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Abstract 

The main theme of this research study is machine perception. We are particularly 

interested in developing a perceptual system for social robots. These robots are designed 

to communicate with humans the same way they interact with each other. We argue that 

in order to meet this stern criterion, it is sensible that such robots are capable of perceiving 

their environment in a similar fashion to humans. The thesis focusses on developing a 

framework for designing a human-oriented perceptual system for social robots. The 

research is intrinsically interdisciplinary and requires integration of ideas from psychology, 

psychophysics, and neuroscience about human perception with robotics engineering.  

First, the skeleton of the architecture is developed motivated by the understanding of the 

hierarchical structure of primate sensory cortex. The key sub-systems of the architecture 

and interrelationship among them are shaped by insights from biological, computational, 

and psychological understanding of human perception. In particular, the multi-modal 

sensory information processing in the sensory cortex, the spatial-temporal binding criteria, 

and limited human’s channel capacity of processing information. The system encapsulates 

the parallel distributed processing of real-world stimuli through several sensor modalities 

and encoding them into features vectors which in turn are processed via a number of 

dedicated processing units through hierarchical paths. The proposed perceptual system 

is context independent and can be applied to many on-going problems in social robotics. 

Next, a customized version of the system is developed to address the problem of person 

recognition in social settings. The system utilizes the information from visual and auditory 

modalities via a non-invasive methodology as opposed to reported person recognition 

systems that generally invasive. We adopt spiking neural network to integrate information 

form the available sensor modalities to provide a plausible and realistic computational 

model that facilitate a real-time response in various challenging scenarios of person 

recognition in social settings.  

In the last stage, a robust speaker recognition system has been designed in the light of 

the above framework. The system exploits prosodic feature to reduce the population size 

as well as integrates the advantages of multi-feature system and multi-classifiers system 

to overcome the challenges of speaker recognition in noisy environments and availability 

of only short utterances. 
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Chapter 1.  
 
Introduction 

1.1. Background and motivation 

On the amazing flexibility of the human perceptual system, Anne Treisman (1986) 

wrote “Just as reading is “externally guided thinking” (Neisser, 1967, p. 136), so perception 

may be a form of controlled hallucination” [1]. Thirty-two years on since that lucid 

encapsulation of the essence of the human perception process and at the time when we 

know a lot more about the mind and the intricate instrument of brain; our understanding of 

the human perceptual system is still opaque. Nonetheless, researchers in neuroscience, 

psychophysics, and psychology have suggested several plausible and some 

experimentally verifiable models of the human perception. The so-called “sense-data” 

model of the perception [2], also referred to as “naïve” perceptual system, is widely known. 

Antonio Damasio, the acclaimed neurobiologist, suggested a multi-modal theory of 

perception centered on the notion of “cell assemblies” and “convergence zone” [3].  

Whereas each sensory modality (sight, sound, smell, touch) has its own dedicated 

unimodal pathway (unimodal cortex), an excitation triggers simultaneously (or nearly 

simultaneously) a response in more than one sensory modality. For example, when we 

hear a voice, the superior colliculus area of the brain is responsible to process both 

auditory and visual stimuli (we turn around towards the direction that the sound comes 

from).  

Inspired by the extraordinary architecture of the human multimodal perceptual 

system and the curiosity to search for an answer to the challenging research question of 

“can a similar, although vastly simplified, architecture be designed for social robots?” were 

the motivation behind this research project. The rationale was if social robots were going 

to be employed in human social settings (homes, offices, hospitals, etc.), should they be 

equipped with a perceptual system that has a one-to-one correspondence (analogy) to 

our own perceptual system? Should they function within the human reaction time? Is the 

presence of all modalities required for the system to work (efficiently)? Is it possible to 

devise a context independent perceptual system that can be applied to different 

applications (person recognition, emotion recognition, etc.)? How the architecture of such 
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a system would look like? The attempt to answer the above research questions required 

delving into a complex interdisciplinary project – not a trivial task for an engineer with 

limited training outside the discipline!  

It is conceivable that towards the midst of this century and beyond, intelligent life-like 

androids and cyborg-type systems will share the environment with humans. These 

machines, hereafter referred to as social robots, will be complex and best fit within the 

systems of systems architecture. Social robots will likely be patterned after humans and 

are expected to function predominantly in an environment designed for humans. These 

robots are primitive versions of the future “humanized robots” i.e., the character Ava in Ex 

Machina. Not getting too much ahead of us, the basic versions are already available (Nao, 

Pepper, etc.) and are envisaged to being employed in diverse applications including but 

not limited to elderly and disabled caregiver and companion, health care, education, film 

and entertainment, and museum tour-guide to name a few [4]–[13]. Social robots may 

have the same core and native abilities such as navigation (SLAM, path planning, etc.), 

learning (AI) capabilities, and advanced sensors with their counterparts (service / field 

robots, driverless cars); however, they have additional attributes including recognition of 

human emotions as well as human-friendly and natural communication skills. Essentially, 

these robots belong to special class of intelligent and autonomous robots that are 

specifically designed to work with humans and in human social settings. Social robots are 

normally deployed in environments designed for humans and not specifically structured 

for robots. They are also expected to interact with humans in diverse social settings in a 

natural manner (the way humans interact among themselves), and are designed to be 

socially acceptable to humans in terms of their appearance and the way they communicate 

(with humans).  

The central motivation of this research project is to address the less studied 

problem of robotic perception as opposed to well-studied areas of robotics sensors, 

navigation, and affective computing. The abundance and variety of sensors and relevant 

technologies have inadvertently masked out the importance of the underlying perception 

system. Here we argue that sensors, important as they are, produce only data and not 

information. It is plausible then to suggest that research into developing perceptual 

systems should be given at least the same priority as focusing on data from sensor 

networks and subsequently attempting to disentangle its by-product as a new problem of 

“big data” analysis. Within this context, the seamless integration of social robots into 
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human social settings and their ultimate acceptance by humans will largely depend on 

how natural (in human sense) such robots behave. Research by Niculescu et al. in human-

robot interaction suggested that people considered the level of closeness to human-like 

response from a social robot a highly favorable attribute [14]. The authors argued that the 

real-time response at the level of human rate was more important than the accuracy and 

the correctness of the response itself. In related studies [15]–[17], authors point to the 

importance of human-oriented perception, reading and expressing social cues, and real-

time response at human interaction rates as important parameters that must be addressed 

by social robotic systems. These machines must be capable of sensing, perceiving, and 

interpreting the real-world environment similar or as close as possible to that of humans. 

Therefore, mimicking the way humans process stimuli, and synthesizing similar 

interpretations of those stimuli as of humans should be among the salient features of social 

robotic systems. 

In this thesis, we report an end-to-end perceptual system specifically designed for 

social robots as we argue that these robots require an underlying perceptual system rather 

than an ad-hoc interface of different sensors and computational methods to solve a 

specific problem like face recognition. The proposed architecture is a potential solution to 

the following questions: what are the most distinctive features of real-world environments 

that should be considered in the context of social robot’s objectives? what aspect of 

measures should be employed to address these features? and how does the perceptual 

system processes and interprets the data provided by the sensory system? The designed 

framework provides feasible answers to such questions. We present a modular parallel-

distributed processing system that is inspired from the way that human’s brain processes 

and perceives real-world environments.  

1.2. Research outline 

The research project was completed in four interrelated phases as shown Figure 

1.1. In the first phase, motivated by findings in neuroscience, psychology, and 

psychophysics, we propose  an architecture for a context independent  multi-modal 

perceptual system specifically designed for  social robots. We also include some  design 

guidelines to customize the system for specific applications. Moreover, the top-down 

influences and temporal binding with fading memory were incorporated in the design of 

the perceptual architecture as a means of reducing the search scope and integrating the 
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information from multisensory processing paths, respectively. In the second phase, a 

customized version of the perceptual system was developed and tested for the problem 

of person recognition in social settings. In this system, we considered diverse real-world 

scenarios of social human-robot interactions. We adopted the leaky integrate-and-fire 

neuron (LIF) model, which has an adjustable threshold value and can be modified to 

compromise between the reliability of the perception outcome and the time required to 

finalize the perception process, to integrate information from several sensor modalities. 

Extensive experimental studies were performed via applying real-world databases to 

evaluate the performance of the perceptual system in various scenarios of social human-

robot interactions. In the third phase, the design guidelines have been utilized to develop 

a sophisticated speaker recognition system by incorporating the concept of top-down 

influences and the integration of multi-feature and multi-classifier in an elegant 

architecture to address challenging scenarios such as speaker recognition in noisy 

environments and with only access to short utterances. In the last phase, the design of an 

in-house multi-modal social robotics platform to test and demonstrate the properties of the 

perceptual system was realized. Real-time implementation of the top-down influences and 

temporal-binding with fading memory were evaluated in an in-house designed multi-modal 

social robot platform.  
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Figure 1.1.  The design flow of this research project 

1.3. Organization of the thesis 

This thesis is comprised of four chapters organized as follows: 

Chapter 1 aims to set the scene along with background and motivation as well as 

providing a research road map for this research project.  

In chapter 2, a selective literature survey on pertinent theories and principles will 

be presented. Moreover, relevant studies on social human-robot interaction and school of 

thoughts on designing autonomous robot are included. The chapter establishes the link 

between the aforementioned research areas in order to highlight the characteristics of an 

efficient perceptual system designed for social robots.  

Chapter 3 provides a summary of the main contributions of the studies undertaken 

in this research project. A general-context multi-modal perceptual system for social robots 

a long with its key sub-systems and the interrelationship among them are discussed in 
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Sec.3.1. In Sec. 3.2, a solution to the problem of person recognition in social settings via 

a customized version of the proposed multi-modal perceptual system is also presented. 

In Sec. 3.3, the effect of incorporating top-down influences on the performance of the 

proposed multi-modal perceptual system is demonstrated in real-time implementation 

using an in-house designed social robotics platform. Finally, a speaker recognition system 

that developed in the light of the design guidelines for human-oriented perceptual system 

is introduced in Sec. 3.4.  

Chapter 4 concludes with the summery of achievement of this thesis along with 

suggestions for future work. 

1.4. Statement of originality 

The main contributions and developments made by the author of this PhD thesis 

are summarized in the following statements: 

• Designing a large-scale end-to-end social robotic perceptual architecture as a 
general-purpose multi-modal perceptual system for social robots. 

• Suggesting two approaches for integrating the outputs of multisensory 
processing paths via temporal binding with fading memory and on-fly fuzzy 
inference system. 

• Introducing top-down influences on multisensory information processing as a 
key to reduce the computational cost of the proposed architecture and to limit 
the search scope for stimulus candidate and hence facilitating social human-
robot interaction.  

•  Synthesizing the key findings in neuroscience, psychology, and psychophysics 
about human perceptual process as design guidelines for a general-purpose 
human-oriented perceptual system. 

• Realizing a social robotics platform that can be used as in various social human-
robot interaction scenarios. 

• Developing and implementing person recognition system for social robots 
inspired from the way that human identifies individuals during everyday life 
activities. This system uses the available biometric characteristics to identify an 
individual at the human interaction performance’s level and rate.  

• Developing and implementing speaker recognition system in consistence with 
the design guidelines that proposed for developing human-oriented perceptual 
system. 
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1.5. Publications 

At the time of writing this thesis, two journal papers have been published. Also, 

there is one paper that has been submitted to an international journal. The list of 

publications is as follows: 

1. M. K. Al-Qaderi and A. B. Rad, “A Brain-inspired Multi-modal 
Perceptual System for Social Robots: An Experimental Realization,” 
IEEE Access, vol. 6, pp. 35402–35424, 2018.  

2. M. Al-Qaderi and A. Rad, “A Multi-Modal Person Recognition System 
for Social Robots,” Appl. Sci., vol. 8, no. 3, p. 387, 2018. 

3. M. Al-Qaderi, E. S. Lahamer, and A. Rad, “A Two-stage Classifier 
Speaker Recognition System Based on Prosodic and Spectral 
Features via Fuzzy Inference Fusion,” Eurasip J. Audio, Speech, Music 
Process., (under review). 
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Chapter 2.  
Literature Review 

2.1. Introduction  

Humans socialize and communicate with each other via language and other 

senses. The idea of a similar form of human-robot interaction has been suggested in 

numerous science fictions; however, with the rapid advancement in AI and affective 

computing in the last two decades, the realization of “natural” human-robot interaction is 

feasible. Social robotics, a subclass of autonomous robotics, is an interdisciplinary 

research area focusing on developing robots that could interact with humans within their 

acceptable social, emotional, and cultural norms [18], [19]. The central characteristic of 

this area of robotics is the closeness of the robot’s artificial behaviour to the human’s 

interactions among themselves. A social robot could share many attributes with an 

autonomous robot including autonomous navigation, path planning, learning capabilities, 

computational power, and on-board sophisticated communication system [19], [20]. Its 

perceptual and affective systems along with a human-like silhouette   are, however, among 

its differences with an autonomous robot [21], [22]. We acknowledge, though, that some 

researchers do not think that a human-like form is a required feature of a social robot and 

put more emphasis on the interactive and affective competence.  Much of the recent 

literature on social robotics is focused on the so-called affective dimension – recognising 

human’s emotional states and reacting appropriately. In this thesis, we suggest that 

whereas such features are regarded as the precursor for social robots; a sophisticated 

perceptual architecture, upon which the robot functions and interacts with humans and the 

world, is a gap in the state-of-art and is worth of investigation. Among numerous 

challenges, however, are how to develop and design perceptual, cognitive, and emotional 

systems within a unified infrastructure? Researchers adopt an interdisciplinary approach 

that bridges robotics engineering with neuroscience, psychology, psychophysics, and 

social sciences to facilitate designing these intelligent systems. Figure 2.1 depicts the 

main active research themes that represent the core of social robotics. 

In this chapter, we attempt a succinct yet selective review of the relevant literature 

to this research project. Developing an efficient perceptual system for social robots is an 

extremely challenging undertaking due to its inherent complexities. It is an interdisciplinary 
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endeavour molding diverse engineering research fields (computer vision, speech 

processing, AI, and machine learning, etc.) with the amalgamation of latest know-how in 

neuroscience, psychology, and social sciences. As such, the main purpose of this chapter 

is to set the scene and present the scope of this research and to establish its relation to 

the state-of-art. Henceforth, the emphasis in this chapter is directed towards presenting a 

broad yet focused review of the key relevant studies, as specific literature will be cited in 

the respective chapters of the thesis.  

 

 

Figure 2.1  Thesis scope and its research area  
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The role of a perceptual system is central in many cognitive architectures as it is regarded 

the backbone upon which social robots acquire higher-level social intelligence skills. We 

will review the literature on plausibility of designing perceptual system for social robots in 

the light of understanding the perception process in human’s brain from neuroscience, 

psychology, and psychophysics perspective. 

The evolution of social robots can be traced back to the seminal studies in 

behaviouristic robotics published in the latter part of the last century. The pioneering 

research of Brook [23] and Arkin [24] led to the foundation of behavior robotics and in a 

parallel development, Allen Newell and John R. Anderson’s studies led to birth of cognitive 

architectures [25]. Primarily inspired by biological species; the former focuses on design 

of robots that predominantly behave in accordance with the sense-act strategy. Hence, 

such robots do not require an explicit model of the environment. On the contrary, the latter 

is inspired by humans and aims to mimic the human intellectual infrastructure via 

computational models perceived to be close to the operation of the human brain. 

The majority of robotics literature, however, is dominated by solutions for specific 

problems such as navigation, path planning, object recognition, etc., via probabilistic, 

model-based [26], [27], and soft computing methods [28]–[30]. Such skills are regarded 

as integral components of the social robots and mostly assumed already innate in the 

robot. However, robot navigation strategies in human social settings (human-aware robot 

navigation) requires additional skills such as respecting personal zone, respecting 

affordance space, and respecting etiquette for approaching people to name few [31], [32]. 

Designing and developing a human-aware navigation system is a crucial factor for the 

success of deploying social robots in household settings, offices, hospitals, etc. Most of 

the human-aware navigation architectures can be classified into the well-known robotics 

paradigm; reactive, deliberative, and hybrid architectures [33], [34]. Perception of the 

environment is a vital component in all these scenarios; particularly, human motion 

prediction which involves the capability of mental perception or what is known as theory 

of mind in psychology [35]. 
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2.2. The role of HRI in social robotics 

Human-Robot Interaction (HRI) is “a domain of study dedicated to understanding, 

designing, and evaluating robotic systems for use by or with humans " [36]. Hence, this 

field of study represents the heart of social robotics research area. Developing an efficient 

perceptual system plays a vital role in the success of a social robot in achieving its 

intended purpose in various social HRI scenarios [15], [37]. As social robots are expected 

to provide physical, mental, and/or social support to humans, the need for close spatial 

and temporal association between the two in all aspects of their interaction is important 

and is referred to as proximate interaction [36]. Similarly, in the context of peer-to-peer 

collaboration, the mixed-initiative interaction which often takes the form of dialogue 

interaction [38] is emphasized and is regarded as relevant research in social robotics as 

shown in Figure 2.2. In this type of human-robot interaction, the role of the robot is shifted 

from being an operator of something to imitate and/or act as a peer or mentor to a human. 

Thus, an essential element that leverages the performance of the social robots in 

achieving mixed-initiative interaction is the availability of an effective perceptual system 

capable of perceiving the state of the real-world environment and has the capacity to grasp 

the social and emotional cues (i.e. providing social situation assessment) in a natural and 

real-time fashion.  

 

Figure 2.2  Levels of autonomy in different scenario of human-robot interaction 

Dautenhahn [21] suggests the notion of a conceptual space of HRI and explains 

how various paradigms of social robots in literature are located within this space. The 



12 

conceptual space is represented as a triangle where three HRI approaches namely; robot-

centered HRI approach, human-centered approach, and robot cognition-centered 

approach represent the corner of the triangle and various social robots can be designed 

in accordance with the specific relationships among these approaches. Five social robot 

classes are defined and localized within this conceptual space of HRI including; socially 

evocative robots, socially situated robots, sociable robots, socially interactive robot, and 

socially intelligent robots as shown in figure 2.3. For example, socially intelligent robots, 

which are defined as robots that demonstrate aspects of human-style social intelligence, 

are designed based on deep model of human cognition and social competence [21] and 

are placed in the center of the triangle. These robots need to behave, communicate, 

interact, and look similar to humans as well as being equipped with explicit models of 

social cognition, interaction, and communication inspired by humans. Moreover, the way 

that humans perceive and respond to these robots is equally important, therefore, the 

three HRI approaches contribute to the development of socially intelligent robots. Even 

though significant progress in human-like appearance has been achieved, robots’ 

sensory-motor control, cognition, communication, and interaction skills are still limited 

compared with the human level. Hence, building a socially intelligent robot that looks and 

behaves like a human is an ultimate and somewhat remote goal. Kismet, one of the early 

social robots developed at Massachusetts Institute of Technology by Breazeal [39], is 

placed at the corner of the robot-centered approach. This robot is designed as a creature 

that employs its interactions with humans to fulfill some of its needs (internal needs such 

as motivations, drives, emotions and external needs such as social needs) in order to 

pursue its own goals [20]. Socially interactive robots are compatible with human-centered 

approach where the human perspective is emphasized by designing robots that can fulfill 

their intended roles in a way that are acceptable and comfortable to targeted users. ‘Users 

studies’ in HRI, which fits the human-centered approach, can be used to facilitate 

designing social interactive robots by providing rough design guidelines that limit the 

design space of a specific robot for a particular task. Nevertheless, the exhaustive 

approaches of using HRI ‘users studies’ is not feasible due to high-dimensional 

characteristic of the design space for these robots [40]. The aforementioned definitions of 

social robots share one essential feature, that is, the ability of the robots to communicate, 

interact, and behave in social and in a natural way. Hence, social robots need to be 

endowed with social-emotional and social-cognitive skills to manifest human-like 

communicative, interactive, and behaviour competences as highlighted in figure 2.1. 
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Figure 2.3  The conceptual space of HRI approaches. A, socially intelligent 

robots; B, sociable robots; C, socially interactive robots ; D, socially 
situated; E, socially evocative. 

2.3. The role of affective computing in social robotics 

 Social-emotional skills are the ability of robots to detect, recognize, and interpret 

a person’s affect, which is a combination of emotions, moods, attitudes, personality traits, 

in order to respond socially and predict person’s future action during social HRI. Social-

emotional skills include abilities that not only can identify a person’s affective state but 

also possess explicit emotional models to communicate with their own internal states. 

Affective computing research area provides algorithms and computational models that can 

be integrated in social robots to manifest social-emotional skills. These algorithms and 

computational models employ visual, auditory, tactile, and physiological signals to infer 

the human affect. Two leading models have been adopted to characterize the human 

affect: categorical model and continuous model [41]. In categorical model, the perception 



14 

of a person affective state is expressed as a multi-class classification problem where each 

class represents a finite number of affective states. The most common number of discrete 

affective states is six including; happiness, sadness, fear, disgust, surprise, and anger 

[42]. On contrast, continuous models define the affective state as a feature vector in multi-

dimensional space. In this model, a person affect is conceptualized by localizing it in multi-

dimensional space, such as valence and arousal [43], pleasure, arousal, and dominance 

[44], valence, arousal, and power [45]. Most of the continuous models are either two-

dimensional or three-dimensional. A comprehensive survey on the most common 

modalities, feature vectors, and classification methods that could be utilized to detect and 

recognize a person affective state in social HRI was presented in [46]. Most of the research 

works in affective computing adopt machine learning techniques such as support vector 

machine, Gaussian mixture model, hidden Markov model, artificial neural network, and k-

nearest neighborhood to perceive a person affective state. It is worth to highlight that 

recognizing a person affective state is needed to be integrated in cognitive architecture in 

order to demonstrate higher-level social-emotional skills. For example, a perceptual 

system for social robots is developed by Cominelli et al. [47], and it is integrated by the 

same research group as a key sub-system in a modular cognitive system referred to as 

the Social Emotional Artificial Intelligence (SEAI) [48]. Most of these perceptual systems 

adopted well-known machine learning algorithms and computational models that were 

developed originally as general-purpose or for other applications that do not fit the 

challenges and nature of social HRI. 

2.4. The role of cognitive architecture in social robotics 

The well-known cognitive architectures including ACT-R [25], CLARION [49], LIDA 

[50], ADAPT [51], and SOAR [52] have been suggested by cognitive and computer 

scientists to understand and replicate higher-level cognitive skills in human. Recently, a 

few number of cognitive architectures have been implemented on social robots [48], [53]–

[56]. Most of these cognitive architectures simulate higher-level human cognitive skills by 

forming the mental abilities including; perception, attention, emotion, memory, learning, 

concept formation, and reasoning as mental modules and describing the interrelationships 

and communication pathways between these modules. Kismet is one of the social robots 

that has also been equipped with a cognitive system. It is developed by Cynthia Breazeal 

and it is called “the robot’s synthetic nervous system” (SNS) [53]. The system is designed 
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as modules that dedicated to provide Kismet with the ability to exhibit animate features 

and to perceive social cues and human affect to allow the robot to be socially situated with 

people. Some cognitive architectures have also been developed based on the so-called 

Distributed Adaptive Control (DAC) theory and are implemented in various social robots 

including; iCub, Zeno [57], and Nao [58]. DAC theory suggests a neural architecture 

organized in two complementary structures (layers and columns) in order to replicate the 

modularity of the functions of brain areas and neural pathways for mimicking human 

cognitive skills. A modular cognitive architecture based on hybrid deliberative/reactive 

approach has also been reported as a Facial Automaton for Conveying Emotions(FACE) 

robot [55]. ACT-R/E is an embodied cognitive architecture that is adapted from the 

classical ACT-R architecture by adding one main condition on cognition. Cognition occurs 

within a physical body that perceives, interacts with, navigates in, and manipulates its 

environment [56]. In all of these cognitive architectures, the perception module is one of 

the main modules that is designed to fulfill the specific purpose for which these 

architectures have been conceived. 

2.5. Human perception 

 Perusal through the relevant literature of perception methods for social HRI, it is 

interesting to note that most available methodologies do not take into consideration the 

fact that humans interact among themselves and with the environment through efficient 

processing of available information from multisensory modalities, and the integration of 

this information over the normal perception time [59], [60]. For example, in the person 

identification problem, humans use various sensor modalities and different aspects of 

measures to facilitate their perception and respond to stimuli within the norm of their 

interaction rate [61]. Facial expressions recognition, people detection, recognition, and 

tracking, gaze tracking, face detection and recognition, gesture recognition and body 

language understanding, speech and speaker recognition, and natural language 

understanding are considered among the main difficulties to be addressed by the 

perceptual system of a social robot to be able to mimic human-like interaction for a 

successful social human-robot interaction. 

Research in social robotics is fundamentally interdisciplinary. Here, we advocate 

that the area can significantly benefit from the latest developments in neuroscience and 

psychology, computational cognition, and psychophysics. Social robots can interact with 
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humans and the environment in a similar fashion to human interaction if they are 

embedded with a perceptual system that perceives the real-world as closely as humans 

do. To design these robots with similar perceptual capabilities as humans, not only should 

they be equipped with an analogous sensory system as humans, they also ought to mimic 

a closely related architecture to human’s perception process [17]. Within the spirit of this 

principle, we are inspired by two interrelated systems in the human’s brain: (1) the 

microstructure circuit of the human nervous system and its computational functions which 

are used to design a set of Dedicated Processing Units (DPUs) superior in processing 

specific feature vectors and (2) the macrostructure of the primate sensory cortex in order 

to emulate the binding mechanism that is used to integrate the outputs of these DPUs and 

to finalize the outcome of the perception process. Marr’s Tri-level of analysis [62] 

(computational, algorithmic, and implementation levels) for information processing of 

vision system coincides with these two principles. On the one hand, the computational 

functions of the human nervous system reflect Marr’s computational level where efficient 

technical algorithms are adopted to realize relevant cognitive function, and the underlying 

biological mechanisms of cognition are ignored. On the other hand, adhering to 

microstructure circuit of the human nervous system and macrostructure of the primate 

sensory cortex are consistent with the Marr’s algorithmic level where the representations, 

mechanisms, and algorithms that need to implement the computation represent the core 

of this level of analysis. 

 Extensive review of the literature that provides plausible explanation of the human 

perception process and offers mechanisms for solving the binding problem was a crucial 

step in building the architecture reported in this thesis. Having said that, despite significant 

progress in understanding the human perceptual system, research in mind and perception 

process are still open and active research topics in many diverse fields including 

neuroscience, psychophysics, psychology, sociology, and cognitive science. The key 

findings from these research fields suggest possible models, architectures, and 

mechanisms of human perception process operation [3], [63]–[71]. These interpretations 

and mechanisms were used as basis of deriving the guidelines that have shaped the 

framework of a general-purpose human-oriented perceptual system.  

Visual perception is considered a crucial element in the human perceptual system 

and plays a vital role in achieving many tasks including but not limited to person 

identification, facial expression recognition, and object recognition to name a few [72]–
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[74]. The notion of hierarchical architecture of primate visual cortex has been established 

in the pioneering work of Hubel and Wiesel [62]. By studying the neural response to visual 

stimulus at different levels of hierarchical organization of a cat visual cortex (primary visual 

cortex V1 and extrastriate visual areas V2, V4, and IT), they found that most neurons in 

V1 responded strongly to bar-like stimuli at a particular orientation and position in the 

visual field. Also, they found that the so-called complex cells at higher level in the 

hierarchical architecture responded best to bar-like stimuli at a particular orientation 

regardless of their position in the visual field. Other studies discovered that neurons at 

higher level in the hierarchical organization of visual cortex responded strongly to complex 

shapes such as star-like shapes (IT area) [62] and faces at anterior inferotemporal cortex 

(AIT) area [62]. Although these studies found that neurons at higher levels are insensitive 

to some changes in the visual stimulus such as size, location, and contrast; other studies 

[75], [76] reported that the neurons at AIT area show view-dependent behaviours. The key 

finding of these studies inspired computer vision researchers to adhere to the main 

principle that the visual stimulus is processed via a feedforward hierarchical architecture 

whereas the complexity and invariance of the features that extracted form a visual stimulus 

are growing up going from early stage toward later stage in a hierarchical architecture. 

 One of the prominent models that was proposed by neuroscientists to explain and 

provide mechanism for the human perception process is the “convergence-zone”. In this 

model, the “convergence-zone” ensembles which are presumed to be located in the 

higher-order integrative cortical areas play a major role in integrating multiple aspects of 

the internal and external reality of perceiving and recalling experiences. In Damasio’s 

model [3] , a real-world entity, which has limited set of features such as color, texture, 

smell and taste, is encoded as a set of feature vectors. Each feature vector is composed 

of a number of elements that represent its associated characteristics. The central 

observation of Damasio’s model is that the real-world entities are perceived by a 

synergistic process that uses information extracted from various sensor modalities and 

integrate this information at a multi-level structure through a hierarchical manner. Each 

sensor modality provides one or more of the entity’s features and the hierarchical 

integration of this sensory information over time is the key factor that makes humans 

superior in perceiving and distinguishing the real-world objects in diverse settings and 

scenarios. For example, the vision modality provides features that characterize a real-

world object such as color, shape, and size. In the human perception process, all the 
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attributes, that belong to a certain object and available in sensor modalities, are encoded 

as a set of features vectors. These features vectors are fed to dedicated neural circuits to 

be processed. Then, the synergistic integration of the outputs of these dedicated neural 

networks, at different levels using different binding criteria, produces the final output of the 

perception process. The areas where the binding process is performed are called 

“convergence-zone” ensembles. The question raised by this model is how the 

“convergence-zone” ensembles binding the outputs of these neural networks to create a 

perception or experience about a certain object or event respectively. The Feature 

Integration Theory (FIT)  proposed by Terisman and Gelade, suggests a solution for the 

binding problem and attempts to answer this question [70] . FIT provides a mechanism for 

binding by location and shared features. In this theory, the spatial attention window 

provides access to the features in the associated location in various feature maps and 

facilitates the integration of information from these locations to a single object file for more 

analysis and identification. One of the key principles of FIT, which we have implemented 

in our model, is that objects features are “registered early, automatically, and in parallel 

across visual fields, while objects are identified separately” and at later stage in the 

perception process [70]. Another prominent solution of binding problem was formulated 

first by Milner, Grossberg , and von der Malsburg in [77][78], and [79] respectively, but 

Gray and Singer were the first who experimentally demonstrated the role of synchrony in 

the binding process [80]. They coined the term “Binding-by-synchrony” and suggested that 

the binding problem could be solved by the temporal synchrony of population of neurons. 

The neurons that encode the same object are distinguished from other neurons by 

synchronous firing. In other words, the matching frequency firing of population of neurons 

indicates that these neurons encode the same object, while other frequency firing highlight 

other objects. The proposed approach of developing human-oriented perceptual system 

employs the “convergence-zone” ensembles, FIT, and Binding-by-synchrony, in a 

synergistic fashion and in a complementary manner. The spatial window attention is used 

to register stimulus’s features in parallel by feeding the feature vectors that represent the 

attributes of the attended stimulus to parallel distributed processing units, while the 

temporal binding is used at various hierarchical stages in order to integrate the outputs of 

these parallel distributed processing units which in turn create a perception of an attended 

object or an event.  
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The findings form neuroscience and psychophysics suggest that the formation of 

cell assemblies is controlled by the following principles: (1) population of neurons in a 

specific cell assembly must have similar receptive field properties, (2) each cell assembly 

maps one feature or quality of the attended stimulus, and (3) population of neurons in 

same cell assembly fire in temporal synchrony with each other. The first property can be 

realized by connecting each sensor modality to a dedicated receptive field system which 

in turn generates a set of feature vectors representing a set of qualities of attended 

stimulus. Feeding each of these feature vectors to its Dedicated Processing Units (DPU) 

satisfies the second principle. It should be noted that the last two principles can be 

manifested as hardwired property in the architecture of the human-oriented perceptual 

system where sensory systems are connected to their corresponding receptive field 

systems. The third principle, which states that the population of neurons in the same cell 

assembly fire in temporal synchrony with each other, can be engineered by equipping the 

social robot with the state-of-art sensors that are designed to provide information about 

the attended stimuli on the basis of event-driven computation [81].  

Selection of the appropriate computational models of these DPUs is a key factor 

in accomplishing many tasks that social robots are proposed to achieve efficiently in social 

HRI perspective such as person identification, gesture recognition, facial expressions to 

name a few. The Marr’s three level of analysis provides a framework for selecting 

appropriate computational models of these DPUs, particularly the computational level of 

analysis advocates that the practical progress in machine learning, speech and speaker 

recognition, and computer vision to solve perceptual tasks should contribute to 

understanding perception by identifying which feature set, classifier model, and training 

algorithm seem to work for a particular perceptual task. 

In contrast to classical theories of sensory processing which consider the brain as 

a stimulus-driven mechanism, the current findings consider the human perception process 

as an active as well as a proactive process. Within this framework, the processing of 

stimuli is controlled by top-down influences that shape the outcome of the sensory 

processing by creating predication about the forthcoming sensory events and providing 

shortlisted candidates that used in searching of the pattern represent the attended 

stimulus. The effect of top-down influences is to alter or multiplex the function of neurons 

at the receptive field system according to the object or the task that is attended to [82]. In 

other words, the expectations, which are given as pre-knowledge or induced by the 
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outcome of processing the feature vectors in the fastest processing routes, generate top-

down influences by instructing receptive field system to create a set of appropriate feature 

vectors that are processed in hierarchical feedforward pathways in order to refine the 

attended object and complete the perceptual task at hand. This interpretation is supported 

by neuroscience and cognitive studies that consider perception as a constructive and 

active process [67][83]. They suggest that when human sensory systems such as vision, 

auditory, and tactile are excited by a real-world stimulus, the corresponding neural 

systems of these sensory systems produce mapping for the stimulus attributes that 

available in the modalities of these sensory systems. Since these patterns are mapped by 

population of neurons distributed across and within cortical hierarchy, the binding or 

perceptual grouping is accomplished by synchronization of neural firing among population 

of neurons that form the cell assembly or what we refer to it in our proposed model as 

dedicated processing units. Then, the integration of the outputs of these cell assemblies 

in parallel with the search for the best match of the attended pattern within the library of 

representations that stored in memory retrieves the full details of the attended stimulus. 

 

2.6. Biological plausible computational models of human 
perception 

Many researchers have adopted biologically inspired approaches to develop 

feature extraction methods, computational models, and architectures that employ data 

from sensory modalities in order to create a perception about an attended stimulus. Here, 

we present selective studies from computer vision and speech processing research 

domains that inspired by human sensory cortex, particularly, visual and auditory cortex. 

2.6.1. Visual Modality 

A huge part of research on computer vison has been inspired by the human visual 

process. Such systems are employed to develop perceptual systems for object 

recognition, visual segmentation, face recognition, gesture recognition, person 

recognition, and tracking, etc. Deep Convolutional Neural Networks (DCNN), which have 

demonstrated impressive results for object recognition using the ImageNet Large Scale 

Recognition Challenge dataset [84], are consistent with processing of information via 
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visual cortex in two essential features: the hierarchical structure and increasing of neurons 

selectivity at the size of their receptive fields over different layers. However, data 

representation and solely feedforward connections in DCNN (i.e. the absence of recurrent 

and top-down connections) are not biologically plausible with visual cortex. HMAX and 

enhanced HMAX models [85], which are invariant object recognition systems and inspired 

from primate visual cortex, share two features with the visual cortex: the hierarchical 

structure and the biological plausible way to achieve selectivity and invariance in the 

hierarchical layers. HMAX model and its enhanced version show relatively high 

performance on invariant single object recognition, multi-class categorization, and 

complex scene understanding tasks [86], [87]. All the aforementioned models adopt mean 

firing strength for neural encoding of information. Recently, more biological plausible 

systems, which employ spike timing for neural encoding of information as well as 

hierarchical architecture, have been developed to solve the problems of object and face 

recognition [81]. Spiking deep convolutional neural networks, which share hierarchical 

architecture with HMAX and DCNN, however, these neural networks utilize spiking neuron 

models and use special learning algorithms (e.g. spike timing dependent plasticity) are 

different from those employed in DCNN. Machine learning methods (support vector 

machine, Gaussian mixture model, artificial neural networks, and k-nearest neighbors, 

etc.,) that are used to perform the aforementioned perceptual tasks can be adopted at the 

functional level of the perceptual system and at the same time be compatible with the 

Marr’s computational level of analysis. These systems assume predominantly a 

feedforward configuration with no feedback in their hierarchical architecture. However, 

extensive research studies emphasize that perception is an active process that 

incorporates lateral and feedback connections as well as top-down influences as essential 

elements for visual processing such as attentional focus, context awareness, 

expectations, and perceptual tasks [88]. 

Most of the above systems with cortex-like architecture have demonstrated 

impressive results in classification and recognition tasks, recently, DCNN have 

demonstrated superior performance in single object recognition in the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) [89]. However, it has been reported [90] 

that the GoogLeNet, the wining architecture of object recognition in the ILSVRC 2014, 

performance degraded dramatically when it was evaluated on stimulus representing 

drawings of everyday objects [91], on silhouette versions of these drawings [91], or and 
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stimulus representing partially occluded shapes [90]. Moreover, recent studies 

demonstrated that CNNs learn class manifolds that are loose or not constrained in the 

same way as representations that developed by humans. For example, a yellow-and-

black-striped image is recognized with a high probability as a school bus [92]. Finally, 

these CNN models still demonstrate low performance with localizing task (i.e. determine 

the location of the detected object in an image) or detecting all object in an image 

(approximately 75% and 44%, respectively, on the ILSVRC 2014 challenge) [84]. One 

main shortcoming of the current DCNNs is that the spatial dependencies between image 

regions (i.e. spatial structure and configural information) is not considered in the learning 

process and are lost at the higher stages in the hierarchical architecture [93], [94]. Many 

research studies emphasize the crucial role of configural information in categorization and 

recognition task such as scene categorization and face recognition [95]–[98]. Recently, 

the ability of Recurrent Neural Network (RNN) to encode contextual information among 

sequential data has been exploited to account for configural information processing of 

intermediate features of DCNN [93]. However, the performance of hybrid architecture of 

RNN and CNN still is modest in indoor and outdoor scene categorization tasks [94]. Most 

of recognition systems that adopt these architectures employ only one modality such as 

visual modality (e.g. face recognition, object recognition, etc.), auditory modality (e.g. 

speech recognition, speaker recognition, etc.), or tactile modality. 

2.6.2. Auditory Modality 

Auditory modality plays a central role in human communications. Human utilizes 

voice characteristics including glottal and vocal tract response, syllable stress, intonation 

patterns, speaking rate and rhythm, and lexicon to perceive what is being said and who is 

speaking seamlessly. Speech and speaker recognition research communities have 

adopted approaches that employ various voice characteristics to answer the 

aforementioned questions. The way that a computer processes speech information is 

inherently different from the underlying biological computation in the human auditory 

system. The state-of-art of speech and speaker recognition approaches have utilized 

statistically-based computational model (Gaussian mixture model, support vector 

machine, hidden Markov model) to process the extracted feature vectors from speech 

data. However, the development of the most common feature extraction methods such as 

Mel-Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP) 



23 

coefficients, and Gammatone Frequency Cepstral Coefficients (GFCC), is inspired by the 

psychoacoustic and physiological results that revealed some insight about the underlying 

biological computation of human auditory system. The Mel scale, the Bark scale, and the 

ERB scale were adopted to design filter-banks that utilized in the feature extraction 

method of MFCC, PLP, and GFCC respectively. These scales were developed based on 

the results of clever psych-acoustical experiments ERB scale [99], Bark scale [100], and 

Mel scale [101]. The filter-banks designed by these scales are condensed at low frequency 

(below 1 kHz) and are lengthy-spaced at other frequency (above 1 KHz) which is 

consistent with physiological data of auditory processing. In addition, both MFCC and PLP 

feature extraction methods employ psycho-acoustically motivated amplitude compression 

method (the log scale for MFCC , and power-low compression For PLP ) [102]. 

Recently, research groups at the University of Toronto, Microsoft Research , Google, and 

IBM Research have successfully utilized DNNs for acoustic modeling and particularly for 

developing automatic speech and speaker recognition system [103]. These DNN models 

demonstrate better performance over the conventional GMM-HMM approach when tested 

on five different large-vocabulary continuous speech recognition [103]. The shortcoming 

of DNNs to encode the temporal dynamic of sequential data as in the case of speech 

signal , which is inherently dynamic, suggest integrating recurrent neural network, which 

is a dynamic system, with deep architecture to encode the temporal dynamic of speech 

data and consequently improves the performance of automatic speech recognition system 

[104], [105]. A sophisticated bioinspired model, which incorporates long-short-term 

memory cells in the RNN architecture to increase the capability of RNN to model complex 

temporal dynamics, has demonstrated reasonable performance in various speech 

processing tasks [106][107]. Incorporating long-short-term memory cells in the RNN not 

only provides more biologically plausible model, but also demonstrate better ability to 

solve difficult tasks involving recognition of temporally extended patterns in noisy input 

sequences which are previously unsolvable by traditional RNN [108]. 
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2.7. Conclusion Remarks 

In the light of the above discussion, one can tentatively conclude that most of the 

perceptual algorithms may not be appropriate for perception within the context of social 

HRI. One of the significant challenges of perception in social HRI is that the reliability and 

the availability of each sensory modality varies according to HRI scenario, environmental 

conditions, or the attended perceptual task. For example, the vision modality is more 

reliable that auditory modality in recognizing a person in a noisy cocktail party. The 

asynchronous nature of processing information from sensory modalities, which can be 

due to variation in the processing time and the availability of these sensory modalities 

within a finite time window, is not considered in many reported multi-modal recognition 

systems. However, the later parameter is very important in social HRI in order to facilitate 

the response of the social robot and to respond in real-time fashion even when one or 

more modality fail, and/or the desired reliability of the perception outcome is not satisfied. 

Finally, the lateral and feedback connections play crucial roles in manifesting top-down 

influences that represent very important aspect of perceptual and cognitive skill and 

should be incorporated in designing a perceptual system for social robot. We believe that 

the multimodal perception and asynchrony nature of processing information from sensory 

modalities as well as the importance of time dimensionality and top-down influences to 

facilitate social HRI are essential for developing perceptual system for social robots. This 

will likely fulfil some features of socially intelligent robots as more and more robots will 

enter the humans living environments including; homes, offices, and hospitals, etc. 
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Chapter 3.  
Summary of Contributions  

The main contributions of this Ph.D. research project are presented in three peer-

reviewed journal papers two of which have already been published and the third one is 

under review at the time of writing this thesis.  They are reproduced in Appendix A-C. In 

this chapter, a summary of contribution of each paper is reported. 

3.1. Architecture of a general-purpose human-inspired 
perceptual system for social robots 

The remarkable capacity of human to perceive its environment in diverse situations 

based on incomplete and at times vague information has been linked to an underlying 

sophisticated perceptual system. As social robots are expected to function predominantly 

in human environments and interact with humans; it is most likely and desirable that these 

robots not only need to be equipped with similar sensory system as humans; they also 

ought to mimic a closely related architecture to human’s perception process. The key 

contributions of this work [109] are as follows: 

• A novel perceptual system is reported as a large-scale end-to-end social robotic 
perceptual architecture along with design guidelines to facilitate applying the 
proposed architecture to many on-going problems in social robotics. The key 
sub-system of the perceptual system and interrelationship among them as well 
as a one-to-one analogy of these sub-systems to the biological system of 
human sensory cortex are introduced in section III (please refer to Figure 1 for 
overview of the system).  

• The research proposes an elegant way to reduce the error bias and variance 
by introducing built-in feature in the proposed architecture, that is, various kind 
of information are extracted from each sensor modality and are fed to their 
associated DPU for further processing (please refer to Figure 2 and section III-
A).  

• We also present a plausible mechanism for processing multi-modal sensory 
information by introducing top-down influences feature in the architecture as two 
kinds of connections (lateral and feedback connections) in order to reduce the 
computational cost of the perceptual system and facilitate real-time response in 
social HRI scenarios (please refer to Figure 3 & 4, section III-B, and section III-
C).  

• Two algorithmic realization of integrating information from multisensory streams 
via temporal-binding with fading memory are suggested in this work; temporal-
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binding with fading memory via liquid state machine and temporal-binding with 
fading memory via leaky integrate-and-fire neuron (please refer to Figure 5 & 6 
and section III-D). 

For complete and detailed information about the system, the reader is referred to 

Appendix A or [109] 

3.2. Multi-modal person recognition system for social robots 

Recognizing people in diverse social settings, an indispensable attribute that is 

often taken for granted, yet playing a central role in our social interactions. In the context 

of social robotics, it is very much desired that social robots, like humans, seamlessly 

identify familiar persons in their social circles without any intrusive biometric verification 

procedure. The main contributions of this work [110] can be summarized as follows: 

• In this work [110], a solution to the problem of person recognition in social 
settings via a customized version of the multi-modal perceptual system is 
presented (please refer to Figure 2 and section 3). The system incorporates 
multimodal biometrics features that are non-invasive, are not affected by 
changes in appearance (i.e., outfit change), and works within the range of 
human social interaction rate (human response time) to address the challenges 
associated with problem of person recognition in social settings. In particular, 
the system utilizes configural- and appearance-based information in vision 
modality as well as short-term spectral information in voice modality to 
recognize a person in various social human-robot interaction scenarios (please 
refer to section 3.2.1 and section 3.2.2).  

• As most reported multi-biometric person recognition algorithms require the 
presence of all modalities to finalize the person recognition task which make 
them not appropriate for social human-robot interactions. However, the 
proposed system relaxes this constraint by employing spiking neurons to 
integrate the information from various sensor modalities in order to overcome 
the challenge of asynchrony nature of processing information in social HRI 
scenarios (please refer to Figure 8 and section 3.4).  

• A hybrid multimodal database is formed by integration of the ubiquitous FERET, 
RGB-D, and TIDIGITS datasets for face recognition, person recognition, and 
speaker recognition, respectively (please refer to section 4.1).  

• This multimodal dataset is employed for testing the algorithm and assessing its 
merits against related methods. Within the context of the social robotics, the 
results suggest the superiority of the proposed method over other person 
recognition algorithms (please refer to section 4 and section 5). 

For complete and detailed information about these studies, the reader is referred 

to Appendix B or [110]. 
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3.3. Experimental realization of the proposed perceptual 
system and the effect of incorporating top-down 
influences on its performance 

A multi-modal human-oriented perceptual system is realized in an in-house 

designed social robotic platform to demonstrate the properties and to evaluate the 

performance of the proposed perceptual system on real-time social HRI scenarios [109], 

The highlights of this work are as follows: 

• A realization of social robotics platform is presented. The social robot is 
equipped with a RGB-D sensor (Kinect sensor), RGB camera (USB3 Flea3 
machine vision camera), and Directional microphone (Rode VideoMic Pro) to 
represent visual and auditory modality (please refer to Figure 9 and section IV-
A).  

• A customization of the perceptual system to solve the problem of person 
recognition in social settings is introduced. The system employs the information 
from robot’s visual modality (RGB-D sensor and RGB camera) and auditory 
modality (Directional microphone) to identify a person in divers social HRI 
scenarios (please refer to Figure 8 and section IV-B).  

• An experimental realization of top-down influences to reduce the computational 
cost and to improve the recognition accuracy of the proposed perceptual system 
in person identification task was also demonstrated (please refer to section IV-
B-2). Quick response (QR) codes were adopted as a sensible and 
straightforward solution to infer crucial information about the environment. The 
cues from QR supplies complementary features to simplify the person 
recognition task. QR codes were assigned with a string to identify the 
associated laboratory and the individuals who normally work therein (please 
refer to Figure 10). Once the QR codes are detected and decoded by the robot’s 
vision system, the social robot gets prior knowledge on the specific group of 
individuals expected to be in that area. Hence, limited number of spiking 
neurons are biased in order to reduce search space and to lessen 
computational burden. These spiking neurons receive additional inputs (i.e. the 
biometric features that provided by other sensory modalities and processed by 
their associated DPUs) and compete among each other to represent the best 
candidate of the attended subject (please refer to section IV-B-3).  

• The performance of the multi-modal social robot was evaluated in different 
scenarios whereby one or more modalities are not available (please refer to 
section IV-C and section IV-D). To demonstrate the impact of incorporating top-
down influences on the performance of the system, the system was evaluated 
in two cases; in the first case, the QR codes were not posted on doors (i.e. 
incorporating top-down influences), while in the second case, the QR codes 
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were posted on doors ((i.e. not incorporating top-down influences). The results 
show that incorporation QR codes as top-down influences improve the 
recognition rate and facilitate real-time response (please refer to Figures 15 & 
17). 

For complete and detailed information about this work, the reader is referred to 

Appendix A or [109]. 

 

3.4. A two-stage classifier speaker recognition system 
based on prosodic and spectral features via fuzzy 
inference fusion 

In the absence of a unique robust speaker identification system that demonstrates 

superior performance for applications where the system is expected to perform in 

challenging scenarios such as different types of environmental noise, at different levels of 

environmental noise (wide range of signal-to-noise ratio), and with only access to short 

utterances (at test time), the plausible contention is to integrate the advantages of using 

multi-feature speaker recognition system with multi-classifier speaker recognition system. 

The contributions of this work [111] are as follows:  

• A novel architecture for speaker recognition system was developed in the light 
of the design guidelines that proposed to develop perceptual system for social 
robots. Utilizing different kinds of information within auditory modality and 
processing them via specialized computational models are manifested in the 
proposed architecture as exploiting multi-feature system (prosodic and short-
term spectral features) and multi-classifier system (discriminative and 
generative models), respectively (please refer to Figure 1 and sections 3.1 & 
3.2).  

• The top-down influence feature of the perceptual system is employed as a 
means of adopting prosodic features to cluster the speaker population into two 
classes which in turn are used to build strong coupling between speaker-
dependent model and universal background model and to reduce the population 
size of speakers (please refer to Figure 1 and section 3).  

• The system employs on-fly fuzzy fusion system to combine the outputs of multi-
feature multi-classifier systems in order to improve the performance of the 
system in challenging scenarios such as noisy environments and at times when 
only short utterances are available (please refer to section 3.3).  

• The fuzzy inference system employs length of utterance and signal-to-noise 
ratio to compute the weights of the base classifiers relying upon IF-THEN rules 
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that set by expert (i.e. IF-THEN rules are constructed by studying the 
performance of the base classifiers at different combinations of the 
aforementioned challenging conditions).  

• Experimental evaluations based on TIDGITS database suggest that the 
proposed architecture is promising and can improve the recognition rate of the 
system in the aforementioned challenging conditions, particularly, where the 
signal-to-noise ratio is very low (very noisy environment) and the length of 
utterance is short (please refer to section 4). 

For complete and detailed information about this work, the reader is referred to 

Appendix C or [111]. 
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Chapter 4.  
Conclusions and Future Work 

4.1. Conclusions 

A school of thought among scientists and philosophers warns us of a future 

dystopia in which humans are ruled by intelligent and senseless robots. The majority of 

robotics research, nonetheless, does not subscribe to such a bleak insinuation and instead 

envisages a world where autonomous and intelligent robots are assimilated into the 

human world and are part of the solution to alleviate man-made problems. In that sense, 

the emerging area of social robotics is primarily concerned with humanizing the robots. 

There are two facets in this intricate process: (1) designing autonomous and intelligent 

robots; (2) making robots that look like or act like humans and display human-like 

emotions. The former is concerned with engineering robots that have learning, decision-

making capacities, and navigate seamlessly whereas the latter pursues the question of 

how human characteristics such as emotions and cognitions, seemingly not mechanical, 

can be simulated and embedded in mechanical machines. Together the two approaches 

are expected to evolve into design of robots that are able to pass the Turing Test [112]. 

There is abundance of research on autonomous and intelligent robots and impressive 

results are reported in both domains. The latter area, however, is gaining more attention 

particularly in the last decade. The inspirations and the benchmark for both, of course, are 

humans and bio-systems. In this context, we believe that neuroscience, psychophysics, 

computational cognition, and psychology contribute enormously as they have the key to 

above queries.   

Human-like perceptual system is a key sub-system that social robots need to be 

endowed with to acquire high-level social intelligence skills. This thesis contributes to the 

domain of social robotics with a novel design framework towards human-like perceptual 

system for social robots. In contras to the reported methodologies that address perception 

as solely a pattern recognition problem without taking into account the social implications 

of the perceptual tasks, the proposed approach emphasizes the social perspective of the 

perception and incorporates it in the design process. The research presented in this thesis 

investigates how an interdisciplinary approach, which synthesizes the findings from 

psychology, psychophysics, and neuroscience about human perception in a design 



31 

framework for developing human-oriented perceptual system, could offer elegant 

solutions to the main challenges of perception in social settings. The main contribution of 

the thesis includes but not limited to an end-to-end social robotics platform and a set of 

design guidelines and a general-purpose human-oriented social robotic perceptual 

architecture. The design guidelines and the architecture serve as platform to facilitate 

addressing many on-going perceptual tasks that needed to realize socially interactive 

robots. Additionally, this platform was adopted to address the problem of person 

recognition in social settings and the problem of speaker identification in noisy 

environment and with only access to short utterances at test time. 

The thesis began with proposing an architecture  for a general-purpose  perceptual 

system for social robots.  The design framework utilizes the macrostructure of the primate 

sensory cortex and the microstructure circuit of the human nervous system to realize a 

modest engineering replica analogous to multisensory information processing in human 

sensory cortex. The findings in neuroscience, psychology, and psychophysics about 

human perception process are incorporated in the design guidelines that shape the 

perceptual architecture for numerous perceptual tasks in the context of social HRI. 

Employing spiking neurons and top-down influences as hardwired properties in the 

proposed perceptual architecture offers some unique advantages for addressing the 

special challenges raised by the perception in social settings. The challenge of 

asynchronous nature of processing information in sensory modalities has been addressed 

by employing integration of information via spiking neurons that does not require the 

simultaneous presence of all considered cues of an attended stimulus and can facilitates 

a decision by any modality that is rich in information and first becomes available. Utilizing 

top-down influences to filter and condense the flood of data streams form sensory 

modalities as flexible representative map, which can be customized for the attended task 

by processing additional cues, facilities real-time response and reduce computational cost 

of the proposed system. 

 A customized version of the general-purpose perceptual architecture was 

configured to address the problem of person recognition in social settings. The system is 

multi-modal, non-invasive, and does not require that all input stimuli are simultaneously 

available. In addition, the proposed system has the ability to adapt to real-world scenarios 

of social HRI by adjusting the threshold value which compromises between the reliability 

of the perception outcome and the time required to finalize the perception process. 
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Extensive simulations and comparative studies to evaluate the performance of the 

proposed system on person recognition at different social HRI scenarios, suggest 

remarkable advantages over related methods for person recognition in social settings. 

The above design guidelines have also been utilized to develop a robust speaker 

identification system. Employing low-dimensional prosodics feature vector to cluster the 

population of speakers into two groups (male and female) is consistent with notion of top-

down influences. This feature reduces the population size and builds a strong coupling 

between speaker-dependent model and the UBM. Moreover, Integrating the advantages 

of using multi-feature (two types of short-term spectral features and prosodics features) 

speaker recognition system with multi-classifier (support vector machine, Gaussian 

mixture model) speaker recognition system in an elegant speaker identification 

architecture is consistent with the above design guidelines. The speaker recognition 

system has the following characteristics: 1) real-world stimulus is composed of a set of 

features that vary in their relative salience on the perception outcome and complement 

each other; 2) The set of features vectors that represents the attended stimulus are 

processed by DPU’s. These DPU’s have dedicated architectures, use different learning 

methods, and superior in extracting a specific type of information available in these feature 

vectors. The system demonstrates superior performance at different challenging 

conditions particularly at low signal-to-noise ratio (SNR) and short utterance. 

4.2. Future Work 

Due to the universality feature for the proposed perceptual system, there are 

several possibilities for further investigation and adaptation of the proposed perceptual 

system. Some of the paramount research directions that are noteworthy to investigate 

within the scope of this work are: 

• Utilizing the proposed framework for developing multi-modal human affect 
recognition system for social robots. The system may employ numerous 
modalities such as facial expressions, body language, voice, and physiological 
signals to infer person’s affective state in more accurate and robust way. 

• Utilizing the proposed framework for developing multi-modal place recognition 
system for social robots. The data stream from Laser-rangefinders, infrared 
thermal camera, and RGB camera can be utilized within the proposed 
architecture to develop robust place recognition system.  
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• Designing multi-modal object recognition system that utilizes the stream of data 
from tactile sensor, depth sensor, and RGB camera to extract discriminant 
features such as texture information, configural information, and appearance 
information. Then, Integration of this information within the proposed 
architecture generates a comprehensive map for the attended object and 
consequently robust object recognition system. 

• Deep convolutional neural network (DCNNs) have recently demonstrated 
excellent performance as a robust feature extractor for several perceptual tasks 
including scene categorization, object recognition, speech recognition [113], 
[114]. The ability of DCNNs to learn generic features that are transferrable to a 
variety of related tasks within the same modality, push in the direction of 
replacing appearance-based hand-crafted features with learned features that 
available at different intermediate levels of DCNN hierarchical architecture. 
However, the configural information is not encoded well in the current DCNNs. 
Hence, more research is needed to find a better method for configural-based 
generic features and integrate it within our proposed architecture.  

4.3. Epilogue 
 

At the onset of my research, I had so many questions and knew little outside 

engineering. I had to step out of my comfort zone, I struggled through the labyrinth of 

ideas, got lost here and there, and in the process, I leaned a bit about the inner working 

of the amazing human brain. Perception, of course, is only one part of the decision making. 

As such, designing a social robot that seamlessly communicates with human as we do 

among ourselves could be a mirage! I have a better understanding but have many open 

questions! The burning question, though, is: can a social robot perception system be as 

elaborate and flexible as humans to be described as a “controlled hallucination”? 
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Abstract: The paper presents a solution to the problem of person recognition by social robots via
a novel brain-inspired multi-modal perceptual system. The system employs spiking neural network
to integrate face, body features, and voice data to recognize a person in various social human-robot
interaction scenarios. We suggest that, by and large, most reported multi-biometric person recognition
algorithms require active participation by the subject and as such are not appropriate for social
human-robot interactions. However, the proposed algorithm relaxes this constraint. As there are no
public datasets for multimodal systems, we designed a hybrid dataset by integration of the ubiquitous
FERET, RGB-D, and TIDIGITS datasets for face recognition, person recognition, and speaker
recognition, respectively. The combined dataset facilitates association of facial features, body shape,
and speech signature for multimodal person recognition in social settings. This multimodal dataset is
employed for testing the algorithm. We assess the performance of the algorithm and discuss its merits
against related methods. Within the context of the social robotics, the results suggest the superiority
of the proposed method over other reported person recognition algorithms.

Keywords: social robots; person recognition; multimodal machine perception; spiking
neural network

1. Introduction

Recognizing people whom we have met before is, an indispensable attribute that is often taken
for granted, yet playing a central role in our social interactions. It is suggested that humans can
remember up to 10,000 faces (persons); though this is, an upper cognitive limit as, an average
person remembers far less faces—around 1000 to 2000 different faces (persons) [1]. Humans are also
remarkable in seamless and fast completion of various perceptual tasks, including object recognition,
animal recognition, and scene understanding, to name a few. Acclaimed neurologist and author,
the late Oliver Sacks, opined that the human brain is far less “prewired” than previously thought.
In his highly readable and masterfully written book, “the Mind’s Eye” [2], he talks about brain plasticity
and how all the senses collectively contribute to form a perception of the world around us: “Blind people
often say that using a cane enables them to “see” their surroundings, as touch, action, and sound are immediately
transformed into a “visual” picture. The cane acts as a sensory substitution or extension”. Within this setting,
we mostly recognize people from their faces, though other characteristics such as voice, body features,
height, and similar attributes often contribute to the recognition process.

In the context of the social robotics, it is very much desired that social robots, like
humans, effortlessly distinguish familiar persons in their social circles without any intrusive
biometric verification procedure. Consider how we recognize members of our family, co-workers,
and close friends. Their faces, voices, their body shape, and features, etc., are holistically involved in
the recognition process and the absence of one or more of these attributes usually do not influence
the outcome of the recognition. There has been a large body of research that employs one or more
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biometric parameters for person re-identification for applications such as surveillance, security, or
forensics systems. These features/parameters are derived from physiological and/or behavioral
characteristics of humans, such as fingerprint, palm-print, iris, hand vein, body, face, gait, voice,
signature, and keystrokes. Some of these features can be extracted non-invasively, such as face, gait,
voice, odor, or body shape. In a parallel development, there are significant and impressive research
studies that are focusing on face recognition which are generally non-invasive; however, it is important
to distinguish the problem of person recognition from the face recognition.

Motivated by the above and noting that the problem of person recognition in social settings
has not been investigated as widely as the related problems of person re-identification and face
recognition; we propose a non-invasive multi-modal person recognition system that is inspired by
the generic macrostructure of the human brain sensory cortex and is specifically designed for social
human-robot interactions.

The rest of the paper is organized as follows: in Section 2, we outline the current state-of-art in
multimodal person re-identification and face recognition systems. In Section 3, we present the detailed
architecture and implementation of the proposed perceptual system for person recognition application.
We will then include simulation studies and discuss the merits of the algorithm as opposed to other
related methodologies in Section 4. We conclude the paper in Section 5.

2. Related Studies

The main thrust of the paper is to address the problem of person recognition in social settings.
The problem presents new challenges that are absent in person re-identification scenarios such as
surveillance, security, or forensics systems. Among these challenges are how to cope with changes
in the general appearance of a subject due to attire change, extreme face and body poses, and/or
variation in lighting. These challenges are further compounded by the fact that a concurrent presence
of all biometric modalities is not always guaranteed. Moreover, the social robot is expected to
complete the recognition task relatively fast (within the range of human reaction time in social settings).
In addition, intrusive biometric verification procedure obviously is ruled out for social human-robot
interaction scenarios. Nevertheless, multimodal biometric systems that non-invasively extract
physiological and/or behavioral characteristics of humans, such as face, gait, voice, and body shape
features have been reported to solve the person re-identification problem in social settings [3–6].
In such applications, the problem is treated as, an association task where a subject is recognized across
camera views at different locations and times [7]. Due to the low resolution cameras and unstructured
environments, these systems employ features such as, color, texture, and shape in order to identify
individuals across a multi-camera network. However, these features are highly sensitive to variations
in the subjects’ appearance such as outfit or facial changes.

A person recognition system solely relying upon face recognition leads to erroneous detection if
facial or environmental features change—such as growing beard, or substantial occlusion, variation in
lighting, etc. There are also reported studies based on soft-biometric features that are non-invasive
and are not much affected if the subject appears in different clothing [8,9]. Though, these methods
rely upon a single biometric modality to extract specific auxiliary features. The performance of
such systems is dramatically deteriorated in the absence of that dominant modality. A significant
effort has been devoted to use face information as the main biometric modality in multimodal
biometric recognition [9–11]. Within these classifications, multimodal biometric person recognition
systems were proposed in [3,12]. These multimodal algorithms included a mixture of face, iris,
fingerprint, and palm-print features. However, most of these studies also require other biometric
features that cannot be extracted without the active cooperation of the subject, such as fingerprints,
iris, and palm-prints. Hence, the overall multimodal biometric systems developed in most research
studies fall within the invasive biometric system category. In contrast to the above methodologies, we
introduce a non-invasive algorithm that does not require the cooperation of the subject as a requirement
for its proper operation.
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Since gait can be extracted non-intrusively from a distance, it is considered as, an important
feature in developing person recognition systems. Gait is referred to as the particular manner in which
a person walks and it is classified among the non-invasive attributes [13]. Zhou et al. [4] proposed
a non-intrusive video-based person identification system based on integration of information from
side face and gait features. The features are extracted non-invasively and fused at either feature
level [4] or at the match score level [5]. In [3], the outputs of non-homogeneous classifiers, which
are developed based on acoustic features from voice and visual features from face, are fused at the
hybrid rank/measurement level to improve the identification rate of the system. Deep learning
algorithms have also been used to address the problem of face recognition and action recognition,
respectively [14,15]. Despite the fact that the above-mentioned studies are non-invasive multimodal
biometric identification systems, the fusion methods that are employed in these systems require the
concurrent presence of all biometric modalities for proper functioning, whereas the architecture that is
reported in this paper relaxes this condition.

BioID [16] is a commercial multimodal biometric authentication system that utilizes synergetic
computer algorithms to classify visual features (face and lip movements) and the vector quantifier to
classify audio features (voice). The outputs of these classifiers are combined through different criteria
to complete the recognition. In [8,17], facial information and a set of soft biometrics such as weight,
clothes, and color were used to develop a non-intrusive person identification system, whereby the
weight feature was estimated at a distance by the assessment of the anthropometric measurements
that were derived from the subject’s image captured by a standard resolution surveillance camera.
The overall performance of the system was affected by the detection rate of the facial soft biometrics.
In [13], the height, hair color, head, torso, and legs were used as complementary parameters along
with the gait information for recognizing people. In order to improve the recognition rate of the
system, the authors selected sets of these features along with gait information to be manually extracted
from a set of surveillance videos. An intelligent agent-based decision-making person identification
system was also reported in [18]. The system achieved a recognition rate of 97.67% when face, age,
and gender information were used and a recognition rate of 96.76% when fingerprint, gender, and age
modalities were provided to the system. A recent survey paper provides, an overview on using soft
biometric (e.g., gender) as complementary information to primary biometrics (e.g., face) in order to
enhance the performance of the person identification system [19]. Some researchers have applied
multimodal biometrics systems to address related problems, such as action recognition [20], speaker
identification [21], and face recognition [22].

The main shortcoming of these systems is that their different components require different time
scales for proper operation, which limits their functionality in reaching decisions as compared to the
human response time in different social contexts scenarios. For example, when the face is not detected
due to extreme pose, partial occlusion, or/and poor illumination; the biometric features extracted
from the face are not available and consequently the system fails to complete the recognition process.
In contrast to these methods, the proposed approach overcomes this constraint by adjusting the
threshold value of spiking neurons and exploiting available biometric features in order to compromise
between the reliability of the decision and the natural perceptual time of the attended task (Section 3
of the paper).

Most of the aforementioned studies have been developed and discussed from a surveillance and
security perspectives rather than the social human-robot interaction. Also, these person identification
systems have been developed relying upon the combination of at least one dominant modality
and a host of auxiliary biometrics or a mixture of invasive and non-invasive biometrics. Small
number of research studies has tackled the problem of person recognition and face recognition in
the context of cognitive developmental robotics [23,24]. We would like to emphasize that we present
a person recognition algorithm incorporating multimodal biometrics features that is non-intrusive,
is not affected by changes in appearance (i.e., outfit change), and works within the range of human
social interaction rate (human response time). Moreover, all of the studies that were reported in
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multimodal biometric systems assume simultaneous presence of all the considered biometric features.
This assumption is, however, relaxed in the proposed algorithm.

3. Architecture of the Person Recognition System

In this section, we present the architecture of the multi-modal person recognition algorithm
in social settings. Figure 1 depicts the proposed system (Figure 1a) next to the architecture of the
human/primate sensory cortex. Figure 1b shows a simplified architecture of the biological process
as is widely accepted in neuroscience and psychophysics literature [25,26]. The architecture of the
human sensory cortex is complex; it is thus naïve to claim, an exact reconstruction. Within this
pretext, Figure 1a shows our interpretation, which is a much simpler functional “engineered replica”
with a one-to-one correspondence to the biological system. In particular, although the pathways for
each modality in the human sensory cortex are parallel; there are strong couplings between these
pathways particularly after the primary receptive fields. In addition, the human sensory cortex
is directly involved in motivation, memory, and emotions. In the proposed architecture, we have
neither included the coupling effects of modalities nor have we considered emotions and memory.
However, we have strictly adhered to the spirit of the multimodal parallel pathways. As depicted in
Figure 1b„ an attended stimulus undergoes modality-specific processing (unimodal association cortex)
before it converges at the higher level of the sensory cortex (multimodal association cortex) to form
a perception [25–29].

Figure 1. The proposed framework of brain-inspired multimodal perceptual system for social robots.

An attended stimulus to each of the visual, auditory, and somatosensory (touch, pressure,
pain, etc.) systems undergoes a preprocessing and a feature extraction module, i.e., V1 and V2 in visual,
A1 and A2 in auditory, and S1 and S2 in somatosensory pathways. When excited by a real-world
stimulus, the corresponding neural systems of the human sensory system (vision, auditory, and tactile)
map the stimulus’s attributes to available modalities. A similar structure is employed in the proposed
system as elaborated in Figure 2 whereby each sensor modality and even different types of information
within a sensor modality are processed in parallel and through independent processing pathways at
the early stages of the perception process (feature extraction modules and dedicated processing units).
The outputs of these independent pathways (intermediate outputs) converge at the higher level
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(temporal binding) to form the final outcome of the perception process. Also, in the biological system,
an attended stimulus is mapped by population of neurons distributed across and within the cortical
hierarchy, the binding or perceptual grouping is accomplished by synchronization of neural firings
among population of neurons that form the cell assembly [26]. Then, the integration of the outputs
of these cell assemblies in parallel with the search for the best match of the attended pattern, within
the library of representations stored in memory, and perceive the attended stimulus. The findings
from neuroscience and psychophysics suggest that the formation of cell assemblies is controlled by
the following principles: (1) population of neurons in a specific cell assembly must have similar
receptive field properties, (2) each cell assembly maps one feature or quality of the attended stimulus,
and (3) population of neurons in the same cell assembly fire in temporal synchrony with each other.

We have incorporated these principles in the proposed architecture, as shown in Figure 1a and
further elaborated in Figure 2. The first principle is depicted by connecting each sensory modality to
a dedicated pre-processing and feature extraction module (corresponding to primary and secondary
sensory cortex), which in turn generates a set of feature vectors representing different attributes of the
attended stimulus. Feeding each of these feature vectors to its corresponding Dedicated Processing
Unit (DPU) satisfies the second principle. Each feature vector is then processed by its respective DPU,
which in turn, contributes to the production of the Intermediate Outputs (IOs). In the rest of this paper,
we refer to the outputs generated by each DPU as simply IOs. The variation in the processing time
that is required to generate the IOs and the availability of biometric modalities in the sensory system
streams are handled by the binding modules. Psychophysics and psychological research studies
suggest that the face recognition process uses two type of information: configural information and
featural information, which are available at low and high spatial frequency, respectively. The former is
used in early stage of recognition process and requires less processing time whereas the latter is used
to refine and rectify the recognition process at the later stage and requires more processing time [30,31].
IOs will be transformed into temporal spikes in order to be processed by the temporal binding system.
At the last stage, the output of the temporal binding module is compared with, an adaptive threshold
setting to either complete the perception process or to wait for more information from other sensor
modalities. This adaptive threshold is controlled by two factors: the desired reliability of the final
outcome and how fast a decision is required. In some scenarios, a fast response is more important than,
an accurate response; thus, the threshold will be reduced to accommodate such scenarios. For example,
in the context of social robots, the natural (in the human sense) and relatively fast response is more
desirable than, an accurate but slow response [32]. In some situations, when, an urgent decision
is required, humans process a real-world stimulus by exploiting the most discriminant feature [33].
In such cases, a fast processing route is selected as the outcome at final convergence zone even the
threshold value is not satisfied. However, in other situations when accurate response is more important
than fast response, humans may take longer time and look for other cues to perceive reliably and
accurately. The proposed framework accommodates both conditions by incorporating, an adaptive
threshold. The proposed architecture is customized to address the person recognition problem in
social contexts, as shown in Figure 2. However, the same architecture may be adapted to solve other
perceptual tasks that are vital in social robotics, including but not limited to, object recognition, scene
understanding, or affective computing.
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Figure 2. Sophistication of the proposed framework for person recognition task in social settings. DPU: Dedicated Processing Unit; KNN: K-Nearest Neighbors; GMM:
Gaussian Mixture Models.
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For the specific problem of person recognition, the architecture employs auditory as well as vision
modalities. Though, the framework readily allows for the integration of additional modalities (tactile,
olfaction) for other applications. As shown in Figure 2, when the sensory system (vision, auditory)
is excited by a real-world stimulus, the corresponding receptive field system generate a map for
the available stimulus’s attributes in a parallel manner. We refer to this stage in the architecture
as pre-processing and feature extraction modules. It is well documented in psychophysics and
neuroscience research where not only the processing of different sensor modalities is performed by
independent routes of processing, but also different kinds of information within the same modality are
processed by independent processing paths [26,34,35].

The capability of the perceptual system to finalize the perceptual task (person recognition in
this study) in the absence of concurrent availability of all sensor modalities is utilized by using the
spiking neurons in the binding modules (Section 3.4). For example, if the subject’s face is not available,
then the binding module may use other available cues, such as body features, speech features, or both
of them in order to finalize the recognition process within a reasonable response time (within the norm
of the human response/reaction time). As depicted in Figure 2, a compromise between the reliability
of the outcome and the requirement of quick response (in the order of human natural reaction) is
achieved by, an adaptive threshold (more on that in Section 3.4). We describe each module in more
details in the rest of this section.

3.1. Front-End Sensors and Preprocessing

In order to address the person recognition problem, the visual and auditory pathways
are employed. An RGB camera and a three-dimensional (3D) depth sensor (i.e., Kinect sensor) may be
applied to capture the image and the corresponding depth information (vision modality/pathway),
and a microphone could be employed to process the voice of a subject (auditory modality/pathway).
The Kinect sensor as a 3D multi-stream sensor captures a stream of colored pixels; depth information
associated with these colored pixels, and positioned sound. The data streams from the RGB camera,
3D depth sensor, and the microphone are processed via standard signal and image preprocessing
(filtering and noise removal, thresholding, segmentation, etc.) to be prepared for the feature extraction
module (Figure 2). In this study, however, such preprocessing is not required as we extract the input
data from three databases that already provide preprocessed data.

3.2. Feature Extraction

In this section, we introduce the feature extraction stage, which is analogous to the primary and
secondary sensory cortex in the human brain. The input of this module is the preprocessed data stream
from the vision and auditory modules and its outputs are distinct feature vectors that will be processed
by the respective classifiers as computational models for the DPUs (Figure 2).

The target application of the proposed person recognition system is social robotics. One of the
most important and desirable attributes of the social robots is the ability to recognize individuals in
various settings and scenarios, including challenging scenarios whereby one or more sensor modalities
are temporary not available such as in vision system whereby lighting is inadvertently changed,
or subjects change their outfits. Many reported methodologies have difficulties in coping with such
unstructured settings.

In order to configure the perceptual system to person recognition tasks, three types of features,
which are available in the data streams of auditory and vision system, need to be extracted.
These features are categorized in three groups: the first group is based on spatial relationship, referred
to as configural features; the second group is the appearance-based feature, which relies upon texture
information; and the third group of feature is a voice-based feature which relies upon short-term
spectral feature.
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3.2.1. Vision-Based Feature Vectors

The vision-based feature vectors consist of two groups of feature vectors: The configural features
group and the appearance-based feature group. Most of the feature vectors in the configural features
are available early in the recognition process due to their relatively less computational requirements.
On the other hand, the extraction of the appearance-based feature group is computationally expensive
and is available later in the recognition process. This is also compatible with psychology and
neuroscience findings that spatial information is processed early in the perception process and provides
a coarse categorization scheme for, an attended stimulus.

The Configural Features Group

The group consists of four feature vectors. The first feature vector is represented by the ratios of
the Euclidian distances among the geometric position of a set of fiducial points on a face. These fiducial
facial points are detected by “OpenFace”;, an open source software for facial landmark detector [36].
The second feature vector is based on a cross ratio of the projection lines that are initiated from the
corners of the polygon constructed from a set of predefined fiducial points on a face image. The third
feature vector is constructed by computing the Euclidian distance among a set of selected skeleton
joint positions. The fourth feature vector in this group is the surface-based feature, which is generated
by computing the geodesic distances between the projections of selected pairs of skeleton joints on the
point cloud that represent, an individual’s body. It is worth mentioning that these feature vectors are
purposely selected as they are easy to calculate and available early in perception process. The main
purpose for these feature vectors are to limit the search scope and provide shortlisted candidates for
the attended subject by biasing the top-ranked spiking neurons (see Section 3.4 for more details).

The first feature vector in the configural group consists of eight facial feature ratios, as shown in
the Appendix A (Table A1). Despite the simplicity of this geometric descriptor, it can be shown that
they generate comparable performance in face clustering with respect to other feature vectors that
describe face appearance such as EigenFace and Histogram of Oriented Gradients [37].

The second feature vector was constructed by employing the cross ratio theorem, which is a widely
applied object and shape recognition algorithm in computer vision [38]. The cross ratio value stays
invariant under geometric projection operations such as translation, rotation, and scaling changes [39].
The cross ratio of four collinear points A, B, C, and D in a line L, as shown in Figure 3, is given by:

CRL(A, B, C, D) =
|AC|·|BD|
|BC|·|AD|

 

Figure 3. The cross ratio relationship of two viewpoints.
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The same cross ratio, CRL, can also be expressed as ratio of the projection lines XA, XB,
XC, and XD. By using the fact that the XAB triangle area can be calculated using the formulas:
1
2 ∗ h ∗ AB = 1

2 ∗ XA ∗ XB ∗ sinθ1 and some algebraic manipulation, the cross ratio from point X, can be
expressed as a function of the line segments as in (1) or as a function of projection angles as in (2), where h
is the distance between the focus and the line AB, as depicted in Figure 3.

CRX(A, B, C, D) =
|AC|·|BD|
|BC|·|AD| (1)

CRX(θ1, θ2, θ2) =
sin (θ1 + θ2)·sin (θ2 + θ3)

sinθ2·sin (θ1 + θ2 + θ2)
(2)

Since the cross ratio value is independent of changes in the viewpoint, the cross ratio of the same
four collinear points A, B, C, and D in a line L from point Y can be expressed in the same way as point
X as in (3) and (4).

CRY(A, B, C, D) =
|AC|·|BD|
|BC|·|AD| (3)

CRY(θ′1, θ′2, θ′3) = sin (θ′1 + θ′2)·sin (θ′2 + θ′3)
sinθ′2·sin (θ′1 + θ′2 + θ′3) (4)

hence, CRX(θ1, θ2, θ3) = CRY(θ′1, θ′2, θ′3). The reader may refer to [39] for detailed proof. Where X
and Y are two different viewpoints, {θ1, θ2, θ3}, {θ′1, θ′2, θ′3} represent the projection angles from point
X and Y respectively as shown in Figure 3.

The same principle is applied to measure the similarity of polygons that are constructed by
selecting five points from the pre-defined fiducial points on a face image, as shown in Figure 4b.
One fiducial point is used as the basis point and the other four must be non-collinear fiducial points to
represent the polygon. The cross ratio of this polygon is regarded as the basis of similarity measure
that is not affected by translation, scaling, rotation, and illumination. More details about the cross ratio
for face recognition can be found in [39]. The set of five cross ratios is calculated by switching the basis
point to one of the polygon’s corners, and the cross ratio values are obtained using (1) to (4).

Figure 4. (a) Selected fiducial points on image from the FERET database which are used to construct
the configural feature vector, (b) The cross ratio projection based on a polygon constructed from five
fiducial points on face image from the FERET database.

The third feature vector in this group is the skeleton-based feature. The combination of the
distances between the selected skeleton joints, shown in Figure 5a, are used to generate this feature
vector, as described in Table A2 and depicted in Figure 5b (The reader may refer to Appendix B for
further details).
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Figure 5. Selected skeleton joints, geodesic and Euclidean distance among them; (a) Projection of
skeleton joints on the three-dimensional body point cloud, (b) Euclidian distance of selected skeleton
segments, and (c) Sample of geodesic paths used in constructing surface-based feature vector.

The surface-based feature vector is the last vector in the configural features group. This feature
vector is computed using the combination of geodesic distances among the projection of selected
skeleton joints on the three-dimensional body point cloud. First, the selected pairs of the skeleton
joints, which do not usually lie on the point cloud, are projected on the associated closest point on the
three-dimensional body mesh, which is generated from the point cloud. The pair of the projection
points is used to initiate the fast-marching algorithm that provides a good approximation of the shortest
geodesic path between two points on the surface. The fast-marching algorithm uses a gradient descent
of the distance function to extract a good approximation of the shortest path (geodesic), as given by the
Dijkstra algorithm [40]. Figure 5c depicts, an example of geodesic distances used in constructing the
surface-based feature vector. The selected geodesic distances that used to construct the surface-based
feature vector are described in Table A3 (Appendix B).

The Appearance-Based Feature Group

The appearance-based feature consists of a set of multi-scale and multi-orientation Gabor filter
coefficients extracted from the face image at fiducial points. The authors are aware of the availability
of stronger descriptors like Scale-Invariant Feature Transform (SIFT) [41] and Speeded-Up Robust
Features (SURF) [42], both of which can be used to generate feature vectors with high discrimination
power. However, our intention is to process configural information early in the computation through,
an independent processing path in order to limit the number of candidates of, an attended stimulus that
can be refined further by the information available in the appearance-based feature. This interpretation
is also compatible with the findings in neuroscience [34] and psychology [30] on human object and
face recognition, suggesting that spatial information is used in early stages of the recognition.

The regional facial appearance patterns are normally extracted by the Gabor filter as a set of
multi-scale and multi-orientation coefficients that represent the appearance-based feature vector.
The Gabor filter may be applied to the whole face or to specific points on the face [43,44]. Extraction of
Gabor filter coefficients is computationally expensive due to convolution integral operation; therefore,
in order to speed up the computation, the Gabor filter coefficients are only computed at the fiducial
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points shown in Figure 4a. The two-dimensional (2D) Gabor filter centered at (0, 0) in the spatial
domain can be expressed as in (5):

G(x, y, ξx, ξy, σx, σy, θ) =
1√

π σxσy
e−

1
2

[
(

R1

σx
)

2
+ (

R2

σy
)

2
]

ej(ξx x+ξy y) (5)

where R1 = x cosθ + y sinθ and R2 = −x sinθ + y cosθ, ξx and ξy are spatial frequencies,
σx and σy are the standard deviation of, an elliptical Gaussian along the x and y axes, and θ

represents the orientation. The Gabor filters have a plausible biological model to resemble the
primary visual cortex. Physiological studies suggest that cells in the primary visual cortex usually
have, an elliptical Gaussian envelope with, an aspect ratio of 1.5–2.0; thus, one can infer the
following relation [45]:

ξx = ω cos θ, ξy = ω sin θ

Daugman [46] suggests that simple and complex cells in the primary visual cortex have plane
waves propagating direction along the short axis of the elliptical Gaussian envelope. By defining the
aspect ratio r = σy/σx and assuming that the minimum value of aspect ratio is 1, the Gabor filter
has, an elliptical Gaussian envelope and the plane wave’s propagating direction along the x − axis,
which is the shortest in case of r > 1, can be expressed as (6):

G(x, y, ω, σ, r, θ) =
1√

π r σ
e−

1
2

[(
R1

σ

)2
+

(
R2

rσ

)2
]

ej(ω R1) (6)

where σ = σy and r = σy/σx. Given, an input image I, the response image of the Gabor filter can
be computed using the convolution operation defined as in (7). We convolve the image I with every
Gabor filter kernel in the Gabor filter banks centered at the pixels specified by the fiducial points.

z = ∑
x

∑
y

I(x, y)G(x′ − x, y′ − y, ω, σ, r, θ) (7)

where G(x′ − x, y′ − y, ω, σ, r, θ) is Gabor filter kernel centered at (x′, y′). I(x, y) is the intensity
value of the image I at (x, y) location. The performance of the Gabor filter response in face
recognition and classification tasks is highly affected by the parameters that are used in construction
of the Gabor Kernel bank [44]. One of the well-known Gabor filter banks that is widely
used in many computer vision applications especially object and face recognition tasks is the
“classical bank”. The “classical bank” is characterized by eight orientations and five frequencies
with fmax=0.25 pixel−1, fratio =

√
2, σ = σx = σy =

√
2, and φ = 0 radians. Many previous studies have

been devoted to addressing the problem of finding the Gabor filter parameters, which have optimum
performance on the recognition tasks [43,47–49]. In this study, we adopted the Gabor filter parameters
suggested by [44]. The author of that paper claims that the following parameterization of Gabor
filter extracts the most discriminant information for recognition tasks. The suggested parameters
are: eight orientations, six frequencies (instead of 5) with narrower Gaussian width (σx = σy = 1
instead of

√
2 that is used in classical setting). The rest of the parameters were set the same as

in the “classical bank” setting. The Gabor filter bank responses given in (7) consist of real and
imaginary parts that can be represented as magnitudes and phases components. Since the magnitudes
vary slowly with the position of fiducial points on the face, where the phases are very sensitive to
them, we used only the magnitudes of the Gabor filter responses to generate the appearance-based
feature vector. Hence, we have 48 Gabor coefficients for each fiducial point on the face. The selected
set of Gabor filter kernels and responses are depicted in Figure 6; for demonstration, we selected
one scale {1}, two orientations { π

8 , 5π
8 }, and three frequencies { 0.25

(
√

2)
5 , 0.25

(
√

2)
3 , 0.25√

2
} to create Figure 6a,b.

Figure 6a shows the magnitude of Gabor filtered kernels that were used to compute these coefficients
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at the fiducial points. Figure 6b depicts the magnitude of Gabor filter responses on a sample image
from the FERET database (FERET database will be further discussed in Section 4).

Figure 6. (a) Magnitude of Gabor filtered kernels at one scale {1}, two orientations { π
8 , 5π

8 }, and three
frequencies { 0.25

(
√

2)
5 , 0.25

(
√

2)
3 , 0.25√

2
}. (b) magnitude of Gabor filter responses on a sample image from the

FERET database at one scale {1}, two orientations { π
8 , 5π

8 }, and three frequencies { 0.25
(
√

2)
5 , 0.25

(
√

2)
3 , 0.25√

2
}.

3.2.2. Voice-Based Feature Vector

The voice-based feature vector is computed based on the short-term spectral, specifically,
the so-called mel-frequency cepstral coefficients (MFCCs). We opted for MFCCs for many reasons:
(1) MFCCs are easy to extract compared to other speech features, such as voice source features, prosodic
feature, and spectro-temporal features; (2) MFCCs require relatively less amount of speech data to
be extracted; and (3) MFCCs is text and language independent. Thus, MFCCs feature vector fits the
nature of the person recognition for the social HRI where a real-time response and text-independent
speech signature are crucial for user acceptance of social robot. A modular representation of MFCCs
feature vector extraction is shown in Figure 7.

MFCCs feature vector is computed based on a widely accepted suggestion that the spoken words
cover a frequency range up to 1000 Hz. Thus, MFCCs use linearly spaced filter at low frequency below
1000 Hz and logarithmic spaced filter at high frequency above 1000 Hz. In other words, the filter-bank is
condensed at the most informative part of the speech frequency (more filters with narrow bandwidths
below 1000 Hz) and lengthy-spaced filter-bank is applied at higher frequencies. As depicted in Figure 7,
the first step in the extraction process is to pre-emphasize the input speech signal by applying filter
as in (8).
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Figure 7. Modular representation of mel-frequency cepstral coefficients (MFCCs) feature
extraction process.

Y(n) = X(n)− a ∗ X(n − 1) (8)

where Y(n) is pre-emphasized speech signal, X(n) is the input speech signal, and a pre-emphsized
factor can be any value in the interval [0.95, 0.98]. In the next step (Windowing), the pre-emphasized
speech signal Y(n) is multiplied by smooth window function, here, we used Hamming windows,
as in (9).

W(n) = 0.54 − 0.46 ∗ cos(
2πn

N − 1
), 0 ≤ n < N − 1 (9)

The resultant time-domain signal is converted to frequency domain by applying the well-known
Fast Fourier Transform (FFT). The frequency range in the resultant FFT spectrum is very wide
and fluctuated. Thus, the filter-bank that is designed according to Mel scale is applied in order
to get the global shape of the FFT spectrum magnitude which is known to contain the most distinctive
information for speaker recognition. The MFCCs are obtained by applying logarithmic compression
and discrete cosine transform, as in (10). The discrete cosine transform converts log Mel spectrum into
the time domain.

Cn =
M

∑
m
[log S(m)]cos

[
πn
M

(m − 1
2
)

]
(10)

where S(m), m = 1, 2 . . . ., M is output of, an M-channel filter-bank, n is the index of the
cepstral coefficient. In this study, we retained the 12 lowest Cn excluding 0th coefficient.

3.3. Dedicated Processing Units and Generation of the Intermediate Outputs

As explained in the previous section, given a sequence of facial images, 3D mesh, and speech data
for a person in various social settings, six feature vectors are extracted and considered to participate
in the perception of, an attended stimulus in order to recognize the person from different subjects in
the database. The rationale for the choice of the six features is that the algorithm is architecturally and
is functionally inspired by the human perceptual system. It is established that humans have limited
channel capacity of processing the information from their sensory system. This capacity varies in
the range of five to nine according to a seminal research study [50]. These feature vectors are: face
geometry feature, cross ratio feature, skeleton feature, surface distance feature, appearance-based
feature, and speech-based feature (Section 3.2). These features vectors are fed to DPUs in order to
generate IOs. Selection of possible computational models of these DPUs is problem dependent and
relies upon the perceptual task that needs to be addressed, as discussed in previous section.

3.3.1. Dedicated Processing Units for Vision-Based Feature Vectors

For the vision-based feature vector, we adopt classifiers that use various similarity and distance
measures to represent their respective DPUs. These classifiers generate scores that evaluate how similar
or close a subject is from those in the gallery. The interpretation of the best match relies on the types of
distance and similarity measures that were used to generate these scores. For instance, in the case of
various distance measures, such as L2Norm, L1Norm, Mahalanobis distance, and Mahalanobis Cosine;
the minimum score represents the best match (please refer to Appendix A for more details). Whereas in
cases where IOs are calculated using similarity measures, such as Cosine Similarity; the maximum
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score represents the best match. However, in order to unify these measures, such that the maximum
score represents the best match; distance measures, they are further modified as (11).

IOjk =
log (D∗

j1 + 1)

log (D∗
jk + 1)

(11)

where D∗
j1 ≤ D∗

j2 ≤ . . . . . . .. ≤ D∗
jk, represent various distance measures, IOjk is a unified score value

representing how much the jth subject from the test set match or close to the kth subject from gallery set.
It can be seen from (11) that the smallest distance yields a score value (IO) or a confidence value closer
to one, while the largest distance value produces a very small score (IO) or a confidence value that
is close to zero. These unified scores are then converted into spike times compatible with the inputs
of neurons in the spiking neural network (SNN) at the next stage of hierarchical structure. For each
subject in the test set, each feature vector participating in encoding the attended stimulus is processed
by its respective DPU. In this study, DPUs are selected to be K-Nearest Neighbors (K-NN) classifiers
which use a combination of three of the following similarity and distance measures: L2Norm, L1Norm,
Mahalanobis distance, Mahalanobis Cosine, and Cosine Similarity as detailed in the architecture shown
in Figure 2. Each DPU generates three matrices by adopting three of the aforementioned similarity
and distance measures to compute scores for its associated feature vectors in the evaluation set against
the corresponding feature vectors in the gallery set. However, only for the face appearance feature
vector, the Gabor Jet Similarity measure of each subject in the evaluation set, is computed against the
corresponding face appearance feature vector in the gallery set using (12) and (13).

Simi
a(J, J′) = ∑N

k=1 akia′ki√
∑N

k=1 a2
ki ∑N

k=1 a′2ki

(12)

Sim f ace =
L

∑
i=1

Simi
a(J, J′) (13)

where Simi
a(J, J′) is the similarity between two jets, J and J′ associated with ith fiducial points on the

face of the subject, aki is the amplitude of kth Gabor coefficient at ith fiducial points. N is the number
of wavelet kernels. Sim f ace represents the total similarity between the two faces as the sum of the
similarities over all the fiducial points as expressed in (13).

3.3.2. Dedicated Processing Units for Voice-Based Feature Vector

For the speech-based feature vector, MFCCs (mel-frequency cepstral coefficients) are used as,
an input to K-NN classifier with the aforementioned distance measures. Also, we used MFCCs
that extracted from speech data of all of the speakers in the training data (gallery set) to create
speaker-independent world model or a well-known universal background model (UBM). The UBM
is estimated by training M-component GMM with the popular expectation–maximization (EM)
algorithm [51]. The UBM represents speaker-independent distribution of the feature vectors. Here,
we use 32-compnenent GMM to build the UBM. The UBM is represented by a GMM with 32-compnents,
as denoted by λUBM, that characterized by its probability density function as (14).

p(
→
x |λ) =

M

∑
i=1

wi pi(
→
x ) (14)
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The model is estimated by the weighted linear combination of D-variate Gaussian density function
pi(

→
x ), each parameterized by a mean D × 1 vector, μi, mixing weights, which is constrained by wi ≥ 0,

M
∑

i=1
wi = 1, and a D × D covariance matrix, Σi as (15).

pi(
→
x ) =

1

2πD/2|Σi|1/2 exp{1
2
(x − μi)

′(Σi
−1)(x − μi)} (15)

The purpose of training the UBM is to estimate the parameters of 32-component GMM,
λUBM = {wi,μi, Σi}M

i=1, from the training samples. The next step is to estimate specific GMM
from UBM-GMM for each speaker in the gallery set using maximum a posteriori (MAP) estimation.
The key difference between estimating the parameters of UBM and estimating the specific GMM
parameters for each speaker is that the UBM uses standard iterative expectation-maximization (EM)
algorithm for parameter estimation. On the other hand, specific GMM parameters are estimated by
adapting the well-trained parameters in the UBM to fit a specific speaker model. Since the UBM
represents speaker-independent distribution of the feature vectors, the adaptation approach facilitates
the fast scoring, as there is a strong coupling between speaker’s model and the UBM. It should
be noted that all or some of the GMM’s parameters (λUBM = {w, μ, Σ} can be adapted by MAP.
Here, we adapted only the mean μ to represent specific speaker’s model. Now, Let us assume
a group of speakers s = 1, 2, 3, . . . , S represented by GMMs λs = λ1, λ2, λ3, . . . , λS. The goal is
to find the speaker identity ŝ whose model has the maximum a posteriori probability for a given
observation Xk = {x1, . . . , xT} (MFCCs feature vector). We calculate the posteriori probability
of all of the observations Xk = X1, X2, X3, . . . , XK in probe set against all of the speakers models
λs = λ1, λ2, λ3, . . . , λS in gallery set as (16). As s and k vary from 1 to number of speakers in the
gallery set and the number of utterances in probe set, respectively, the result from (16) is S × K matrix,
namely IO_FVvoice_based. This matrix represents the IOs that are generated from speech-based feature
vector and it will be integrated with other matrices that represent IOs generated from vision-based
feature vectors.

IO_FVvoice_based|{s,k} = Pr(λs|Xk) =
p(Xk|λs)

p(Xk)
Pr(λs)

∣∣∣∣ 1 ≤ s ≤ S
1 ≤ k ≤ K

(16)

Assuming equal prior probabilities of all the speakers, the terms Pr(λs) and p(Xk) are constant for
all speakerx, thus both terms can be ignored in (16). Since each subject in the probe set is represented
as Xk = {x1, . . . , xT}, thus by using logarithmic and assume independence between observations,
calculation of IO_FVvoice_based|{s,k} can be simplified as (17).

IO_FVvoice_based|{s,k} =
T

∑
t=1

log p(xt
k|λs)| 1 ≤ s ≤ S

1 ≤ k ≤ K

(17)

Each feature vector generates IOs matrices, which provide a degree of support for each class
in the gallery set based on several measures within the same feature vector. Also, IOs matrices that
generated from different feature vectors provide a degree of support for each class in the gallery set
in a complementary manner. The weight contribution of the IOs generated from the same feature
vector to the final output is less than that of IOs generated from different feature vectors when they are
integrated in the Spiking Neural Networks (SNN). This will be further discussed in the next section.

The next problem is to distinguish a subject x from the M subjects in the gallery set. Several IOs
matrices are calculated for vision-based feature vector to be integrated with IOs matrices generated
from the speech-based feature vector. Each matrix takes the size of a M × C matrix and its
name is formatted based on the feature vector that generated it. The matrix name is read as
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IO_FVname o f f eature vector. For example, the matrices that are describing the resultant IOs based on the
skeleton feature vector should read as IO_FVskeleton, where M represents the number of subjects in the
gallery set and C is the number of samples in test set.

IO_FVname o f f eature vector =

⎡
⎢⎣

io11 · · · io1C
...

. . .
...

ioM1 · · · ioMC

⎤
⎥⎦, where IOVj = [ioj1, ioj2, . . . , iojc]

=
[

IOV1 · · · IOVM

]T

where IOVj is the IOs vector, iojk represents how much the jth subject from the test set match or close to
the kth subject from gallery set. This score is associated with a specific feature vector and is generated
based on a certain distance measure that is specified by the name of the matrix.

3.4. Temporal Binding via Spiking Neural Networks

It is known that humans interact with their environment by processing the available information
through multisensory modality streams over time with fading memory property. The same process
is emulated here. In the context of this algorithm, fading memory implies that the effect of
stimuli excitation (represented by IOs) deteriorates moderately if it is not reinforced or refreshed.
We implement this feature through the Leaky Integrate-and-Fire neuron (LIF) model [52] to manifest
the integration of IOs that are generated in the previous stage in the hierarchical architecture of the
proposed system. Figure 8 depicts one block of the spiking neural network (SNN) that is used to
perform the integration process. The overall SNN that is used to integrate the information from various
biometric modalities is constructed by laterally connecting N blocks from the circuit, as shown in
Figure 8, where N represents number of subjects in gallery sets.

 

Figure 8. Spiking neural network (SNN) circuit and it dendritic structure that are used as a block to
construct the overall SNN. LIF: leaky integrate-and-fire.

The IOs vectors are fed to LIF neurons in SNN by means of pre-synaptic input spikes, as shown
in Figure 8. IOs vectors, which are generated based on different feature vectors, are fed to independent
branch in the dendritic tree. On the other hand, IOs vectors that are generated based on same feature
vectors are fed to same branch in the dendritic tree. Inspired by neuroscience research studies [53,54],
we suggest that the effect of presynaptic inputs on postsynaptic potential is either sublinear, super
linear, or linear. The effects sum sub-linearly, linearly, or super-linearly if they are delivered to the
same dendritic branch (within-branch) and sum linearly if they are delivered to different dendritic
branches (between-branch). Equation (18) describes the dynamic of postsynaptic potential of LIF
neuron. The dynamic of this neuron can be described as follows: initially at time t = 0, Vm is set to Vinit.
If Vm exceeds the threshold voltage Vthresh, then it fires a spike and it is reset to Vreset and held there
for the length Trefact of the absolute refractory period. The total response of postsynaptic potential
due to different presynaptic inputs within-branch (SynWB) and between-branch (SynBB) is computed
using (18) to (20).

τm
dVm

dt
= −(Vm − Vresting) + Rm·(Isyn(t) + Inoise) (18)
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where τm = Cm·Rm is the membrane time constant, Rm is the membrane resistance, Isyn(t) is the
current supplied by the synapses, Inoise is a Gaussian random variable with zero mean and a given
variance noise, Vm is the membrane potential of LIF neuron, Vinit is the initial condition for Vm at time
t = 0, and Vthresh is the threshold value. If Vm exceeds Vthresh, then a spike is emitted, Vreset is the
voltage to reset Vm to after a spike, and Vresting is the membrane potential of LIF neuron at no activity.

SynWB =
K

∑
i=1

αi Sigmoid(IOi) (19)

SynBB =
K

∑
i=1

αi IOi (20)

where IOi represents the total input to the ith dendritic branch, αi is the ith dendritic branch weight,
K is the number of dendritic branches. Note that the sigmoid function is one possible choice of synaptic
integration function within-branch and can be replaced with other functions, such as hyperbolic
tangent sigmoid function.

It can be noted from (19) and (20) that the balanced IOs that are delivered to same dendritic
branch will sum as follows: (1) small IOs will sum nearly linearly, (2) around average IOs will
sum super-linearly, (3) large IOs will sum sub-linearly. Unbalanced IOs fed to the same branch
generate near-linear summation over the entire range of IOs intensities. Moreover, IOs that are
delivered to independent branches will sum linearly for all of the combinations of IOs intensities.
Synaptic integration in dendritic tree of pyramidal neuron was experimentally proved to demonstrate
similar behavior to the aforementioned forms of summations [55]. These forms of summations provide
a tradeoff between error variance and error bias. Sub-linear summation of within-branch IOs, in case
of large IOs, reduces the error variance by not exaggerating the effect of one aspect of the measure
at the expense of other measures in deriving the final outcome. In addition, the linearly weighted
aggregation of between-branch IOs reduces error bias by means of exploiting various attributes in
deriving the final outcome.

As shown in Figure 8, the integration of IOs is performed using SNN in time domain to emphasize
the temporal binding with fading memory criteria. The IOs represent various scores of confidence;
each one of them provides a degree of support for each subject in the gallery set according to a certain
aspect of measure and based on a specific biometric modality. These scores are introduced to SNN as
presynaptic inputs by means of spikes fired at different times. As described in the previous section,
all of the IOs are unified such that high score is equivalent to best match. In order to introduce the
IOs to LIF neurons, the IOs are converted to spike times using (11) such that a high IO is equivalent
to early firing time. Hence, the neuron which fires first represents the best candidate of the attended
subject (from the gallery set). As LIF neurons receive early spikes, which correspond to high degree
of support, their membrane potential U increases instantaneously. Once the membrane potential U
of one of these neurons crosses the threshold value Vthresh, the neuron fires a spike and all neurons
participating in the process are reset to Vreset. The neuron which fires a spike first, which we refer to as
the winner neuron, represents the best candidate of the attended subjects, and the attended subject is
labeled with class number assigned to that neuron.

The threshold value of the neurons in the SNN controls both the reliability of the perception
outcome and the allowed for the perception time of the attended task. A LIF neuron with a high
threshold value implies that it will not fire until high intensity presynaptic inputs are delivered to its
dendrite branches. These presynaptic inputs may be not available due to the absence of some biometric
features or the need for more processing time. Thus, a compromise between the reliability and the
reasonable perception time can be achieved by controlling the threshold value, according to a specific
scenario of social interaction. As IOs are introduced to LIF neurons in parallel (Figure 8) via presynaptic
inputs, one very high IO may drive a neuron to fire a spike and finalize the perception process. This
sheds light on the superior feature of this model, such that one biometric feature with high discriminant
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power may be enough to finalize the perception process. This feature replicates the ability of humans
to recognize odd features very quickly [56]. In the face perception and recognition, humans focus on
distinctive features, which correspond to very high IOs in this algorithm so that other features may not
need to be used.

Another vital property of this model is the alleviation of the computational cost in the
perception process. As one of the neurons in the final layer fires a spike, all of the neurons that
are participating in the perception of attended stimulus are reset and held at that state for a certain time.
Early spikes correspond to IOs that carry high discriminant power and consequently provide high
degree of support for particular neuron to be the winner neuron and represent the best candidate of
attended subject; however, the neuron receiving the earliest spike is not necessarily the winner neuron.
In some cases, a neuron receives a spike later, but is reinforced immediately with other spikes that will
drive its potential to threshold value and consequently fire a spike before other neurons, which were
received the earliest spikes but were not immediately reinforced with other spikes. As shown in
Figure 9a, even though neuron 1 receives a spike prior to neuron 2, neuron 2 fires a spike earlier than
neuron 1. It can be seen from Figure 9a that the membrane potential of neuron 1 had started increasing
earlier than the membrane potential of neuron 2, but because neuron 2 received a spike and reinforced
immediately with another spike, its membrane potential increased dramatically and had fired before
the membrane potential of neuron 1 reached the threshold value. Figure 9b shows the case that one IO,
which corresponds to a very early input spike, is large enough to drive the neuron’s potential to
threshold value and fires a spike. One can tentatively conclude that a neuron fires a spike either by
a very high IO, corresponding to very early spike that is sufficiently large to drive a neuron’s potential
to threshold, or by more than one high or moderate IO, representing a monotonically decreasing
function and corresponding to spikes that are reinforced each other in time domain. The number of
neurons which represent the final layer of SNN (i.e., outputs of SNN) equals the number of subjects
in the gallery set. Thus, the first neuron fired among these neurons represents the best candidate of
attended subject and the attended stimulus is labeled with the number of that neuron.

Figure 9. (a) The earliest spike is not sufficiently large to drive the neuron’s potential to threshold and
evokes a spike, (b) The earliest spike is sufficiently large to drive the neuron’s potential to threshold
and evokes a spike.
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4. Experimental Results

In this section, we present the experimental results to evaluate the performance of the person
recognition algorithm in social settings. We have included four sets of simulation studies for person
recognition to demonstrate the performance of the person recognition algorithm. The biometrics that
have been extracted from visual and auditory modalities are presented in three groups, as shown
in Figure 10. The biometrics that have been selected to identify a subject in each of the four scenarios
are illustrated in Figure 10.

Figure 10. The Biometrics that have been discussed in the four experiments.

4.1. Generation of Multi-Modal Data Set

Our first challenge was that the available public datasets are generally unimodal, and as such,
do not fit to the requirements of the multimodal perception. We resolved this problem by creating
a new dataset from merging of the three datasets: FERET [57], TIDIGITS [58], and RGB-D [59].
FERET database contains a total of 14,126 facial images of 1199 individuals and 364 duplicate sets
of facial images. TIDIGITS is a speech dataset that was originally collected at Texas Instruments Inc.
(Dallas, TX, USA) The TIDIGITS corpus contain 326 speakers (111 men, 114 women, 50 boys
and 51 girls), with each pronouncing 77 digit sequences. The RGB-D is a new database that was
created by Barbosa et al. for the purpose of person re-identification studies based on information from
3D depth sensor. In this dataset, depth information has been obtained for 79 individuals with four
scenarios: frontal view of person walking normally (Walking 1 group), frontal view of person walking
slowly and avoiding obstacles (Walking 2 group), walking with stretched arms (Collaborative group),
and back view of person walking normally (Backward group). Five synchronized information for
each person namely, RGB images, foreground mask, skeleton, 3D mesh, and the estimated floor were
collected in, an indoor environment, whereby the individuals were at least two meters away from the
3D depth sensor.

In order to provide the individual in RGB-D database with facial images from a diverse group
across ethnicity, gender, and age, we randomly selected 79 subjects from FERET database. Then,
we used only frontal view images, which included frontal images at different facial expressions
(fb image), different illuminations (fc image). Also, some subjects in the database wore glasses on
and/or pull their hair back. The duplicate set contains frontal images of a person which was taken
on a different day over one year, and for some individuals more than two years had elapsed between
their first frontal images and the duplicate ones. The number of frontal facial images for each subject in
the selected set varies from two to eight images. These 79 subjects were randomly assigned to subject
in RGB-D database when considering that female subjects from FERET database are assigned to female
subjects from RGB-D.
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In order to complement the new dataset with speech data; we selected 23 subjects from women
group in TIDIGITS dataset and assigned them randomly to female subjects in the new dataset, the rest
of subjects in the new dataset were assigned with speech data from men group in TIDIGITS dataset.

The new dataset provides facial information, speech utterances, and the aforementioned
information that is available on RGB-D database. The facial information is extracted from FERET
database which provides facial frontal images with some differences such as changes in facial
expression, change in illumination level, and variable amount of time between photography sessions.
Also, RGB-D database provides skeleton and depth information that not affected by changing the
outfits of the subjects and their bodies poses. On the other hand, TIDIGITS provide speaker signature
when the subject is not in the field of view of robot’s vision system. It is important to note that the
state-of-art face detection and recognition algorithms fail to provide quick detection and have low
recognition rate when the face is angled or far from the camera, or when the face is partially occluded,
and/or the illumination is poor. However, these situations are common in social HRI scenarios.
In such cases, other biometrics features, such as body information and speech signature, can be used to
compensate missing facial information and recognize, an individual. These characteristics of the new
database fit the requirements of the human-robot interactions in social settings where robust long-term
interaction is a crucial factor for the success of the system.

The new (integrated) dataset has been partitioned into two sets, namely, training (gallery) and
evaluation (probe) sets, as described in experiments 1 to 4. The gallery set was used to build the training
model and the evaluation set was used for testing. The evaluation set is comprised of unseen data, not
used in the development of the system. It is important to emphasize that the chronological order of
the data capture was considered in constructing the evaluation set. Thus, some of the images in the
evaluation set was chosen to be duplicate I and duplicate II, implying that they were taken at different
dates, spanning from one day to two years. By using duplicate I and II images in constructing the
evaluation sets, we ensured that the evaluation set represented closely scenarios that are appropriate
for long-term HRI in social settings. The performance of the proposed architecture was evaluated
in four experiments. Since, the data set has 79 subjects, thus the overall SNN was constructed from
79 circuits, as shown in Figure 8. In this SNN, all of the LIF neurons number 3 are connected laterally
and all blocks have the same dendritic structure shown in Figure 8.

4.2. Experiment 1

For each subject in the probe set, two facial images, fb image and its duplicate I image, were
selected from the FERET database. In addition, two out of five frames from each of skeleton information
and 3D mesh body information were selected randomly from Walking 1 group in the RGB-D database.
The rest of the samples in the FERET and RGB-D databases were used to construct the training
set. Some subjects in the FERET database had only two facial images. In this case, one was used
for training and the other for evaluation. Five feature vectors were constructed, as described in
Section 3. Three of the feature vectors represent facial information, including the facial geometry
feature vector, cross ratio feature vector, and appearance-based feature vector. The rest of the feature
vectors, namely the skeleton feature vector and the surface-based feature vector, represent the body
information of the attended subject. IOs generated based on these features were converted into spike
times and normalized to range from zero to 150 ms, prior to being fed to LIF neurons in SNN, as shown
in Figure 8. The SNN was constructed and simulated using the neural Circuit (CSIM) simulator [60].
The parameters of LIF neurons were set as follows: the weight synapses of neuron 1 and neuron 2
were equal and set at 2000 × 10−9. The weight synapses of neuron 3 were set as follows: the weight
synapse of dendritic branch one was set to 2500 × 10−9 and weight synapse of dendritic branch two
was set to 2000 × 10−9, Vthresh = 0.15, Vreset = −0.067, Vreseting = 0, Cm = 5 × 10−8, Vinit = 0.08,
Rm = 1 × 106, Tre f act = 0.0025, Inoise = 50 × 10−9, Isys(t) represents the input current supplied by the
synapses, i.e., the outputs from the conversion process of IOs into input spike times. These input spike
times were set in the range from zero to 150 ms. This selection is compatible with the natural human
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perception of time. The SNN were simulated for 150 ms. As described in Section 2, the first neuron that
fires a spike represents the best candidate of the attended subject x from the gallery set. The overall
SNN was constructed from 79 circuit blocks, as shown in Figure 8. Therefore, the total number of
LIF neurons was 237. The recognition rates were calculated at two stages in the hierarchical structure
of the SNN, namely stage 1 and stage 2. Stage 1 consists of the list of neurons, labeled as neuron 1
and neuron 2; stage 2 was represented by the list of neurons labeled as neuron 3. The recognition
rate that was calculated from the list of neurons labeled as neuron 1 was based on body information;
the recognition rates that were calculated from the list of neurons labeled as neuron 2 expressed
a recognition rate based on facial information or voice information. Neuron 2 may use face geometry,
face appearance, voice-based feature, or all of them in order to fire a spike. The same applies to
neuron 1, which may use geodesic distances, skeleton distances, or both, in order to drive its potential
to the threshold and consequently evoke a spike. The overall recognition rates were calculated based
on neuron 3, which may use facial information, body information, voice information, or a combination
of them. Cumulative match curves (CMCs) show the probability that the correct match of classification
is found in the N, the most likely candidates, where N (the rank) is plotted on the x-axis. CMCs provide
the performance measure for biometric recognition systems and have been shown to be equivalent to
the ROC of the system [61]. The recognition result was averaged over ten runs; the cumulative match
curves (CMCs) were plotted for these recognition results and are shown in Figure 11a–c.

Figure 11. (a) Cumulative match curves (CMC) based on body information calculated on Walking 1
group from the RGB-D database, (b) CMC based on face information calculated on fb and duplicate I
images from the FERET database, and (c) CMC based on temporal binding of face and body information
where body information is evaluated as described in Figure 11a and face information is evaluated as
described in Figure 11b.

4.3. Experiment 2

In this experiment, the probe set was constructed as follows: for body information, we used the
collaborative group from the RGB-D database as the training set and two frames out of five from
Walking 2 group as the probe set. For facial information, the probe set was constructed from fb image
and duplicate II image. The rest of the samples in the FERET database was used to construct the training
set. It can be noted that the probe and training sets were constructed in this manner to demonstrate the
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performance of the system in a real-world scenario where the enrolment process of the attended subject
happened when the subject’s posture was different from that of the recognition process. All the other
configurations of SNN were similar to the experiment 1. The recognition result was averaged over ten
runs. The cumulative match curves (CMCs) were plotted for these recognition results and are shown
in Figure 12a–c. The overall recognition rate is degraded as result of using different groups from the
RGB-D database for training and evaluation. Hence, the same person is represented in one posture in
gallery set and a different posture in the probe set. Another reason for the performance degradation is
the use of the duplicate II image set to construct the probe set for the face information. This is a huge
challenge for the state-of-the-art face recognition algorithms due to changes in illumination, aging,
and facial expressions. Nevertheless, the proposed algorithm works reasonably well.

Figure 12. (a) CMC based on body information calculated on Walking 2 group vs collaborative group
from the RGB-D database, (b) CMC based on face information calculated on fb and duplicate II images
from the FERET database, and (c) CMC based on temporal binding of face and body information where
body information is evaluated as described in Figure 12a and face information is evaluated as described
in Figure 12b.

4.4. Experiment 3

We emulated a real-world scenario of HRI in social settings where biometric modalities that
represent person identity are not concurrently available due to the sensor limitation or the occlusion of
some parts of the person. To replicate this scenario, we converted the IOs generated from the body
information into temporal spikes in range of 0–150 ms while the IOs that are generated from the face
information were converted into temporal spikes in the range of 30–150 ms In this way, we made
the body information available before the face information. This scenario replicates a situation
where a person can be identified from his skeleton and body shape before face biometric modalities
are available. Here, we assumed that the back view of the attended person is captured by the RGB-D
sensor at the beginning of the recognition process and after a short time the attended person turned
toward the camera in such a way that the face information becomes available. Hence, two frames out
of five from the backward group in the RGB-D database are used to construct the probe set. For facial
information, the probe set was constructed from fb image and duplicate II image, the same as in
experiment 2. The rest of the samples in the FERET and RGB-D databases were used to construct
the training set. All of the configurations of SNN are similar to the first experiment. The recognition
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result was averaged over ten runs, and the cumulative match curves (CMCs) were plotted for these
recognition results, as shown in Figure 13a–c. The recognition rates are still good, despite the fact that
biometric modalities are available at different times. We have not seen any other algorithm that copes
with this scenario.

Figure 13. (a) CMC based on body information calculated on Backward group from the
RGB-D database, (b) CMC based on face information calculated on fb and duplicate II images from
the FERET database, (c) CMC based on temporal binding of face and body information where body
information is evaluated as described in Figure 13a and face information is evaluated as described
in Figure 13b.

4.5. Experiment 4

In this experiment, we emulated another challenging scenario of HRI in social settings when
a subject’s face is not detected either due to distance between the robot and the subject or due to titled
viewing angle of the camera and the head orientation. However, we assume that some utterances from
subject’s speech can be captured by robot’s auditory system, as well as 3D mesh for subject’s body is
available in robot’s vision stream of data. In this scenario, the subject’s speech signature and his/her
body information are available. Here, we assumed that the audio signal is recorded first and the voice
activity detector is applied such that only the voice signal is fed to speech feature extraction module.
Also, we assumed that speech utterances of the attended person are captured by a microphone at the
beginning of the recognition process, and after a short time, the attended person shows in camera’s
view facing opposite way such that back view of body information becomes available. Thus, for each
subject, two frames out of five from the backward group in the RGB-D database were used to construct
the probe set for body information. The rest of the samples in the RGB-D database was used to
construct the training set. For speech signature, the probe set was constructed by selecting seven
utterances (each utterance in range of 1 to 1.7 s duration) out of 77 utterances from TIDIGITS database
for each subject. The rest of the samples in the TIDIGITS database was used to construct the training set.
Despite the fact that short speech utterances (such as the ones used in constructing the probe set for
speech signature) reduce the recognition rate, we used them in our implementation to demonstrate its
reasonable performance in this challenging HRI scenario. All of the configurations of SNN are similar
to the first experiment. The recognition result was averaged over ten runs, and the cumulative match
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curves (CMCs) were plotted for these recognition results, as shown in Figure 14a–c. The recognition
rates are still good, despite the fact that biometric modalities are available at different times and only
two of them are available. We have not seen any other algorithm that copes with this scenario.

Figure 14. (a) CMC based on body information calculated on Backward group from the
RGB-D database, (b) CMC based on speech information calculated on selected utterances from the
TIDIGTS database, and (c) CMC based on temporal binding of speech and body information where
body information is evaluated as described in Figure 14a and speech information is evaluated as
described in Figure 14b.

5. Discussions

In this section, we outline some design guidelines for the proposed system. The results suggest that
the recognition rates using one modality or one source of information (i.e., recognition rate calculated
at stage 1, represented by neuron 1 and neuron 2) are very close to other studies reported in literature
which use similar modalities. However, when the outcomes of these modalities are represented as
IOs and introduced to the temporal binding mechanism, the recognition rates dramatically improved.
One key distinction of the proposed approach from other works is that it employs efficient processing
of available information in multimodal sensors streams. The efficient processing is manifested by
using a limited number of feature vectors and a limited number of elements in each vector in order
to reduce the processing time of the feature vectors. For instance, the appearance-based feature
vector can be constructed by applying the Gabor filter to the whole face, which may enhance the
recognition rate, as calculated based on face information, and consequently increase the overall
recognition performance of the system. However, the Gabor filter uses convolution operator which
comes with a high computational cost. Hence, we applied the Gabor filter to selected fiducial points to
reduce computational cost and exploit other biometric features in order to emphasize the real-time
fashion of social human-robot interaction. The proposed approach exploits the fact that every modality
participating in the encoding process of the attended subject possesses complementary information
and has a discriminative level, which may be sufficient to independently identify a person and classify
the individual to the correct class. In the case that the discriminative level of one modality is not
sufficient to drive the system to the required threshold and finalize the identification process, it can be
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combined with other modalities at the intermediate level in a synergistic fashion to satisfy the required
threshold, and consequently achieve higher performance.

One of the significant challenges of the person recognition tasks in social settings is that not all
biometric modalities are available at the same time, due to a dynamic environment, human activities,
and sensor limitations. Additionally, the nature of the HRI in social settings demands a perceptual
system that is capable of providing a decision within the range of human response time; i.e., a human’s
reaction time. For the above reasons, exploiting the available modalities and compromising between
reliability of the outcomes and fast recognition are the main characteristics of the recognition system,
making it appropriate for person recognition tasks in social settings. The results show that the system
achieves high performance in real-time fashion, despite the fact that not all biometric modalities are
available at the same time. Table 1 shows the results of other studies that use multimodalities for
person recognition tasks. Most of the reported methods use biometric modalities that are essentially
invasive and require close cooperation from the attended person. Only two methods, [18] and [8], may
be classified as non-invasive multimodal biometric identification systems. One shortcoming of one of
these two works [8] is that the overall recognition rate is limited by the detection rates of the modalities
participating in encoding the attended person. In addition, most of the works that are reported in
Table 1 use one main modality as the basis to extract other auxiliary features. These are normally
referred to as soft biometric features, such as gender, ethnicity, and height, which in turn are fused
together in order to improve the recognition rate. Another shortcoming of all of the works reported
in Table 1, including the two non-invasive approaches, is that these systems assume all modalities
are available at the same times. This requirement is not normally met in real-world HRI scenarios
in social settings. Thus, the main shortcoming of these approaches is that the absence of the main
modality leads to failure of the overall system.

Table 1. Comparison with related works.

Approach Biometric Modalities Category Accuracy
No.

of Subjects

[62] fingerprint (main) + gender, ethnicity, and
height (auxiliary) invasive 90.2% 160

[11] face and fingerprint(main) +
gender, ethnicity, and height (auxiliary) invasive 95.5% 263

[63] fingerprint and body weight invasive 96.1% 62

[64] fingerprint and iris invasive 97.0% 21

[18] face (main) + age and gender (auxiliary) non-invasive 97.67% 79

[18] fingerprint (main) + age and gender (auxiliary) invasive 96.76% 79

[8]
skin color, hair color, eye color, weight, torso clothes
color, legs clothes color, beard presence, moustache

presence, glasses presence
non-invasive not available 646

our approach face, body, speech, and skeleton non-invasive 100%
(Figure 11c) 79

6. Conclusions

We applied, an elegant and a powerful multimodal perceptual system to address the problem of
person recognition for social robots. The system can be used in a wide range of applications where
a decision is expected based on the inputs from several sensors/modalities. The key distinction
of this system from others is that it is non-invasive and does not require that all input stimuli are
simultaneously available. The decision making process is facilitated by any modality that is rich in
information and first becomes available. The system is also expected to make its decision within the
same timeframe as humans (similar to duration for human response time).

In addition, the proposed system has the ability to adapt to real-world scenarios of social
human-robot interactions by adjusting the threshold value which compromises between the reliability
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of the perception outcome and the time required to finalize the perception process. Going through the
literature of person recognition systems, we note that there are almost no multimodal systems that are
completely noninvasive, whereas the proposed system is noninvasive. We also note that a system that is
based on “fusion” is conceptually and operationally different from the proposed architecture. The idea
of fusion is to integrate the effect of several sensors with a view that each sensor by its own is not
able to contribute to a correct decision; as such, the signals are fused together to enhance the decision
making. The proposed system is designed based on the idea of convergence zone (as the term is used
in neuroscience). This is further elaborated in Figure 1a,b. The modules “Conversion of IOs to spiking
networks” and “Temporal binding” (Figure 1a) are analogous to “Multimodal Association Cortex”.
The process is essentially different from “fusion”.

We have conducted extensive simulations and comparative studies to evaluate the performance
of the proposed method. In order to generate a multimodal dataset, we combined the FERET,
TIDIGITS, and RGB-D datasets to generate a new dataset that is applicable to multimodal systems.
Simulation studies are promising and suggest notable advantages over related methods for
person recognition.

Appendix A

L1Norm, L2 Norm, Mahalanobis distance, Cosine Similarity can be computed as (1) to
(4) respectively.

L1(x, y) =
N

∑
i=1

|xi − yi| (A1)

L2(x, y) =

√√√√ N

∑
i=1

(xi − yi)
2 (A2)

Maha =

√
(
→
x −→

y )
T

S−1(
→
x −→

y ) (A3)

CosSim(x, y) =
〈x, y〉

||x|| ||y|| (A4)

where x is a feature vector represents a subject in probe set, y is a feature vector represents a subject in
gallery set, S is a covariance matrix.

Table A1. Facial feature ratios.

Ratio1 =
Area o f ΔACD

Area o f ΔACMcen

Ratio2 =
Area o f ΔDHI
Area o f ΔDJN

Ratio3 =
Area o f ΔJNMcen
Area o f ΔKMMcen

Ratio4 =
Distance between point E and point G
Distance between point B and point F = nose width

nose height

Ratio5 =
Distance between point A and point C
Distance between point B and point F

=
distance between the inner_corner o f the eyes

nose height

Ratio6 =
Distance between point A and point C
Distance between point E and point G

=
distance between the inner_corner o f the eyes

nose width

Ratio7 =
Distance between point A and point C

Distance between point B and point Mcen

=
distance between the inner_corner o f the eyes

distance between the mouth center and the line joining the eyes

Ratio8 =
Distance between point B and point F

Distance between point B and point Mcen

=
distance between the nose tip and the line joining the eyes

distance between the mouth center and the line joining the eyes

A, B, C, D, E, F, G, H, I, J, K, L, Mc and N are the selected fiducial points on a face image, as shown in Figure 4a.
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Appendix B

Table A2. Euclidean distance of selected skeleton segments.

(Skeleton-Based Feature)

• Euclidean distance between floor and head.
• Euclidean distance between floor and neck.
• Euclidean distance between floor and left hip.
• Euclidean distance between floor and right hip.
• Mean of Euclidean distances of floor to right hip and floor to left hip.
• Euclidean distance between neck and left shoulder.
• Euclidean distance between neck and right shoulder.
• Mean of Euclidean distances of neck to left shoulder and neck to right shoulder.
• Ratio between torso and legs.
• Euclidean distance between torso and left shoulder.
• Euclidean distance between torso and right shoulder.
• Euclidean distance between torso and mid hip.
• Euclidean distance between torso and neck.
• Euclidean distance between left hip and left knee.
• Euclidean distance between right hip and right knee.
• Euclidean distance between left knee and left foot.
• Euclidean distance between right knee and right foot.
• Left leg length.
• Right leg length.
• Euclidean distance between left shoulder and left elbow.
• Euclidean distance between right shoulder and right elbow.
• Euclidean distance between left elbow and left hand.
• Euclidean distance between right elbow and right hand.Left arm length.
• Right arm length.
• Torso length.
• Height estimate.
• Euclidean distance between hip center and right shoulder.
• Euclidean distance between hip center and left shoulder.

Table A3. geodesic distances among the projection of selected skeleton joints.

(Surface-Based Feature Vector)

• Geodesic distance between left hip and left knee.
• Geodesic distance between right hip and right knee.
• Geodesic distance between torso center and left shoulder.
• Geodesic distance between torso center and right shoulder.
• Geodesic distance between torso center and left hip.
• Geodesic distance between torso center and right hip.
• Geodesic distance between right shoulder and left shoulder.
• Geodesic distance between left hip and left knee.
• Geodesic distance between right hip and right knee.
• Geodesic distance between torso center and left shoulder.
• Geodesic distance between torso center and right shoulder.
• Geodesic distance between torso center and left hip.
• Geodesic distance between torso center and right hip.
• Geodesic distance between right shoulder and left shoulder.
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Abstract 

We present a new architecture to address the problem of speaker identification. The 

proposed design integrates the prosodic features and short-term spectral features to 

concurrently classify a speaker’s gender and his/her identity. These features are further 

processed by Support Vector Machine (SVM), Gaussian Mixture Model (GMM), and GMM 

supervector-based SVM classifiers. The outputs of these classifiers are then combined to 

identify the speaker. The proposed architecture works in a semi-sequential manner 

consisting of  two stages: the first classifier exploits the prosodic features to determine 

the speaker’s gender which in turn is used with the short-term spectral features as inputs 

to the second classifier system in order to identify the speaker. The second classifier 

system employs two types of short-term spectral features; namely Mel-Frequency 

Cepstral Coefficients and Gammatone Frequency Cepstral Coefficients as well as gender 

information as inputs to two different classifiers (GMM and GMM supervector-based 

SVM) which in total construct four classifiers. The outputs from the second stage 

classifiers; namely GMM-MFCC MLC, GMM-GFCC MLC, GMM-MFCC supervector SVM, 

and GMM-GFCC supervector SVM are fused at score level by the weighted Borda count 

approach. The weight factors are computed on the fly using Mamdani fuzzy inference 
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system that uses the signal to noise ratio and the length of utterance as its inputs. 

Experimental evaluations based on TIDGITS database suggest that the proposed 

architecture is promising and can improve the recognition performance of the system in 

challenging environments where the signal to noise ratio is low and the length of 

utterance is short. 

1 Introduction

Voice modality is central to human interactions among themselves. It is envisaged that it 

is also sensible that social robots communicate with humans through voice. There are 

three related yet different challenges that researchers are currently engaged towards 

realization of voice as a medium through which robots and humans interact: Who is 

speaking? What is being said? And which language is being spoken? This paper is 

concerned with the first question. Humans are better in person recognition by face rather 

than voice[1]. However, in machines, voice modality provides unique features in 

biometric person identification systems as opposed to face, fingerprint, voice, gait, or iris. 

The speech signal is captured dynamically over a period of few seconds; therefore, 

variation in speaker’s model can be monitored [2]. Another advantage of using speech 

signal is the availability of numerous devices such as microphones, cellphone, and 

soundcards that can be used to capture the speech signal [3].  

Speaker recognition systems can be classified into text-dependent speaker recognition 

and text-independent speaker recognition. The former system is employed when the 

speaker is cooperative and willing to pronounce fixed utterances as password or 
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prompted by the system to pronounce pre-defined phrases that have been already 

registered in the system during the enrolment process. This scenario is readily used in 

speaker authentication systems where they extract signature(s) from a fixed utterance 

pronounced by an unknown speaker and verify if this utterance corresponds to the 

claimed identity. Even though the text-independent speaker recognition can be used as 

speaker verification system, the system demonstrates its advantages in other applications 

where the speaker needs to be identified from unconstrained utterances as in the case of 

identifying a speaker in social settings. Constrained utterances used in text-dependent 

speaker recognition system limit the functionality of the system in some applications such 

as social robot, speaker diarisation, intelligent answering machine with personalized 

caller greeting, and forensic investigation of telephone conversations. A speaker 

identification system for social human-robot interaction, which is the main motivation of 

this research, should be able to extract a voice signature from unconstrained utterances. 

In speaker diarisation, also known as “who spoke when”, a speech signal is partitioned 

into homogenous segments according to speaker identity [4]. Hence, the speaker identity 

must be induced by extracting features from unconstrained utterances that may not have 

been used in the training stage.  

The background speaker model is used in speaker recognition literature extensively as a 

way to enhance the robustness and computational efficiency of speaker recognition 

system [3]. Unlike other biometrics (such as face, fingerprint, iris, and hand geometry), 

voice biometrics is prone to substantial variability. There are many factors contributing to 

this variability including but not limited to changes in vocal tract and how a speaker 
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produces speech (intrinsic-based source of variations), variation of speech signal 

capturing and transmission (external-based source of variations), and variation in 

languages and dialect spoken that are used in conversation (conversation-based source 

of variation). In situations referred to as within-speaker variability, the same person does 

not utter the same words in the same way. These conditions could arise due to 

physiological reasons (e.g. illness, intoxicated, and aging), emotional states (e.g. anger, 

happiness, and sadness), or a combination of both. In most cases, the physiological and 

emotional changes happen naturally and not intended to circumvent the system. Also, a 

person may intentionally alter his/her voice, an important factor contributing to within-

speaker variability, to elude the system [5]. In addition, the performance of a speaker 

recognition system is affected by the technology used to capture, transmit, and save the 

speech signal. These scenarios are referred to as the channel variation effects, and the 

environmental, or background distortion. A significant research effort has been devoted 

to address this multifarious source of variations [6]. However, most of the research effort 

focuses on addressing the external-based source of variations; a considerable progress 

has been achieved in addressing the background noise (by using additive noise known as 

signal-to-noise ratio) and the channel variations (by using channel compensation 

techniques) [7]. Since most of the feature extraction methods used in speaker recognition 

systems rely on spectral characteristic of the speech signal which is highly affected by a 

person’s health, age, and emotional state; the intrinsic-based source of variations poses 

huge challenge to speaker recognition systems. Among the ideal features of a speaker 

recognition system are low discriminant power within-speaker variability, high 
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discriminant power between-speaker variability, robust against the aforementioned 

source of variations (i.e. intrinsic-, external-, and conversation- based source of 

variations), easy to extract, and difficult to impersonate [3]. A significant research effort 

has been devoted to develop feature vectors that possess some of the above 

characteristics [8]. In a parallel development, a large body of research has aimed on 

developing different speaker modeling, normalization, and adaption techniques that 

employ these feature vectors in order to increase the robustness of the speaker 

recognition system against the aforementioned source of variations [3].  

Motivated by the above challenges and noting that there is no single speaker recognition 

model that is universally applicable in different signal-to-noise ratios and variable 

utterance lengths scenarios, and the absence of a “crystal ball” for speaker modeling, 

normalization, and adaptation; we propose a two-stage classification method for speaker 

identification system. The proposed system encapsulates heterogeneous classifiers that 

employ prosodic and short-term spectral features in a two-stage classifier in order to 

integrate the advantages of using different type of features and different classifiers in 

developing a robust speaker recognition system. 

The outline of the paper is as follows: in Section 2, we review the related works and 

highlight the current state-of-art in speaker recognition system and the main challenges 

that need to be addressed. In Section 3, we present the detailed architecture of the 

proposed system. We will then include simulation studies and discuss the merits of the 

proposed architecture in Section 4. We conclude the paper in Section 5. 
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2 Related Works 

Humans have the ability to recognize another person’s voice seamlessly without 

conscious effort. It is understood that various aspects of a person’s voice characteristics 

are implicitly and explicitly involved in the recognition process including spectral 

characteristics, prosody (syllable stress, intonation patterns, speaking rate and rhythm), 

and conversation-level features (lexicon and language). Analogous to humans, automatic 

speaker recognition systems employ various voice proprieties to recognize a person from 

his/her voice. These can be categorized into: 1) short-term spectral features; 2) voice-

based and prosodic features; 3) high-level features. The short-term spectral features are 

computed based on short frames in the range of 10-20 ms and can be seen as descriptor 

of vocal tract characteristics. Since this category of features require a small amount of 

data to be extracted, they fit well with real-time applications as in the case of speaker 

identification in social settings [8]. Also, short-term spectral features are easy to extract 

and are text and language independent. Most of the automatic speaker recognition 

systems that have been developed in the last two decades employ short-term spectral 

features including MFCC, linear predictive cepstral coefficients (LPCCs), line spectral 

frequencies (LSFs), and perceptual linear prediction (PLP) coefficients , and Gammatone 

Frequency Cepstral Coefficients (GFCC), to name few [8]. However, these systems are not 

robust to intrinsic- and external- based source of variations and background noise. A huge 

research effort has been devoted to develop speaker modeling including GMM [9], GMM 

supervector with SVM [10], and i-vector system [11, 12], normalization [13, 14] and 

channel compensation techniques [15], and adaptation techniques [16, 17] to reduce the 
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effect of these variations of the performance of the speaker recognition system. 

Impressive progress has been achieved in addressing external-based source of variations, 

particularly channel variations and environmental and background distortion [6]. 

However, the performance of the state-of-art speaker recognition systems dramatically 

deteriorates when short utterances are used for training/testing particularly with low SNR 

[18–22]. Some research studies suggest that the performance of GMM-UBM system is 

close to i-vector based system in short duration utterance and over perform it in very 

short utterances (less than 2 seconds) [22].  Another challenge that needs more work to 

address is intrinsic-based source of variations and synthesis and conversion spoofing 

attack; voice conversion and statistical parametric speech synthesizers may use spectral-

based representation similar to the one used in speaker recognition systems that employ 

spectral features. 

The high-level features use a speaker’s lexicon (i.e. the kind of words that a speaker 

frequently uses in his/her conversations) to extract a signature that characterizes a 

speaker. Some research studies show that this category of features is robust against 

channel variation and background noise, but it requires substantial computational cost 

and difficult to extract [3, 23]. Also, this category is language and text dependent, needs 

a lot of training data, and is easier to impersonate. The pros and cons of prosodic features 

category sit in the middle of the scale between high-level feature and short-term spectral 

feature. Researchers suggest that the prosodic features carry less discriminant power 

than short-term spectral features but complementary [3]. However, due to the nature of 

prosody, which reflects the differences in speaking styles such as rate, rhythm, and 
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intonation pattern. This category shows more resistance to voice synthesis and 

conversion spoofing attacks but it is valuable to human impersonation. One can argue 

that a speaker recognition system that employs short-term spectral and prosodic features 

is more robust than those systems that employ only one type of these features. A 

reasonable research effort has been devoted to fuse prosodic and spectral features in 

order to improve the accuracy and robustness of the recognition of a speaker age, gender, 

and identity [24–29]. However, most of these systems adopt either fusion at score level 

for prosodic-based system and spectral-based system or fusion at feature level by 

stacking prosodic-based feature representation with spectral-based feature 

representation. Fusion at score and feature level has been demonstrated in [28]; the 

fusion at score level was presented as a fusion of the outputs of two prosodic-based 

classifiers and the output of one cepstral-based classifier while fusion at feature level was 

performed by stacking cepstral i-vector with combination of the two prosodic i-vector 

representation. Some prosodic features, particularly pitch frequency F0, have 

demonstrated excellent performance in gender classification task [30]. Gender 

information can be used to enhance the GMM-based speaker recognition system in two 

ways. First, adaptation of speaker-dependent GMM from gender-dependent GMM-UBM 

is computationally efficient and demonstrates stronger coupling than adaptation of 

speaker-dependent GMM from gender-independent GMM-UBM [16]. Second, Reynolds 

et al. [31] demonstrated that increasing the population size degrades the recognition 

accuracy of GMM-based speaker identification system. Therefore, exploiting gender 

information to cluster speaker population into two groups reduces the population size 
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and consequently improves the recognition accuracy of GMM-based speaker 

identification system [32]. Constructing cluster-based GMM for speaker populations 

improve the performance of speaker recognition system as demonstrated in [33]. 

Combination of prosodic features are exploited to cluster speaker populations into male 

and female groups to enhance the performance of emotional speech classification system 

[34].  Adopting gender-dependent parameterizations approach to construct GMM-based 

speaker recognition system improves the performance of the system, namely equal error 

rate and half total error rate. 

The contribution of this study within this context is presentation of a novel architecture 

for speaker identification system that employs prosodic features as well as two types of 

spectral-based features (MFCC and GFCC) in order to enhance the overall recognition 

accuracy of the system. The system works in two stages; in the first stage, a binary 

classifier exploits the superiority of prosodic features to infer gender information and 

reduce the size of gallery set by clustering speaker population into two groups. In the 

second stage, the outputs of four classifiers are fused in novel way to improve the overall 

performance of the system; particularly in the case of short duration utterances and low 

SNR which is common condition in speaker identification in social settings. 

3 Overview of the proposed architecture 

The proposed architecture of the speaker recognition system consists of two 

classifiers working in a quasi-parallel fashion. The overall architecture of the system is 

depicted in figure 1. The upper section represents the enrollment process (training path), 
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whereas the lower part elaborates the recognition process (testing path). The function of 

the feature extraction module is to transform the speaker’s utterances into feature 

vectors that contain his/her specific characteristics. As shown in figure 1, the feature 

extraction module is common to both enrolment process (training) and identification 

process (testing). In the enrolment process, the speaker’s model is trained by the feature 

vectors that were extracted from speech utterances by a target speaker and labeled 

accordingly. The recognition process is performed by extracting feature vectors from an 

unknown speaker’s utterance which in turn is used to build the unknown speaker model. 

This model is subsequently matched to one of the labeled speaker models that were 

constructed during the enrolment process. One may infer that the feature extraction 

processes for both classifiers are initiated in parallel and at the same time. However, the 

second classifier requires gender information as well as MFCC and GFCC feature vectors 

in order to complete the identification process. The first classifier is a binary SVM classifier 

that uses prosodic feature to determine the gender of the speaker. The second classifier, 

which is a combination of GMM-based classifier and GMM supervector-based SVM 

classifiers, employs MFCCs and GFCCs feature as well as gender information to determine 

the identity of the speaker. In order to compute the GMM supervectors for both types of 

feature vectors (i.e. MFCCs and GFCCs supervectors), speaker’s gender must be known. 

As shown in Figure 1, a binary SVM relying upon prosodic features to determine the 

gender of the speaker who utters a speech. The proposed speaker identification system 

works in two stages: First, the prosodic feature vector is used to determine if an utterance 

is originated from a male or a female speaker. A Binary SVM is trained using prosodic 
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feature vector to classify the utterance into two classes (males and females). The 

proposed architecture incorporates the outcome of the first stage (gender classification) 

into the second stage where MFCCs and GFCCs feature vectors, that are extracted from 

the same utterance, are used to derive speaker-dependent GMM from a pre-trained 

gender-dependent GMM-UBM. The gender-dependent GMM-UBM is trained by 

utterances originated from specific gender group of speakers (male or female group). The 

speaker-dependent GMM derived from gender-dependent GMM-UBM shows excellent 

coupling to the gender-dependent GMM-UBM and requires low computational power as 

compared with the model derived from gender-independent GMM-UBM (i.e. the GMM-

UBM is trained by utterances from male and female speakers). The resultant speaker-

dependent GMMs are used to create GMM-supervectors by stacking the mean vectors of 

the speaker-dependent GMMs. As shown in figure 1, four classifiers have been developed 

by employing GMMs and GMM-supervectors. Two of these classifiers are generative-

based classifier. The first one is a maximum likelihood classifier (MLC) that employs GMMs 

trained by MFCC feature vectors and the second classifier is a MLC that employs GMMs 

trained by GFCC feature vectors. The third and the fourth classifier are discriminative-

based classifier; namely SVM that employs GMM-supervectors derived from GMM 

trained by MFCC and GFCC feature vectors respectively.  Fusion at score level has been 

adopted to combine the outputs of all the aforementioned classifiers in a single score, 

namely the weighted Borda count method. In this study, the weighted Borda count 

method is a plausible choice as it does not require transforming all the scores of the base 

classifier into a common domain (i.e. no normalization process). Also, the fusion system 
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exploits the classes ranking information of the base classifiers on the development set to 

compute the weights for the base classifiers (more details in section 3.3). Borda count 

method uses the match scores of the base classifiers to arrange the classes in descending 

order. Then, for each class, the Borda count is represented as the sum of the number of 

classes ranked below it by the respective classifier. The higher magnitude of Borda count 

for a class, the greater degree of agreement by the base classifiers that the test sample 

belongs to that class [34]. We propose a novel way to weight the Borda count for each 

classifier by a Mamdani  fuzzy inference system [35]. Since we know that certain classifiers 

are more likely to outperform others at specific conditions, the weight factors can be 

configured to exploit the individual classifier capabilities at those conditions.  

The fuzzy inference system employs the knowledge about the recognition rate trend of 

the aforementioned classifiers when they are evaluated on development test.  This 

knowledge is used to derive a set of rules in the form of IF-THEN fuzzy rules based on 

Mamdani fuzzy inference engine in order to compute the weighting factors for all the 

aforementioned classifiers such that the overall recognition rate is improved. Here, we 

have studied the recognition rate of each classifier as a function of length of utterance 

and the signal-to-noise ratio (SNR). Then, for each combination of the length of utterance 

and the SNR, a respective rule is derived taking into consideration that each classifier is 

weighted by a factor proportional to its recognition rate. Also, the fuzzy rules consider 

the selected classifiers to be combined to complement each other from the perspectives 

of feature types and classifier model with priority to feature type. 
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 In testing path, the feature extraction modules of all feature vectors used by the two 

classifiers are initiated at the same time. Thus, there is no noticeable delay caused by this 

architecture (i.e. the second classifier needs the output of the first classifier as one of its 

inputs in order to identify a speaker).  

Figure 1. The architecture of the proposed speaker recognition system 

3.1 Feature Extraction modules 

 The proposed system exploits two groups of voice-based features to identify a speaker, 

namely prosodic features and spectral features. The GFCC and MFCC features are adopted 

as spectral features. The modular representation of GFCCs and MFCCs feature extraction 

methods are depicted in figures 2 and 5, respectively.  As shown in these figures, both 

MFCCs and GFCCs share the same stages except the type of the filter-banks that are 
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applied to the resultant frequency domain signal from Fast Fourier Transform (FFT) and 

the compression operation. The MFCCs feature extraction method apply Mel filter-bank 

after FFT stage and followed by logarithmic compression and discrete cosine transform 

(section 3.1.1). On the other hand, in the GFCCs feature extraction method, the 

Gammatone filter-bank is applied to the resultant frequency domain signal from FFT 

before loudness compression and discrete cosine transform take place (section 3.1.2). 

The prosodic feature vector characterizes four areas of prosody including pitch, loudness, 

voice quality, and formant. Pitch and loudness information have been represented as 

statistical measure of fundamental frequency (F0) and energy respectively. Harmonics-

to-noise ratio (HNR), jitter, and shimmer represent voice quality measurements while the 

first three formants characterize the fourth category of prosodic information. The 

complete details about prosodic feature vector are discussed in section 3.1.3. 

3.1.1 MFCCs Feature Extraction Module  

MFCCs feature vector is computed based on a psychologically motivated filter-bank that 

the spoken words cover a frequency range up to 1000 Hz. Thus, MFCCs use linearly spaced 

filter at low frequency below 1000 Hz and logarithmic spaced filter at high frequency 

above 1000 Hz. In other words, the filter-bank is condensed at the most informative part 

of the speech frequency (more filters with narrow bandwidths below 1000 Hz) and 

lengthy-spaced filter-bank is applied at other part of speech frequency as depicted in 

Figure 3. 
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As represented in Figure 2, the first step in the extraction process is to pre-emphasize the 

input speech signal by applying filter as:  

     (1) 

Where is the pre-emphasized speech signal , is the input speech signal, and a 

pre-emphsized factor can be any value in the interval . In the next step 

(Windowing), the pre-emphsized speech signal  is multiplied by smooth window 

function, here, we used hamming windows as: 

    (2) 

Figure 2. Block diagram of MFCCs feature extraction modules 

The resultant time-domain signal is then converted to frequency domain by applying the 

well-known Fast Fourier Transform (FFT). The frequency range in the resultant FFT 

spectrum is very wide and fluctuating. Thus, the filter-bank, designed according to Mel 

scale, is applied in order to get the global shape of the FFT spectrum magnitude  known 

to contain the most distinctive information for speaker recognition. The output of the 

Mel-frequency filter banks is shown in Figure 4. The MFCCs are obtained by applying 

logarithmic compression and discrete cosine transform as in (3). The discrete cosine 

transform converts log Mel spectrum into time domain. 
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     (3) 

Where  is output of an M-channel filter-bank,  is the index of the 

cepstral coefficient. In this study, we retained the 12 lowest  excluding the 0th 

coefficient. 

Figure 3. The triangular Mel-frequency scaled filter banks. 
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Figure 4. The output of Mel-frequency filter banks. 

3.1.2 GFCCs Feature Extraction Module 

The GFCCs feature vector is computed in the same way as MFCCs feature vector as shown 

in Figure 5. The key difference between the GFCCs and MFCCs is that the GFCCs feature 

extraction uses a bio-inspired Gammatone filterbank to extract the most discriminant 

information from FFT spectrum, which was originally designed to model the human 

auditory spectral response, particularly modeling the auditory processing at the cochlea. 

Like MFCCs, the speech signal is pre-emphasize first and followed by Windowing and FFT 

stages. Then, the Gammatone filterbank is applied to the resultant FFT spectrum. The 

impulse response of each filter in Gammatone filterbank can be represented as in (4) [36]. 

    (4) 
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Since  is constant,  and   are fixed for the entire filterbank, The frequency selectivity 

of Gammatone filterbank is mainly defined by central frequency, , and the filter’s 

bandwidth . A suggested method to compute the central frequency and the filter’s 

bandwidth is by using an approximation to the bandwidth of human auditory filter at the 

cochlea. Equivalent Rectangular Bandwidth (ERB), which represents the bandwidth of 

series rectangular filters that used to model the human cochlea, can be used to compute 

the filter’s bandwidth and its central frequencies. Moor [37]  modeled the human auditory 

system using ERB as: 

      (5) 

The idea of ERB is adopted by Patterson et al. [38], to estimate the bandwidth and the 

center frequencies of Gammatone filter. It has been suggested that the two parameters 

of Gammatone filter (the bandwidth, and order of the filter, ) should be set as 

 and  in order to attain a filter with good match to human auditory filter. 

Figure 5. Block diagram of GFCCs feature extraction module. 

As suggested by Moore [37], the center frequencies of the Gammatone filter are equally 

spaced on the ERB frequency scale. The relationship between the number of ERBs to the 

center frequencies, , can be expressed as: 
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    (6) 

The ERB scale, which is approximately logarithmic, is defined as the number of ERBs below 

each frequency. This scale correlates the center frequencies with  distribution of

frequency energy of speech signal. In other words, the frequency-dependent bandwidth 

of Gammatone filter produces a narrower filter at low frequencies and a broader filter at 

high frequencies as shown in Figure 6 (fourth-order Gammatone filterbank with 32-

channel). In this study, the fourth-order Gammatone filterbank with 64-channel outputs 

is used to extract the GFCCs feature vectors.  The GFCCs feature vectors are obtained by 

applying a cubic root operation (loudness-compression) and then de-correlate the feature 

components by applying a discrete cosine transform. Also, we retained the 22 lowest 

coefficients excluding 0th coefficient. The Gammatone filterbank response (termed the 

Cochleagram) typical spectrogram in response to a sample of speech signal from TIDIGITS 

are depicted in Figure 7. 
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Figure 6. The frequency response of Gammatone filterbanks. 

Figure 7. The Spectrogram and Cochleagram of a sample speech signal from TIDIGITS database. 

97



3.1.3 The Prosodic Feature Extraction Module  

It has been documented that 90% of speaker recognition systems have employed short-

term spectral features such as MFCC, LPCC, and GFCC which have been found out to carry 

high power discriminant information for the speaker recognition task [8].  While the 

short-term spectral features span short frames of about 20-30ms and contain information 

correlating to timber and resonance proprieties of vocal tract, the prosodic features span 

longer frames of about ten to hundreds of milliseconds and correlating with non-

segmental aspect of speech such as intonation, stress, rate and rhythmic organization of 

the speech. Since prosodic features span over long segments like syllables, words, and 

utterances, it is believed to contain complementary information and have more 

robustness for channel and background distortion. Different combinations of the prosodic 

parameters have been used widely for language and emotion identification, age and 

gender classification, and speaker authentication. The fundamental frequency (F0) is the 

most important parameter among these prosodic parameters. Here, selection of prosodic 

features from previous works of [25, 39, 40] have been adopted as feature vectors for 

first-stage classifier (gender classification). Particularly, various statistical measures of 

fundamental frequency (F0), spectral centroid (SC), spectral flatness measure (SFM), 

Shannon entropy (SE), harmonics-to-noise ratio (HNR), jitter and shimmer, and the first 

three formants have been adopted to construct one prosodic feature vector. Individually, 

these features are correlated with pitch accents and boundary tones, the approximate 

location of formants, the flatness of the spectrum, the degree of randomness of spectral 

probability density, the mount of noise in the speech signal, the overall periodicity of 
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speech signal, variability of fundamental frequency, voice pathologies, and psychological 

characteristics of vocal tract (length, shape, and volume), respectively. HNR and the first 

three formant frequencies are calculated with the VoiceSauce feature extraction tool 

[40]. SC, SFM, and SE are computed with MIRtoolbox [41]. Absolute jitter and shimmer 

measurements have been extracted by using Praat voice analysis software [42]. The 

complete list of features and the corresponding statistical measures that used to 

construct the prosodic feature vector are described in Table 1 (Appendix).

3.2 Speaker Modeling (Classification algorithms) 

In this section, for the sake of completeness of the paper, we consider popular 

classification algorithms that are widely used in speech recognition and speaker 

identification.  

3.2.1 Gaussian Mixture Model 

The well-known GMM approach has been adopted to construct the first two classifiers; 

namely GMM-MFCC MLC and GMM-GFCC MLC. The MFCC and GFCC feature vectors have 

been extracted from speech data of all speakers in training data (gallery set). For each of 

these feature vectors, two speaker-independent world models (a well-known universal 

background model (UBM)) have been created; the first UBM is trained by feature vector 

that extracted from female speakers and the second UBM is trained by the feature vector 

that is extracted from male speakers. The UBM is estimated by training M-component 

GMM with the standard expectation–maximization (EM) algorithm [17]. The UBM 

represents speaker-independent distribution of the feature vectors. Here, we use 256-
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compnenent GMM to build the UBM. The UBM is represented by a GMM with 256-

compnents, denoted by , that characterized by its probability density function as: 

                                                                           (7) 

The model is estimated by a weighted linear combination of D-variate Gaussian density 

function , each parameterized by a mean  vector,  , mixing weights, which 

constrained by ,  , and a  covariance matrix,  as:

                                    (8)

The training of UBM is to estimate the parameters of 256-component GMM, 

, from the training samples. The next step is to estimate specific GMM from 

UBM-GMM for each speaker in the gallery set using maximum a posteriori (MAP) 

estimation. The key difference between estimating the parameters of UBM and 

estimating specific GMM parameters for each speaker is that the UBM uses standard 

iterative expectation-maximization (EM) algorithm for parameter estimation. On the 

other hand, specific GMM parameters is estimated by adapting the well-trained 

parameters in the UBM to fit specific speaker model. Since the UBM represents speaker-

independent distribution of the feature vectors, the adaptation approach facilitates the 

fast-scoring as there is a strong coupling between speaker’s model and the UBM. Here, 

the gender-dependent UBMs have been constructed to provide stronger coupling and 

faster-scoring than that of gender-independent UBM.  It should also be noted that all or 

some of GMM’s parameters ( can be adapted by a Maximum A Posteriori 

(MAP) approach. Here, we adapted only the mean   to represent specific speaker’s 

model. Now, Let us assume a group of speakers  represented by GMM’s 
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. The goal is to find the speaker identity  whose model has the 

maximum a posteriori probability for a given observation  (MFCC or 

GFCC feature vector). We calculate the posteriori probability of  all observations 

 in probe set against all speakers models  in gallery 

set as (9). As  vary from 1 to number of speakers in gallery set and number of 

utterances in probe set respectively, the result from (9) is    matrix.

                                       (9)

Assuming equal prior probabilities of a speaker, the terms  and  are constant 

for all speaker , thus both term can be ignored in (9). Since each subject in probe set is 

represented as , thus by using logarithmic and assume independence 

between observations, calculation of posteriori probability   can be simplified as (10). 

The outputs of the two GMM-based classifiers (GMM-MFCC MLC and GMM-GFCC MLC) 

have been computed using (10).  

                                 (10)

3.2.2 GMM Supervector and Support Vector Machine 

One of the challenges of exploiting information in voice modality is that the utterances 

are manifested with varying time duration. The dimension of feature vectors depends on 

the time duration of these utterances, hence the resultant feature vectors from feature 

extraction modules (i.e. MFCC, GFCC, prosodic) have variable dimensions. Since most of 

the discriminant classifiers including support vector machine (SVM) require fixed length 

feature vector as input, speaker recognition research community has discovered a way to 
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represent theses time-varying utterances as a fixed-length feature vectors. The method 

relies upon using the parameters of speaker-dependent GMM. A speaker can be modeled 

as M-component GMM either by adapting a specific speaker model from UBM-GMM 

using MAP or by training M-component GMM with EM algorithm independently from 

UBM-GMM. Deriving a speaker-dependent model by adaptation approach provides a 

good coupling between a speaker model and UBM-GMM. Since the UBM-GMM 

represents a distribution of all speakers in the galley set, this coupling is desirable. Also, 

the adaptation approach reduces the computational cost of building speaker-dependent 

model and facilitate real-time response.  

In this study, GMM supervector is constructed by concatenating d-dimensional mean 

vector of M-component speaker-dependent model that adapted from pre-trained UBM-

GMM. The resultant GMM supervector with  dimension is fed to SVM. The 

dimension of the MFCC-GMM supervector is ( ) and the 

dimension of the GFCC-GMM supervector is  ( ). Principal 

component analysis is applied to reduce the dimension of these supervector before being 

fed to SVM. We refer to the two classifiers that have been trained by MFCC-GMM 

supervector and GFCC-GMM supervector as MFCC-GMM supervector SVM and GFCC-

GMM supervector SVM, respectively.

Support vector machine is one of the most powerful discriminative classifiers with 

excellent generalization performance to classify any unseen data. Basically, SVM is a 

supervised binary classifier aims to separate the two classes by modeling a decision 

boundary as hyperplane; hence, adopting SVM to solve speaker verification is sensible. In 
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speaker verification, the task is to determine if a given utterance match or does not match 

a target model (claimant identity). In the training stage, all training feature vectors that 

are extracted from the target speaker’s voice samples are represented as one class and 

the second class is represented by all training feature vector that are extracted from the 

background “impostor” speaker’s voice samples. SVM maps the training vector to high-

dimensional space and finds an optimum hyperplane that separates the two classes (i.e. 

target speaker and impostor) with maximum margin.  Since speaker identification is a 

multiclass classification problem, the well-known method One-Vs-All (OVA) SVM is 

adopted to extend the binary SVM to accommodate the multiclass classification task. 

Adopting OVA approach, which requires constructing as many binary SVM classifier as the 

number of classes, fits our framework of integrating the outputs of various classifiers. The 

output of SVM should be represented as score vector that can be interpreted either as 

the degree of match between a given utterance and every speaker’s voice signature in 

gallery set or as the probability that a given utterance originates from every speaker in 

the gallery set. The outputs of multiclass SVM that constructed by OVA approach can be 

expressed as probabilistic outputs; hence, the OVA is adopted to construct multiclass SVM 

classifier. The probabilistic outputs are used to rank the classes and compute the Borda 

count value for each class.

In the proposed speaker recognition system, there is no need to unify and 

transform the outputs of the base classifiers to common domain.  However, the outputs 

of the base classifiers should be expressed as scores (represent the degree of support) 

that are used to rank all the classes in descending order. The outputs of SVM, which is 
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mostly expressed as a label for the predicted class that a test sample is assigned to (for 

example, the output of binary classifier is either +1 or -1), is not compatible with our 

fusion system. Therefore, the method suggested by Platt [43] is used to estimate 

probabilistic outputs for SVM classifier. The discriminative function of binary SVM can be 

expressed as (11) [44]: 

                                                   (11)

Where  is either , and represents ideal output,  is support vector,  is biase, 

 is kernel function,  is weight,  The kernel function 

satisfies the Merce condition, so that  can be expressed as (12):

                                                                   (12)

Where  is a mapping from input space (feature vector space) to high-dimensional 

space. Here, a radial basis function is selected as SVM kernel function and 3-fold cross 

validation was adopted to find best parameters for it. Mapping input feature vectors to 

high-dimensional space by using “kernel trick” which implicitly transforms the input 

vectors to high-dimensional space without explicit computation of dot product in high-

dimensional space. Hence, all the dot products in SVM computations are replaced with 

kernel function  This implies that SVM optimizes a decision boundary (hyperplane) 

between the two classes in high-dimensional space without explicit computation of . 

For more information about adopting SVM in speaker recognition, the reader may refer 

to [45], and to [44, 46] for more in-depth information about the SVM and kernel functions.
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3.3 Fusion System  

A large number of biometric authentication systems have adopted fusion of information 

at the score level to improve the overall performance of authentication systems. These 

systems employ various biometric modalities, different classification architectures, and 

feature extraction approaches. The key is not only to generate a set of feature vectors 

that complement each other but also to develop classifiers with satisfactory performance 

in diverse and challenging conditions. Here, the scores of the four classifiers (GMM-MFCC 

MLC, GMM-GFCC MLC, GMM-MFCC supervector SVM, and GMM-GFCC supervector SVM) 

are integrated using weighted Borda count method. It is worth noting that these 

classifiers represent both generative and discriminative approaches which intuitively can 

be seen as highlighting similarities and differences between classes, respectively.  The 

weight factors are computed on the fly using a Fuzzy rule-based inference engine. The 

knowledge base of the fuzzy inference system is represented as IF-THEN fuzzy rules. These 

rules are derived by studying the recognition rate of the aforementioned classifiers as a 

function of SNR and the length of utterance.  

In order to study the recognition behavior for individual classifiers as a function of SNR 

and the length of utterance, the TIDIGITS corpus [47] was divided into three equal sets; 

training set, development set, and testing set. The training set was used to train individual 

classifiers independently. All utterances in development set and testing set were 

distorted by three types of noise: white Gaussian noise, pink and street noise with SNR 

range from -5 dB to 50 dB, in increments of 5 dB. Also, all utterances in the development 

set were categorized into three groups (short, medium, long) based on the length of 
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utterance. Then, the recognition rates of these trained classifiers were computed on each 

group and depicted as a function of SNR and rank. Each group (i.e. short, medium, long) 

contains utterances with range of time duration. Also, the estimation of SNR is prone to 

error. Thus, we fuzzified SNR and length of utterance by designing membership functions 

for each of them empirically as depicted in Figures 8 and 9 respectively. The SNR and 

length of utterance represent inputs of the fuzzy inference system and the weight factors 

represent the outputs of the fuzzy inference system as shown in Figure 1. The statistical 

measures of time duration of all utterances (i.e. min, max, mean) in each group have been 

used to facilitate determining the parameters of membership function of length of 

utterance. The SNR membership function parameters have been determined empirically 

based on the performance of the base classifiers on different noise levels. For each type 

of noise, a set of parameters has been selected relying upon the performance of the base 

classifiers. The knowledge base, which is represented as IF-THEN fuzzy rules, are derived 

from the performance of the base classifiers on the development set that categorized into 

three groups and distorted with three types of noise (white, pink, street). A combination 

of the three types of noise with three categories of length of utterance are depicted in 

Figure 10 to Figure 18. For each type of noise, a set of IF-THEN rules are derived relying 

upon the performance of the base classifiers shown in Figure 10 to Figure 18. Since the 

Borda count method uses ranking information to determine the winner class, the change 

in recognition rates of the base classifiers with respect to Rank (Rank axis in Figure 10 to 

Figure 18) is exploited in deriving IF-THEN rules. The rules are derived such that more 

weight is given to the base classifier that demonstrate big improvement in recognition 
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rate with respect to rank axis.

Figure 8. Fuzzy membership function for SNR input. 

Figure 9. Fuzzy membership function for length of utterance input. 
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Figure 10. The 3D surface of the recognition rates for the four base classifiers on short 

utterances distorted with white noise.

Figure 11. The 3D surface of the recognition rates for the base classifiers on medium 

utterances distorted with white noise.
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Figure 12. The 3D surface of the recognition rates for the base classifiers on long 

utterances distorted with white noise.

Figure 13. The 3D surface of the recognition rates for the base classifiers on short 

utterances distorted with pink noise.
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Figure14. The 3D surface of the recognition rates for the base classifiers on medium 

utterances distorted with pink noise. 

Figure 15. The 3D surface of the recognition rates for the base classifiers on long 

utterances distorted with pink noise.
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Figure 16. The 3D surface of the recognition rates for the base classifiers on short 

utterances distorted with street noise.

Figure 17. The 3D surface of the recognition rates for the base classifiers on medium 

utterances distorted with street noise.
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Figure 18. The 3D surface of the recognition rates for the base classifiers on long 

utterances distorted with street noise.

4 Experimental results  

In this section, we present the experimental results to evaluate the performance of the 

proposed speaker recognition system. We have included three sets of simulation studies 

for speaker recognition identification system to demonstrate the performance of the 

system on three types of noise. 

 The TIDIGITS database is used in this research study. TIDIGITS is a speech dataset which 

was originally collected at Texas Instruments, Inc. The corpus was collected in a quiet 

environment and digitized at 20 kHz. The TIDIGITS corpus contain 326 speakers 

categorized into four groups (111 men, 114 women, 50 boys and 51 girls) each 

pronouncing 77 digit sequences. Only men and women groups were used in the 

experiments. Speech signals of 40 speakers (20 males and 20 females) out of 225 were 

randomly chosen in this study. The choice of the number of speakers was selected to 
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facilitate comparison of our recognition system with other works. The speech samples 

were divided equally into three sets; namely training, development, and testing set. The 

training set was used for speaker modeling and training base classifiers while the 

development set was used to study the recognition rate as function of SNR and length of 

utterance, consequently derive the IF-THEN rules. The testing set was used to test the 

proposed systems under different noisy conditions. The testing set is comprised of unseen 

data, not used in the development of the system. It is worth noting that the training set 

is comprised of clean speech signals while the speech signals in development and training 

set were distorted with different noises at different SNR levels. At the test time, a prior 

knowledge about the type of noise is assumed. The CASA-based approach presented in 

[48] has been adopted to estimate the SNR of speech signal. The performance of the

proposed speaker identification system was evaluated on three different noises (white, 

pink, street) at range of SNR (-5 dB to 65 dB). The overall recognition rates of the proposed 

system (fusion) and the recognition rates of the base classifiers were computed for the 

aforementioned types of noise. The rank-1 recognition rates of the fusion system were 

plotted as a function of SNR as shown in Figure 19 to Figure 21. Also, the rank-1 

recognition rates of the base classifiers when they are used within the proposed system 

(two-stage) are depicted in the same figures.  The performance of the base classifiers 

when they are used within the proposed system were compared with that of the same 

base classifiers when they are used independently without first stage classifier (i.e. 

without gender classification) [10, 16, 49] as shown in Figure 22 to Figure 24. To 

demonstrate the performance of the system in social settings, the system was tested with 
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corpus of short utterances (0.9 to 4.5 seconds) that distorted with babble noise at range 

of SNR (-5 dB to 50 dB).  The performance of the proposed speaker identification system 

was represented as rank-1 recognition rate shown in Figure 25.

Figure 19. Rank-1 recognition rates of the fusion system and the base classifiers (two-

stage) on utterances distorted with white noise. 

Figure 20. Rank-1 recognition rates of the fusion system and the base classifiers (two-

stage) on utterances distorted with pink noise. 
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Figure 21. Rank-1 recognition rates of the fusion system and the base classifiers (two-

stage) on utterances distorted with street noise. 

Figure 22. Rank-1 recognition rates of the base classifiers within the proposed system 

(black) compared with that of the same base classifiers when they are used independently 

(blue) on utterances distorted with white noise. 
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Figure 23. Rank-1 recognition rates of the base classifiers within the proposed system 

(black) compared with that of the same base classifiers when they are used independently 

(blue) on utterances distorted with pink noise. 

Figure 24. Rank-1 recognition rates of the base classifiers within the proposed system 

(black) compared with that of the same base classifiers when they are used independently 

(blue) on utterances distorted with street noise. 
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Figure 25. Rank-1 recognition rates of the fusion system and the base classifiers (two-

stage) on utterances distorted with babble noise. 

4.1 Discussion 

The results suggest that the recognition rates of the base classifiers that are used within 

the proposed architecture (i.e. exploiting the gender information in the first-stage 

classifier) outperform that of the same classifiers when they are used independently 

(without the first-stage classifier). However, the recognition rates of these base classifiers 

and consequently the overall recognition rate of the proposed system is highly affected 

by the performance of the first classifier (gender classification). Also, the outcome of 

fusing all the base classifiers within the proposed architecture outperforms the 

performance of the best of the base classifiers at low SNR and match the performance of 

the best of the base classifiers at high SNR. The proposed fusion system exploits the 
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knowledge about the strengths and the weaknesses of the base classifiers in order to 

improve the overall performance of the system. The knowledge about the strengths and 

the weaknesses of each base classifier at different combinations of SNR and length of 

utterance is used to increase the contribution of the strong classifier and to reduce the 

contribution of the weak classifier, consequently improve the overall performance of the 

system. For instance, when the speech signals are distorted with white noise, the GMM-

GFCC classifier outperform all other base classifiers at low SNR and short utterance. On 

the other hand, at low SNR and long utterance the GMM-MFCC MLC classifier is superior 

to all other base classifiers. Thus, more weights are given to these classifiers when 

encounter similar conditions at test time. The weight factors are governed by fuzzy rules 

that are derived relying upon the performance of the base classifiers as discussed in 

section 3.3. The proposed fusion approach considers the two base classifiers that were 

combined such that they complement each other (i.e. the selected base classifiers need 

to use different features or different models given priority to the base classifier that uses 

different feature vectors) whenever it is possible in the light of their performance. For 

instance, considering street noise, the GMM-MFCC MLC classifier was selected to be 

combined with GMM-GFCC MLC classifier at low to medium SNR (approximately in range 

of -3 dB to 12 dB) and short utterance even that GMM-GFCC supervector SVM has better 

performance than that of GMM-MFCC MLC classifier. However, the fuzzy inference 

system assigns most of the weight to GMM-GFCC MLC classifier as its performance is 

superior to the rest of classifiers at this specific condition. 
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5 Conclusions 

In the absence of a unique robust speaker identification system that demonstrates 

superior performance for applications where the system is expected to perform in 

challenging scenarios such as different types of environmental noise, at different levels of 

environmental noise (low SNR to high SNR), and with only access to short utterances (at 

test time), the plausible contention is to integrate the advantages of using multi-feature 

speaker recognition system with multi-classifier speaker recognition system. In this study, 

two types of speech-based features (short-term spectral and prosodics features) and 

three powerful classifier systems (Support Vector Machine, Gaussian Mixture Model, and 

GMM supervector-based SVM classifiers) are incorporated within an elegant architecture 

to identify the speaker and his/her gender as by product. Exploiting prosodics features to 

cluster the population into two groups reduces the population size and build strong 

coupling between speaker-dependent model and the UBM. The reduction in population 

size as well as deriving speaker-dependent model from gender-dependent model, 

improve the recognition rates of the base classifiers. Moreover, combining the base 

classifiers at score level by assigning weights proportional to their performance at 

different conditions (combinations of SNR and length of utterance), improve the overall 

recognition rate of the proposed speaker recognition system particularly at low SNR and 

short utterance. 
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Appendix 

Table 1 Prosodic feature vector  

Name Statistic measure 

Fundamental frequency (F0) Median, Max, and Min. 

Spectral centroid (SC) Mean and Std. 

Spectral flatness measure (SFM) Mean and Std. 

Shannon entropy (SE) Mean and Std. 

Harmonics-to-noise ratio (HNR) Mean and Std. 

Jitter Median 

Shimmer Median 

The first three formant (F1,F2,F3) Median 
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