helped to reduce biases towards intra-session training data. A transfer 

learning model with cross domain generalization (TL-CDG model) trained with multiple 

source data can be more practical to use because it would leverage periodic finetuning 

with less FMG data. Additionally, the long-term multiple source data it reduced the need 

for collecting more labeled target training data and saved time. Therefore, cross-domain 

generalization via transfer learning could become an obvious choice for quick, practical 

FMG-based HRI implementation for safe collaboration. 

7.2.3. Impact of band placements and winding force 

 During pHRI using the linear robot (objectives 1 and 2), both FMG bands of 32 

channels were placed approximately at the same locations (forearm and upper arm 

positions) across participants and wrapped on arms snugly, but not tight enough to place 

constant pressure on the sensors. Figure 7.1 shows the winding forces with standard 

deviations (SDs) of the bands wrapped on the forearm and upper arm of the participants 

at an initial time (t = 0-100 ms) as the participants were waiting to interact with the robot 

(the arm was at rest, while the hand grasped the knob). 

Group differences between the SDs of the two bands’ winding forces were not 

found to be statistically significant (F = 4.49, p = 0. 987); meaning no difference in winding 

forces were present. As the reported results of the estimated forces in 1D were different 

 

Figure 7.1. Winding forces of the FMG bands at the beginning of an interaction within participants. 

Reproduced from [56] with permission.  
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compared to the estimated forces in 2D motions (Figures 3.4 and 3.5) and the SDs varied 

significantly among the motions (Figure 7.3), it could be concluded that the winding forces 

(mean ≤ 0.092) did not significantly affect the estimation accuracies of the regressors for 

individuals due to individual variations in muscle contractions during interactions. 

7.2.4. Muscle voluntary contractions during an intended motion 

 Initially in objective 1, FMG signals were studied to evaluate separability of arm 

motion directions in a planar space. Data were collected for one participant performing 

isotonic muscle contraction of arm flexions and extensions for a certain period in the x- 

and y-directions, as shown in Figure 7.2(a). The FMG signals (forearm and upper-arm) 

were inputted into the K-means clustering algorithm with a Shilloute value of 1, which 

resulted in the clustered FMG signals in the x-direction and the y-direction, as shown in 

Figure 7.2(b). These FMG signals during flexion and extension (in x- and y- directions) 

were found to be statistically significant (p = 7.89 × 10–51). More specifically, this result 

meant that FMG signals in the x- and y-axes corresponding to arm flexion and extension 

were distinguishable and revealed the potential of using FMG signals in recognizing arm 

motion patterns in a planar surface. 

7.2.5. Impact of intended motion  

In objective 1, one trained model was required (biaxial stage moved along the X 

dimension only) for the ‘X’ intended motion, and two trained models performed 

simultaneous predictions in the X and Y dimensions for the ‘Diagonal’ intended motion. 

   
(a)                                                                       (b) 

Figure 7.2. (a) FMG signals of arm motions in the x- and y-directions; (b) K-means clustering of FMG 
signals Reproduced from [56] with permission. 
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For compliant collaboration, synchronous real-time conversions between applied force in 

motion and displacements in the linear stages were required. Due to the fundamental 

differences in arm posture, motion pattern or applied forces in the two intended motions, 

a model with the same baseline dataset (Inter-Motion-2/Inter-Participant-2) performed 

differently because the calibration data were different. Therefore, reported accuracies in 

real-time predictions [as shown in Figure 3.4, 3.5 and 7.1] were distinct and influenced by 

selection of the intended motion.  

In objective 2A, interactions between participants and the linear robot in the ‘X’ 

intended motion, with the following parameters of applied forces: 20-30N, mean 

displacement: 400mm and average speed/motion:70~80mm/s, were observed. 

Interactions in the ‘Diagonal’ motion, with the following parameters of applied forces: 20-

60N, mean displacement: 475mm and average speed/motion: around 60~90mm/s, were 

observed across participants. The intended motion used in the calibration phase allowed 

the model to predict the applied force in that motion. So, the applied force and motion 

speed in the calibration phase was expected to be maintained by a participant in the real-

time test phase. 

7.2.6. Average interactive applied forces 

 Figure 7.3 shows the observed average force estimations with standard deviations 

(SDs) using FMG signals from different arm motions from participants in objective 1. 

Participants applied hand forces (maximum voluntary contractions (MVC) between 30% 

and 80%), such that the estimated force range was between 20 and 60 N. Demographic 

 

Figure 7.3. Averaged estimated hand forces and standard deviations (SDs) (within participants) in 
intended arm motions [X, Y, diagonal (DG), square (SQ), and diamond (DM) patterns]. 

Reproduced from [56] with permission. 
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data such as height, arm length, arm perimeters, muscle contraction intensities, and 

interactions varied in widely among participants. For the 1-DoF interactions, the decreased 

change of directions introduced fewer variations in the DoF of the arm motions, and, 

hence, smaller SDs were observed.  

 However, for the 2-DoF interactions especially in the square and diamond motion 

patterns, changes in the arm motions and directions in the XY-plane were more frequent. 

This led to more variation among the participants in interactions in one motion pattern with 

their redundant choices of DoF. Thus, variations in SD were higher for the 2-DoF 

interactions. 

7.2.7. Viability of calibration 

In Objective 2A, it was observed that the generalized zero-shot learning (GZSL) 

using a few calibration datasets allowed the long-term calibrated FMG (LCFMG) models: 

LCFMG-1 and LCFMG-2 to perform adequately. Therefore, any calibration data collected 

was valid during the period an individual continued wearing the FMG bands without doffing 

them. Thus, removing the bands and re-donning them, either by different users or by the 

same user, resulted in different FMG readings. Therefore, the need for collecting 

calibration data every time a participant wore the bands was essential and was revealed 

during testing with the LCFMG-0 model (average R2<0.45). It was not surprising that 

models trained without any calibration data failed in real-time testing and, hence, zero-

shot learning could not be implemented using FMG signals.  

Real-time model performance was governed by the calibration data. Introducing a 

few calibration datasets supported generalized ZSL with the multiple source domain 

adaptation technique where it tuned a model with the current state of FMG signals. These 

data simply transformed and applied the trained model distinctively to the participant 

performing the action in a real-time session. For effective applied force prediction in the 

test phase, motion pattern and interaction force were required to be like the calibration 

data. Therefore, the inclusion of calibration data during real-time evaluation was vital for 

i) involving a few test samples in training data to recognize unseen motion or an unseen 

participant using GZSL learning, ii) representing current states of muscle contraction and 

sensors positions, iii) selecting an intended simple motion, iv) reducing training time i.e., 
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reducing fatigue, and v) allowing donning/doffing (on/off) of the band during longer time 

usage because new calibration data could be collected again.  

With fewer calibration data, the model might lean towards multiple source 

distributions, predicting well for some participants while moderately predicting for others. 

But evaluation of the proposed model across participants indicated that even with bias 

towards multiple source domains, the proposed model predicted better when calibration 

data was used in training, thereby tuning the model towards the target domain. 

In objective 2B, the pretrained supervised FMG deep transfer learning (SFMG-

DTL) model was further retrained with a few calibration datasets to adapt to the target 

domain. The model worked well for both the supervised domain adaptation (SDA) and 

supervised domain generalization (SDG) once fine-tuned with calibration/target training 

data. To investigate the effect of calibration during SDA, the pretrained model was 

evaluated on target test data without fine-tuning towards target distribution. It was 

interesting that the pretrained model without fine-tuning could predict forces in the X 

dimension with higher estimation accuracy and lower error (R2 ≥ 89%, NRMSE ≈ 0.09%), 

although it could not estimate well in the Y dimension (R2 ≤ 12%, NRMSE ≥ 8%) with no 

adaptation to the target domain. For SDG, similar trends were observed in the X dimension 

(R2 ≥ 89%, NRMSE ≈ 0.09%) and the Y dimension (R2 ≤ 25%, NRMSE ≥ 6%). Muscle 

contractions in extension/flexion (X dimensions) and abduction/adduction (Y dimensions) 

affected FSR readings and the model’s performance, although this requires further study. 

Therefore, it was revealed that fine-tuning with calibration data was mandatory for 

estimating forces in the 2D planar square motion with variable size: SQ-1 motion for SDA 

as well as in the square motion with fixed size: SQ-2 motion for SDG. 

For compliant collaboration, applied forces in both dimensions needed to be 

estimated well simultaneously. Therefore, the proposed framework would not work without 

calibration data. The calibration data represented the instantaneous FMG data of muscle 

contraction during the interactions, and it was found an effective way to include the current 

state of muscle readings in certain activities during pHRI. Additionally, using fewer 

calibration datasets was helpful, as the model was calibrated within a few minutes. 
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7.2.8. Impact of long-term multiple source distributions 

For generalization in objective 2A, the same multiple source distributions were 

used in training for recognition of the unseen test data, as described in Table 4-I. For 

instance, in scenario 1(recognizing an unseen motion M1 or M3), although the ‘learnt 

participant dataset’ was distinct for each participant (P6-P8), the reference dataset was the 

same for all. Interestingly, in scenario 2, one baseline dataset (subset/full reference 

dataset) was used in recognition of unseen participants (P9-P15).   

A model with the largest multiple source distributions, added more generality, 

diversity, and contribution to supervised transfer knowledge. The training dataset for the 

LCFMG-2 model was approximately 5 times greater than the LCFMG-1 model.  Thus, the 

LCFMG-2 model was more generalized, although it required almost twice the training time. 

Generalized ZSL used in regressing FMG signals permitted generalization errors to be 

low and comparable with the supervised trained models (STMs). It was observed that the 

STM-1 and STM-2 models trained with a small amount of training data (calibration data of 

400, 800 samples only) did not provide better estimates of real-time interactions. Whereas 

the long-term calibrated FMG-based models estimated real-time interactions quite well 

due to the multiple source distributions contributing to the transfer of knowledge.  

7.3. Potential applications 

The studies conducted in this thesis revealed that the force myography (FMG) 

technique can be a viable solution for pHRI applications by estimating interactive forces 

in dynamic motions. Identifying human intentions of applied force and directions during 

human and robot collaborations allowed implementing a control loop via data driven 

models. Compliant collaboration techniques showed that the robots will follow the 

trajectories of intended human interactions. Hence, the ability to predict human motions 

using FMG can prevent the human worker from getting injured or trapped by the robot in 

the industrial workplace. It was observed that transfer learning would a better choice for 

the industrial workplace where a few calibration datasets would recognize interactive 

forces from instantaneous signals. Using multiple source distributions collected over a 

long period of time helped generalizing the model. It also enabled to bridge between 

different HRI platforms and could estimate interactive forces either via forearm or upper 

arm muscle readings for first-time or repeated user. An FMG-based transfer learning 
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technique can be more practical for domain adaptation to implement an FMG-based 

application either for one-time or periodic usage by overcoming sensor position shifts that 

occur with donning and doffing the FMG band on multiple elapsed days. Furthermore, 

generating real-like synthetic FMG source data and implementing self-training techniques 

can resolve real-world challenges of having an inadequate amount of labeled data. Hence, 

in everyday applications, these frameworks will allow faster adaptations of using an FMG 

band with a smaller amount of calibration data in practice. This will help reduce 

physiological effects of wearing an FMG band for a long period of time by retraining quickly 

when the band is taken off and put back again, which also avoids muscle fatigue for the 

wearer of the band. Therefore, the proposed methods showed that the FMG technique 

has a potential use in HMI, prosthetic, or safe collaboration during HRI for an individual 

where interactions with machines are required on a regular basis.  

7.4. Limitations and Future Works 

In objective 2A, investigating different LCFMG models and a few STM models in 

real-time required approximately 1.5 hour for each participant. Due to the time-consuming 

nature of the study, only two motions were investigated to evaluate the proposed models. 

In a few instances, it was observed that the force and motion were governed by the large 

baseline dataset, which slightly limited the behavior of the real-time interaction. 

In objective 2B, SDA and SDG showed potential improvements during offline 

analysis, and real-time implementation can be examined in future. The SFMG-DTL model 

performed well for domain generalization but was limited to a certain pHRI collaborative 

tasks. A pretrained model using more diversified source domains potentially could play a 

vital role in improving domain generalization and be extended to all other possible 

interactions.  

In objective 3, pHRI with the Kuka robot was investigated via an FMG band with16 

channels to measure forearm muscle contractions. Investigating FMG signals of the upper 

arm in the future might provide better information for interactions in 3D. Due to time 

constraints, the proposed algorithm in objective 4 was evaluated during pHRI between 

only one participant and the Kuka robot in the 1D-X, Y, Z directions. Involving more 

participants and interacting in 3D would require further investigations. Also, implementing 
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domain generalization with the proposed unsupervised, self-trained FMG-DCGAN model 

can be studied in future.   

Safe interactions were implemented via admittance control where the robot always 

complied. Hence, if a robot approached slowly in an undesirable direction towards a 

human worker, the methods presented here can be used to avoid collision with the robot.  

However greater speed or force applied by the robot towards the human worker might be 

hard to address.   

7.5. Conclusion 

Considering human activities in collaborative tasks where physical interactions 

happen between a human worker and a robot is vital for many reasons including efficiency 

and safety. Among many biosignals, the contemporary FMG technique can detect muscle 

contractions during contact forces during interactions with machinery. It can be a viable 

solution to use indirect measurements of hand forces to understand and predict human 

actions. Hence, estimating hand forces in motions during interactions with FMG signals 

can be useful for performing collaborative tasks with a robot. 

In objective 1, we used an FMG band with 32-channels by the participant who 

interacted with a linear robot and showed that FMG-based force estimation achieved 

higher estimation accuracies (92%≥R2≥82%) during several 1D and 2D motions. The 

simple and complex intended motions indicated that a human worker could manipulate 

the robot in any intended trajectory. Objective 2 and 3 successfully investigated transfer 

learning via domain adaptation, domain generalization and cross-domain generalization 

techniques using 32 feature spaces long-term FMG source data (collected over a long 

period of time) with a small amount of instantaneous calibration data. These methods can 

leverage gaps between unrelated source and target data from unrelated HRI platforms. 

Long-term multiple source data collected over a long period of time helped improve 

interactions in simple motions (94%≥R2≥ 80%) for a new worker or a new intended motion, 

while it improved estimation accuracies (R2 ≥ 88%, NRMSE ≤ 0.6) for repeated usage. 

Conducting a 16-channel HRC task of moving a wooden rod in 3D with a serial robot using 

cross-domain generalization performed moderately well (63%≤R2), while obtaining 

improved performances in 1D-pHRI (86%≥R2≥79%). For practical applications where 

target data is inadequate or unlabeled, synthetic data with pseudo-labeling can resolve 
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these challenges. This was achieved in objective 4 via unsupervised and semi-supervised 

transfer learning (85%>R2>77%) using FMG signals from a 16-channel band in simple 1D.   

Therefore, studies conducted in this thesis demonstrated that including human bio 

feedback in a robotic control scheme could improve safe collaboration between the human 

and robot in the workplace. These studies can provide viable solutions to interact with 

machines daily. The methods and techniques adapted in this thesis can be useful in 

developing other real-world applications using human bio feedback. The use of the 

wearable FMG bands capable of recognizing human activities can enhance pHRI quality 

in safe collaborations, rehabilitation applications, or prostheses control.  
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Appendix. Additional Observations 

The material presented in this appendix is excerpted, reproduced, and modified 

with permission from the following papers:  

[56] U. Zakia and C. Menon, "Estimating Exerted Hand Force via Force 

Myography to Interact with a       Biaxial Stage in Real-Time by Learning Human Intentions: 

A Preliminary Investigation", Sensors, vol. 20, no. 7, (22pp), Apr. 2020. 

[57] © [2021] IEEE with permission. U. Zakia and C. Menon, "Toward Long-Term 

FMG Model-Based Estimation of Applied Hand Force in Dynamic Motion During Human–

Robot Interactions," in IEEE Transactions on Human-Machine Systems, vol. 51, no. 4, pp. 

310-323, Aug. 2021, doi: 10.1109/THMS.2021.3087902. 

[58] U. Zakia and C. Menon, “Force Myography-Based Human Robot Interactions 

via Deep Domain Adaptation and Generalization,” Sensors. 2022; 22(1):211. 

https://doi.org/10.3390/s22010211. 

[59] © [2022] IEEE with permission. U. Zakia and C. Menon, “Human Robot 

Collaboration in 3D via Force Myography based Interactive Force Estimations using 

Cross-Domain Generalization,” accepted in IEEE Access (Mar. 2022). 

[60] © [2022] IEEE with permission. U. Zakia, A. Barua, X. Jiang, and C. Menon, 

“Unsupervised, Semi-Supervised Interactive Force Estimations During pHRI via 

Generated Synthetic Force Myography Signals,” IEEE Access, June 2022, doi: 

10.1109/ACCESS.2022.3187115. 

Sections of this appendix are reprinted or adapted from the above articles for 

clarification and to fit the formatting and scope of the appendix. 

1. Selection of ML algorithms 

In objective 1, the SVR and the KRR algorithms were chosen among several 

machine learning algorithms and the hyperparameters and features were carefully 

selected. These algorithms, other than the MSVR (capable of estimating force in one 

direction while considering forces acting in other dimensions) and the GRNN (a neural 
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network algorithm for regression), were selected for force estimation. The MSVR was 

appropriate for 2D motions only and did not provide good estimation and therefore was 

not implemented in real time. Although the GRNN worked well for 1D motions and could 

achieve comparable cross-validation accuracies to those of the SVR and the KRR, it 

suffered in real-time 2D interactions (specially in DM motions) because of longer 

computation time when more complex arm motions are present. Five-fold LOOCVs were 

carried out for 2D DM motion patterns to justify the selection. Figure A.1 shows the force 

estimation accuracies of these algorithms (for MSVR: R2 = 73%, and GRNN: R2 = 87%). 

Among these, the other two algorithms, i.e., SVR and KRR, were implemented in real-

time interactions and were proven efficient. 

 

Figure Appendix.1. Five-fold cross-validation results for 2-DoF interactions in diamond arm motion. 
Reproduced from [56] with permission. 

The FMG technique can be a viable alternative to the traditional sEMG. In this 

study, raw FMG signals were used for learning and estimating, which did not require 

complex signal preprocessing like sEMG signals [44,45]. A similar study implemented 

several machine learning classification algorithms to decode discrete hand motion 

intention using high-density transient EMG signals with a short window (only 150ms) [103]. 

A survey on the sEMG technique reported it was adopted in discrete arm motions using 

classification (approximately 73–98%) and in continuous arm motions and forces using 

regression (approximately 84–93%) involving offline machine learning and deep learning 

techniques [104]. Although there is a gap between offline and online performances using 

sEMG signals, interestingly, the FMG technique was found to perform better in online 

classification and regression than the sEMG technique [105].  
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2. Real-time interactive force estimations 

The proposed control scheme in objective 1 evaluated machine learning 

techniques in real time, and comparable estimation accuracies (approximately 88–89% 

averaged across all motions) were obtained with FMG signals, which were in affiliation 

with the literature. The accuracies of these estimators were higher in 1-DoF in the x-

direction, which were 94% and 92% for the SVR and the KRR, respectively; these results 

were comparable with the reported accuracies of 90% and 92% for the SVR and the KRR, 

respectively, when one participant interacted with a linear actuator in the x-axis using the 

FMG technique [106]. The performances of the estimators gradually descended with the 

increased complexity of 2-DoF arm motion patterns, although being reasonably efficient 

in real-time interactions. 

As a preliminary study of objective 1, our focus was to investigate the feasibility of 

FMG-based force estimation in dynamic motions in collaboration with a simple linear robot. 

The experimental setup was constrained in 2D only, capturing FMG signals were 

maximized with multidimensional channels, and human interactions were conducted with 

the biaxial stage with exerted hand forces in dynamic motions. Due to the transient and 

nonstationary nature of FMG signals and individual-specific muscle contraction during 

interactive tasks, the changed positions of the FSRs (if the FMG band was removed and 

put back again) led to retraining the models. The regressors performed well, as the models 

were trained for estimating forces in a certain motion only; therefore, evaluating all 

interactions were time-consuming and was not practical. In addition, to capture the unique 

features when grasping a force in each motion, both bands were required. This might not 

reflect a practical scenario of HRI, but the outcome proved the viability of the FMG-based 

control mechanism.  

3. Redundant degree-of-freedom of human arm 

In general, people tend to move their arms similarly for certain tasks to minimize 

energy expenditure tendency [107-108]. Although participants were instructed to interact 

in certain motions (the general shape of a path to follow with no restriction), the 

movements were individual-specific. In objective 1, each participant manipulated the stage 

in the same way during a certain task to avoid muscle fatigue and energy expenditure 

during interactions. Considering a torso as a ground (origin) and a hand being fixed as a 
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rigid body by grasping the gripper, the unilateral arm motion was guided by the intended 

path the participant would choose from redundant degrees of freedom. The full elbow 

extension (full arm length: 74 ± 4 cm) was avoided (to prevent elbow singularity) [109] and 

reached the boundary point in the workspace area (to avoid boundary singularity for the 

biaxial stage). Otherwise, misalignment might happen, and the biaxial stage would fail to 

follow a compliant trajectory. It is worthwhile mentioning that the range of arm motions and 

trajectories performed by the participants were affected by hand forces, motions, and 

ranges of MVCs to maintain muscle fatigue and sitting positions 

4. Instantaneous force recognition without fine-tuning (no 
calibration)   

In objective 2A, although LCFMG-0 failed in estimating user-applied forces, 

surprisingly it worked exceptionally well in one or two instances. In recognizing unseen X 

motion, the Inter-Participant-LCFMG-0 model obtained higher estimation accuracies 

(R2=70%) for a learned participant (PL: P8), while the Intra-Motion-LCFMG-0 model 

estimated well (R2=77%) for recognizing an unseen participant (PU: P13) applying force in 

a learned motion M1. These two incidents indicated that a long-term FMG model might 

estimate user-applied forces during a simple straightforward motion even without 

‘calibration data’. This would be achievable only when the population dataset includes all 

possible force ranges in dynamic motions from more participants and requires further 

investigation. 


