
Arduino Based Automated Flow Control System

by
Tehreem Naeem

BE (Mechatronics), NUST, 2005

Project Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Engineering

in the
School of Engineering Science

Faculty of Applied Sciences

© Tehreem Naeem 2021
Simon Fraser University

Fall 2021

Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done

in accordance with the relevant copyright legislation.

ii

Declaration of Committee

Name:
Degree:

Tehreem Naeem
Master of Engineering

Arduino Based Automated Flow Control System
C Ahair: nita Ti no

Lecturer, Engineering Science

Title:

Committee:

Michael Adachi

Supervisor

Assistant Professor, Engineering Science

Balbir (Bob) Gill

Committee Member
Sessional Instructor, Engineering Science

iii

Abstract

At present when precise, accurate and time efficient systems have become a challenge,

automated techniques are being replaced by manual practices. As a need of the hour, we

introduce an automated, cost effective, yet reliable and efficient flow control system for

fluids. Our prototype system can dispense varying amounts of fluids in milliliters (maximum

1L) as per demand of the user using peristaltic pump and solenoid valves. It uses the

principle of time-based fluid dispensing achieved using PWM technology. To satisfy the

principle used and verify the system's accuracy, fluids in different amount were dispensed

for different amount of time and monitored. The experimental results of the fluid control

system when tested showed linear relationship between the dispensing time and desired

volumes of fluids. The added feature of our dispensing system is GUI for operating the

Arduino. A screen comes up with buttons to toggle timers for individual valves as well as

a button to run a sequence of commands in a specific order if necessary. GUI works in

conjunction with the Arduino so the commands it sends must be formatted properly for the

Arduino to actuate correctly. This system can be used in pharmaceutical and beverage

industries as well as in different laboratories for dispensing and filling different volumes of

fluids. [1]

Keywords: PWM; MOSFET; GUI; DC Voltage; Arduino; Peristaltic; Solenoid valve

dispensing system; flow control

iv

Acknowledgements

It is a great privilege for me to express my profound gratitude to my respected

teacher Dr. Michael Adachi, Senior Professor, Engineering Sciences Department SFU, for

his constant guidance, valuable suggestions, supervision and inspiration throughout my

work without which it would have been difficult to complete this project within scheduled

time.

I would like to take this opportunity to thank all the respected teachers of this

department for being a perennial source of inspiration and showing the right path at the

time of necessity. I would like to express my gratitude towards Engineering Sciences

Department, to run the experimentation in the Electronics Laboratory at Burnaby Campus.

I appreciate everyone who has directly or indirectly contributed towards the project.

Finally, to my supportive husband, Naeem, my deepest gratitude. Your

encouragement when the times got rough are much appreciated and duly noted. It was a

great relief to know that you were willing to provide management of our household

activities while I completed my work. My heartful thanks.

v

Table of Contents

Declaration of Committee .. ii
Abstract .. iii
Acknowledgements .. iv
Table of Contents .. v
List of Tables ... vii
List of Figures.. viii
List of Acronyms ... ix

Chapter 1. Introduction ... 1
1.1. About the System .. 1

Chapter 2. Background Knowledge .. 3
2.1. Classification of Dispensing System .. 3
2.2. Time Pressure Dispensing ... 3
2.3. Volumetric Fluid Dispensing .. 4

Chapter 3. Methodology ... 6
Proposed Design ... 7

Chapter 4. Prototyping of the system ... 8
4.1.1. Hardware requirement.. 8
4.1.2. Software requirement ... 8

4.2. Hardware Requirements .. 9
4.2.1. Arduino UNO R3 .. 9
4.2.2. Dual Channel MOSFETS ... 11
4.2.3. Applications .. 12
4.2.4. Solenoid Valves ... 14
4.2.5. Three-way Manual Valve .. 15
4.2.6. Jump wires ... 16
4.2.7. Beakers .. 16
4.2.8. Pipes .. 17

4.3. Software Requirements ... 17
4.3.1. Arduino IDE (Integrated Development Environment) 17

Chapter 5. Experimental setup .. 19
5.1. Conceptual Design .. 20
5.2. In Home Flow Control Setup .. 23
5.3. Initial Design .. 23
5.4. Final Design .. 24
5.5. Implementation .. 27

5.5.1. Hardware Implementation .. 27
5.5.2. Software Implementation .. 28

vi

5.5.3. Graphical User Interface (GUI) ... 29

Chapter 6. Results and Discussion ... 31

Chapter 7. Conclusion and Future Work .. 35

References ... 36

Appendix A. Arduino IDE Code .. 38

Appendix B. Processing Code for Graphical User Interface 45

vii

List of Tables

Table 1. Summary of technologies of flow control mechanisms Above talbe shows
the summary of Existing Flow control mechanisms and technologies
employed in them. .. 5

Table 2. Data showing volume of liquid vs time ... 32
Table 3. Data showing Average rate vs time ... 33

viii

List of Figures

Figure 1. Block diagram of Proposed Design .. 7
Figure 2. Arduino UNO board .. 10
Figure 3. Dual Channel MOSFET .. 11
Figure 4. 2V DC peristaltic pump ... 13
Figure 5. Solenoid valve .. 14
Figure 6. 3 Way Ball Valve 1/8" NCH O/D Tube .. 15
Figure 7. Jump wires ... 16
Figure 8. 500ml and 125ml beakers .. 17
Figure 9. Tygon 2375 Plastic PVC Tubing, 1/16" ID, 1/8" OD, 1/32" Wall, 50'

Length, Clear ... 17
Figure 10. ARDUINO IDE ... 18
Figure 11. Conceptual design ... 20
Figure 12. Conceptual design with connections and components 21
Figure 13. Conceptual design showing Liquid2 Intake ... 21
Figure 14. Conceptual design showing Liquid1 Intake ... 22
Figure 15. Conceptual design showing Liquid3 Intake ... 22
Figure 16. Initial setup ... 23
Figure 17. Module 1 Setup .. 24
Figure 18. Module 2 Setup .. 25
Figure 19. Shows setup for beakers .. 25
Figure 20. Beakers after fixing in the box .. 25
Figure 21. Final Hardware setup ... 26
Figure 22. Hardware in two layers ... 26
Figure 23. Finished Design of Flow Control System .. 27
Figure 24 Pinout diagram ... 28
Figure 25. GUI Pop-up Menu .. 30

ix

List of Acronyms

GUI Graphical User Interface

MOSFET Metal Oxide Semiconductor Field Effect Transistor

DC Direct Current

PWM Pulse Width Modulation

IDE Integrated Development Environment

SRAM Static Random-Access Memory

D9 Digital pin 9 on Arduino UNO board

D10 Digital pin 10 on Arduino UNO Board

D11 Digital pin 11 on Arduino UNO board

1

Chapter 1.

Introduction

1.1. About the System

In the past many years, automated flow control system has been in high demand,

largely because of its ability to drive efficiency, reduce error rates, and improve the

uncertainties of general flow operations of liquids. The high production and safety

concerns of today have resulted in an increased need for automotive approaches to

substitute earlier manual techniques. [2]

Automated systems supersede manual effort. We have sophisticated and

advanced machines nearly in every field to enhance throughput, efficiency and accuracy.

Our pharmaceutical industries, clinical laboratories, environmental, chemical, food and

beverage companies are also included in this category. Sample preparation process in all

the mentioned industries is of critical importance especially with respect to pharmaceutical

and food industry. The quality of the end products highly depends on the correct and

reliable dispensing of needed volumes for the ingredients being mixed. [3]

For example, it is essential to mix exact volumes of syrup with carbonated fluids in

food and beverage companies to obtain the proper taste. The correct concentrations of

drugs or injections in pharmaceutical companies is more important as incorrect

measurements can lead to life threatening results. [4]

To attain this level of precision, use of automation techniques for fluid

measurement and dispensing is a need in place of manual methods which inherit errors.

[1]

Flow control is a mechanism that regulates the flow or pressure of liquid. To be

able to effectively manage flow control, flow control valves are used. The flow control of

liquids is regulated as these respond to signals that are produced by independent devices

like pump or motors etc. [5]

2

Our Flow control system delivers a precise amount of liquid in the milliliter range

into a tube. Microcontroller (Atmega 328p Arduino Uno Board) is used as controller to

automate the operation of flow of liquids. Arduino Microcontroller is selected as the

controller because it is easier to implement, and the compact size of Arduino Uno board

makes it easier to mount it on any system. The machine is also easy to operate and user

friendly, where simple steps are needed to operate the machine. In this project

microcontroller is used as the core of the system. [6]

In our microcontroller-based flow control system, the Arduino runs a program that

parses serial input data of a specific format in order to extract commands from the

graphical user interface (GUI) running on a computer. Data must be sent in a specific form

to be interpreted properly and is configured within the code. A screen comes up with

buttons to toggle timers for individual valves as well as a button to run a sequence of

commands in a specific order if necessary. The Processing code works in conjunction with

the Arduino so the commands it sends must be formatted properly for the Arduino to

actuate correctly. The GUI builds a command string based on the user input by taking

which channel should be actuated (“Liquid 1”, “Liquid 2”, or “Liquid 3”) and the amount of

time set (1000ms, 2000ms etc) and sends that value out to the serial monitor to be read

by the Arduino.

The user is requested to press the buttons on GUI to control the dispensing of

fluids. This information is processed in the dispensing units and is used to dispense liquid

according to the milliseconds selected. According to the allowance of time limit, selected

liquid is discharged to the tube. Solenoid valves manipulate a flowing fluid using Peristaltic

pump and control the flow of the liquid from the container electrically. [7]

In our project we are using a special type of pump known as PERISTALTIC PUMP.

Peristaltic pumps are one of the most common items that we find in our house premises;

a peristaltic pump is one of the displacement pumps which are positive in nature and is

used to pump various kinds of fluids

A peristaltic pump is a pump, operated by a motor, that is able to uptake a liquid through

one tube and drip it out through another tube. We can easily design a liquid dispensing

system by using this peristaltic pump.

3

Chapter 2.

Background Knowledge

A literature review provided us an insight of automated techniques used for fluid

dispensing along with several designs of dispensing systems proposed by various

inventors. Hickerson [8], Ceccarelli et al [9] and Awada et al. [10] patented different

devices but they all lacked the features of a pump and the ability for the user to control the

quantity of liquid being dispensed.

2.1. Classification of Dispensing System

An improved liquid measuring and dispensing device was then proposed by

Hanson in connection to cooking oil measurement and dispensing overcoming the

deficiencies of the devices developed by aforementioned inventors [11].

A general purpose precise volume fluid dispenser was invented by Takacs to be

used in pharmaceutical, beverage, concrete mixing and other industries. It consisted of

pressure level sensor, bubbler tube, and a controller that controls the inflow and outflow

of the precise volume of liquids from the entire system [12].

Butler et al. described a chemical storage and injection system for automatic

dispensing of desired volumes of chemicals for industrial applications. His method

included the utilization of sensors, valves and a controller for controlling the dual chamber

filling and metered dispensing of the chemicals into a vessel [3].

Few well known and widely used fluid dispensing techniques are time-pressure

dispensing and volumetric fluid dispensing using either pinch valves or positive

displacement piston pumps [13].

2.2. Time Pressure Dispensing

Time pressure dispensing involves application of air pressure to the top of a

container holding the fluid, forcing the material to be dispensed from its outlet. The amount

4

of fluid to be dispensed is directly linked to the length of time the pressure is applied along

with other factors. These systems are widely used but are difficult to control [14].

The evolution of time pressure dispensing into automated equipment was a logical

next step. However, implementing a smart system to compensate for the numerous

dispensing variables has proved to be a difficult task. Time pressure dispensing is the

most widely used dispensing method, but an increasing number of automated dispensing

systems now utilize more reliable methods such as Archimedes metering pumps or piston

positive displacement pumps. [15]

2.3. Volumetric Fluid Dispensing

The second technique is volumetric fluid dispensing using pinch valves. This

includes a tube or cylinder whose volume is already known, employed between a fluid

reservoir and a filling vessel. When this tube or cylinder is filled with the desired volume

often determined by optical sensors, the premeasured fluid can be dispensed using pinch

valves [9]. The volumetric positive displacement piston pump utilizes a tube of desired

volume enclosed by pistons from either end. The sequence of downward and upward

stroke of the piston governs the filling and dispensing of the predetermined amount of

fluid. This method has been found advantageous due to its precise dispensing capability

irrespective of the material’s viscosity [16].

Our work presented here is about the design and implementation of a cost

effective, reliable and flexible prototype of an automated adjustable fluid dispensing

system. Time based dispensing technique was employed and the designed system can

be used in clinical labs and pharmaceutical industry. The salient feature of our proposed

system is the automated controlling of the entire process of dispensing a precise and user

defined quantity of fluid into tubes from beakers [1].

5

Techniques Equipment Manufacturer
Time Pressure

Dispensing
Time pressure liquid dispensing Pump GPD Global

Volumetric Fluid
dispensing

Volumetric Piston Dispenser for Volumetric
dispensing

Volumetric Dosing Dispenser

Scheugenpflug
Nordson

Table 1. Summary of technologies of flow control mechanisms
Above table shows the summary of Existing Flow control mechanisms and technologies employed in them.

6

Chapter 3.

Methodology

The methodology of the project is;

i. Designing a circuit using peristaltic pump, solenoid valves, manual valve, beakers

and tubes.

ii. Arduino Uno board is connected to the circuit for monitoring and command giving

purpose.

iii. We are using three liquid to monitor their flow with respect to time.

iv. The inlet of the peristaltic pump is connected to the T- joint which in turn is

connected to two Solenoid valves to intake fluid1 and fluid 2 and at pump outlet, a

pipe is connected which runs to the waste beaker. Liquid3 is injected in manual

valve through dropper. We use dropper because we want to check the flow of small

volume as well.

v. A three-way manual valve is placed between valves and pump input.

vi. Inlet of two solenoid valves are connected to beakers filled with fluid1 and fluid 2

through pipes and the outlet is connected to pump through manual valve.

vii. Serial Communication to connecting the Arduino uno with the computer is done.

viii. Solenoid Valves and pumps are connected to Arduino through MOSFETS.

ix. MOSFETS are used as a switch in the circuit.

x. 12 Volts DC power supply is given to the circuit through MOSFETS.

xi. Now we upload the program into Arduino and click on the “VERIFY” key of the

simulator.

xii. Pump runs by the code written in Arduino IDE and we can control the process by

the GUI developed in a software called “Processing”

7

Proposed Design

Figure 1. Block diagram of Proposed Design

Figure 1 shows a proposed design in the form of a block diagram. It describes the principal parts
and their connections. Main components are represented by blocks connected by lines that show
the relationships of blocks. This is main step towards our electronic design and process flow
diagram.

8

Chapter 4.

Prototyping of the system

Our project requires two parts, HARDWARE and SOFTWARE.

4.1.1. Hardware requirement

i. Arduino Uno R3

ii. MOSFETS

iii. Power supply

iv. 12V peristaltic pump

v. Beakers

vi. Solenoid valves

vii. Three-way manual valve

viii. Jump wires

ix. Pipe

x. Wooden boxes.

4.1.2. Software requirement

i. Arduino IDE.

ii. Processing for Graphical User Interface (GUI)

9

4.2. Hardware Requirements

4.2.1. Arduino UNO R3

Arduino is an open-source platform used for building electronics projects. Arduino

consists of both a physical programmable circuit board (often referred to as a

microcontroller) and a piece of software, or IDE (Integrated Development Environment)

that runs on your computer, used to write and upload computer code to the physical board.

The Arduino platform has become quite popular with people just starting out with

electronics, and for good reason. Unlike most previous programmable circuit boards, the

Arduino does not need a separate piece of hardware (called a programmer) in order to

load new code onto the board – you can simply use a USB cable. Additionally, the Arduino

IDE uses a simplified version of C++, making it easier to learn to program. Finally, Arduino

provides a standard form factor that breaks out the functions of the micro-controller into a

more accessible package.

The Arduino is a microcontroller board based on the ATmega8. It has 14 digital -

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz

ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button.

It contains everything needed to support the microcontroller; simply connect it to a

computer with a USB cable or power it with an AC-to-DC adapter or battery to get started.

i. The Uno differs from all preceding boards in that it does not use the FTDI

USB-to-serial driver chip. Instead, it features the Atmega16U2 (Atmega8U2 up to version

R2) programmed as a USB-to-serial converter. Revision 2 of the Uno board has a resistor

pulling the 8U2 HWB line to ground, making it easier to put into DFU mode. Revision of

the board has the following new features:

ii. pinout: added SDA and SCL pins that are near to the AREF pin and two

other new pins placed near to the RESET pin, the IOREF that allow the shields to adapt

to the voltage provided from the board. In future, shields will be compatible with both the

board that uses the AVR, which operates with 5V and with the Arduino Due that operates

with 3.3V. The second one is a not connected pin, that is reserved for future purposes.

iii. Stronger RESET circuit.

10

iv. ATmega 16U2 replace the 8U2.

"Uno" means one in Italian and is named to mark the upcoming release of Arduino 1.0.

The Uno and version 1.0 will be the reference versions of Arduino, moving forward. The

Uno is the latest in a series of USB Arduino boards, and the reference model for the

Arduino platform.

Figure 2. Arduino UNO board
Source: https://www.distrelec.biz/Web/WebShopImages/landscape_large/9-/01/arduino-
a000066.jpg

 Here are some parameters of Arduino and the descriptions.

 Microcontroller - ATmega328

 Operating voltage - 5V

 Input voltage (recommended) - 7-12V

 Input voltage (limits) - 6-20V

11

 Digital I/O pins - 14 (D0-D13 are digital I/O; D3, D5, D6, D9, D10, D11 are

PWM).

 Analog I/P pins - 6.

 Flash memory - 32KB (ATmega328).

 SRAM - 2 KB (ATmega328).

 EEPROM - 1KB (ATmega328).

 Clock speed - 1.6 MHz

 Length - 68.6 mm.

 Width - 53.4 mm.

 Weight - 25 g.

4.2.2. Dual Channel MOSFETS

We are using three NPN MOSFETS as switches. Two for solenoid valves and one

for liquid that is injected through manual valve. The Arduino can not drive the flow switches

and pump directly from a digital pin. The MOSFET connects the flow switch or pump to

the power supply with a switch using much less current from the Arduino.

Figure 3. Dual Channel MOSFET
Source: https://www.electan.com/images/7325415412.jpg

The MOSFET (Metal Oxide Semiconductor Field Effect Transistor) transistor is a

semiconductor device that is widely used for switching purposes and for the amplification

of electronic signals in electronic devices. A MOSFET is either a core or integrated circuit

12

where it is designed and fabricated in a single chip because the device is available in very

small sizes.

A MOSFET is a four-terminal device having source(S), gate (G), drain (D) and

body (B) terminals. In general, the body of the MOSFET is in connection with the source

terminal thus forming a three-terminal device such as a field-effect transistor. MOSFET is

generally considered as a transistor and employed in both the analog and digital circuits.

This is the basic introduction to MOSFET [17].

We are using Dual Channel MOSFET with the following Parameters.

Parameter

 Operating Voltage: DC 5V - 36V

 Maximum current up to 30Auous current: 15A

 High Reliability

 Power: 400W.

 Perfect support PWM

4.2.3. Applications

It can be used to control the output of power equipment, motors, light bulbs, LED

lights, DC motors, micro-pumps, solenoid valves, etc., can input PWM, control motor

speed, lamp brightness and so on.

13

12V PERISTALTIC PUMP

Figure 4. 2V DC peristaltic pump
Source: https://accendoreliability.com/wp-content/uploads/2017/11/V2E6-5-1.png

We are using Peristaltic pump. The name “Peristaltic pump” was derived the word

“peristalsis” which is its pumping principle. It consists of a flexible tube, rotor with rollers,

shoes or wipers, pump casing etc. The fluid is kept inside the flexible tube or hose which

compress and relaxes making the inward and outward flow of the fluid. For that rollers

attached with the rotor, shoe and wipers are attached to the external surface of the tube

which initiates the compression and relaxation. When the rotor gets started, an under-

compression tube part closes compelling the liquid to move through. A cam is passed then

to make the tube regain its original shape and the fluid flow is induced back to the pump,

this process is called restitution.

The peristaltic pump was first patented in the United States by Rufus Porter and

J.D. Bradley in 1855 (U.S. Patent number 12753) as a well pump, and later by Eugene

Allen in 1881 (U.S. Patent number 249285) for blood transfusions. It was developed by

heart surgeon Dr. Michael DeBakey for blood transfusions while he was a medical student

in 1932 and later used by him for cardiopulmonary bypasssystems. A specialized non-

occlusive roller pump (US Patent 5222880) using soft flat tubing was developed in 1992

for cardiopulmonary bypass systems.

Here we are using a 12V DC peristaltic pump. The specifications of the peristaltic

pump are as follows: -

14

Voltage rating: - 12 V DC.

Current rating: - 0.75 amps.

Wattage rating: - 9 watt.

Working condition temperature: - 0-40oC. V.

Relative humidity: - < 80%.

Flow rate: - 0-100 ml/min.

Rotate speed: - 0.1-5000 rpm.

Driver size: - diameter 27.6 X height 37.9 (mm).

Head size: - diameter 31.7 X height 20.1 (mm).

Equipped with pump tube (ID x OD): - 2.5 mm inner diameter X 4.7 mm.

Suitable for medical, chemical experiments, environmental protection.

4.2.4. Solenoid Valves

We are using two solenoid valves for liquid1 and liquid2. Solenoid valve works by

controlling the flow of liquids or gases in a positive, fully closed or fully open mode. They

are often used to replace manual valves or for remote control. Solenoid valve function

involves either opening or closing an orifice in a valve body, which either allows or prevents

flow through the valve. A plunger opens or closes the orifice by raising or lowering within

a sleeve tube by energising the coil.

Figure 5. Solenoid valve
Source: https://images-na.ssl-images-amazon.com/images/I/41w4%2BMEORuL._SX342_.jpg

Image redacted due to Copyright.

15

Solenoid valves consist of a coil, plunger and sleeve assembly. In normally closed

valves, a plunger return spring holds the plunger against the orifice and prevents flow.

Once the solenoid coil is energised, the resultant magnetic field raises the plunger,

enabling flow. When the solenoid coil is energised in a normally open valve, the plunger

seals off the orifice, which in turn prevents flow.

In our project, it is necessary to start or stop the flow in the circuit to control the

fluids in the system. An electronically operated solenoid valve is usually used for this

purpose. By being solenoid actuated, solenoid valves are positioned in the hardware in a

way that they are conveniently controlled by simple electrical switches.

Solenoid valves are the most frequently used control elements in fluidics. They are

commonly used to shut off, release, dose, distribute or mix fluids. For that reason, they

are found in many application areas. Solenoids generally offer fast and safe switching,

long service life, high reliability, low control power and compact design [18].

4.2.5. Three-way Manual Valve

Figure 6. 3 Way Ball Valve 1/8" NCH O/D Tube
Source: https://m.media-amazon.com/images/I/516lzFWQyWL._SL1000_.jpg

Figure 6 shows three-way stainless-steel manual valve. It has three ports or openings that are
connected to pipes or tubes for fluid flow. These ports are described as inlets and outlets. We are
using two ports as inlets and one as outlet.

Figure redacted due to Copyright considerations.

16

4.2.6. Jump wires

We are using jump wires to connect Arduino UNO to MOSFETS and valves by

inserting their end connectors into the slots provided at Arduino UNO board.

Figure 7. Jump wires
Source: https://cdn.sparkfun.com//assets/parts/7/8/9/2/11709-01.jpg

Figure 7 shows jump wires which we are using to interconnect components of our system.

They are also called electrical wires and have connector or pin at each end.

4.2.7. Beakers

Total 3 no of beakers are used in our project. Two are of 500ml and one of 125ml.

Two beakers are filled with liquid1 and liquid2 and one is used for waste. A pipe carrying

waste runs from outlet of pump to the waste beaker.

Figure redacted due to Copyright considerations.

Figure redacted due to Copyright considerations.

17

Figure 8. 500ml and 125ml beakers

Figure 8 shows plastic beakers we are using for our system. One of 500ml beaker is used

for liquid1, and other 500ml beaker is used for waste. We are using 125ml beaker for

liquid2.

4.2.8. Pipes

Pipes are used here in the inlets and the outlets of the peristaltic pump, solenoid

valves and manual valve.

 Figure 9. Tygon 2375 Plastic PVC Tubing, 1/16" ID, 1/8" OD, 1/32" Wall, 50'
Length, Clear

Source: https://www.usplastic.com/catalog/images/products/Misc/sku/400/57544p.jpg

Figure 9 shows the pipes we are using for our flow control system. This tubing is

formulated to transfer a wide variety of liquids. This is made up of PVC based material

and the clarity allows for easy visual monitoring.

4.3. Software Requirements

As explained earlier our project consists of hardware and software. Hardware parts

are explained above and software requires as follows:

4.3.1. Arduino IDE (Integrated Development Environment)

The open-source Arduino Software IDE (Integrated Development Environment)

makes it easy to write code and upload it to the board. It runs on Windows, Mac OS X,

and Linux. The environment is written in Java and based on Processing and other open-

Figure redacted due to Copyright considerations.

18

source software. This software can be used with any Arduino board. The Arduino

development environment contains a text editor for writing code, a message area, a

text console, a toolbar with buttons for common functions, and a series of menus. It

connects to the Arduino hardware to upload programs and communicate with them.

Software written using Arduino are called sketches. These sketches are

written in the text editor. Sketches are saved with the file extension. ino. It has features for

cutting/pasting and for searching/replacing text. The message area gives feedback while

saving and exporting and also displays errors. The console displays text output by the

Arduino environment including complete error messages and other information. The

bottom right-hand comes of the window displays the current board and serial port. The

toolbar buttons allow you to verify and upload programs, create, open, and save sketches,

and open the serial monitor.

Figure 10. ARDUINO IDE
Source: https://encrypted-
tbn0.gstatic.com/images?q=tbn:ANd9GcQLRq18VXW3sJ3TAw9qX0Zl3sk_H64jKDzgFg&usqp=C
AU

Figure 10 shows Arduino Integrated Development Environment.

19

Chapter 5.

Experimental setup

The low-cost fluid Automated Flow Control System was developed using “Arduino

UNO”. The microcontroller of Arduino Uno was programmed in IDE. The principle utilized

for dispensing precise, accurate and user defined volumes of fluids was” time based

dispensing i.e. the amount of fluid to be dispensed will be determined by the time taken

by that fluid to dispense completely [14].

We have developed a Graphical User Interface (GUI) which has four separate

press buttons. Three buttons are used to control flow three liquids, one for each liquid

separately. To automate the system, we have developed another press button on GUI

which run the program in a sequence, and automatically calls the routine for each liquid

and pump runs for a specific amount of time for each liquid. Each liquid is dispensed in a

certain amount for a definite amount of time in an automated sequence. This time is loaded

in the microcontroller’s timer through programming to control the opening and closing of

solenoid valve along with the working of the pump. We aimed to investigate the working

accuracy of the fluid dispenser by dispensing three different fluids in a definite order. A

separate time factor was measured for each type of fluid to be used in programming [1].

20

5.1. Conceptual Design

Our conceptual design is given below:

Figure 11. Conceptual design

Figure 11 shows main components of the hardware design to describe the main idea of the circuit.
We used symbol for solenoid and manual valve. Image for beaker is used to show waste.

21

Figure 12. Conceptual design with connections and components

Figure 12 shows full system with components and connections. Above schematic uses real images
of the components and shows connections between them according to our electric circuit.

Figure 13. Conceptual design showing Liquid2 Intake

22

Figure 13 shows liquid2 intake process when one valve is open and other is closed. Figure clearly
shows that one solenoid valve is connected and other one is inactive.

Figure 14. Conceptual design showing Liquid1 Intake

Figure 14 shows liquid1 intake process. In this schematic we can see that Solenoid valve1 is
connected to the pump and solenoid valve2 is inactive. When command is sent from GUI after
pressing button for liquid1, pump runs and liquid1 is taken.

Figure 15. Conceptual design showing Liquid3 Intake

Figure 15 shows liquid3 intake process through a dropper when solenoid valves are not in use. In
this case, only pump runs. In our automatic sequence which runs by pressing an individual button

23

on GUI, process pauses and ask for manual injection of liquid3 by dropper. And then when valve
is closed, process is resumed.

5.2. In Home Flow Control Setup

Setup compromising of Arduino Uno, peristaltic pump, two solenoid valves and

one three-way manual valve was tested for the purpose of understanding and testing the

flow of liquids of three liquids. The 12 V AC adapter was used for power supply to the

system. Jumper wires were soldered to connect the components. The picture shown

below is an example setup made for the testing.

5.3. Initial Design

Figure 16. Initial setup

Figure 16 shows our initial setup. We made the initial setup with Styrofoam sheets to test our
experiment. We used sheets to make stand for liquids as an upper layer and on lower layer, we
placed our components which are Peristaltic pump, solenoid valves, MOSFETS and Arduino UNO
board.

24

5.4. Final Design

Our Initial setup was taking up much volume, to reduce size and make our design

more compact, we used wooden boxes and wooden sheets to mount our system on, which

turned out to be more durable and reliable.

Module 1 Setup

Figure 17. Module 1 Setup

Figure 17 shows the Module1 Setup to run the code and make sure the connections are correctly
done. We connected components by soldering jump wires. We run the code and made sure the
components are correctly connected according to our circuit diagram.

Module 2 Setup

25

Figure 18. Module 2 Setup

Fig 18 shows hardware mounted on wooden sheets in two layers to save space and to make
system more compact. On lower layer, we placed MOSFETS and Pump and on upper layer, we
fixed rest of components like MOSFETS, Arduino Board, and Power Supply. We used two wooden
boxes for our hardware. In one wooden box, we placed our electronics and in other wooden box,
we placed beakers. We mounted boxes over each other to reduce size of our system. Manual valve
is fixed outside of the box so that we can open and close it easily without opening the box.

Setup for beakers

Figure 19. Shows setup for beakers

Fig 19 shows setup after fixing the beakers inside a wooden box. Two beakers are used for two
kinds of liquids and one is for waste. We are injecting liquid 3 manually by a dropper through a
manual valve.

Figure 20. Beakers after fixing in the box

Liquid 1

Liquid 2

Waste

Liquid 1
Liquid 2

Waste

26

Fig 20 shows setup after fixing the beakers inside a wooden box. We put some wooden fixtures to
hold beakers in their place.

Final setup after fabrication

Figure 21. Final Hardware setup

Fig 21 shows clear image of two layered hardware and box for beakers.

Figure 22. Hardware in two layers

27

Fig 22 shows detailed image of two-layer system showing pump fixed underside, two

solenoid valves are on first layer, MOSFETS, Power jack and Arduino board are fixed on

second layer.

Finished Design

Figure 23. Finished Design of Flow Control System

Figure 23 shows our finished product with lid on it. We have mounted two boxes over each other
and fixed them with screws. We have fixed lid over boxes with hinges.

5.5. Implementation

5.5.1. Hardware Implementation

We connected digital pins i.e., D9, D10 PWM/SS and D11 of ARDUINO UNO to

three MOSFETS. Arduino turns the MOSFETS on. Pump is controlled by Pulse Width

Modulation Signal. Instead of just turning on and staying on, it is turned on and off very

quickly. The amount of time it is turned on for compared to off for determines how fast the

pump runs. The PWM value written in a normal Arduino is 1 byte in size. the max value of

a byte is 255. 127 would be 50% duty cycle. DC motors have pretty linear power curves

so it would be roughly half. A value of 127 (meaning 127/255) would be exactly 50% of

the time on and 50% off. Since ours is 80, it spends (80/255=.313) 31% of the time on and

69% off. This makes it look like its spinning slower which gives us more control over the

amount of liquid pumped. The 80 is picked arbitrarily and it can be changed if we would

28

like the motor to spin faster or slower. Two Solenoid valves are used for two different

liquids and one three-way manual valve is used for taking a very small amount of liquid.

Pinout Diagram

Figure 24 Pinout diagram
Source: https://robu.in/wp-content/uploads/2020/07/1-3.jpg

Fig 24 shows Pinout Diagram for Arduino UNO. We used digital pin 9, pin10 and pin 11

and named them D9, D10 and D11. D9 is connected to Solenoid Valve1, D10 is connected

to solenoid valve2 and D11 is connected to Peristaltic pump.

5.5.2. Software Implementation

For software implementation we require a software namely Arduino IDE. This

software enables us to load the program in Arduino board. ARDUINO UNO is a

microcontroller board based on the “ATmega328P” or “ATmega328” IC. It has 14 digital

I/O pins (of which 6 can be used as PWM O/O pins), 6 analog I/P pins, a 16 MHz quartz

crystal, a USB connecting jack, a power jack, an ICSP header and a reset button. The O/P

of the UNO is 5V, so we have to connect an external voltage source to the MOSFET. Next

we have our setup() function, which makes the motor an O/P device, since we are writing

to the motor. After this we have our loop() function.

Figure redacted due to Copyright considerations.

29

This is how a peristaltic pump can be controlled by an ARDUINO microcontroller

IC and can be used for a water dispensing system. The code for running the peristaltic

pump is written in C++ language in a computer software called “ARDUINO IDE”.

5.5.3. Graphical User Interface (GUI)

The code in Processing serves as the GUI for operating the Arduino. The Arduino

handles reading the input commands and actuating the valves and pump. It is the job of

the GUI to send text-based commands to the Arduino to take action. The buttons on the

GUI represent different text commands to send and are dynamic, updating as the user

changes the time delay for the system to run. The commands are sent over a virtual com

port that the Arduino is monitoring. The library used in Processing is the Serial library.

Processing and the Arduino are communicating on the same serial port, so the Arduino is

constantly monitoring and waiting for input. Once the GUI sends a command, the Arduino

sees that data is available on the serial port and reads it in to parse for the correct action

to take. A simple function is used from the Serial library to send the command to the

Arduino. The function is myPort.write(String); which the GUI uses to send the commands

over as text for the Arduino to read. The GUI waits to send a command until the previous

one is complete. Since the GUI sent the command, it knows how long the Arduino will take

to run it before the GUI should send anything else. The GUI builds a command string

based on the user input by taking which channel should be actuated (“liquid1”, “liquid2”,

or “liquid3”) and the amount of time set (1000ms, 2000ms, etc) and sends that value out

to the serial monitor of the form to be read by the Arduino. The sequence function runs a

little differently by automatically sending multiple signals in a predefined order to run a

process with one click. It sends the commands for the Arduino to perform before a required

pause. It allows a user to insert a solution manually while waiting for another click on the

program to resume the rest of the sequential process in the following order.

1. CLICK BUTTON

2. Liquid1 for 5000ms

3. Pause for injecting liquid3 through dropper

4. click the button again to continue dispensing liquid1 for 1000ms

30

5. Liquid2 for 5000ms

6. Yellow water for 5000ms

7. Liquid1 for 5000ms

Once complete, the program waits for another command to take action again.

GUI Pop-up Menu

Figure 25. GUI Pop-up Menu

31

Chapter 6.

Results and Discussion

The testing was performed on the developed equipment to determine the

relationship between the volume of fluid and the time taken by it to dispense the required

volume into a graduated container. For this purpose, the experimentations were carried

out iteratively on three kinds of fluids for the user defined volume fillings in a series of

marked vessels. Different volumes of each kind of fluid were taken. We call it run1, run2

and run3 for different amount of time like 4 seconds, 8seconds, 12 seconds and 16

seconds. Table 2 shows data obtained during experiment for volumes of three kinds of

liquids vs time. We observed a linear relationship between the volume of the fluids and

the time taken to dispense those fluids as represented in Figure 26. The same figure also

describes that for each liquid, rate of dispense is same. The system was also checked for

its smooth operability. It demonstrated satisfied and accurate working of the prototype

dispensing system.

Table 3 shows rate correlation. Figure 27 shows Individual runs for three liquids

and describes a strong correlation between liquid dispensed for the same amount of time.

An automated fluid dispensing setup provides with flexibility to the user in terms of

time selection. At the same time, the time-based dispensing method reduced the hardware

cost of the dispensing system which would otherwise increase if volumetric positive

displacement piston pump or time-pressure dispensing techniques were employed.

32

Motor speed 100/255 for all tests @ 12V

Time Volume (mL)

Run 1 Run 2 Run 3

Start 0 0 0 0

End 4 1.8 1.85 2

Rate 0.450 0.463 0.500

Average Rate 0.471

Start 0 0 0 0

End 8 3.7 3.75 3.8

Rate 0.463 0.469 0.475

Average Rate 0.469

Start 0 0 0 0

End 12 5.8 5.6 5.5

Rate 0.483 0.467 0.458

Average Rate 0.469

Start 0 0 0 0.000

End 16 7.5 7.6 7.6

Rate 0.46875 0.475 0.475

Average Rate 0.473
Table 2. Data showing volume of liquid vs time

Rate for liquid flow is very consistent for various duration of motor run time.

Rate for liquid flow is very consistent for various duration of motor run time.

33

Rate Correlation

4s 0.471

8s 0.469

12s 0.469

16s 0.473

Table 3. Data showing Average rate vs time

Average rate is the rate at which liquid is dispensed for a certain amount of time.

Figure 26. Chart showing rate vs time

Figure 26 shows relation of rate(mL/s) vs time.

34

Figure 27. Individual runs for volume vs time

Figure 27 shows Individual runs which describe a strong correlation between liquid dispensed for
the same amount of time.

35

Chapter 7.

Conclusion and Future Work

In this project we can conclude that three liquids of different volumes can be

dispensed for different amount of time individually and automatically in a definite sequence

after one another by using time-based approach with Arduino uno board. The speed of

the motor can be controlled by using PWM technique.

An automated fluid dispensing system was successfully developed in connection

to a prospective usage in the pharmaceutical, food and beverage companies and clinical

labs for time-based dispensing of different fluids with varying viscosities. It allows its

operator to control the working of the system from few buttons on Graphical User Interface.

Future modifications include wireless and distant control of such systems by distance

enhancement and dispensing lesser fluid volumes ranging below 1 ml. The decrease in

pump size and tubing system will allow micro liter fluid dispensing desired for micro level

applications. Prospective studies will also emphasize on enhancing system accuracy by

removing air bubbles. Fluid flow sensing technique using fluid flow meter can be employed

rather than time-based technique and concentration measurement circuit can be

incorporated for concentration-based fillings.

36

References

[1] N. S. M. H. Syed Muhammad Omair, "ResearchGate," [Online]. Available:

https://www.researchgate.net/publication/282643162_Fluid_Dispenser_Prototype
_A_Time_Based_Approach. [Accessed December 2020].

[2] J. X. Liu, New developments in robotics research, Nova Publishers, 2005.

[3] T. E. R. M. H. W. A. a. E. H. J. Butler, "Chemical Dispensing system and method,"
2001.

[4] A. Godschalk Jr Louis, "Device for dispensing measured quantities of liquid,
Google Patents," 1968.

[5] Corrosionpedia, 21 July 2014. [Online]. Available:
https://www.corrosionpedia.com/definition/527/flow-control. [Accessed December
2020].

[6] P. A. V. V. G. BipinMashilkar, "AUTOMATED BOTTLE FILLING SYSTEM," IRJET
e-ISSN: 2395 - 0056 , vol. 03, no. 04, April-2016.

[7] E. A. Solutions, CONTROL VALVE HANDBOOK, Fisher, 2005.

[8] F. R. Hickerson, "Liquid dispensing system". USA Patent 5,044,527, 03 September
1991.

[9] a. A. C. L. R. Ceccarelli, "Pre-measured liquid and powder dispenser with overflow
lube". US Patent 5,323,938, 28 June 1994.

[10] a. K. A. H. Awada, "Reusable and accurately pre-measured liquid dispenser". US
Patent 5,584,420, 17 December 1996.

[11] T. R. Hanson, "Liquid measuring and dispensing device". 2005.

[12] G. W. Takacs, "Precise volume fluid dispenser". 1996.

[13] J. R. R. J. a. D. E. Keyes, "Time Volumetric Fluid Dispensing Apparatus". 2011.

[14] D. Dixon, "Time pressure dispensing," White papers, Universal Instruments,
[Online]. Available: http://www4.uic.com/wcms/WCMS2. nsf/index/Resources_58.
html [Accessed December 2020].

[15] [Online]. Available:
https://www3.uic.com/wcms/images2.nsf/(GraphicLib)/Time_Pressure_Dispensin
g.PDF/$File/Time_Pressure_Dispensing.PDF.

[16] P. Swanson, "Improving industrial dispensing with pneumatic dispensing valves,"
2007.

[17] [Online]. Available: https://www.elprocus.com/mosfet-as-a-switch-circuit-diagram-
free-circuits/.

37

[18] [Online]. Available: https://www.burkert.co.uk/en/Company-Career/What-s-
New/Press/Media/Technical-Reports/Technical-Reports-additional-topics/What-
is-a-solenoid-valve-and-how-does-it-
work#:~:text=Solenoid%20valve%20function%20involves%20either,coil%2C%20
plunger%20and%20sleeve.

38

Appendix A.

Arduino IDE Code

#include <SoftwareSerial.h> //library set up for debugging

SoftwareSerial mySerial(2, 3); // RX, TX (debugging only)

const byte numChars = 60; //array to store incoming commands

char receivedChars[numChars]; //sets array size for serial input

boolean newData = false; //variable to save if data has been received

//digital pin each mosfet is connected to

byte valve1 = 9;

byte valve2 = 10;

byte pump = 11;

void setup() {

 pinMode(valve1, OUTPUT); //sets up digital pins as outputs to drive mosfet

controllers

 pinMode(valve2, OUTPUT);

 pinMode(pump, OUTPUT);

 Serial.begin(115200); //initializes serial port to receive commands from the

computer

 mySerial.begin(9600); //initializes software serial port. (debugging only)

 Serial.println("<Arduino is ready>");

 mySerial.println("<Arduino is ready>"); //debugging

39

}

void loop() {

 recvWithStartEndMarkers(); //function that starts when new data is received with

correct start and end markers (< >)

 showNewData(); //displays received data in serial monitor and acts on data

}

void recvWithStartEndMarkers() {

 static boolean recvInProgress = false; //stores if currently reading from serial

 static byte ndx = 0; //serial array read location

 char startMarker = '<'; //sets expected start character for a command

 char endMarker = '>'; //sets expected end character for a command

 char rc; //current serial read character

 while (Serial.available() > 0 && newData == false) { //wait for new serial to be

available in the buffer

 rc = Serial.read(); //reads one character at a time

 if (rc == startMarker) { //set that a receive is in progress if a character is the start

marker

 recvInProgress = true; //sets to continue reading data

 }

 if (recvInProgress == true) { //add each character to the incoming string as long

as its not the end character

 if (rc != endMarker) { //checks to see if end of serial string is reached

 receivedChars[ndx] = rc; //adds current character into input array

40

 ndx++; //inrements to next input array location

 if (ndx >= numChars) { //does not increment if its reached the buffer size of for

input string

 ndx = numChars - 1;

 }

 }

 else {

 receivedChars[ndx] = '\0'; // this character is necessary in C to terminate any

string so it must be added when input is over

 recvInProgress = false; //reset variable values to wait for next command

 ndx = 0; //resets index value for next loop

 newData = true; //sets that new data is available for the next section of code

 }

 }

 }

}

void showNewData() {

 if (newData == true) { //once a message is done being received, we tell Arduino

we have new data available

 Serial.println(receivedChars); //prints message to serial monitor (debugging

only)

 mySerial.println(receivedChars); //(debugging only)

41

 processData(); //this command takes the string we just received and parses it to

see which switches to turn on

 memset(receivedChars, 0, sizeof receivedChars); //this resets the saved

command variable to be empty

 newData = false; //since we have to most recent command, this tells the code to

wait for another message

 Serial.print("m"); //debugging

 }

}

void processData() {

 int index1 = 0;

 int index2 = 0;

 char subChar[30] = {0}; //allows 8 digit input with \0 terminator for the command

input

 while (receivedChars[index1] != '\0') { //read through until end of string

 while (!isDigit(receivedChars[index1]) && receivedChars[index1] !=

'\0')index1++; //read until next digit

 if (receivedChars[index1 - 1] == 'A' || receivedChars[index1 - 1] == 'a') { //detects

if 'a' command for valve1 is sent

 //commands are sent like <A1000> so it checks to see if the letter A

 //was sent then saves the number after this letter

 while (receivedChars[index1] != '\0' && isDigit(receivedChars[index1])) {

 //read while numbers are still incoming (not \0 end and not

42

 //another command like B1000 after A1000

 subChar[index2] = receivedChars[index1]; //command array stores current

location of serial input array

 index1++; //increment array index location to save the next character

 index2++;

 }

 Serial.print("'A' Command: "); //print once number ends (debugging only)

 Serial.println(subChar); // prints the timefor command to run

 mySerial.print("'A' Command: "); //debugging

 mySerial.println(subChar); //debugging

 index2 = 0; //resets index value to receive a new command

 digitalWrite(valve1, HIGH); //'A' command opens valve1

 analogWrite(pump, 100); //turn on pump at 100/255 speed

 delay(atoi(subChar)); //wait for command(ms) delay

 digitalWrite(valve1, LOW); //close valve

 digitalWrite(pump, LOW); //turns off pump

 memset(subChar, 0, sizeof subChar); //resets variable storing command so a

new value can be stored

 }

 //comments are the same for B and C commands so refer back to

corresponding line from above

 else if (receivedChars[index1 - 1] == 'B' || receivedChars[index1 - 1] == 'b') {

43

 while (receivedChars[index1] != '\0' && isDigit(receivedChars[index1])) {

 subChar[index2] = receivedChars[index1];

 index1++;

 index2++;

 }

 Serial.print("'B' Command: "); //print once number ends (debugging only)

 Serial.println(subChar);

 mySerial.print("'B' Command: "); //debugging

 mySerial.println(subChar); //debugging

 index2 = 0;

 digitalWrite(valve2, HIGH); //'B' command turns on valve2

 analogWrite(pump, 100); //turn on pump at 100/255 speed

 delay(atoi(subChar)); //wait by command(ms) delay

 digitalWrite(valve2, LOW); //close valve

 digitalWrite(pump, LOW); //turn off pump

 memset(subChar, 0, sizeof subChar); //reset command value

 }

 else if (receivedChars[index1 - 1] == 'C' || receivedChars[index1 - 1] == 'c') {

 while (receivedChars[index1] != '\0' && isDigit(receivedChars[index1])) {

 subChar[index2] = receivedChars[index1];

 index1++;

44

 index2++;

 }

 Serial.print("'C' Command: "); //print once number ends (debugging only)

 Serial.println(subChar);

 mySerial.print("'C' Command: "); //debugging

 mySerial.println(subChar); //debugging

 index2 = 0;

 analogWrite(pump, 100); //turn on pump at 100/255 speed, no valves turned on

 delay(atoi(subChar)); //wait by command(ms) delay

 digitalWrite(pump, LOW); //run pump for a little longer then turn off

 memset(subChar, 0, sizeof subChar); //reset command value

 }

 index1++;

 }

}

45

Appendix B.

Processing Code for Graphical User Interface

import processing.serial.*;

PFont f; //font object to set up text

Serial myPort;

int sequence = 0; //stores whether code is doing the sequence or not

String sequence_value = "";

Switch valve1; //objects to control each MOSFET device

Switch valve2;

Switch pump1;

Sequence sequence1;

boolean down = false;

boolean down1 = false;

long sequencePreStartTime = millis();

long sequencePostStartTime = millis();

void setup() {

 size(700, 350);

 f = createFont("Arial", 16); //sets up font details for GUI

 valve1 = new Switch(25, 170); //creates GUI object for valve1

 valve2 = new Switch(150, 170); //creates GUI object for valve2

46

 pump1 = new Switch(275, 170); //creates GUI object for pump

 sequence1 = new Sequence(400, 170);

 myPort = new Serial(this, Serial.list()[0], 115200); //initializes serial on correct

com port

 printArray(Serial.list()); //prints all connected serial devices

}

void draw() {

 background(255); //sets GUI background to white

 textFont(f); //// Sets text font to "f" created before

 fill(0); //makes text black

 text("A = valve1/pump, B = valve2/pump, " +

 "C = no valve/pump\n\n"+

 "Click up or down increment 1000ms and click value to send\n" +

 "Click \"Start\" to begin controlled sequence", 25, 40); //prints this text at

coordinates 25, 40 of GUI

 text("Liquid 1", 60, 165); //prints switch identifier above each control

 text("Liquid 2", 185, 165);

 text("Liquid 3", 310, 165);

 text("Sequence", 405, 165);

 text("ms", 108, 238);

 text("ms", 233, 238);

 text("ms", 359, 238);

47

 //text("\u03BCs", 484, 238);

 ///////////////////valve 1 controls/////////////////////

 if (valve1.onUp()) { //check if mouse is hovering over increment time box for

valve1

 valve1.display(150, 0, 255); //changes highlight over box selected

 if (down && sequence == 0) { //checks if mouse was pressed down

 valve1.updateValue(true); // "1" indicates increment time value

 down = false; //resets variable until mouse pressed down again

 }

 } else if (valve1.onDown()) { //check if mouse is hovering over decrement time

box for valve1

 valve1.display(0, 150, 255); //correctly highlights boxes based on where the

mouse is

 if (down && sequence == 0) { //check if mouse has been clicked

 valve1.updateValue(false); //"0" indicates decrement time value

 down = false; //reset down variable to only change once per click

 }

 } else if (valve1.onData()) { //A send data box

 valve1.display(0, 0, 205); //correctly highlights boxes based on where the

mouse is

 if (down && sequence == 0) { //check if mouse has been clicked

48

 valve1.sendData('a'); //sends data for valve1 through serial port to Arduino

 down = false; //reset down variable to only change once per click

 }

 } else {

 valve1.display(0, 0, 255); //correctly highlights boxes based on where the

mouse is

 //this is the default if mouse is not over any boxes

 }

 ////////////////valve 2 control////////////////////

 if (valve2.onUp()) {

 valve2.display(150, 0, 255);

 if (down && sequence == 0) {

 valve2.updateValue(true);

 down = false;

 }

 } else if (valve2.onDown()) {

 valve2.display(0, 150, 255);

 if (down && sequence == 0) {

 valve2.updateValue(false);

 down = false;

 }

49

 } else if (valve2.onData()) {

 valve2.display(0, 0, 205);

 if (down && sequence == 0) {

 valve2.sendData('b');

 down = false;

 }

 } else {

 valve2.display(0, 0, 255);

 }

 //////////////pump 1 controls//////////////////////

 if (pump1.onUp()) { //pump increment box

 pump1.display(150, 0, 255);

 if (down && sequence == 0) {

 pump1.updateValue(true);

 down = false;

 }

 } else if (pump1.onDown()) { //pump decrement box

 pump1.display(0, 150, 255);

 if (down && sequence == 0) {

 pump1.updateValue(false);

 down = false;

50

 }

 } else if (pump1.onData()) { //pump send data box

 pump1.display(0, 0, 205);

 if (down && sequence == 0) {

 pump1.sendData('c');

 down = false;

 }

 } else {

 pump1.display(0, 0, 255); //display default pump controls

 }

 //////////////sequence controls//////////////////////

 if (sequence1.onData()) { //pump send data box

 sequence1.display(0, 0, 205, sequence_value);

 if (sequence1.onData() && down && sequence == 0) {

 sequence = 1;

 sequencePreStartTime = millis();//saves time that first section of

 //sequence was started at

 down = false;

 sequence1.writeChannel("a", 1000);

 //sequence1.sendDataPre();//send commands for before manual pause

 } else if (sequence1.onData() && down && sequence == 2) {

51

 sequence = 3;

 sequence1.writeChannel("a", 10000);

 sequencePostStartTime = millis(); //saves time that second section of

 //sequence was started at

 down = false;

 //sequence1.sendDataPost();//send commands for after manual pause

 //sequence = 0;

 }

 } else {

 sequence1.display(0, 0, 255, sequence_value);//display default pump controls

 }

 if (sequence == 1 && millis() - sequencePreStartTime > 1000) {

 sequence = 2;

 }

 if (sequence == 5 && millis() - sequencePostStartTime > 20000) {

 sequence = 0;

 }

 else if (sequence == 4 && millis() - sequencePostStartTime > 15000) {

 sequence = 5;

 sequence1.writeChannel("a", 5000);

 }

52

 else if (sequence == 3 && millis() - sequencePostStartTime > 10000) {

 sequence = 4;

 sequence1.writeChannel("b", 5000);

 }

 if (sequence == 0) sequence_value = "Start";

 if (sequence == 1) sequence_value = "Filling liquid 1";

 if (sequence == 2) sequence_value = "Waiting for liquid 3 input";

 if (sequence == 3) sequence_value = "Filling liquid 1";

 if (sequence == 4) sequence_value = "Filling liquid 2";

 if (sequence == 5) sequence_value = "Filling liquid 1";

}

void mousePressed() { //this function automatically runs in Processing if mouse

has been pressed

 down = true; //if the mouse was pressed, we set "down" = true to update the time

value then set it back

 //to false until the mouse has been clicked again

}

void mouseClicked() { //unused currently

 down1 = true;

}

class Sequence { //sequence object so we don't have to change the properties of

valve1,valve2, and pump separately since

53

 //they function very similarly

 color c; //variables for contorlling the sequenced button

 int xpos;

 int ypos;

 int aDispense;

 int bDispense;

 int cDispense;

 int xwidth = 190;

 int ywidth = 40;

 String value = "Start";

 // The Constructor is defined with arguments.

 Sequence(int tempXpos, int tempYpos) { //this runs once when object is created

to set up the x,y coordinates on the GUI

 //this runs once when object is created to set up the x,y coordinates on the GUI

 xpos = tempXpos;

 ypos = tempYpos;

 }

 void display(color supColor, color downColor, color dataColor, String

sequence_value) { //displays buttons with correct colors based on mouse location

 //fill(upColor); //sets fill color of up button

 //rect(xpos, ypos, xwidth, ywidth); //draws up button

 //fill(downColor); //sets fill color of down button

54

 //rect(xpos, ypos+80, xwidth, ywidth); //draws down button

 //fill(255); //draws box that holds time value

 stroke(0);

 fill(dataColor);

 rect(xpos, ypos, xwidth, ywidth); //text box

 fill(0);

 text(sequence_value, xpos+2, ypos+26);

 fill(255);

 }

 boolean onData() {//checks to see if mouse is on time value button and changes

its color to highlight

 if ((mouseX > xpos && mouseX < xpos+xwidth)

 && (mouseY > ypos && mouseY < ypos+ywidth)) {

 return true;

 } else {

 return false;

 }

 }

 void writeChannel(String channel, int timeDelay) {

 String result = "";

 result = "<"+channel+timeDelay+">"; //"<...>" is protocol the Arduino expects so

it knows when a command starts and ends

55

 println(result);

 myPort.write(result); //writes the string after it has been properly encoded with

<>

 //delay(timeDelay);

 }

 void sendDataPre() {//sends commands for control before pause for manual

entry

 println("Filling clear water");

 writeChannel("a", 1000); //fill line with buffer

 //writeChannel("c", 1000); // fill with cytokine

 println("Waiting for manual injection");

 }

 void sendDataPost() {//sends commands for control after pause for manual entry

 println("Filling clear water");

 writeChannel("a", 10000); //use buffer to move cytokine to QCM

 println("Filling yellow water");

 writeChannel("b", 5000); // fill with urea

 println("Filling clear water");

 writeChannel("a", 5000); //fill line with buffer

 }

}

56

class Switch { //switch object so we don't have to change the properties of

valve1,valve2, and pump separately since

 //they function very similarly

 color c;

 int xpos;

 int ypos;

 int xwidth = 80;

 int ywidth = 40;

 int value = 0;

 // The Constructor is defined with arguments.

 Switch(int tempXpos, int tempYpos) { //this runs once when object is created to

set up the x,y coordinates on the GUI

 xpos = tempXpos;

 ypos = tempYpos;

 }

 void display(color upColor, color downColor, color dataColor) { //displays buttons

with correct colors based on mouse location

 fill(upColor); //sets fill color of up button

 rect(xpos, ypos, xwidth, ywidth); //draws up button

 fill(downColor); //sets fill color of down button

 rect(xpos, ypos+80, xwidth, ywidth); //draws down button

57

 fill(255); //draws box that holds time value

 stroke(0);

 fill(dataColor);

 rect(xpos, ypos+42, xwidth, ywidth); //text box

 fill(0);

 text(value, xpos+12, ypos+65);

 fill(255);

 text("UP", xpos+27, ypos+25);

 text("DOWN", xpos+14, ypos+2*ywidth+28);

 }

 void updateValue(boolean val) { // runs when increment or decrement buttons

are clicked to update value

 if (val == true) {

 value+=1000;

 } else if (val == false && value >=100) {

 value-=1000;

 }

 }

 boolean onUp() { //checks to see if mouse is on up button and changes its color

to highlight

 if ((mouseX > xpos && mouseX < xpos+xwidth)

 && (mouseY > ypos && mouseY < ypos+ywidth)) {

58

 return true;

 } else {

 return false;

 }

 }

 boolean onDown() {//checks to see if mouse is on down button and changes its

color to highlight

 if ((mouseX > xpos && mouseX < xpos+xwidth)

 && (mouseY > ypos+80 && mouseY < ypos+80+ywidth)) {

 return true;

 } else {

 return false;

 }

 }

 boolean onData() {//checks to see if mouse is on time value button and changes

its color to highlight

 if ((mouseX > xpos && mouseX < xpos+xwidth)

 && (mouseY > ypos+ywidth && mouseY < ypos+2*ywidth)) {

 return true;

 } else {

 return false;

 }

59

 }

 void sendData(char channel) { //sends the correct time value over the serial port

with an identifier character

 //so the Arduino knows which valves to activate

 String result = "<"+channel+value+">"; //"<...>" is protocol the Arduino expects

so it knows when a command starts and ends

 myPort.write(result); //writes the string after it has been properly encoded with

<>

 } }

