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Abstract 

One of the fundamental open questions in geomorphology is: What controls the width of 

bedrock rivers? Landscape evolution models scale width with drainage area, which is 

used as a proxy for channel discharge, but observations often do not support the width-

drainage area scaling. This study explores controls on width in bedrock rivers by 1) 

developing mechanistic models for lateral erosion by bedload and suspended load 

impacts, 2) partitioning shear stresses on the bed and banks using model simulations 

and field observations, and 3) proposing a method for predicting steady-state channel 

width. A numerical model is developed for lateral erosion by bedload particles that are 

deflected by bed roughness, which reproduces the erosional patterns observed in the 

flume experiments. An analytical solution of the numerical model is derived, which 

shows that lateral erosion rate dominates at high sediment supply when the bed is near 

fully covered, while vertical erosion dominates at low-to-intermediate sediment supply 

when the bed is largely exposed to particle impacts. Partitioning bed and wall stresses, 

which are the key parameters of the lateral erosion model, shows that the observed wall 

stress is larger than the observed bed stress in many studied canyons due to the 

complex three-dimensional flow structure and rough bedrock walls in natural bedrock 

rivers. A lateral erosion model for lateral erosion by bedload and suspended load 

advected by turbulence eddies is developed to incorporate the role of suspended load 

and is combined with the model for lateral erosion by bedload impacts. The combined 

model shows that finer sediment dominates lateral erosion at low sediment supply, but 

coarser sediment plays an important role at high sediment supply. The model for lateral 

erosion from bedload impacts is coupled with the vertical erosion model to predict steady 

channel width at local and drainage basin scale. Results reveal that local channel width 

is controlled by sediment supply instead of water discharge. Channel width scales 

sediment supply and caliber at drainage basin scale, which can give the appearance of 

width-drainage area scaling.  

Keywords:  bedrock rivers; mechanistic models; lateral erosion; shear stress; channel 

width 
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Chapter 1. Scope and Objectives 

The central question of this dissertation is: What controls the width in 

bedrock rivers? Despite decades of effort, predictions of width in bedrock rivers 

commonly rely on scaling relations that link width to discharge (Whipple, 2004; 

Wohl & David, 2008; Rennie et al., 2018; Wright et al., 2022) or metrics of 

drainage area and slope (stream power) (Finnegan et al., 2005; Wobus et al., 

2006; Turowski et al., 2007). These relations allow for large-scale predictions of 

landscape evolution over geologic time scales, but fail to predict the local width 

variability because they lump the influence of variables on width into poorly 

constrained parameters not related to a specific physical mechanism. There are 

also analytical approaches where width is calculated by iteratively solving 

equations that describe sediment cover and vertical erosion (Turowski, 2018, 

2020). However, the lateral erosion process responsible for eroding banks of 

bedrock rivers is not represented in existing approaches to width prediction. 

The central question is addressed by development of mechanistic models 

and field observations. The specific objectives of the research are to:  

1) Develop a numerical model for lateral erosion by saltating bedload and 

couple it with the vertical erosion model; 

2) Derive an analytical solution of the numerical model and explore the 

implications for channel width and slope dynamics; 

3) Partition bed and wall shear stresses using field observations and the 

ray-isovel model; 

4) Develop a model for lateral erosion by bedload and suspended load 

that compare the roles of finer and coarser sediments in eroding 

bedrock riverbanks; 

5) Develop a method for predicting local and downstream width and slope 

variation.  
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In Chapter 2, a mechanistic model for lateral erosion by bedload particle 

impacts is developed. The model is tested using experiments by Fuller et al. 

(2016). The model is then coupled with the Sklar & Dietrich (2004) vertical 

erosion model to explore the competition between vertical and lateral erosion in 

bedrock channels. 

Chapter 3 derives an analytical solution of the model developed in 

Chapter 2. The analytical model predicts a nonlinear dependence of lateral 

erosion rate on sediment supply, shear stress and grain size. The analytical 

model is applied to a natural bedrock channel, Boulder Creek, CA, to see if the 

model can reproduce observed width variations caused by a change in sediment 

supply rate and grain size. 

Chapter 4 develops methods for partitioning bed and wall stresses using 

field observations and the ray-isovel model that predicts the cross-sectional 

distribution of velocity. Observed bed and wall stresses are calculated for 26 

bedrock canyons in the Fraser River, and the results are compared with 

modelled stresses. A shear stress partitioning framework is proposed to help 

guide prediction of bed and wall shear stresses in a bedrock river reach. 

Chapter 5 develops a mechanistic model for lateral erosion by bedload 

and suspended load impacts that are advected by turbulent eddies. This model is 

combined with the bedload deflection model (Chapters 2 & 3) to explore the 

relative importance of finer and coarser sediments in eroding bedrock channel 

banks. 

Chapter 6 presents a method to predict channel width and slope at steady 

state, by coupling models for lateral erosion and vertical erosion by bedload 

impacts. The method is further expanded to explore the downstream variations of 

width and slope at large scales.  

Chapter 7 summarizes the major findings of the thesis.  
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Chapter 2. A Mechanistic Model for Lateral 
Erosion of Bedrock Channel Banks by Bedload 
Particle Impacts 

Abstract 

Bedrock incision plays a key role in determining the pace of landscape 

evolution. Much is known about how bedrock rivers incise vertically, but less is 

known about lateral erosion. Lateral erosion is widely thought to occur when the 

bed is alluviated, which prevents vertical erosion and deflects the downstream 

transport of bedload particles into channel walls. Here we develop a model for 

lateral erosion by bedload particle impacts. The lateral erosion rate is the product 

of the volume eroded per particle impact and the impact rate. The volume eroded 

per particle impact is modelled by tracking the motion of bedload particles from 

collision with roughness elements to impacts on the wall. The impact rate on the 

wall is calculated from deflection rates on roughness elements. The numerical 

model further incorporates the co-evolution of wall morphology, shear stress and 

erosion rate. The model predicts the undercut wall shape observed in physical 

experiments. The non-dimensional lateral erosion rate is used to explore how 

lateral erosion varies under different relative sediment supply (ratio of supply to 

transport capacity) and transport stage conditions. Maximum lateral erosion rates 

occur at high relative sediment supply rates (~0.7) and moderate transport 

stages (~10). The competition between lateral and vertical erosion is investigated 

by coupling the saltation-abrasion vertical erosion model with our lateral erosion 

model. The results suggest that vertical erosion dominates under near 75% of 

supply and transport stage conditions, but is outpaced by lateral erosion near the 

threshold for full bed coverage. 

2.1. Introduction 

Bedrock river incision sets the pace of landscape evolution in unglaciated 

landscapes (Willett, 1999; Whipple, 2004). Bedrock rivers are laterally 
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constrained by rock banks and have intermittently exposed rock beds that incise 

vertically (Turowski et al., 2008; Meshkova et al., 2012). Bedrock rivers form the 

lower boundary of hillslopes (Perron et al., 2008) and thus are hard points in the 

landscape that must be cut through to lower the elevation of the whole landscape 

(Rennie et al., 2018; Venditti et al., 2019). Incision rates of bedrock rivers are 

commonly modelled as a function of stream power (Seidl & Dietrich, 1992; 

Anderson, 1994; Tucker & Slingerland, 1994; Willett, 1999; Hancock & Anderson, 

2002) or boundary shear stress parametrized from basin slope-area relations 

(Howard & Kerby, 1983; Howard, 1994; Moglen & Bras, 1995; Stark, 2006; 

Tucker & Slingerland, 1996; Whipple & Tucker, 1999; Wobus et al., 2006). These 

models allow for large-scale predictions of landscape evolution over geologic 

time scales, but mask physical processes responsible for bedrock river incision. 

This makes the predictions of these models difficult to evaluate because the 

actual erosional processes may differ in important ways from the model 

assumptions. Process-based models are needed to investigate the relative role 

of controlling variables such as rock strength, grain size, roughness, water 

discharge and sediment supply and to provide more detailed physical 

explanations (Whipple et al., 2000; Whipple, 2004; Sklar & Dietrich, 2004, 2006; 

Nelson & Seminara, 2011; Huda & Small, 2014; Beer & Turowski, 2015; 

Turowski, 2018).  

Vertical erosion processes are well known and several models exist to 

represent them. Whipple et al. (2000) summarized the processes of vertical 

incision: abrasion by sediment impacts of bedload or suspended load; plucking 

from the bed by hydraulic forces; chemical and physical weathering; cavitation; 

and debris-flow scour. Detailed models of the physics of individual incision 

processes have been developed to predict bedrock river dynamics, including: 

saltation abrasion model (Sklar & Dietrich, 2004); total-load abrasion model 

(Lamb et al., 2008); plucking model based on the block topple-sliding mechanism 

(Lamb et al., 2015; Larsen & Lamb, 2016); bedload abrasion, macroabrasion and 

plucking model (Chatanantavet & Parker, 2009); and weathering model (Hancock 

et al., 2011). These models have been used to predict how vertical incision in 
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bedrock channels changes in response to changing boundary conditions 

(Whipple, 2004; Sklar & Dietrich, 2006, 2008; Egholm et al., 2013; Huda & Small, 

2014; Larsen & Lamb, 2016).  

However, bedrock rivers can also erode laterally, and adjust their width. 

Undercut walls are evidence of active, local width adjustment (Figure 2.1). Local 

variations in bedrock river width can induce highly turbulent plunging flow as 

water enters the narrow part of bedrock rivers, which can in turn promote erosion 

of the bed and sidewalls by bedload particle impacts (Venditti et al., 2014). 

Lateral incision has also been observed to be responsible for formation of strath 

terraces (Fuller et al., 2009), creation of wide valley bottoms (Snyder & Kammer, 

2008) and planation of valley bottoms (Cook et al., 2014) at large scales. 

Therefore, understanding lateral erosion mechanisms is crucial for exploring 

bedrock width dynamics and its influence on fluvial processes from local (reach) 

to large scales. In comparison to what is known about vertical erosion, however, 

comparatively little is known about lateral erosion mechanisms. Previous studies 

mostly relate the bedrock bank erosion to local conditions, such as flood events 

(Stark et al., 2010), high alluvial cover (Gilbert, 1877; Shepherd, 1972), meander 

migration (Finnegan & Dietrich, 2011), weak lithology (Montgomery, 2004; Stark 

et al., 2010) or bank strength (Limaye & Lamb, 2014). Existing lateral erosion 

models rely on the stream power law to link stream power or parametrized shear 

stress to erosion rates with various degrees of sophistication (Hancock & 

Anderson, 2002; Finnegan et al., 2005; Stark, 2006; Wobus et al., 2006; 

Turowski et al., 2009; Lague, 2010; Langston & Tucker, 2018; Yanites, 2018; 

Croissant et al., 2019). Most of these models ignore the influence of sediment 

supply on lateral erosion by simply scaling the lateral erosion rate with shear 

stress (e.g. Stark, 2006; Wobus, 2006) or the rate of energy dissipation per unit 

area of the channel wall created by centripetal acceleration around a bend 

(Langston & Tucker, 2018). Others have introduced the influence of alluvial cover 

on limiting lateral erosion in high sediment supply environments (Hancock & 

Anderson, 2002; Lague, 2010; Yanites, 2018), but did not include a quantitative 

relation between sediment supply and lateral erosion rate because the 
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fundemental relation was unknown. Turowski (2020) recently developed a lateral 

bank erosion model due to bedload particle impacts, deflected by gravel bars. 

The model does not include the physics of deflections, but rather treats the 

gravel alternate bars as a source of roughness capable of deflecting particles in 

an otherwise straight bedrock channel. In the limit of small degrees of cover, this 

produces decreasing lateral erosion rates with increasing extent of alluvial cover 

because gravel bars increase their length as the cover gets greater due to the 

assumption of constant aspect ratio of gravel bars.  

 

Figure 2.1 Examples of undercut walls in a) Fraser Canyon, British Columbia (~165 
m wide; undercut is ~2 m high). b) Fall Creek Gorge, Indiana (~3 m 
wide; undercut is about 1.5 m high). Undercut walls are highlighted 
by red arrows.   

 

Gilbert (1877) first suggested that a bedrock channel will incise laterally 

when the channel bed is covered with transient alluvial deposits. Recent 

research on lateral erosion has focused on the role of sediment supply on setting 

the relative rates of vertical and lateral erosion (Turowski et al., 2007; Fuller et 

al., 2009; Finnegan & Balco, 2013). These investigations suggest lateral erosion 

dominates in high sediment supply environments, but is limited in low sediment 

supply environments. None of these studies propose a specific process or 

mechanism to explain how the high sediment supply drives lateral erosion. 

Physical experiments have documented channel widening by bedload abrasion 

(Finnegan et al., 2007; Johnson & Whipple, 2010). Enlighted by these 
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experiments, Fuller et al. (2016) further explored the erosional mechanism of 

deflection of saltating bedload particles into the channel wall by roughness 

elements, and concluded that it is an effective mechanism for lateral erosion into 

bedrock when the bed is covered by alluvium or composed of large protruded 

roughness elements. This mechanism explains why lateral erosion dominates in 

high sediment supply environments where intermittent alluvial cover likely occurs. 

The downstream transport of bedload particles is deflected by alluvial cover and 

obtains lateral momentum to erode the wall. In low sediment supply 

environments, alluvial cover may not be available to deflect bedload particles. 

This newly identified mechanism for lateral erosion opens the door for a 

mechanistically-based lateral erosion model.  

Here we develop a mechanistic model to explore the potential efficacy of 

bedload particle impacts as a mechanism of lateral erosion in bedrock channels 

and test the model using the Fuller et al. (2016) flume experiments, referred to as 

Fuller Experiments hereafter. Our model only considers the collision between 

bedload particles and bed roughness elements as the sole process by which 

saltating bedload particles obtains lateral momentum to erode the wall. We 

acknowledge that other lateral erosion mechanisms certainly exist, such as 

plucking (e.g. Beer et al., 2017), but abrasion is the dominant process in massive 

crystalline rock. We also recognize that channel curvature may enhance particle 

impacts with the wall (Cook et al., 2014; Turowski, 2018; Langston & Tucker, 

2018; Mishra et al., 2018), but have elected not to include that effect to enable a 

solution to our model. The numerical model is formulated by determining the 

initial velocity of bedload particles before collision with bed roughness elements 

from empirical relations (Sklar & Dietrich, 2004), estimating the momentum 

transfer during collision from a simplified reflection methodology, and tracking the 

movement of bedload particles from collision with bed roughness elements to 

impact on the wall using force balance equations. This allows the distribution of 

lateral erosion on the wall to be calculated. The model is implemented with and 

without co-evolution of wall morphology, shear stress, and erosion rate to explore 

how channel change influences the results. After we show how our lateral 



8 

erosion model works, we then couple it with the Sklar & Dietrich (2004) vertical 

incision model to investigate the competition between vertical and lateral erosion 

with transport stage and relative sediment supply. 

2.2. Model Development 

The model is based on the saltation-abrasion mechanism of bedrock 

erosion and the well-known tools and cover effect (Sklar & Dietrich, 2004). 

Erosion rates are a function of sediment supply, transport stage, grain size and 

rock strength (Sklar & Dietrich, 2004; 2008). When the bed is relatively free of 

cover, impacts of saltating bedload particles are capable of detaching rock 

particles from the surface. Vertical erosion is limited at high sediment supply 

rates, when the bed is covered. However, when covered, downstream transport 

of saltating bedload particles can be deflected by particles that make up the 

alluvial cover (referred to as roughness elements) and directed towards channel 

walls, which induces lateral erosion. Following the saltation-abrasion vertical 

erosion model formulation (Sklar & Dietrich, 2004), we assume that the flow, 

sediment transport and distribution of roughness element are uniform in a 

bedrock channel with a planar bed and straight walls. We use a hybrid approach 

to model lateral erosion by impacts of saltating bedload particles. First, we model 

all the possible individual deflection trajectories from discrete parts of the 

roughness elements for a given hydraulic condition. Then we apply these results 

in a continuum model by calculating the deflection rates on each cell of the 

roughness surface and calculate the resultant erosion rates as a function of 

locations on the wall.  

2.2.1. Initial hydraulic, flow resistance and bedload transport 
conditions 

We assume that bed roughness elements are composed of immobile 

semi-spheres with diameter of 𝐷𝑟 and an areal fraction of 𝐹𝑟, arranged in 

uniformly distributed rows and columns with a spacing of 𝑑 (Figure 2.2). The 
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distance between the wall and the center of the first roughness element is the 

same as the spacing between two adjacent roughness elements (Figure 2.2), for 

simplicity. We tested the effects of this simplification by setting distance to the 

wall from the first defector to 𝑑 − 𝐷𝑟 and found it had a negligible effect on the 

erosion rates (< 1%). Initial hydraulic conditions are calculated from six input 

variables: water discharge 𝑄𝑤, channel width 𝑊, channel slope 𝑆, areal fraction 

𝐹𝑟 of roughness elements, roughness element diameter 𝐷𝑟, and bedload particle 

diameter 𝐷. In natural bedrock rivers, 𝐷 and 𝐷𝑟  would be the grain size of the 

transported bed load and deposited bed material, respectively.  
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Figure 2.2 a) Cross section view and b) plan view of model setup in an idealized 
rectangular channel eroded by saltating bedload particles that are 
deflected by roughness elements distributed on the channel bed. 
The grey semi-spheres represent roughness elements with diameter 
of 𝑫𝒓, which are equally distributed in rows and columns with the 

same distance 𝒅. The green spheres represent bedload particles that 
impact roughness elements. Only one side of the channel walls is 
shown here and used for simulation, assuming that the walls are 
symmetrical. 

Asumming steady uniform flow, the total shear stress 𝜏 is given as 

 𝜏 = 𝜌𝑤𝑔ℎ𝑆   (Equation 2.1) 

where 𝜌𝑤 is water density, 𝑔 is gravity acceleration, ℎ is water depth.  

𝜏 can also be expressed as a function of Darcy-Weisbach hydraulic friction 

factor 𝑓 and mean flow velocity 𝑢̅ 

 𝜏 =
𝜌𝑤𝑓𝑢̅

2

8
   (Equation 2.2) 

In a bedrock channel with roughness elements and transported bedload 

particles, the flow resistance is derived from the bedrock surface, roughness 

elements, alluvial cover and channels walls. To calculate the contribution of each 

source, flow resistance has been weighted by its areal proportion (Tanaka & 

Izumi, 2013; Inoue et al., 2014; Johnson, 2014; Ferguson et al., 2019). Here we 

adopted the Johnson (2014) method and assumed the wall flow resistance is 

negligible, which is valid for a channel that is wide relative to its depth. 𝑓 can be 

expressed as a weighted average of the spatial fractions of different sources of 

flow resistance in the channel 

 𝑓 = (1 − 𝐹𝑟 − 𝐹𝑎)𝑓𝑏 + 𝐹𝑟𝑓𝑟 + 𝐹𝑎𝑓𝑎  (Equation 2.3) 

where 𝐹𝑎 is the fraction of alluvium, 𝑓𝑏, 𝑓𝑟 and 𝑓𝑎 are friction factors for bedrock, 

roughness elements, and alluvium, respectively. Because the deposition of 

alluvial cover was observed to be negligible in the Fuller Experiments, Equation 

2.3 for that case can be simplified to 

 𝑓 = (1 − 𝐹𝑟)𝑓𝑏 + 𝐹𝑟𝑓𝑟.  (Equation 2.4) 
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𝑓𝑏 and 𝑓𝑟 can be modelled using appropriate roughness length scales in 

any preferred flow resistance relation. For simplification, they are used here as 

fitting parameters to calibrate the model to the Fuller Experiments.  

Combining Equations 2.1-2.4 with the continuity equation for a rectangular 

channel (𝑄𝑤 = 𝑊ℎ𝑢̅), ℎ, 𝑢̅ and 𝜏 can be solved as 

 ℎ = (
𝑄𝑤

𝑊
)
2 3⁄

(8𝑔𝑆)−1 3⁄ [(1 − 𝐹𝑟)𝑓𝑏 + 𝐹𝑟𝑓𝑟]
1 3⁄   (Equation 2.5) 

 𝑢̅ = (
𝑄𝑤
𝑊
)
1 3⁄

(8𝑔𝑆)1 3⁄ [(1 − 𝐹𝑟)𝑓𝑏 +𝐹𝑟𝑓𝑟]
−1 3⁄

 (Equation 2.6) 

  𝜏 =
𝜌𝑤

8
(
𝑄𝑤

𝑊
)
2 3⁄

(8𝑔𝑆)2 3⁄ [(1 − 𝐹𝑟)𝑓𝑏 + 𝐹𝑟𝑓𝑟]
1 3⁄ . (Equation 2.7) 

Assuming the roughness elements cause flow separation and contribute 

form drag, the shear stress available to transport sediment 𝜏𝑠 can be obtained 

from replacing 𝑓 in Equation 2.2 with (1 − 𝐹𝑟)𝑓𝑏  

 𝜏𝑠 =
𝜌𝑤

8
(
𝑄𝑤

𝑊
)
2 3⁄

(8𝑔𝑆)2 3⁄ [(1 − 𝐹𝑟)𝑓𝑏 + 𝐹𝑟𝑓𝑟]
−2 3⁄ (1 − 𝐹𝑟)𝑓𝑏.      (Equation 2.8) 

Initial bedload transport conditions, including the saltation hop height ℎ𝑠, 

saltation hop length 𝑙𝑠, bedload particle velocity 𝑢𝑠, are estimated from the 

empirical relations of Sklar & Dietrich (2004)  

  
𝑙𝑠

𝐷
= 8.0(

𝜏𝑠
∗

𝜏𝑐
∗ − 1)

0.88(1 − (
𝑢∗

𝑤𝑓
)2)−0.50   (Equation 2.9) 

 
ℎ𝑠

𝐷
= 1.44(

𝜏𝑠
∗

𝜏𝑐
∗ − 1)

0.56  (Equation 2.10) 

 
𝑢𝑠

((
𝜌𝑠
𝜌𝑤
−1)𝑔𝐷)0.5

= 1.56(
𝜏𝑠
∗

𝜏𝑐
∗ − 1)

0.56  (Equation 2.11) 

where 𝜌𝑠 is the sediment density, 𝑢∗ = √𝑔ℎ𝑆 is the flow shear velocity, 𝜏𝑠
∗ =

𝜏𝑠 (𝜌𝑠 − 𝜌𝑤)⁄ 𝑔𝐷 is the non-dimensional shear stress available for sediment 

transport, 𝜏𝑐
∗ is 𝜏𝑠

∗ at the threshold of motion for particle movement, 𝑤𝑓 is the 

particle fall velocity, which is calculated from the empirical method developed by 

Dietrich (1982), assuming values of Cory shape factor (0.8) and Powers scale 
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(3.5) typical for natural gravel grains. Auel et al. (2017a, b) recently updated the 

Sklar & Dietrich (2004) equations, but calibrated hop lengths, heights and 

velocities to shear stress for supercritical flows with Froude numbers up to 5. The 

relations notably produce symmetric particle trajectories, which are different from 

the low velocity, asymmetric trajectories typical of subcritical and transcritical 

flows we consider here. Application of our model to in supercritical flows may 

require re-parameterization. 

The bed-normal velocity 𝑤𝑠 is calculated from the difference between the 

gravitational acceleration of the particle and deceleration due to drag (Lamb et 

al., 2008a) 

 𝑤𝑠 = √
𝐶g

𝐶d
(1 − 𝑒−2𝐶2(ℎ𝑠−ℎ𝑐))  (Equation 2.12) 

where 𝐶g = (
𝜌𝑠

𝜌𝑤
− 1)𝑔 is the gravitational acceleration coefficient, 𝐶d = 3𝐶𝑑𝐷

𝜌𝑤

𝜌𝑠
 is 

the drag deceleration coefficient, 𝐶1 (0.45) is the drag coefficient, ℎ𝑐 is the height 

above the bed of the point of collision with the roughness element (ℎ𝑐 = 0 for 

collisions with the bed). 

2.2.2. Collision between bedload particles and roughness elements   

Assuming that the saltating bedload particles have negligible lateral 

momentum during the normal course of a downstream hop, the saltation lateral 

velocity 𝑣𝑠 before collision is zero. Thus, the incoming saltation velocity vector 𝒊𝒔  

has two non-zero components 

 𝒊𝒔 = (𝑢𝑠, 0, 𝑤𝑠). (Equation 2.13) 

During collision with roughness elements in water, bedload particles 

experience an inelastic rebound that can be modelled by the sum of an elastic 

and a viscous force (Cundall & Strack, 1979). For simplicity, the elastic response 

is modelled using a reflection methodology to calculate the outgoing saltation 

velocity vector after collision with a roughness element as  
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 𝒊𝒐 = 𝐶𝑟(𝒊𝒔 − 𝟐𝒑)  (Equation 2.14) 

where 𝒑 is the projection of the incoming particle velocity vector onto the surface 

normal vector, at the point of collision (defined by the normal vector 𝒏̂) calculated 

from  

 𝒑 = (
𝒊𝒔 ∙ 𝒏̂

𝒏̂ ∙ 𝒏̂
)𝒏̂ (Equation 2.15) 

assuming that the tangential force during collision is negligible. The coefficient of 

restitution (𝐶𝑟) describes the retention of particle momentum during the collision 

between bedload particles and roughness elements. We choose a value 𝐶𝑟 = 0.9 

based on experimental observations (Niño et al., 1994; Schmeeckle et al., 2001; 

Joseph et al., 2001; Joseph & Hunt, 2004), which means that the particle loses 

1 − 𝐶𝑟
2 = 19% of its incident kinetic energy during an impact.  

The magnitude and direction of 𝒊𝒐 = (𝑢𝑜, 𝑣𝑜, 𝑤0) are controlled by 

incoming velocity 𝒊𝒔 and normal vector 𝒏̂ at the point of collision (Figure 2.3). 

Consider a bedload particle that collides near the base of the roughness element, 

at the roughness element centerline. The magnitude of 𝒊𝒔  for this case is 

maximized because the collision occurs near the bed where 𝑤𝑠 is the greatest, 

which will maximize the magnitude of 𝒊𝒐  for given hydraulic conditions. However, 

the collision will create an 𝒊𝒐  for this case that points in the upstream direction 

with negligible lateral velocity 𝑣𝑜, because 𝒏̂ is pointing upstream (Figure 2.3). In 

contrast, when 𝒏̂ is rotated to 45 degrees relative to the centerline of the 

roughness element (Figure 2.3), 𝒊𝒐 will have a substantial wall-normal velocity 

component 𝑣𝑜 with negligible downstream velocity component 𝑢0. Therefore, to 

incorporate the variation of 𝒊𝒔 , 𝒏̂ and hence 𝒊𝒐  at the point of collision with the 

roughness element, the surface of each roughness element is discretized into N 

approximately uniform triangular grid cells (𝑁 ≈ 2000 is selected here for a 

balance of efficiency and accuracy). Within each cell, the potential impact 

position and impact angle are assumed to be represented the cell centroid, and 

the outgoing velocity 𝒊𝒐 of individual bedload particles is calculated in each grid 

cell from Equations 2.13-2.15.  
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Not all cells on the surface of a semi-spherical roughness element are 

subject to collisions. To estimate which cells will experience collisions, and the 

impact rate on each grid cell as a function of the bedload flux, we begin by 

assuming that the trajectory of bedload particles before impacting on the 

roughness element is composed of two components: upward trajectory and 

downward trajectory (Sklar & Dietrich, 2004). The upward trajectory has a hop 

height of ℎ𝑠 and a hop length of 𝑙𝑠𝑢, and the downward trajectory has a hop 

height of ℎ𝑠 and a hop length of 𝑙𝑠𝑑. Assuming these two trajectories together 

form a triangle, with a total hop length of 𝑙𝑠 and hop height of ℎ𝑠 (Figure 2.4), 𝑙𝑠𝑢 

and 𝑙𝑠𝑑 can be approximated from 𝑙𝑠 as (Sklar & Dietrich, 2004) 

 𝑙𝑠𝑢 =
1

3
𝑙𝑠  (Equation 2.16) 

 𝑙𝑠𝑑 =
2

3
𝑙𝑠  (Equation 2.17). 

 

Figure 2.3 Schematic diagram of collision between roughness element (black) and 
bedload particles (green). The incoming velocity 𝒊𝒔 = (𝒖𝒔, 𝟎, 𝒘𝒔), 
where 𝒖𝒔 is incoming downstream velocity and 𝒘𝒔 is incoming 

vertical velocity. The outgoing velocity 𝒊𝒐 = (𝒖𝒐, 𝒗𝒐, 𝒘𝒐), where 𝒖𝟎 is 

outgoing downstream velocity, 𝒗𝟎 is outgoing lateral velocity and 𝒘𝟎 
is outgoing vertical velocity. Two examples of collision are shown 
here: collision with the roughness element head resulting in 𝒗𝒐 ≈ 𝟎 
and collision with 45 degrees relative to the base of the roughness 
element head resulting in 𝒗𝒐 ≫ 𝟎. 

Three planes are formed by the triangular trajectory of bedload particles: 

1) the plane parallel to the upward trajectory; 2) the plane parallel to the 
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downward trajectory; and 3) the plane parallel to the bed (Figure 2.4). All upward 

moving particles must move parallel to the first plane and all downward moving 

particles must cross the first plane. In contrast, only upward moving particles will 

cross the second plane and all downward moving particles will follow the second 

plane. The third plane, the channel bed, is where the particles turn around. Our 

model only incorporates the impacts of downward moving particles on the 

roughness element surface. The length 𝐿 of the first plane for intercepting the 

downward moving particles is  

 𝐿 = √ℎ𝑠
2 + 𝑙𝑠𝑢

2   (Equation 2.18) 

and its angle Θ intersecting with the bed is  

 Θ = arctan
ℎ𝑠

𝑙𝑠𝑢
  (Equation 2.19) 

The impact rate, with dimensions of collisions per unit time per unit area 

on the first plane, can be expressed as  

 𝐼𝑝 =
𝑞𝑠

𝑀𝐿
   (Equation 2.20) 

where 𝑞𝑠 is sediment supply per unit width, and 𝑀 is the mass of a bedload 

particle. The area of each grid cell is projected onto the first plane, along a vector 

parallel to the downward trajectory of bedload particles, to calculate the impact 

rate on each grid cell. The angle β of the projected direction intersecting with the 

bed is (Figure 2.4) 

 β = arctan
ℎ𝑠

𝑙𝑠𝑑
  (Equation 2.21). 
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Figure 2.4 Sketch of calculating the impact rate on the roughness element (grey 
semi-circle). The trajectory for bedload particle flux is simplified as a 
triangle, formed by upward 𝒍𝒔𝒖 and downward portion 𝒍𝒔𝒅 of the total 
hop length 𝒍𝒔 and total hop height 𝒉𝒔. Three planes are defined here, 
including the plane parallel to the upward trajectory (dotted line) 
intersected with the bed from an angle 𝚯, the plane parallel to the 
downward trajectory (dashed line) intersected with the bed from an 
angle 𝜷, and the plane of the bed where the particles turn around 
(solid line). Each plane is as wide as the channel.  

The projected area for each grid cell is defined as 𝐴𝑐. The impact rate on 

each grid cell of the roughness element surface 𝐼𝑐 can hence be expressed as  

 𝐼𝑐 = 𝐼𝑝𝐴𝑐  (Equation 2.22) 

The variation of impact rates 𝐼𝑐 is illustrated in Figure 2.5, where the 10 

mm roughness element from the Fuller Experiments is used as an example. The 

center of each grid cell is projected onto a horizontal 2D surface from the plan 

view (Figure 2.5a) and onto a vertical 2D surface from the along-stream view 

(Figure 2.5b). There is no impact on most of the downstream facing part of the 

semi-sphere surface (Figure 2.5a-b) because it is below the tangent point of 

downward-moving trajectory. Meanwhile, the impact rate is zero near the vertex 

of the upstream facing part of the roughness element (Figure 2.5a-b), because 

the impacts here are in the shadow of downward-moving trajectory when the 

roughness elements are too close to each other (Figure 2.4). The impacts 

decrease from the center to the edge of the roughness element (Figure 2.5a), 

due to the decrease of the shadow effect as the radius 𝑟 of a circle for a 

longitudinal slice through the sphere reduces to zero at the edge of the 

roughness. The impact rate also decreases with distance downstream because 

the impact area 𝐴𝑐 goes to zero when the surface cell gets tangential (parallel) to 

the flux trajectory (Figure 2.5b).  
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Figure 2.5 a) Plan view and b) along-stream view showing the distribution of 
impact rates on each grid cell of roughness elements with diameter 
10.0 mm using models inputs from the Fuller Experiments. Black 
lines are the boundary of the roughness elements. 

2.2.3. Movement of bedload particles from collision with roughness 
element to impact on the wall 

 After collision, the movement of bedload particles is modelled from force 

balance equations and tracked over each time step ∆𝑡. We assume that fluid 

drag and gravity are the dominant forces affecting instantaneous downstream 

velocity 𝑢, lateral velocity 𝑣 and vertical velocity 𝑤. The change in particle 

velocities with time are given by  

 −
𝑑𝑢

𝑑𝑡
= 𝐶d(𝑢̅ − 𝑢

′(z))2  (Equation 2.23) 
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 −
𝑑𝑣

𝑑𝑡
= 𝐶d𝑣

2  (Equation 2.24) 

 −
𝑑𝑤

𝑑𝑡
= {

𝐶d𝑤
2 + 𝐶g          𝑓𝑜𝑟 𝑤 > 0 

𝐶d𝑤
2 − 𝐶g          𝑓𝑜𝑟 𝑤 ≤ 0 

  (Equation 2.25) 

where 𝑢′(𝑧) is the downstream flow velocity at height 𝑧 above the bed. For 

turbulent boundary layer flow in a channel, 𝑢̅𝑧 can be calculated from the law of 

the wall 

 𝑢′(𝑧) =
𝑢∗

𝜅
ln(

30𝑧

𝑘s
)  (Equation 2.26) 

where 𝜅 is von Karman’s constant (~ 0.41), 𝑘s is the hydraulic roughness length 

scale which can be obtained from friction factor 𝑓 using a general Manning-

Strickler formula  

 𝑘s = ℎ(8𝑓)
3   (Equation 2.27) 

(Johnson, 2014). Equations 2.22-2.25 can be numerically integrated at each time 

step ∆𝑡 to solve for the velocity and position of individual bedload particles. The 

time step used in the simulation is ∆𝑡 = 10−5s. Smaller time steps were also 

tested, which substantially increase the computational time but do not change the 

results. A minimum wall-normal velocity 𝑣𝑚𝑖𝑛 is adopted here to distinguish 

between impacts that cause erosion and impacts that are viscously damped, 

which is a function of the particle Stokes number 𝑆𝑡 (Davis et al., 1986; 

Schmeeckle et al., 2001; Joseph & Hunt, 2004): 

 𝑣𝑚𝑖𝑛 =
9𝑆𝑡𝜌𝑤𝜂

𝜌𝑠𝐷
  (Equation 2.28) 

where η is the kinematic viscosity of the fluid (10-6 m2s-1), and a value of 𝑆𝑡 = 100 

is selected here from Schmeeckle et al. (2001) and Joseph & Hunt (2004). At 

each time step, a bedload particle may be rebounded by the channel bed or 

other roughness elements before it impacts on the wall (Figure 2.6). In this 

situation, the rebounded velocity is simulated using the same method used for 

the original collision with the roughness element, taking into account that the 

normal vector for the bed is vertical. The simulation runs until a bedload particle 

has impacted the wall or its lateral velocity is below the velocity limit 𝑣𝑚𝑖𝑛 before 
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reaching the wall. When bedload particles impact the wall, the impact velocity 

vector 𝑰𝑽 = (𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖) and impact position vector 𝑰𝑳 = (𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙) are recorded for 

calculation of lateral erosion rate of different locations on the wall.  

 

Figure 2.6 a) Plan view and b) downstream view of the deflection trajectories of 
bedload particles (colorful circles with dashed lines) for a range of 
deflection positions on the roughness elements (black circles and 
semi-circles with solid lines). The roughness size is 10.0 mm and the 
bedload particle size is 4.3 mm. The model inputs are from the Fuller 
Experiments. 

The deflection trajectories of bedload particles vary with the impact 

positions on the same roughness element. Bedload particles impacting on the 
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part that is near 45 degrees relative to the centerline of roughness element travel 

a shorter downstream distance because the particles have larger lateral velocity 

and can impact on the wall faster (Figure 2.6a). Meanwhile, bedload particles 

deflected by the higher part of the roughness element can impact higher on the 

wall due to the higher initial height before deflection and the upward moving 

velocity after deflection here (Figure 2.6b). When the roughness elements are 

located further from the wall, more impacts are viscously damped and are 

rebounded by the bed before impacting on the wall due to more loss of 

momentum on the way to the wall (Figure 2.6). The bedload particles deflected 

by the roughness elements further from the wall also impact lower on the wall 

(Figure 2.6a), and impact further downstream on the wall as it takes longer to 

impact on the wall (Figure 2.6b).  

2.2.4. Calculation of instantaneous lateral erosion rate 

Assuming the channel wall is fully exposed to impacts, the erosion rate 𝐸𝑐 

due to deflections from one grid cell on a roughness element, can be expressed 

as the product of two terms: the volume eroded per particle impact 𝑉𝑐 and the 

number of particle impacts per unit time 𝐼𝑤 (Sklar & Dietrich, 2004) 

 𝐸𝑐 = 𝑉𝑐𝐼𝑤  (Equation 2.29) 

where 𝑉𝑐 can be calculated as a function of impact velocity 𝑣𝑖, and rock 

parameters, including Young’s modulus of elasticity of the bedrock 𝑌, 

dimensionless bedrock strength coefficient 𝑘𝑣, and tensile yield strength 𝜎𝑇  

 𝑉𝑐 =
𝜋𝜌𝑠𝐷

3𝑣𝑖
2𝑌

6𝑘𝑣𝜎𝑇
2  .  (Equation 2.30) 

𝐼𝑤 can be determined from 𝐼𝑐 depending on whether the movement of 

bedload particle deflected by each cell will lead to an impact on the wall or not. If 

the bedload particle deflected by the roughness element does not impact on the 

wall, its impact rate on the wall 𝐼𝑤 is zero. However, if the bedload particle 

obtains enough momentum to reach the wall, its impact rate on the wall 𝐼𝑤 is the 

same with that on the roughness element 𝐼𝑐. 
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                               𝐼𝑤 = {
𝐼𝑐           𝑖𝑚𝑝𝑎𝑐𝑡𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙
0    𝑛𝑜𝑡 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙

          (Equation 2.31) 

𝐸𝑐 varies with each grid cell on a roughness element (Figure 2.7). Only the 

1/4 of the semi-sphere roughness element that faces upstream and toward the 

near wall contributes to 𝐸𝑐 due to the concentration of impacts on the upstream 

facing part of the semi-sphere (Figure 2.5) and the deflection of bedload particles 

towards the other side of the channel if they impact on the roughness element 

surface that faces against the wall (Figure 2.7). 𝐸𝑐 is highest at the impact 

position that has a normal vector 𝒏̂ facing 45 degrees relative to the longitudinal 

centerline of the roughness element in planview, and is close to the base of the 

roughness element, because the rebounded velocity (Figure 2.3) and the impact 

rate (Figure 2.5) are highest there. 𝐸𝑐 decreases with the increasing distance 

between the roughness element and the wall due to the loss of lateral 

momentum of bedload particles when travelling towards the wall (Figure 2.7).  

 

Figure 2.7 Variation of 𝑬𝒄 with each grid cell on the a) 10.0 mm roughness 
elements and b) 4.3 mm roughness elements using inputs from the 
Fuller et al. (2016) experiments. 

Assuming that bed roughness elements are uniformly distributed in rows 

comprised of equally spaced semi-spheres (Figure 2.2), and transported bedload 
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is uniformly distributed across the channel, each row of roughness elements 

deflects same number of bedload particles and causes same amount of lateral 

wall erosion. Therefore, only one row of roughness elements is used for 

calculating the instantaneous local lateral erosion rate 𝐸𝑐 and the total erosion 

rate 𝐸𝑡 due to the existence of one row of roughness elements is simply the sum 

of all 𝐸𝑐, the local erosion rates due to individual bedload particles deflected by 

each grid cell on the roughness elements 

 𝐸𝑡 = ∑𝐸𝑐 (Equation 2.32) 

Because the total erosion rate due to multiple rows of roughness elements 

is the superposition of the lateral erosion rate due to a single row of roughness 

elements, and the lateral erosion rate in the longitudinal direction repeats for the 

downstream distance 𝑑 between two adjacent rows of roughness elements, the 

integrated lateral erosion rate within 𝑑 due to multiple rows of roughness element 

is equal to 𝐸𝑡. Therefore, the averaged area of material removed from the 

channel cross section per unit time (referred to as bulk erosion rate 𝐸𝑏) within 𝑑 

can be expressed as  

 𝐸𝑏 =
𝐸𝑡

𝑑
  (Equation 2.33) 

Bedload particles impact on the wall at many different elevations and 

downstream locations (Figure 2.6). To calculate the average lateral erosion rate 

𝐸𝑧 at a given elevation 𝑧, the wall is divided into a uniform grid with a vertical 

interval ∆𝑧 from the base of the wall to the maximum erosion height on the wall 

𝑧𝑙𝑚𝑎𝑥. A value of ∆𝑧 = 1 mm is selected here in accordance with the experimental 

results of  Fuller et al. (2016);  and 𝑧𝑙𝑚𝑎𝑥 is obtained from the distribution of the 

height 𝑧𝑙 of all impacts. 

The impact area within each grid 𝐴𝑤 is  

 𝐴𝑤 = 𝑑∆𝑧              (Equation 2.34) 
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The lateral erosion rate 𝐸𝑧 for a given elevation range 𝑧 + ∆𝑧 can be 

calculated as a sum of the volume eroded by impacts that fall within that 

elevation range divided by the impact area 𝐴𝑤  

 𝐸𝑧 =
∑ 𝐸𝑐(𝒛𝒍)𝒛𝒍∈𝑧

𝐴𝑤
  (Equation 2.35). 

2.2.5. Co-evolution of lateral erosion rate, wall morphology and shear 
stress 

As the wall is eroded over time, the travel distance, and hence the 

potential for loss of momentum of bedload particles after collision with the 

roughness element, increase, resulting in lower instantaneous lateral erosion 

rates. Meanwhile, the flow becomes wider and shallower as the wall is eroded. 

This results in a somewhat lower bed shear stress and hence lower lateral 

erosion rate. In turn, the lower lateral erosion rate will slow down the wall 

evolution. Without considering the co-evolution between shear stress and lateral 

erosion rate, the model will exaggerate wall evolution.  

To model the effects of wall evolution, we break the simulation into a 

sequence of time periods, each time period 𝑇 lasting 10 minutes. Smaller time 

periods were tested, but did not influence the results. During each period we 

assume that the flow depth, and thus shear stress, do not change. We average 

the erosion rate from impacts that occur during that time period. Then for the next 

period we update the depth and shear stress, and calculate new erosion rates. At 

beginning of the simulation (𝑇 = 1), the initial depth and shear stress are 

obtained from assuming a rectangular cross section from Equations 2.1-2.8. As 

the wall is eroded over time, the channel cross section and hence the wetted 

area become irregular. Therefore, 𝑄𝑤(𝑇) is not simply a product of 𝑊(𝑇), ℎ(𝑇), 

and 𝑢̅(𝑇) at the time period 𝑇 > 1. Instead, 𝑄𝑤(𝑇) needs to calculated from the 

wetted area 𝐴𝑎(𝑇) over the irregular cross section of the flow 

 𝑄𝑤(𝑇) = 𝐴𝑎(𝑇)𝑢̅(𝑇)  (Equation 2.36) 
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where 𝐴𝑎(𝑇) is a function of flow depth ℎ(𝑇) and needs to be obtained from 

integrating the flow width over ℎ(𝑇) for a given cross section shape. We assume 

that the friction factor 𝑓 is constant over the run period, because the changes of 

flow depth are relatively small. Combining Equation 2.36 with Equations 2.1-2.6, 

ℎ(𝑇) can be expressed as  

 ℎ(𝑇) =
1

8𝑔𝑆
(
𝑄𝑤

𝐴𝑎(𝑇)
)
2
[(1 − 𝐹𝑟)𝑓𝑏 + 𝐹𝑟𝑓𝑟]  (Equation 2.37) 

ℎ(𝑇) and 𝐴𝑎(𝑇) can be solved from Equation 2.40 by starting with an initial 

guess of ℎ(𝑇), integrating the flow width over ℎ(𝑇) for the current cross section 

shape to get 𝐴𝑎(𝑇) and iteratively changing the values of ℎ(𝑇) and 𝐴𝑎(𝑇) until 

these two solutions converge in Equation 2.37.  𝑢̅(𝑇) will then be back-calculated 

from Equation 2.39, and used to get the total shear stress 𝜏(𝑇) and shear stress 

available for sediment transport 𝜏𝑠(𝑇) from total friction factor 𝑓 = (1 − 𝐹𝑟)𝑓𝑏 +

𝐹𝑟𝑓𝑟 and bedrock friction factor (1 − 𝐹𝑟)𝑓𝑏 using Equation 2.2, respectively 

 𝜏(𝑇) =
𝜌𝑤[(1−𝐹𝑟)𝑓𝑏+𝐹𝑟𝑓𝑟]𝑢̅(𝑇)

2

8
  (Equation 2.38) 

 𝜏𝑠(𝑇) =
𝜌𝑤(1−𝐹𝑟)𝑓𝑏𝑢̅(𝑇)

2

8
.  (Equation 2.39) 

For each period, we calculated the suite of particle deflections and 

resulting erosion rates, then updated the wall morphology, used it recalculate the 

water depth, water velocity and shear stress available for sediment transport in 

the next time period from Equations 2.36-2.39, and updated the particle impact 

velocity, particle impact rates and erosion rates at next period.  

2.3. Results 

We assessed model performance using results from laboratory 

experiments reported by Fuller et al. (2016). Fuller et al. (2016) constructed three 

experimental channels (referred to as channels C1, C2 and C3), held the water 

discharge and sediment supply constant for each channel throughout the 

experiment, but varied the roughness element size over six classes: no 
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roughness elements (smooth sections); 2.4 mm; 4.3 mm; 7.0 mm; 10.0 mm; and 

16.0 mm (roughness sections). Table 2.1 and Table 2.2 list the initial hydraulic 

and sediment transport conditions in the Fuller Experiments, and the values of 

parameters used in the model calculations. These experiments provide an ideal 

test case for our model because the flow depth and thus initial shear stress 

available for sediment transport was measured, and erosion rates and patterns 

are measured for the various roughness element sizes. However, the rock tensile 

strength 𝜎𝑇 which controls the magnitude of the erosion rate was not measured. 

For the model calculations we use a value of 5.5 × 104 Pa for 𝜎𝑇, which is 

calibrated from the bulk erosion rate of 10 mm roughness elements (𝐸𝑏 = 74 

mm2/hr) in Channel C3. This value is reasonable for the weak concrete used in 

the Fuller Experiments (Sklar & Dietrich, 2001), and is used for predicting the 

erosion rate and assessing the model performance for other roughness element 

sizes.  

Table 2.1 Initial hydraulic and bedload transport conditions used in the simulation 
of the Fuller Experiments 

Channel 

section 

𝐷𝑟
b 

(mm

) 

𝐹𝑟
b 

𝑑c 

(mm

) 

𝑊b(1
a) 

(mm) 

𝑄𝑤
b 

(×10-

3m3/s) 

𝑞𝑠
b 

(kg/m/s

) 

𝜏b(1a

) 

(Pa) 

𝜏𝑔
b(1a

) 

(Pa) 

𝑓𝑟
d 𝑓𝑏

d 

C2 2.4 0.34 3.65 183 12.9 0.21 18.6 14.9 0.10 0.21 

C3 4.3 0.47 5.58 165 12.9 0.19 14 13 0.009 0.10 

C1 7.0 0.50 8.75 160 12.7 0.19 12 11.6 0.002 0.07 

C2e 10.0 0.51 13.2 181 12.9 0.21 18.3 9.2 0.16 0.16 

C2 16.0 0.56 19.5 183 12.9 0.21 26.4 8 0.61 0.34 

a 1 indicates the initial conditions, prior to wall evolution. 

b directly from Fuller et al. (2016). 

c calculated from 𝐹𝑟 by Fuller et al. (2016) assuming the roughness elements are 

uniformly distributed. 

d calibrated from 𝜏 and 𝜏𝑠 by Fuller et al. (2016). 
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e 10.0 mm roughness elements are located both in C2 and C3 by Fuller et al. 

(2016), the one in C3 is used for calibration of 𝜎𝑇 and the one in C2 is used for 

model performance. 

Table 2.2 Parameters used in simulation of the Fuller Experiments 

Variable Value 

Bedload particle size 𝐷 (mm) 4.3 a 

Channel slope 𝑆 0.025 a 

Critical Shields stress 𝜏𝑐
∗ 0.045 b 

Water density 𝜌𝑤 (kg/m3) 1000 b 

Sediment density 𝜌𝑠 (kg/m3) 2650 b 

Rock elastic modulus 𝑌 (Pa) 5×1010 c 

Restitution coefficient 𝐶𝑟 0.9 b 

Dimensionless rock resistance parameter 𝑘𝑣 106 c 

Rock tensile strength 𝜎𝑇 (Pa) 5.5×104 d 

Time period ∆𝑇 (min) 10 b 

Time step ∆𝑡 (s) 10-5 b 

a From Fuller et al. (2016). 

b Assumed. 

c From Sklar and Dietrich (2004). 

d From calibration with the 10 mm roughness element in C3 by Fuller et al. 

(2016).  

2.3.1. Model performance 

We assessed three aspects of the model performance when comparing to 

the Fuller Experiments: 1) shape of the eroded profile, 2) peak erosion and 3) 

bulk (integrated) cross-section erosion rate. Figure 2.8 shows the erosion rates 

measured in the Fuller Experiments. An undercut wall morphology occurred, 

falling within a range of 25-30 mm above the bed for all roughness sections. 
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Lateral erosion was concentrated in the lower half of the undercut (5 mm to 10 

mm above the bed) and decreased progressively up to the maximum height of 

erosion. The peak erosion was similar for each roughness section, occurring 

between a height of 0 mm and 5 mm over 2.15 hr.  

 

Figure 2.8 Comparison of modelled cross section shape and peak erosion rate to 
the Fuller et al. (2016) experiments for a) 2.4 mm, b) 4.3 mm, c) 7.0 
mm, d) 10.0 mm and e) 16.0 mm roughness sections.  

The model without co-evolving the shear stress, wall morphology and 

erosion rate captures the concentration of erosion in the lower half of the wall 

observed in the Fuller Experiments (Figure 2.8). However, it overpredicts the 

peak erosion by 3 to 5 times, except the 2.4 mm roughness element where the 

measured peak erosion is slightly larger (~ 10%). The lateral erosion 

concentrates in a smaller zone near the bottom of the wall (below 5 mm above 

the bed), while the Fuller Experiments show a wider concentration zone of 

erosion spreading from the base of the wall to 10 mm above the bed. The 

erosion below the radius of bedload particles (4.3 mm) is under-predicted by the 

model compared with the substantial undercut on the wall observed in the Fuller 
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Experiments (Figure 2.8) due to the assumption of spherical bedload particles, 

which cannot impact on the wall below their radius.   

The Fuller Experiments produced a roughly parabolic relation between the 

roughness element size and integrated cross-section erosion (Figure 2.9), which 

increases with roughness size below 4.3 mm, peaks at 4.3 mm, and then 

gradually decreases with larger roughness element sizes. This relation results 

from a trade-off between more frequent particle deflections and less shear stress 

available for sediment transport due to an increase in form drag when the 

roughness elements get larger (Fuller et al., 2016). Although the model captures 

this parabolic relation observed in the Fuller Experiments, it overpredicts the 

erosion for all roughness sections by 1.2 to 2 times (Figure 2.9). 

The deviation in the erosion profile and peak erosion rate between the 

model predictions and the Fuller Experiments can occur because changes in wall 

morphology cause a decline in shear stress applied to the bed. As the wall is 

eroded over time, the shear stress drops and the travel distance for individual 

particles increases, resulting in a lower erosion rate over time. We explored the 

hypothesis that shear stress needs to co-evolve with morphology to accurately 

predict erosion rate by dividing the model run into 10 minute periods.  Figure 2.10 

shows the decline in mean velocity and shear stress that occurs due to the 

increase in cross-sectional area as the wall is undercut and the channel is widen. 

The change in cross-sectional area, velocity, and shear stress is subtle. Shear 

stress declines most over the first time period (10 min) but barely changes for the 

rest of the time, because the erosion rate is largest in that first time period, when 

the bedload particle travel distance is smallest. The overall decline in shear 

stress is ~10%, because the changes in wall morphology are relatively small. 

Only the bottom of the wall is eroded and the maximum eroded length is only ~ 

10% of the total river width. Our assumption of constant friction factor 𝑓 may also 

slow down the change of shear stress.  
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Figure 2.9 Comparison of the total (integrated) cross-section erosion between 
model predictions and the Fuller Experiments for 2.4 mm, 4.3 mm, 
7.0 mm, 10.0 mm and 16.0 mm roughness sections. 

The model, when coupled with wall evolution, reproduces both the 

magnitude of erosion and the undercut wall shape that were observed in the 

Fuller Experiments well (Figure 2.8). The simulated erosion concentrates in the 

lower half of the erosion zone and tapers off with increasing height on the walls. 

The predicted peak erosion depth on the wall generally ranges from 8 mm to 15 

mm for all roughness sections, as in the experiments. However, the peak erosion 

is slightly less than that in the experiments, by ~ 2 mm over the total time period. 

We suspect this is because we neglected the influence of turbulence on lateral 

bedload particle deflection into the wall. The Fuller Experiments with a planar bed 

and no deflectors had a wall erosion depth of ~2 mm over the 2.15 hr run 

duration (See Figure 2.6d by Fuller et al., 2016), while the wall cannot be eroded 

without deflectors in our model. The model with evolution of the wall and shear 

stress also successfully reproduces the parabolic relation between the roughness 
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element size and integrated cross-section erosion, and the magnitude of erosion 

over all roughness sections (Figure 2.9).  

 

Figure 2.10 Cross section area of flow, mean velocity and shear stress evolution 
for 4.3 mm and 10.0 mm roughness element. 

The model is suitable for predicting the instantaneous lateral erosion rate 

on the wall. To successfully predict the change of wall morphology over time, 

however, the model needs to be coupled with co-evolution of shear stress, wall 

morphology and lateral erosion rate.   

2.3.2. Evolution of instantaneous lateral erosion rate and wall 
morphology 

The modelled evolution of erosion rate and wall morphology is similar for 

all channels in the Fuller Experiments. Representative profiles, for the 4.3 and 10 

mm roughness elements, of lateral erosion rate and wall morphology evolution 
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through time are obtained from our model and shown in Figure 2.11 and Figure 

2.12, respectively. The instantaneous erosion rate declines over time (Figure 

2.11). The erosion rate is roughly 10 times lower in the final time period 

compared to the initial time period. As the wall is eroded over time, the shear 

stress declines with the mean flow velocity (Figure 2.9), which leads to a lower 

erosion rate by decreasing the impact velocity on the wall in later time periods. 

However, the shear stress at the end of the time period is ~ 90 % of the initial 

shear stress (Figure 2.9), indicating the influence of the decreasing shear stress 

on erosion rate is almost negligible over the time period here. The decreasing 

erosion rate over time is largely due to the longer travel distance from deflection 

on the roughness element to impact on the wall as the wall is eroded over time 

(Figure 2.12). The erosion rates do not decline to zero over the 2.15 hr model 

runs, which means the wall can still be eroded if the model continues to run 

(Figure 2.12).   

At the beginning of the time period, the erosion rate is roughly 10 times 

smaller in the upper half of the erosion zone, compared to its lower half (Figure 

2.11). The erosion rate decreases in the lower half of the erosion zone because 

the undercutting makes the wall further from the roughness elements.  In the 

upper erosion zone, the lower rates of erosion continue because the wall is not 

as far from the roughness elements at the end of the experimental time. At the 

end of the time period, the erosion rate in the upper and lower halves of the 

erosion zone are similar (Figure 2.11). The combined effect of this vertical 

variation through time is a uniform erosion pattern on the wall over the 2.15 hr 

simulation time (Figure 2.12). 
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Figure 2.11 Evolution of instantaneous lateral erosion rate on the wall for a) 4.3 
mm and b) 10.0 mm roughness sections over 2.15 hr. 

 

Figure 2.12 Evolution of wall morphology for a) 4.3 mm and b) 10.0 mm roughness 
sections over 2.15 hr. 

The elevation of the peak erosion rate on the wall gets higher from ~2.5 

mm to ~8 mm above the bed (Figure 2.11). Initially, the maximum erosion rate is 
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mostly created by impacts of downward moving bedload particles, which 

concentrates in a zone near the base of the wall. As the wall is eroded over time, 

however, the corner between the bed and the wall is protected as it has been 

undercut. Instead, more bedload particles will either impact higher on the wall or 

impact on the bed, obtain upward momentum and bounce up on the wall. The 

elevated position of the peak erosion rate on the wall elevates the concentration 

of erosion zone on the wall (Figure 2.12).  

2.4. Coupled Lateral and Vertical Erosion Model 

Both field observations (Hartshorn et al., 2002; Turowski et al., 2008b; 

Fuller et al., 2009; Finnegan & Balco, 2013) and laboratory experiments ( 

Shepherd, 1972; Finnegan et al., 2007; Johnson & Whipple, 2010) have shown 

that low sediment supply rates promote vertical erosion and high sediment 

supply rates promote lateral erosion. Vertical erosion is relatively high when bare 

exposed bedrock is exposed to sediment impact, but relatively low when the bed 

is protected by the alluvial cover. Lateral erosion is thought to be high when the 

bed is alluviated and able to deflect bedload particles into the wall (Gilbert, 1877; 

Shepherd, 1972; Finnegan et al., 2007; Johnson & Whipple, 2010; Fuller et al., 

2016).  However, studies of the competition between lateral and vertical erosion 

for sediment-flux-driven incision remain qualitative.  

Our lateral erosion model replicates the essential lateral erosion patterns 

that were observed in the Fuller Experiments by explicitly accounting for bedrock 

erosion from bedload particle impacts. We couple the lateral erosion model with 

a vertical erosion model to quantify the changes in vertical and lateral erosion 

due to impacts from bedload particles for a range of hydraulic and sediment 

transport conditions. We generalize the lateral erosion model by treating the 

roughness elements as alluvial cover that has the same grain size as the 

bedload particles (𝐷𝑟 = 𝐷) and use a nondimensional form of the model to show 

that for a given grain size the full model behavior collapses to a unique functional 

surface in the parameter space defined by two nondimensional quantities: the 
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relative sediment supply (𝑞𝑠 𝑞𝑡⁄ ) and the transport stage (𝜏𝑠
∗ 𝜏𝑐

∗⁄ ). We then 

combine the lateral erosion model with the Sklar & Dietrich (2004) vertical 

erosion model and quantify the competition between lateral and vertical erosion 

by looking at the ratio of lateral to vertical erosion rate as a function of relative 

sediment supply (𝑞𝑠 𝑞𝑡⁄ ) and the transport stage (𝜏𝑠
∗ 𝜏𝑐

∗⁄ ). 

2.4.1. Nondimensional framework of coupled numerical model 

The nondimensional framework for the lateral erosion model is intended to 

explore the variation of instantaneous lateral erosion rate for the given hydraulic 

and transport conditions, rather than the co-evolution of lateral erosion rate, wall 

morphology and shear stress over time. We start by determining the size and 

distribution of roughness elements on the bed. Assuming the alluvial cover 

provides the only roughness elements capable of deflecting bedload particles, 

and has the same size as the bedload particles (𝐷𝑟 = 𝐷), the fraction of 

roughness elements 𝐹𝑟 increases with sediment supply rate and can be 

calculated from the relative sediment supply 𝑞𝑠 𝑞𝑡⁄  using the method proposed by 

Sklar & Dietrich (2004) 

 𝐹𝑟 =
𝑞𝑠

𝑞𝑡
  (Equation 2.40) 

where the fraction of roughness elements (alluvial cover). 𝐹𝑟 is assumed to be a 

linear function of relative sediment supply. Turowski et al., (2007) developed an 

exponential formula for 𝐹𝑟, and Turowski & Hodge (2017) built a probabilistic 

framework for the description of the cover effect that contained the linear and 

exponential models as special cases. For simplicity and consistency with the 

Sklar & Dietrich (2004) vertical erosion model we elected to use the linear model. 

The transport capacity 𝑞𝑡 can be estimated from the Fernandez Luque & 

Van Beek (1976) bedload sediment transport relation 

 𝑞𝑡 = 5.7𝜌𝑠(𝑅𝑏𝑔𝐷
3)0.5(𝜏𝑠

∗ − 𝜏𝑐
∗)1.5  (Equation 2.41) 
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where 𝑅𝑏 = 𝜌𝑠 𝜌𝑤⁄ − 1 is nondimensional buoyant density. Assuming the alluvial 

cover is uniformly distributed on the bed, the distance between two adjacent 

roughness elements 𝑑 is expressed as 

 𝑑 =
𝐷

𝐹𝑟
  (Equation 2.42) 

Substituting Equation 2.40 into Equation 2.42, 𝑑 can be obtained from the 

given grain size 𝐷 and relative sediment supply rate 𝑞𝑠 𝑞𝑡⁄  

 𝑑 = 𝐷
𝑞𝑡

𝑞𝑠
  (Equation 2.43) 

We then determine the initial saltation trajectories and deflection 

trajectories from discrete roughness elements from Equations 2.9-2.15, for a 

given transport stage 𝜏𝑠
∗ 𝜏𝑐

∗⁄  and grain size 𝐷. These results are then applied in a 

continuum model by calculating the deflection rates 𝐼𝑐 on each cell of the 

roughness surface from Equation 2.16-2.22, the impact rate 𝐼𝑤 on the wall from 

𝐼𝑐, the impact velocities 𝑣𝑖 and positions on the wall from Equation 2.23-2.25 and 

the resultant total erosion rates 𝐸𝑡 for all impact locations on the wall from 

combining Equations 2.29-2.32 for the given rock parameters (𝑘𝑣, 𝜎𝑇 and 𝑌), 

relative sediment supply rate 𝑞𝑠 𝑞𝑡⁄ , transport stage 𝜏𝑠
∗ 𝜏𝑐

∗⁄   and grain size 𝐷 

 𝐸𝑡 = ∑
𝜋𝜌𝑠𝐷

3𝑣𝑖
2𝑌

6𝑘𝑣𝜎𝑇
2 𝐼𝑤.  (Equation 2.44) 

The downstream velocity after deflection in Equation 2.23 is assumed to 

be constant here for simplification, without considering the variation of deflection 

trajectories in the longitudinal direction. To account for the transition from 

bedload to suspension that is equivalent to a particle taking a hop of infinite 

length, Sklar & Dietrich (2004) assume that the impact rate on the bed and the 

impact velocity become negligible as 𝑢∗ approaches 𝑤𝑓 (see their Equation 2.21 

and 22). When 𝑙𝑠 becomes infinite in our lateral erosion model, the impact 

velocity on the bed 𝑤𝑠 (Equation 2.12) before deflection, and hence the impact 

velocity on the wall 𝑣𝑖 (Equation 2.30) monotonically increases with higher 

transport stage. This is problematic because the lateral erosion rate should 
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decline as the transport stage approaches the suspension threshold. To keep the 

lateral erosion model consistent with the Sklar & Dietrich (2004) vertical erosion 

model, 𝑣𝑖 is set to be negligible by multiplying it with (1 − (𝑢∗ 𝑤𝑓⁄ )2)0.5 in 

Equation 2.44 as 𝑢∗ approaches 𝑤𝑓 and rearranging Equation 2.44 

 𝐸𝑡 =
𝜋𝜌𝑠𝐷

3𝑌

6𝑘𝑣𝜎𝑇
2 (1 − (𝑢

∗ 𝑤𝑓⁄ )2)∑(𝑣𝑖
2𝐼𝑤).  (Equation 2.45) 

To evaluate the average lateral erosion rate 𝐸𝑙 on the wall, 𝐸𝑡 is averaged 

over the maximum impact elevation on the wall 𝑧𝑙𝑚𝑎𝑥 which is obtained from the 

distribution of 𝑧𝑙 of all deflection trajectories on the wall 

 𝐸𝑙 =
𝜋𝜌𝑠𝐷

3𝑌

6𝑘𝑣𝜎𝑇
2

(1−(𝑢∗ 𝑤𝑓⁄ )2)

𝑑𝑧𝑙𝑚𝑎𝑥
∑(𝑣𝑖

2𝐼𝑤)  (Equation 2.46) 

The variable 𝑢∗ 𝑤𝑓⁄  is a function of transport stage 𝜏𝑠
∗ 𝜏𝑐

∗⁄  for a given grain 

size 𝐷, so 𝐸𝑙 is a function of four variables, including rock parameters (𝜎𝑇 and 𝑌), 

relative sediment supply rate 𝑞𝑠 𝑞𝑡⁄ , transport stage 𝜏𝑔
∗ 𝜏𝑐

∗⁄  and grain size 𝐷. The 

influence of rock parameters (𝜎𝑇 and 𝑌) in Equation 2.46 can be erased when 𝐸𝑙 

is non-dimensionalized as (Sklar & Dietrich, 2004) 

           𝐸𝑙
∗ =

𝐸𝑙𝜎𝑇
2

𝜌𝑠𝑌(𝑔𝐷)
1.5 =

𝜋(𝐷 𝑔⁄ )1.5

6𝑘𝑣

(1−(𝑢∗ 𝑤𝑓⁄ )2)

𝑑𝑧𝑙𝑚𝑎𝑥
∑(𝑣𝑖

2𝐼𝑤)                  (Equation 2.47) 

Therefore, 𝐸𝑙
∗ can be considered as a function of just two nondimensional 

quantities, the relative sediment supply 𝑞𝑠 𝑞𝑡⁄  and the transport stage 𝜏𝑠
∗ 𝜏𝑐

∗⁄   for a 

constant grain size 𝐷. Meanwhile, an analytical solution for the non-dimensional 

vertical erosion rate 𝐸𝑣
∗ has been proposed to be a function of 𝑞𝑠 𝑞𝑡⁄  and 𝜏𝑠

∗ 𝜏𝑐
∗⁄  by 

Sklar & Dietrich (2004) 

 𝐸𝑣
∗ =

𝐸𝑣𝜎𝑇
2

𝜌𝑠𝑌(𝑔𝐷)
1.5 =

0.046(𝑅𝑏𝜏𝑐
∗)1.5

𝑘𝑣

𝑞𝑠

𝑞𝑡
(1 −

𝑞𝑠

𝑞𝑡
)(
𝜏𝑠
∗

𝜏𝑐
∗ − 1)(1 − (

𝑢∗

𝑤𝑓
)2)1.5 (Equation 2.48) 

Vertical and lateral erosion can be coupled from the ratio 𝑒 

 𝑒 =
𝐸𝑙
∗ 

𝐸𝑣
∗    (Equation 2.49) 
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because both erosion rates can be related to two variables 𝑞𝑆 𝑞𝑡⁄  and 𝜏𝑠
∗ 𝜏𝑐

∗⁄   for a 

given 𝐷. 

2.4.2. Competition between vertical and lateral erosion 

In order to explore the competition between vertical and lateral erosion 

with varied 𝑞𝑆 𝑞𝑡⁄  and 𝜏𝑠
∗ 𝜏𝑐

∗⁄  , we assume that channel erosion is disconnected 

from the hillslopes. The most direct analogue for the coupled model here is a 

bedrock canyon or gorge that is deeply incised into a river valley and largely 

disconnected from the hillslopes. In order to implement lateral and vertical 

erosion in a coupled format, we must specify various parameters, including the 

grain-size of transported material, transport thresholds and various sediment, 

rock and water properties. For convenience, we use values reported by Sklar & 

Dietrich (2004) for the South Fork Eel River in Northern California (Table 2.3). 

Table 2.3 Reference site and the model parameter values used as inputs for 
vertical, lateral and coupled erosion models.  

Variable Value 

Bedload particle size 𝐷 (m) 0.060 a 

Channel width 𝑊 (m) 18.0 a 

Critical Shields stress 𝜏𝑐
∗ 0.045 b 

Water density 𝜌𝑤(kg/m3) 1000 b 

Sediment density 𝜌𝑠 (kg/m3) 2650 b 

Rock elastic modulus 𝑌 (Pa) 5×1010 a 

Dimensionless rock resistance parameter 𝑘𝑣 106 a 

Rock tensile strength 𝜎𝑇 (Pa) 7×106 a 

a From Sklar and Dietrich (2004). 

b Assumed. 
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The first step in exploring the competition between vertical and lateral 

erosion involved calculating how 𝐸𝑣
∗ varies with 𝑞𝑠 𝑞𝑡⁄  and 𝜏𝑠

∗ 𝜏𝑐
∗⁄  for the grain size 

D = 0.06 m at the reference site, using the Sklar & Dietrich (2004) model.  𝐸𝑣
∗ has 

an analytical solution for 𝑞𝑠 𝑞𝑡⁄  and 𝜏𝑠
∗ 𝜏𝑐

∗⁄ , so we can simply determine 𝐸𝑣
∗ for 

each combination of 𝑞𝑠 𝑞𝑡⁄  and 𝜏𝑔
∗ 𝜏𝑐

∗⁄  from Equation 2.45. Figure 2.13 shows that 

𝐸𝑣
∗ collapses to a unique functional surface in the parameter space created by 

𝑞𝑠 𝑞𝑡⁄  and 𝜏𝑠
∗ 𝜏𝑐

∗⁄ .  As in Sklar & Dietrich (2004), 𝐸𝑣
∗ goes to zero at the threshold of 

motion and suspension along the 𝜏𝑠
∗ 𝜏𝑐

∗⁄  axis, and the threshold of full cover and 

no cover along the 𝑞𝑠 𝑞𝑡⁄  axis. The decline in erosion rate at the threshold for 

suspension is adopted for simplicity here, but we recognize that this is not strictly 

correct and that there is some reduced bedrock erosion beyond the suspension 

threshold (Lamb et al., 2008a; Scheingross et al., 2014). 𝐸𝑣
∗ peaks at the 

intermediate transport stages (Figure 2.14a) where the growth in the impact 

energy is balanced by a decline in the impact frequency as the saltation hop 

length increases with shear stress, and at moderate relative sediment supply 

(Figure 2.14b), where the growth in impact rate is balanced by the reduction in 

the extent of bedrock exposure with increasing sediment supply. 

The second step in examining the competition between vertical and lateral 

erosion was to explore how 𝐸𝑙
∗ varies with 𝑞𝑠 𝑞𝑡⁄  and 𝜏𝑠

∗ 𝜏𝑐
∗⁄  for the grain size D =

0.06 m at the reference site. We varied 𝜏𝑠
∗ 𝜏𝑐

∗⁄  from 1 to 22, and for each value of 

𝜏𝑠
∗ 𝜏𝑐

∗⁄  calculated the initial saltation trajectories (Equations 2.9-2.12) before 

deflection by roughness elements and the transport capacity 𝑞𝑡 (Equation 2.38). 

We also varied 𝑞𝑠 𝑞𝑡⁄  from 0 to 1, and for each value of 𝑞𝑠 𝑞𝑡⁄  calculated the 

distance between two adjacent roughness elements 𝑑 (Equation 2.40). For each 

combination of 𝑞𝑠 𝑞𝑡⁄  and 𝜏𝑠
∗ 𝜏𝑐

∗⁄  , we calculated the sediment supply rate 𝑞𝑠 

(Equation 2.37) and used the deflection model to get all the possible individual 

deflection trajectories from discrete parts of the roughness elements (Equations 

2.13-2.15).  We then applied these results in the continuum model by calculating 

the deflection rates on each cell of the roughness surface (Equation 2.16-2.22), 

the maximum erosion height 𝑧𝑙𝑚𝑎𝑥 (Equation 2.23-2.25), and the resultant 𝐸𝑙 
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(Equation 2.43) and 𝐸𝑙
∗ (Equation 2.44). Using this nondimensional framework, 

the lateral erosion model also collapses to the unique functional surface in the 

parameter space defined by 𝑞𝑠 𝑞𝑡⁄  and 𝜏𝑠
∗ 𝜏𝑐

∗⁄  (Figure 2.15).  

 

Figure 2.13 Non-dimensional vertical erosion rate (𝑬𝒗
∗ ) as a function of transport 

stage and relative sediment supply.  
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Figure 2.14 Non-dimensional vertical erosion rate as a function of a) transport 
stage 𝝉𝒔

∗ 𝝉𝒄
∗⁄  and b) relative sediment supply 𝒒𝒔 𝒒𝒕⁄ ; non-dimensional 

lateral erosion rate as a function of c) transport stage 𝝉𝒔
∗ 𝝉𝒄

∗⁄   and d) 

relative sediment supply 𝒒𝒔 𝒒𝒕⁄ ,and the ratio of lateral to vertical 

erosion rate as a function of e) transport stage 𝝉𝒔
∗ 𝝉𝒄

∗⁄   and f) relative 

sediment supply 𝒒𝒔 𝒒𝒕⁄ . 

Figure 2.15 reveals that 𝐸𝑙
∗ goes to zero at the threshold of motion and 

suspension along the 𝜏𝑠
∗ 𝜏𝑐

∗⁄  axis, and the threshold of no cover along the 𝑞𝑠 𝑞𝑡⁄  

axis, but is relatively high at the threshold of full cover. As with 𝐸𝑣
∗, 𝐸𝑙

∗ peaks at an 

intermediate transport stages, however, 𝐸𝑙
∗ peaks at high relative sediment 

supply rate (~ 0.7; Figure 2.15). Figure 2.14c-d illustrates the pattern of 𝐸𝑙
∗ with 

increasing shear stress and relative sediment supply rate more clearly. 𝐸𝑙
∗ shows 

a parabolic variation with transport stage, where 𝐸𝑙
∗ is zero at the threshold of 
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motion due to a lack of particle movement along the transport stage axis (Figure 

2.14c). As the transport stage exceeds the threshold for motion, 𝐸𝑙
∗ increases 

gradually with transport stage due to the growth in impact velocity. However, the 

impact frequency of bedload particles on the roughness element decreases with 

transport stage, because the saltation trajectories tend to grow more elongated 

with increasing shear stress. The growth in the particle impact energy and the 

reduction in the impact frequency with increasing shear stress results in a peak 

𝐸𝑙
∗ at intermediate transport stages. 𝐸𝑙

∗ goes to zero at the threshold of 

suspension, because no impacts between roughness elements and bedload 

particles occur in our model. This is an artifact of the saltation model used. Some 

limited lateral erosion is possible from deflected particles above the suspension 

threshold, but 𝐸𝑙
∗ would be low. Along the relative sediment supply axis, a 

parabolic variation of 𝐸𝑙
∗ also exists. 𝐸𝑙

∗ is zero when the bed is free of cover and 

remains negligible when the relative sediment supply is <0.15 (Figure 2.14d). 

This occurs because when the relative sediment supply is low, the fraction of bed 

coverage is low, and there are relatively few deflectors on the bed. 𝐸𝑙
∗ gradually 

grows with the relative sediment supply rate above 0.15 due to the increase of 

the number of saltating bedload particles and the extent of roughness. However, 

𝐸𝑙
∗ peaks at the relative sediment supply of ~ 0.7 (Figure 2.14d) due to a 

competition between the impact area 𝐴𝑐 and wall-normal velocity 𝑣𝑜 and the 

number of deflections on each cell of the roughness surface. When 𝑞𝑠 𝑞𝑡⁄  

increases, the distance between two adjacent roughness elements starts to 

decline, which will reduce the deflections near the bottom of the roughness 

surface and force bedload particles to impact near the top of the roughness 

surface. The concentration of impacts near the top of the roughness surface will 

lead to lower impact area on each cell as the cell starts to get close to the flux 

surface (Figure 2.5) and lower wall-normal velocity 𝑣𝑜 after deflection by the cell 

as the vertical velocity 𝑤𝑠 before deflection declines and the normal vector 

increasingly points upward. However, the number of deflections on each cell 

increases with higher sediment supply rates as 𝑞𝑠 𝑞𝑡⁄  increases. The decrease in 

impact area 𝐴𝑐 and wall-normal velocity 𝑣𝑜 and the increase of the number of 
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deflections on each cell of the roughness surface with higher 𝑞𝑠 𝑞𝑡⁄  will lead to a 

peak in 𝐸𝑙
∗ when they are balanced. 𝐸𝑙

∗ starts to decline for 𝑞𝑠 𝑞𝑡⁄  above ~ 0.7 and 

is ~ 75% of the peak lateral erosion rate at the threshold of full cover.  

 

Figure 2.15 Non-dimensional lateral erosion rate (𝑬𝒍
∗̅̅ ̅) as a function of transport 

stage and relative sediment supply. 

The contour lines of non-dimensional lateral erosion rate are not smooth. 

This is not improved by using smaller time steps and space grids. The roughness 

element surface is discretized into nearly uniform triangular grid cells to model 

the collision with a finite number of bedload particles, which leads to variations in 

the modelled erosion rate. Some variation is also caused by our numerical 

approach. We track the movement of each particle to obtain the impact velocity 

and the impact position on the wall under every combination of relative sediment 
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supply rate and transport stage instead of deriving explicit empirical correlations, 

resulting in a lateral erosion model that varies irregularly with control variables.  

The competition between vertical and lateral erosion was calculated from 

the ratio of 𝐸𝑙
∗ to 𝐸𝑣

∗ for each combination of 𝑞𝑠 𝑞𝑡⁄  and 𝜏𝑠
∗ 𝜏𝑐

∗⁄ . The ratio 𝑒 

collapses to a unique functional surface in the parameter space created by 𝑞𝑠 𝑞𝑡⁄  

and 𝜏𝑠
∗ 𝜏𝑐

∗⁄  (Figure 2.16). 𝑒 goes to zero with no bed cover, at the thresholds of 

motion and suspension, and is infinite when the bed has full cover. Figure 2.14e-f 

illustrates the patterns in 𝑒 with changes of 𝜏𝑠
∗ 𝜏𝑐

∗⁄  and 𝑞𝑠 𝑞𝑡⁄ . Along the 𝜏𝑠
∗ 𝜏𝑐

∗⁄  axis, 

𝑒 is parabolic, with a peak at an intermediate transport stage. This occurs 

because 𝐸𝑙
∗ increases more rapidly than 𝐸𝑣

∗ at lower transport stages (<10), and 

decreases more rapidly than 𝐸𝑣
∗ at high transport stages (Figure 2.14a-b), for a 

constant 𝑞𝑠 𝑞𝑡⁄ . In contrast, 𝑒 shows a monotonic increase with increasing 𝑞𝑠 𝑞𝑡⁄  

(Figure 2.14f);  𝑒 goes to zero when 𝑞𝑠 𝑞𝑡⁄  = 0 and gradually increases with 

relative 𝑞𝑠 𝑞𝑡⁄  (> 0.15), because 𝐸𝑙
∗ grows faster than 𝐸𝑣

∗ when the relative 

sediment supply rate is below 0.5, and 𝐸𝑙
∗ continues to increase but 𝐸𝑣

∗ start to 

decrease when the relative sediment supply is between 0.5 and 0.7 (Figure 

2.14b and d). The ratio 𝑒 continues to increase at high relative sediment supply 

(> 0.7), because 𝐸𝑙
∗ decreases more slowly than 𝐸𝑣

∗. When the bed is fully 

covered, the ratio goes to infinity as the lateral erosion rate is relatively high, but 

the vertical erosion rate goes to zero.  

The coupled model shows that the lateral erosion rate is lower than the 

vertical erosion rate under nearly 75% of the transport and supply conditions 

(Figure 2.16). Lateral erosion is negligible at low sediment supply rates when the 

bed coverage is less than 20% and gradually increases with the extent of alluvial 

cover, but only dominates at high sediment supply rates when the bed is largely 

covered by roughness elements. The ratio e is ultimately controlled by the 

change in 𝐸𝑣
∗ and 𝐸𝑙

∗ and where it is high does not necessarily correspond to 

where either 𝐸𝑣
∗ or 𝐸𝑙

∗ are largest. Nevertheless, lateral erosion only dominates 

over vertical erosion under a limited range of conditions. 
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Figure 2.16 The ratio of lateral to vertical erosion rate 𝒆 = 𝑬𝒍
∗ 𝑬𝒗

∗⁄  as a function of 

transport stage and relative sediment supply. 

2.5. Discussion 

The lateral erosion model confirms that bedload particle impact is a viable 

mechanism for lateral erosion in bedrock rivers by reproducing key patterns in 

lateral erosion from the Fuller Experiments, including the undercut wall shape, 

the peak erosion and the total erosion rate. Saltating bedload particles obtain 

lateral momentum to erode the wall by colliding with the roughness elements on 

the bed. The bedload particle impacts concentrate in a zone near the bottom of 

the walls, thereby creating an undercut wall shape. 
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2.5.1. Limiting conditions on lateral erosion 

While our model can reproduce key features of lateral rock erosion in 

channels, it is useful to consider some limiting conditions on the process of 

lateral erosion by abrasion. During periods when wall erosion can be effective, 

there are limits to how far lateral erosion by abrasion may occur before one of the 

following happens: 1) changes in channel geometry cause the stress to fall below 

the threshold of motion to maintain bedload; 2) the undercut becomes so deep 

that deflected particles can no longer reach the wall; or 3) the undercut is so 

deep that the rock mass above it fails into the channel (as in Figure 2.1a).It is 

unlikely that the first limitation will actually occur in a river undergoing 

undercutting. As the wall is undercut over time, mean velocity and shear stress 

drop due to the increase in cross-sectional area. The lateral erosion rate will go 

to zero when the shear stress is below the threshold for particle motion. 

However, this is unlikely to happen because the stress and wall morphology co-

evolve. At low stresses, where changes in the wall would affect the shear stress, 

the erosion rate would be low, so the wall evolution would be very slow. It would 

therefore take an excessively long time for the shear stress to drop below the 

threshold of motion.  

The lateral momentum for bedload particles to reach the wall drops due to 

the increase in travel distance as the wall gets undercut over time. To explore 

how this affects further undercutting, we ran the lateral erosion model over 15 hr 

using the 10 mm roughness element section. The lateral erosion stops after 12 

hr, although the transport stage (~2.5) at the end of the time period is still enough 

to transport bedload particles (Figure 2.17). This occurs because the wall is 

eroded over 18 mm at the end of the time period, which is too far for bedload 

particles to impact on the wall at transport stage of ~2.5. As such, the increase in 

travel distance provides a greater limiting condition on lateral erosion than the 

drop of shear stress. Using a constant resistance coefficient over the run may 

overpredict the shear stress because the hydraulic roughness may increase as 

the wall is undercut. Also, the calculation shown in Figure 2.17 does not include 
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any roughness elements within the undercut.  If the newly exposed bed by 

channel undercutting becomes alluviated, those deflectors would allow lateral 

erosion to continue.   

 

Figure 2.17 a) Shear stress evolution and b) wall morphology of 10.0 mm 
roughness section (C2) over 15 hr. 

Continued undercutting of the lower wall creates an imbalance on the wall 

and may cause the upper part to collapse and to widen the whole channel. Such 

a mechanism of channel widening has been documented in both experiments 

(Carter & Anderson, 2006) and field data (Cook et al., 2014). However, the 

question of how far the wall needs to be undercut before it fails remains 

unanswered. Bedrock walls with lesser rock mass strength can fail more easily 

as the lower part of the wall is undercut. The degree of fracturing and jointing on 

the bedrock walls influences the rate of rock sliding and toppling and hence 

channel width. Bedrock bedding may play a dominant role in controlling the wall 

collapse. Undercut bedrock walls with vertical bedding can cause a channel to 

widen more effectively than with horizontal bedding, which may remain intact for 

deeper undercuts. 
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2.5.2. Undercut wall shape dynamics 

One of the key findings of our model is that in bedrock channels with a 

planar bed, the competition between vertical and lateral erosion is controlled by 

the extent of alluvial cover under different sediment supply conditions, which 

agrees with the experimental and field measurements (Finnegan et al., 2007; 

Fuller et al., 2009, 2016; Johnson & Whipple, 2010; Finnegan & Balco, 2013). 

Our model provides the opportunity to quantify how different wall shapes are 

formed under different sediment supply conditions. In a low sediment supply 

environment, the channel bed is more exposed and vertical erosion will 

dominate, with lateral erosion relatively negligible, resulting in a near straight wall 

shape. At an intermediate to high sediment supply where the bed is 50%-90% 

covered, both the bed and walls can be cut by bedload particle impacts. The 

continuing lowering of the channel bed will shift down the lateral erosion zone by 

preventing the bedload particles impacting on a fixed elevation on the walls. This 

will create an undercut wall shape that keeps the same width but spreads more 

deeply over time. However, when the bed is near fully covered (>90%), the bed is 

relatively static due to the protection of alluvium, leading to an undercut wall 

shape that gets wider over time. As such, the wall shape would change from near 

straight to deeply undercut as the sediment supply increases. 

The undercut wall shape may be modified by roughness elements made 

of the bedrock surface. The bedrock rivers have a wide range of sculpted bed 

morphologies (Wohl, 1993; Montgomery & Buffington, 1997; Wohl & Merritt, 

2001; Richardson & Carling, 2005), such as potholes, flutes, furrows, runnels, 

etc. In a bedrock channel with bedrock obstacles near the walls, bedload 

particles can be deflected toward the walls by bedrock obstacles even when no 

alluvial cover exists. Beer et al. (2017) mapped the lateral erosion patterns in a 

bedrock gorge in the Swiss Alps under three bedrock obstacle conditions: 1) no 

bedrock obstacle; 2) low bedrock obstacle; 3) high bedrock obstacle. Bedrock 

walls without bedrock obstacles were only slightly eroded, while in sections with 

low and high bedrock obstacles, the walls were undercut deeper and higher 
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above the bed.  The occurrence of bedrock obstacles to deflect bedload particles 

to higher elevations than the alluvium may have the effect of elevating the 

undercut zone. The size of bedrock roughness obstacles can influence the 

erosion rate from two opposite effects. Small bedrock obstacles do not have 

large surface area to deflect bedload particles but tend to have high impact 

velocity due to low form drag. Larger bedrock obstacles have more surface area 

for deflections, but the impact velocity will be reduced because of higher form 

drag. Intermediate bedrock obstacles that balance the tradeoff between surface 

area and impact velocity may result in highest lateral erosion rates.  

One implication of our model would suggest is that the extreme magnitude 

of supply events may not be the most effective in eroding bedrock walls. Instead, 

the more frequent high moderate sediment supply events may be responsible for 

the majority of bedrock wall erosion. This occurs because the reduced impact 

area on each roughness element and the reduced impact velocity with increasing 

alluvial cover (> 75% coverage; Figure 2.15).  

It is possible to infer the relative width to depth ratio and degree of incision 

of a channel cross-section from Figure 2.16. A bedrock channel with a high 

sediment supply rate, which can be found near the upper part of Figure 2.16, is 

mostly covered by alluvium. This channel would be dominated by lateral erosion 

with negligible vertical erosion, allowing for a wide bedrock channel, relative to its 

depth. In contrast, a channel that receives relatively little sediment supply should 

plot near the lower part of Figure 2.16, will preferentially incise the bed and have 

a lower relative width to depth ratio. Of course, the sediment supply and transport 

stage conditions of bedrock rivers change over time with hydrographs and 

sedigraphs in a basin. The ultimate shape of a channel is determined by how 

long it spends in particular positions on Figure 2.16. A channel that spends the 

vast majority of its time in the lower corner of Figure 2.16 is likely to be narrow 

and deeply incised. A channel that is in the upper corner of Figure 2.16 most of 

the time will be relatively wider. Tracking a channel through time on Figure 2.16 
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requires a full morphodynamic implementation of the model presented herein, 

which requires imposed hydrographs and sedigraphs.  

2.5.3. Model limitations and further prospects 

There are a number of simplifications in our model, which were necessary 

to produce a result, that may affect the outcomes. Our model is a sediment flux-

driven incision model that is most applicable to rivers flowing through massive 

crystalline rock, that does not take into account any other lateral erosion 

mechanisms. Plucking may dominate bedrock erosion where rock is weak or 

well-jointed (Chatanantavet & Parker, 2009, 2011), or where shear stresses are 

large enough to entrain or transport large blocks (Montgomery, 2004; Stock et 

al., 2005; Lamb et al., 2015; Beer et al., 2017). Plucking is particularly effective in 

erosion of columnar basalts (Dubinski & Wohl, 2013; Larsen & Lamb, 2016) and 

may be possible by fluid shear stresses plucking pieces of weak rocks from 

channel walls (Montgomery, 2004; Stock et al., 2005). 

Our model uses a uniform grain size with spherical shape for sediment 

particles to represent the wide distribution of grain sizes supplied to bedrock 

rivers. Grain size controls the threshold for motion and hence the transport stage, 

and hence impact velocity and impact rates. Grain size of the alluvial cover 

determines the elevation of collision, thereby influencing the transfer of 

momentum during collision and the impact height on the wall. High points of the 

alluvial cover that protrude above the saltation layer do not deflect bedload 

particles into the wall. Therefore, the distribution of grain sizes supplied by the 

upstream catchment (Sklar et al., 2017) may influence the lateral erosion rate by 

changing the fraction of total load that is transported as bedload and the 

momentum transfer of bedload particles during collision with the alluvial cover. 

The shape of sediment particles determines the distribution of impact angles 

during collision between roughness elements and bedload particles, thereby 

influencing the direction of movement after collision. Given that our assumption 

of a uniform grain size with spherical shape has well reproduced the erosion 
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patterns observed in the Fuller Experiments, which used non-spherical 

deflectors, the influence of the non-spherical shapes of natural particles on lateral 

erosion rate may be negligible.  

Our lateral erosion model uses numerical formulations to track the 

movement of individual bedload particles. The potential for bedrock erosion by 

bedload impacts at transport stages above the suspension threshold is ignored. It 

is possible that particle impacts might be viscously damped for fine grains that 

are transported as suspended load. Yet, bedload transport remains a significant, 

but decreasingly important component of the total load as transport stages 

increase above the suspension threshold (Lamb et al., 2008a; Scheingross et al., 

2014). Suspended load has been proposed to be responsible for lateral erosion 

through turbulent fluctuations that laterally sweep particles to impact on the wall 

(Whipple et al., 2000). It is not possible for us to track particle movements above 

the suspension threshold, so we force the lateral erosion rate to zero at the 

suspension threshold, which is consistent with the Sklar & Dietrich (2004) vertical 

erosion model. Further work is necessary to develop a version of our model to 

handle lateral erosion by sediment suspension. 

The simplified treatment of flow dynamics in the model may influence the 

result as well. Movement of sediment after collision is modelled by assuming that 

the influence of turbulence on trajectories is negligible. However, local turbulent 

fluctuations can be intense above a bed with significant roughness (Richardson & 

Carling, 2005). We assume that flow advection is negligible near the bed so that 

particles impact on roughness elements and subsequently on the wall without 

being swept away with the flow. The advective component of the impact velocity 

can be significant over roughness elements (Tinkler, 1997; Johnson & Whipple, 

2007), where flow goes around large roughness elements and advects the 

sediment toward the wall, potentially increasing the impact velocity and rates on 

the wall. Some caution should be exercised in applying the model where the 

cross-section is irregular or where the flow field is non-uniform. 
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An important simplification in the lateral erosion model is our assumption 

that bedload particles are uniformly transported in a rectangular channel with a 

planar bed and straight walls. At low relative sediment supply rates, the bedload 

layer self organizes into a concentrated filament along the channel centerline.  In 

a rectangular bedrock channel, the shear stress is higher in the channel center 

than near the wall due to the wall drag (Gary Parker, 1978). This flow structure 

results in faster bedload particle velocity in the channel center than near the 

walls. Nelson & Seminara (2011) modelled the Finnegan et al. (2007) 

experiments and showed that the formation of a bed load filament along local 

channel depressions is capable of forming an incised channel with strath terraces 

because bedload is gravitationally drawn to the lowest part of the channel cross-

section, forming preferential pathways for bed load in bedrock channels 

(Finnegan et al., 2007; Chatanantavet & Parker, 2008; Nelson & Seminara, 2011; 

2012; Inoue et al., 2014; Inoue et al., 2016; Turowski & Hodge, 2017). The higher 

speed and greater concentration of bedload particles in the channel center will 

increase the impact energy and frequency and accelerate the vertical erosion 

rate in the channel center, but slow down the lateral erosion rate due to the 

increasing travel distance for the particles to impact on the wall. This can have a 

self-reinforcing effect where the bed load pathways are topographically steered 

by an incised groove, so that bedload concentrates vertical erosion in the 

channel center until the incised groove is alluviated (Cao, 2018). Alternatively, 

the areal concentration of bed load can enhance the lateral erosion on the 

groove walls because sediment particles can be deflected by the alluvium to 

impact on the sidewalls and to widen the incised groove. The organization of 

bedload layers is not presently considered in our model because there is no 

analytical solution to predict this phenomenon, but this needs to be addressed to 

understand complex channel cross-sections. 

Our model also does not consider the self-organization of bedload layers 

that may lead to the formation of persistent alluvial patches at high relative 

sediment supply rates. Relative sediment supply in the Fuller Experiments was 

kept below the patch formation threshold. Field observations and flume 
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experiments have shown that partial alluvial cover tends to self-form in patches in 

bedrock rivers and may form alternating gravel bars (e.g. Lisle, 1986; 

Chatanantavet & Parker, 2008). Turowski (2020) developed a lateral erosion 

model that more explicitly treats the effects of self-organized alluvium. The model 

does not track particle deflections and evolution of the wall, as in our model. 

Instead, a deflection length is defined as saltation hop length times its defection 

angle and if the deflection length is less than the distance between the bar and 

the opposite wall, lateral erosion is thought to occur, increasing the channel width 

to a steady state reach width. Our model would predict the opposite erosion 

pattern predicted by the Turowski (2020) model. Our model would underpredict 

erosion on the wall adjacent to a bar because the bar will have densely packed 

deflectors and it would overpredict erosion on the wall opposite to the bar 

because the bare bedrock will have few immobile deflectors. Inclusion of flow 

patterns associated with alternate bars may produce the erosion patterns 

predicted by the Turowski (2020) model. Flow in bends directs coarser particles 

towards the outer bank (Dietrich & Smith, 1984; Dietrich & Whiting, 2011), which 

has been shown experimentally to enhance lateral erosion downstream of the 

bend apex (e.g. Mishra et al., 2018). Future development of our model will need 

to more faithfully treat the self-organization of alluvial cover and flow in bends to 

predict the effects of channel curvature and self-organized alluvium. 

Despite the simplifications in our model, it agrees well with experiments 

that have relatively simple geometries (Fuller et al., 2016), which suggests that 

the model captures the fundamental mechanism correctly. Furthermore, the 

model generates undercut wall shapes that are qualitatively similar to field 

observations (Beer et al., 2017). Application of the model to a natural channel 

needs to consider time scales of effectiveness for both the vertical and lateral 

erosion processes, which are ultimately controlled by discharge and sediment 

supply variations (Lague et al., 2005, 2010; Finnegan et al., 2005; Finnegan & 

Balco, 2013; Inoue et al., 2014, 2016). Wall erosion is the integrated result of 

intermittent periods of variable discharge and sediment supply. Ultimately, 

application of our model to natural channels with variability in discharge and 
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sediment supply requires a morphodynamic model by: 1) developing a lateral 

erosion model by suspended load; 2) finding an analytical solution of the model 

to make the calculations tractable through geologic time, and 3) developing a 

way to parameterize our flow resistance submodel.   

2.6. Conclusion 

We have developed a mechanistic model for lateral erosion of bedrock 

channel banks by bedload particle impacts using well established empirical 

relations for initial velocities of bedload particles, a simplified reflection 

methodology for collision with roughness elements, and a numerical model for 

tracking the motion of bedload particles from collision to impacts on the wall. 

Simulations of the Fuller Experiments show that the model successfully predicts 

the essential undercut wall shape, the dynamics of peak erosion rate and total 

cross-sectional erosion rate with roughness element size, which not only 

validates the formulation of our lateral erosion model but also supports the 

bedload particle impacts as an effective mechanism for lateral incision in bedrock 

rivers. The predicted lateral erosion rate can be further expressed in non-

dimensional form as a function of transport stage and relative sediment supply 

for the given grain size by assuming that the alluvial cover due to deposition of 

sediment particles is effective at deflecting downstream transport particles. The 

non-dimensional lateral erosion model defines a unique functional surface 

bounded by four thresholds, including the threshold of motion, the threshold of 

suspension, the threshold of no cover, and the threshold of full cover. The lateral 

erosion is relatively high at the threshold of full cover, but turns to be zero at all 

other three thresholds. The model also predicts a peak lateral erosion rate when 

the bed is near 70% covered, due to a trade-off of deflection rates and deflection 

angles as the sediment supply increases. A coupled model that combines vertical 

erosion with lateral erosion due to bedload particle impacts is further developed. 

The coupled model predicts that vertical erosion dominates under ~ 75% of 

transport and supply conditions on the unique functional surface. The lateral 

erosion only outpaces the vertical erosion when the bed is near fully covered. 
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Chapter 3. An Analytical Model for Lateral Erosion 
from Saltating Bedload Particle Impacts 

Abstract 

The width of bedrock rivers is set by the competition between vertical and 

lateral erosion in uplifting landscapes. Compared with vertical erosion rates, less 

is known about the lateral erosion rates that are thought to dominate when river 

beds are alluviated. Here, we derive an analytical model for lateral erosion by 

saltating bedload particle impacts that are deflected by alluvial cover. The 

analytical model is a simplification of the Li et al. (2020) numerical model of the 

same process. The analytical model predicts a nonlinear dependence of lateral 

erosion rate on sediment supply, shear stress and grain size, revealing the same 

behaviour observed in the numerical model, but without tracking particle 

movements through time and space. The analytical model considers both 

uniformly distributed and patchy partial cover that are implemented with a fully 

alluviated patch along one bank and bare bedrock along the other. The model 

predicts that lateral erosion rate peaks when the bed is ~70% covered for 

uniformly distributed alluvium, or when the bed is fully covered for patchy 

alluvium. Vertical erosion dominates over lateral erosion for ~75% and >90% of 

sediment supply and transport stage conditions for uniformly distributed cover 

and patchy cover, respectively. We use the model to derive a phase diagram of 

channel responses (steepening, flattening, narrowing, widening) for various 

combinations of transport stage and relative sediment supply. Application of our 

model to Boulder Creek, CA captures the observed channel widening in 

response to increased sediment supply and steepening in response to larger 

grain size.  

3.1. Introduction 

In unglaciated landscapes, bedrock rivers are ultimately responsible for 

driving landscape response to tectonic uplift and climate change through the 
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coupling of vertical and lateral incision processes (Whipple et al., 2000, 2013). 

Climate change drives changes in magnitude and frequency of discharge and 

sediment flux, which largely controls the changes in the degree and frequency of 

alluviation of the channel bed. Field observations, laboratory experiments, and 

modeling have shown that vertical erosion dominates in low sediment supply 

environments due to the exposure of bed but is outpaced by lateral erosion in 

high sediment supply environments due to the alluvial cover on the bed (Beer et 

al., 2017; Finnegan & Balco, 2013; Finnegan et al., 2007; Fuller et al., 2009, 

2016; Gilbert, 1877; Hancock & Anderson, 2002; Hartshorn et al., 2002; J.P. L. 

Johnson & Whipple, 2010; Lague, 2010; Shepherd, 1972; Sklar & Dietrich, 2004; 

Turowski et al., 2008; Yanites, 2018). At high sediment supply rates, the bed is 

protected by the alluvial cover, but particles can be deflected by the alluvial cover 

into channel banks. In order to reach steady state, vertical erosion rate in 

bedrock rivers needs to keep pace with increasing uplift rate. Rivers have been 

observed to narrow with increasing uplift rates in some settings (Amos & 

Burbank, 2007; Duvall et al., 2004; Lavé & Avouac, 2001; Tomkin et al., 2003) 

but not in others (Pazzaglia & Brandon, 2001; Snyder et al., 2003; Tomkin et al., 

2003). A model that couples vertical erosion with lateral erosion is needed to 

capture the complex adjustments of bedrock rivers in response to change of 

boundary conditions.  

There have been some attempts to couple vertical with lateral erosion. 

They can be divided into three categories: (1) stream power models for both 

vertical and lateral erosion (referred to as pure stream power model hereafter); 

(2) mechanistic model for vertical erosion but stream power model for lateral 

erosion (referred to as hybrid model hereafter); and (3) mechanistic models for 

both vertical and lateral erosion (referred to as pure mechanistic model). The 

pure stream power model scales vertical and lateral erosion rate with unit stream 

power or shear stress (Hancock & Anderson, 2002; Lague, 2010; Langston & 

Tucker, 2018; Stark, 2006; Turowski et al., 2009; Wobus et al., 2006, 2008), 

which allows for computationally tractive, large-scale landscape evolution 

modeling. However, the pure stream power model masks physical processes 
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responsible for bedrock incision, making it difficult to predict bedrock river 

dynamics at reach scale, where active incision occurs (Venditti et al., 2020). The 

hybrid model (Yanites, 2018) couples the mechanistic saltation–abrasion model 

for vertical erosion (Sklar & Dietrich, 2004) with the stream power model for 

lateral erosion. The hybrid model provides physical explanations of vertical 

adjustment by explicitly introducing the influence of sediment supply, discharge, 

grain size, rock strength, and rock uplift rate but lumps the influence of these 

variables responsible for lateral erosion into poorly constrained parameters not 

related to a specific physical mechanism. Turowski (2018, 2020) developed a 

reach scale lateral erosion model based on particle deflections, but does not 

explicitly model particle deflections. More recently, Li et al. (2020) developed a 

mechanistic lateral erosion model based on the experiments of Fuller et al. 

(2016), which demonstrated substantial bank erosion by deflected bedload 

particle impacts. Li et al. (2020) coupled the lateral erosion model with the Sklar 

and Dietrich (2004) vertical erosion model to investigate the role of relative 

sediment supply and transport stage on the competition between vertical and 

lateral erosion. However, the pure mechanistic model is computationally 

intensive because it tracks the movement of each particle over space and time to 

get the instantaneous lateral erosion rate. The lack of an analytical solution for 

the Li et al. (2020) numerical model makes it difficult to explore the sensitivity of 

lateral abrasion rates to input variables and to apply the model to natural bedrock 

rivers that experience a wide range of discharges and sediment supply events. 

Here, we derive an analytical solution for the Li et al. (2020) lateral erosion 

model, which captures the essential physics of lateral erosion by bedload particle 

impacts with a uniform grain size and reproduces the numerical solution but is 

simple enough to couple with the Sklar and Dietrich (2004) vertical erosion model 

for simulating bedrock river morphodynamics. We are motivated by an interest in 

determining what controls width variation in bedrock rivers. Boulder Creek, CA, 

serves as a prototype for our work. Boulder Creek is a small bedrock channel 

(drainage area ∼30 km2) in the Santa Cruz Mountains that is actively incising into 

sedimentary rock. Finnegan et al. (2017) described the channel as becoming 
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abruptly wider and steeper downstream of a tributary that supplies coarser 

sediment. Upstream of the tributary, the river transports relatively fine bedload 

(median grain size ∼20 mm) derived from weak sedimentary rock and sustains 

partial alluvial cover. Downstream of the tributary, the river is 2 times wider and 3 

times steeper than upstream, and transitions from partial to nearly continuous 

alluvial cover where it starts to transport coarser diorite bedload (median grain 

size ∼220 mm). Finnegan et al. (2017) argued that the increase in sediment 

supply magnitude and caliber causes the channel widening because of the 

increase in bed coverage and lateral particle deflections into the channel banks. 

We explore this explanation using our analytical model to see if the model 

predicts an increase in channel width and slope in response to the change in 

sediment supply rate and grain size. 

Our analytical model considers both uniformly distributed and patchy bed 

cover. While alluvial cover may be uniformly distributed, it often covers some 

parts of the bed, leaving other areas exposed. Patches of sediment deposited 

may be transient features, but they are often also persistent features that may 

grow and shrink in size depending on sediment supply and transport stage. Both 

field observations (Cook et al., 2009, 2013; Inoue et al., 2014) and laboratory 

experiments (Chatanantavet & Parker, 2008; Fernández et al., 2019; Finnegan et 

al., 2007; Johnson & Whipple, 2007, 2010) show that transient deposits coexist 

with persistent deposits. It is persistent patches that are most likely to cause 

lateral erosion over long time scales. Herein, our treatment of patchy cover 

considers bank-attached deposits of sediment, akin to a lateral bar developed in 

a bedrock river, but our analytical model can be used for any geometry of 

sediment patches in bedrock rivers, hence our use of the term patch rather than 

a specific deposit type. 

We begin by briefly reviewing the Li et al. (2020) lateral erosion model. 

Next, we derive empirical correlations for key elements of the Li et al. (2020) 

numerical model and combine them with established formulas to derive analytical 

solutions for both uniformly distributed and patchy alluvial bed cover. We then 
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couple the lateral erosion model with the Sklar and Dietrich (2004) vertical 

erosion model to find the ratio of lateral to vertical erosion rate. We further 

compare the numerical model with the analytical model for lateral erosion rate 

and use the analytical model to explore the sensitivity of predicted bedrock 

abrasion rates to variations in sediment supply, shear stress, and grain size. 

Finally, we return to our motivating field study and use the analytical model to 

discuss the observed changes in Boulder Creek. 

3.2. Analytical Model Development 

3.2.1. Review of Li et al. (2020) numerical model 

Li et al. (2020) developed a numerical model for lateral erosion of bedrock 

walls by bedload particle impacts that are deflected by alluvium on the bed, 

which is briefly outlined below. The model assumes a uniform distribution of 

bedload particles and alluvium in a channel with a planar bed and vertical walls 

(Figure 3.1a-b), discretizes the surfaces of particles making up the alluvium into 

uniform triangular grid cells, and tracks the movement of each bedload particle 

from the moment it is deflected by the alluvium to when it impacts the walls. The 

model calculates the lateral erosion rate 𝐸𝑙 as the sum of all local erosion rates 

due to individual bedload particles deflected by each deflector of the alluvium 𝐸𝑖 

 𝐸𝑙 = ∑𝐸𝑖. (Equation 3.1) 

The local erosion rate due to impacts of individual bedload particles 𝐸𝑖 is 

scaled by the kinetic energy transferred, which is the product of particle mass 𝑀 

and the square of impact velocity 𝑣𝑖, on the walls, and the impact rate per unit 

area on the walls 𝐼𝑤  

 𝐸𝑖 =
𝑌

𝑘𝑣𝜎𝑇
2𝑀𝑣𝑖

2𝐼𝑤(1 − (𝑢
∗ 𝑤𝑓⁄ )2)1.5,  (Equation 3.2) 

where 𝑌 is Young’s modulus of elasticity of the bedrock, 𝑘𝑣 is the dimensionless 

bedrock strength coefficient, 𝜎𝑇 is the tensile yield strength, 𝑢∗ is shear velocity 

and 𝑤𝑓 is fall velocity calculated from the empirical method developed by Dietrich 
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(1982), assuming values of Cory shape factor (0.8) and Powers scale (3.5) 

typical for natural gravel particles. The model ignores abrasion by suspended 

sediment, assuming 𝐸𝑖 is zero if 𝑢∗ 𝑤𝑓⁄ ≥ 1. 

The impact velocity 𝑣𝑖 is calculated by tracking particle movement from 

being deflected by the alluvium to impacting on the wall over time, assuming fluid 

drag is the dominant force on lateral velocity deceleration rate 𝑑𝑣 𝑑𝑡⁄   

 −
𝑑𝑣

𝑑𝑡
= 𝐶𝑑𝑣

2,  (Equation 3.3) 

where 𝐶𝑑 = 0.75𝐶1 𝜌𝑤 (𝐷𝜌𝑠)⁄  is the drag deceleration coefficient, 𝐶1 (0.45) is the 

drag parameter, 𝜌𝑤 is water density, 𝜌𝑠 is sediment density, 𝐷 is grain size. The 

initial condition for Equation 3.3, 𝑣(𝑡 = 0), is the lateral component 𝑣𝑜 of the 

outgoing velocity vector after being deflected by the alluvium surface 𝒊𝒐 =

(𝑢𝑜, 𝑣𝑜, 𝑤𝑜) (𝑢𝑜, 𝑣𝑜 and 𝑤𝑜 are the longitudinal, lateral and vertical components of 

𝒊𝒐 , respectively). 𝒊𝒐 is calculated from a deflection method, assuming the 

incoming and outgoing angles are symmetrical about the unit vector that is 

normal to the alluvium surface at the point of deflection 𝒏̂ 

 𝒊𝒐 = (−𝟐(
𝒊𝒔 ∙ 𝒏̂

𝒏̂ ∙ 𝒏̂
)𝒏̂)𝐶𝑟, (Equation 3.4) 

where 𝐶𝑟 is the restitution coefficient (set to 0.9) that describes the loss of particle 

momentum during the collision between bedload particle and alluvium, 𝒏̂ =

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧), 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are downstream, lateral and vertical component of 𝒏̂, 

respectively, and 𝒊𝒔 is the incoming velocity vector before deflection. 𝒊𝒔 has two 

non-zero components: 

 𝒊𝒔 = (𝑢𝑠, 0, 𝑤𝑠),  (Equation 3.5) 

where 𝑢𝑠 is the downstream saltation velocity and 𝑤𝑠 is the vertical saltation 

velocity, assuming the lateral saltation velocity is negligible. 𝑢𝑠 and 𝑤𝑠 are given 

as empirical correlations by Sklar & Dietrich (2004) and Lamb et al. (2008a) 

 𝑢𝑠 = 1.56(𝑅𝑏𝑔𝐷)
0.5(

𝜏∗

𝜏𝑐
∗ − 1)

0.56,  (Equation 3.6) 
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 𝑤𝑠 = −√
𝐶𝑔

𝐶𝑑
(1 − 𝑒−2𝐶𝑑(ℎ𝑠−ℎ𝑑)),  (Equation 3.7) 

where 𝑅𝑏 = 𝜌𝑠 𝜌𝑤⁄ − 1 is non-dimensional buoyant density, 𝑔 is gravitational 

acceleration, 𝜏∗ is the non-dimensional form of shear stress 𝜏, 𝜏𝑐
∗ is the value of 

𝜏∗ at the threshold of sediment motion, 𝐶g = (1 − 𝜌𝑤 𝜌𝑠⁄ )𝑔 is the gravitational 

acceleration coefficient, ℎ𝑠 is the saltation height, ℎ𝑑 is the height of bedload 

particle during collision with the deflector. ℎ𝑠 is predicted from the empirical 

relation developed by Sklar & Dietrich (2004)   

 
ℎ𝑠

𝐷
= 1.44(

𝜏∗

𝜏𝑐
∗ − 1)

0.50.  (Equation 3.8) 

The impact rate per unit area on the walls 𝐼𝑤 is given by  

 𝐼𝑤 =
𝑞𝑠

𝑀√ℎ𝑠
2+𝑙𝑠𝑢

2

𝐴𝑝

𝑑ℎ𝑚𝑎𝑥
 ,  (Equation 3.9) 

where 𝑞𝑠 is the mass sediment flux per unit channel width, 𝑑 is the distance 

between two adjacent particles (Figure 3.1), ℎ𝑚𝑎𝑥 is the maximum impact height 

on the wall, 𝐴𝑝 is the total projected area of the deflector surface onto the plane 

that is parallel to the upward motion of saltation particles, following the plane that 

is parallel to the downward motion of saltation particles (Figure 3.2), and 𝑙𝑠𝑢 is 

the hop length of the upward motion of saltation particles (Figure 3.2).  

𝑑 is given by Li et al. (2020) as 

 𝑑 = 𝐷
𝑞𝑡

𝑞𝑠
 . (Equation 3.10) 

where 𝑑 is inversely proportional to the fraction of alluvium 𝐹𝑎 which is assumed 

to be a linear function of relative sediment supply 𝑞𝑠 𝑞𝑡⁄  (defined as the ratio of 

sediment supply 𝑞𝑠 to transport capacity 𝑞𝑡). Turowski et al. (2007) developed an 

exponential formula for 𝐹𝑎, and Turowski & Hodge (2017) built a probabilistic 

framework for the description of the cover effect that contained the linear and 

exponential models as special cases. For simplicity and consistency with the 

Sklar & Dietrich (2004) vertical erosion model and Li et al. (2020) numerical 
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lateral erosion model, we elected to use the linear model (𝐹𝑎 = 𝑞𝑠 𝑞𝑡⁄ ). The 

bedload sediment transport equation by Fernandez Luque & Van Beek (1976) is 

used to estimate 𝑞𝑡 as 𝑞𝑡 = 5.7𝜌𝑠(𝑅𝑏𝑔𝐷
3)0.5(𝜏∗ − 𝜏𝑐

∗)1.5.  

𝑙𝑠𝑢 can be obtained from the empirical relation by Sklar & Dietrich (2004)  

 
𝑙𝑠𝑢

𝐷
= 2.67(

𝜏∗

𝜏𝑐
∗ − 1)

0.88. (Equation 3.11) 

Combining Equations 3.1, 3.2 and 3.9 yields the composite expression of 

the saltation abrasion model 

               𝐸𝑙 = ∑
𝑌

𝑘𝑣𝜎𝑇
2 𝑣𝑖

2 𝑞𝑠

√ℎ𝑠
2+𝑙𝑠𝑢

2

𝐴𝑝

𝑑ℎ𝑚𝑎𝑥
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5.          (Equation 3.12) 

Calculation of 𝐸𝑙 requires discretizing the surface of particles making up 

the alluvium into grid cells that incorporate the variation of normal vectors 𝒏̂, the 

resultant outgoing velocity 𝑣𝑜 and the projected area 𝐴𝑝. Solving for the impact 

velocity 𝑣𝑖 and the maximum impact height ℎ𝑚𝑎𝑥 on the walls requires tracking 

the movement of particles over space and time. The lack of an analytical solution 

for Equation 3.12 makes it too computationally intensive to implement in models 

of bedrock river morphodynamics at reach or larger scales for the wide range 

discharges and sediment supply events that an incising channel might 

experience. 

In order to derive an analytical solution to Equation 3.12, we assume that 

the various normal vectors 𝒏̂ and the impact height ℎ𝑑 on the alluvium surface 

can be represented by the mean normal vector and mean impact height, 

respectively, for given sediment supply and transport conditions. We also 

assume that the loss of momentum of bedload particles is negligible if they are 

rebounded by the bed or other deflectors before impacting on the walls. We 

therefore develop relations to describe the impact velocity 𝑣𝑖, the maximum 

impact height ℎ𝑚𝑎𝑥, the projected area 𝐴𝑝, and hence the lateral erosion rate 𝐸𝑙 

in Equation 3.12.   
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Figure 3.1 Schematic showing cross section view (looking downstream) of model 
setup in an idealized rectangular channel eroded by saltating 
bedload particle (white circle) impacts that are deflected by alluvium 
(gray filled circle) distributed on the channel bed. Two types of 
alluvium are shown here: uniformly distributed alluvium at a) low 
and b) high sediment supply rates, and alluvium formed in a 
continuous patch at c) low and d) high sediment supply rates. Also 
shown here are the distance between two adjacent deflector 𝒅, 

lateral 𝒏𝒚 and vertical 𝒏𝒛 components of the normal vector at the 

point of deflection.  
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Figure 3.2 Schematic of upward and downward trajectories based on the saltation 
height 𝒉𝒔 and hop length 𝒍𝒔𝒖, and the projected area of the deflector 
surface 𝑨𝒑 onto the plane parallel to the upward saltation trajectory, 

following the downward saltation trajectory.  

3.2.2. Expression of lateral erosion rate for uniformly distributed 
cover 

3.2.2.1 Impact Velocity 𝒗𝒊 

Substituting Equation 3.5 into Equation 3.4 and solving for the outgoing 

lateral velocity 𝑣𝑜, we obtain 

 𝑣𝑜 = 2𝐶𝑟𝑛𝑦(𝑛𝑥𝑢𝑠 + 𝑛𝑧𝑤𝑠)  (Equation 3.13). 

For uniformly distributed alluvium, Li et al. (2020) showed that the 

deflection locations and hence the normal vector 𝒏̂ shifts with relative sediment 

supply rate 𝑞𝑠 𝑞𝑡⁄ . For example, the vertical component 𝑛𝑧 moves towards the top 

of the deflector as the relative sediment supply rate 𝑞𝑠 𝑞𝑡⁄  increases (Figure 3.1a-

b). This occurs because the longitudinal distance between each row of deflectors 

reduces with increasing 𝑞𝑠 𝑞𝑡⁄ , which leads to more shielding by the upstream 

row of the deflectors and hence shifts the vertical impact position higher. To 

derive an expression for the relation between 𝒏̂ with 𝑞𝑠 𝑞𝑡⁄ , we assume that the 

various impact locations on the deflectors for the given hydraulic and supply 

conditions can be represented by the mean deflection location. Figure 3.3 shows 

the variation in mean downstream 𝑛𝑥, lateral 𝑛𝑦 and vertical 𝑛𝑧 components of 𝒏̂ 

with relative sediment supply 𝑞𝑠 𝑞𝑡⁄  for different values of transport stage 𝜏∗ 𝜏𝑐
∗⁄ , 

calculated from the Li et al. (2020) numerical simulations of saltating particle 

deflections. The normal vector components are near constant for different 

transport stages, but change linearly with relative sediment supply rate (Figure 

3.3). The best fit linear regression relations between 𝒏̂ = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) and 𝑞𝑠 𝑞𝑡⁄  for 

uniformly distributed alluvium are shown in Figure 3.3.  
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The change in lateral velocity, after deflection, can be written in terms of 

lateral distance 𝑦 between the deflector and the wall by substituting 𝑑𝑡 = 𝑑𝑦 𝑣⁄  

into Equation 3.3 to give 

 
𝑑𝑦

𝑑𝑣
= −

1

𝐶𝑑

1

𝑣
.  (Equation 3.14) 

Assuming that the loss of momentum induced by being rebounded by the 

bed or other deflectors is negligible, we can derive an analytical solution for the 

impact velocity on the wall 𝑣𝑖 as a function of distance 𝑦 by integrating both sides 

of Equation 3.14, 

 𝑣𝑖 = 𝑣𝑜𝑒
−𝐶𝑑𝑦. (Equation 3.15)  

A minimum wall-normal velocity 𝑣𝑚𝑖𝑛 is adopted here to distinguish 

between impacts that can cause erosion and impacts that do not because they 

are viscously damped. Viscous damping is a function of the particle Stokes 

number 𝑆𝑡 (Davis et al., 1986; Schmeeckle et al., 2001; Joseph & Hunt, 2004), 

such that the minimum velocity can be expressed as 

 𝑣𝑚𝑖𝑛 =
9𝑆𝑡𝜌𝑤𝜂

𝜌𝑠𝐷
  (Equation 3.16) 

where 𝜂 is the kinematic viscosity of the fluid (10-6 m2s-1). Collisions of glass 

spheres in water become partially damped for 𝑆𝑡 < ~100 (Schmeeckle et al., 

2001b; Joseph & Hunt, 2004). At the transition from elastic and viscously-

damped collisions, observations of 𝑆𝑡 is more scattered for natural particles.  The 

value of 𝑆𝑡 = 100 is selected here for simplicity. The maximum distance 𝑦𝑚𝑎𝑥 

over which a deflector can cause wall erosion can be solved for by substituting 

Equation 3.16 into Equation 3.15 

 𝑦𝑚𝑎𝑥 =
1

𝐶𝑑
ln

𝑣𝑜

𝑣𝑚𝑖𝑛
  (Equation 3.17) 
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Figure 3.3 The mean downstream component 𝒏𝒙, mean lateral component 𝒏𝒚, and 

mean vertical component 𝒏𝒛 of the normal vector 𝒏̂ as a function of 

relative sediment supply 𝒒𝒔 𝒒𝒕⁄  for various transport stages 𝝉∗ 𝝉𝒄
∗⁄ , 

which were obtained from the Li et al. (2020) simulations of saltating 
particle deflections. 𝒏𝒙 is negative in the upstream direction, 𝒏𝒚 is 

negative towards the wall closest to the deflector and 𝒏𝒛 is positive 
upwards. 

3.2.2.2 Maximum impact height 𝒉𝒎𝒂𝒙 

The maximum impact height ℎ𝑚𝑎𝑥 can be calculated from the vertical 

movement of bedload particles after being deflected by the alluvium. Assuming 

that negligible vertical momentum is lost by bedload particles colliding with the 

bed or other deflectors, the deceleration of an upward moving particle can be 

calculated simply from the force balance between fluid drag and gravity  

 −
𝑑𝑤

𝑑𝑡
= 𝐶𝑑𝑤

2 + 𝐶𝑔, (Equation 3.18) 
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where 𝑤 is the velocity in the vertical dimension (positive upwards). Equation 18 

can be written in terms of vertical distance 𝑧 by substituting 𝑑𝑡 = 𝑑𝑧/𝑤, which 

yields 

 −𝑤
𝑑𝑤

𝑑𝑧
= 𝐶𝑑𝑤

2 + 𝐶𝑔.  (Equation 3.19) 

The maximum erosion height ℎ𝑚𝑎𝑥 can be solved by integrating Equation 

3.19 when 𝑤 reduces from the initial outgoing velocity 𝑤𝑜 to 0 

 ℎ𝑚𝑎𝑥 = 1.5𝐷 +
1

2𝐶𝑑
ln(

𝐶𝑑𝑤𝑜
2

𝐶𝑔
+ 1), (Equation 3.20) 

where the boundary condition of the maximum impact height of the bedload 

particle center on the alluvium surface 𝑧(𝑤 = 𝑤𝑜) = 1.5𝐷 is applied, and 𝑤𝑜 can 

be solved by substituting Equation 3.5 into Equation 3.4 

 𝑤𝑜 = 𝐶𝑟(𝑤𝑠 − 2𝑛𝑧(𝑛𝑥𝑢𝑠 + 𝑛𝑧𝑤𝑠)).  (Equation 3.21) 

The calculation of ℎ𝑑 to determine 𝑤𝑠 from Equation 3.7 requires 

discretizing of the deflector surface into grid cells for each combination of 

transport stage 𝜏∗ 𝜏𝑐
∗⁄  and relative sediment supply rate 𝑞𝑠 𝑞𝑡⁄  in the Li et al. 

(2020) numerical model. To derive an expression for ℎ𝑑, we assume that the 

impact height for the given hydraulic and supply conditions can be represented 

by the mean impact height. We find the best data collapse when we non-

dimensionlize impact height ℎ𝑑 by dividing by saltation height ℎ𝑠. Figure 3.4a 

shows the best fit regression of the variation in mean ℎ𝑑 ℎ𝑠⁄  with transport stage 

𝜏∗ 𝜏𝑐
∗⁄  and relative sediment supply rate 𝑞𝑠 𝑞𝑡⁄  calculated from Li et al. (2020) 

numerical simulations of saltating particle deflections. ℎ𝑑 ℎ𝑠⁄  exponentially 

decreases with transport stage 𝜏∗ 𝜏𝑐
∗⁄  due to the increase in hop height with larger 

shear stress but linearly increases with relative sediment supply rate due to the 

shift of impact height towards the top of the deflector with larger extent of alluvial 

cover. The residuals of estimates of ℎ𝑑 ℎ𝑠⁄  from the regression are below 0.1 for 

more than 95% of the transport stage 𝜏∗ 𝜏𝑐
∗⁄  and relative sediment supply rate 

𝑞𝑠 𝑞𝑡⁄  combinations (Figure 3.4b). The error range of the prediction from the 

regression is below 15% for the full range of transport and supply conditions. The 
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largest residuals (~15%) are located near the threshold of motion where lateral 

erosion rate is relatively small.  

 

Figure 3.4 a) Variation in 𝒉𝒅 𝒉𝒔⁄  with transport stage 𝝉∗ 𝝉𝒄
∗⁄  and relative sediment 

supply rate 𝒒𝒔 𝒒𝒕⁄  , and b) residuals of the regression as a function of 

transport stage 𝝉∗ 𝝉𝒄
∗⁄  and relative sediment supply rate 𝒒𝒔 𝒒𝒕⁄ .The 

regression that is shown as the 3D surface of a) is 𝒉𝒅 𝒉𝒔⁄ =

𝟎. 𝟖𝟑𝒆−𝟎.𝟔𝟖(𝝉
∗ 𝝉𝒄

∗⁄ −𝟏) + 𝟎. 𝟏𝟏𝒒𝒔 𝒒𝒕⁄ + 𝟎. 𝟎𝟔.The data used to derive the 
regression are shown as dots, which are obtained from the Li et al. 
(2020) model.  

3.2.2.3 Projected area 𝑨𝒑 

The projected area 𝐴𝑝 can be obtained by integrating the projected area 

on each slice of the deflector surface. It has been shown that only ¼ of the semi-

spherical deflector surface that faces upstream and the wall closer to the 

deflector is effective at deflecting bedload particles toward the wall (Li et al., 

2020). Therefore, we choose to integrate the projected area on each slice of ¼ of 

the semi-spherical deflector surface and solve the projected area 𝐴𝑝 as 

 𝐴𝑝 =
𝜋

24
𝐷2(

𝑙𝑠𝑢

ℎ𝑠
+
1

2
)
√ℎ𝑠

2+𝑙𝑠𝑢
2

𝑙𝑠𝑢
. (Equation 3.22) 
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The impact area on each deflector decreases with higher relative 

sediment supply rate as the vertical normal vector 𝑛𝑧 shifts up. To account for 

this effect, 𝐴𝑝 in Equation 3.22 is multiplied by (1 − 𝑛𝑧)  

 𝐴𝑝 =
𝜋

24
𝐷2(

𝑙𝑠𝑢

ℎ𝑠
+
1

2
)
√ℎ𝑠

2+𝑙𝑠𝑢
2

𝑙𝑠𝑢
(1 − 𝑛𝑧). (Equation 3.23) 

3.2.2.4 Composite expression for the lateral erosion rate 

All deflectors located to the wall closer than the maximum distance (i.e. 

𝑦 ≤ ymax) can effectively deflect bedload particles to erode the wall. Substituting 

Equations 3.19 and 3.23 into Equation 3.2, the total erosion rate for uniformly 

distributed alluvium 𝐸𝑙𝑢 is a sum of erosion rates caused by each deflector within 

𝑦𝑢(𝑖) ≤ 𝑦𝑚𝑎𝑥 (𝑖 = 1,2,3, … ,𝑁𝑢, 𝑁𝑢 is the total number of deflectors, 𝑦𝑢(𝑖) is the 

distance between the ith deflector and the eroded wall), given as  

       𝐸𝑙 = ∑
𝜋𝑌

24𝑘𝑣𝜎𝑇
2

𝐷2

𝑑ℎ𝑚𝑎𝑥
𝑞𝑠(

1

ℎ𝑠
+

1

2𝑙𝑠𝑢
)(1 − 𝑛𝑧) 𝑣0

2𝑒−2𝐶𝑑𝑦𝑢(𝑖)(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5
𝑁𝑢
𝑖=1 .  

(Equation 3.24) 

The distance 𝑦𝑢(𝑖) between the ith deflector and the eroded wall can be 

determined from the distance between two adjacent deflectors 𝑑, using 𝑑 2⁄  as 

the distance between the center of the first deflector to the wall (Figure 3.1a-b) 

 𝑦𝑢(𝑖) = (𝑖 −
1

2
)𝑑.  (Equation 3.25) 

𝑁𝑢 can be calculated from the number of deflectors located within the 

maximum distance 𝑦𝑚𝑎𝑥 for uniformly distributed deflectors 

 𝑁𝑢 = 𝑦𝑚𝑎𝑥 𝑑⁄ .  (Equation 3.26) 

Substituting Equations 3.25 and 3.26 into Equation 3.24, the lateral 

erosion rate for uniform distributed deflectors 𝐸𝑙𝑢 can be solved for from the sum 

of a geometric sequence with a common ratio of 𝑒−2𝐶𝑑𝑑 and a total number of 𝑁𝑢 
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𝐸𝑙𝑢 =
𝜋𝑌

48𝑘𝑣𝜎𝑇
2

𝐷

ℎ𝑚𝑎𝑥

𝑞𝑠
2(1−0.8𝑞𝑠 𝑞𝑡⁄ )

𝑞𝑡
(
1

ℎ𝑠
+

1

2𝑙𝑠𝑢
)𝑣0

2 1−𝑒−2𝐶𝑑𝑦𝑚𝑎𝑥

𝑒𝐶𝑑𝐷𝑞𝑡 𝑞𝑠⁄ −𝑒−𝐶𝑑𝐷𝑞𝑡 𝑞𝑠⁄ (1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5. 

(Equation 3.27) 

3.2.3. Expression of lateral erosion rate for patchy cover 

We also consider the alluvium formed in a continuous patch that begins at 

the adjacent wall and expands toward the opposite wall (Figure 3.1c-d). We 

assume that the zone of patchy cover is persistent for given sediment supply and 

transport conditions. The patchy cover is a special case of uniformly distributed 

coverage where particles are immediately adjacent one another (Figure 3.1c-d). 

At low sediment supply rates, the cover is clustered to one side of the channel 

(referred to as the adjacent wall hereafter, Figure 3.1c). The alluvium moves 

toward the opposite wall as the sediment supply increases (Figure 3.1d). The 

distance between two adjacent deflectors 𝑑 and the normal vector 𝒏̂ can be 

treated as a special case of uniformly distributed alluvium when the bed is fully 

covered (𝑞𝑠 𝑞𝑡⁄ = 1), which gives 𝑑 = 𝐷 and 𝒏̂ = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) =

(−0.24,−0.33,0.90). 

For patchy cover, the alluvium and hence lateral erosion concentrate near 

the adjacent wall at low sediment supply, but will move towards the opposite wall 

so that the opposite wall starts to be eroded when the bed is near fully covered. 

Therefore, both sides of the walls need to be considered. For the erosion rate on 

the adjacent wall, the total number of deflectors that contribute to lateral erosion 

increases with the fraction of alluvium, until the distance between the furthest 

deflector and the adjacent wall 𝑦𝑎 is bigger than 𝑦𝑚𝑎𝑥. This occurs because the 

bedload particle impacts that are deflected by a deflector located from the wall 

further than 𝑦𝑚𝑎𝑥 are assumed to be viscously damped. Following the same 

procedure for calculating 𝐸𝑙𝑢, the erosion rate on the adjacent wall 𝐸𝑙𝑝𝑎 can be 

obtained from introducing the viscously damping effect and replacing 𝑑 and 𝒏̂ for 

uniformly distributed cover with 𝑑 = 𝐷 and  𝒏̂ = (−0.24,−0.33,0.90), given as  
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𝐸𝑙𝑝𝑎 = {

𝜋𝑌

240𝑘𝑣𝜎𝑇
2

𝐷

ℎ𝑚𝑎𝑥
𝑞𝑠 (

1

ℎ𝑠
+

1

2𝑙𝑠𝑢
) 𝑣0

2 1−𝑒−2𝐶𝑑 𝑦𝑎

𝑒𝐶𝑑𝐷−𝑒−𝐶𝑑𝐷
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5;       if 𝑦𝑎 < 𝑦𝑚𝑎𝑥 

𝜋𝑌

240𝑘𝑣𝜎𝑇
2

𝐷

ℎ𝑚𝑎𝑥
𝑞𝑠 (

1

ℎ𝑠
+

1

2𝑙𝑠𝑢
) 𝑣0

2 1−𝑒
−2𝐶𝑑𝑦𝑚𝑎𝑥

𝑒𝐶𝑑𝐷−𝑒−𝐶𝑑𝐷
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5;           otherwise

,  

(Equation 3.28) 

where 𝑦𝑎 = 𝑊𝑞𝑠 𝑞𝑡⁄ , and 𝑊 is the channel width. 

On the opposite wall, there is no erosion when the distance between the 

furthest deflector and the opposite wall 𝑦𝑜 is bigger than 𝑦𝑚𝑎𝑥 (𝑦𝑜 > 𝑦𝑚𝑎𝑥) due to 

viscously damping effect, and starts to increase with increasing bed coverage 

when 𝑦𝑜 ≤ 𝑦𝑚𝑎𝑥. Following the same procedure for calculating 𝐸𝑙𝑢, the erosion 

rate on the opposite wall 𝐸𝑙𝑝𝑜 can also be obtained from replacing 𝑑 and 𝒏̂ for 

uniformly distributed cover with 𝑑 = 𝐷 and  𝒏̂ = (−0.24,−0.33,0.90), given as  

𝐸𝑙𝑝𝑜 = {
0;                                                                                                                      if 𝑦𝑜 > 𝑦𝑚𝑎𝑥 

𝜋𝑌

240𝑘𝑣𝜎𝑇
2

𝐷

ℎ𝑚𝑎𝑥
𝑞𝑠 (

1

ℎ𝑠
+

1

2𝑙𝑠𝑢
) 𝑣0

2 𝑒
−2𝐶𝑑𝑦𝑜−𝑒−2𝐶𝑑𝑦𝑚𝑎𝑥

𝑒𝐶𝑑𝐷−𝑒−𝐶𝑑𝐷
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5;    otherwise

,  

(Equation 3.29) 

where 𝑦𝑜 = 𝑊 − 𝑦𝑎. 

3.2.4. Coupled erosion models 

Sklar & Dietrich (2004) developed a model of vertical bedrock erosion 𝐸𝑣 

by bedload particle impacts from sediment supply and shear stress 

 𝐸𝑣 =
0.08𝑅𝑏𝑔𝑌

𝑘𝑣𝜎𝑇
2 𝑞𝑠(1 −

𝑞𝑠

𝑞𝑡
)(
𝜏∗

𝜏𝑐
∗ − 1)

−0.5(1 − (
𝑢∗

𝑤𝑓
)2)1.5.                   (Equation 3.30) 

Vertical and lateral erosion can be coupled from the ratio of lateral erosion 

rate to vertical erosion rate for uniformly distributed alluvium 𝐸𝑙𝑢 𝐸𝑣⁄ , for the 

adjacent wall of the continuous patchy cover 𝐸𝑙𝑝𝑎 𝐸𝑣⁄ , and for the opposite wall of 

the continuous patchy cover 𝐸𝑙𝑝𝑜 𝐸𝑣⁄ . 

Vertical erosion rate (𝐸𝑣) and lateral erosion rates for uniformly distributed 

alluvium (𝐸𝑙𝑢) and patchy alluvium (𝐸𝑙𝑝𝑎 and 𝐸𝑙𝑝𝑜) can also be non-

dimensionalized by multiplying by 𝜎𝑇
2 𝜌𝑠𝑌(𝑔𝐷)

1.5⁄  (Sklar & Dietrich, 2004) 
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 𝐸𝑣
∗ =

0.046(𝑅𝑏𝜏𝑐
∗)1.5

𝑘𝑣

𝑞𝑠

𝑞𝑡
(1 −

𝑞𝑠

𝑞𝑡
)(
𝜏∗

𝜏𝑐
∗ − 1)(1 − (

𝑢∗

𝑤𝑓
)2)1.5                (Equation 3.31a) 

𝐸𝑙𝑢
∗ = 𝑘

𝐷

ℎ𝑚𝑎𝑥
(
𝑞𝑠
2

𝑞𝑡
2 −

4𝑞𝑠
3

5𝑞𝑡
3)(

𝜏∗

𝜏𝑐
∗ − 1)

1.5(
1

ℎ𝑠
+

1

2𝑙𝑠𝑢
)𝑣0

2 1−𝑒−2𝐶2𝑦𝑚𝑎𝑥

𝑒𝐶2𝐷𝑞𝑡 𝑞𝑠⁄ −𝑒−𝐶2𝐷𝑞𝑡 𝑞𝑠⁄ (1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5 

(Equation 3.31b) 

𝐸𝑙𝑝𝑎
∗ = {

𝑘

5

𝐷

ℎ𝑚𝑎𝑥

𝑞𝑠

𝑞𝑡
(
1

ℎ𝑠
+

1

2𝑙𝑠𝑢
) (

𝜏∗

𝜏𝑐
∗ − 1)

1.5𝑣0
2 1−𝑒−2𝐶2𝑦𝑎

𝑒𝐶2𝐷−𝑒−𝐶2𝐷
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5; if 𝑦𝑎 < 𝑦𝑚𝑎𝑥 

𝑘

5

𝐷

ℎ𝑚𝑎𝑥

𝑞𝑠

𝑞𝑡
(
1

ℎ𝑠
+

1

2𝑙𝑠𝑢
) (

𝜏∗

𝜏𝑐
∗ − 1)

1.5𝑣0
2 1−𝑒

−2𝐶2𝑦𝑚𝑎𝑥

𝑒𝐶2𝐷−𝑒−𝐶2𝐷
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5;    otherwise

                    

(Equation 3.31c) 

𝐸𝑙𝑝𝑜
∗ =

{
0;                                                                                                                        if  𝑦𝑜 > 𝑦𝑚𝑎𝑥 
𝑘

5

𝐷

ℎ𝑚𝑎𝑥

𝑞𝑠

𝑞𝑡
(
1

ℎ𝑠
+

1

2𝑙𝑠𝑢
) (

𝜏∗

𝜏𝑐
∗ − 1)

1.5𝑣0
2 𝑒

−2𝐶2 𝑦𝑜−𝑒−2𝐶2𝑦𝑚𝑎𝑥

𝑒𝐶2𝐷−𝑒−𝐶2𝐷
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5; otherwise

              

(Equation 3.31d)  

where 𝑘 =
0.12𝜋𝑅𝑏

0.5𝜏𝑐
∗1.5

𝑘𝑣𝑔
. Equations 3.31a-d reveal that, for given critical non-

dimensional shear stress 𝜏𝑐
∗ and grain size 𝐷, both non-dimensional vertical and 

lateral erosion rate can be considered as a function of just two dimensionless 

quantities: transport stage 𝜏∗ 𝜏𝑐
∗⁄  and relative sediment supply rate 𝑞𝑠 𝑞𝑡⁄  because 

the saltation trajectory parameters ℎ𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, ℎ𝑠 and 𝑙𝑠𝑢 all depend on 𝜏∗ 𝜏𝑐
∗⁄  and 

𝑞𝑠 𝑞𝑡⁄ .  

3.2.5. Model Implementation 

In order to use Equations 3.27-3.31, we must specify water discharge 𝑄𝑤, 

sediment supply rate 𝑄𝑠, channel width 𝑊, channel slope 𝑆 and the bedload 

particle diameter 𝐷. We must also invoke a hydraulic model. Assuming steady 

uniform flow, the total shear stress 𝜏 can be expressed as a function of hydraulic 

radius 𝑅 or Darcy-Weisbach hydraulic friction factor 𝑓 

 𝜏 = 𝜌𝑤𝑔𝑅𝑆 =
𝜌𝑤𝑓𝑢̅

2

8
  (Equation 3.32) 
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where 𝑅 = ℎ𝑊 (𝑊 + 2ℎ)⁄ , ℎ is water depth and 𝑢̅ is flow velocity. Following 

Johnson (2014), we specify the Darcy-Weisbach hydraulic friction factor 𝑓 as a 

weighted average of the spatial fractions of bedrock and alluvium 

 𝑓 = 𝐹𝑎𝑓𝑎 + (1 − 𝐹𝑎)𝑓𝑏, (Equation 3.33) 

where 𝑓𝑎 and 𝑓𝑏 are friction factors for alluvium and bedrock, respectively. They 

can be calculated from alluvium 𝑘𝑎 and bedrock 𝑘𝑏 roughness length scales as  

 𝑓𝑎 =
1

8(
𝑅

𝑘𝑎
)1 3⁄

  (Equation 3.34a) 

 𝑓𝑏 =
1

8(
𝑅

𝑘𝑏
)1 3⁄

  (Equation 3.34b). 

In Equation 3.34, 𝑘𝑎 = 𝑛𝐷(1 + (𝜅 − 1)𝐹𝑎) where the empirical coefficient 

𝑛 = 2 is used to relate hydraulic roughness to fractions of grain size that are 

coarser than the median grain size (e.g., Ferguson & Paola, 1997; Millar, 1999) 

and the non-dimensional alluvial roughness coefficient 𝜅 = 2 represents the 

average amplitude of topographic variations of alluvium (Chatanantavet & 

Parker, 2008; Johnson, 2014), and 𝑘𝑏 = 𝜉𝐷 where 𝜉 scales bedrock roughness 

to grain size 𝐷 (Johnson, 2014). Water depth ℎ and shear stress 𝜏 can be solved 

by combining the continuity Equation 𝑄𝑤 = 𝑊ℎ𝑈 with Equations 3.32-3.34.   

3.3. Model Results 

3.3.1. Comparison between numerical and analytical model 

The non-dimensional lateral erosion rate 𝐸𝑙𝑢
∗  from both the Li et al. (2020) 

numerical model (Figure 3.5a) and our analytical model (Figure 3.5b) are similar. 

Inputs of both models are drawn from the South Fork Eel River (Table 3.1). The 

analytical model (Figure 3.5b) captures all the fundamental behaviors of the 

numerical model (Figure 3.5a), including the zero erosion rate at the thresholds 

of motion and suspension along the transport stage axis, the zero erosion rate 

when the bed is composed of bare bedrock, and the substantial erosion rate 

when the bed is fully alluviated along the relative sediment supply rate axis. It 
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also reproduces the maximum 𝐸𝑙𝑢
∗  (~ 8×10-9) at intermediate transport stage 

(𝜏∗ 𝜏𝑐
∗⁄ ~10) where the growth in the impact energy is balanced by a decline in the 

impact frequency as the saltation hop length increases with shear stress, and at 

relatively high bed coverage (𝑞𝑠 𝑞𝑡⁄ ~0.7) where the increase in the number of 

mobile bedload particles is balanced by the decrease in the deflection efficiency 

when the deflection location shifts towards the top of deflectors with increasing 

relative sediment supply rate.  

On the functional surface bounded by 𝑞𝑠 𝑞𝑡⁄  and 𝜏∗ 𝜏𝑐
∗⁄ , the analytical 

model slightly over-predicts the erosion rate near three boundary conditions, 

including near the boundary of no motion, suspension and no cover, but under-

predicts the erosion rate for the rest of the supply and transport conditions, yet 

the analytical model is always within 25% deviation of the numerical model 

(Figure 3.5c). The error range of the prediction from the analytical model is below 

10% for ~85% of transport and supply conditions. The error range is above 10% 

at a small zone where 𝐸𝑙𝑢
∗  is between 3×10-9 and 6×10-9.  We used the Nash–

Sutcliffe model efficiency coefficient (NSE) to assess the predictive power of the 

analytical model. The accuracy of the model increases with increasing NSE, and 

corresponds to a perfect prediction when NSE = 1. Our analytical model has a 

NSE value of 0.93, showing good agreement with the numerical model. This 

supports our assumptions that impact normal vectors and impact heights can be 

represented by the mean normal vector and mean impact height, respectively, 

and that the loss of momentum of bedload particles impacting alluvium and the 

bed prior to being deflected into the wall is negligible. 
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Table 3.1 Reference Site Values and Model Parameter Values for South Fork Eel 
River and Boulder Creek, CA.  

Variable 
South Fork Eel 

River 

Boulder Creek 

Upstream Downstream 

Bedload particle size 𝐷 (m) 0.06 a 0.02 b 0.22 b 

Channel width 𝑊 (m) 18.0 a 4.5 b 9.6 b 

Channel Slope 𝑆 0.0053 a 0.007 b 0.019 b 

Sediment supply 𝑄𝑠 (kg/s) 42.6 a 39 c 145 c 

Discharge (m3/s) 39.1 a 59 c 74 c 

Critical Shields stress 𝜏𝑐
∗ 0.045 d 

Bedrock roughness scale 𝜉 0.1 d 

Water density 𝜌𝑤(kg/m3) 1000 d 

Sediment density 𝜌𝑠 (kg/m3) 2650 d 

Rock elastic modulus 𝑌 (Pa) 5×1010 a 

Dimensionless rock resistance 

parameter 𝑘𝑣 
106 a 

Rock tensile strength 𝜎𝑇 (Pa) 7×106 d 

a From Sklar & Dietrich (2004) . 

b From Finnegan et al. (2017). 

c Calibrated from values reported in Finnegan et al. (2017). 

d Assumed. 
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Figure 3.5 Contour plots of non-dimensional lateral erosion rate (×10-9) as a 
function of transport stage and relative sediment supply rate 
predicted from a) the Li et al. (2020) numerical model and b) our 
analytical model for uniformly distributed alluvium. The percentage 
difference between contour plot a) and b) is shown in c). Model 
inputs are from South Fork Eel River listed in Table 3.1.Thresholds 
of motion and suspension may shift boundaries for other rivers. 

3.3.2. Comparison between uniformly distributed and patchy cover 
models 

Figure 3.6 shows the non-dimensional lateral erosion rate on the adjacent 

wall 𝐸𝑙𝑝𝑎
∗  (Figure 3.6a) and the opposite wall 𝐸𝑙𝑝𝑜

∗  (Figure 3.6b) as a function of 

transport stage 𝜏∗ 𝜏𝑐
∗⁄  and relative sediment supply rate 𝑞𝑠 𝑞𝑡⁄ , assuming the 

alluvium is formed in a continuous patch. The patchy cover model (Figure 3.6) 

predicts the same lateral erosion patterns as the uniformly distributed cover 

model (Figure 3.5b) at four 𝜏∗ 𝜏𝑐
∗⁄  and 𝑞𝑠 𝑞𝑡⁄  limits, where lateral erosion rate goes 

to zero at the threshold for entrainment, suspension and no cover, but is 

substantial at full bed coverage. On the adjacent wall, our patchy cover model 

shows a monotonic increase in 𝐸𝑙𝑝𝑎
∗  with increasing 𝑞𝑠 𝑞𝑡⁄  (Figure 3.5a), because 

deflection location and hence the deflection efficiency are constant for the 

continuous patchy cover (Figure 3.1c-d), but the number of saltating bedload 

particles increases with increasing 𝑞𝑠 𝑞𝑡⁄ , for given 𝜏∗ 𝜏𝑐
∗⁄ . 𝐸𝑙𝑝𝑎

∗  peaks at full 

coverage (when the adjacent wall patch reaches the opposite wall) when the 

impact rate is the highest and at intermediate 𝜏∗ 𝜏𝑐
∗⁄  when the tradeoff between 

energy and frequency of particle impacts is balanced. On the opposite wall, our 

patchy cover model predicts negligible erosion when the bed is <95% covered, 
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because there are no deflectors close enough to opposite wall to cause erosion. 

When bed coverage is >95%, 𝐸𝑙𝑝𝑜
∗  increases with increasing 𝑞𝑠 𝑞𝑡⁄  because the 

number of deflections of bedload particles increases with bed coverage. 𝐸𝑙𝑝𝑜
∗  

peaks at the same position with 𝐸𝑙𝑝𝑎
∗  on the functional surface where the bed is 

fully covered and the distribution of alluvium is symmetrical.  

In contrast to the uniformly distributed cover model, the patchy cover 

model predicts different erosion rates on the two channel walls (𝐸𝑙𝑝𝑎
∗  and 𝐸𝑙𝑝𝑜

∗ ) as 

a result of the asymmetrical distribution of alluvium along the channel cross 

section, except when the bed is fully covered. 𝐸𝑙𝑝𝑎
∗  is higher than 𝐸𝑙𝑝𝑜

∗  for the full 

range of sediment supply and transport conditions due to more deflections 

towards the adjacent wall, except for the fully coverage where 𝐸𝑙𝑝𝑎
∗  equals to 𝐸𝑙𝑝𝑜

∗  

(Figure 3.6a-b).  

When the bed is <20% covered, 𝐸𝑙𝑝𝑎
∗  is higher than 𝐸𝑙𝑢

∗  (Figure 3.6c) 

because the alluvium is clustered to the adjacent wall for the patchy cover but is 

scarcely distributed in the channel for the uniformly distributed cover at low 

coverage (Figure 3.1a&c). However, 𝐸𝑙𝑝𝑎
∗  becomes lower than 𝐸𝑙𝑢

∗  when the 

coverage is >20%, because the deflection efficiency for uniformly distributed 

cover is higher than that for continuous cover for a given transport stage. 𝐸𝑙𝑝𝑜
∗  is 

lower than 𝐸𝑙𝑢
∗  for the full range of bed coverage because the alluvium is further 

to the opposite wall and the impact efficiency is lower for the continuous patchy 

cover (Figure 3.6d), except at full bed coverage where 𝐸𝑙𝑝𝑎
∗ = 𝐸𝑙𝑝𝑜

∗ = 𝐸𝑙𝑢
∗ . 
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Figure 3.6 Contour plots of non-dimensional lateral erosion rate (×10-9) on a) the 
adjacent wall 𝑬𝒍𝒑𝒂

∗  and b) the opposite wall 𝑬𝒍𝒑𝒐
∗  for patchy cover, and 

contour plots of the difference between patchy and uniformly 
distributed cover c) 𝑬𝒍𝒑𝒂

∗ − 𝑬𝒍𝒖
∗  and d) 𝑬𝒍𝒑𝒐

∗ − 𝑬𝒍𝒖
∗ . The relative 

sediment supply rate axis in panel b) starts at 0.95 because the 
erosion rate is otherwise negligible. Model inputs are from South 
Fork Eel River listed in Table 3.1. 

3.3.3. Competition between vertical and lateral erosion 

The Sklar & Dietrich (2004) vertical erosion model predicts zero 𝐸𝑣
∗ at all 

four boundaries of the functional surface defined by 𝜏∗ 𝜏𝑐
∗⁄  and 𝑞𝑠 𝑞𝑡⁄  (Figure 

3.7a). 𝐸𝑣
∗ peaks at intermediate bed coverage where the increase in bedload 

particle impacts and the decrease in bed exposure with increasing 𝑞𝑠 𝑞𝑡⁄  are well 

balanced, and at intermediate 𝜏∗ 𝜏𝑐
∗⁄  where the increase in particle impact energy 
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and the reduction in frequency of particle impact with increasing shear stress are 

well balanced as the saltation hop length gets longer (Sklar & Dietrich, 2004). 

For the uniformly distributed cover model, the ratio of lateral erosion rate 

to vertical erosion rate 𝐸𝑙𝑢
∗ 𝐸𝑣

∗⁄  increases with increasing 𝑞𝑠 𝑞𝑡⁄  and peaks when 

the bed is fully covered (Figure 3.7b), regardless of the variations of 𝐸𝑣
∗ (Figure 

3.7a) and 𝐸𝑙𝑢
∗  (Figure 3.5b) with 𝑞𝑠 𝑞𝑡⁄ . This occurs because the ratio 𝐸𝑙𝑢

∗ 𝐸𝑣
∗⁄  is 

ultimately controlled by the change in 𝐸𝑣
∗ and 𝐸𝑙𝑢

∗  together. 𝐸𝑙𝑢
∗ 𝐸𝑣

∗⁄  increases for 

𝑞𝑠 𝑞𝑡⁄ < 0.5 because 𝐸𝑙𝑢
∗  increases faster than 𝐸𝑣

∗, continues to increase for 0.5 <

𝑞𝑠 𝑞𝑡⁄ < 0.7 because 𝐸𝑙𝑢
∗  continues to increase but 𝐸𝑣

∗ starts to decrease, and 

goes to infinity as 𝑞𝑠 𝑞𝑡⁄  approaches 1 because 𝐸𝑣
∗ declines to zero. 𝐸𝑙𝑢

∗ 𝐸𝑣
∗⁄  also 

shows a monotonic increase with increasing 𝜏∗ 𝜏𝑐
∗⁄  because 𝐸𝑙𝑢

∗  increases faster 

than 𝐸𝑣
∗ when 𝜏∗ 𝜏𝑐

∗⁄  is below 10 but decreases slower than 𝐸𝑣
∗ when 𝜏∗ 𝜏𝑐

∗⁄  is 

above 10. 𝐸𝑙𝑢
∗  is negligible when bed coverage is below 20% where 𝐸𝑙𝑢

∗ 𝐸𝑣
∗⁄ < 0.1, 

and dominates over 𝐸𝑣
∗ for ~25% of the transport and supply conditions when the 

bed is largely covered by alluvium (Figure 3.7b).  

For patchy cover, the ratios 𝐸𝑙𝑝𝑎
∗ 𝐸𝑣

∗⁄  (Figure 3.7c) and 𝐸𝑙𝑝𝑜
∗ 𝐸𝑣

∗⁄  (Figure 

3.7d) increase monotonically with increasing 𝑞𝑠 𝑞𝑡⁄  for given 𝜏∗ 𝜏𝑐
∗⁄  because 𝐸𝑙𝑝𝑎

∗  

and 𝐸𝑙𝑝𝑜
∗  increase faster than 𝐸𝑣

∗ when 𝑞𝑠 𝑞𝑡⁄ < 0.5 , and 𝐸𝑙𝑝𝑎
∗  and 𝐸𝑙𝑝𝑜

∗  continues 

to increase but 𝐸𝑣
∗ decreases when  𝑞𝑠 𝑞𝑡⁄ > 0.5. 𝐸𝑙𝑝𝑎

∗ 𝐸𝑣
∗⁄  and 𝐸𝑙𝑝𝑜

∗ 𝐸𝑣
∗⁄  also grow 

with increasing 𝜏∗ 𝜏𝑐
∗⁄  for given 𝑞𝑠 𝑞𝑡⁄  because 𝐸𝑙𝑝𝑎

∗  and 𝐸𝑙𝑝𝑜
∗  increases faster than 

𝐸𝑣
∗ when 𝜏∗ 𝜏𝑐

∗⁄ < 10 but decrease slower than 𝐸𝑣
∗ when 𝜏∗ 𝜏𝑐

∗⁄ > 10. 𝐸𝑙𝑝𝑎
∗  is 

negligible at low transport stages (𝜏∗ 𝜏𝑐
∗⁄ < 2) where 𝐸𝑙𝑝𝑎

∗ 𝐸𝑣
∗⁄ < 0.1.  𝐸𝑙𝑝𝑎

∗  is less 

than 𝐸𝑣
∗  for bed coverages below ~ 85% where 𝐸𝑙𝑝𝑎

∗ 𝐸𝑣
∗⁄ < 1, but dominates over 

𝐸𝑣
∗ when the bed is more than ~ 85% covered where 𝐸𝑙𝑝𝑎

∗ 𝐸𝑣
∗⁄ > 1. In contrast, 

𝐸𝑙𝑝𝑜
∗  is negligible for almost 95% of transport and supply conditions (𝑞𝑠 𝑞𝑡⁄ < 0.95) 

and only becomes higher than 𝐸𝑣
∗ when the bed is more than ~98% covered 

where 𝐸𝑙𝑝𝑜
∗ 𝐸𝑣

∗⁄ > 1. 
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Figure 3.7 Contour plots of a) non-dimensional vertical erosion rate 𝑬𝒗
∗  (×10-9), b) 

the ratio of lateral erosion rate predicted by the uniformly distributed 
cover model to vertical erosion rate (𝑬𝒍𝒖

∗ 𝑬𝒗
∗⁄ ), c) the ratio of lateral 

erosion rate on the adjacent wall predicted by the patchy cover 
model to vertical erosion rate (𝑬𝒍𝒑𝒂

∗ 𝑬𝒗
∗⁄ ), and d) the ratio of lateral 

erosion rate on the opposite wall predicted by the patchy cover 
model to vertical erosion rate (𝑬𝒍𝒑𝒐

∗ 𝑬𝒗
∗⁄ ), as a function of transport 

stage and relative sediment supply rate. Model inputs are from 
South Fork Eel River listed in Table 3.1. 

3.3.4. Sensitivity Analysis 

The saltation-abrasion model (Equations 3.27-3.29) suggests that the 

lateral erosion rate depends on three principal variables: sediment supply, shear 

stress and grain size, for a given rock strength. Here, we explore the behavior of 
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the lateral erosion rate for uniformly distributed alluvium and continuous patchy 

alluvium as we systematically vary each of these three variables, while holding 

others constant. To help guide our selection of model input values for the 

sensitivity analysis, we use the reach of Boulder Creek, CA, that is upstream of 

the tributary that causes the change in sediment supply and grain size, as a 

reference site (Finnegan et al., 2017). 

Table 3.1 lists the hydraulic and sediment supply conditions in upstream 

and downstream reaches of the Boulder Creek. The net effect of the wide 

distribution of discharge and sediment supply is assumed to be represented by 

the reference discharge and sediment supply acting over a limited duration. 

Finnegan et al. (2017) reported the channel width, depth, slope, median grain 

size, alluvial coverage and shear stress, with no direct measurement of 

discharge and sediment supply in upstream and downstream reaches of the 

Boulder Creek. Here we calculate the sediment supply rate from alluvial 

coverage and shear stress using the linear relation between bed alluvial 

coverage and relative sediment supply (𝐹𝑎 = 𝑞𝑠 𝑞𝑡⁄ ). The discharge is calculated 

from channel width, depth, slope and median grain size using hydraulic friction 

equations (Equations 3.32-3.34). The intermittency factor (0.27%) for Boulder 

Creek is calibrated from the uplift rate of the Boulder Creek (~ 0.15 mm yr-1), 

given that the river is found at near steady state where the uplift rate is balanced 

by the vertical erosion rate (Finnegan et al., 2017). 

3.3.4.1 Uniformly distributed cover model 

We varied sediment supply 𝑄𝑠 for a series of constant transport stages 

using the uniformly distributed cover model (Figure 3.8a). Holding transport stage 

constant is equivalent to selecting a constant shear stress and grain size. There 

is no lateral erosion where the sediment supply is zero because there are no 

tools to abrade the channel walls (and no alluvial cover). At low supply rates, 𝐸𝑙𝑢 

increases with increasing 𝑄𝑠, due to the growth in the extent of alluvium to deflect 

bedload particles and the increase in concentration of mobile particles. At high 

𝑄𝑠, 𝐸𝑙𝑢 decreases with increasing 𝑄𝑠, due to the shift of deflection locations 
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towards the top of deflectors (Figure 3.1a-b) and hence the decrease in the 

efficiency of deflecting bedload particles when deflectors become densely 

packed. When 𝑄𝑠 is higher than the transport capacity, 𝐸𝑙𝑢 becomes constant 

because the bed is fully covered. 𝐸𝑙𝑢 peaks at a critical level of sediment supply 

where the bed is ~ 70% covered (Figure 3.5b). The sediment supply required to 

initiate erosion increases with increasing transport stage, because greater 

transport stage requires greater sediment supply to cover the bed. As the 

transport stage increases, the magnitude of the peak 𝐸𝑙𝑢 increases, but begins to 

decline at high transport stages because the increase in impact velocity with 

increasing shear stress is more than offset by the decrease in impact rate as 

saltation hop length approaches infinity at the threshold of suspension.  

When sediment supply and grain size are held constant, the uniformly 

distributed cover model predicts an inverse U-shaped variation of lateral erosion 

rate with shear stress (Figure 3.8b). There is an increase in 𝐸𝑙𝑢 with increasing 

shear stress until the transport capacity exceeds the sediment supply and then a 

decline in 𝐸𝑙𝑢 because the transport capacity exceeds the sediment supply. 

There is an inflection in the inverse U-shaped curves that occurs where there is 

enough excess shear stress to expose bed.  At that point, 𝐸𝑙𝑢 increases more 

rapidly due to the growth in both the impact velocity and the deflection efficiency 

when the bed gets more exposed. 𝐸𝑙𝑢 goes to zero at high transport stages as 

the saltation hop length approaches infinity at the threshold of suspension 

(Figure 3.8b). All 𝐸𝑙𝑢 curves are the same until the inflection points because the 

bed is fully covered and the sediment is transported at its capacity before the 

slope break, regardless of variations in 𝑄𝑠 for different curves. The peak 𝐸𝑙𝑢 

occurs at higher τ∗ τc
∗⁄  for larger 𝑄𝑠 because greater rates of 𝑄𝑠 require greater 

excess transport capacity to achieve the optimal bed coverage for lateral erosion 

(~ 70%). Greater rates of sediment supply also require greater excess transport 

capacity to expose bedrock and shut down lateral erosion. A maximum in the 

peak 𝐸𝑙𝑢 occurs for an intermediate level of sediment supply, where the increase 
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in the number of saltating bedload particles and the extent of alluvial cover and 

the decrease in the deflection efficiency are balanced.  

We explored the variation of 𝐸𝑙𝑢 with 𝐷, by holding shear stress constant 

for different sediment supply rates (Figure 3.8c). 𝐸𝑙𝑢 is zero for finer grain sizes 

because they are transported in suspension, and is also zero for larger grain 

sizes because they are too large to be transported by the given shear stress. The 

uniformly distributed cover model predicts a peak in 𝐸𝑙𝑢 for intermediate 𝐷. Peak 

𝐸𝑙𝑢 occurs at smaller 𝐷 for larger 𝑄𝑠 because greater rates of 𝑄𝑠 require greater 

excess transport capacity and hence smaller grain size to achieve the optimal 

bed coverage for lateral erosion. The magnitude of the peak 𝐸𝑙𝑢 increases and 

then declines with increasing 𝑄𝑠. These are similar to the pattern of erosion rate 

peaks shown in Figure 3.8b, except that the direction of increase in transport 

stage along the horizontal axis is reversed because smaller grain size 

corresponds to higher transport stages for given shear stress. 

3.3.4.2 Patchy cover model 

We also varied sediment supply for a series of constant transport stages 

using the patchy cover model, which is equivalent to selecting a constant shear 

stress and grain size (Figure 3.9a-b). For given shear stress and grain size, 𝐸𝑙𝑝𝑎 

grows with increasing 𝑄𝑠 at low supply rates due to the increase in the extent of 

alluvium close to the adjacent wall, then peaks and remains constant at high 

supply rates, because 𝑄𝑠 is equal to the transport capacity and the bed becomes 

fully covered (Figure 3.9a). In comparison with 𝐸𝑙𝑝𝑎, 𝐸𝑙𝑝𝑜 is negligible at low and 

intermediate supply rates due to the lack of alluvium close enough to cause 

deflections into the opposite wall (Figure 3.9b). When 𝑄𝑠 is close to the transport 

capacity, 𝐸𝑙𝑝𝑜 increases rapidly with increasing 𝑄𝑠 because the cover extends 

across the channel towards the opposite wall (Figure 3.9b). The magnitude of 

peak 𝐸𝑙𝑝𝑎 is the same as the peak 𝐸𝑙𝑝𝑜 for given transport stage because the bed 

coverage is symmetrical along the channel cross section when the bed is fully 

covered (Figure 3.9a-b). Both 𝐸𝑙𝑝𝑎 and 𝐸𝑙𝑝𝑜 peak at higher 𝑄𝑠 for higher 𝜏∗ 𝜏𝑐
∗⁄  
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because higher shear stress requires higher supply rates to fully alluviate the 

bed. A maximum in the peak 𝐸𝑙𝑝𝑎 and 𝐸𝑙𝑝𝑜 occurs for an intermediate level of 

τ∗ τc
∗⁄ , where the tradeoff between the energy and frequency of particle impacts 

with increasing shear stress are well balanced.   

Holding sediment supply and grain size constant, 𝐸𝑙𝑝𝑎 increases with 

increasing shear stress at low τ∗ τc
∗⁄  due to the increase in transported sediment, 

but starts to decrease at high τ∗ τc
∗⁄  where the extent of alluvial cover declines 

and the bed gets exposed with increasing transport capacity (Figure 3.9c). 𝐸𝑙𝑝𝑎 

peaks when the sediment supply is equal to the transport capacity. At low τ∗ τc
∗⁄ ,  

𝐸𝑙𝑝𝑜 also grows with increasing shear stress until the bed is fully alluviated 

(Figure 3.9d). Once the transport capacity exceeds the sediment supply, 𝐸𝑙𝑝𝑜 

decreases abruptly and becomes negligible at intermediate and high τ∗ τc
∗⁄  due to 

the lack of alluvium close to the opposite wall (Figure 3.9d). Both 𝐸𝑙𝑝𝑎 and 𝐸𝑙𝑝𝑜 

peak at larger τ∗ τc
∗⁄  for larger 𝑄𝑠 because of the greater excess transport 

capacity required to transport the larger supplied sediment. The magnitude of the 

peak 𝐸𝑙𝑝𝑎 and 𝐸𝑙𝑝𝑜 rises with increasing 𝑄𝑠 (Figure 3.9c-d) due to the increased 

number of impacts caused by greater sediment transport rates.  

The dependence of 𝐸𝑙𝑝𝑎 and 𝐸𝑙𝑝𝑜 on 𝐷 and hence transport stage is also 

explored by holding all other variables constant (Figure 3.9e-f). 𝐸𝑙𝑝𝑎 is zero for 

𝐷 < 3.8 mm as these grain sizes are transported in suspension for the input 

conditions. For 𝐷 > 3.8 mm,  𝐸𝑙𝑝𝑎 grows with increasing 𝐷 due to the increase in 

the extent of alluvial cover. 𝐸𝑙𝑝𝑎 peaks at the intermediate grain size where the 

transport capacity is equal to the supplied sediment, and starts to decline for 

larger grain sizes because sediment becomes less mobile for constant shear 

stress. 𝐸𝑙𝑝𝑎 goes to zero for 𝐷 > 150 mm because the shear stress is below the 

threshold of motion. In comparison with 𝐸𝑙𝑝𝑎, 𝐸𝑙𝑝𝑜 is zero even when particles are 

transported as bedload for small grain sizes because of the lack of alluvium 

deposited close to the opposite wall (Figure 3.9f) . 𝐸𝑙𝑝𝑜 increases with 𝐷 rapidly 

once the alluvium moves towards the opposite wall and peaks at full bed 
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coverage when transport capacity is equal to the supplied sediment. Once the 

bed is fully covered, 𝐸𝑙𝑝𝑜 follows the same trend of 𝐸𝑙𝑝𝑎 for large 𝐷. Peak 𝐸𝑙𝑝𝑎 

and 𝐸𝑙𝑝𝑜 occur at smaller 𝐷 for larger 𝑄𝑠 and their magnitudes increase with 

increasing 𝑄𝑠 (Figure 3.9e-f).  Figure 3.9e&f mirror Figure 3.9c&d, respectively, 

because the direction of increase in transport stage along the horizontal axis is 

reversed. 

3.4. Discussion 

3.4.1. Effect of width perturbations on erosion rates and feedbacks 

Application of our model to Boulder Creek predicts that 𝐸𝑙𝑢 decreases 

slightly from 0.1 mm/yr to 0.09 mm/yr in response to the increase in 𝑄𝑠 from the 

upstream reach to the downstream reaches of the Boulder Creek, holding other 

variables constant. This occurs because the deflection efficiency decreases 

when the bed coverage shifts from partial coverage to full coverage. The patchy 

model predicts that 𝐸𝑙𝑝𝑎 increases from 0.045 mm/yr to 0.09 mm/yr on the 

adjacent wall and 𝐸𝑙𝑝𝑜 increases from 0 to 0.09 mm/yr on the opposite wall. The 

vertical erosion rate 𝐸𝑣 goes to zero in response to the increase in 𝑄𝑠 from the 

upstream reach to the downstream reach of the Boulder Creek, holding other 

variables constant. This occurs because the bed becomes fully covered by the 

increasing sediment flux from the tributary, so the ratio 𝐸𝑙 𝐸𝑣⁄  goes to infinity for 

both the uniformly distributed and patchy models. While the magnitude of lateral 

erosion is somewhat different using the uniformly distributed and patchy models, 

the pattern of change in 𝐸𝑙 𝐸𝑣⁄  is consistent.  
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Figure 3.8 Lateral erosion rate for uniformly distributed cover 𝑬𝒍𝒖 a) as a function 

of 𝑸𝒔 for a series of constant transport stages 𝝉∗ 𝝉𝒄
∗⁄ , holding grain 

size constant, b) as a function of  𝝉∗ 𝝉𝒄
∗⁄   for a series of constant 𝑸𝒔, 

holding grain size constant, and c) as a function of 𝑫 for a series of 

constant 𝑸𝒔, holding shear stress constant. The black stars 
represent the upstream reach of Boulder Creek (Table 3.1). 
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Figure 3.9 a) Lateral erosion rate on the adjacent wall 𝑬𝒍𝒑𝒂 and b) on the opposite 

wall 𝑬𝒍𝒑𝒐 as a function of 𝑸𝒔 for a series of constant transport stages 

𝝉∗ 𝝉𝒄
∗⁄ , holding grain size constant, c) 𝑬𝒍𝒑𝒂 and d) 𝑬𝒍𝒑𝒐 as a function of  

𝝉∗ 𝝉𝒄
∗⁄   for a series of constant 𝑸𝒔, holding grain size constant, and e) 

𝑬𝒍𝒑𝒂 and f) 𝑬𝒍𝒑𝒐 as a function of 𝑫 for a series of constant 𝑸𝒔, holding 

shear stress constant. The black stars represent the upstream reach 
of Boulder Creek (Table 3.1). 
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Coupled with the Sklar & Dietrich (2004) vertical erosion model, our 

analytical model for lateral erosion can be used to indicate how Boulder Creek 

achieves a stable width in the downstream reach that is two times that of the 

upstream reach. To examine how Boulder Creek achieves different stable widths, 

we examine how 𝐸𝑙 𝐸𝑣⁄  responds to a width perturbation (a small change in 

channel width) by widening or narrowing and how the change in 𝐸𝑙 𝐸𝑣⁄  affects the 

channel width. The influence of width perturbation on 𝐸𝑙 𝐸𝑣⁄  is explored by 

varying width independently, holding discharge, sediment supply, grain size and 

slope to constant values specified for the Boulder Creek (Table 3.1). We elected 

to use the uniformly distributed model given the similarity in patterns of change in 

𝐸𝑙 𝐸𝑣⁄ . An increase in width causes an inverse U-shaped variation in τ∗ τc
∗⁄  

because as channels get wider, the effects of the wall roughness declines, 

increasing bed shear stress and exposing the bed, but that effect is eventually 

counteracted by decreasing depth, which decreases stress and alluviates the 

bed. This variation in τ∗ τc
∗⁄  causes an inverse U-shaped variation in 𝐸𝑣 and 𝐸𝑙𝑢 

with width (Figure 3.10). However, 𝐸𝑙𝑢 peaks at a lower channel width than 𝐸𝑣 

(Figure 3.10) because the optimal bed coverage is higher for 𝐸𝑙𝑢 (~ 70%; Figure 

3.5b) than for 𝐸𝑣 (~ 50%; Figure 3.7a). Additionally, the range of channel widths 

experiencing lateral erosion is wider than for vertical erosion (Figure 3.10). This 

occurs because at very small or large widths, the bed is alluviated, but lateral 

erosion may continue as long as τ∗ τc
∗⁄ > 1.   

The ratio of lateral to vertical erosion rate 𝐸𝑙𝑢 𝐸𝑣⁄  is a U-shaped function of 

width (Figure 3.10). At low channel width 𝐸𝑙𝑢 𝐸𝑣⁄  is infinity because 𝐸𝑣 = 0 when 

the transport stage is below the threshold to transport the supplied sediment and 

the bed is fully covered. As width increases, the bed becomes exposed and 

𝐸𝑙𝑢 𝐸𝑣⁄  declines rapidly because bed exposure is beneficial for 𝐸𝑣, then more 

gently when both 𝐸𝑙𝑢 and 𝐸𝑣 decline with decreasing τ∗ τc
∗⁄ , forming the declining 

limb of the U-shaped function of 𝐸𝑙𝑢 𝐸𝑣⁄  with width. At large channel width, bed 

coverage starts to increase with decreasing τ∗ τc
∗⁄ , which enhances lateral 
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erosion relative to vertical erosion, forming the increasing limb of the U-shaped 

function of 𝐸𝑙𝑢 𝐸𝑣⁄  with width. 

The U-shaped variation in 𝐸𝑙𝑢 𝐸𝑣⁄  causes feedbacks on channel width 

adjustment. On the declining limb of the U-shaped variation, positive 

perturbations in width (widening) decrease 𝐸𝑙𝑢 𝐸𝑣⁄  causing relatively more vertical 

than lateral erosion. This would have a negative feedback on width (narrowing) to 

push channel back toward the pre-perturbation width (before the change), 

assuming channels can narrow by cutting vertically over some central portion of 

the channel width less than the full width (e.g., Finnegan et al., 2007; Johnson & 

Whipple, 2010; Nelson & Seminara, 2011). Negative perturbations (narrowing) 

on the declining limb increase 𝐸𝑙𝑢 𝐸𝑣⁄  (Figure 3.10), causing more lateral than 

vertical erosion and hence also creates a negative feedback to push channel 

back toward the pre-perturbation width. On the rising limb of the U-shaped 

variation, the opposite feedbacks would happen and width perturbations would 

tend to grow. To reach steady width, slope adjustments will occur on the rising 

limb. Continued channel widening would eventually shut down vertical erosion, 

because the bed would become alluviated. In order to pass the incoming 

sediment supply without filling up the channel, gradient would need to increase, 

producing a channel steepening response.  

Application of width perturbation feedback to Boulder Creek reveals that 

the upstream reach is on the declining limb of the U-shaped curve (Figure 3.10a) 

where negative feedbacks on channel width adjustment will occur. If the channel 

gets wider or narrower, vertical erosion will return the channel to its original 

stable width without the need for slope adjustment. The downstream reach, 

however, is on the rising limb of the U-shaped curve (Figure 3.10b) where 

positive feedbacks on channel width adjustment will occur. The river has widened 

until the bed is covered with sediment and the slope steepened to pass the 

sediment load.  
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Figure 3.10 Influence of width perturbations on vertical erosion rate 𝑬𝒗, lateral 

erosion rate 𝑬𝒍𝒖 and the ratio of lateral to vertical erosion rate 𝑬𝒍𝒖 𝑬𝒗⁄  
in the a) upstream and b) downstream reaches of the Boulder Creek. 
The upstream and downstream reaches are shown as black stars 
and dots, respectively. 

3.4.2. Generalized model of width dynamics in bedrock rivers 

The coupled vertical and lateral erosion model describes width dynamics 

for a wide range of sediment supply and transport conditions in bedrock 

channels. We propose a generalized phase diagram for width dynamics in 

bedrock rivers (Figure 3.11) based on our width perturbation analysis and the 

unique functional surface of 𝐸𝑙 𝐸𝑣⁄  with variation in transport stage and sediment 

supply (Figure 3.7b-d). When 𝐸𝑣 ≈ 𝐸𝑙 (𝐸𝑙 𝐸𝑣⁄ ≈ 1), the channel geometry is stable 

without significant changes in channel width, despite changes in sediment supply 

and transport conditions. If lateral erosion dominates over vertical erosion the 

channel would get wider by preferentially eroding the banks. If vertical erosion 

dominates, however, the channel would get narrower by cutting vertically over 

some central portion of the channel width less than the full width. On our phase 

diagram, we chose to represent the threshold of 𝐸𝑙 𝐸𝑣⁄  between widening and 

narrowing as a range between 0.5 and 1.5, acknowledging the assumptions 

made in derivation of our model (e.g. bank angle, grain shape, deflection angles) 

and the uncertainty in transport thresholds used in the model.  
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At transport stages just above the threshold of motion and near the 

suspension threshold, we expect a somewhat different channel adjustment. Near 

the transport threshold, channel width cannot be adjusted because both lateral 

and vertical erosion rates go to zero. Instead, the channel slope changes 

because channels near the threshold of motion fill up with sediment and the 

gradient has to increase (steepening) to pass the supplied sediment. Near the 

threshold of suspension, we might expect a flattening behavior to occur. 

Sediment carried in suspension in one reach will eventually transition to bedload 

downstream and start to erode the bed through abrasion.  It is reasonable to 

expect that increased erosion at this point may cause an upstream migrating 

knickpoint that could work through a reach, reducing or flattening the gradient. 

The conceptual phase diagram has implications for exploring the current 

state of channel width and slope depending on where they plot in the widening, 

steady, narrowing, steepening and flatting phase spaces. An actively incising 

channels can be plotted somewhere on the phase diagram, based on the 

transport stage, bed coverage and the ratio of lateral to vertical erosion rates. 

Application of the phase diagram to the Boulder Creek example shows that both 

upstream and downstream reaches exist within the steady channel width phase 

space with the downstream reach being closer to the steepening and widening 

phase than the upstream reach (Figure 3.11). The conceptual phase diagram 

also has the potential to predict channel responses by isolating the control 

variables in bedrock rivers, such as grain size, sediment supply and discharge. 

Taking Boulder Creek as an example, increasing grain size causes a decrease in 

transport stage, encouraging the channel to get steeper. Increasing sediment 

supply causes an increase in bed coverage, encouraging the channel to get 

wider.  

Bedrock rivers have been observed to get narrower with increasing 

vertical erosion rates in some setting but not in others (Lavé & Avouac, 2001; 

Pazzaglia & Brandon, 2001; Snyder et al., 2003; Tomkin et al., 2003; Duvall et 

al., 2004; Amos & Burbank, 2007). Turowski (2018) suggested that bedrock 
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channels tend to narrow with increasing uplift rates at transient state based on 

vertical erosion models, but did not incorporate the coupling of vertical and lateral 

erosion models. The conceptual phase diagram can be used to understand 

relations between controlling variables that give rise to the complex relation 

between incision rate and channel width. If an increase in vertical erosion rate 

causes 𝐸𝑙 𝐸𝑣⁄  to drop below 0.5, the channel starts to get narrower as it shifts 

from steady state to narrowing state. Conversely, if there is a decrease in the 

vertical erosion rate that causes  𝐸𝑙 𝐸𝑣⁄  to rise above 1.5 the channel will get 

wider. However, the channel will maintain a steady channel width if an increase 

or decrease in vertical erosion rate is too small to shift 𝐸𝑙 𝐸𝑣⁄  outside of the 0.5 to 

1.5 envelope.  

The sensitivity of channel states to changes in discharge and sediment 

supply rates also differs depending on the phase state in Figure 3.11. If a 

bedrock river plots near the upper left corner of Figure 3.11 where narrowing 

states occur, small changes in sediment supply or discharge would shift the 

channel from narrowing into widening states and vice versa because widening 

and narrowing states are close to each other here. This striking change of 

channel states has been found in bedrock rivers of Tian Shan foreland, where 

varying water and sediment fluxes cause narrow, steep-wall canyons to widen 

abruptly by influencing the lateral erosion rate (Bufe et al., 2016). However, if a 

bedrock river has a more moderate sediment supply and transport stage, it would 

plot near the middle of our phase diagram and be relatively less sensitive to 

small changes in sediment supply and discharge. In Boulder Creek, the 

downstream reach is more sensitive to changes in sediment supply and transport 

stage than the upstream reach because it plots in the upper left corner of our 

phase diagram. A significant change in either transport stage or sediment supply 

could shift it out of stead state and into widening, narrowing, or steepening 

states. The upstream reach is less sensitive to changes in transport stage or 

sediment supply, but a substantial decrease in sediment supply or a decrease in 

transport stage could lead to channel narrowing. Widening of the upstream reach 

would require a substantial increase in the sediment supply. 
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3.4.3. Future work 

Further work is needed to calibrate the value of 𝐸𝑙 𝐸𝑣⁄  to natural bedrock 

channels and test the hypotheses presented in our conceptual phase diagram. 

For example, our conceptual phase diagram hypothesizes that channel slope is 

more difficult to adjust than channel width so that channels only adjust slope 

when the transport stage is near the threshold of motion or suspension. This 

behavior makes intuitive sense, and is consistent with the Boulder Creek case, 

but is hard to test without a full morphodynamic implementation of our model. 

 

Figure 3.11 Schematic channel widening, steady, narrowing, steepening and 
flattening response on the functional surface bounded by transport 
stage and relative sediment supply, based on the variation of 𝑬𝒍 𝑬𝒗⁄  
shown in Figure 3.7b-d. The conditions of the upstream and 
downstream reaches of Boulder Creeak, CA, are shown as black star 
and dot, respectively. The resultant trajectory from upstream to 
downstream reaches is shown by the black solid arrow, which can 
be resolved into two components shown by the black dashed 
arrows: the component due to increasing grain size (+D) and the 
component due to increasing sediment supply rate (+Qs). 

Our model has also assumed persistent patchy alluvium in the form of 

lateral bars that expand and contract with sediment supply, yet transient deposits 

coexist with persistent patches in bedrock rivers (Chatanantavet & Parker, 2008; 
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Cook et al., 2009, 2013; Fernández et al., 2019; Finnegan et al., 2007; Inoue et 

al., 2014; Johnson & Whipple, 2007, 2010; Turowski et al., 2007; Turowski, 

2020). How these persistent and transient patches interact and affect vertical and 

lateral erosion rates is not known. Freely migrating bars have been found to 

cause vertical erosion through sediment particle impacts (e.g., Fernández et al., 

2019), so some effect on lateral erosion is expected. Further work is needed to 

incorporate the self-organization of transient alluvium as in the reach scale 

models of Turowski (2018, 2020). Presently our analytical model only considers 

channel erosion by bedload particle impacts, ignoring all other mechanisms such 

as plucking and particle impacts by suspension. We use a uniform grain size to 

represent the wide distribution of grain sizes supplied to incising channels. 

Further work is necessary to develop models for lateral erosion by those 

processes and to incorporate the grain size distribution. We also need to make 

the model morphodynamic and incorporate the influence of channel curvature on 

flow, sediment deposition, and bedload paths (Inoue et al., 2016, 2017). 

Nevertheless, our analytical model for lateral erosion offers insight into channel 

dynamics in response to changes in sediment supply and transport conditions 

and can be scaled up to simulate bedrock river morphodynamics at reach or 

larger scales by introducing a distribution of discharges and sediment supply 

events, which the Li et al. (2020) numerical model was too computationally 

intensive to do.  

3.5. Conclusion 

We have derived analytical solutions for the Li et al. (2020) numerical 

model of lateral erosion by impacts of saltating bedload particles that are 

deflected by uniformly distributed and patchy alluvium. The uniformly distributed 

and patchy cover models predict that the non-dimensional lateral erosion rate is 

a function of two dimensionless quantities for a given grain size: relative 

sediment supply and transport stage. The uniformly distributed cover model 

reproduces the maximum lateral erosion rate occurring at ~ 70% relative 

sediment supply and intermediate transport stage, as observed in the numerical 
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model. The patchy cover model, however, predicts the peak erosion rate at full 

bed coverage. When our lateral erosion model is coupled with the Sklar & 

Dietrich (2004) vertical erosion model, the ratio of lateral to vertical erosion rate 

increases with increasing relative sediment supply for both uniformly distributed 

and patchy alluvium. Vertical erosion dominates ~75% of transport and supply 

conditions for uniformly distributed cover, but ~ 85% and ~98% of transport and 

supply conditions on the adjacent and opposite walls for the patchy cover, 

respectively.  

The analytical model has the benefit of allowing prediction of lateral 

erosion rate as a function of sediment supply, shear stress and grain size. We 

find inverse U-shaped variations of lateral erosion rate with shear stress and 

grain size for both uniformly distributed and patchy alluvium. The lateral erosion 

rate varies with sediment supply in an inverse U-shaped curve for uniformly 

distributed alluvium, but monotonically grows with increasing sediment supply 

until the bed is fully covered for patchy alluvium.  

Application of our model in the Boulder Creek explains downstream 

channel widening due to the dominance of lateral erosion and the shutdown of 

vertical erosion in response to the increase in sediment supply rates. 

Downstream channel steepening also occurs in Boulder Creek in order to pass 

the sediment load. The coupled vertical and lateral erosion model predicts 

feedbacks between width perturbations and the ratio of lateral to vertical erosion 

rate. A negative feedback causes a narrowing response that will return a channel 

back to the pre-perturbation width. A positive feedback encourages the channel 

width to grow until the channel steepens and achieves a new stable width.   
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Chapter 4. Bed and Bank Stress Partitioning in 
Bedrock Rivers 

Abstract 

Approximation of bed and wall (bank) stresses in confined, narrow 

bedrock rivers is key to accurately assessing hydraulic roughness, sediment 

transport, bedrock erosion and the morphodynamics of bedrock channels. Here, 

we partition bed and wall stresses using the ray-isovel model (RIM) and field 

observations. We used the RIM to calculate the distribution of shear stress 

across an idealized trapezoidal channel and found that the ratio of wall to bed 

stress (φ) grows slightly with increasing bank angles, but exponentially declines 

with increasing width-to-depth ratio. We applied the RIM to 26 of the canyons 

along the Fraser River and found that RIM predicts 0.60 ≤ φ ≤ 0.98. We used 

field observations of bed and total stress to calculate wall stress in each canyon. 

The total stress was calculated from 1D momentum balance (depth-slope 

product). The distribution of bed stress was calculated from near-bed velocity 

profiles and showed that bed stress spikes as water enters constriction-pool-

widening (CPW) sequences. For the majority of studied canyons, the observed 

wall stress is larger than the total stress and the observed bed stress. The 

maximum observed bed stress through a CPW sequence is ~7.5 times the mean 

bed stress and ~4.9 times the total stress. Compared with the observed stresses, 

the model systematically over-predicts the observed bed stress and under-

predicts the observed wall stress by ~55%. Our results reveal that the complex 

flow structure in bedrock canyons influences the distribution of bed and wall 

stresses and that bedrock walls contribute more hydraulic roughness than 

predicted with RIM. 

4.1. Introduction 

Partitioning shear stress is a key part of calculating hydraulic roughness, 

sediment transport rates, rock erosion rates and morphodynamic modelling of 
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bedrock rivers. These are all key elements of landscape evolution models, which 

range in scale from the stream power model applied at large scales to 

mechanistic erosion models applied at local scales. The flow parameterization 

used in landscape evolution models is based on stream power, which assumes 

that the erosion rate scales with boundary shear stress (e.g., Howard & Kerby, 

1983; Howard et al., 1994; Whipple & Tucker, 1999). Bedrock incision in canyons 

at the local scale happens through a combination of abrasion by sediment 

impacts of bedload or suspended load, plucking from the river bed or banks by 

hydraulic forces, chemical and physical weathering, and debris flow scour 

(Whipple et al., 2000; Whipple et al., 2013). Detailed models of the physics of 

individual incision processes have been developed to predict bedrock river 

dynamics, including a saltation abrasion model (Sklar & Dietrich, 2004; Li et al., 

2020, 2021; Turowski, 2020), a total-load abrasion model (Lamb et al., 2008a), a 

plucking model based on the block topple-sliding mechanism (Lamb & Dietrich, 

2009; Lamb et al., 2015; Hurst et al., 2021), a bedload abrasion, macroabrasion 

and plucking model (Chatanantavet & Parker, 2009), and a weathering model 

(Hancock et al., 2011). All these mechanistic models scale the erosion rate with 

shear stress with various degrees of sophistication. The relevant shear stresses 

in these models are the bed shear stress 𝜏𝑏𝑒𝑑 and the wall shear stress 𝜏𝑤𝑎𝑙𝑙, 

partitioned from the total shear stress 𝜏𝑇𝑜𝑡, although in practice this is rarely done 

because methods to do so are not well developed. The inability to partition shear 

stress into bed and wall components makes it difficult to make accurate 

predictions of local-scale channel dynamics, and their influence on larger-scale 

landscape evolution.  

In alluvial channels, partitioning shear stress is rarely done because the 

wall stress is assumed to be negligible in wide channels where the width-to-depth 

ratio is much larger than 20. It is common for the bed stress 𝜏𝑏𝑒𝑑 to be 

approximated as the total stress 𝜏𝑇𝑜𝑡 in bedrock rivers, as is done in alluvial 

rivers (e.g., Seidl & Dietrich, 1992; Anderson, 1994; Tucker & Slingerland, 1994; 

Willett, 1999; Hancock & Anderson, 2002; Inoue et al., 2014; Johnson, 2014). 
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This approach assumes that the walls bear a negligible part of the total shear 

force because the walls form a negligible proportion of the wetted perimeter, 

which is not true in narrow bedrock channels. Recognizing this, Stark (2006) split 

the shear stress across the channel into shear stress on the bed and the walls, 

assuming that the total shear stress 𝜏𝑇𝑜𝑡 is the sum of the bed stress 𝜏𝑏𝑒𝑑 and the 

wall stress 𝜏𝑤𝑎𝑙𝑙 (𝜏𝑇𝑜𝑡 = 𝜏𝑏𝑒𝑑 + 𝜏𝑤𝑎𝑙𝑙). While intuitively correct, it is actually 

physically incorrect because it is the total force applied to the boundary that 

equals the sum of the force applied to the bed and the walls. Shear stress is 

force per unit area. Therefore, 𝜏𝑏𝑒𝑑 is equal to the force applied to the bed 

divided by the bed area and 𝜏𝑤𝑎𝑙𝑙 is equal to the force applied to the walls divided 

by the wall area. If the bed and the walls area and the forces acting on them are 

known, the total shear stress 𝜏𝑇𝑜𝑡 can be calculated from the total force applied 

to the bed and the walls divided by the total area of the bed and the walls, which 

is not equal to the sum of 𝜏𝑏𝑒𝑑 and 𝜏𝑤𝑎𝑙𝑙. Wobus et al. (2006) calculated the 

shear stress distribution across the channel cross section from the velocity 

gradient, assuming that the velocity gradient near the bed scales with the mean 

velocity gradient between wall and centerline by employing the law of the wall. 

This approach is easy to implement, but it is not yet clear that the stress applied 

to the walls is accurately reflected in the cross channel velocity gradient. There 

have been attempts to characterize wall friction in narrow ducts or flume 

channels where the ratio of wall stress to bed stress is estimated by dividing the 

cross-sectional area into a number of sub-areas and each sub-area is assigned a 

component Manning’s n value (e.g., Flintham & Carling, 1988, 1989; Knight & 

Macdonald, 1979; Lotter, 1933). However, this approach does not accurately 

resolve the velocity field by assuming zero net momentum transfer across the 

sub-area boundary lines (Flintham & Carling, 1989). 

Vanoni & Brooks (1957) developed a shear stress partitioning framework 

in a trapezoidal channel that was reformulated by Ferguson et al. (2019) as  

  𝜏𝑇𝑜𝑡 =
𝑤𝑏𝜏𝑏𝑒𝑑+2ℎ 𝑠𝑖𝑛𝛼⁄ 𝜏𝑤𝑎𝑙𝑙

𝑤𝑏+2ℎ 𝑠𝑖𝑛𝛼⁄
,  (Equation 4.1) 
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where 𝑤𝑏 is the bottom channel width, ℎ is the water depth, and 𝛼 is the angle of 

channel wall inclination (Figure 4.1a). Equation 4.1 balances the total force 

applied to the bed and the banks, according to the relative areas of the bed and 

banks, per unit downstream distance. The bed stress 𝜏𝑏𝑒𝑑 and wall stress 𝜏𝑤𝑎𝑙𝑙 

can be obtained from rearranging Equation 4.1  

 𝜏𝑏𝑒𝑑 =
𝑤𝑏+2ℎ 𝑠𝑖𝑛𝛼⁄

𝑤𝑏+2𝜑ℎ 𝑠𝑖𝑛𝛼⁄
𝜏𝑇𝑜𝑡,  (Equation 4.2) 

 𝜏𝑤𝑎𝑙𝑙 =
𝑤𝑏+2ℎ 𝑠𝑖𝑛𝛼⁄

𝑤𝑏 𝜑⁄ +2ℎ 𝑠𝑖𝑛𝛼⁄
𝜏𝑇𝑜𝑡, (Equation 4.3) 

where 𝜑 = 𝜏𝑤𝑎𝑙𝑙 𝜏𝑏𝑒𝑑⁄ . It is important to recognize from Equations 4.2-4.3 that 

either the bed or wall shear stresses can be greater than the total shear stress, 

depending on the ratio of wall to bed stress 𝜑 (Ferguson et al., 2019). When 𝜑 >

1, 𝜏𝑏𝑒𝑑 is smaller than 𝜏𝑇𝑜𝑡 because (𝑤𝑏 + 2ℎ 𝑠𝑖𝑛 𝛼⁄ ) (𝑤𝑏 + 2𝜑ℎ 𝑠𝑖𝑛 𝛼⁄ )⁄  is <1 in 

Equation 4.2 and 𝜏𝑤𝑎𝑙𝑙 is larger than 𝜏𝑇𝑜𝑡 because 

(𝑤𝑏 + 2ℎ 𝑠𝑖𝑛 𝛼⁄ ) (𝑤𝑏 𝜑⁄ + 2ℎ 𝑠𝑖𝑛 𝛼⁄ )⁄  is >1 in Equation 4.3, leading to 𝜏𝑤𝑎𝑙𝑙 >

𝜏𝑇𝑜𝑡 > 𝜏𝑏𝑒𝑑. The opposite relation occurs (𝜏𝑏𝑒𝑑 > 𝜏𝑇𝑜𝑡 > 𝜏𝑤𝑎𝑙𝑙) when 𝜑 < 1. All 

three stresses are equal (𝜏𝑏𝑒𝑑 = 𝜏𝑇𝑜𝑡 = 𝜏𝑤𝑎𝑙𝑙) when 𝜑 = 1. The stress partitioning 

in Equations 4.2-4.3 is conceptually attractive to apply in bedrock rivers due to its 

physical basis, but it is difficult to solve 𝜏𝑏𝑒𝑑 and 𝜏𝑤𝑎𝑙𝑙 from Equations 4.2-4.3 

because the ratio 𝜑 = 𝜏𝑤𝑎𝑙𝑙 𝜏𝑏𝑒𝑑⁄  is unknown.  

Here we seek to improve our understanding of the variation of bed stress 

𝜏𝑏𝑒𝑑, wall stress 𝜏𝑤𝑎𝑙𝑙 and the ratio of wall to bed stress 𝜑 from two methods, 

including model simulations and field measurements in bedrock rivers. We select 

26 bedrock canyons along the Fraser River, British Columbia (Venditti et al., 

2020a) as the study site because centerline flow and bed topography 

measurements are available (Rennie et al., 2018), which permit the calculation of 

𝜏𝑏𝑒𝑑 distributions in canyons. We calculate 𝜏𝑇𝑜𝑡 from the 1D momentum balance 

(depth-slope product) for each canyon. The total stress applied to a channel 

cross-section is typically estimated using the hydraulic radius instead of depth. In 

narrow channels with simple, uniform cross-sections, the area of the walls may 

be large relative to the bed area and the total stress applied to a cross-section 
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calculated from the depth is larger than the stress calculated from the hydraulic 

radius. However, in bedrock canyons with complex wall and bed topographies, 

the total stress is the total force per unit surface area of the whole reach, which is 

a measure of the weight of a slab of water moving downslope due to gravity 

against friction under steady uniform flow. Without high resolution measurements 

of channel bed and wall morphologies, it is impossible to calculate the total 

surface area, wetted perimeter and hence the averaged hydraulic radius of a 

channel reach.  

Our calculation of 𝜏𝑇𝑜𝑡 uses the mean centerline depth because it is well 

constrained by our measurements, instead of the hydraulic radius (𝑅), which is a 

cross-section-based measure. We are unable to reliably constrain 𝑅 with our 

data because we do not have measurements of the cross-sections throughout 

the canyon, which are highly variable. We use mean measured centerline depth 

under the assumption that the channels are trapezoidal with steep banks and 

near flat beds, which is consistent with our observations of channel morphology 

(e.g.,Venditti et al., 2014). We acknowledge that the centerline depth is likely to 

be larger than the hydraulic radius, which will cause an overestimate of 𝜏𝑇𝑜𝑡. 

Therefore, we treat 𝜏𝑇𝑜𝑡 calculated from the centerline depth as an upper limit of 

the true 𝜏𝑇𝑜𝑡. To assess the potential bias of this approach, we calculate total 

shear stress using depths that are a fraction of the centerline depth to determine 

the magnitude of bias introduced by using centerline depth. We calculate the 

observed 𝜏𝑏𝑒𝑑 from the near bed velocity profile, and calculate the observed 𝜏𝑤𝑎𝑙𝑙 

from 𝜏𝑏𝑒𝑑 and 𝜏𝑇𝑜𝑡 using Equation 4.1, then calculate observed ratio 𝜑 =

𝜏𝑤𝑎𝑙𝑙 𝜏𝑏𝑒𝑑⁄ .  To obtain modelled shear stresses, we start by exploring the 

influences of bottom channel width, discharge, roughness length scale and bank 

angles on the modelled ratio 𝜑 using the ray-isovel model (RIM), and develop a 

simplified equation to predict modelled 𝜑 as a function of width to depth ratio. We 

then calculate modelled bed and modelled wall stresses in the Fraser canyons 

using the modelled 𝜑. We compare the modelled and observed shear stresses, 

discuss deviations of the model predictions from the field measurements and call 
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for further research on the influence of complex wall and bed roughness and flow 

fields on shear stress partitioning in bedrock canyons.  

 

Figure 4.1 Distribution of a) velocity and b) boundary shear stress computed with 
the RIM for a cross-section typical of the canyons of the Fraser 
River. Also shown in a) is schematic for the RIM setup. Rays begin 
perpendicular to the channel boundary and are perpendicular to 
contours of constant velocity (isovels). 

4.2. Theory 

4.2.1. Ray-Isovel Model (RIM) Description 

In order to predict values of 𝜑, we use RIM to calculate the shear stress 

distribution in a trapezoidal channel (see Kean & Smith, 2004 for details of RIM). 

We selected RIM for this exercise because it explicitly calculates the shear stress 

applied to the channel walls and because it has been used previously in bedrock 

canyons to partition stress in a bedrock channel (e.g., Wobus et al., 2006, 2008; 

DiBiase & Whipple, 2011; Nelson & Seminara, 2011). RIM defines the 

distribution of fluid stress throughout the whole cross section using the curvilinear 
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coordinate system of the flow. This coordinate system consists of rays that are 

perpendicular to isovels (Figure 4.1a). RIM solves the momentum equation for 

steady, uniform flow averaged over turbulence along curves (rays) that are 

perpendicular to lines of constant velocity (isovels) (Figure 4.1a). The stress and 

eddy viscosity fields are defined in the orthogonal ray-isovel coordinate system 

and the velocity field is defined in a Cartesian coordinate system. Local shear 

stress 𝜏𝑙 is calculated from the downstream weight of water between adjacent 

rays divided by the wetted perimeter separating them as 𝜏𝑙 = 𝜌𝑔𝑆 ∫ 𝛿𝑃𝑙𝑑𝑙
𝐿

0
𝛿𝑃𝑏⁄ , 

where is 𝑙 the distance along the ray from the boundary, 𝐿 is the length of the ray, 

𝛿𝑃𝑙 is the length along an isovel between adjacent rays, 𝛿𝑃𝑏 is the perimeter 

along the boundary between adjacent rays, 𝑆 is the channel slope (Figure 4.1a; 

Kean & Smith, 2004). Wall and bed stresses are obtained from averaging local 

shear stresses along the walls and bed, respectively. RIM incorporates the 

effects of the channel cross-section shape and roughness on the flow field and 

has been supported by laboratory flume data and natural channel data with fixed 

cross-sectional geometries (Griffin et al., 2005; Kean & Smith, 2005; Kean et al., 

2009). Numerical simulations of the co-evolution of shear stress distribution, 

cross-section shape and erosion rate on the basis of RIM have captured 

erosional patterns of bedrock observed in flume experiments (Nelson & 

Seminara, 2011) and width-discharge-slope relations observed in natural 

bedrock channels at steady state (Wobus et al., 2008). 

RIM inputs include channel slope 𝑆, discharge 𝑄𝑤, roughness length scale 

𝑘𝑠, bottom channel width 𝑤𝑏 and bank angles α. We use the same roughness 

length scale 𝑘𝑠 for channel bed and banks in the following RIM calculations. Flow 

depth, velocity and shear stress are determined iteratively until the output value 

of discharge is equal to its input value. The water surface width 𝑤 is calculated 

from 𝑤𝑏, ℎ and α as 𝑤 = 𝑤𝑏 + 2ℎ cot 𝛼 in a trapezoidal channel. The wall and bed 

stresses are calculated by averaging shear stress across the channel walls and 

bed, respectively. 
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4.2.2. Composite expression for 𝛗 

In order to simplify application of the RIM model in studies of bedrock 

rivers, we develop a composite expression for φ by simplifying RIM model 

outputs. Figure 4.1 shows an example of the computed velocity field, depth, and 

boundary shear stresses using model inputs that are typical of the canyons in the 

Fraser River (𝑆 = 0.001, α = 60°, 𝑤𝑏 = 100 m, 𝑘𝑠 = 0.5 m, 𝑄𝑤 = 9000 m3/s; 

Rennie et al., 2018). Rennie et al. (2018) found that mean 𝑘𝑠 was on the order of 

10-102 m in the rock bound section of the Fraser River, but this value represents 

complex non-uniform flow conditions that are not represented in the model. So 

we selected a conservative 𝑘𝑠 value of 0.5 m, which is a modest multiple of the 

grain sizes transported in the alluvial reaches of the Fraser Canyon (Rennie et 

al., 2018). RIM predicts ℎ ~ 16 m, which makes water surface width 𝑤 ~ 118 m, 

and the width-to-depth ratio 𝑤 ℎ⁄  ~ 7.4. Water velocity is highest in the channel 

center and decreases towards all boundaries (Figure 4.1a). Shear stress is 

highest in the center of the channel bed and decreases towards the channel 

banks, except for the low stresses at the boundary between the bed and walls 

due to a corner effect (Figure 4.1b). The average wall and bed stresses are 92 

Pa and 136 Pa, respectively, which gives φ = 0.68.  

To explore the sensitivity of the ratio of wall shear stress to bed shear 

stress φ𝑚 from the RIM, we vary the discharge 𝑄𝑤, roughness length scale 𝑘𝑠, 

bottom channel width 𝑤𝑏 and bank angles α independently (Figure 4.2). Figure 

4.2a shows that φ𝑚 increases with increasing 𝑄𝑤, holding 𝑘𝑠, 𝑤𝑏 and α constant. 

The increase in φ𝑚 with larger 𝑄𝑤 occurs because there is an increase in wall 

flow resistance as more area of the sidewalls is submerged with increasing water 

depth. In contrast, φ𝑚 decreases with increasing 𝑤𝑏 due to greater bed 

resistance as 𝑤𝑏 increases, holding all other variables constant (Figure 4.2b). As 

the bank angle α increases, more area of the sidewalls is submerged as the 

water depth increases and the velocity gradient on the walls increases as the 

high velocity core at the center-top of water surface gets closer to the walls. The 

increase in the velocity gradient on the walls leads to more shear stress on the 
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walls, and hence higher φ with increasing bank angle α (Figure 4.2c). In contrast 

to the variation of φ𝑚 with 𝑄𝑤, 𝑤𝑏 and α, φ𝑚 is near constant with variation in 𝑘𝑠, 

over more than three orders of magnitude from 0.01 to 10 m (Figure 4.2d). 

Therefore, we assume the influence of 𝑘𝑠 on φ𝑚 is negligible.  

 

Figure 4.2 The ratio of wall to bed stress as a function of a) discharge 𝑸𝒘, b) 

bottom channel width 𝒘𝒃, c) bank angle 𝜶 and d) roughness height 

𝒌𝒔. Each variable is explored independently by holding all other 
variables constant.  

The influence of 𝑄𝑤 and 𝑤𝑏 on φ𝑚 can be non-dimensionalized to one 

variable: width-to-depth ratio 𝑤 ℎ⁄  (Figure 4.3), because 𝑤 ℎ⁄  increases with 

increasing discharge and decreasing bottom channel width. Varying discharge 

and bottom channel width predict the same φ𝑚 for the same 𝑤 ℎ⁄ , holding bank 

angles constant (Figure 4.3a). Figure 4.3 shows the regressions for φ𝑚 including 

our best fitting one- (𝑤 ℎ⁄ ) and two-parameter (𝑤 ℎ⁄  and α) models. The best-fit 

one-parameter model shows an exponential function exists between 𝑤 ℎ⁄  and 

φ𝑚, which has the following form (Figure 4.3a): 
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 𝜑𝑚 = 1.148𝑒−0.4219(𝑤 ℎ)⁄ + 0.5988,  (Equation 4.4) 

where R2 = 0.96.  The best fit two-parameter model that includes 𝑤 ℎ⁄  and 𝛼 is 

(Figure 4.3b): 

                   𝜑𝑚 = 1.094𝑒−0.414(𝑤 ℎ)⁄ + 0.0008536𝛼 + 0.577,       (Equation 4.5) 

where R2 = 0.97. The two-parameter model is only a slight improvement over the 

one-parameter model, indicating the influence of 𝛼 on 𝜑𝑚 is negligible, compared 

with 𝑤 ℎ⁄ . It is difficult to measure bank angle in natural bedrock rivers with 

complex topography, making parameterization of the two parameter model 

challenging. Therefore, we recommend the one-parameter model (Equation 4.4) 

for simplicity. Equation 4.4 indicates that bed stress dominates over wall stress in 

wide channels, but is outpaced by wall stress in narrow channels with 𝑤 ℎ⁄ < 2.5. 

4.3. Field Site 

We test our composite relation for φ against a field dataset from the 

Fraser Canyon that was initially reported in Rennie et al. (2018). The Fraser 

River drains 232, 000 km2 of south-central British Columbia and runs through a 

375 km reach from Soda Creek to Yale, British Columbia known colloquially as 

the Fraser Canyon. At the downstream end of the Fraser Canyon, the river has a 

mean annual flow of ~ 3000 m3/s, a mean annual flood flow of ~ 9000 m3/s and a 

historic flood of record discharge of ~ 17, 000 m3/s. Through the Fraser Canyon, 

the channel alternates irregularly between being alluvial (for 45% of the 375 km 

length), bedrock-constrained (bedrock on one bank; for 29% of the 375 km 

length) and bedrock-bound (bedrock on both banks; for 26% of the 375 km 

length). The ‘alluvial’ reaches are parts of the river where the bed and banks are 

formed in alluvium, or the river flows through colluvial or unconsolidated 

Quaternary deposits (Rennie et al., 2018). Of the bedrock-bound sections, there 

are 42 individual canyons that are conspicuously deep and narrow, and long 

enough that they have been named, which occupy just 16% of the total distance 

(Venditti et al., 2020a). 
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Figure 4.3 a) Variation of 𝝋𝒎 as a function of width-to-depth ratio 𝒘 𝒉⁄  for different 

bank angles 𝜶, shown by the black line (Equation 4), b) best fit 

surface of 𝝋𝒎 as a function of width-to-depth ratio 𝒘 𝒉⁄  and bank 

angles 𝜶, shown by the color-filled surface (Equation 4.5). 

The reach scale morphology of these 42 bedrock canyons in the Fraser 

River exhibits a constriction-pool-widening morphology (e.g., Dolan et al., 1978; 

Venditti et al., 2014, 2020b). As the river enters a canyon, flow is laterally 

constricted, which causes an upstream backwater effect and sediment-laden flow 

spills through the constriction cutting a deep pool downstream (Cao, 2018; Hunt 

et al., 2018). At the distal end of the pool, sediment accumulates, deflecting 

incoming sediment into the canyon walls, which undercut the walls and cause 

them to widen (Li et al., 2020, 2021; Turowski, 2020). This constriction-pool-

widening (CPW) morphology recurs through bedrock canyons forming CPW 

sequences (Venditti et al., 2020b). 
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Rennie et al. (2018) reported observations of channel depth, water 

velocity, water surface and bed elevations that were measured near continuously 

along a centerline traverse of the Fraser Canyon, using a SonTek M9 acoustic 

Doppler current profiler (aDcp) from motorized rafts in 2009. They also reported 

the boundary shear stress calculated from the near bed velocity gradient. We 

extracted observations of flow through the named canyons and identified 26 

canyons that have reasonably continuous depth, velocity and shear stress 

measurements. We calculated the one-dimensional momentum balance (depth-

slope product) for each of these canyons as 𝜏𝑇𝑜𝑡 = 𝜌𝑔ℎ̅𝑆 where 𝜌 is water 

density (~ 1000 kg/m3), 𝑔 is gravity acceleration coefficient (~ 9.81 N/kg), ℎ̅ is the 

mean centerline-depth. ℎ̅ was obtained from averaging the local water depths 

through each canyon reach. The local water depths were filtered by removing 

depth spikes that exceeded 50 m when all neighboring points were less than 20 

m deep. 𝑆 was derived by differencing water surface elevations at the entrance 

and exit of each canyon. Mean channel width 𝑤̅ for each canyon was obtained by 

averaging the local channel width measured continuously along the centerline 

traverse of each canyon at an interval of 10 m, using LandSat satellite imagery 

(Wright et al., 2022). Following Venditti et al. (2014) and Rennie et al. (2018), we 

use the mean flow depth rather than the hydraulic radius to calculate 𝜏𝑇𝑜𝑡. Using 

depth simplifies the calculation because accurately constraining the mean 

hydraulic radius in the absence of detailed wall topography along each canyon 

reach in the Fraser River at the same resolution as bed topography is not 

possible. The true mean hydraulic radius is highly variable in the canyons.  

Nevertheless, we also roughly estimated the hydraulic radius using the mean 

width, mean depth and slope through the canyon for comparison, assuming the 

canyon morphology is uniform along the whole reach with a trapezoidal cross 

section. Table 4.1 summarizes 𝑤̅, ℎ̅, 𝑆 and 𝜏𝑇𝑜𝑡 for the 26 bedrock-bound 

canyons.  

We separate 𝜏𝑇𝑜𝑡 into its constituent parts using RIM and the field 

measurements. Using the RIM, we subdivided 𝜏𝑇𝑜𝑡 into modelled bed stress 
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𝜏𝑏𝑒𝑑_𝑚 and modelled wall stress 𝜏𝑤𝑎𝑙𝑙_𝑚 using Equation 4.4 and calculated the 

modelled ratio 𝜑m = 𝜏𝑤𝑎𝑙𝑙_𝑚 𝜏𝑏𝑒𝑑_𝑚⁄ . We also calculated the observed bed stress 

𝜏𝑏𝑒𝑑_𝑜 by averaging the shear stress 𝜏𝑏𝑒𝑑_𝑛𝑏 that is estimated from the near bed 

velocity gradient over the canyon (𝜏𝑏𝑒𝑑_𝑜 = 𝜏𝑏𝑒𝑑_𝑛𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅). Bed shear stresses 

calculated from the velocity gradient (𝜏𝑏𝑒𝑑_𝑛𝑏) are obtained from the slope (𝑚) of 

a log law fit using least squares regression of 𝑢 on ln(𝑧), where 𝑢 is the velocity 

at an elevation 𝑧 above the bed. The shear velocity 𝑢∗ is calculated as 𝑢∗ = 𝜅𝑚 

where 𝜅 is the von Karman constant (~ 0.41) and the shear stress is calculated 

as 𝜏𝑏𝑒𝑑_𝑛𝑏 = 𝜌𝑢∗
2. This procedure is done for only the near bed velocity profile 

from the bed to the velocity maximum. Alluvial rivers are depth-limited and the 

velocity profile is typically log-linear over the full water depth. In rivers with large 

bed and wall roughness features, this is often not true (e.g. McLean et al., 1994) 

and the log-linear velocity profile extends to some limited height above the bed. 

Velocity inversions are known to occur through CPW sequences in bedrock 

canyons (Venditti et al., 2014).  This phenomenon leads to errors in the 

calculated boundary shear stress if the data representing the full velocity profile 

are used in the calculations. However, using the lower portion of the velocity 

profile that is below the maximum velocity makes the shear stress dependent on 

the velocity gradient near the boundary and gives improved estimates of bed 

stresses (Venditti et al., 2014; Rennie et al, 2018). We first calculated the 

observed wall stress 𝜏𝑤𝑎𝑙𝑙_𝑜 from 𝜏𝑏𝑒𝑑_𝑜 and 𝜏𝑇𝑜𝑡 using Equation 4.1 and then 

estimated the observed ratio 𝜑o = 𝜏𝑤𝑎𝑙𝑙_𝑜 𝜏𝑏𝑒𝑑_𝑜⁄  from 𝜏𝑤𝑎𝑙𝑙_𝑜 and 𝜏𝑏𝑒𝑑_𝑜. To 

predict shear stress from Equations 4.1-4.3, the bank angle α for each canyon 

needs to be specified. Subaqueous bank angles cannot be easily measured in 

the bedrock-bound parts of the Fraser Canyon. Wright et al. (2022) report α ~ 60° 

based on bathymetric maps of Black and Alexandra Canyons which have 𝑤̅ ℎ̅⁄  

ratios of 3.71 and 4.80 respectively (Venditti et al, 2021). In the absence of other 

information, we assume bank angles of Black and Alexandra Canyons are 

representative of all the canyons and use α = 60° for all calculations below. 
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Table 4.1 Characteristics of the 26 bedrock-bound canyons studied in the Fraser 
River.  

Canyon 𝑤̅ ℎ̅ 𝑤̅ ℎ̅⁄  𝑆 𝜑𝑚 𝜏𝑇𝑜𝑡 𝜏𝑏𝑒𝑑_𝑜 𝜏𝑤𝑎𝑙𝑙_𝑜 𝜑𝑜 

Hawks Creek 
Canyon 

102 9.41 10.8 0.0005 0.61 47.4 35.3 102 2.88 

West Williams Lake 
Canyon 

130 9.73 13.4 0.001 0.60 93.8 38.5 405 10.5 

Chimney Creek 
Canyon 

80.8 17.7 4.56 0.001 0.77 166 88.1 293 3.33 

Doc English 
Canyon 

97.0 11.2 8.69 0.001 0.63 115 110 131 1.18 

Iron Canyon 65.9 21.2 3.11 0.0007 0.91 143 99.8 186 1.87 
Alkali Rapids 99.3 13.8 7.22 0.001 0.65 136 77.4 304 3.92 

McEwan Rapids 81.6 19.0 4.28 0.001 0.79 220 67.9 452 6.65 
Grinder Creek 
North Canyon 

135 12.8 10.5 0.0009 0.61 112 67.5 304 4.51 

French Bar Canyon 149 10.0 14.9 0.0020 0.60 176 158 293 1.85 
Chisholm Canyon 99.5 12.7 7.86 0.0005 0.64 63.3 77.3 19.3 0.25 

Kelly Creek Canyon 74.9 16.4 4.56 0.002 0.77 264 201 369 1.84 
White  Canyon 69.9 16.9 4.13 0.0009 0.80 142 195 65.2 0.33 

Fountain Canyon 
West 

80.8 19.1 4.24 0.001 0.79 188 71.0 363 5.11 

West Fountain 
Canyon 

85.7 14.5 5.93 0.002 0.69 328 98.2 847 8.63 

Bridge River 
Confluence Canyon 

83.1 21.4 3.88 0.001 0.82 261 158 398 2.52 

Lillooet Rapid 99.1 18.0 5.51 0.0004 0.71 60.8 69.9 42.0 0.60 
Lochore-Nesikep 

Canyon 
106 13.2 8.00 0.0008 0.64 98.4 99.9 93.7 0.94 

McGillvray Creek 
Rapid 

108 14.6 7.37 0.001 0.65 139 82.1 305 3.71 

Hull Arden Creek 
Canyon 

118 13.2 8.90 0.001 0.63 141 93.0 315 3.39 

Keefer Canyon 136 17.6 7.73 0.0005 0.64 94.1 37.2 269 7.25 
Inkahtsaph Canyon 106 30.1 3.51 0.0008 0.86 232 47.2 448 9.50 
Kahmoose Canyon 83.9 27.9 3.00 0.0008 0.92 219 58.5 370 6.33 

Paul's Rapid 63.2 24.4 2.59 0.002 0.98 445 573 348 0.61 
Little Hell's Gate 

Canyon 
103 11.6 8.92 0.003 0.63 298 243 498 2.05 

Black Canyon 72.4 19.5 3.71 0.001 0.84 284 172 426 2.47 
Lamb's View 

Canyon 
128 16.0 8.03 0.001 0.64 181 150 279 1.86 
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4.4. Results 

4.4.1. Flow structure and observed shear stresses 

We select three canyons as exemplars of flow structure and shear stress 

distributions in the Fraser Canyon, based on the relation between 𝜏𝑏𝑒𝑑_𝑜 and 𝜏𝑇𝑜𝑡. 

Paul's Rapid is an example where 𝜏𝑇𝑜𝑡 < 𝜏𝑏𝑒𝑑_𝑜 (Table 4.1). The total shear 

stress 𝜏𝑇𝑜𝑡 (~ 445 Pa) is 77.7% of the bed stress 𝜏𝑏𝑒𝑑_𝑜 (~ 573 Pa). The wall 

stress 𝜏𝑤𝑎𝑙𝑙_𝑜 required to balance the bed stress in Paul’s Rapid is 348 Pa, which 

is 60.7% of the bed stress 𝜏𝑏𝑒𝑑_𝑜 and 78.3% of the total stress 𝜏𝑇𝑜𝑡.  Of the 26 

canyons studied, Paul's Rapid is the narrowest canyon with a mean width to 

depth ratio 𝑤̅ ℎ̅⁄ = 2.59 (Table 4.1). The canyon bed has a series of deep pools, 

the first of which occurs at the entrance with a local maximum depth ℎ𝑚𝑎𝑥 ~ 25 

m, the second occurs midway along the canyon with ℎ𝑚𝑎𝑥 ~ 32 m and the third 

occurs at the canyon exit with ℎ𝑚𝑎𝑥 ~ 36 m (Figure 4.4a). The pools are 

coincident with width constrictions (especially the one midway through the 

canyon) that create CPW sequences. At the entrance of the CPW, plunging flow 

occurs where high-velocity fluid from the water surface follows along the channel 

bed down into scour pools (Figure 4.4a). The high-velocity core dissipates with 

distance downstream, but reappears with each CPW (Figure 4.4a). The high-

velocity core is largest within the CPW that is in the middle of the canyon where 

the constriction is greatest. The distribution of bed stress in Paul's Rapid shows 

elevated bed stresses 𝜏𝑏𝑒𝑑_𝑛𝑏 (Figure 4.4b) at the entrance of the canyon (0 to 60 

m), at several locations through the CPW sequence in the middle of the canyon 

(300 to 600 m), and near the exit of the canyon (700 to 800 m). Increases in 

shear stress are caused by plunging flows that increase near bed velocity 

gradients. The peak 𝜏𝑏𝑒𝑑_𝑛𝑏 in Paul's Rapid is similar in each pool (~ 1750 Pa) 

and occurs near the maximum pool depths. Minor spikes in 𝜏𝑏𝑒𝑑_𝑛𝑏 also occur in 

minor pools where flow gets deeper (e.g. between 140 to 160 m and 200 to 240 

m from the canyon entrance). 𝜏𝑏𝑒𝑑_𝑛𝑏 is negligible at the exit of each pool in 

Paul’s Rapid (e.g., between 650 m and 700 m), where the plunging flow 
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dissipates and the adverse velocity gradient disappears as the flow shallows and 

the canyon widens (Venditti et al., 2014). 

 

Figure 4.4 a) Streamwise velocity in Paul’s Rapid. b) Shear stress distribution 
𝝉𝒃𝒆𝒅_𝒏𝒃 calculated from near bed velocity, mean bed stress 𝝉𝒃𝒆𝒅_𝒐, 

total stress 𝝉𝑻𝒐𝒕 and the width 𝒘 variation throughout Paul’s Rapid. 

Lamb’s View Canyon is an example where 𝜏𝑇𝑜𝑡 > 𝜏𝑏𝑒𝑑_𝑜, which is typical of 

most canyons. The total stress 𝜏𝑇𝑜𝑡 (~ 181 Pa) is 1.21 times the observed bed 

stress 𝜏𝑏𝑒𝑑_𝑜 (~ 150 Pa). The wall stress 𝜏𝑤𝑎𝑙𝑙_𝑜 required to balance the bed 

stress in Lamb’s View Canyon is 279 Pa, which is 1.86 times the bed stress 

𝜏𝑏𝑒𝑑_𝑜 and 1.55 times the total stress 𝜏𝑇𝑜𝑡. Of the 26 canyons studied, Lamb’s 

View Canyon has a moderate 𝑤̅ ℎ̅⁄  = 8.03 (Table 4.1). While Lamb’s View 

Canyon is bedrock on both sides of the channel, there are some lateral sediment 

inputs from hillslopes making it somewhat more discontinuous than Paul’s Rapid.  
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Lamb’s View Canyon has four deep pools (Figure 4.5a). The distribution of bed 

stress shows large spikes of 𝜏𝑏𝑒𝑑_𝑛𝑏 (Figure 4.5b) around the deepest pools 

through these four CPW sequences due to the high velocity gradients near the 

bed. Minor spikes in 𝜏𝑏𝑒𝑑_𝑛𝑏 are coincident with local constrictions or deep parts 

of pools (e.g., between 700 and 1000 m; 2400 and 2700 m). 𝜏𝑏𝑒𝑑_𝑛𝑏 is negligible 

at the exit of each CPW sequence (e.g., between 1700 m and 1800 m) where the 

plunging flow dissipates and the adverse velocity gradient disappears.  

  

Figure 4.5  a) Streamwise velocity in Lamb’s View Canyon. b) Shear stress 
distribution 𝝉𝒃𝒆𝒅_𝒏𝒃 calculated from near bed velocity, mean bed 

stress 𝝉𝒃𝒆𝒅_𝒐, total stress 𝝉𝑻𝒐𝒕 and the width 𝒘 variation throughout 

Lamb’s View Canyon. 

Lochore-Nesikep Canyon is an example where the total stress 𝜏𝑇𝑜𝑡 (98.4 

Pa), the bed stress 𝜏𝑏𝑒𝑑_𝑜 (99.9 Pa) and the wall stress 𝜏𝑤𝑎𝑙𝑙_𝑜 (93.7 Pa) are all 
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similar (Table 4.1). Lochore-Nesikep Canyon has a moderate 𝑤̅ ℎ̅⁄  = 8.00 (Table 

4.1). The canyon bed has one deep pool at the canyon exit with ℎ𝑚𝑎𝑥 ~ 27m 

(Figure 4.6a). The pool is coincident with a width constriction that creates one 

CPW. A plunging flow develops bringing high speed fluid toward the bottom of 

the pool, and dissipates as the canyon gets wider and shallower at the canyon 

exit. The distribution of bed stress in Lochore-Nesikep Canyon shows large 

spikes in 𝜏𝑏𝑒𝑑_𝑛𝑏 at the canyon entrance where water depth starts to increase and 

at the canyon exit at the deepest pool.  

All 26 studied canyons have a similar unimodal distribution of 𝜏𝑏𝑒𝑑_𝑛𝑏 

(Figure 4.7). The distributions are heavy-tailed because shear stress is low 

through most of the canyon, with notable spikes in stress associated with the 

CPW sequences. The narrowest canyon (𝑤̅ ℎ̅⁄ = 2.6), Paul’s Rapid, has the 

widest range of 𝜏𝑏𝑒𝑑_𝑛𝑏 (1 to 2635 Pa) and the highest mode (550 Pa), and also 

stands out as an outlier from the rest of the dataset (Figure 4.8). More typically, 

the range is 1 to 2000 Pa with the mode lying between 75 and 150 Pa.  Several 

canyons have a narrower distribution and lower mode of 𝜏𝑏𝑒𝑑_𝑛𝑏 including Hawks 

Creek, West Williams Lake and Keefer canyons, in which the width constrictions 

occur somewhat before or after the deep pools instead of being coincident with 

the deep pools. 
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Figure 4.6 a) Streamwise velocity in Lochore-Nesikep Canyon. b) Shear stress 
distribution 𝝉𝒃𝒆𝒅_𝒏𝒃 calculated from near bed velocity, mean bed 

stress 𝝉𝒃𝒆𝒅_𝒐, total stress 𝝉𝑻𝒐𝒕 and the width 𝒘 variation throughout 

Lochore-Nesikep Canyon. 

Of 26 canyons studied, 21 canyons have 𝜏𝑤𝑎𝑙𝑙_𝑜 > 𝜏𝑇𝑜𝑡 > 𝜏𝑏𝑒𝑑_𝑜, one 

canyon has 𝜏𝑇𝑜𝑡 ≈ 𝜏𝑏𝑒𝑑_𝑜 ≈ 𝜏𝑤𝑎𝑙𝑙_𝑜 and four canyons had 𝜏𝑤𝑎𝑙𝑙_𝑜 < 𝜏𝑇𝑜𝑡 < 𝜏𝑏𝑒𝑑_𝑜 

(Figure 4.8). Regression analysis reveals roughly linear relations between 𝜏𝑏𝑒𝑑_𝑜, 

𝜏𝑤𝑎𝑙𝑙_𝑜 with 𝜏𝑇𝑜𝑡 (Figure 4.8). Paul’s Rapid is not included in the regression 

analysis because the observed bed stress in Paul’s Rapid (𝜏𝑏𝑒𝑑_𝑜 = 573 Pa) 

differs significantly from the rest of observed bed stresses 𝜏𝑏𝑒𝑑_𝑜 and does not 

follow the trend of the rest of the data. Including the Paul’s Rapid data would bias 

the relations. The relation between 𝜏𝑏𝑒𝑑_𝑜 and 𝜏𝑇𝑜𝑡 shows considerable variability, 

however 30% of the variance in 𝜏𝑏𝑒𝑑_𝑜 is explained by 𝜏𝑇𝑜𝑡. There is also 

considerable variability in the relation between 𝜏𝑤𝑎𝑙𝑙_𝑜 and 𝜏𝑇𝑜𝑡, yet 68% of the 
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variance in 𝜏𝑤𝑎𝑙𝑙_𝑜 is explained by 𝜏𝑇𝑜𝑡. The relations have non-zero intercepts, 

but we force the regression through zero because total stress should be zero if 

the bed and wall stress are zero. We find that 𝜏𝑏𝑒𝑑_𝑜 is roughly 42% (± standard 

error 5%) less than 𝜏𝑇𝑜𝑡, and 𝜏𝑤𝑎𝑙𝑙_𝑜 is roughly 74% (±11%) larger than 𝜏𝑇𝑜𝑡. This 

result is counterintuitive because most models of landscape evolution assume 

that the bed stress can be approximated as the total stress (e.g., Seidl & Dietrich, 

1992; Anderson, 1994; Tucker & Slingerland, 1994; Willett, 1999; Hancock & 

Anderson, 2002; Yanites, 2018), and therefore assume that the bed stress, wall 

stress and total stress are equal (Equation 4.1). Our result also shows that the 

wall stress is not negligible in bedrock canyons. Instead, wall stress dominates 

over bed stress in most studied canyons in the Fraser River.  

 

Figure 4.7 Probability density function (PDF) of measured local bed shear stress 
along each canyon reach studied in the Fraser River. 
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Figure 4.8 a) Relations between observed bed stress 𝝉𝒃𝒆𝒅_𝒐 and total shear stress 

𝝉𝑻𝒐𝒕 calculated using depth h (𝝉𝒃𝒆𝒅_𝒐 = 𝟎. 𝟓𝟖𝝉𝑻𝒐𝒕) and hydraulic radius 

R (𝝉𝒃𝒆𝒅_𝒐 = 𝟎. 𝟖𝟏𝝉𝑻𝒐𝒕). b) Relations between the observed wall stress 

𝝉𝒘𝒂𝒍𝒍_𝒐 and total shear stress 𝝉𝑻𝒐𝒕 calculated using h (𝝉𝒘𝒂𝒍𝒍_𝒐 =
𝟏. 𝟕𝟒𝝉𝑻𝒐𝒕), and hydraulic radius R (𝝉𝒘𝒂𝒍𝒍_𝒐 = 𝟏. 𝟑𝟕𝝉𝑻𝒐𝒕). Paul’s Rapid 

(plotted within the orange circle) is not incorporated in the 
regression. Regressions are forced through zero. 

4.4.2. Modelled shear stresses 

All 26 canyons studied here have 𝜑𝑚 < 1, ranging from 0.60 to 0.98 (Table 

4.1). 𝜏𝑏𝑒𝑑_𝑚 and 𝜏𝑤𝑎𝑙𝑙_𝑚 are estimated from 𝜑𝑚, 𝜏𝑇𝑜𝑡, and 𝛼 (60o) using equations 

2 and 3, respectively. Regression analysis reveals linear relations between 

𝜏𝑏𝑒𝑑_𝑚, 𝜏𝑤𝑎𝑙𝑙_𝑚 and 𝜏𝑇𝑜𝑡 (Figure 4.9). Nearly all the variation in 𝜏𝑏𝑒𝑑_𝑚 is explained 

by 𝜏𝑇𝑜𝑡 (> 99%) (Figure 4.9a) and the proportion of 𝜏𝑤𝑎𝑙𝑙_𝑚 explained by 𝜏𝑇𝑜𝑡 is 

93% (Figure 4.9b).  With the relation fit through zero, 𝜏𝑏𝑒𝑑_𝑚 is systematically 

~9% (± standard error 0.3%) larger than 𝜏𝑇𝑜𝑡 and 𝜏𝑤𝑎𝑙𝑙_𝑚 is ~19% (±2%) smaller 

than 𝜏𝑇𝑜𝑡.  



116 

 

Figure 4.9 a) Relations between the modelled bed stress 𝝉𝒃𝒆𝒅_𝒎 and total shear 

stress 𝝉𝑻𝒐𝒕 calculated using depth h (𝝉𝒃𝒆𝒅_𝒎 = 𝟏. 𝟎𝟗𝝉𝑻𝒐𝒕) and hydraulic 

radius R (𝝉𝒃𝒆𝒅_𝒎 = 𝟏. 𝟎𝟗𝝉𝑻𝒐𝒕). b) Relations between the modelled wall 

stress 𝝉𝒘𝒂𝒍𝒍_𝒎 and total shear stress 𝝉𝑻𝒐𝒕 calculated using depth h 

(𝝉𝒘𝒂𝒍𝒍_𝒎 = 𝟎. 𝟖𝟏𝝉𝑻𝒐𝒕) and hydraulic radius R (𝝉𝒘𝒂𝒍𝒍_𝒎 = 𝟎. 𝟕𝟗𝝉𝑻𝒐𝒕). Paul’s 

Rapid (plotted within the orange circle) is not incorporated in the 
regression. Regressions are forced through zero. 

4.4.3. Comparison of observed and modelled shear stresses 

Of 26 canyons studied, 𝜏𝑏𝑒𝑑_𝑚 is larger than 𝜏𝑏𝑒𝑑_𝑜 and 𝜏𝑤𝑎𝑙𝑙_𝑚  is smaller 

than 𝜏𝑤𝑎𝑙𝑙_𝑜 in 22 canyons (Figure 4.10). 𝜏𝑏𝑒𝑑_𝑚 is smaller than 𝜏𝑏𝑒𝑑_𝑜 and 𝜏𝑤𝑎𝑙𝑙_𝑚  

is larger than 𝜏𝑤𝑎𝑙𝑙_𝑜 in three canyons (Figure 4.10). One canyon has 𝜏𝑏𝑒𝑑_𝑚 ≈

𝜏𝑏𝑒𝑑_𝑜 and 𝜏𝑤𝑎𝑙𝑙_𝑚 ≈ 𝜏𝑤𝑎𝑙𝑙_𝑜 (Figure 4.10). Regression analysis reveals roughly 

linear relations between 𝜏𝑏𝑒𝑑_𝑜 and 𝜏𝑏𝑒𝑑_𝑚 as well as 𝜏𝑤𝑎𝑙𝑙_𝑜 and 𝜏𝑤𝑎𝑙𝑙_𝑚 (Figure 

4.10). Paul’s Rapid is not included in the regression analysis because it is an 

outlier from the rest of the dataset. The relation between 𝜏𝑏𝑒𝑑_𝑜 and 𝜏𝑏𝑒𝑑_𝑚 shows 

considerable variability, however 30% of the variance in 𝜏𝑏𝑒𝑑_𝑚 is explained by 

𝜏𝑏𝑒𝑑_𝑜. There is also considerable variability in the relation between 𝜏𝑤𝑎𝑙𝑙_𝑜 and 

𝜏𝑤𝑎𝑙𝑙_𝑚, yet 55% of the variance in 𝜏𝑤𝑎𝑙𝑙_𝑚 is explained by 𝜏𝑤𝑎𝑙𝑙_𝑜.  The relations 

should have a zero intercept, because the modelled stress should be zero when 

the observed stress is zero. Even though the difference between the modelled 

and observed shear stresses show wide variations, the model over-predicts the 

observed bed stress by 56% (± standard error 15%)  (Figure 4.10a) and under-
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predicts the observed wall stress by roughly 57% (±3.2%)  (Figure 4.10b). The 

deviation between the model and measurement is somewhat smaller using 𝑅 for 

the canyon. Modelled bed stress over-predicts the observed bed stress by 16% 

(±9%) (Figure 4.10a) and under-predicts the observed wall stress by roughly 

54% (±5%) (Figure 4.10b) using 𝑅.  

 

Figure 4.10 a) Relations between observed 𝝉𝒃𝒆𝒅_𝒐 and modelled bed stresses 𝝉𝒃𝒆𝒅_𝒎 

using 𝝉𝑻𝒐𝒕 that is calculated by depth h (𝝉𝒃𝒆𝒅_𝒎 = 𝟏. 𝟓𝟔𝝉𝒃𝒆𝒅_𝒐) and 

hydraulic radius R (𝝉𝒃𝒆𝒅_𝒎 = 𝟏. 𝟏𝟔𝝉𝒃𝒆𝒅_𝒐). b) Relations between 

observed 𝝉𝒘𝒂𝒍𝒍_𝒐 and modelled wall stresses 𝝉𝒘𝒂𝒍𝒍_𝒎 using 𝝉𝑻𝒐𝒕 that is 

calculated by depth h (𝝉𝒘𝒂𝒍𝒍_𝒎 = 𝟎. 𝟒𝟑𝝉𝒘𝒂𝒍𝒍_𝒐), and hydraulic radius R 

(𝝉𝒘𝒂𝒍𝒍_𝒎 = 𝟎. 𝟒𝟔𝝉𝒘𝒂𝒍𝒍_𝒐). Paul’s Rapid (plotted within the orange circle) 

is not incorporated in the regressions. Regressions are forced 
through zero. 

4.5. Discussion 

4.5.1. Difference between model simulations and field measurements 

Of 26 canyons studied here, the bed and the wall stresses are 

systematically different between model predictions and field observations. The 

modelled bed stresses are ~ 56% (±15%) larger than the observed bed stresses, 

and the modelled wall stresses are ~ 57% (±3.2%) smaller than the observed 

wall stresses. These differences may be explained by three assumptions made in 

the RIM: 1) the bank angle is assumed to be the same; 2) the bed and the walls 
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are assumed to be equally rough; 3) the flow is assumed to be steady and 

uniform.   

We assume a constant bank angle (60o) in the RIM in all 26 studied 

canyons due to the lack of measurements within each canyon. To test the 

influence of bank angles on the predicted shear stress in the Fraser River, we 

vary the bank angle from 20o to 80o in the two-parameter model. φ is not 

sensitive to variation in bank angle, varying by <20%. In response to the variation 

in bank angles, the range of the ratios 𝜏𝑏𝑒𝑑_𝑜 𝜏𝑏𝑒𝑑_𝑚⁄  and 𝜏𝑤𝑎𝑙𝑙_𝑜 𝜏𝑤𝑎𝑙𝑙_𝑚⁄  are 

similar. We conclude that the difference between the model results and field data 

is relatively insensitive to bank angle. 

RIM uses the same roughness length scale for bedrock bed and walls, 

assuming that the channel bed and walls are equally rough. RIM predicts the wall 

stress is smaller than the bed stress for all morphological and hydraulic 

conditions. However, the wall stress in the field measurements is larger than the 

bed stress for the majority of studied canyons. This result shows that rock walls 

are typically rougher than the bed in the Fraser Canyon. Complex wall 

morphologies can be a substantial momentum sink, leaving less momentum 

applied to the bed. Bedrock canyon walls may undulate in or out of phase with 

each other (Wohl et al., 1999; Wohl & Merritt, 2001; Carter & Anderson, 2006). 

The canyons of the Fraser river typically have irregular undulations 

superimposed on CPW sequences. Black Canyon, for example, has six CPW 

sequences with along channel length scales of ~ 1000 m and smaller wall forms 

with length scales of ~ 50 m (Curran, 2020; Figure 4.11). These wall forvms 

cause flow separation, secondary flow cells and the formation of large scale 

coherent flow structures (Venditti et al., 2014; Ansari et al., 2018) that effectively 

reduce the mean velocity and increase the form drag on the walls (Yang, 1971; 

Carling, 1989; Wohl, 1993;  Wohl et al., 1999; Carter & Anderson, 2006; Carling 

et al., 2019). The walls may also be rougher than the bed because the bed might 

be smoothed by alluvium filling depressions. Ferguson et al. (2019) speculated 

that abrasional smoothing effect decreases with distance above the bed, which 
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would also tend to make the bed and lower walls smoother where bedload 

impacts are most common (Fuller et al., 2016; Beer et al., 2017; Li et al., 2020, 

2021). The decrease in the ratio of bed to wall roughness length scale in narrow 

channels has been shown to reduce the ratio of bed to wall stress (Flintham & 

Carling, 1988). Further experimental and modelling work is needed to explore 

how the sizes and scales of wall and bed roughness affect the ratio of bed to wall 

stress. 

 

Figure 4.11 Width variations in Black Canyon at three discharges with the six 
major constrictions marked (modified from Curran, 2020). 

RIM solves the distribution of shear stress for steady, uniform flow using a 

ray-isovel turbulence closure. RIM does not model secondary circulation and 

calculates a velocity profile that is highest at the center of the water surface. Yet, 

there are velocity inversions (high velocities near the bed and low velocities at 

the surface) observed in the Fraser Canyon. The downwelling in the center of the 
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channel and upwelling along the channel walls result in counter-rotating, along-

stream coherent flow structures that diverge near the bed (Venditti et al., 2014). 

The plunging flow structure leads to the spikes in shear stress as water enters 

the CPW sequence but muted bed stress as flow shallows downstream of the 

CPW sequence. These highly non-uniform flows are not reflected in the RIM 

predictions. Development of three dimensional turbulence resolving models are 

needed to explore how non-uniform flow structures affect the ratio of bed and 

wall stresses. Separating the effects of wall roughness and the complex flow 

structure on wall stress is not possible in our analysis, but we conclude that the 

combined effect of wall morphology complexities and flow structure can result in 

the large observed wall stresses relative to the modelled stresses.  

4.5.2. Implications for morphodynamic modelling of bedrock rivers 

Given the lack of field observations of partitioned bed and wall stresses in 

large bedrock rivers, morphodynamic models rely on the assumption that bed 

stress is equal to the total stress (e.g., Whipple & Tucker, 1999; Lague et al., 

2005; Sklar & Dietrich, 2008; Yanites, 2018). However, our results show that the 

wall stress is larger than the total stress and the bed stress is lower than the total 

stress for the majority of the 26 studied canyons. The majority of landscape 

evolution models are driven by the simple rule for incision (stream power model) 

that assumes vertical erosion rate is proportional to the bed stress to a power of 

1 (Howard & Kerby, 1983; Howard, 1994; Whipple & Tucker, 1999). The stream 

power model using the total stress as the bed stress can over-predict the erosion 

rate by ~42%. The over-estimation of instantaneous erosion rate will 

overestimate channel response over long time scales. Mechanistic models of 

erosion by saltating bedload or suspended load largely rely on the transport 

capacity for determining the bed coverage (Sklar & Dietrich, 2004; Lamb et al., 

2008a; Li et al., 2020). The transport capacity and sediment impact velocity on 

rock in these mechanistic models are proportional to the bed stress to a power 

larger than 1. Other mechanistic erosion models have a similar non-linear 

dependence on shear stress with various degrees of sophistication, such as the 
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plucking and weathering models (Chatanantavet & Parker, 2009; Hancock et al., 

2011; Lamb et al., 2015; Larsen & Lamb, 2016). The nonlinear dependence of 

vertical erosion rate on shear stress in these mechanistic models means that 

vertical erosion will be overestimated using total stress. The bed stress 

distribution in bedrock canyons of the Fraser River also has implications for 

modelling spatial variations of morphodynamics along individual canyon reaches. 

The bed stress spikes as water enters the CPW sequence, and becomes 

negligible as water exits the CPW sequence. The spikes in bed stresses along 

the entrance slope of the CPW sequence would cause high vertical erosion 

there, leading to the upstream migration of the scour pool. The muted bed 

stresses along the exit slope of the CPW sequence would cause sediment 

deposition there, leading to negligible vertical erosion. The peak bed stress within 

each CPW sequence 𝜏𝑝𝑒𝑎𝑘 is larger than the total shear stress 𝜏𝑇𝑜𝑡 for all studied 

canyons. Venditti et al. (2014) reported that the ratio 𝜏𝑝𝑒𝑎𝑘 𝜏𝑇𝑜𝑡⁄  was ~3.6 for Iron 

Canyon using a different and more limited dataset. However, they reduced 𝜏𝑇𝑜𝑡 

by 50% to account for wall stresses.  In our dataset, the ratio 𝜏𝑝𝑒𝑎𝑘 𝜏𝑇𝑜𝑡⁄  ranges 

from 1 to 20 with a mean of 4.9 (±0.35). The ratio 𝜏𝑝𝑒𝑎𝑘 𝜏𝑏𝑒𝑑_𝑜⁄  also ranges from 1 

to 20 with a mean of 7.5 (±0.45) (Figure 4.12). Given that erosion rate tends to 

scale with bed stress to a power greater than 1 (Sklar & Dietrich, 2004; Lamb et 

al., 2008, 2015; Hurst et al., 2021), there would be larger variation of erosion rate 

than that of bed stress. This result would exaggerate the spikes in erosion rate 

along the entrance slope of pools, leading to deepening and migration of scour 

pools. The exaggeration of erosion rate at deep pools would create a positive 

feedback whereby the higher bed stress deepens the scour pools, which in turn 

increases the near-bed velocity and the bed stress. The pools of the Fraser 

Canyon mostly have depths of ~30 m (Venditti et al., 2020a), suggesting that 

these pools are depth limited. However, the question of how scour pools are 

depth limited remains unanswered from our analysis. Cao et al. (2022) show that 

pool depth is limited by development of continuous alluviation, which has also 

been shown in step-pool channels (Carling et al., 2006).  
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The lower bed stress than the total stress and the wall stress has 

implications for the feedbacks amongst bed alluviation, vertical erosion and 

lateral erosion. A lower bed stress leads to a lower transport capacity and hence 

a higher extent of alluvial cover at given discharge and sediment supply. The 

increase in sediment coverage on the bed can reduce the channel-bed erosion 

due to the decrease in bed exposure, but tends to increase the channel-wall 

erosion because the alluvium can deflect bedload particles toward the walls (e.g., 

Fuller et al., 2016; Fernández et al., 2019). Continued channel widening reduces 

the water depth and further decreases the bed stress (Fuller et al., 2016; Li et al., 

2020). This positive feedback would grow until the bed stress is below the 

threshold of motion so that the channel has to get steeper to transport the 

supplied sediment (Li et al., 2021). 

 

Figure 4.12 Relations between a) peak bed stress 𝝉𝒑𝒆𝒂𝒌 within each pool and total 

stress 𝝉𝑻𝒐𝒕, and b) peak bed stress 𝝉𝒑𝒆𝒂𝒌 within each pool and mean 

bed stress 𝝉𝒃𝒆𝒅_𝒐. Paul’s Rapid (plotted within the orange circle) is 

not incorporated in the regression. 

4.5.3. Application to natural bedrock rivers 

Our model results show that wall stress exceeds bed stress in most 

studied canyons in the Fraser River. Few measurements of bedrock wall 

morphology are available to help guide a mechanistic parameterization of wall 
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roughness and calibrate the RIM model. Despite the disagreement between the 

model and the field data, the difference between the model and observed bed 

stresses (+56%) and wall shear stresses (-57%) are consistent in the Fraser 

Canyon (Figure 4.10). There are wide variations in the difference between the 

model and the observed shear stresses that are caused by variation in the field 

observations, but the consistency of the difference between modelled and 

observed shear stresses indicates that the RIM can be used as a first-order 

estimate of bed and wall shear stresses, which needs to be further adjusted for 

wall roughness.  

To help guide prediction of bed and wall shear stresses in a bedrock river 

reach, we propose a shear stress partitioning method that includes: 1) 

measurement of the mean depth ℎ̅, slope 𝑆 and bank angle α (if possible) within 

the bedrock river reach; 2) calculation of total shear stress from 1-D momentum 

balance 𝜏𝑇𝑜𝑡 = 𝜌𝑔ℎ̅𝑆; 3) partitioning the initial bed and bank shear stresses from 

the RIM using Equation 4; 4) dividing the initial bed and bank stresses by 

correction factors that correct the RIM prediction for wall roughness and complex 

flow structures. The bed stress correction factor is 1.56 and the wall correction 

factor is 0.43 for the Fraser Canyon using the centerline depth. The peak bed 

stress could be further predicted by multiplying the bed stress by 7.5. Where 

subaqueous bank angle cannot be measured, it can be estimated recognizing 

that the RIM prediction is not very sensitive to small deviations of bank angle. 

Although the framework offers insight into the distribution of shear stress, 

measurements of shear stress in other bedrock rivers are needed to determine 

whether the coefficients proposed here are suitable. We caution against using 

the correction factors derived from the Fraser Canyon in systems with very 

different geology and geological history, different morphologies, or outside of the 

parameter space used to derive them (e.g. 𝑤 ℎ⁄ <2.5).  

Our proposed framework uses depth-slope product to estimate 𝜏𝑇𝑜𝑡 

instead of using the hydraulic radius because it is easier to constrain depth from 

our measurements of channel centerline and because using the hydraulic radius 
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produces a result that is not physically possible. Comparison of 𝜏𝑇𝑜𝑡 calculated 

using depth and the hydraulic radius reveals that the latter value calculated is 

smaller than the former (Figure 4.8). Using hydraulic radius, 𝜏𝑏𝑒𝑑_𝑜 is ~19% 

smaller than 𝜏𝑇𝑜𝑡, compared with ~42% smaller using depth, and 𝜏𝑤𝑎𝑙𝑙_𝑜 is ~37% 

larger than 𝜏𝑇𝑜𝑡, compared with ~74% using depth (Figure 4.8). The difference 

between modelled and measured bed shear stress is smaller using the hydraulic 

radius than using the depth in calculation of 𝜏𝑇𝑜𝑡. The ratio 𝜏𝑏𝑒𝑑_𝑚 𝜏𝑏𝑒𝑑_𝑜⁄  is ~1.56 

using the depth but ~1.16 using the hydraulic radius. The ratio 𝜏𝑤𝑎𝑙𝑙_𝑚 𝜏𝑤𝑎𝑙𝑙_𝑜⁄  is 

~0.46 using the hydraulic radius compared with ~0.43 using the depth (Figure 

4.10).   

While the pattern of over-prediction and under-prediction is the same 

using the hydraulic radius and depth, when 𝜏𝑇𝑜𝑡 is calculated from hydraulic 

radius, we find that 𝜏𝑤𝑎𝑙𝑙_𝑜 < 0 for three canyons, which is not physically possible. 

The reason for this is not obvious.  It is possible that there is error embedded in 

our calculation of 𝜏𝑇𝑜𝑡 using both depth and hydraulic radius and that the 

calculation using depth is sufficiently large that it always exceeds the error. We 

regard this as unlikely because our depths are measured at high resolution over 

long reaches. In contrast, the hydraulic radius, which is a measure of the channel 

cross-section, can only be roughly estimated from the mean width, mean depth 

and bank angles of the canyon. We have no measurement of cross-sections. We 

suspect that the negative result is because our estimate of the hydraulic radius is 

not commensurate with the resolution of the bed shear stress observations.  It is 

also not clear that hydraulic radius calculated from cross-sections is capable of 

capturing the variation in the banks that cause the high stress on the walls 

(Carling et al., 2019). 

The proposed framework above uses the centerline depth to calculate 

𝜏𝑇𝑜𝑡, which likely overestimates the bed stress. Bedrock channel cross-sections 

or the three-dimensional bed topography required to better constrain depth and 

the hydraulic radius are challenging to obtain in all but the smallest channels. In 

order to assess the bias caused by using the centerline depth in 𝜏𝑇𝑜𝑡 
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calculations, we repeat the calculations with depth that is reduced by 10%, 20% 

and 30%. Reducing depth decreases 𝜏𝑇𝑜𝑡, which increases the ratio of bed stress 

to total stress by ~14%, per 10% decrease in depth. The ratio of wall stress to 

total stress reduces by ~11%, per 10% decrease in depth. The correction factor 

in our proposed framework decreases by ~10% for bed stress and increases by 

~5% for wall stress, per 10% decrease in depth (Figure 4.13). It is important to 

recognize that large decreases (>10%) on flow depth produce negative wall 

stresses in our analysis and are probably not reasonable. Fortunately, in bedrock 

channels with a rectangular or trapezoidal cross-section shape, the difference 

between the mean depth and centerline depth is likely to be small. Nevertheless, 

the bias induced by using a centerline depth in our framework can be corrected 

by adjusting the depth used in calculating 𝜏𝑇𝑜𝑡 and adjusting the bed stress 

correction factor and the wall stress correction factor to values shown in Figure 

4.13. 

Ultimately, detailed measurements of bedrock canyon morphology, wall 

roughness, and flow structure are necessary to develop a more mechanistic 

parameterization of wall and bed shear stresses. Such observations can be used 

to drive hydraulic models that are capable of capturing non-uniform flow 

structures common in bedrock canyons and that give physical representations of 

bed and wall stresses. Until such observations and model simulations can be 

obtained, we recommend using depth to calculate  𝜏𝑇𝑜𝑡 rather than hydraulic 

radius, recognizing that the centreline depth estimate of 𝜏𝑇𝑜𝑡 is slightly biased 

towards larger stresses.  
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Figure 4.13 Variations of correction factors in our proposed shear stress 
partitioning framework for a) bed stress and b) wall stress, when we 
repeat our calculations of total stress using depth that is reduced by 
10%, 20% and 30%. Paul’s Rapid (plotted within the orange circle) is 
not incorporated in the regression. 

4.6. Conclusion 

We have partitioned bed and wall stresses in bedrock rivers from model 

simulations and field measurements in the major bedrock canyon of the Fraser 

River. The ray-isovel model (RIM) predicts the ratio of wall to bed stress as a 

function of the width to depth ratio. The modelled ratio of wall to bed stress 

exponentially decreases with increasing width-to-depth ratio. Application of the 

model results to 26 canyons in the Fraser River predicts that the ratio of wall to 

bed stress varies between 0.60 and 0.98. In general, the modelled bed stress is 

~9% larger than the total stress, while the modelled wall stress is ~19% smaller 

than the total stress. 

Measured bed stress distributions through individual bedrock canyons in 

the Fraser River show that the bed stress spikes as water enters the constriction-

pool-widening sequences but is negligible at the downstream exit of pools. 

Distributions of bed stress are heavy-tailed because shear stress is low through 

most of the canyon, with notable spikes in stress associated with plunging flows 

in pools. For the majority of the 26 canyons in our study, the observed wall stress 

exceeds the total stress, which exceeds the bed stress. This outcome implies 
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that the bedrock walls are a substantial momentum sink, and the assumption of 

equal bed and total stress in most bedrock erosion models is not true.   

There is variation between the model and the field observations that 

further complicates morphodynamic modelling of bedrock rivers. Compared with 

the observed stresses, the model nearly always over-predicts the observed bed 

stress by ~56% (±15%), but under-predicts the observed wall stress by ~57% 

(±3.2%). The failure of the model to predict the observed stresses is likely 

because complex non-uniform flow and morphological structures in bedrock 

canyons make the walls rougher than the bed, which is not represented in the 

RIM. Our results provide a first order estimate of bed, wall and peak bed shear 

stresses and correction factors that permit use of our simplified RIM in bedrock 

canyons to partition stresses.  
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Chapter 5. Lateral Erosion of Bedrock Channel 
Banks by Bedload and Suspended Load 

Abstract 

Bedrock rivers carry large amounts of fine sediment in suspension. We 

developed a mechanistic model for erosion of bedrock channel banks by 

impacting bedload and suspended load particles that are advected laterally by 

turbulent eddies (advection-abrasion model). The model predicts high lateral 

erosion rates near the bed, with rates decreasing up to water surface. The model 

also predicts greater erosion within the suspended load layer than the bedload 

layer for the majority of sediment supply and transport conditions explored. We 

compared the advection-abrasion model with a previously derived model for 

lateral erosion of bedrock banks by bedload particles deflected by stationary bed 

alluvium (deflection-abrasion model). Erosion rates predicted by the deflection-

abrasion model are lower, except within limited conditions where sediment is 

transported near the threshold of motion and the bed is near fully covered in 

sediment. Both processes occur in bedrock rivers at the same time, so we 

combined the advection-abrasion and deflection-abrasion models and found that 

the lateral erosion rate generally increases with increasing transport stage and 

relative sediment supply for a given grain size. Application of our combined-

abrasion model to a natural bedrock river with a wide distribution of discharge 

and supply events, and mixed grain sizes, indicates that finer sediment 

dominates the lateral erosion on channel banks in low sediment supply 

environments and can be as important as coarser sediment in high sediment 

supply environments. 

5.1. Introduction 

Those who have seen the turbid and turbulent flow of a flooding mountain 

river know that bedrock rivers transport vast quantities of fine sediment in 

suspension. Could these tiny but energetic particles be responsible for eroding 



129 

bedrock river banks and thus govern the width of actively incising channels? 

Surprisingly, this question has not yet been investigated mechanistically. Much 

work has focused on mechanistic models for vertical erosion by saltating bedload 

particle impacts (Sklar & Dietrich, 2004; Huda & Small, 2014). Application of the 

vertical erosion model by saltating bedload particle impacts (referred to as the 

saltation-abrasion model hereafter) have led to insights into the controls of 

channel width, channel slope and knickpoint migration (Sklar & Dietrich, 2006, 

2008; Wobus et al., 2006; Nelson & Seminara, 2011; Yanites, 2018). However, 

the saltation-abrasion model predicts zero vertical erosion rate within the 

suspension regime, assuming that suspended particles have infinite hop length 

and do not impact the channel bed. As sediment transport transitions from 

bedload to suspension, the saltation trajectories become more irregular because 

they are no longer dominated by the effect of gravity, instead they are strongly 

influenced by turbulence (Bagnold, 1973; Naqshband et al., 2017). Within the 

suspension regime, sediment is transported in a near-bed bedload layer with 

high sediment concentrations and a more dilute suspended-load layer above, 

with active interchange of these two layers (Rouse, 1937; McLean, 1991). To 

incorporate the change in sediment transport from bedload to suspension, the 

saltation-abrasion model has been reformulated in terms of near-bed sediment 

concentration instead of particle hop length (referred to as the total-load model 

hereafter; Lamb et al., 2008a). The total-load model predicts higher impact 

velocity of suspended particles at higher transport stage and hence nonzero 

erosion rates within the suspension regime, consistent with observations in 

laboratory experiments (Sklar & Dietrich, 2001; Scheingross et al., 2014). 

Previous investigations of the mechanics of lateral erosion of bedrock 

channel banks have focused on abrasion by bedload particles. Fuller et al. 

(2016) conducted a set of flume experiments with a non-erodible bed covered 

with protruding roughness elements and erodible banks composed of weak 

concrete, and documented lateral erosion by saltating bedload impacts deflected 

by bed roughness. Using this mechanism, Turowski (2018, 2020) developed a 

reach-scale lateral erosion model, treating gravel bars as a source of roughness 
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to deflect bedload particles, but did not explicitly model the deflection process. 

Another lateral erosion model directly captured the energy transfer of bedload 

particles deflected by bed roughness to impact the banks (Li et al., 2020, 2021; 

referred to as the deflection-abrasion model hereafter). These lateral erosion 

models have been used to explore bedrock channel width and bed slope 

dynamics in response to change in grain size and sediment supply rate (Li et al., 

2021), as well as adjustment timescales to achieve steady-state bedrock channel 

morphology (Turowski, 2020). One weakness of deflection-abrasion models is 

that they predict lateral erosion concentrated only in the lower part of bedrock 

rivers banks, creating undercut banks without eroding the overhanging upper 

portion of the channel bank  (Li et al., 2020). While overhanging banks have 

been observed in laboratory experiments that included only bedload (Fuller et al., 

2016; Mishra et al., 2018; Cao et al., 2022), overhangs are not commonly 

observed in natural bedrock rivers. Overhanging banks might be removed in 

natural rivers due to collapse, particularly in highly fractured, weak bedrock. 

However, overhanging banks may also be rare because the suspended load can 

be advected by turbulent eddies to erode channel banks above the bedload layer 

height.  

Field observations suggest that erosion by suspended sediment is likely 

responsible for the formation of sculpted banks of slot canyons (Wohl, 1993; 

Wohl et al., 1998; Richardson & Carling, 2005; Carter & Anderson, 2006), 

creation of flutes and scallops on boulders protruding high into flow (Whipple et 

al., 2000), and wear of bedrock banks above the bedload layer height and near 

the water surface (Hartshorn et al., 2002; Beer et al., 2017). To explore the 

efficacy of suspended load on eroding bedrock channel banks in comparison to 

bedload, we developed a mechanistic model for lateral riverbank erosion due to 

impacts of bedload and suspended load particles advected by turbulent eddies 

(referred to as the advection-abrasion model hereafter). We start by deriving the 

advection-abrasion model, building on the total-load model for vertical incision by 

bedload and suspended load (Lamb et al. 2008a). Next, we combine the 

advection-abrasion and deflection-abrasion models for a complete model that 
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captures both processes of lateral erosion. We investigate the sensitivity of 

predicted lateral erosion rates within the bedload layer and the suspended load 

layer to variation in grain size, water discharge, sediment supply and change 

slope. Finally, we discuss the implications of the combined-abrasion model for 

the relative importance of finer and coarser sediment in eroding bedrock channel 

banks. 

5.2. Advection-Abrasion Model Development 

5.2.1. General expression 

The advection-abrasion model is based on the idea that particles are 

advected toward the banks by turbulent flow fluctuations and cause lateral 

erosion in bedrock rivers. Given that all bedrock rivers have turbulence and carry 

suspended sediment in some quantity, the erosion model due to turbulence is not 

limited to the occurrence of stationary bed alluvium, which is necessary in the 

Turowski (2020) and Li et al. (2020, 2021) models, to deflect the downstream 

transport particles to impact the banks. The advection-abrasion model also 

includes particles transported as both bedload and suspended load, which the 

deflection-abrasion model does not. 

Following the formulation of the saltation-abrasion model (Sklar & Dietrich, 

2004) and total-load model (Lamb et al., 2008a; Scheingross et al., 2014) for 

vertical erosion, the lateral erosion rate predicted by the advection-abrasion 

model, 𝐸𝑎, can be written as a product of two terms: the eroded volume by per 

particle impact, 𝑉, and the impact rate per unit area and time, 𝐼, that is, 

 𝐸𝑎 = 𝑉𝐼.  (Equation 5.1) 

The eroded volume per particle impact, 𝑉, is proportional to the kinetic 

energy of the impacting particles (Sklar & Dietrich, 2004) 

 𝑉 =
𝜋𝜌𝑠𝐷

3𝑌

6𝑘𝑣𝜎𝑇
2 𝑣𝑝

2, (Equation 5.2) 
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where 𝑌 is Young’s modulus of elasticity of the bedrock, 𝑘𝑣 is the dimensionless 

bedrock strength coefficient, 𝜎𝑇 is the tensile yield strength, 𝜌𝑠 is the sediment 

density, 𝐷 is the median grain size and 𝑣𝑝 is the impact velocity normal to the 

banks. The time-averaged impact rate, 𝐼, is proportional to the product of 𝑣𝑝 and 

the volumetric sediment concentration, 𝑐, (Lamb et al., 2008a)  

 𝐼 =
Ψ𝑐𝑣𝑝

𝑉𝑝
,  (Equation 5.3) 

where 𝛹 is a dimensionless coefficient describing the portion of particles near the 

banks that are advected toward the banks. The volume of nominally spherical 

sediment grains 𝑉𝑝 (=𝜋𝐷3 6⁄ ) is used in Equation (3) to convert the mass flux into 

the volumetric flux. Substituting Equations (5.2)-(5.3) into Equation (5.1) yields 

 𝐸𝑎 =
Ψ𝜌𝑠𝑌

𝑘𝑣𝜎𝑇
2 𝑐𝑣𝑝

3.  (Equation 5.4) 

To estimate the lateral erosion rate in Equation (5.4) directly from control 

variables in bedrock rivers, we determine local hydraulic conditions from the law 

of the wall, and then develop expressions for lateral impact velocity and sediment 

concentration.  

5.2.2. Local hydraulic conditions 

Local hydraulic conditions are calculated from five input variables: 

volumetric water discharge: 𝑄𝑤, channel width: 𝑊, channel slope: 𝑆, particle 

diameter: 𝐷, and boundary roughness height: 𝑧0. For steady and uniform 

turbulent flow in open channels, the downstream flow velocity, 𝑢′(𝑧), is calculated 

from the law of the wall 

 

 𝑢′(𝑧) =
𝑢∗

𝜅
𝑙𝑛 (

𝑧

𝑧0
) ,  (Equation 5.5) 
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where 𝜅 is von Karman’s constant (𝜅 = 0.41), 𝑧 is height above the river bed, and 

𝑧0 is a function of the boundary roughness (Henderson, 1966). Following Lamb et 

al. (2008a), we set 𝑧0 = 𝑛𝐷84/30 with empirical coefficient 𝑛 = 3 (𝐷84 is the 84th 

percentile of the surface bed material). This parameterization of the hydraulic 

roughness can be modified in natural bedrock rivers with partially covered bed by 

sediment, and with protruded bedrock roughness on the bed and banks 

(Finnegan et al., 2007; Johnson & Whipple, 2010; Inoue et al., 2014; Johnson, 

2014; Beer et al., 2017; Li et al., 2022). The shear velocity is calculated from the 

hydraulic radius, 𝑅, and channel bed slope, 𝑆, as 

 𝑢∗ = √𝑔𝑅𝑆,  (Equation 5.6) 

assuming steady and uniform flow with uniform roughness of channel bed and 

banks, where 𝑅 = 𝑊ℎ (𝑊 + 2ℎ)⁄ , and ℎ is water depth. Assuming the law of the 

wall is applicable throughout the water column, the depth-averaged flow velocity 

is estimated from integrating Equation (5.5) 

 𝑢̅ =
1

ℎ
∫

𝑢∗

𝜅
𝑙𝑛 (

𝑧

𝑧0
)𝑑𝑧

ℎ

𝑧0
.  (Equation 5.7) 

Depth-averaged flow velocity, 𝑢̅, and flow depth, ℎ, are solved by 

combining Equations (5.6)-(5.7) with continuity, 𝑄𝑤 = 𝑊ℎ𝑢̅. The non-dimensional 

shear stress, 𝜏∗, is obtained from shear velocity,  

 𝜏∗ =
(𝑢∗)2

𝑅𝑏𝑔𝐷
.  (Equation 5.8) 

where 𝑅𝑏 = 𝜌𝑠 𝜌𝑤⁄ − 1 is non-dimensional buoyant density, 𝜌𝑤 is water density,  

and 𝑔 is the gravitational acceleration. 

5.2.3. Impact velocity 

The particle impact velocity, 𝑣𝑝, on the banks is induced by lateral 

turbulent flow velocity fluctuations, 𝑣′, near the banks that advect particles toward 

the banks. Turbulent fluctuations embedded in open channel flows are a complex 

phenomenon. Although numerical and experimental work has been done to 

explore the complex three-dimensional turbulence structure in open channel 
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flows (e.g., Nezu, 2005; Venditti, 2013), this level of complexity is arguably not 

warranted for developing a model for bedrock channel change over geomorphic 

timescales. For simplicity, we follow Lamb et al. (2008a) and assume that the 

probability density function, 𝑃, of lateral flow velocity fluctuations 𝑣′ is a Gaussian 

distribution (Nezu and Nakagawa, 1993)  

 𝑃(𝑣′) =
1

√2𝜋𝜎𝑣
𝑒
−
(𝑣′)2

2𝜎𝑣
2

,  (Equation 5.9) 

where the mean lateral flow velocity is zero, and 𝜎𝑣 is the standard deviation of 

lateral flow velocity fluctuations and is approximated by the turbulent intensity. 

The turbulence contributing to lateral flow velocity fluctuations is influenced by 

both bed and bank roughness. Bank roughness in bedrock rivers can contribute 

to turbulent fluctuations and hence the impact velocity on the banks (e.g., Carter 

& Anderson, 2006). The bedrock banks can be rougher than channel bed in 

bedrock rivers (e.g., Li et al., 2022), which may cause strong turbulence near the 

bank region (Venditti et al., 2014). However, there is no established relation to 

predict turbulence fluctuations due to bank roughness. Hence, we only consider 

the turbulence generated by the bed, assuming that the turbulence generated by 

bedrock banks is relatively negligible compared with the bed. Nezu & Nakagawa 

(1993) proposed an exponential expression to describe the vertical variation of 

lateral flow turbulence intensity 𝜎𝑣  in open channel flows,  

 
𝜎𝑣 

 𝑢∗
= 𝐷𝑣𝑒

−𝑧 ℎ⁄   (Equation 5.10) 

where 𝐷𝑣 is the empirical coefficient, that has a typical value of 1.63 (Nezu & 

Nakagawa, 1993). Variation in 𝐷𝑣 has been reported to depend on channel 

boundary roughness (Soulsby, 1981; Tominaga et al., 1989; Knight & Shiono, 

1990; Sukhodolov et al., 1998; Carling et al., 2002; Sukhodolov et al., 2006) and 

flow depth relative to boundary roughness (Lamb et al., 2008b; Lamb et al., 

2017). However, the range of variations in 𝐷𝑣 is narrow (1.39-1.89) and no 

improvement in scaling 𝜎𝑣  with depth-averaged velocity is found as compared 

with 𝑢∗ (Lamb et al., 2017). For simplicity we elected to use 𝐷𝑣 =1.63 reported by 

Nezu & Nakagawa (1993).  
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The particle impact velocity fluctuations normal to the banks, 𝑣𝑝
′ , is 

calculated from the acceleration of a particle moving toward the banks laterally 

due to the fluid drag force, which is given by conservation of linear momentum as  

 
d𝑣𝑝

′

d𝑡
=

1

2
𝐶1

𝜌𝑤

𝜌𝑠

𝐴𝑙

𝑉𝑝
(𝑣′ − 𝑣𝑝

′ )2  (Equation 5.11) 

where 𝐶1 (0.45) is the drag parameter and 𝐴𝑙 the cross-sectional area of the 

particle perpendicular to 𝑣′.  

To solve Equation (5.11) analytically, we assume 𝑣′ is constant over an 

eddy turnover timescale, 𝑡𝑙. Under this assumption, d𝑣𝑝
′ d𝑡⁄  is approximated by 

−d(𝑣′ − 𝑣𝑝
′ ) d𝑡⁄ . Equation (5.11) can then be solved by integration to obtain 

 𝑣𝑝
′ = 𝑣′ −

1
3𝜌𝑤𝐶1
4𝜌𝑠𝐷

𝑡𝑙+
1

𝑣′

   (Equation 5.12) 

where the boundary condition 𝑣𝑝
′(𝑡 = 0) = 0 has been applied and particles are 

assumed to be spheres (i.e., 𝐴𝑙 𝑉𝑝⁄ = 1.5/𝐷). 

The mean lateral particle velocity is then found by combining Equations 

(5.9) and (5.12) and integrating 𝑣𝑝
′  over all possible velocity fluctuations. 

However, the lateral erosion rate scales with the cube of individual particle 

velocity 𝑣𝑝
′  (Equation 5.4), not the mean lateral particle velocity. Therefore, 

following Lamb et al. (2008a), we define an effective impact velocity, 𝑣𝑝, by 

combining Equations (5.9) and (5.12) and nonlinear averaging, as 

            𝑣𝑝 = [∫ (𝑣′ −
1

3𝜌𝑤𝐶1
4𝜌𝑠𝐷

𝑡𝑙+
1

𝑣′

)3
1

√2𝜋𝜎𝑣
𝑒
−
(𝑣′)2

2𝜎𝑣
26𝜎𝑣 

𝑣𝑚𝑖𝑛
′ 𝑑𝑣′]

1 3⁄

,        (Equation 5.13) 

where the upper limit of integration of 6𝜎𝑣 is chosen to include near 100% of the 

possible fluctuations and the lower limit of integration, 𝑣𝑚𝑖𝑛
′ , is determined from 

the lower limit of particle velocity, 𝑣𝑚𝑖𝑛, that causes erosion using Equation 

(5.12). Following Lamb et al., (2008a) and Li et al. (2020), 𝑣𝑚𝑖𝑛 is given as 

 𝑣𝑚𝑖𝑛 =
9𝑆𝑡𝜌𝑤𝜂

𝜌𝑠𝐷
  (Equation 5.14) 
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where 𝑆𝑡 is the particle Stokes number (~ 100; Schmeeckle et al., 2001; Joseph 

& Hunt, 2004), and 𝜂 is the kinematic viscosity of the fluid (10-6 m2s-1). 

To solve Equation (5.13), the eddy turnover time 𝑡𝑙 needs to be specified. 

Turbulent energy is extracted from the mean flow in the production subrange, 

and is transferred from macroscale (energetic) eddies to microscale (dissipative) 

eddies in the energy-cascade process. The rate at which energy is transferred 

from macroscale structures to microstructures 𝜖 (i.e., the energy dissipation rate) 

can be characterized by the fluctuating velocity 𝜎𝑣 over an integral length scale 𝑙 

( e.g., Batchelor, 1953; Nezu & Nakagawa, 1993; Mouri et al., 2012; Vassilicos, 

2015), 

 𝜖 = 𝐶𝜖
𝜎𝑣
3

𝑙
  (Equation 5.15) 

where 𝐶𝜖 is a constant (~1) originating from the Richardson-Kolmogorov cascade 

under the assumption that turbulence is at equilibrium (Kolmogorov, 1941a, 

1941b), and the time scale associated with 𝑙 is 𝑡𝑙 = 𝑙 𝜎𝑣⁄ .  

Assuming the turbulent energy is in local equilibrium (turbulent kinetic 

energy generation 𝐺 = turbulence dissipation 𝜖), 𝜖 can be obtained as a function 

of the distance from the bed, 𝑧, using the law of the wall (Grinvald, 1974; Nikora 

& Smart, 1997) 

 
𝜖𝐻

𝑢∗3
=

1

𝜅
(
1−𝑧 ℎ⁄

𝑧 ℎ⁄
).  (Equation 5.16) 

Combing Equations (5.15)-(5.16) with 𝑡𝑙 = 𝑙 𝜎𝑣⁄ , 𝑡𝑙 can be solved as 

 𝑡𝑙 = 𝜅𝐶𝜖
𝜎𝑣
2

𝑢∗3(1 𝑧⁄ −1 ℎ⁄ )
.  (Equation 5.17) 

5.2.4. Sediment concentration 

To calculate the vertical distribution of sediment concentration, we 

partition the supplied sediment flux into a bedload layer and a suspended load 

layer. We assume the sediment within the bedload layer is well mixed (McLean, 
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1991; Lamb et al., 2008a; De Leeuw et al., 2020), and use the Rouse-Vanoni 

equation to predict the vertical profile of sediment concentration above the 

bedload layer 

 𝑐 = {
𝑐𝑏;                                            (𝑧 ≤ ℎ𝑠)

𝑐𝑏 [
ℎ 𝑧⁄ −1

ℎ ℎ𝑠⁄ −1
]
𝑃
                          (𝑧 > ℎ𝑠)

,  (Equation 5.18) 

where 𝑐𝑏 is the volumetric concentration within the bedload layer, ℎ𝑠 is the 

bedload layer height, 𝑃 = 𝑤𝑓 Υ𝜅𝑢∗⁄  is the Rouse number (Rouse, 1938),  

Υ is a dimensionless coefficient and 𝑤𝑓 is the particle settling velocity. The 

bedload layer height, ℎ𝑠, is predicted from the empirical relation developed by 

Sklar & Dietrich (2004), 

 
ℎ𝑠

𝐷
= 1.44(

𝜏∗

𝜏𝑐
∗ − 1)

0.50, (Equation 5.19) 

where 𝜏𝑐
∗ is the value of 𝜏∗ at the threshold of sediment motion.  

The coefficient Υ is a dimensionless factor that accounts for differences 

between the diffusivities of momentum and sediment, typically assumed to be a 

constant of order unity. Previous studies have found that Υ varies with the ratio of 

settling velocity 𝑤𝑓 to shear velocity 𝑢∗ and flow resistance coefficient (e.g., De 

Leeuw et al., 2020). To incorporate this effect, we use the best-fit one-parameter 

model for Υ proposed by De Leeuw et al. (2020), which is Υ = 2.44(𝑢∗ 𝑤𝑓⁄ )−0.55. 

We follow Ferguson & Church (2004) to calculate the particle settling velocity 𝑤𝑓, 

 𝑤𝑓 =
𝑅𝑏𝑔𝐷

2

𝐶2𝜂+(0.75𝐶3𝑅𝑏𝑔𝐷
3)0.5

  (Equation 5.20) 

where 𝐶2 = 18 and 𝐶3 = 1 are constants set for natural sediment. 

Following Lamb et al. (2008a), the volumetric concentration within the 

bedload layer, 𝑐𝑏, is calculated from continuity as 

 𝑐𝑏 =
𝑞

𝑢̅ℎ𝜒+𝑢𝑠ℎ𝑠
, (Equation 5.21) 
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where 𝑞 is the total volumetric flux of sediment per unit channel width traveling as 

both bedload and suspended load, 𝑢𝑠 is the longitudinal saltation velocity and χ is 

the integral relating suspended sediment flux to the parameters of the flow and 

sediment concentration within the bedload layer, which we calculate according to 

Lamb et al. (2008a) 

 𝜒 =
1

𝑢̅ℎ
∫ [

ℎ 𝑧⁄ −1

ℎ ℎ𝑠⁄ −1
]𝑃

ℎ

ℎ𝑠

𝑢∗

𝜅
𝑙𝑛 (

𝑧

𝑧0
)𝑑𝑧.  (Equation 5.22) 

The longitudinal saltation velocity 𝑢𝑠 is estimated from Sklar & Dietrich 

(2004), 

                             𝑢𝑠 = 1.56(𝑅𝑏𝑔𝐷)
0.5(

𝜏∗

𝜏𝑐
∗ − 1)

0.56.               (Equation 5.23)  

5.2.5. Composite expression for the advection-abrasion model 

Substituting Equations (5.13) and (5.18) into Equation (5.4) yields the 

composite expression for the advection-abrasion model, 

 𝐸𝑎(𝑧) =

{
 
 

 
 Ψ𝜌𝑠𝑌

𝑘𝑣𝜎𝑇
2

𝑞

𝑢̅ℎ𝜒+𝑢𝑠ℎ𝑠
∫ (𝑣′ −

1
3𝜌𝑤𝐶𝑑
4𝜌𝑠𝐷

𝑡𝑙+
1

𝑣′

)3
1

√2𝜋𝜎𝑣
𝑒
−
(𝑣′)2

2𝜎𝑣
26𝜎𝑣 

𝑣𝑚𝑖𝑛
′ 𝑑𝑣′;                 (𝑧 ≤ ℎ𝑠)

Ψ𝜌𝑠𝑌

𝑘𝑣𝜎𝑇
2

𝑞

𝑢̅ℎ𝜒+𝑢𝑠ℎ𝑠
[
ℎ 𝑧⁄ −1

ℎ ℎ𝑠⁄ −1
]
𝑃

∫ (𝑣′ −
1

3𝜌𝑤𝐶𝑑
4𝜌𝑠𝐷

𝑡𝑙+
1

𝑣′

)3
1

√2𝜋𝜎𝑣
𝑒
−
(𝑣′)2

2𝜎𝑣
26𝜎𝑣 

𝑣𝑚𝑖𝑛
′ 𝑑𝑣′. (𝑧 > ℎ𝑠)

 

 (Equation 5.24) 

where the vertical profile of lateral erosion rate 𝐸𝑎(𝑧) is divided into two layers: 

the bedload layer (𝑧 ≤ ℎ𝑠) and the suspended load layer (𝑧 > ℎ𝑠).  

5.3. Combined-Abrasion Model 

We propose that lateral erosion should be modeled as a combination of 

the deflection-abrasion and advection-abrasion mechanisms. To do that, we 

briefly review the deflection-abrasion model and combined it with the advection-

abrasion model (referred to as the combined-abrasion model hereafter).  



139 

5.3.1. Expression for the Deflection-Abrasion Model 

Li et al. (2021) developed an expression for the lateral erosion rate 

assuming uniformly distributed alluvium, 𝐸𝑑,  

𝐸𝑑  =
𝜋𝑌

48𝑘𝑣𝜎𝑇
2

𝐷

ℎ𝑚𝑎𝑥

𝑞𝑠
2(1−0.8𝑞𝑠 𝑞𝑡⁄ )

𝑞𝑡
(
1

ℎ𝑠
+

3

2𝑙𝑠
)𝑣𝑜

2 1−𝑒−2𝐶𝑑𝑦𝑚𝑎𝑥

𝑒𝐶𝑑𝐷𝑞𝑡 𝑞𝑠⁄ −𝑒−𝐶𝑑𝐷𝑞𝑡 𝑞𝑠⁄ (1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5,     

(Equation 5.25) 

where 𝐶𝑑 = 0.75𝐶1 𝜌𝑤 (𝐷𝜌𝑠)⁄  is the drag deceleration coefficient, 𝑞𝑠 is the bedload 

supply rate, 𝑞𝑡 is the bedload transport rate, 𝑦𝑚𝑎𝑥 is the maximum distance 

between the point of deflection and the channel bank above which deflectors will 

not cause lateral erosion, ℎ𝑚𝑎𝑥 is the maximum impact height on the bank, 𝑙𝑠 is 

the saltation length, and 𝑣𝑜 is lateral particle velocity after being deflected by the 

alluvium surface.  

Bedload transport rate, 𝑞𝑡, is estimated from Fernandez Luque & Van 

Beek (1976), 

 𝑞𝑡 = 5.7(𝑅𝑏𝑔𝐷
3)0.5(𝜏∗ − 𝜏𝑐

∗)1.5. (Equation 5.26) 

The distance, 𝑦𝑚𝑎𝑥, is calculated from the minimum velocity that causes 

erosion (Li et al., 2021) 

 𝑦𝑚𝑎𝑥 =
4𝜌𝑠𝐷

3𝜌𝑤𝐶1
ln

𝑣𝑜

𝑣𝑚𝑖𝑛
. (Equation 5.27) 

The saltation length, 𝑙𝑠, is predicted from the empirical relation developed 

by Sklar & Dietrich (2004) 

 
𝑙𝑠

𝐷
= 8.0(

𝜏∗

𝜏𝑐
∗ − 1)

0.88. (Equation 5.28) 

The maximum height of erosion, ℎ𝑚𝑎𝑥, is given as  

 ℎ𝑚𝑎𝑥 = 1.5𝐷 +
1

2𝐶𝑑
𝑙𝑛(

𝐶𝑑𝑤𝑜
2

𝐶𝑔
+ 1),  (Equation 5.29) 

where 𝐶𝑔 = (1 − 𝜌𝑤 𝜌𝑠⁄ )𝑔 is the gravitational acceleration coefficient and 𝑤𝑜 is the 

vertical particle velocity after being deflected by the alluvium surface (Li et al., 
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2021). The velocities, 𝑤𝑜 and 𝑣𝑜, can be obtained from the momentum transfer at 

the point of deflection, 

 𝑤𝑜 = 𝐶𝑟(𝑤𝑠 − 2𝑛𝑧(𝑛𝑥𝑢𝑠 + 𝑛𝑧𝑤𝑠)).  (Equation 5.30) 

 𝑣𝑜 = 2𝐶𝑟𝑛𝑦(𝑛𝑥𝑢𝑠 + 𝑛𝑧𝑤𝑠) (Equation 5.31) 

where 𝐶𝑟 is the restitution coefficient (set to 0.9) that describes the loss of particle 

momentum during the collision between bedload particle and alluvium surface, 

𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are downstream, lateral and vertical component of the unit vector 

that is normal to the alluvium surface at the point of deflection, respectively (𝑛𝑥 =

0.30 𝑞𝑠 𝑞𝑡⁄ − 0.54; 𝑛𝑦 = 0.25 𝑞𝑠 𝑞𝑡⁄ − 0.58; 𝑛𝑧 = 0.40 𝑞𝑠 𝑞𝑡⁄ + 0.50; Li et al., 2021), 

and 𝑤𝑠 is vertical saltation velocity that is estimated from empirical relations by 

Lamb et al. (2008a) 

 𝑤𝑠 = −√
𝐶𝑔

𝐶𝑑
(1 − 𝑒−2𝐶𝑑(ℎ𝑠−ℎ𝑑)),  (Equation 5.32) 

where ℎ𝑑 is the height of bedload particle during collision with the deflector. The 

ratio, ℎ𝑑 ℎ𝑠⁄ , is a function of transport stage 𝜏∗ 𝜏𝑐
∗⁄  and the ratio of bedload 

sediment supply to bedload transport capacity 𝑞𝑠 𝑞𝑡⁄  (Li et al., 2021) 

                    ℎ𝑑 ℎ𝑠⁄ = 0.83𝑒−0.68(𝜏
∗ 𝜏𝑐

∗⁄ −1) + 0.11 𝑞𝑠 𝑞𝑡⁄ + 0.06      (Equation 5.33) 

The lateral erosion rate predicted by the deflection-abrasion model can be 

obtained from substituting Equations (5.26)-(5.33) into Equation (5.25). The 

deflection-abrasion model does not account for the possibility of lateral erosion 

by suspended load abrasion, assuming lateral erosion rate is zero if 𝑢∗ 𝑤𝑓⁄  

(Equation 5.25).  

5.3.2. Expression for the Combined-Abrasion Model 

The deflection-abrasion model and the advection-abrasion model predict 

erosion rates on different parts of the channel banks. The deflection-abrasion 

model focuses on erosion by saltating bedload particle impacts and hence 

predicts erosion near the bottom of the banks. The advection-abrasion model 
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considers the sediment concentration for the whole water column, and thus 

predicts erosion over the whole bank. To combine these two models, we 

calculate the cross-sectional area eroded per unit time to obtain an areal erosion 

rate from each model, which we add to get the total eroded cross-sectional area 

per unit time. 

The cross-sectional area eroded per unit time for the deflection-abrasion 

model, 𝐸𝑐𝑑, is equal to the product of the vertically averaged erosion rate, 𝐸𝑑, and 

the maximum height above the bed over which erosion occurs, ℎ𝑚𝑎𝑥 

 𝐸𝑐𝑑 = 𝐸𝑑ℎ𝑚𝑎𝑥  (Equation 5.34) 

The cross-sectional area eroded per unit time for the advection-abrasion 

model, 𝐸𝑐𝑎, is the sum of the eroded cross-section area per unit time within the 

bedload layer, 𝐸𝑐𝑏, and the suspended load layer, 𝐸𝑐𝑠, 

 𝐸𝑐𝑎 = 𝐸𝑐𝑏 + 𝐸𝑐𝑠  (Equation 5.35) 

where 𝐸𝑐𝑏 and 𝐸𝑐𝑠 are obtained from integrating 𝐸𝑎(𝑧) over the thickness of 

bedload layer, ℎ𝑠, and suspended layer, 𝐻 − ℎ𝑠, respectively. The total cross-

sectional area eroded per unit time on the banks is the sum of 𝐸𝑐𝑑 and 𝐸𝑐𝑎, 

 𝐸𝑐𝑡 = 𝐸𝑐𝑑 + 𝐸𝑐𝑎  (Equation 5.36) 

To explore the behavor of the advection-abrasion and deflection-abrasion 

models over a wide range of parameter space, we nondimensionalize areal 

erosion rates by multiplying by 𝜎𝑇
2 𝜌𝑠𝑌𝑔

1.5𝐷2.5⁄  (Sklar & Dietrich, 2004; Lamb et 

al., 2008a; Li et al., 2020, 2021). In this parameter space, the non-dimensional 

erosion rates (deflection-abrasion model: 𝐸𝑐𝑑
∗ ; advection-abrasion model: 𝐸𝑐𝑎

∗ ; 

and combined-abrasion model: 𝐸𝑐
∗) are a function of transport stage, 𝜏∗ 𝜏𝑐

∗⁄ , and 

relative sediment supply, 𝑞 𝑞𝑡⁄ , for a given grain size. For given transport stage, 

𝐸𝑐𝑎
∗  also depends on flow depth because the vertical distributions of sediment 

concentration and impact velocity are a function of flow depth (Equation 5.24). In 

contrast, the deflection-abrasion model only considers the abrasion by saltating 

bedload particles and does not depend on flow depth (Equation 5.26).  
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5.4. Model Results 

Both the advection-abrasion model and the deflection-abrasion model 

predict that the lateral erosion rate depends on four principle variables: water 

discharge 𝑄𝑤, channel slope 𝑆, sediment supply 𝑞, and grain size 𝐷, for given 

rock strength. To explore the distribution of lateral erosion on channel banks and 

the relative importance of lateral erosion within the bedload and the suspended 

load layers, we vary each of these four variables independently. We also explore 

the variation of the nondimensionalized erosion rates predicted by the advection-

abrasion model, the deflection-abrasion model, and the combined-abrasion 

model over parameter space defined by transport stage and relative sediment 

supply. 

We selected Black Canyon in the Fraser River, British Columbia as the 

reference field site to help specify model input variables (Table 5.1). The Fraser 

River annual hydrograph has peaks within the range between ~6070 and 

~12,900 m3/s over the past 20-years at Hope, British Columbia, the nearest 

gauging station to Black Canyon. Coarse sediment supply to the gravel bed 

reach that starts at Hope at the downstream end of bedrock canyons of the 

Fraser River is ~0.35 Mt/yr (megatons per year), and the annual sediment supply 

to the river, including gravel, sand, silt and clay is ~17.5 Mt/a ( Ferguson & 

Church, 2009; Ferguson et al., 2015). Modelling of long-term 

aggradation/degradation in the Fraser canyons by Ferguson et al. (2015) 

suggests that the modern coarse sediment supply is < 1Mt/a, but the local 

sediment supply may vary substantially. Nevertheless, 0.35 Mt/a is a reasonable 

estimate of the coarse sediment supply in Black Canyon because that is how 

much is transmitted downstream to the gravel bed reach. Ferguson & Church 

(2009) found that a discharge of 7000 m3/s operating 15% of the year 

transported the same amount and size distribution of sediment as the 20-year 

hydrograph, so we selected the combination of these values as our reference 

discharge and intermittency.  Black canyon has grain diameters that range 

between 6 mm and 471 mm with a median size of 195 mm and the 84th 
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percentile of the grain size of 267 mm. The representative discharge can 

transport grains up to 285 mm in diameter as bedload and size up to 11 mm 

diameter in suspension. To compare the relative importance of bedload and 

suspended load, we consider two grain sizes: 10 mm diameter gravel and 195 

mm diameter cobbles, which are carried as suspended load and bedload, 

respectively.  

Table 5.1 Reference Site Values and Model Parameter Values for Black Canyon in 
Fraser River, British Columbia.  

Variable Value 

Sediment size 𝐷 (m) 0.010; 0.195 

Channel width 𝑊 (m) 80 

Slope 𝑆 0.00234 

Water discharge 𝑄𝑤 (m3/s) 7000 a 

Sediment supply 𝑞 (m2/s) 3.61×10-4 a 

Critical Shields stress 𝜏𝑐
∗ 0.045 b 

Water density 𝜌𝑤 (kg/m3) 1000 b 

Sediment density 𝜌𝑠 (kg/m3) 2650 b 

Rock elastic modulus 𝑌 (Pa) 5×1010 b 

Dimensionless rock resistance 

parameter 𝑘𝑣 
106 c 

Rock tensile strength 𝜎𝑇 (Pa) 7×106 b 

a From Ferguson & Church (2009). b Assumed. c Sklar & Dietrich (2004). 

5.4.1. Influence of discharge 

We explored the effect of varying water discharge while holding sediment 

supply, grain size and channel slope set to constant values for the reference field 

site. Like the deflection-abrasion model, the advection-abrasion model predicts 

an undercut erosional shape on channel banks, where lateral erosion is 

concentrated near the bottom of channel banks and decreases progressively up 

to the water surface (Figure 5.1a-b). The maximum erosional height on channel 
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banks increases with increasing discharge due to the increase in water depth 

(Figure 5.1a-b). The maximum 𝐸𝑎 within the undercut zone increases with 

increasing discharge due to the the increase in transport stage and hence impact 

velocity, but starts to decline at high discharge when the increase in impact 

velocity is outpaced by the decrease in near-bed sediment concentration, as 

more sediment in held in the upper water column for 10-mm gravel and 195-mm 

cobbles (Figure 5.1a-b). However, compared with the 195-mm cobbles, a lower 

discharge is required for 𝐸𝑎 to exceed zero and the maximum 𝐸𝑎 within the 

undercut zone to peak for 10-mm gravel (Figure 5.1a-b). This occurs because 

finer sediment can be transported at lower shear stresses and hence lower 

discharge for a given channel slope. Overall, the advection-abrasion model 

predicts similar patterns of erosion on channel banks for 10-mm gravel and 195-

mm cobbles (Figure 5.1a-b). 

The advection-abrasion model predicts negligible erosion rate within the 

bedload layer, 𝐸𝑐𝑏, compared with the suspended load layer, 𝐸𝑐𝑠, for both 10-mm 

gravel and 195-mm cobbles (Figure 5.1c-d) because the bedload layer is much 

thinner than the suspended layer. The total load erosion, 𝐸𝑐𝑎, is almost the same 

as the erosion rate within the suspended load layer. For the gravel, 𝐸𝑐𝑎 increases 

with increasing discharge once the transport stage is above the threshold of 

motion (Figure 5.1c) due to the increase in impact velocity and the erosional 

height on channel banks. However, 𝐸𝑐𝑎 starts to decline at discharges higher 

than 2×105 m3/s (Figure 5.1c). This occurs because increases in impact velocity 

and the erosional height are more than offset by the decrease in near-bed 

sediment concentration with increasing discharge. For the cobbles, the increase 

in transport stage is much lower than for the gravel with increasing discharge, 

resulting in a slower decrease in near-bed sediment concentration. Therefore, 

𝐸𝑐𝑎 is more influenced by the increase in impact velocity and the erosional height 

on channel banks than the decrease in near-bed sediment concentration for the 

cobbles, as compared to the gravel, which leads to a near monotonic increase in 

𝐸𝑐𝑎 with increasing discharge (Figure 5.1d).   
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The deflection-abrasion model predicts an increase in lateral erosion rate, 

𝐸𝑐𝑑, at low discharge due to the increase in impact energy with increasing shear 

stress, but starts to decline at high discharge due to the decrease in the extent of 

alluvial cover with increasing transport capacity for given sediment supply (Figure 

5.1c-d; Li et al., 2021). The deflection-abrasion model predicts neglible lateral 

erosion at discharge higher than ~ 2.5×102 m3/s for the gravel and ~ 3.9×103 

m3/s for the cobbles because there is not enough alluvium to deflect bedload 

particles (Figure 5.1c-d). The advection-abrasion, in contrast, predicts continued 

lateral erosion at high discharge. The erosion rate predicted by the advection-

abrasion model is higher than the deflection-abrasion model except at low 

discharge when the bed is near fully covered by alluvium. Therefore, the erosion 

rate predicted by combined-abrasion model shows similar patterns with the 

deflection-abrasion model at low discharge where the deflection-abrasion 

mechanism dominates, but becomes fully controlled by the advection-abrasion 

model at intermediate and high discharges where the advection-abrasion 

mechanism dominates (Figure 5.1c-d). 
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Figure 5.1 Distribution of lateral erosion rate on channel banks predicted by the 
advection-abrasion model as a function of discharge for (a) 10-mm 
gravel and (b) 195-mm cobbles. Areal erosion rate predicted by 
advection-abrasion, deflection-abrasion, and combined-abrasion 
model as a function of discharge for (c) 10-mm gravel and (d) 195-
mm cobbles. The orange lines are the conditions for the 
representative field case of the Black Canyon. 

5.4.2. Influence of slope 

Predictions by the advection-abrasion model for 10-mm gravel and 195-

mm cobbles are qualitatively similar when slope is varied, with all other 

parameters held constant (Figure 5.2a-b). The distribution of lateral erosion rate 

on channel banks predicted by the advection-abrasion model forms an undercut 

erosional pattern. The maximum 𝐸𝑎 within the undercut zone increases with 

increasing slope due to the increase in transport stage and hence impact 

velocity. The advection-abrasion model predicts a decrease in height of the 

undercut zone on channel banks with increasing slope as a result of the 
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decrease in water depth. In contrast, the height of maximum 𝐸𝑎 within the 

undercut zone increases with increasing slope due to the increase in bedload 

layer height with increasing transport stage. For the same channel slope, the 

lateral erosion rate for the gravel is larger than for the cobbles (Figure 5.2a-b) 

because, for the same shear stress, smaller grains have a higher transport stage 

and hence higher impact energy.   

The advection-abrasion model predicts a monotonic increase in the 

erosion rate with slope within the bedload layer, 𝐸𝑐𝑏, due to the increase in 

bedload layer height and the impact velocity (Figure 5.2c-d). Compared with 𝐸𝑐𝑏, 

the erosion rate within the suspended load layer, 𝐸𝑐𝑠, increases with increasing 

slope due to the increase in impact energy at low slope values, but starts to 

decline at 𝑆 > 0.8 for the gravel and 𝑆 > 0.06 for the cobbles due to the decrease 

in height of suspended load layer as bedload layer height approaches the water 

surface at steep slopes (Figure 5.2c-d). The total load erosion rate, 𝐸𝑐𝑎, 

monotonically increases with increasing slope for both the gravel and the 

cobbles, even at steep slopes where 𝐸𝑐𝑠 declines because 𝐸𝑐𝑠 declines at a lower 

rate than the growth of 𝐸𝑐𝑏 (Figure 5.2c-d). 𝐸𝑐𝑏 is smaller than 𝐸𝑐𝑠 at 𝑆 < 0.3 for 

gravel and 𝑆 < 0.04 for cobbles, but becomes larger than 𝐸𝑐𝑠 at very steep slopes 

where the bedload layer grows to encompass most of the flow depth (Figure 

5.2c-d). Therefore, 𝐸𝑐𝑠 dominates the total load erosion at low slopes and 𝐸𝑐𝑏 

dominates at steep slopes, while both bedload and suspended load layers are 

important in eroding channel banks at intermediate slopes.  

The erosion rate predicted by the deflection-abrasion model, 𝐸𝑐𝑑, 

increases with increasing slope once the transport stage is above the threshold 

of motion, but starts to decline at 𝑆 ≈ 0.00008 for 10-mm gravel (Figure 5.2c) and 

𝑆 ≈ 0.0012 for 195-mm cobbles (Figure 5.2d) due to the decrease in the extent of 

alluvial cover as the transport stage increases, for given sediment supply. 

Compared with the advection-abrasion model, the deflection-abrasion model 

predicts negligible erosion at 𝑆 > 0.00021 for the gravel and 𝑆 > 0.0017 for the 

cobbles (Figure 5.2c-d). The erosion rate predicted by the deflection-abrasion 
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model is lower than the advection-abrasion model for the whole range of slope 

variation, except at 0.000075 < 𝑆 < 0.00008 for gravel and 0.00115 < 𝑆 < 0.0012 

for cobbles (Figure 5.2c-d). Therefore, the erosion rate predicted by the 

combined-abrasion model 𝐸𝑐𝑡 follows the advection-abrasion model, except at a 

narrow range of small gradients where the erosion rate predicted by the 

deflection-abrasion model dominates.  

 

Figure 5.2 Distribution of lateral erosion rate on channel banks predicted by the 
advection-abrasion model as a function of slope for (a) 10-mm 
gravel and (b) 195-mm cobbles. Areal erosion rate predicted by 
advection-abrasion, deflection-abrasion, and combined-abrasion 
model as a function of discharge for (c) 10-mm gravel and (d) 195-
mm cobbles. The orange lines are the conditions for the 
representative field case of the Black Canyon. The low transport 
stages for the 10-mm gravel and the large transport stages for the 
195-mm cobbles correspond to unlealistic low slopes (<0.0001) and 
large slopes (>0.1) in natural bedrock rivers , respectively, but are 
shown here for comprison of the influence of slope on 10-mm gravel 
and 195-mm cobbles. 
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5.4.3. Influence of grain size 

The advection-abrasion model, 𝐸𝑎, also shows an undercut erosional 

pattern when grain size is varied with all other parameters held constant at 

values for the reference site (Figure 5.3a). Within the undercut zone, 𝐸𝑎 initially 

increases with increasing grain size due to the increase in near-bed volumetric 

sediment concentration for larger sediment and the increase in impact velocity. 

However, the impact velocity starts to decrease when the increase in grain size is 

more than offset by the decrease in transport stage, resulting in a decrease in 𝐸𝑎 

for large grain size.   

The advection-abrasion model predicts an increase in the erosion rate 

within both the bedload layer, 𝐸𝑐𝑏, and the suspended load layer, 𝐸𝑐𝑠, for grain 

size smaller than ~4 mm and ~15 mm, respectively, and a decline in these 

erosion rates for larger grain size (Figure 5.3b). 𝐸𝑐𝑠 is higher than 𝐸𝑐𝑏 for the full 

range of grain sizes that can cause erosion (Figure 5.3b), so the total load 

erosion 𝐸𝑐𝑎 is almost fully controlled by 𝐸𝑐𝑠. Compared with the advection-

abrasion model, the deflection-abrasion model predicts negligble erosion rate at 

grain size smaller than ~ 280 mm, an increase in erosion rate for larger grain size 

due to the increase in the extent of alluvial cover, and then a decline in erosion 

rate at grain size larger than ~ 305 mm due to the decrease in transport capacity 

(Figure 5.3b). The erosion rate predicted by the deflection-abrasion model is only 

larger than the advection-abrasion model near the threshold of motion at 𝐷 ≈

300 mm (Figure 5.3b). Therefore, the combined erosion rate follows the similar 

pattern with the advection-abrasion model, except at 𝐷 ≈ 300 mm where the 

deflection-abrasion model dominates.     
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Figure 5.3 a) Distribution of lateral erosion rate on channel banks predicted by the 
advection-abrasion model and b) areal erosion rate predicted by 
advection-abrasion, deflection-abrasion, and combined-abrasion 
model as a function of grain size. The orange lines are the 
conditions for the representative field case of the Black Canyon. 

5.4.4. Influence of sediment supply 

Increasing sediment supply in the advection-abrasion model, with all other 

variables held constant at the reference site values, increases the sediment 

concentration and hence the erosion rate until the bedload sediment supply 

exceeds the transport capacity (Figure 5.4a-b). The erosion rate within the 

suspended load layer 𝐸𝑐𝑠 is much higher than the erosion rate within the bedload 

layer 𝐸𝑐𝑏 for the full range of sediment supply rate (Figure 5.4c-d). Therefore, the 

total load erosion rate 𝐸𝑐𝑎 is nearly the same with 𝐸𝑐𝑠 (Figure 5.4c-d).  

Compared with the advection-abrasion model, the deflection-abrasion 

model predicts zero erosion rate for 10-mm gravel because it is transported in 

suspension under the hydraulic conditions at the reference site (Figure 5.4c). 

Therefore, the combined erosion rate 𝐸𝑐𝑡 is equal to 𝐸𝑐𝑎 for the gravel (Figure 

5.4c). The deflection-abrasion model for the cobbles predicts negligible erosion 

at 𝑞 < 0.0009 m2 s⁄  (Figure 5.4d) due to the lack of alluvial cover and an increase 

in erosion rate 𝐸𝑐𝑑 at larger sediment supply as number of deflections increases 

with the extent of alluvial cover. 𝐸𝑐𝑑 for the cobbles starts to decline at 𝑞 ≈

0.02 m2 s⁄  (Figure 5.4d) due to the shift of deflection locations toward the top of 
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alluvium surface and hence the decrease in the efficiency of deflecting bedload 

particles when deflectors become densely packed at high sediment supply rate 

(Li et al., 2021). Compared with the deflection-abrasion model, the advection-

abrasion model predicts a higher erosion rate at low supply rate (𝑞 <

0.004 m2 s⁄ ) but is outpaced by 𝐸𝑐𝑑 at high supply rate (𝑞 < 0.004 m2 s⁄ ) for the 

cobbles (Figure 5.4d). Therefore, the combined erosion rate 𝐸𝑐𝑡 for the cobbles is 

mainly due to the advection-abrasion mechanism at low supply rate but becomes 

dominated by the deflection-abrasion mechanism at high supply rate (Figure 

5.4d). 
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Figure 5.4 Distribution of lateral erosion rate on channel banks predicted by the 
advection-abrasion model as a function of sediment supply for (a) 
10-mm gravel and (b) 195-mm cobbles. Areal erosion rate predicted 
by advection-abrasion, deflection-abrasion, and combined-abrasion 
model as a function of sediment supply for (c) 10-mm gravel and (d) 
195-mm cobbles. The orange lines are the conditions for the 
representative field case of the Black Canyon. 

5.4.5. Nondimensional erosion rate 

We explored the advection-abrasion model, the deflection-abrasion model, 

and the combined-abrasion model behaviors over a wide range of parameter 

space defined by transport stage and relative sediment supply (Figure 5.5-5.8). 

The transport stage is varied in two ways: varying discharge (Figure 5.5-6) and 

varying slope (Figure 5.7-8), because of the dependency of 𝐸𝑐𝑎
∗  on flow depth.  

For the constant slope case, the advection-abrasion model predicts an 

increase in non-dimensional lateral erosion rate with increasing transport stage 

because the impact velocity increases with increasing discharge at the same 

relative sediment supply for 10-mm gravel (Figure 5.5a) and 195-mm cobbles 

(Figure 5.6a). The nondimensional lateral erosion rate predicted by the 

advection-abrasion model also increases with increasing relative sediment 

supply due to the increase in impact rate with increasing sediment supply, until 

when the bedload supply rate reaches bedload transport capacity (Figure 5.5a & 

Figure 5.6a). The advection-abrasion model predicts an increase in 

nondimensional lateral erosion rate where the total sediment supply exceeds the 

bedload transport capacity because some of the sediment is transported as 

suspended load.  

Compared with the advection-abrasion model, the deflection-abrasion 

model predicts a peak in lateral erosion rate at intermediate transport stage 

(𝜏∗ 𝜏𝑐
∗⁄ ≈ 16 for the gravel and 𝜏∗ 𝜏𝑐

∗⁄ ≈ 5.5 for the cobbles; Figure 5.5b & Figure 

5.6b) when the increase in impact velocity and the decrease in impact rate with 

increasing flow depth are well balanced.  The deflection-abrasion model predicts 

zero erosion at 𝜏∗ 𝜏𝑐
∗⁄ ≥ 29 because of the onset of suspension (Figure 5.5b) for 
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the 10-mm gravel. The erosion rate for the 195-mm gravel predicted by the 

deflection-abrasion model remains above zero even at extreme, unrealistic 

discharges (107 m3/s) at our reference site (Figure 5.6b) because the cobbles are 

transported at a much lower stage than the gravel for given discharge and 

remain bedload at extreme discharge events (107 m3/s). The deflection-abrasion 

model predicts a peak in lateral erosion rate at high relative sediment supply 

(Figure 5.5b & Figure 5.6b) when the increase in the number of deflections is 

balanced with and the decrease in the deflection efficiency, when the deflection 

location shifts toward the top of deflectors with increasing sediment supply (Li et 

al., 2021). The erosion rate predicted by the deflection-abrasion model is higher 

than the advection-abrasion model at low transport stage (𝜏∗ 𝜏𝑐
∗⁄ < 4.5) and high 

relative sediment supply (𝑞 𝑞𝑡⁄ > 0.5), but is outpaced by the advection-abrasion 

model at lower relative sediment supply (𝑞 𝑞𝑡⁄ < 0.5) or high transport stage 

(𝜏∗ 𝜏𝑐
∗⁄ > 4.5) (Figure 5.5c & Figure 5.6c).  

The combined-abrasion model predicts an increase in erosion rate with 

increasing transport stage and increasing relative sediment supply, except at low 

transport stage where the erosion rate peaks at high relative sediment supply 

due to the dominance of the deflection-abrasion model here (Figure 5.5d & 

Figure 5.6d).   

In the parameter space defined by relative sediment supply and transport 

stage, the non-dimensional erosion rate predicted by the advection-abrasion 

model for the constant discharge cases (Figure 5.7a & Figure 5.8a) is 

qualitatively similar to the constant slope case (Figure 5.5a & Figure 5.6a). This 

occurs because increasing slope decreases the flow depth, resulting in lower 

impact height on the banks (impact area) but higher near-bed sediment 

concentration (impact rate), while increasing discharge increases the flow depth, 

resulting in higher impact height on the banks (impact area) but lower near-bed 

sediment concentration (impact rate). These opposite effects on impact area and 

impact rate cause similar patterns of erosion rate for the constant discharge and 

constant slope case.  
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When the transport stage is varied by varying slope, the erosion rate for 

10-mm gravel is generally higher than the constant slope case (Figure 5.5a & 

Figure 5.7a), but the opposite relation occurs for 195-mm cobbles at the same 

transport stage and relative sediment supply (Figure 5.6a & Figure 5.8a). This 

occurs because the cobbles has a higher bedload layer height than the gravel 

and hence the increase in impact area with increasing discharge has a larger 

effect on erosion rate for cobbles. Compared to the constant slope case (Figure 

5.6b), the transport stage can go beyond the threshold of suspension for cobbles 

when the slope is varied, resulting in a peak erosion rate at 𝜏∗ 𝜏𝑐
∗⁄ = 16 and zero 

erosion rate at 𝜏∗ 𝜏𝑐
∗⁄ > 29 (Figure 5.8b). The advection-abrasion model predicts 

a higher erosion rate than the deflection-abrasion model in the full range of 

transport and sediment supply conditions for the gravel, except within a small 

range where  1.2 < 𝜏∗ 𝜏𝑐
∗⁄ < 3.5 and 0.75 < 𝑞 𝑞𝑏𝑐⁄ < 1.5 (Figure 5.7c). For 

cobbles, the deflection-abrasion model predicts higher erosion rate than the 

advection-abrasion model at low-to-intermediate transport stage (1 < 𝜏∗ 𝜏𝑐
∗⁄ <

10.5) and high relative sediment supply (𝑞 𝑞𝑏𝑐⁄ > 0.5) but becomes negligible 

beyond the threshold of suspension (Figure 5.8c).  

The combined-abrasion model for 10-mm gravel and 195-mm cobbles 

predicts a similar erosional pattern with the advection-abrasion model, where 

erosion rate increases with increasing transport stage and relative sediment 

supply except at a small range of conditions where the deflection-abrasion model 

dominates (Figure 5.7d & Figure 5.8d). 
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Figure 5.5 a) Non-dimensional erosion rate predicted by the advection-abrasion 
model 𝑬𝒄𝒂

∗  , b)non-dimensional erosion rate predicted by the 
deflection-abrasion model 𝑬𝒄𝒅

∗ , c) the ratio 𝑬𝒄𝒅
∗ 𝑬𝒄𝒂

∗⁄  and d) non-

dimension erosion rate predicted by the combined-abrasion model 
𝑬𝒄
∗ for 10-mm gravel as a function of transport stage and relative 

sediment supply. The transport stage is varied by varying discharge, 
holding channel slope constant at 𝑺=0.00234. 
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Figure 5.6 a) Non-dimensional erosion rate predicted by the advection-abrasion 
model 𝑬𝒄𝒂

∗  , b)non-dimensional erosion rate predicted by the 
deflection-abrasion model 𝑬𝒄𝒅

∗ , c) the ratio 𝑬𝒄𝒅
∗ 𝑬𝒄𝒂

∗⁄  and d) non-

dimension erosion rate predicted by the combined-abrasion model 
𝑬𝒄
∗ for 195-mm cobbles as a function of transport stage and relative 

sediment supply. The transport stage is varied by varying discharge, 
holding channel slope constant at 𝑺=0.00234. 
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Figure 5.7 Contour plots of non-dimensional erosion rate as a function of 
transport stage and relative sediment supply for 10-mm gravel, 
predicted by a) the advection-abrasion model, b) the deflection-
abrasion model and c) the combined-abrasion model. Also shown 
here is d) the ratio of erosion rate predicted by the deflection-
abrasion model to erosion rate predicted by the advection-abrasion 
model. The transport stage is varied by varying slope, holding water 
discharge constant at 𝑸𝒘=7000 m3/s. 
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Figure 5.8 Contour plots of non-dimensional erosion rate as a function of 
transport stage and relative sediment supply for 195-mm cobbles, 
predicted by a) the advection-abrasion model, b) the deflection-
abrasion model and c) the combined-abrasion model. Also shown 
here is d) the ratio of erosion rate predicted by the deflection-
abrasion model to erosion rate predicted by the advection-abrasion 
model. The transport stage is varied by varying slope, holding water 
discharge constant at 𝑸𝒘=7000 m3/s. 

5.5. Discussion 

5.5.1. Comparison between advection-abrasion and deflection-
abrasion models 

The advection-abrasion process is important to consider in sediment-

starved or detachment-limited bedrock rivers, where there is not enough alluvial 

cover to deflect particles to erode the banks. For example, Black Canyon in the 

Fraser River receives relatively little coarse sediment supply compared to the 

transport capacity (𝑞 𝑞𝑏𝑐⁄ = 0.034 for 195-mm cobbles) during a characteristic 

discharge event (𝑄𝑤 = 7000 m3/s). The low sediment supply rate results in 



159 

negligible bed coverage and hence a relatively small erosion rate predicted by 

the deflection-abrasion model. However, the advection-abrasion model relies on 

the turbulence intensity and predicts a lateral erosion rate of ~60 mm2/yr for 195-

mm cobbles.  

The deflection-abrasion model assumes that the saltation hop length is 

infinite and predicts zero lateral erosion rate for suspended sediment. In contrast, 

the advection-abrasion model predicts higher lateral erosion rate at larger 

transport stages, especially beyond the threshold of suspension. This condition 

mostly occurs for finer grain sizes, in narrow slot canyons that experience flash 

floods, in coarse-grained bedrock rivers during large flood events, or in steep 

bedrock rivers or knickzones. For example, Wire Pass, a slot canyon in Utah, is 

characterized by undulating sidewalls with a wavelength of 5-10 m (Carter & 

Anderson, 2006). These undulating sidewalls have been suggested to be created 

by the abrasion of sediment particles during flash floods, where the majority of 

the sediment (sand) can be easily transported in suspension (Carter & Anderson, 

2006). The deflection-abrasion model would predict zero erosion, but the 

advection-abrasion model can predict the sidewall widening caused by the 

suspended sediment impacts in these slot canyons. In bedrock rivers, large 

sediment (e.g., gravel and cobbles) can also be transported in suspension during 

extreme flood events or in steep reaches. For example, the typhoon induced 

extreme floods in Taiwan are capable of suspending large sediment with grain 

size ~ 10 cm in the Liwu River (Hartshorn et al., 2002) and ~57 cm in the narrow 

knickpoint of the Da’an River (Cook et al., 2009, 2013), causing rapid lateral 

erosion of bedrock banks above the bedload layer height or near the water 

surface, which indicates the importance of lateral erosion within the suspension 

regime. 

Compared with the advection-abrasion model, the deflection-abrasion 

model dominates in a small parameter space where the transport stage is near 

the threshold of motion and the relative sediment supply is close to the threshold 

of full bed coverage (Figure 5.5-8). Low transport stage leads to relatively low 
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turbulence energy and hence low impact energy and impact rate from the 

advection-abrasion model, but the large extent of alluvial cover on the bed are 

beneficial for deflecting the bedload particles to erode the channel banks. For 

example, the bedrock beds of the South Fork Eel River (Sklar & Dietrich, 2004) 

and the downstream reach of the Boulder Creek (Finnegan et al., 2017), 

California, USA, are covered by a nearly continuous alluvial cover with bedrock 

exposed only in isolated patches. Both of these channels have a transport stage 

below 2 for the median grain size during annual floods. Without considering the 

advection-abrasion model, application of the deflection-abrasion model in the 

downstream reach of the Boulder Creek has successfully captured the channel 

widening and steepening dynamics (Li et al., 2021), supporting that inference 

that the deflection-abrasion dominates lateral erosion in channels with low 

transport stage and high bed coverage. 

5.5.2. Implications for natural bedrock rivers 

Our combined-abrasion model has implications for the relative importance 

of sediment size in eroding bedrock channel banks. Natural bedrock rivers 

transport a wide range of grain sizes, where finer sediment can be transported 

easily in suspension within almost the full distribution of discharge events but 

coarser sediment can only be mobilized over a limited duration. Previous bedrock 

lateral erosion models only consider bedload impacts, assuming that the long 

term lateral erosion rate is controlled by the coarser sediment transported over a 

limited duration and that the influence of finer sediment is negligible in eroding 

bedrock cannel banks (Turowski, 2018, 2020; Li et al., 2020, 2021). However, 

our combined-abrasion model suggests that the finer sediment transported in 

suspension can be advected toward the banks to cause lateral erosion over a 

longer period and hence might dominate lateral erosion.  

To explore the competition between finer sediment and coarser sediment 

over the full distribution of discharge and sediment supply events, we use our 

reference site (Black Canyon) as an example. We calculate the probability 
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density function (PDF) of the discharge at our reference site (Figure 5.9a-b) 

using the daily discharge data for the full 1912-2019 period of record from Water 

Survey of Canada at the Hope Gauge station (08MF005). Mixed grain sizes 

would complicate the entrainment of each grain size and the interaction amongst 

them (e.g., Wilcock et al., 2001; Wilcock & Crowe, 2003; Parker, 1990), and 

extending our model to mixed grain sizes would be more realistic, but would 

require reevaluation of several formulas, such as the critical shear stress for 

motion, the boundary roughness, and the transport capacity. For simplicity, we 

calculate the total erosion on bedrock channel banks from the sum of erosion by 

10-mm gravel and 195-mm cobbles. 

To incorporate the variability of sediment supply, we assume that the 

sediment supply 𝑄𝑠(𝑡) follows a power law relation with, 𝑄𝑤(𝑡), 

 𝑄𝑠(𝑡) = 𝑘𝑠𝑤(𝑄𝑤(𝑡))
𝑚,  (Equation 5.37)  

where 𝑘𝑠𝑤 is a scaling factor which can be obtained from the annual sediment 

flux at our reference site, and 𝑚 can be viewed as a rating exponent which 

generally varies between 1 and 3 based on sediment transport measurements in 

several bedrock rivers (Lague, 2010). For simplicity, we choose 𝑚 = 2. We 

consider two sediment supply conditions: low sediment supply and high sediment 

supply. We use the annual coarse mass flux of 0.35 Mt/yr for the low sediment 

supply case where the bed is near fully exposed (reference site condition) and 

35.0 Mt/yr for the higher sediment supply case where the bed is near fully 

covered. In each sediment supply scenario, the 10-mm gravel and the 195-mm 

cobbles are assumed to have the same mass flux.  

For the lower sediment supply scenario, the combined-abrasion model 

predicts much higher lateral erosion rate for the finer sediment (10-mm gravel) 

than the coarser sediment (195-mm cobbles) along the whole bedrock channel 

bank at our reference site (Figure 5.9c). The peak erosion rate for 10-mm gravel 

(~0.1 mm/yr) is 9 times higher than 195-mm cobbles (~0.01 mm/yr) and occurs at 

a lower elevation above the bed (~ 0.08 m) than 195-mm cobbles (~ 0.15 m). 
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The dominance of lateral erosion by the finer sediment causes the total erosion 

rate to follow the similar pattern with the 10-mm gravel, with 85% of the total 

erosion caused by the 10-mm gravel. In contrast, at high sediment supply, the 

bed is near fully covered by alluvium. Therefore, the coarser sediment can be 

deflected by the alluvium and can cause higher erosion rates (Figure 5.9d).  The 

lateral erosion rate for the coarser sediment is larger than the finer sediment at 

an elevation of 𝑧 < 0.4 m above the bed. The maximum erosion rate for the 

coarser sediment (~ 13 mm/yr) is slightly higher than the finer sediment (~10 

mm/yr) (Figure 5.9d). At high sediment supply, the coarser sediment accounts for 

near the same percentage of the total erosion rate with the finer sediment (~ 

50%). Therefore, our combined-abrasion model implies that the finer sediment 

controls the lateral erosion in bedrock rivers with low sediment supply, and the 

importance of coarser sediment in eroding bedrock channel banks increases with 

increasing sediment supply.  

An important implication of our advection-abrasion model is that the most 

frequent, small magnitude events might be more effective in eroding bedrock 

channel banks than the least frequent, extreme magnitude events (Figure 5.9a-

b). For example, the small magnitude events (𝑄𝑤 < 2000 m
3/s) at our reference 

site are effective in transporting the finer sediment (10-mm gravel) and eroding 

bedrock channel banks. The small magnitude events are also > 100 times more 

frequent than the extreme magnitude events (𝑄𝑤 > 12000 m3/s). The net effect 

of the magnitude and frequency of discharge events reveals that the smallest 

events (𝑄𝑤 < 2000 m
3/s) are > 10 times more effective in eroding bedrock 

channel banks than the extreme events (𝑄𝑤 > 12000 m
3/s) at our reference site 

(Figure 5.9). Like classic analyses of geomorphic work (Leopold, Wolman & 

Miller, 1964), moderate magnitude and frequency might be the most effective in 

eroding bedrock channel banks. This is because of the net effect of the reduced 

impact velocity for small magnitude events and the reduced frequency of the 

extreme events. At our reference site, the majority of lateral erosion are caused 



163 

by the discharge with a moderate magnitude that is between 6000 m3/s and 8000 

m3/s.  

Our combined-abrasion model includes two lateral erosion mechanisms: 

lateral erosion by bedload particle impacts that are deflected by the alluvium 

(deflection-abrasion mechanism) and lateral erosion by bedload and suspended 

load particle impacts that are advected by turbulence eddies (advection-abrasion 

mechanism). Our model does not consider other lateral erosion mechanisms, 

such as plucking (Beer et al., 2017) that may dominate in rivers with weak or well 

jointed bedrock channel banks. In meandering bedrock rivers, channel curvature 

can also enhance the sediment transport perpendicular to the bedrock channel 

banks and hence accelerate the bank abrasion (Cook et al., 2014; Mishra et al., 

2018). To build a complete lateral erosion model, future work is needed to 

develop lateral erosion models by plucking and to incorporate the influence of 

channel curvature. Furthermore, current lateral erosion models calculate the 

hydraulic conditions based on the assumption of steady, uniform flow.  However, 

3D complex flow structure has been observed in laterally constricted bedrock 

rivers characterized by flow plunging towards the bed, with a high velocity core 

near the bed, and flow upwelling along the banks, causing counter-rotating 

secondary flow structure (Venditti et al., 2014; Hunt et al., 2018). The presence 

of the complex flow structure causes higher and lower local flow velocities, 

turbulent intensities, shear stresses and erosion rates (Venditti et al., 2014; Hunt 

et al., 2018; Li et al., 2022; Cao et al., 2022), and hence needs to be coupled 

with erosion models to predict the morphodynamics of bedrock rivers. 

Nevertheless, our combined-abrasion model considers both bedload and 

suspended load, which is a more realistic representation of lateral erosion 

processes in bedrock rivers than the bedload deflection-only models. Our 

combined-abrasion model also highlights the importance of tiny but energetic 

particles in eroding bedrock channel banks. 
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Figure 5.9 The ratio of erosion rate for each discharge event at a) low sediment 
supply and b) high sediment supply, and the annual erosion rate for 
the full range of the distribution of discharge events at c) low 
sediment supply and d) high sediment supply for 10-mm gravel, 195-
mm cobbles and these two grain sizes together.  Also shown in a-b) 
is the probability density function of the discharge at our reference 
site using the daily discharge data for the full 1912-2019 period of 
record at Hope gauging station from Water Survey of Canada 
(08MF005). 

5.6. Conclusion 

We developed an advection-abrasion model for lateral erosion by bedload 

and suspended load particles impacts that are advected by turbulence eddies. 

The model calculates lateral erosion rate as a function of sediment concentration 

and impact velocity that are controlled by sediment supply, discharge, slope and 

grain size. The model predicts an undercut erosional bank shape, where lateral 

erosion rate concentrates on the lower part of the banks and decreases 

progressively up to the water surface. The maximum erosion rate within the 
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undercut zone peaks at intermediate discharge due to the reduction of near-bed 

sediment concentration as water depth increases, but increases with increasing 

slope due to the decline in water depth and hence the increase in near-bed 

sediment concentration, for given sediment supply. The maximum erosion rate 

within the undercut zone peaks at intermediate grain size due to the reduction in 

impact energy with increasing grain size for given shear stress, but increases 

with increasing sediment supply until the bedload supply approaches the 

transport capacity due to the increase in sediment concentration. The erosion 

rate within the suspended layer is larger than the bedload layer for all supply and 

transport conditions explored, except at steep slopes where bedload layer height 

approaches water depth.  

We combined the advection-abrasion model with the deflection-abrasion 

model. Both the advection-abrasion and deflection-abrasion models can be 

nondimensionalized as a function of transport stage and relative sediment 

supply, for given grain size. The deflection-abrasion model predicts a lower 

erosion rate than the advection-abrasion model for all supply and transport 

conditions explored, except within a limited condition where sediment is 

transported near the threshold of motion and the bedload sediment supply is 

close or higher than transport capacity. Therefore, the combined-abrasion model 

follows the similar pattern with the advection-abrasion model, where erosion rate 

increases with increasing transport stage and increasing relative sediment supply 

until the bedload sediment supply approaches the transport capacity. 

Application of the combined-abrasion model in a natural bedrock river with 

the wide distribution of discharge and sediment supply events and mixed grain 

size (finer and coarser sediments) indicates that the finer sediment causes more 

lateral erosion than coarser sediment in a low sediment supply environment, but 

coarser sediment becomes as important as finer sediment for eroding bedrock 

channel banks in rivers with high sediment supply rates. 
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Chapter 6. What Sets the Width and Slope of 
Bedrock Rivers? 

Abstract 

River channel geometry is defined by three simple quantities: velocity, depth and 

width, the combination of which gives the water discharge (Leopold & Wolman, 1957).  

There are well-established methods to calculate the depth and velocity of a river that are 

based in the mechanics of water flow (Parker, 2004; Garcia, 2008). Prediction of river 

channel width based on the physics of flow and sediment transport remains a stubbornly 

difficult problem (Whipple, 2004; Dunne & Jerolmack, 2020). This is surprising because 

there are sophisticated methods for describing flow and sediment transport in rivers, yet 

the reason why a river channel adopts a particular width remains unknown. Here, we 

present a method for calculating the width and slope of a bedrock river based entirely on 

the physics that underly vertical and lateral erosion. We predict observed width and 

slope for rivers where the necessary input variables are known or can be estimated.  We 

use our new predictive method to explore the controls on bedrock width and slope at a 

cross-section and scale up our predictions to drainage basin scale to explore what 

controls the downstream variation of width and slope.  We predict the observed scaling 

relations between river width, slope, and drainage area that underly the stream power 

model that lies at the heart of landscape evolution models (Perron et al., 2009, 2012; 

Perron, 2011; Ferrier et al., 2013) and inferences of tectonics and drainage 

reorganization over geologic time scales (Perron & Royden, 2013; Royden & Perron, 

2013; Goren et al., 2014; Willett et al., 2014; Yang et al., 2015). 

6.1. Introduction 

Alluvial rivers flow through their own deposits and therefore their width is 

set by deposition and erosion of sediment.  The reason a channel adopts a 

particular width must be linked to the balance between the stress applied to the 

banks and the strength of the banks, although the exact threshold remains a 

matter of ongoing debate (Dunne & Jerolmack, 2020).  Fortunately, there are 

well-defined empirical relations that link width and channel discharge (Leopold & 
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Maddock, 1953; Park, 1977; Parker, 1978; Parker et al., 2007) and semi-

theoretical approaches that require an assumption that rivers are optimized 

systems (Blench, 1952; Ikeda & Izumi, 1991; Millar, 2005; Eaton & Church, 2007; 

Nanson & Huang, 2017; Ohara & Yamatani, 2019).   

In bedrock channels, that are actively incising rock, prediction of the stable 

width of the river is more difficult because channel width is not set by local 

erosion and deposition of sediment, but rather a balance between lateral and 

vertical bedrock incision balanced against uplift, occurring over geologic 

timescales. There are analytical approaches where bedrock river width is 

calculated by iteratively solving equations that describe sediment cover on 

otherwise bedrock beds (Turowski, 2018, 2020).  However, lateral erosion in 

bedrock rivers is caused by sediment particle impacts (Fuller et al., 2016; 

Turowski, 2020; Li et al., 2020, 2021), the physics of which is not represented by 

expressions for sediment cover. There are poorly constrained empirical relations 

that link the width of a bedrock river to discharge (Whipple, 2004; Wohl & David, 

2008; Rennie et al., 2018; Wright et al., 2022) or metrics of drainage area and 

slope (stream power) (Finnegan et al., 2005; Wobus et al., 2006; Turowski et al., 

2007). At steady state, width (W) and slope (S) are widely accepted to scale 

drainage basin area (A) as 𝑊~𝜆𝐴𝜇 and 𝑆~𝛿𝐴𝜃. Compilations of data indicate 𝜇 =

𝜃 = 0.5 across a wide range of uplift rates and rock strengths (Whipple et al., 

2013; Harel et al., 2016). These relations are the foundation of landscape 

evolution models (Perron et al., 2009, 2012; Perron, 2011; Ferrier et al., 2013) 

and inferences of tectonics and drainage reorganization from fluvially-carved 

topography over geologic time scales (Perron & Royden, 2013; Royden & 

Perron, 2013; Goren et al., 2014; Willett et al., 2014; Yang et al., 2015). 

However, there is no consensus what sets the width and slope of a bedrock river 

due to a lack of mechanistic understanding for why width, slope and drainage 

area are interrelated.   

We present a method for predicting the width and slope of bedrock rivers 

based entirely on the physics of vertical and lateral erosion occurring at grain-
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scales, and validate our calculation against observed river width and slopes. We 

use our new predictive method to explore what sets the local width and slope of a 

bedrock river and then predict the scaling relations between width, slope, and 

drainage area that underly the stream power model.  

6.2. Theory 

Steady bedrock channel morphology requires a balance between vertical 

erosion rate and uplift rate so that the channel elevation is constant. Steady state 

morphology also requires the same lowering rate of the channel bed and banks 

so that the cross-sectional shape is constant. To predict bedrock channel 

morphology at steady state, we use a model for vertical erosion by saltating 

particle abrasion (Sklar & Dietrich, 2004) and a model for lateral erosion by 

saltating particles deflected by sediment cover into the channel banks (Li et al., 

2021) (see Methods).  Bedrock erosion is caused by a combination of abrasion, 

plucking, and weathering processes, but in massive crystalline rock, abrasion is 

the dominant mechanism. Models for vertical and lateral erosion by particle 

abrasion directly capture the dominance of vertical erosion at low-to-intermediate 

sediment supply when the bed is exposed to abrasion and the shift to lateral 

erosion at high sediment supply when the bed is protected by alluvium deposits. 

The models also explicitly incorporate the effects of water discharge (𝑄𝑤), 

sediment supply (𝑄𝑠), grain size (𝐷), rock strength (𝑘𝑟), channel slope (𝑆) and 

width (𝑊). Therefore, steady bedrock channel width and slope can be iteratively 

solved by combining the equations that describe the balance between vertical 

erosion rate and uplift rate (𝑈) and the equation that describe the lowering rate of 

the channel bed and banks, for given 𝑄𝑤, 𝑄𝑠, 𝐷, 𝑘𝑟 and 𝑈.   

6.3. Prediction of Channel Width and Slope 

There are not many rivers where the required variables to predict channel 

width are known, but there are four rivers where the variables are known or can 

be constrained. South Fork Eel River is an actively incising bedrock river in 
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northern California, which has a long-term uplift rate of 0.9 mm/year (Sklar & 

Dietrich, 2004, 2006). Boulder Creek is a small bedrock river in the Santa Cruz 

Mountains with a long-term uplift rate of 0.15 mm/year. The upstream reach of 

Boulder Creek has a low gradient and is narrow, but the downstream reach 

becomes wide and steep after receiving coarse sediment supply from a tributary 

(Finnegan et al., 2017). Black Canyon in the Fraser River is a large bedrock river 

in British Columbia that is capable of transporting large boulders and cobbles. 

The bedrock canyons in the Fraser River flow along a fault between Cascade 

and Coast mountain ranges (Venditti et al., 2014; Wright et al., 2022) and 

experience a long-term uplift rate of 0.35 mm/year (Farley et al., 2001). Channel 

slopes and widths of South Fork Eel River, upper Boulder Creek and Black 

Canyon are predicted to be at near steady state (Figure 6.1). Our model predicts 

that the lower Boulder Creek is adjusting to the sediment input from the tributary 

by getting wider and a lower gradient than its current morphology which is 

consistent with field-based interpretations of Finnegan et al. (2017). 

 

Figure 6.1 Comparisons between a) measured and predicted width, and b) 
measured and predicted slope (Extended Data Table C.1). 
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6.4. Local variation of width and slope 

We explored controls of 𝑄𝑤, 𝑄𝑠, 𝐷, 𝑘𝑟 and 𝑈 on steady-state width and 

slope at a cross-section, which is akin to examining the at-a-station variation, like 

in classic hydraulic geometry (c.f. Leopold and Maddock, 1953). We varied each 

variable independently, holding all other variables constant values for the 

representative field case of the South Fork Eel River (Figure 6.2). Width is a 

nonlinear function of 𝐷, 𝑘𝑟 and 𝑈 (Figure 6.2a-b). Width increases with 𝐷 for fine 

sediment due to the increase in impact energy as viscous damping becomes less 

important, but starts to decrease for coarse sediment due to increasing alluvial 

bed coverage (Figure 6.2a). Width declines with 𝑈 and 𝑘𝑟 because bed coverage 

declines at higher vertical erosion rate or rock strength (Figure 6.2b). We found 

𝑊 is not a function of 𝑄𝑤 (Figure 6.2c), but a linear function of 𝑄𝑠 (Figure 6.2d), 

suggesting that the observed 𝑊 −𝑄𝑤 scaling relation is a result of the 

codependence of sediment supply and discharge. The linear relation between 𝑊 

and 𝑄𝑠 can be used to derive analytical solutions for channel width where  

 𝑊 = 𝑘𝑤𝑄𝑠  (Equation 6.1) 

and 𝑘𝑤 = 𝑓1(𝐷, 𝑈, 𝑘𝑟) (see Methods for an explicit function).   

Slope behaves somewhat differently than width in response to changes in 

𝐷, 𝑘𝑟, 𝑈, 𝑄𝑤 and 𝑄𝑠.  As particles get larger, the slope necessary to maintain 

transport gets larger (Figure 6.2a). Slope has a parabolic relation with 𝑈 and 𝑘𝑟 

with a decline in 𝑆 at low 𝑈 and 𝑘𝑟 and an increase in S at high 𝑈 and 𝑘𝑟 (Figure 

6.2b). This occurs because width adjusts at low 𝑈 and 𝑘𝑟 by channel narrowing 

but slope adjusts at high 𝑈 and 𝑘𝑟 by steepening (Figure 6.2b). Slope declines 

with 𝑄𝑤 because of the non-linear relation between water depth and slope 

(Figure 6.2c). Slope increases with 𝑄𝑠 due to the increase in width, except at low 

width where shear stress increases with increasing width (Figure 6.2d). The 

effects of 𝑄𝑤 and 𝑄𝑠 on slope can be captured by combining flow resistance and 

continuity equations for given transport stage 𝜏∗ 𝜏𝑐
∗⁄   because transport stage 

remains constant for varying 𝑄𝑤 and 𝑄𝑠. Multiple regression analysis gives 
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 𝑆 = 𝑘𝑐(𝜏
∗ 𝜏𝑐

∗⁄ )10 7⁄ 𝐷9 7⁄ (𝑄𝑤
−0.86(𝑘𝑤𝑄𝑠)

0.86 + 𝑄𝑤
−0.4(𝑘𝑤𝑄𝑠)

−0.5) (Equation 6.2) 

where 𝑘𝑐 is a parameter describing the water and sediment density, the threshold 

of motion, and boundary roughness ) and 𝜏∗ 𝜏𝑐
∗⁄ = 𝑓2(𝐷, 𝑈, 𝑘𝑟) (see Methods for 

an explicit function).   

 

Figure 6.2 Influence of a) water discharge 𝐐𝐰, b) sediment supply 𝐐𝐬, c) grain size 

𝐃 and d) uplift rate 𝐔 or rock strength 𝐤𝐫 on channel width 𝐖 and 

slope 𝐒. Also shown is the variation in transport stage 𝛕∗ 𝛕𝐜
∗⁄ . Each 

variable is varied independently, holding all other variables to 
constant values for the reference field site (South Fork Eel River). 

 

6.5. Downstream Variation of Width and Slope 

The local relations for width and slope (Equations 6.1 & 6.2) can be scaled 

up to drainage basin scale using explicit functions of 𝑘𝑤 and 𝜏∗ 𝜏𝑐
∗⁄ , and rewriting 

downstream variations of discharge, sediment supply and grain size as functions 

of drainage area.  We assume that all the coarse sediments are transported 
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during a representative high-flow discharge at the reference site and discharge is 

calculated as a power function of drainage area, 𝑄𝑤 = 𝑘𝑞𝐴
𝑚𝑞, where 𝑘𝑞 is a 

measure of river base flow and 𝑚𝑞 is the scaling power dependency. At steady 

state, the uplift rate 𝑈 is equal to the long-term vertical erosion rate and the 

coarse sediment supply rate can be expressed as 𝑄𝑠 =
𝜌𝑠𝑈𝐴𝐹𝑏

𝑘𝑡
, where 𝜌𝑠 is 

sediment density, 𝑘𝑡 is the fraction of time that bedload occurs and 𝐹𝑏 is the 

fraction of sediment load that is transported as bedload. Assuming the decline in 

grain size downstream is due to the production of finer sediments, 𝐹𝑏 should 

decline in the downstream direction (Sklar et al., 2017). A global-scale bedload 

flux model indicates a power law relation between  𝐹𝑏 and distance downstream 

(Cohen et al., 2022). Therefore, we model 𝐹𝑏 as a power function of drainage 

area, 𝐹𝑏 = 𝐹0𝐴
1−𝑚𝑠, where  𝐹0 is the bedload fraction of the total load at the 

channel head and 𝑚𝑠 is an empirical parameter. Downstream grain size fining is 

treated as a power law relation with distance downstream (Brierley & Hickin, 

1985), allowing grain size to be expressed as a power function of drainage area 

using Hack’s law: 𝐷 = 𝑘𝑑𝐴
−0.67𝑚𝑑, where 𝑘𝑑 is a parameter that describes grain 

size at channel head, and 𝑚𝑑 is downstream fining rate (see Methods).   

Compilations of data that form the basis of classical downstream hydraulic 

geometry relations indicate 𝑊 = 𝜆𝐴𝜇, where the coefficient 𝜆 is assumed to be a 

function of rock strength and runoff rate and the exponent 𝜇 has a classical value 

of 0.50 (Figure 6.3a) ( Whipple, 2004; Wohl & David, 2008; Ferguson & Rennie, 

2017; Rennie et al., 2018; Baynes et al., 2020; Wright et al., 2022). Upscaling the 

local relations to drainage basin scale reproduces the 𝑊~𝐴 relation with the the 

classical value of 𝜇  = 0.5 for a wide range values of uplift rates and rock strength 

(Figure 6.3b-c). The exponent 𝜇 is strongly influenced by the downstream change 

of the portion of sediment carried in suspension 𝑚𝑠 with some influence by the 

downstream variation in grain size 𝑚𝑑 so that as 𝜇 = 𝑚𝑠 + 0.27𝑚𝑑 (see 

Methods). However, at high uplift rates and rock strengths, 𝜇 is a nonlinear 

function of 𝑈 and 𝑘𝑟 (Figure 6.3b-c).  The coefficient 𝜆 is also a function of uplift 
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rate and rock strength such that 𝜆 = 𝑚1𝑈
0.29𝑘𝑟

−0.71 (𝑚1 is a constant, see 

Methods).   

Downstream variation in slope is commonly observed to be an inverse 

function of drainage area as in the stream power model that predicts 𝑆 = 𝛿𝐴−𝜃, 

where 𝜃 is channel concavity (e.g. Figure 6.3d). Global average 𝜃 is 0.51 ± 0.14 

(Harel et al., 2016).  The coefficient 𝛿 is a function of rock erodibility 𝑘𝑒 

(reciprocal of rock strength, 1 𝑘𝑟⁄ ) and uplift rate 𝑈, 𝛿 = (𝑈𝑘𝑟)
0.5. Upscaling local 

width and slope relations to drainage basin scale reproduces the 𝑆~𝐴 relation 

and the classical value of 𝜃 = 0.5 for a wide range of uplift rate and rock strength 

(Figure 6.3e-f). This occurs because 𝜃 is mainly controlled by 𝑚𝑞, 𝑚𝑠, and 𝑚𝑑 

such that 𝜃 = 0.86(𝑚𝑠 −𝑚𝑞 − 0.73𝑚𝑑) (see Methods).  At high rock strength, 

however, 𝜃 is a nonlinear function of 𝑘𝑟. The coefficient 𝛿 generally increases 

with uplift rate and decreases with rock strength such that 𝛿 = 𝑚2𝑈
0.25𝑘𝑟

−0.61 (𝑚2 

is a constant; see Methods).  
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Figure 6.3 a) Measured  𝐖~𝐀  relation across a wide range of uplift rates and rock 

strength that are compiled by Wright et al. (2022), predicted  𝐖~𝐀  
relations across a wide range of b) uplift rates and c) rock strength, 
D) measured 𝐒~𝐀  at the Mendocino Triple Junction region of 

northern California, USA (Wang et al., 2017), and predicted  𝐒~𝐀  
relations across a wide range of E) uplift rates and F) rock strengths. 

6.6. Discussion and Conclusion 

Our findings indicate that local bedrock channel width at steady-state is a 

function of four parameters: sediment supply, grain size, uplift rate and rock 

strength. Steady-state bedrock channel slope can be predicted by adding water 

discharge. Scaling up the local bedrock channel width and slope relations 

reproduces the 𝑊 = 𝜆𝐴𝜇 and 𝑆 = 𝛿𝐴−𝜃 relations with classical values of 𝜇 = 𝜃 =

0.5 and provides mechanistic meanings of all these coefficients. Our results 

indicate that the classical value of 𝜇 and 𝜃 emerges across a wide range of 

tectonic activity and rock strengths at steady state. Both 𝜇 and 𝜃 are dominantly 

controlled by coarse sediment supply and caliber, and the increase in width and 

the decrease in slope downstream is strongly influenced by the portion of 

sediment carried as bedload and suspended load, the variation of which is poorly 

understood in drainage basins and need of greater attention. The uplift rate and 
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rock strength only influences 𝜇 and 𝜃 at extremely high uplift rates and rock 

strength.  

Explicitly incorporating width and slope adjustment into landscape 

evolution models will affect how long-term climate change impacts the uplift of 

mountains ranges.  A more erosive climate has been argued to increase eroded 

mass, which needs to be compensated with isostatic uplift of mountain ranges 

(Molnar & England, 1990; Gilchrist et al., 1994; Small & Anderson, 1995, 1998; 

Brozović et al., 1997). Models of landscape evolution only considers eroded 

mass from channel bed, assuming channel width is constant. However, our 

model shows that channel width is a linear function of sediment supply. This 

function leads to a positive feedback between eroded mass and channel 

widening as climate becomes more erosive. More bedrock is eroded as climates 

become wetter, which can increase the sediment supply and hence the channel 

width. The channel widening in turn can cause more mass eroded from bedrock 

riverbanks and hillslopes, which will cause more isostatically compensated uplift 

than predicted in current landscape evolution models.  

Methods 

Steady state bedrock channel morphology. Steady-state bedrock channel 

morphology requires steady channel elevation and cross-sectional shape.  The 

vertical erosion rate 𝐸𝑣 needs to be balanced with the uplift rate 𝑈 to keep 

elevation steady: 

 𝐸𝑣 = 𝑈 (Equation 6.3) 

The channel banks need to lower at the same rate of the channel bed to 

keep the cross-sectional shape steady: 

 𝐸𝑙 = 𝐸𝑣 𝑐𝑜𝑠 𝛼  (Equation 6.4) 

where 𝐸𝑙 is the bank normal erosion rate and α is the bank angle.  
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Vertical erosion by saltating bedload impacts. We used the model by Sklar & 

Dietrich (2004) for calculating vertical erosion rate due to saltating bedload 

impacts. The vertical erosion rate 𝐸𝑣 is expressed as 

              𝐸𝑣 = 0.08𝑅𝑏𝑔
1

𝑘𝑟

𝑄𝑠

𝑊
(
𝜏∗

𝜏𝑐
∗ − 1)

−0.52

(1 −
𝑄𝑠

𝑄𝑡
)(1 − (

𝑢𝑠

𝑤𝑓
)2)1.5  (Equation 6.5) 

where 𝑅𝑏 =
𝜌𝑠−𝜌𝑤

𝜌𝑤
 is the submerged specific density of sediment, 𝜌𝑠 is the 

sediment density, 𝜌𝑤 is the water density, 𝑔 is the acceleration due to gravity, 𝑘𝑟 

is bedrock strength coefficient that scales with the rock tensile yield strength 𝜎𝑇, 

Young’s modulus of elasticity of the bedrock and the dimensionless coefficient 𝑘𝑣 

(𝑘𝑟 =
𝑘𝑣𝜎𝑇

2

𝑌
), 𝑄𝑠 is the mass sediment flux, 𝑄𝑡 is the sediment transport capacity, 

𝑊 is the channel width, 𝜏∗is the nondimensional form of shear stress 𝜏, 𝜏𝑐
∗ =

𝜏

(𝜌𝑠−𝜌𝑤)𝑔𝐷
 is the value of 𝜏∗ at the threshold of sediment motion, 𝐷 is the grain 

size, 𝑢𝑠 is the shear velocity, and 𝑤𝑓 is the settling velocity. We used the bedload 

transport equation by Fernandez Luque & Van Beek (1976) to estimate 𝑄𝑡 as 

𝑄𝑡 = 5.7𝜌𝑠𝑊(𝑅𝑏𝑔𝐷
3)0.5(𝜏∗ − 𝜏𝑐

∗)1.5. The settling velocity 𝑤𝑓 was calculated using 

the Ferguson & Church (2004) relation, 𝑤𝑓 =
𝑅𝑏𝑔𝐷

2

𝐶1𝜐+(0.75𝐶2𝑅𝑏𝑔𝐷
3)0.5

, where 𝜐 is the 

kinematic viscosity of the fluid, and 𝐶1 = 18 and 𝐶2 = 1 are constants set for 

natural sediment.  

Lateral erosion by saltating bedload impacts. We calculated the lateral 

erosion rate due to saltating bedload impacts that are deflected by the alluvial 

cover based on the Li et al. (2021) model. The lateral erosion rate 𝐸𝑙 is 

expressed as 

 𝐸𝑙 =
𝜋

48𝑘𝑟

𝐷 𝑠𝑖𝑛𝛼

ℎ𝑚𝑎𝑥

𝑄𝑠
2

𝑊𝑄𝑡
(1 −

𝑄𝑠

𝑄𝑡
)(

1

ℎ𝑠
+

3

2𝑙𝑠
)𝑣𝑖

2(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5 (Equation 6.6) 

where ℎ𝑠 is the saltation height, 𝑙𝑠 is the saltation length, ℎ𝑚𝑎𝑥 is the maximum 

height of erosion on the walls,  and 𝑣𝑖 is the particle velocity that is perpendicular 

to the channel banks. The saltation trajectories, ℎ𝑠 and 𝑙𝑠, were calculated using 

the relation developed by Sklar & Dietrich (2004), ℎ𝑠 = 1.44𝐷(
𝜏∗

𝜏𝑐
∗ − 1)

0.50 and 𝑙𝑠 =
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8.0𝐷(
𝜏∗

𝜏𝑐
∗ − 1)

0.88. The maximum height of erosion ℎ𝑚𝑎𝑥  was calculated using the 

relation developed by Li et al. (2021),  ℎ𝑚𝑎𝑥 = 1.5𝐷 +
1

2𝐶𝑑
𝑙𝑛(

𝐶𝑑𝑤𝑜
2

𝐶𝑔
+ 1), where 

𝐶𝑑 = 0.75𝐶1 𝜌𝑤 (𝐷𝜌𝑠)⁄  is the drag deceleration coefficient, 𝐶1 (0.45) is the drag 

parameter, 𝐶𝑔 = (1 − 𝜌𝑤 𝜌𝑠⁄ )𝑔 is gravitational acceleration coefficient and 𝑤𝑜 is 

the vertical particle velocity after being deflected by the alluvium surface.  

The Li et al. (2021) model assumed a rectnagular channel with vertical 

channel banks (𝛼 = 90°) and hence only considered lateral velocity 𝑣𝑙. However, 

both lateral velocity 𝑣𝑙 and vertical velocity 𝑣𝑣 can cause erosion on bedrock 

banks in a trapezoid channel. The particle velocity that is perpendicular to the 

channel banks can be obtained from lateral velocity and vertical velocity using 

trigonometric functions, 𝑣𝑖 = 𝑣𝑙 𝑠𝑖𝑛 𝛼 + 𝑣𝑣 𝑐𝑜𝑠 𝛼.  We used the relation developed 

by Li et al. (2021) to estimate the lateral velocity 𝑣𝑙 as 𝑣𝑙 =

𝑣𝑜(
(1−𝑣𝑚𝑖𝑛

2 𝑣𝑜
2⁄ )𝑒−𝐶𝑑ℎ𝑚𝑎𝑥 𝑐𝑜𝑡𝛼

𝑒𝐶𝑑𝐷𝑄𝑡 𝑄𝑠⁄ −𝑒−𝐶𝑑𝐷𝑄𝑡 𝑄𝑠⁄ )0.5, where 𝑣𝑚𝑖𝑛 =
9𝑆𝑡𝜐𝜌𝑤

𝜌𝑠𝐷
 is the minimum impact velocity 

that distinguishes impacts that can cause erosion and that are viscously damped, 

𝑆𝑡 is the particle Stokes number (~ 100; Schmeeckle et al., 2001; Joseph & Hunt, 

2004), and 𝑣𝑜 is the lateral particle velocity after being deflected by the alluvium 

surface. Assuming the ratio of lateral to vertical velocity is constant and following 

the method of caluclating 𝑣𝑙 by Li et al. (2021), we can derive a relation for the 

vertical velocity 𝑣𝑣 = 𝑘𝑣𝑤𝑜(
(1−𝑣𝑚𝑖𝑛

2 𝑣𝑜
2⁄ )𝑒−𝐶𝑑ℎ𝑚𝑎𝑥 𝑐𝑜𝑡𝛼

𝑒𝐶𝑑𝐷𝑄𝑡 𝑄𝑠⁄ −𝑒−𝐶𝑑𝐷𝑄𝑡 𝑄𝑠⁄ )0.5, where 𝑘𝑣 is the fraction of 

particles that move downwards and 𝑤𝑜 is the vertical particle velocity after being 

deflected by the alluvium surface.  

We used the relations developed by Li et al. (2021) to calculate the 

velocities, 𝑤𝑜 and 𝑣𝑜, as 𝑤𝑜 = 𝐶𝑟(𝑤𝑠 − 2𝑛𝑧(𝑛𝑥𝑢𝑠 + 𝑛𝑧𝑤𝑠)) and 𝑣𝑜 = 2𝐶𝑟𝑛𝑦(𝑛𝑥𝑢𝑠 +

𝑛𝑧𝑤𝑠), where 𝐶𝑟 = 0.9 is the restitution coefficient that describes the loss of 

particle momentum during the collision between bedload particle and alluvium 

surface, 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are downstream, lateral and vertical component of the unit 

vector that is normal to the alluvium surface at the point of deflection, 
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respectively (𝑛𝑥 = 0.30
𝑄𝑠

𝑄𝑡
− 0.54; 𝑛𝑦 = 0.25

𝑄𝑠

𝑄𝑡
− 0.58; 𝑛𝑧 = 0.40

𝑄𝑠

𝑄𝑡
+ 0.50; Li et al., 

2021), 𝑢𝑠 is the longitudinal saltation velocity, and 𝑤𝑠 is vertical saltation velocity. 

The longitudinal saltation velocity 𝑢𝑠 was calculated using the relation developed 

by Sklar & Dietrich (2004) as 𝑢𝑠 = 1.56(𝑅𝑏𝑔𝐷)
0.5(

𝜏∗

𝜏𝑐
∗ − 1)

0.56. The vertical saltation 

velocity was calculated using the relation developed by Lamb et al. (2008) as 

𝑤𝑠 = −√
𝐶𝑔

𝐶𝑑
(1 − 𝑒−2𝐶𝑑(ℎ𝑠−ℎ𝑑)), where ℎ𝑑 = (0.83𝑒

−0.68(𝜏∗ 𝜏𝑐
∗⁄ −1) + 0.11

𝑄𝑠

𝑄𝑡
+ 0.06)ℎ𝑠 is 

the height of bedload particle during collision with the deflector.  

Shear stress.  Assuming steady, uniform flow, shear stress 𝜏 can be expressed 

as 

 𝜏 = 𝜌𝑤𝑔𝑅𝑆  (Equation 6.7) 

where 𝑆 is channel slope and 𝑅 is hydraulic radius. 𝑅 was calculated from the 

channel width 𝑊, depth 𝐻 and bank angle α, 𝑅 =
(𝑊+𝐻 tan𝛼⁄ )𝐻

𝑊+2𝐻 sin𝛼⁄
.  Flow depth was 

calculated using the continuity equation 𝑄𝑤 = (𝑊 + 𝐻 tan𝛼⁄ )𝐻𝑈, where 𝑄𝑤 is 

water discharge and 𝑈 is flow velocity. The flow velocity 𝑈 was calculated using a 

general Manning-Strickler formula, 
𝑈

𝑢∗
= 𝑎(

𝑅

𝑘𝑠
)1 6⁄ , in which 𝑢∗ = √

𝜏

𝜌𝑤
 is the shear 

velocity, 𝑎 = 8 is a coefficient, 𝑘𝑠 is a length scale assumed to be a function of 

grain size, 𝑘𝑠 = 𝑛𝐷 (𝑛 = 3 is selected here; Kamphuis, 1974).. 

Upscaling to drainage basin scale.  To scale up from at-a-station variation to 

drainage basin scale, we assumed that all the coarse sediments are transported 

during a representative high-flow discharge, which occurs a fraction of the time 𝑘𝑡 

(4.37%), and no coarse sediment is transported during low flow when the shear 

stress is below the threshold of motion. We assumed 𝑄𝑤 is a power function of 𝐴, 

𝑄𝑤 = 𝑘𝑞𝐴
𝑚𝑞, where 𝑘𝑞 is a measure of river base flow and 𝑚𝑞 is the scaling 

power dependency. In our calculations, we used value of 𝑘𝑞 = 1 and 𝑚𝑞 = 0.9.  

Drainage area was related to the distance downstream 𝑥 using Hack’s Law, 𝐴 =

𝐴0 + 𝑘𝐴𝑥
𝑏, where 𝐴0 (1 km2) is the drainage area at the channel head, 𝑘𝐴 (1 
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km0.5) and 𝑏 (1.5) are empirical parameters. The downstream fining of grain size 

was calculated from 𝐷 = 𝐷0(
𝑥+𝑥0

𝑥0
)−𝑚𝑑, where 𝐷0 (0.3 m) is the grain size at the 

channel head, 𝑥0 (1 km) is the unchanneled distance from the drainage divide to 

the channel head and 𝑚𝑑 is an empirical parameter. 𝐷 can be then approximated 

as a function of drainage area: 𝐷 ≈ 𝑘𝑑𝐴
−0.67𝑚𝑑, where 𝑘𝑑 = 𝐷0𝑥0

𝑚𝑑𝑘𝐴
−0.67𝑚𝑑. At 

steady state, the uplift rate 𝑈 is equal to the long-term vertical erosion rate (𝑈 =

𝐸𝑣) and the coarse sediment supply rate can be expressed as 𝑄𝑠 =
𝜌𝑠𝑈𝐴𝐹𝑏

𝑘𝑡
, where 

𝐹𝑏 is the fraction of sediment load that is transported as bedload. We assumed 

that the downstream fining of the bedload grain size is due to the production of 

fine sediment that is transported as wash load and the sediment supplied from 

the hillslopes has been found to shift to finer sediment and less coarse sediment 

with decreasing elevation. Therefore, the bedload fraction of the total load is 

assumed to decreases with increasing downstream distance and treated as a 

power law function of drainage area 𝐹𝑏 = 𝐹0𝐴
1−𝑚𝑠, where 𝐹0 (0.9) is the bedload 

fraction of the total load at the channel head and 𝑚𝑠 (0.55) is an empirical 

parameter that describes the downstream change of the portion of sediment 

transported as suspended load. 

Explicit functions for width and slope. In order to apply our results to predict 

width and slope of a bedrock river, we derive universal functions for width and 

slope as a function of 𝑄𝑤, 𝑄𝑠, 𝐷, 𝑘𝑟 and 𝑈. The local width is not a function of 𝑄𝑤 

(Figure 6.2c) but a linear function of 𝑄𝑠. Therefore width can be expressed as 

 𝑊 = 𝑘𝑤𝑄𝑠  (Equation 6.8) 

where 𝑘𝑤 is a nonlinear function of 𝐷, 𝑘𝑟 and 𝑈. We use multiple nonlinear 

regression to find an explicit function for 𝑘𝑤 as 

𝑘𝑤 = [𝑒
(−11.56𝑒−2.31𝑈𝑘𝑟−13.4𝑒−0.089𝑈𝑘𝑟)𝐷(𝐷−3.7) + 10.3(𝑈𝑘𝑟)

0.711𝐷0.4]
−1

 (Equation 6.9) 

The component 𝑒(−11.56𝑒
−2.31𝑈𝑘𝑟−13.4𝑒−0.089𝑈𝑘𝑟)𝐷(𝐷−3.7) describes the 

narrowing response to decreasing grain size for fine sediment and can be 
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neglected for coarse sediment (𝐷 > 6 mm; Extended Data Figure C.1). 

Substituting equations for 𝑄𝑠 and 𝐷 into the equation for 𝑊, the downstream 

width variation can be expressed as an explicit power relation of drainage area, 

given as 𝑊 = 𝑚1𝑈
0.29𝑘𝑟

−0.71𝐴𝑚𝑠+0.27𝑚𝑑, where 𝑚1 =
𝜌𝑠𝐹0

10.3𝑘𝑡𝑘𝑑
0.4. 

We used multiple nonlinear regression to find an explicit function for local 

slope expressed as  

𝑆 = 𝑘𝑐(𝜏
∗ 𝜏𝑐

∗⁄ )10 7⁄ 𝐷9 7⁄ (𝑄𝑤
−0.86(𝑘𝑤𝑄𝑠)

0.86 + 𝑄𝑤
−0.4(𝑘𝑤𝑄𝑠)

−0.5)  (Equation 6.10) 

where  

 𝑘𝑐 = 5.9𝑔
3 7⁄ 𝑛−1 7⁄ (

𝜌𝑠−𝜌𝑤

𝜌𝑤
𝜏𝑐
∗)
10 7⁄

,  (Equation 6.11) 

and 𝜏∗ 𝜏𝑐
∗⁄  is a nonlinear function of 𝐷, 𝑘𝑟 and 𝑈 that is also derived from multiple 

nonlinear regression 

𝜏∗ 𝜏𝑐
∗⁄ = 𝑒(−3.5(𝑈𝑘𝑟)

−0.094+0.94)𝐷0.18+(0.37(𝑈𝑘𝑟)
0.32−0.055)𝐷−0.58+(0.02(𝑈𝑘𝑟)

−0.05−0.028)𝐷−1 + 1).  

(Equation 6.12) 

Equation 6.10 can be simplified to  𝑆 = 𝑘𝑐𝐷
9 7⁄ (𝑄𝑤

−0.86(𝑘𝑤𝑄𝑠)
0.86) because 

𝜏∗ 𝜏𝑐
∗⁄  is close to 1, except at high uplift rate and rock strength conditions 

(Extended Data Figure C.2) and 𝑄𝑤
−0.4(𝑘𝑤𝑄𝑠)

−0.5 is negligible in rivers that are 

wider than deep. Replacing 𝑄𝑤, 𝑄𝑠, 𝑘𝑤 and 𝐷 with functions of 𝐴, the 

downstream slope variation can be expressed as 𝑆 =

𝑚2𝑈
0.25𝑘𝑟

−0.61𝐴−0.86(𝑚𝑠−𝑚𝑞−0.73𝑚𝑑), where 𝑚2 = 𝑘𝑐𝑘𝑞
−0.86𝑚𝑤

0.86. 
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Chapter 7. Conclusions 

The dissertation sought to explore what controls width in bedrock rivers 

through mechanistic modelling and field observations. The findings of the 

dissertation are summarized in the context of the proposed objectives. 

A numerical model for lateral erosion of bedrock channel banks by 

bedload particle impacts was developed in Chapter 2 by tracking the movement 

of bedload particles from collision with the deflectors to impacts on the wall. The 

model successfully reproduces the patterns of lateral erosion observed in flume 

experiments by Fuller et al. (2016). The predicted lateral erosion rate is 

nondimensionalized as a function of transport stage and relative sediment 

supply, and coupled with the vertical erosion model by Sklar & Dietrich (2004). 

The coupled model predicts that vertical erosion dominates under ~75% 

sediment supply and transport conditions, while lateral erosion only dominates 

when the bed is near fully covered. 

An analytical solution for the numerical model of lateral erosion by bedload 

particle impacts was derived in Chapter 3. The analytical model predicts a 

nonlinear dependence of lateral erosion rate on sediment supply, shear stress, 

and grain size, revealing the same behavior observed in the numerical model, 

but without tracking individual particle movement. The analytical model considers 

uniformly distributed alluvial cover and patchy partial cover, which is 

implemented as a fully alluviated patch along one bank with bare bedrock along 

the other. The uniformly distributed cover model predicts the maximum erosion 

rate occurring at ∼70% bed coverage, but the patchy cover model predicts the 

peak erosion rate at full bed coverage. When the lateral erosion model is coupled 

with the Sklar and Dietrich (2004) vertical erosion model, the ratio of lateral to 

vertical erosion rate increases with increasing relative sediment supply for both 

uniformly distributed and patchy covers. Application of the analytical model to 

Boulder Creek, California supports the inference by Finegan et al (2017) that 



182 

downstream channel widening occurs due to an increase in sediment supply and 

caliber.  

Bed and wall stresses, which are key elements of erosion rate prediction 

in bedrock rivers, were partitioned using the Ray-Isovel Model (RIM) (Chapter 4). 

RIM predicts that the ratio of wall to bed stress exponentially decreases with 

increasing width-to-depth ratio. Application of RIM results to 26 bedrock canyons 

of the Fraser River shows that the modelled wall stress is smaller than the 

modelled bed stress and the ratio of wall to bed stress varies between 0.60 and 

0.98. Observations of bed and wall stresses reveal that the observed wall stress 

is larger than the observed bed stress for the majority of the 26 canyons in the 

Fraser River. The model nearly always over-predicts the observed bed stress by 

~56% (±15%), but under-predicts the wall stress by ~57% (±3.2%). The 

inconsistency between the model results and field observations is caused by 

complex three-dimensional flow and rough walls in natural bedrock canyons, 

which is not represented in the model. Nevertheless, RIM provides a first order 

estimate of bed and wall stresses, which can be corrected for partitioning bed 

and wall stresses because the RIM appears to be biased consistently. 

A model for lateral erosion by bedload and suspended load advected by 

turbulence eddies was developed in Chapter 5 (advection-abrasion model). The 

advection-abrasion model predicts high lateral erosion rates near the bed and 

decreasing rates up to water surface. The erosion rate within the suspended load 

layer is higher than the bedload layer for many sediment supply and transport 

conditions, but is outpaced by the erosion rate within the bedload layer at steep 

slopes. Compared with the deflection-abrasion model developed in Chapters 2 

and 3, the advection-abrasion model predicts higher erosion rate for all sediment 

supply and transport conditions, except when transport stage is near the 

threshold of motion and the bedload sediment supply is nearly equal to, or higher 

than transport capacity. A model that combines the advection- and the deflection-

abrasion models predicts an increase in erosion rate with increasing transport 

stage and sediment supply, until the bedload supply approaches the bedload 



183 

transport capacity. The combined-abrasion model was applied to a natural 

bedrock river with a wide distribution of discharge and sediment supply as well as 

mixed grain size (finer and coarser sediments).  The results indicate that finer 

sediment causes more lateral erosion than coarser sediment at low sediment 

supply, but coarser sediment becomes important at high sediment supply.  

 A method for calculating the width and slope of a bedrock river based 

entirely on the physics that underly vertical and lateral erosion was developed in 

Chapter 6. The new method predicts observed width and slope for rivers where 

the necessary input variables are known or can be estimated. Local and 

downstream variations of width and slope are explored. The local width is not 

controlled by discharge, but is a linear function of sediment supply, implying the 

commonly used width-discharge relation is due to the codependence of 

discharge and sediment supply. The local width and slope are non-linear 

functions of uplift rate, rock strength and grain size. Upscaling the local 

predictions to drainage basin scale reproduces the observed scaling relations 

between river width, slope, and drainage area underlying the stream power 

model that lies at the heart of modern landscape evolution models. 
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Appendix A. Chapter 2 Supplementary Information 
 

The supporting information describes the details of calculating the limits 

on impact positions in the process of estimating impact rates. We want to provide 

enough information for the reader to understand the model, and if necessary 

reproduce it. 

Limits also exist on impact positions on both the downstream and 

upstream facing parts of the roughness elements. Bedload particles moving 

downstream cannot impact the downstream face of the roughness element below 

the tangent point (Figure 2.4) which has a central angle θd calculated from 

 𝜃𝑑 =
𝜋

2
+ 𝛽 . (Equation A.1) 

Whether a particle impacts the upstream facing part of the roughness 

element is controlled by the relation between the downstream distance of the 

potential impact position on the bed 𝑙𝑢 and the distance between the center of 

the roughness element and the vertex of the upstream face of the successive 

downstream roughness element 𝑙𝑟 (Figure 2.4) 

 𝑙𝑢 =
𝑟

sin𝛽
  (Equation A.2) 

 𝑙𝑟 = 𝑑 − 𝑟  (Equation A.3) 

where 𝑟 is the semi-circle radius cut along the roughness element in the 

downstream direction, which decreases from center line of the roughness 

element laterally. When 𝑙𝑢 is equal or smaller than 𝑙𝑟 (𝑙𝑢 ≤ 𝑙𝑟), the downstream 

trajectory of bedload particles at the tangent line can impact on the bed directly 

(Figure 2.4). Therefore, the bedload particles can impact any positions on the 

upstream facing part of the roughness element. However, if 𝑙𝑢 > 𝑙𝑟, the 

downstream trajectory of bedload particles at the tangent line is intercepted by 

the upstream facing part of the subsequent downstream roughness element 

instead of impacting on the bed.  
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Appendix B. Chapter 3 Supplementary Information 
 

The supporting information describes the detailed equations of calculating 

the total projected area 𝐴𝑝 from integrating the projected area on each slice of 

the deflector surface, and the lateral erosion rate on the adjacent wall 𝐸𝑙𝑝𝑎 and 

the opposite wall 𝐸𝑙𝑝𝑜 for bank-attached alluvium. We want to provide enough 

information for the reader to understand the model, and if necessary reproduce it. 

The projected area 𝐴𝑝 can be obtained by integrating the impact area on 

the plane that is parallel to the upward motion of saltation particles. It has been 

shown that only ¼ of the semi-spherical deflector surface that faces upstream 

and the wall closer to the deflector is effective at deflecting bedload particles 

toward the wall (Li et al., 2020). Therefore, we choose to integrate the impacts on 

¼ of the semi-spherical deflector surface by dividing it into individual slices with a 

wall-normal interval of 𝑑𝑟 where each slice is parallel to the wall and is a semi-

circle with a radius 𝑟𝑠 ∈ (0, 𝐷/2) 

 𝑟𝑠 = √(𝐷 2⁄ )2 − 𝑟′2. (Equation B.1) 

where 𝑟′ is the lateral distance between each slice of the deflector surface and 

the center of the deflector. 𝑟′ is zero for the slice at the center of the deflector, 

increases as it moves towards the edge of the deflector and becomes 𝐷 2⁄  for the 

slice at the edge of the deflector. The projected length 𝐿𝑠 of the slice with radius 

𝑟𝑠 can be obtained from upward saltation length 𝑙𝑠𝑢 and saltation height ℎ𝑠 using 

trigonometric functions 

 𝐿𝑠 = 𝑟𝑠(
𝑙𝑠𝑢

ℎ𝑠
+ 0.5)

2√ℎ𝑠
2+𝑙𝑠𝑢

2

3𝑙𝑠𝑢
.  (Equation B.2) 

The projected area on each slice can be written as  

 𝐴𝑠 = 𝐿𝑠 𝑑𝑟
′. (Equation B.3) 
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Therefore, the total projected area 𝐴𝑝 can be obtained by integrating the 

projected area on each slice 

𝐴𝑝 = ∫ 𝐿𝑠 𝑑𝑟 
𝐷 2⁄

0
= (

𝑙𝑠𝑢

ℎ𝑠
+
1

2
)
2√ℎ𝑠

2+𝑙𝑠𝑢
2

3𝑙𝑠𝑢
∫ √(𝐷 2⁄ )2 − 𝑟2 𝑑𝑟′
𝐷 2⁄

0
.  (Equation B.4) 

Equation B.4 can then be solved by trigonometric substitution, leading to  

 𝐴𝑝 =
𝜋

24
𝐷2(

𝑙𝑠𝑢

ℎ𝑠
+
1

2
)
√ℎ𝑠

2+𝑙𝑠𝑢
2

𝑙𝑠𝑢
. (Equation B.5) 

For the erosion rate on the adjacent wall, the distance between the ith 

deflector and the adjacent wall 𝑦𝑝𝑎(𝑖) can be determined from grain size 𝐷, using 

𝐷 2⁄  as the distance between the first deflector and the wall  

 𝑦𝑝𝑎(𝑖) = (𝑖 −
1

2
)𝐷, (Equation B.6) 

where 𝑖 = 1,2,3,… ,𝑁𝑝𝑎, and 𝑖 = 1 corresponds to the closest deflector to the wall 

and increases with increasing extent of alluvium. 𝑁𝑝𝑎 is the total number of 

deflectors that contribute to lateral erosion on the adjacent wall. 𝑁𝑝𝑎 increases 

with the fraction of alluvium 𝐹𝑎, until the distance between the furthest deflector 

and the adjacent wall 𝑦𝑎 is bigger than 𝑦𝑚𝑎𝑥 because the bedload particle 

impacts that are deflected by a deflector located from the wall further than 𝑦𝑚𝑎𝑥 

would be viscously damped, so 

 𝑁𝑝𝑎 = {
𝑦𝑎 𝐷,    ⁄ if 𝑦𝑎 ≤ 𝑦𝑚𝑎𝑥
𝑦𝑚𝑎𝑥 𝐷,⁄    otherwise

. (Equation B.7) 

where 𝑦𝑎 = 𝑊𝐹𝑎 = 𝑊𝑞𝑠 𝑞𝑡⁄ , and 𝑊 is the channel width. 

The total erosion rate on the adjacent wall for bank-attached alluvium 𝐸𝑙𝑝𝑎 

is a sum of erosion rates caused by all deflections from 1 to 𝑁𝑝𝑎, given as  

           𝐸𝑙𝑝𝑎 = ∑
𝜋𝑌

24𝑘𝑣𝜎𝑇
2

𝐷2

𝑑ℎ𝑚𝑎𝑥
𝑞𝑠(

1

ℎ𝑠
+

1

2𝑙𝑠𝑢
)(1 − 𝑛𝑧) 𝑣0

2𝑒−2𝐶𝑑𝑦𝑝𝑎(𝑖)(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5
𝑁𝑝𝑎
𝑖=1

. 

 (Equation B.8) 
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Equation B.8 can be solved from the sum of a geometric sequence with a 

common ratio of 𝑒−2𝐶𝑑𝐷 and a total number of 𝑁𝑝𝑎 

𝐸𝑙𝑝𝑎 = {

𝜋𝑌

240𝑘𝑣𝜎𝑇
2

𝐷

ℎ𝑚𝑎𝑥
𝑞𝑠 (

1

ℎ𝑠
+

1

2𝑙𝑠𝑢
) 𝑣0

2 1−𝑒−2𝐶𝑑 𝑦𝑎

𝑒𝐶𝑑𝐷−𝑒−𝐶𝑑𝐷
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5      if 𝑦𝑎 < 𝑦𝑚𝑎𝑥 

𝜋𝑌

240𝑘𝑣𝜎𝑇
2

𝐷

ℎ𝑚𝑎𝑥
𝑞𝑠 (

1

ℎ𝑠
+

1

2𝑙𝑠𝑢
) 𝑣0

2 1−𝑒
−2𝐶2𝑦𝑚𝑎𝑥

𝑒𝐶𝑑𝐷−𝑒−𝐶𝑑𝐷
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5          otherwise

,               

(Equation B.9) 

As the alluvium extends from the adjacent wall to the opposite wall, the 

distance between the ith deflector and the opposite wall 𝑦𝑝𝑜(𝑖) can be treated as 

a mirror image of that between the deflector and the adjacent wall 𝑦𝑝𝑎(𝑖), given 

as  

              𝑦𝑝𝑜(𝑖) = 𝑦𝑚𝑎𝑥 − 𝑦𝑝𝑎(𝑖) = 𝑦𝑚𝑎𝑥 − (𝑖 −
1

2
)𝐷,               (Equation B.10) 

where 𝑖 = 1,2,3,… ,𝑁𝑝𝑜, and 𝑖 = 1 corresponds to the first deflector that can 

effectively deflect particle to erode the opposite wall and increases with 

increasing extent of alluvium. 𝑁𝑝𝑜 is the total number of deflectors that contribute 

to erosion on the opposite wall. 𝑁𝑝𝑜 is zero when the distance between the 

furthest deflector to the opposite wall 𝑦𝑜 is larger than 𝑦𝑚𝑎𝑥, and can be 

determined from the distance between the furthest deflector to the opposite wall 

𝑦𝑜 and the maximum distance 𝑦𝑚𝑎𝑥 when 𝑦𝑜 ≤ 𝑦𝑚𝑎𝑥 

 𝑁𝑝𝑜 = {
0,                           if 𝑦𝑜 > 𝑦𝑚𝑎𝑥
(𝑦𝑚𝑎𝑥 − 𝑦𝑜) 𝐷,⁄    otherwise

. (Equation B.11) 

The total erosion rate on the opposite wall for bank-attached alluvium 𝐸𝑙𝑝𝑜 

is a sum of erosion rates caused by all deflections from 1 to 𝑁𝑝𝑜, given as  

𝐸𝑙𝑝𝑜 = ∑
𝜋𝑌

24𝑘𝑣𝜎𝑇
2

𝐷2

𝑑ℎ𝑚𝑎𝑥
𝑞𝑠(

1

ℎ𝑠
+

1

2𝑙𝑠𝑢
)(1 − 𝑛𝑧) 𝑣0

2𝑒−2𝐶𝑑𝑦𝑝𝑜(𝑖)(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5
𝑁𝑝𝑜
𝑖=1

.  

(Equation B.12) 

Equation B.12 can be solved from the sum of a geometric sequence with a 

common ratio of 𝑒−2𝐶𝑑𝐷 and a total number of 𝑁𝑝𝑜 
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𝐸𝑙𝑝𝑜 =

{
0;                                                                                                                          if 𝑦𝑜 > 𝑦𝑚𝑎𝑥 

𝜋𝑌

240𝑘𝑣𝜎𝑇
2

𝐷

ℎ𝑚𝑎𝑥
𝑞𝑠 (

1

ℎ𝑠
+

1

2𝑙𝑠𝑢
) 𝑣0

2 𝑒
−2𝐶𝑑𝑦𝑜−𝑒−2𝐶𝑑𝑦𝑚𝑎𝑥

𝑒𝐶𝑑𝐷−𝑒−𝐶𝑑𝐷
(1 − (𝑢∗ 𝑤𝑓⁄ )2)1.5       otherwise

  

(Equation B.13) 

where 𝑦𝑜 = 𝑊 − 𝑦𝑎. 
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Appendix C. Chapter 6 Extended Data 

 

Extended Data Figure C.1. Contours of the ratio of width to sediment supply 𝒌𝒘 as 

a function of  𝑫 and 𝑼𝒌𝒓 derived from multiple nonlinear regression 
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Extended Data Figure C.2. Contours of transport stage 𝝉∗ 𝝉𝒄
∗⁄  as a function of 𝑫 

and 𝑼𝒌𝒓 derived from multiple nonlinear regression. 
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Extended Data Table C.1 Reference Site Values and Model Predictions for South 
Fork Eel River, Boulder Creek, and Black Canyon.  

Variable 
South Fork Eel 

River 
Black Canyon Boulder Creek 

Bedload particle size 𝐷 

(m) 
0.06 0.195 0.02 0.22 

Sediment supply 𝑄𝑠 (kg/s) 42.6 70 39 145 

Discharge (m3/s) 39.1 7000 59 74 

Measured/Predicted width 

𝑊 (m) 
18.0/20.2 106/88.7 4.5/4.82 9.6/19.9 

Measured/Predicted 

slope 𝑆 
0.0053/0.0065 0.001/0.0008 0.007/0.007 0.019/0.015 

Fraction of time that 

bedload occurs 𝑘𝑡 
0.0437 0.145 0.00274 0.00274 

Critical Shields stress 𝜏𝑐
∗ 0.03 0.03 0.03 0.03 

Water density 𝜌𝑤(kg/m3) 1000 1000 1000 1000 

Sediment density 𝜌𝑠 

(kg/m3) 
2650 2650 2650 2650 

Rock strength parameter 

𝑘𝑟 (Pa) 
9.8×108 9.8×108 9.8×108 9.8×108 

 

  

 


