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Abstract

Medical imaging is a cornerstone of therapy and diagnosis in modern medicine. However,
the choice of imaging modality for a particular theranostic task typically involves trade-
offs between the feasibility of using a particular modality (e.g., short wait times, low cost,
fast acquisition, reduced radiation/invasiveness) and the expected performance on a clinical
task (e.g., diagnostic accuracy, efficacy of treatment planning and guidance). The goal of
this thesis is to examine the ability to apply the knowledge learned from the less feasible
but better-performing (superior) modality to guide the utilization of the more-feasible yet
under-performing (inferior) modality and steer it towards improved performance. To this
end, we develop a lightweight guidance model – an autoencoder-like deep neural network –
that learns a mapping from the latent representation of the inferior modality to the latent
representation of its superior counterpart. With the incorporation of this model in the clas-
sification framework of the inferior modality, we aim to compensate for the absence of the
superior modality during inference time. We focus on the application of deep learning for
image-based diagnosis and examine the advantages of our method in the context of two clin-
ical applications: multi-task skin lesion classification from clinical and dermoscopic images
and brain tumor classification from multi-sequence magnetic resonance imaging (MRI) and
histopathology images. For both these scenarios, we show a boost in the diagnostic perfor-
mance of the inferior modality without requiring the superior modality. Furthermore, in the
case of brain tumor classification, our method outperforms the model trained on the supe-
rior modality while producing comparable results to the model that uses both modalities
during inference.

Keywords: Deep Learning; Multimodal Learning; Image Classification; Student-Teacher
Learning; Brain Tumors; Skin Lesions
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Chapter 1

Introduction

1.1 Motivation

Multimodal learning aims at analyzing the heterogeneous data in the same way animals
perceive the world – by a holistic understanding of the information gathered from all the
sensory inputs. The complementary nature of this multi-sensor input enables the animal
in better navigating the surroundings than a single sensory input. Different sensory in-
puts provide different characteristics of the same object, all of which together provide a
comprehensive overview of the particular object. The different ways in which the animal
experiences the object, such as the sight, sound, odour, etc., in simple terms, encapsulates
the word ‘modality’.

Multimodal learning, or multimodal representation learning, a sub-field of machine
learning (ML), has seen a massive surge of interest in the recent years [1, 2, 3, 4, 5].
This can primarily be attributed to two reasons. Firstly, the availability of large volumes
of multimodal data, owing to the ubiquity of a wide range of digital sensors that capture
different types of signals at different resolutions. Secondly, the emergence of deep learning
(DL) algorithms [6] that thrive on large volumes of data. The powerful feature abstraction
abilities of DL models coupled with the automatic selection of relevant features has moti-
vated the success of multimodal learning.

Since multimodal data are more informative than unimodal data, in a clinical setting,
where there is a high cost on the decisions that are dependent on the available data, it
is of utmost importance to gather the maximum amount of information before finalizing
the diagnosis and treatment decisions. A comprehensive assessment of a patient’s health
is crucial for a clinician to make an informed disease diagnosis and formulate an accu-
rate management strategy. Typically, this step involves the acquisition of complementary
biomedical data from the target organ of the patient across multiple different modalities.
For instance, the simultaneous acquisition of functional and anatomical imaging data is a
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Figure 1.1: Multimodal medical images corresponding to a brain tumor (top) and a skin
lesion (bottom) of a patient. The brain tumor is imaged using an MRI scan of the entire brain
(left) and a microscopy visualization of the tumorous tissue sections of the brain (right).
The skin lesion is imaged using clinical (left) and dermoscopy (right) imaging techniques.
Sources of images are as follows: patient [13], brain MRI and tissue [14], skin lesions [15].

common practice in the modern clinical setting. Two of the popular practices are the si-
multaneous acquisition of Positron Emission Tomography (PET) scans alongside Magnetic
Resonance Imaging (MRI) [7] or Computed Tomography (CT) [8] scans. While the PET
scans provide accurate quantitative information on the metabolic activity of the target or-
gan, the MRI or CT scans provide the anatomical details about the spatial arrangement of
the body organs and tissue. The simultaneous acquisition, when accurately aligned, signif-
icantly improves the identification and localization of the diseases. In the same way, cancer
diagnosis and prognosis decisions are increasingly a result of a thorough examination of
both the genotypic and phenotypic modalities [9, 10]. Here, the phenotypic modalities, such
as the histologic tissue slides, provide the spatial and morphological information about the
tumor while the genomic analysis of the tissues provides the quantitative genetic mutations
and aberrations caused by the tumors. Together, the two modalities not only aid in the
better identification of the cancer subtype but also improve our understanding of cancer as
a whole [11, 12].

Although the complimentary use of multiple modalities can improve the clinical diag-
nosis, the acquisition of different modalities is not equally feasible. The modalities that
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are easy to acquire are typically less informative and are to be supplemented subsequently
by the more informative modalities. In a practical scenario, the modalities that are easy
to acquire are typically used for the preliminary diagnosis of the disease. The modalities
that provide critical information about the disease, on the other hand, are less feasible to
acquire due to a multitude of reasons. The most common reasons are the long wait times,
higher cost of scan, slower acquisition, higher radiation exposure, and/or invasiveness. This
leads to a trade-off between the feasibility of acquisition of a modality and its the expected
performance on a clinical task.

An imaging system that provides a confident diagnosis may be prohibitively expensive
or fraught with long wait times; a higher anatomical or functional resolution imaging may
only be possible with a modality that involves invasive surgical procedures or ionizing radi-
ations. For instance, a CT scan provides a precise anatomical structure of the body organs
when compared to a simple X-ray scan, mainly due to the powerful doses of radiation.
One CT scan can have the same dosage of radiation as 200 X-ray scans [16]. Although
the benefits outweigh the risks, repeated exposure to CT scans, especially in children, is
discouraged due to the associated links to cancerous mutations [17, 18]. Another instance of
such a trade-off is the acquisition of the high-resolution histologic tissue images that provide
rich cellular information necessary for tumor identification. While highly informative, these
images come at the cost of an expensive, time-consuming, and invasive surgical procedure
with associated risks of patient bleeding and infections [19]. Unsurprisingly, in most cases,
it is the expensive modality that provides the critical piece of information for diagnosis.

For simplicity, hereinafter, we refer to the over-performing modality with the less-feasible
acquisition as the superior modality, and the more-feasible but under-performing one as the
inferior. We note that a particular modality may be regarded as inferior in one context
and superior in another. For example, MRI is superior to ultrasound images for delineating
cancerous lesions but inferior to histologic images in deciding cancer subtype or grade.

Given the existence of the aforementioned trade-off, it would be advantageous to lever-
age the inferior modalities in order to alleviate the need for the acquisition of the superior
modality. However, this is reasonable only when the former can be as informative as the
latter. To this end, we propose a novel DL-based method that leverages existing datasets
of paired inferior and superior modalities during a training phase in order to enhance the
diagnosis performance achievable by only the inferior modality during the inference phase.
The practical clinical equivalent of the scenario is to leverage the typically abundant, multi-
modal data of the previous patients in order to improve the diagnosis of the current patient
using only the inferior unimodal data.

3



We make use of the concepts from the prior works on multimodal and student-teacher
learning to effectively transfer the knowledge from the superior modality to the inferior.
In order to test the efficacy of the proposed method, we conduct experiments on two dis-
parate multimodal datasets of vastly different resolutions: a multi-task skin lesion classifica-
tion dataset consisting of clinical and dermoscopic images and a brain tumor classification
dataset consisting of multi-sequence MRI and histopathology images. Our experiments on
these datasets across several classification tasks demonstrate the validity and utility of the
proposed method. We summarize the contributions of this thesis in section 1.4.

1.2 Brain Tumors

A brain tumor is one of the common diseases of the central nervous system (CNS) and is
a complex and fatal disease. A statistical report published by Ostrom et al. in 2018 [20]
based on the survey conducted in the United States between 2011 and 2015 on the primary
brain and other CNS tumors, found an overall age-adjusted incidence rate of 23.03 per
100,000 population. Although the incidence rate of brain cancer compared to cancers of
other organs is low [21], they are associated with significant mortality and morbidity. The
five- and ten-year relative survival rates for patients with malignant brain and other CNS
tumors were estimated to be 35.0% and 29.3% respectively [20]. The most common type
of malignant brain tumor in adults is glioma, and it corresponds to 81% of all malignant
brain and CNS tumors. Glioblastoma, the most aggressive subtype of glioma, accounts for
∼45% of glioma cases and has a five-year overall survival rate as low as ∼5% [22].

The diagnosis, grading, and stratification of different subtypes of brain tumors are con-
ventionally done by pathologists who, using a microscope, examine the processed and stained
tissue specimens fixed on glass slides. This technique is considered the golden standard for
clinical diagnosis. In 2016, when the World Health Organization revised the CNS tumor clas-
sification criteria to include the molecular parameters [11], the whole slide tissue analysis
remained the most informative visual modality for tumor diagnosis. However, non-invasive
and relatively safe MRIs are routinely used for preliminary diagnosis in the clinical setting.
While MRI is useful in locating the tumorous regions within an organ, due to the complex-
ity and heterogeneity of the different tumor subtypes, MRI alone is not sufficient and is
typically complemented by the more informative pathology slides for an accurate diagnosis
and the subsequent treatment planning.

Although the pathology-based tissue slides are more informative than MRI, the acquisi-
tion of the former is comparatively less feasible than the latter. Figure 1.2 shows the steps
involved in the acquisition and the subsequent digitization of the pathology slides [25]. The
first step involves the collection of sufficient good-quality tissue for diagnosis. This is done
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Figure 1.2: Steps involved in the acquisition of whole slide images of the tumorous tissue
sections. Sources of different images are as follows: biopsy [23], processing and staining [24],
digitization [14].

via biopsy, an invasive surgical procedure that comes with the risk of bleeding and infec-
tions [19]. The tissues are then immersed into a fixative solution to prevent the breaking
down of tissues and are further embedded into cassette-sized paraffin boxes to minimize the
changes in the shape of the tissue. In the third step, the tissues, which are semi-transparent
at this stage, are stained using chemical agents called dyes in order to make them visible
under the microscope. Finally, the stained tissues are imaged using high-resolution micro-
scopes to produce digitized whole slide images (WSI).

On the other hand, the acquisition of MRIs involves a non-invasive procedure as shown
in Figure 1.3. MRI scanners use non-ionizing radio waves to excite the water molecules in
the brain. The strong magnetic field created by the MRI scanner enables the detection of
the excited water molecules and in turn, aids in the imaging of the brain [26]. By varying the
pulse sequence of the radio waves, multiple complementary images with different contrasts
can be generated. Figure 1.3 shows the four common sequences- native (T1), T2-weighted
(T2), post-contrast T1-weighted (T1Gd), and T2 Fluid Attenuated Inversion Recovery (T2-
FLAIR) (top to bottom).
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Figure 1.3: Acquisition of MRI scans of the patient’s brain (left) and the acquired multi-
sequence brain MRI (right). The sequences include native (T1), T2-weighted (T2), post-
contrast T1-weighted (T1Gd), and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR)
(top to bottom). Sources of images are as follows: acquisition [27], multi-sequence MRI [14].

1.3 Skin Cancer

Skin cancer is one of the most common types of cancer with over 1 million new cases
and 100,000 fatalities in 2018 alone [21]. The incidence of skin lesions is more common in
populations with fairer skin complexions and is observed to have an increase in incidence
with decreasing latitude – the highest annual incidence rates recorded in Australia [28]. A
majority of cases are caused due to high and intermittent exposure to ultraviolet radiation
from the Sun. Melanoma, the most aggressive form of skin cancer, despite its low prevalence
compared to other forms, is a major cause of death from skin cancer [28]. The American
Cancer Society estimates about 7,650 fatalities due to Melanoma in the United States this
year [29]. However, early detection has shown to significantly improve patient outcomes [30],
making early diagnosis and treatment extremely important.

While a skin biopsy and the subsequent examination of the microscopic tissues is the
golden standard for skin lesion diagnosis, dermatologists have long relied on the visual in-
spection of the skin lesions. Dermoscopy, also known as epiluminescence microscopy, is the
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Figure 1.4: Acquisition of dermoscopic image of a skin lesion (left) and the acquired dermo-
scopic image (top-right). The clinical image of the corresponding skin lesion (bottom-right).
Sources of images are as follows: acquisition [33], skin lesions [15].

most popular non-invasive imaging technique that provides detailed morphological and vi-
sual properties of the subsurface skin structures of the pigmented lesions that are not visible
to the unaided eye [31]. The use of dermoscopy has been shown to improve the diagnostic
performance of experienced dermatologists, with improvements as high as 49% in the accu-
racy of melanoma diagnosis [32].

The acquisition of dermoscopic images of skin lesions requires a dermoscope (or der-
matoscope), a hand-held device with a high-quality magnifying lens, and a powerful lighting
system. Figure 1.4 shows the acquisition of the image of a skin lesion using a dermoscope
(left). On the right side of Figure 1.4 is an example of the dermoscopic image (top) and
the corresponding clinical image (bottom). The acquisition of clinical images, on the other
hand, is relatively convenient as they are captured using ubiquitous and inexpensive mobile
cameras. This also means the acquired clinical images are relatively less standardized and
include artefacts such as rulers, as seen in the clinical image in Figure 1.4.

1.4 Thesis Contributions

The superior modality is more informative than the inferior modality with respect to dis-
ease diagnosis but the acquisition of the superior modality is less feasible than the inferior
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modality. The goal of this thesis is to address this trade-off between any two modalities that
exhibit this behavior. The key contributions of this thesis are as follows:

• While previous works on multimodal disease classification rely on the presence of both
modalities during the inference time, our proposed method learns from the multimodal
data during training and uses only the unimodal data from the inferior modality during
the inference.

• We propose a novel method based on the multimodal and student-teacher learning
frameworks to effectively transfer the knowledge from the superior modality to the
inferior. Our proposed guidance model is a lightweight model that is easy to implement
and adapt even for modalities of different dimensions and scales.

• Our experiments on two multimodal datasets, corresponding to diseases of two dif-
ferent body organs (brain tumors and skin lesions), demonstrate that the proposed
method improves the diagnostic performance achievable by the inferior modality. Ad-
ditionally, in the case of brain tumor classification, our proposed method using the
inferior modality outperformed diagnostic performance achievable by the superior
modality and was comparable to that of the multimodal diagnosis using both modal-
ities.

This thesis is based on the work that has been accepted to the 25th International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022) [34]. A
significant portion of the text in this thesis is copied verbatim from the MICCAI paper. The
preprint is made available on arXiv under the title: Deep Multimodal Guidance for Medical
Image Classification [35]. The codes and the pre-trained models would be made publicly
available at https://github.com/mayurmallya/DeepGuide.

Mayur Mallya, Ghassan Hamarneh, Deep Multimodal Guidance for Med-
ical Image Classification, International Conference on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI), 2022.

1.5 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides a detailed list of the related
works that are closely related to the methodology proposed in the thesis. Chapter 3 presents
the mathematical formulation of the problem statement and the proposed methodology. In
Chapter 4, we describe the experimental setup by illustrating the datasets, preprocessing
strategies, and hyperparameters used in the experiments. The results of the different experi-
ments are discussed in Chapter 5. Finally, the conclusion and the future works are presented
in Chapter 6.
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Chapter 2

Related Work

2.1 Multimodal learning

Multimodal learning, in general, aims at the utilization of ubiquitous multimodal data to
learn comprehensive latent space representations that can be used for a variety of down-
stream tasks. Despite the recent surge of interest in multimodal learning [1, 2, 3, 4, 5], one
of the commonly encountered challenges in the field is the heterogeneity gap between the
different modalities. Specifically, this corresponds to the situation where the latent space of
modalities A and B differ semantically even though the two modalities capture the same
object. Thus, narrowing the heterogeneity gap in order to facilitate learning of a common
latent space for multiple modalities becomes the primary objective of multimodal learning.

To this end, based on how different approaches narrow the heterogeneity gap, Guo
et al. [2] categorize the deep multimodal learning methods into three types of frameworks
– joint representation, coordinated representation, and translation frameworks. Joint rep-
resentation projects the unimodal representations into a common latent space where they
are fused together to form a multimodal representation. Coordinated representation aims to
learn modality-specific representations that are constrained to each other (usually by a loss
function). Finally, the translation frameworks, as the name suggests, involve the translation
from one modality to another and aim to learn the latent space between the source and
target modalities. Figure 2.1 presents an overview of the different frameworks proposed by
Guo et al. [2].

Joint representation framework

The fusion of heterogeneous latent representations from different modalities to form a
common multimodal representation has shown to improve the performance over unimodal
representations across a variety of tasks such as image classification [36, 37, 38, 39, 15],
segmentation [4, 40, 41], video event recognition [42, 43, 44], etc. The joint representation
framework is used in cases where the multimodal data is available both at the training
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Figure 2.1: Multimodal learning frameworks – (a) joint representation framework, (b) coor-
dinated representation framework, and (c) translation framework. The figure is copied from
the work of Guo et al. [2].

and the inference time. The focus of research is the optimal fusion strategy that aims
to answer when and how to efficiently fuse the supposedly heterogeneous and redundant
features. When to fuse? While the registered multimodal image pairs allow for an input-
level data fusion [41, 45], a majority of works rely on feature-level fusion not only due to the
dimensionality mismatch at the input but also for the flexibility of fusion it offers [38, 39, 15].
Additionally, some works make use of a decision-level fusion framework that leverages the
ensemble learning strategies [46]. How to fuse? The most popular fusion strategy to date
is the straightforward concatenation of the extracted features [47, 15]. However, recent
works aim to learn the interactions across multimodal features using strategies like the
Kronecker product in order to model pairwise feature interactions [38]. Kawahara et al. [15]
concatenate the latent representations of the clinical and dermoscopic skin lesions at the
feature level. While the winners of the RadPath 2020 challenge [48] follow the same strategy,
the winners of the RadPath 2019 challenge [49] use the decision-level fusion of the modality-
wise predictions.

Coordinated representation framework

Unlike the joint representation framework where the modality-specific latent represen-
tations are fused to form a multimodal representation, in the coordinated representation
framework, separate representations are learned for each modality but are coordinated via
constraints (Figure 2.1(b)). In general, the constraints encourage (or discourage) a specific
characteristic such as the similarity, correlation, or orthogonality between the modality-
specific latent representations as a way to mitigate the heterogeneity. Such constraint-based
representation learning methods are commonly seen at the intersection of vision and lan-
guage [1, 2]. Frome et al. [50] showed that leveraging the semantic similarity of the textual
data can improve image-based object identification. Conversely, Kiros et al. [51] and Pan
et al. [52] improved respectively the image and video captioning by coordinating the latent
space between the images/videos and sentences. Coordinated representations are also found

10



useful for cross-modal retrieval tasks [53, 54, 55] as this framework allows for the coordi-
nated representations of each modality to be used individually for downstream tasks during
inference.

Baltrušaitis et al. [1] coined the term multimodal co-learning specifically for methods
that aim to assist the analysis of a resource-poor modality by exploiting the knowledge
of the resource-rich modality. The resources can refer to the quality of the input data, the
availability of modality-specific annotations, the presence of noise-free labels, and so on. The
resource-rich modality is used only during the model training and not during the inference.
Ngiam et al. [56] used a bimodal autoencoder to learn multimodal representations for paired
audio and video signals. The learned representations were used for unimodal downstream
tasks of both audio and video inputs. Similarly, Moon et al. [57] use latent space transfer
learning from audio to the video modality to improve the inference time lip-reading using
only the video signal without accessing the audio signal.

Translation framework

The goal of this framework is to translate an element from one modality to the corre-
sponding element in the other modality. The translation framework has been successful in
a variety of tasks including machine translation [58, 59], text-to-image and text-to-speech
generation [60, 61], image-to-image translation [62, 63, 64], and so on. Image-to-image trans-
lation has also been applied successfully in the medical domain [65], the most common ap-
plications being the inter-modality translation between the registered imaging modalities
such as MRI, CT, and PET scans [66, 67]. Additionally, intra-modality translation has also
been applied for tasks such as image denoising [66], generating the missing sequence [68],
artefact correction [66], etc.

Although great success has been witnessed in image-to-image translation, the application
of this framework in several medical applications is complicated or non-ideal due to the
difference in the dimensionality (e.g. 2D to 3D) and size (e.g. millions to billions of voxels)
between source and target modalities. The smaller size of the datasets also hinders the
performance of the translation. Moreover, in most cases, the translation is not optimized
for the subsequent downstream tasks which make it challenging for applications such as ours,
where the end goal is to improve the disease diagnosis as opposed to modality translation.

2.2 Student-Teacher (S-T) learning

Often referred to as Knowledge Distillation (KD), S-T learning aims to transfer the knowl-
edge learned from one model to another. The primary applications of S-T learning have so
far been towards model compression and knowledge transfer [69]. Model compression aims
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Figure 2.2: Overview of the related areas. Our proposed method places at the intersection
of multimodal learning and S-T learning, and falls under the sub-fields of multimodal co-
learning or cross-modal S-T learning.

at obtaining lightweight versions of deep networks while knowledge transfer is used in cases
where there is a lack of labeled data.

Depending on how the knowledge is distilled from the teacher to the student, S-T learn-
ing can be of two types – logit learning and feature learning methods. While the logit
learning methods such as the works proposed by Zhang et al. [70] and Wen et al. [71] use
the soft predictions of the models as the transferable knowledge, feature learning methods
proposed by Heo et al. [72], Huang et al. [73], and Tung et al. [74] use the intermediate
latent representations to transfer knowledge from the teacher to the student model. Due
to their flexibility in a DL setup, the feature learning methods, in most cases, have been
observed to be more effective for knowledge transfer [69].

Cross-modal distillation is a type of KD where the teacher and student models con-
tain modality-specific representations, typically with a better-performing teacher. Similar
to other S-T learning methods, the goal of this framework is to leverage the latent repre-
sentation of the teacher, which in this case is modality-specific, and distill the knowledge
onto the student. While most such applications focus on KD across synchronized visual and
audio data [75, 76, 77], KD methods for cross-modal medical image analysis mainly focus
on segmentation [78, 79, 80]. These works make use of the pixel/voxel registered modal-
ities, which enables them to leverage the anatomical structures that are more evident in
the teacher modality to guide the student modality. However, with respect to the unregis-
tered cross-modal KD, Sonsbeek et al. [81] recently proposed a multimodal KD framework
for classifying chest x-ray images with the language-based electronic health records as the
teacher and X-Ray images as the student network. Their work uses a probabilistic frame-
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work where the latent representations of the image-based x-ray modality are conditioned on
the latent representations of the language-based electronic health record modality. Similar
to the cross-modal KD works on segmentation, their method encourages the student only
to mimic the latent distribution of the teacher modality, without adding its own knowledge
to the final prediction – a drawback that we circumvent in our methodology.

To summarize, while prior works use multimodal medical images as input during infer-
ence to improve performance, our contribution is that we leverage multimodal data during
training in order to enhance inference performance with only unimodal input. Figure 2.2
shows the placement of the proposed method among the related areas of multimodal and
ST learning.
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Chapter 3

Method

3.1 Problem formulation

Given a training dataset X of N paired images from inferior and superior modalities with
corresponding ground truth target labels Y, our goal is to learn a function F that maps novel
examples of the inferior type to the corresponding target labels. Specifically, X = {XI , XS},
with XI = {xi

I}N
i=1 and XS = {xi

S}N
i=1, is the set of paired inferior and superior images,

i.e. (xi
I , xi

S) is the i-th pair. The set of training labels is Y = {yi}N
i=1, where yi ∈ L and

L = {l1, l2, ..., lK} is the label space representing the set of all K possible class labels (e.g.,
disease diagnoses). We represent F using a deep model with parameters θ, i.e., ŷ = F (xI ; θ),
where ŷ is the model prediction.

3.2 Model optimization

The model F must leverage the paired multimodal data during the training and be able
to predict the label using only the unimodal input (inferior modality) during the inference.
The proposed method comprises 3 steps:

1. Train classifiers CI and CS that each independently predicts the target label y from
xI and xS respectively.

2. Train a guidance model G to learn the mapping from the latent representation in CI
to that in CS .

3. Construct F that, first, maps xI to the latent representation in CI , then using G maps
that representation to the latent representation in CS to perform the classification.

We now describe these steps in detail.

3.2.1 Classifiers CI and CS

Given image pairs (xi
I , xi

S) and ground-truth labels yi, we train two independent classifica-
tion models CI and CS on the same task. Classifier CI is trained to classify images of the
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Figure 3.1: Notations used to denote the different components of the model architecture
throughout the proposed methodology.

inferior modality xI , whereas CS is trained to classify images of the superior modality xS .
Denoting the predictions made by the two networks as ŷi

I and ŷi
S , we have:

ŷi
I = CI(xi

I ; θI),

ŷi
S = CS(xi

S ; θS),
(3.1)

where CI , and similarly CS , comprises an encoder E, which encodes the high-dimensional
input image into a compact low-dimensional latent representation, and a decoder D, which
decodes the latent representation by mapping it to one of the labels in L. Denoting the
encoder and decoder in CI as EI and DI , respectively, and similarly ES and DS in CS , we
obtain:

ŷi
I = DI ◦ EI(xi

I ; θEI ),

ŷi
S = DS ◦ ES(xi

S ; θES ),
(3.2)

where ◦ denotes function composition, and θEI and θES are the encoder parameters of CI
and CS respectively. The encoders produce the latent representations z, i.e.:

zi
I = EI(xi

I ; θEI ),

zi
S = ES(xi

S ; θES ).
(3.3)

Latent codes zi
I and zi

S are inputs to corresponding decoders DI and DS . Finally, DI(zi
I ; θDI )

and DS(zi
S ; θDS ) yield predictions ŷi

I and ŷi
S , respectively. Here, θI = {θEI , θDI } and

θS = {θES , θDS }.

We use the cross-entropy loss (Equation 3.10) to optimize the classification models. We
optimize our classification models CI(·) and CS(·) as:
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Figure 3.2: Two independent modality-specific classifiers CI(·) (top) and CS(·) (bottom)
are trained to classify the images respectively from the inferior (XI) and the superior (XS)
modality. Each classifier consists of a modality-specific encoder (denoted by E) that extracts
features from the high-dimensional input image (x) to produce a lower-dimension latent
representation (z). The decoder (D) predicts the class based on the latent representation.

θ∗
I = arg min

θI
LCE(CI(XI ; θI), Y),

θ∗
S = arg min

θS
LCE(CS(XS ; θS), Y).

(3.4)

The notations of the different components of the architecture are provided in Figure 3.1.
The overview of this step is provided in Figure 3.2. Algorithm 1 presents the PyTorch-style
pseudocode corresponding to this step.

3.2.2 Guidance Model G

Guidance model, G is trained to map the latent representation of the inferior image, zi
I to

the latent representation of the paired superior image, zi
S . Denoting the estimated latent

code as ẑi
S and the parameters of G as θG, we obtain:

ẑi
S = G(zi

I ; θG). (3.5)

Figure 3.3 presents an overview of the guidance model. We use the mean squared error loss
(Equation 3.11) to encourage the similarity between the predicted and superior modality
latent representations. We optimize the guidance model, G(·) as:
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Algorithm 1 PyTorch-style pseudocode for training modality-specific classifiers CI(·) and
CS(·).
Input : A multimodal dataset X = {XI , XS} with labels Y. Specifically, ({xi

I , xi
S}, yi)

∀i ≤ N , where N is the size of the dataset.
Output: Learned modality-specific classifiers CI(·) and CS(·) with respective encoders

EI(·) and ES(·) and decoders DI(·) and DS(·) with learned parameters θ∗
EI ,

θ∗
ES , θ∗

DI , and θ∗
DS respectively.

1: while not converged do
2: for i = 1 to N do
3: � Model predictions
4: ŷi

I = CI(xi
I ; θI) � θI = {θEI , θDI }

5: ŷi
S = CS(xi

S ; θS) � θS = {θES , θDS }
6: � Loss computation
7: LI = LCE(ŷi

I , yi)
8: LS = LCE(ŷi

S , yi)

9: � Optimization (η: learning rate, ∇: gradient)
10: LI.backward() � θ∗

I ← θI − η ∇θI
11: LS.backward() � θ∗

S ← θS − η ∇θS
12: end for
13: end while

θ∗
G = arg min

θG

LMSE(G(zI ; θG) , zS). (3.6)

Algorithm 2 presents the PyTorch-style pseudocode for training the guidance model.

3.2.3 Guided Model F

We incorporate the trained guidance model G into the classification model of the inferior
modality CI so that it is steered to inherit the knowledge captured by the superior classifier
CS but without CI being exposed to the superior image modality. The predictions of this
model, ŷ = F (xI ; θ) can be written as follows, with θ = {θEI , θG, θDS }:

ŷ = DS
(
G

(
EI(xi

I ; θEI ); θG

)
; θDS

)
. (3.7)

The model F is thus able to make a prediction solely based on the inferior modality while be-
ing steered to generate latent representations that mimic those produced by models trained
on the superior modality. Here, the superior modality encoder can be viewed as a teacher
distilling its knowledge (the learned latent representation) to benefit the encoder of the infe-
rior modality, which would be the student. Figure 3.4 presents an overview of the proposed
guided model, F .
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Figure 3.3: The architecture of the guidance model G(·). The guidance model is trained
to estimate the latent representation of the superior modality (ẑS) based on the latent
representation of the inferior modality (zI).

Algorithm 2 PyTorch-style pseudocode for training the guidance model G(·).
Input : Paired images {xi

I , xi
S} ∀i ≤ N and learned encoders EI(·) and ES(·) (with

parameters θ∗
EI and θ∗

ES ).
Output: Learned guidance model G(·) with parameters θ∗

G.

1: while not converged do
2: for i = 1 to N do
3: � Latent representations
4: zi

I = EI(xi
I ; θ∗

EI )
5: zi

S = ES(xi
S ; θ∗

ES )
6: � Model predictions
7: ẑi

S = G(zi
I ; θG)

8: � Loss computation
9: L = LMSE(ẑi

S , zi
S)

10: � Optimization (η: learning rate, ∇: gradient)
11: L.backward() � θ∗

G ← θG − η ∇θG

12: end for
13: end while
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Figure 3.4: G connects the output of the (frozen) inferior modality encoder EI to the
input of the (frozen) superior modality decoder DS . Then G is trained to infer the latent
representation of the superior modality from the inferior one.

However, in this model, we use the latent representations of the inferior modality, zi
I only

to produce the latent representations of the superior modality, ẑi
S that are subsequently

used to predict the labels. Essentially, the proposed method predicts the labels based on
the latent representations of only the superior modality (produced by the guidance model,
G).

In order to leverage the latent representation of the inferior modality, zi
I during the label

prediction, we propose an alternative method for the guided model F as shown in Figure 3.5.
The latent representations of the inferior modality, zi

I are concatenated with the superior
latent representations produced by the guidance model, ẑi

S . This ensures the utilization of
the knowledge from the inferior modality in making the final prediction.

The concatenated latent representation is used to train a combined decoder Dc([ẑi
S ⊕

zi
I ] ; θDc), with parameters θDc , where ⊕ denotes the concatenation operator. Thus, our

final prediction, ŷ = F (xI ; θ) can be written as follows, with θ = {θEI , θG, θDc}:

ŷ = Dc

(
[G

(
EI(xi

I ; θEI ); θG

)
⊕ EI

(
xi

I ; θEI

)
]; θDc

)
. (3.8)

Similar to the classification models discussed in subsection 3.2.1, we use the cross-entropy
loss to optimize the classification. We optimize the classification model F (·) as:

θ∗
Dc

= arg min
θDc

LCE(F (XI ; θ) , Y). (3.9)

Note that in this case we only optimize the parameters of the decoder (θDc) and freeze the
parameters of the learned encoder (θEI ) and the guidance model (θG). Algorithm 3 presents
the PyTorch-style pseudocode corresponding to this step.
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Figure 3.5: The final model, whose input is the inferior modality alone, uses both the inferior
and the estimated superior modality representations to make the final prediction via the
trained combined decoder Dc.

3.2.4 Inference

The testing images of the inferior modality (I) are passed through the guided model F

in order to evaluate the performance of the proposed method. Algorithm 4 presents the
PyTorch-style pseudocode corresponding to model inference. Note that we evaluate both
variants of the guided model corresponding to Figures 3.4 and 3.5. For convenience, we
denote the predictions of the former as ŷG(I) and the latter ŷG(I)+I in Algorithm 4.

3.3 Loss functions

Cross-entropy loss Given the multi-class classification setup, we make use of the com-
monly used cross-entropy (CE) loss function in training the classifiers CI and CS (Equa-
tion 3.1) and also in the final guided model F (Equation 3.8). Denoted by LCE , the CE loss
is defined as:

LCE(Ŷ, Y) = − 1
N

N∑
i=1

K∑
c=1

wc yi
c log(ŷi

c), (3.10)

where yi
c and ŷi

c respectively denote the truth label and the softmax probability prediction
of the c-th class of the i-th image, wc denotes the weight assigned to the c-th class of the
label space, and K and N respectively denote the number of class labels and the number
of images.

Mean squared error loss Secondly, in order to learn a mapping from the latent rep-
resentation of the inferior modality (zi

I) to the superior (zi
S), during the training of the

guidance model, G, we encourage the estimated latent representations, ẑi
S to be similar
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Algorithm 3 PyTorch-style pseudocode for training the guided model F (·).
Input : Inferior modality images xi

I and corresponding labels yi, ∀i ≤ N . Learned
encoder EI(·) and guidance model G(·) (with parameters θ∗

EI and θ∗
G).

Output: Learned combined decoder Dc(·) with parameters θ∗
Dc

.

1: while not converged do
2: for i = 1 to N do
3: � Latent representation
4: zi

I = EI(xi
I ; θ∗

EI )
5: � Guided latent representation
6: ẑi

S = G(zi
I ; θ∗

G)
7: � Concatenation
8: zi

c = ẑi
S ⊕ zi

I
9: � Model prediction

10: ŷi = Dc(zi
c ; θDc)

11: � Loss computation
12: L = LCE(ŷi, yi)
13: � Optimization (η: learning rate, ∇: gradient)
14: L.backward() � θ∗

Dc
← θDc − η ∇θDc

15: end for
16: end while

Algorithm 4 PyTorch-style pseudocode to evaluate the performance of guided model F (·).
Input : Inferior modality images xi

I and corresponding labels yi, ∀i ≤ NT EST of the
test set. Learned encoder EI(·), guidance model G(·), and decoders DS(·) and
Dc(·) (with respective parameters θ∗

EI , θ∗
G, θ∗

DS , and θ∗
Dc

).
Output: Predicted labels ŷi

G(I) and ŷi
G(I)+I , ∀i ≤ NT EST .

1: for i = 1 to NT EST do
2: � Latent representation
3: zi

I = EI(xi
I ; θ∗

EI )
4: � Guided latent representation
5: ẑi

S = G(zi
I ; θ∗

G)
6: � Model prediction
7: ŷi

G(I) = DS(ẑi
S ; θ∗

DS ) � Guided model of Figure 3.4
8: � Concatenation
9: zi

c = ẑi
S ⊕ zi

I
10: � Model prediction
11: ŷi

G(I)+I = Dc(zi
c ; θ∗

Dc
) � Guided model of Figure 3.5

12: end for
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to the latent representations of the superior modality, zi
S . We use the mean squared error

(MSE) loss function for this purpose. Denoted by LMSE , the MSE loss is defined as:

LMSE(ẑ, z) =
1
N

N∑
i=1

1
M

M∑
j=1

(zi
j − ẑi

j)2, (3.11)

where zi and ẑi respectively denote the expected and the predicted latent representations
of the i-th image, N denotes the number of images, and M denotes the dimensionality of
the latent representations.
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Chapter 4

Experimental setup

4.1 Datasets

We evaluate the proposed method on two multimodal image datasets that correspond to
the diseases of two different body organs and vastly different image dimensions. Our first
dataset is RadPath 2020, a brain tumor classification dataset consisting of multi-sequence
MRI and histopathology WSI. The second dataset is Derm7pt, a multi-task skin lesion
classification dataset with clinical and dermoscopic images of skin lesions. The following
subsections provide a detailed description of the two datasets.

4.1.1 RadPath 2020

RadPath 2020 [14], or simply RadPath, is a publicly available dataset that was released as
part of the Computational Precision Medicine Radiology-Pathology (CPM RadPath) Chal-
lenge of 2020. The challenge was part of the Brain-Lesion Workshop [82], a satellite event
of the 2020 MICCAI conference.

RadPath is a brain tumor classification dataset that consists of 221 pairs of multi-
sequence MRI and histopathology WSI, along with the diagnosis labels of the correspond-
ing patients. The diagnosis labels include the three major types of glioma – glioblastoma
(n = 133), oligodendroglioma (n = 34), and astrocytoma (n = 54). As shown in Table 4.1,
we divide the dataset into training, validation, and testing sets with respectively 165, 28,
and 28 image pairs. Due to the small size of the dataset, we make five such splits and present
the average performance across all the splits for robust results.

Figure 4.1 shows an example of an image pair from the RadPath dataset. The multi-
sequence MRI consists of four sequences – native (T1), T2-weighted (T2), post-contrast
T1-weighted (T1Gd), and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR). Each MRI
sequence is a volumetric image with the size 240 × 240 × 155. All MRI scans in the dataset
are co-registered to the same anatomical template, interpolated to the same resolution,

23



Table 4.1: Details of the RadPath dataset. The table shows the distribution of data across
the classes and the training, validation, and testing sets.

Class # of image pairs

train val test total

Glioblastoma 103 15 15 133
Oligodendroglioma 24 5 5 34

Astrocytoma 38 8 8 54

Total 165 28 28 221

and skull-stripped by the providers of the dataset. The histopathology data consists of
one WSI for each patient. The WSIs are digitized Hematoxylin and Eosin (H&E) stained
tissue specimens scanned at 20× or 40× magnifications. These images are of extremely high
resolution with dimensions of some WSIs as high as 3 × 100, 000 × 100, 000. The relatively
smaller WSIs in the dataset are as large as 3 × 40, 000 × 40, 000. As discussed previously in
section 1.2, the WSIs, due to the level of informativeness and invasive acquisition procedures,
form the superior modality, whereas the MRIs form the inferior modality due to the relative
ease of acquisition and lower informativeness regarding the tumor.

Figure 4.1: Example of an image pair from the RadPath dataset belonging to the Oligo-
dendroglioma class. The image pair consists of multi-sequence MRI (left) of the brain and
high-resolution WSI of the tumor tissue (right) from the same patient. The multi-sequence
MRI contains four sequences: T1 (top-left), T2 (top-right), T1Gd (bottom-left), and T2-
FLAIR (bottom-right).
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4.1.2 Derm7pt

Derm7pt [15] is a publicly available dataset consisting of paired skin lesion images from
the clinical and dermoscopic modalities. The dataset includes 1011 pairs of images, where
both the images of the image pair correspond to the same skin lesion acquired from the
same patient. Each image-pair consists of a diagnosis label along with seven 7-point criteria
labels, allowing for multiple (n = 8) classification tasks using this dataset. Table 4.2 shows
the labels of diagnosis and the 7-point criteria and the distribution of data across the dif-
ferent labels. In our experiments, we adopt the pre-defined training, validation, and testing
sets provided with the dataset and repeat our training procedure three times to present
results that are robust to different random weight initializations. We observed that 8 image
pairs in the dataset are missing the clinical image and therefore we exclude them from our
experiments.

The 7-point criteria [83] is an analytical, rule-based method used to simplify the detec-
tion of melanoma. The 7-point criteria comprise seven prominent features of skin lesions
that are frequently associated with melanoma, namely, pigment network (PN), blue whitish
veil (BWV), vascular structures (VS), pigmentation (PIG), streaks (STR), dots and glob-
ules (DaG), and regression structures (RS). Each criterion is assigned a score based on its
association with melanoma and if the cumulative score across all seven criteria exceeds a
given threshold, the lesion is diagnosed as melanoma. Table 4.2 shows the 7-point scores
assigned to the 7-point criteria. PN, BWV, and VS – considered major criteria in the de-
tection of melanoma – are assigned a score of 2, while the remaining four (PIG, STR, DaG,
and RS) are considered minor and are assigned a score of 1.

The clinical and dermoscopic images in this dataset are 2D images of size 3 × 512 × 512.
The dermoscopic images are acquired through a dermoscope and reveal detailed sub-surface
structures of the skin lesion that are not visible to the unaided eye. As discussed previously in
section 1.3, the dermoscopic images form the superior modality, whereas the clinical images,
acquired using inexpensive and ubiquitous cameras, form the inferior modality. Figure 4.2
shows three image pairs from the Derm7pt dataset. The clinical images are placed on the
top row and the corresponding dermoscopic images are on the bottom row.

4.2 Data processing

4.2.1 RadPath

4.2.1.1 WSI processing

We make use of CLAM [84] – CLustering-constrained Attention-based MIL – a recently
proposed DL-based weakly-supervised learning framework for the classification of WSIs.
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Table 4.2: Details of the Derm7pt dataset. The table shows the different classification tasks
(diagnosis and the 7-point criteria), the data distribution across labels of different tasks,
and the 7-point scores corresponding to labels of 7-point criteria used to infer melanoma.

Class # of images 7-point score

DIAGNOSIS (DIAG)

Basal Cell Carcinoma 42 -
Nevus 575 -

Melanoma 252 -
Miscellaneous 97 -

Seborrheic Keratosis 45 -

SEVEN POINT CRITERIA

1. Pigment Network (PN)
Absent 400 0
Typical 381 0
Atypical 230 2

2. Blue Whitish Veil (BWV)
Absent 816 0
Present 195 2

3. Vascular Structures (VS)
Absent 823 0
Regular 117 0
Irregular 71 2

4. Pigmentation (PIG)
Absent 588 0
Regular 118 0
Irregular 305 1

5. Streaks (STR)
Absent 653 0
Regular 107 0
Irregular 251 1

6. Dots and Globules (DaG)
Absent 229 0
Regular 334 0
Irregular 448 1

7. Regression Structures (RS)
Absent 758 0
Present 253 1
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Figure 4.2: Examples of three image-pairs from Derm7pt dataset belonging to the diagnosis
classes of basal cell carcinoma (left), nevus (middle), and melanoma (right) respectively.
The clinical images are placed on the top row and the corresponding dermoscopic images
are on the bottom row. Notice the sub-cellular structures visible in the dermoscopic images
but not in the clinical counterparts.

Specifically, this model serves as the modality-specific classifier for the superior modality,
CS(·) as per Equation 3.1 and comprises encoder ES(·) and decoder DS(·) as shown in Fig-
ure 3.2. CLAM uses an attention-based learning strategy to automatically identify regions
of tumorous tissues while using only the slide-level labels and without requiring any manual
annotations. This method has been shown to outperform other standard weakly-supervised
WSI classification methods, especially in cases where the size of training data is small. In
our work, we use the same preprocessing pipeline and the training strategy proposed in
CLAM to train the WSI classifier for the RadPath dataset.

The preprocessing pipeline proposed in CLAM involves three steps:
1. Segmentation of tissue regions of the WSI,
2. Patching the segmented areas into images of smaller dimensions, and
3. Feature extraction from the image patches.

Figure 4.3 shows an overview of the segmentation and the subsequent patching of the WSI.

In the first step, the WSIs are converted from RGB to HSV color space and the binary
segmentation masks are computed based on the thresholding of the saturation channel. The
obtained segmentation masks are filtered based on a tissue-area threshold and the holes
are filtered based on a hole-area threshold. Due to the variability in the sizes of tissues and
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Figure 4.3: WSI preprocessing. A raw WSI is first segmented with tissue regions on the
foreground, followed by patching of the segmented tissue region into patches of 256 × 256
dimension. The extracted tissue patches are passed through a ResNet50 model pre-trained
on ImageNet to extract a 1024-dimension representation for each patch.

holes across different WSIs, these thresholds are to be manually adjusted for different WSIs.

The segmented tissue regions of the WSI are then cropped exhaustively at 20× magni-
fication with patch sizes of 256 × 256. As our dataset contains some WSIs at 40× magni-
fication, we crop patches of size 512 × 512 for such WSIs and downscale these patches to
256 × 256 in order to have patches at 20× magnification. Depending on the sizes of WSIs
and the tissue content, the number of patches per WSI can vary significantly across different
WSIs.

Finally, the extracted patches of all WSIs are passed through a ResNet50 model pre-
trained on ImageNet to convert each 256 × 256 patch into a 1024-dimension representation.
These low-dimension image representations are used to train the CLAM model, which al-
lows for large WSIs with hundreds of thousands of patches to fit into the GPU memory.

A WSI, W i can now be represented as a bag of low-dimension patch representations,
zp of all the patches belonging to the corresponding WSI; W i = {zi

p1 , zi
p2 , . . . , zi

pn
}, where

zi
pj

represents the low-dimension patch representation of patch pj of WSI W i and n is the
number of patches in W i (n is different for different WSIs). With these WSI bags as input,
CLAM uses an MIL framework to first obtain a WSI-level representation, zi

W from the
patch-level representations in the bag, followed by using the obtained WSI representation
to predict the diagnosis label assigned to the WSI in an end-to-end fashion.

The patch representations are first passed through a learnable FC layer to reduce the
dimension from 1024 to 512. The WSI-level representation of W i, zi

W , is then computed as
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the linear combination of all the patch-level representations as, zi
W =

∑n
j=1 ai

j zi
pj

, where
ai

j ∈ R[0, 1] is the learned attention score of the patch corresponding to zi
pj

. Note that
after the first FC layer, zi

pj
∈ R

512, so zi
W ∈ R

512. The attention score, ai
j – which is the

relative importance of the patch pj with respect to all other patches in W i – is computed
as, ai

j = softmaxj{A(zi
pj

)}, where A(·) is the attention network composed of three FC
layers which regress to a scalar value that denotes the importance of the patch. Finally,
the WSI-level representation, zi

W is used to predict the diagnosis label corresponding to the
WSI via FC layers. For a more detailed methodology of CLAM, we direct the reader to the
respective publication by Lu et al. [84].

4.2.1.2 MRI processing

As mentioned previously in subsection 4.1.1, the radiology data of the RadPath challenge
consists of preprocessed 3D MRIs. The MRIs are co-registered to the same anatomical tem-
plate, interpolated to the same resolution, and skull-stripped by the providers to the dataset.
Apart from normalizing the intensities of the individual MRI sequences (on the fly), we do
not use any other preprocessing techniques in our experiments. In order to preserve the
original high resolution, we use the MRIs at sizes 240 × 240 × 155 as inputs to our network,
without any downscaling.

Similar to the winners of the RadPath 2019 challenge [49], we employ a 3D DenseNet
to process the volumetric MRIs. 3D DenseNet [85] has been the go-to choice of the back-
bone network architecture for a majority of MRI classification models in the RadPath chal-
lenge [86, 87] – the winners of the RadPath 2020 challenge [48] also used the same backbone
network for MRI classification. This model serves as the modality-specific classifier for the
inferior modality, CI(·) as per Equation 3.1 and comprises encoder EI(·) and decoder DI(·)
as shown in Figure 3.2.

Our implementation of the MRI classifier closely follows that of the winners of the Rad-
Path 2019 challenge [49]. We train our network from scratch and make use of excessive
image augmentations to compensate for the small size of the training dataset. Our aug-
mentations include random flipping and rotation of the MRI sequences along all three axes,
random scaling and cropping of the MRI sequences, and random scaling of the intensities
of the MRI sequences.

In our experiments, we train four different models, one for each of the MRI sequences –
T1, T2, T1Gd, and T2-FLAIR – and guide each of these models using the superior modality
(WSI). We also train a model with all the MRI sequences where we use the pre-trained en-
coders of each of the four sequence-specific models to first extract the latent representation
of each sequence followed by training a decoder (made of FC layers) on the concatenated
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latent representation.

Finally, for our baseline multimodal model, which uses MRI and WSI for classification,
we use the pre-trained encoders of MRI and WSI classification models and concatenate the
two latent representations. Based on this concatenated representation, we train a decoder
to classify the brain tumors in the MRI-WSI image pairs.

4.2.2 Derm7pt

Kawahara et al. [15] proposed a multimodal skin lesion classification model that uses im-
ages from both the clinical and dermoscopic modalities along with the patient meta-data to
classify skin lesions. Their multimodal model uses two Inception V3 [88] backbone networks
to extract latent representations from the clinical and dermoscopic modalities. These latent
representations, along with the patient meta-data, are combined to perform a multimodal
classification. Additionally, their multimodal model is trained to handle all possible combi-
nations of input modalities and as a result, it is capable of making predictions with missing
data at the inference time.

In our experiments, we use this pre-trained multimodal model as a baseline classifier
for both the clinical and dermoscopic modalities. While evaluating our clinical classifier, we
pass only the clinical image as input to the multimodal model while passing zeros at the
dermoscopic and the meta-data inputs. Similarly, while evaluating our dermoscopic model,
we pass the dermoscopic image as the input while passing zeros at the clinical and meta-data
inputs of the multimodal model. In both cases, similar to Kawahara et al. [15], we preprocess
the image inputs as per the Inception V3 input requirements – using the in-built Tensor-
flow [89] function tensorflow.keras.applications.inception_v3.preprocess_input.

The pre-trained clinical model forms the modality-specific classifier for the inferior
modality (CI(·), comprising of EI(·) and DI(·)) and the pre-trained dermoscopic model
forms the modality-specific classifier for the superior modality (CS(·), comprising of ES(·)
and DS(·)) as in Equation 3.1 and Figure 3.2.

For our baseline multimodal model – which uses both clinical and dermoscopic images
to classify skin lesions – we follow a similar technique as above. We use the aforementioned
pre-trained multimodal model provided by Kawahara et al. [15] and pass both the inputs
to the model while passing zeros at the meta-data input.
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4.3 Implementation details

For our experiments on the RadPath dataset, we use the PyTorch [90] library and for our
experiments on the Derm7pt dataset, we use the Tensorflow [89] library, to build on top
of the Keras-based pre-trained models provided by Kawahara et al. [15]. Additionally, we
use the OpenSlide [91] library for preprocessing the WSIs, specifically for the segmentation
and patching of the WSIs, discussed in section 4.2.1.1. For loading the MRI volumes and
the associated 3D data augmentations, we use the MONAI [92] library. For evaluating the
performance of the classifications, we use the metrics implemented in the Scikit-Learn li-
brary [93].

In both sets of experiments, our guidance model uses an autoencoder-like architecture
as described in section 3.2.2. We use a bottleneck layer with 256 neurons for our guidance
model in the RadPath dataset and a bottleneck layer with 512 neurons for the same in
the Derm7pt dataset. Specifically, in the RadPath dataset, we map from a 1024-dimension
latent space of the inferior modality (MRI) to the 512-dimension latent space of the supe-
rior modality (WSI) with FC layers as 1024 → 512 → 256 → 256 → 512. Similarly, in the
Derm7pt dataset, we map from a 2048-dimension latent space of clinical modality to a 2048-
dimension latent space of dermoscopic modality as 2048 → 1024 → 512 → 1024 → 2048. In
both cases, we use the ReLU non-linearity and use Dropout layers with a neuron drop rate
of 25% to prevent overfitting.

With respect to the computing hardware, we make use of the multi-GPU cluster provided
by Compute Canada [94] for the resource-intensive jobs in our experiments. Specifically, all
our experiments on WSIs, starting from the preprocessing to the training of the classifi-
cation model, and most of our experiments on MRIs, including training the classification
models utilized the resources provided by Compute Canada. However, our experiments on
the Derm7pt dataset relied on the local 11 GB NVIDIA GeForce GTX 1080 Ti GPU.

Table 4.3 provides the values of the optimal hyperparameters used in different experi-
ments across the two datasets. The table includes the common hyperparameters such as the
batch size, number of epochs, optimizer parameters, early stopping parameters, loss weights,
and weighted random sampling. For further details on the implementation, we direct the
reader to our GitHub repository at https://github.com/mayurmallya/DeepGuide.
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4.4 Evaluation metrics

Our choice of evaluation metrics is inspired by the RadPath challenge [14], which uses Bal-
anced Accuracy, Micro-averaged F1, and Cohen’s Kappa scores to measure the classification
performance. In our experiments, we use balanced accuracy along with micro-averaged F1.
However, we do not use the kappa score due to the undesired behaviors this metric exhibits
in cases of unbalanced classification [95] and the resulting lack of interpretability. For the
binary task of melanoma inference, we use the AUROC score to measure the classification
performance.

Balanced accuracy

As our experiments mostly involve unbalanced classification tasks, we use the balanced
accuracy score as the primary metric to evaluate the classification performance. Balanced
accuracy is calculated as the macro-average of class-wise accuracies and gives equal impor-
tance to all the classes irrespective of the class sizes. If we denote the balanced accuracy
score as BA, equation 4.1 shows the corresponding formulation:

BA =

N∑
i=1

T Pi
T otali

N
. (4.1)

Here N denotes the number of classes, TP denotes the number of true positives, and
Total denotes the total number of elements in the particular class. The TP of a particular
class is the value on the confusion matrix at the intersection of the row and column corre-
sponding to that class. In the example confusion matrix shown in figure 4.4, the balanced
accuracy can be calculated as:

Figure 4.4: Example of a confusion matrix.

BA =
5
8 + 7

14 + 4
8 + 6

16
4

=
0.625 + 0.5 + 0.5 + 0.375

4
= 0.5.
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Although balanced accuracy is a commonly used metric for evaluating classifications on
unbalanced datasets, a consequence of the equal weighting of class accuracies is that the
minority classes have more influence over the final score. For example, a misclassification in
class D (majority class) would only set back the score by 1

4( 1
16), whereas a misclassification

in class A (minority class) would set back the score by 1
4(1

8) – which is twice as that of the
former. In a situation with high class imbalance, this leads to a balanced accuracy score that
is less sensitive to predictions of the majority class. In order to circumvent this problem, we
use the micro-averaged F1 score in conjunction with the balanced accuracy score.

Micro-averaged F1

In addition to balanced accuracy, we also use the micro-averaged F1 score to provide a
holistic view of the classification performance. Unlike balanced accuracy, which gives equal
importance to all classes, micro F1 represents the overall correctness of the classifier, irre-
spective of the class performance, and gives equal importance to the individual elements.
By using this metric alongside balanced accuracy, we ensure that our metrics are sensitive
to the majority classes too. Micro-averaged F1 score is computed as the harmonic mean of
micro-averaged precision and recall scores. Denoting micro F1 as simply F1, equation 4.2
shows the corresponding formulation:

F1 = 2
(

P · R

P + R

)
, (4.2)

where P is the micro-averaged precision score given by, P = T P
T P +F P and R is the micro-

averaged recall score given by, R = T P
T P +F N . Here TP , FP , and FN are true positives, false

positives, and false negatives respectively.

Figure 4.5: Example of a confusion matrix (left) and the corresponding table with class-wise
distribution of true positives (TP), false positives (FP), and false negatives (FN) (right).
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Figure 4.5 shows an example of a confusion matrix along with a table that computes the
class-wise TP , FP , and FN of the corresponding confusion matrix. To give an example,
TP of class B is the value at the intersection of column B and row B, FP of class B is the
sum of the rest of the values in column B, and FN of class B is the sum of rest of the values
in row B. The F1 of the below confusion matrix can be computed as follows:

F1 = 2
( 22

22+24 · 22
22+24

22
22+24 + 22

22+24

)
=

22
22 + 24

=
22
46

= 0.478.

In the case of a multi-class classification where each element has exactly one label (as in
ours), FP is equal to FN (Figure 4.5), which is equal to the sum of non-diagonal elements
of the confusion matrix. As a result, the F1 score gets the same value as that of the accuracy
of the classifier [96].

AUROC

For the binary task of melanoma inference, we use the AUROC score. AUROC stands
for the Area Under the Receiver Operating Characteristics curve and is a metric that
summarizes the performance of a probabilistic binary classifier across different thresholds.
Figure 4.6 shows an example ROC curve (denoted in blue) plotted across different TPR and
FPR coordinates obtained from a binary classifier tested using different values of threshold.
TPR is the true positive rate of the classifier and is given by, TPR = T P

T P +F N and FPR is
the false positive rate given by, FPR = F P

F P +T N .

Figure 4.6: Example of an ROC curve. The area of the shaded region under the ROC curve
corresponds to the AUROC score. The dashed line corresponds to the ROC curve of a
random classifier with an AUROC score of 0.5.
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Chapter 5

Results and Discussion

In this chapter, we present the results of our experiments on RadPath (section 5.1) and
Derm7pt (section 5.2) datasets and discuss the findings of our experiments (section 5.3). In
our experiments, we compare the performance of the proposed method to multiple different
baselines. Specifically, we start with the multimodal model – a model that uses multimodal
data of the superior and inferior modalities for both training and inference. Figure 5.1
shows the schematic of the multimodal model used in our experiments. Next, we have the
modality-specific models for the superior and inferior modalities. As shown in Figure 3.2,
the superior modality classifier uses the superior modality images for training and inference,
and similarly, the inferior modality model uses the inferior modality data for both training
and inference. Finally, we compare the performance of the aforementioned models to the
proposed method that uses both superior and inferior modalities for training but only the
inferior modality during inference (Figure 3.4 and Figure 3.5).

Figure 5.1: Multimodal model that uses the superior and inferior modality data for both
training and inference.
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5.1 RadPath

Table 5.1 shows the results of our experiments on the RadPath dataset. Note that radiology
(denoted by R) forms the inferior modality and histopathology (denoted by P ) forms the
superior modality in this case. We denote the different models based on the modalities
used for the task. Accordingly, the multimodal model can be denoted by P + R, while the
modality-specific models of histopathology and radiology can be respectively denoted by
P and R. Further, we denote the guided models using G(R) and G(R) + R, where G, as
defined in section 3.2.2, refers to the guidance model. The improvement in the performance
of the guided model, G(R) + R over the baseline radiology model, R is denoted by ΔR. If
we denote the performances of the guided model and the radiology model by XG(R)+R and
XR respectively, then ΔR is computed as follows:

ΔR =
XG(R)+R − XR

XR
× 100. (5.1)

Similarly, ΔP shows the improvement in the performance of the guided model, G(R)+R

over the baseline histopathology model, P , and can be computed as:

ΔP =
XG(R)+R − XP

XP
× 100. (5.2)

For the baseline modality-specific classifiers of radiology (R) and histopathology (P),
we implement the state-of-the-arts respectively using the 3D DenseNet [49] and CLAM
models [84], discussed in section 4.2. The multimodal model (P+R) uses the pre-trained
encoders of both modalities and only trains a decoder to map the combined latent repre-
sentation to the corresponding labels.

As previously mentioned in section 4.1.1, the radiology data consists of multi-sequence
MRI with the sequences T1, T2, T1Gd, and T2-FLAIR. In our experiments, we use the
histopathology images to initially guide the individual sequences before finally guiding the
multi-sequence MRI. The check marks in Table 5.1 denote the sequences of MRI used in
the corresponding experiments. Further, Table 5.2 shows the confusion matrices denoting
the improvements of the guided model (G(R) + R) over the radiology model (R).
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Table 5.1: Results on the RadPath dataset. Radiology MRI sequences (R) are guided using
pathology (P). R: Inferior, P: Superior. The metrics are balanced accuracy (BA) and micro-
averaged F1 scores.

Method Sequences of R BA↑ F1↑
T1 T2 T1Gd T2-

FLAIR

P + R � � � � 0.7777 ±0.0697 0.8213 ±0.0319

P [84] - - - - 0.7293 ±0.0276 0.7928 ±0.0142

R [49] � - - - 0.5065 ±0.0348 0.5785 ±0.0692
G(R) � - - - 0.4432 ±0.0668 0.5784 ±0.0614
R + G(R) � - - - 0.5871 ±0.0295 0.5856 ±0.0428

ΔR (%) +16.0 +1.2

R [49] - � - - 0.6571 ±0.0710 0.7285 ±0.0428
G(R) - � - - 0.5599 ±0.1268 0.6928 ±0.0940
G(R) + R - � - - 0.7310 ±0.0859 0.7571 ±0.0728

ΔR (%) +11.2 +3.9

R [49] - - � - 0.6416 ±0.0408 0.7356 ±0.0175
G(R) - - � - 0.5649 ±0.0728 0.6928 ±0.0622
G(R) + R - - � - 0.6549 ±0.0431 0.7428 ±0.0143

ΔR (%) +2.0 +0.9

R [49] - - - � 0.5344 ±0.0488 0.6213 ±0.0484
G(R) - - - � 0.4199 ±0.0522 0.5713 ±0.0319
G(R) + R - - - � 0.6488 ±0.0327 0.6356 ±0.0524

ΔR (%) +21.3 +2.2

R [49] � � � � 0.7299 ±0.0655 0.7716 ±0.0365
G(R) � � � � 0.6505 ±0.0683 0.7642 ±0.0364
G(R) + R � � � � 0.7527 ±0.0806 0.7999 ±0.0285

ΔR (%) +3.1 +3.6
ΔP (%) +3.2 +0.89
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Table 5.2: Confusion matrices of the inferior modality model (I) and the proposed guided
model (G(I) + I) for the RadPath dataset. The arrows (↑, ↓) indicate the direction of
improvement in the balanced accuracy scores.

Sequences of R w/o guidance w/ guidance

T1(↑)

T2(↑)

T1Gd(↑)

T2-FLAIR(↑)

All(↑)
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Figure 5.2: Improvements in the balanced accuracy (left) and F1 (right) scores of the guided
model (G(I) + I) over the baseline model (I) for the individual sequences of MRI (T1, T2,
T1Gd, and T2-FLAIR) and multi-sequence MRI denoted as ALL.

5.1.1 Statistical significance

We use the Wilcoxon signed-rank test to evaluate the statistical significance of the perfor-
mance of the proposed method (G(I) + I) over the baseline inferior modality model (I) of
the RadPath dataset. Wilcoxon signed-rank test [97] is a paired statistical hypothesis test
that is the nonparametric version of the paired T-test [98], which makes it suitable for small
population sizes. Table 5.3 shows the p-values corresponding to the Wilcoxon sign-rank test
performed on the individual sequences as well as the ALL sequence MRI tumor diagnosis
tasks on the primary test set. The results are considered to be statistically significant for
p < 0.05.

Table 5.3: Evaluating the statistical significance of the performance of the proposed model
(G(I) + I) over the baseline inferior modality model (I) for the RadPath dataset. The
improvements are considered to be statistically significant for p < 0.05. * indicates the
tasks where improvements are statistically significant.

Task p-value

T1 2.15 × 10−2 *
T2 1.38 × 10−2 *

T1Gd 3.17 × 10−1

T2-FLAIR 2.31 × 10−2 *
ALL 6.33 × 10−2
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5.2 Derm7pt

Table 5.4 presents the results of our experiments on the Derm7pt dataset. The inferior
modality of the clinical images is denoted by C and the superior dermoscopic modality is
denoted by D. As in the case of RadPath, we denote the different models based on the
modalities used for the task. The multimodal model is denoted by D + C, the modality-
specific models of dermoscopic and clinical images respectively by D and C, and the guided
models by G(C) and G(C) + C. Further, similar to equation 5.1, ΔC denotes the improve-
ment in the performance of the guided model, G(C) + C over the clinical model, C, and is
computed as follows:

ΔC =
XG(C)+C − XC

XC
× 100. (5.3)

As discussed in section 4.2.2, we use the pre-trained models provided by Kawahara et
al. [15] for both the modality-specific models (D and C) as well as the multimodal model
(D + C). Further, based on the predictions of the 7-point criteria, we infer the melanoma
diagnosis, which is described in the following section.

5.2.1 Melanoma Inference

Similar to Kawahara et al. [15], as we predict each of the seven 7-point criteria, the inference
of melanoma can be done in two ways. The first way is to directly predict the diagnosis
(DIAG), of which melanoma is a category (Table 4.2). The second way to infer melanoma is
based on the 7-point criteria [83]. As mentioned in section 4.1.2, each of the 7-point criteria
is assigned a score based on its association with melanoma. These scores are provided in
the last column of Table 4.2.

For a given skin lesion, based on the predictions of the 7-point criteria, the 7-point score
(S) can be computed by summing the scores of each of the 7-point criteria tasks, as shown
in Equation 5.4. Here, the index i corresponds to the image while index j corresponds to the
7-point criteria and the score(·) function maps the prediction to the corresponding score.
If the computed 7-point score is greater than a certain pre-specified threshold, the skin
lesion would be diagnosed as melanoma positive (denoted by 1), else, negative (denoted by
0) as shown in Equation 5.5. We use the commonly used thresholds of t = 1 and t = 3 in
our experiments [15, 83]. Finally, in order to compare the performance of different binary
classifiers, we use the AUROC score. Table 5.5 presents the results of the melanoma inference
for the aforementioned thresholds and Figure 5.3 shows the ROC curves for melanoma
inference, first using direct prediction of diagnosis and second using the 7-point criteria.
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Si =
7∑

j=1
score(ŷi

j) (5.4)

ŷi
7pt =

⎧⎨
⎩1 if Si ≥ t

0 else
(5.5)
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Table 5.5: Melanoma Inference from the 7-point criteria predictions of Table 5.4 computed
for thresholds t = 1, 3 alongside the AUROC score.

Method t = 1 t = 3 AUROC
BA↑ F1↑ BA↑ F1↑

D + C 0.6734 0.5918 0.7165 0.7882 0.7883
D 0.6568 0.5867 0.7026 0.7627 0.7645

C 0.6631 0.5765 0.6915 0.7168 0.7390

G(C) 0.6754
±0.0084

0.6821
±0.0110

0.6308
±0.0094

0.7448
±0.0116

0.7167
±0.0035

G(C) + C
0.6918
±0.0043

0.6290
±0.0030

0.7045
±0.0103

0.7361
±0.0049

0.7515
±0.0021

ΔC (%) +4.2 +9.2 +1.8 +2.7 +1.6

Figure 5.3: ROC curves for Melanoma Inference from the direct prediction of diagnosis
(DIAG) (left) and using the 7-point criteria (right). The number in the parenthesis corre-
sponds to the AUROC score of the classifier.
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Table 5.6: Confusion matrices of the 7-point criteria and diagnosis predictions of the inferior
modality model (I) and the proposed guided model (G(I) + I) for the Derm7pt dataset.
The arrows (↑, ↓) indicate the direction of improvement in the balanced accuracy scores.

Task I G(I) + I

PN(↑)

BWV(↑)

VS(↑)

PIG(↑)
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Table 5.7: Confusion matrices of the 7-point criteria and diagnosis predictions of the inferior
modality model (I) and the proposed guided model (G(I) + I) for the Derm7pt dataset.
The arrows (↑, ↓) indicate the direction of improvement in the balanced accuracy scores.
(Continued)

Method w/o guidance w/ guidance

STR(↓)

DaG(↑)

RS(↑)

DIAG(↑)
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Figure 5.4: Improvements in the balanced accuracy (left) and F1 (right) scores of the guided
model (G(I) + I) over the baseline model (I) for the 7-point criteria and Diagnosis predic-
tions.

5.2.2 Statistical significance

In order to evaluate the statistical significance of the performance of the proposed method
(G(I) + I) over the baseline inferior modality model (I) of the Derm7pt dataset, similar to
Abhishek et al. [99], we use the McNemar’s test. McNemar’s test [100] is a paired nonpara-
metric statistical hypothesis test commonly used in DL settings where training multiple
models can be expensive. Table 5.8 shows the p-values corresponding to McNemar’s test
performed on the 7-point criteria and diagnosis prediction tasks on the primary test set and
the results are considered to be statistically significant for p < 0.05.

Table 5.8: Evaluating the statistical significance of the performance of the proposed model
(G(I) + I) over the baseline inferior modality model (I) for the Derm7pt dataset. The
improvements are considered to be statistically significant for p < 0.05. * indicates the
tasks where improvements are statistically significant.

Task p-value

PN 1.55 × 10−1

BWV 2.94 × 10−2 *
VS 5.71 × 10−1

PIG 1.17 × 10−1

STR 6.43 × 10−1

DaG 1.55 × 10−1

RS 1.95 × 10−2 *
DIAG 4.57 × 10−1
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5.3 Discussion

Based on the results presented in Tables 5.1, 5.4, and 5.5, across the RadPath and Derm7pt
datasets, we note the following observations. For the sake of clarity, S and I denote the
superior and inferior modalities, which in the case of RadPath (Table 5.1) are denoted by
P and R respectively, while in the case of Derm7pt (Table 5.4 and 5.5) are denoted by D

and C respectively. In both sets of experiments, we observe the following behaviors in a
majority of cases.

5.3.1 S outperforms I
The superior modality outperforms the inferior modality. While it is common knowledge
in the clinical setting that histopathology is more informative than radiology for tumor
diagnosis, and the dermoscopic images provide a more detailed picture of the skin lesion
than the clinical counterpart, the DL models from our experiments follow the same behavior.
The results from the baseline models of both experiments confirm that the superior modality
is more accurate for disease diagnosis. Table 5.1, shows that the classifier P significantly
outperforms the individual MRI classifiers while being marginally better than the ALL
sequence MRI classifier. Similarly, from Table 5.4, the classifier D outperforms the classifier
C across all the 7-point criteria, diagnosis, and the overall melanoma inference in Table 5.5.

5.3.2 S + I outperforms S
The multimodal model outperforms the superior modality classifier. In a clinical setting,
the clinician leverages all available modalities to gather complementary information before
finalizing a diagnosis decision. However, in the DL setting, we observe mixed results. In the
case of the RadPath dataset (Table 5.1), the multimodal model outperforms the superior
modality histopathology model, thereby affirming the value added by the inferior radiology
data such as the location and size of the tumor in the DL-based diagnosis. However, in the
case of the Derm7pt dataset (Table 5.4 and 5.5), we observe that the multimodal model
does not concretely outperform the superior dermoscopic model. The multimodal model
outperforms the superior modality model in only three of the seven 7-point criteria. This
behavior, as also shown earlier in the works of Abhishek et al. [99] and Kawahara et al. [15],
can be attributed to the redundancy of the multimodal information in a DL setup caused
due to the addition of the inferior clinical modality. The redundancy of the multimodal
information that hinders the performance of the multimodal model underscores the need to
develop methods such as the work proposed by Braman et al. [39] that orthogonalize the
latent representations of different modalities so as to minimize the information redundancy.
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Figure 5.5: Loss curves of the guidance models of Derm7pt (left) and RadPath (right)
datasets.

5.3.3 G(I) alone does not outperform I
Our (first) guided model in Figure 3.4 does not outperform the inferior modality classifier.
As discussed in section 3.2.3, this model uses the trained guidance model as a bridge between
the inferior modality latent representations and the superior modality decoder. Essentially,
the performance of this model is determined by the performance of the guidance model.
We observe that in both datasets, this guided model performs worse than the baseline
inferior modality model. While the guidance model maps the latent representations from
the inferior to the superior modality with near to zero errors as can be seen from the loss
curves in Figure 5.5, the poor performance of this model could be attributed to the sensitive
nature of the DL models, where a small change in the activation at an intermediate layer
can change the classification output. A larger multimodal dataset can further lessen the
reconstruction error in the guidance model and improve the performance of this model
but we believe that fine-tuning this model using the cross-entropy loss could significantly
mitigate this issue.

5.3.4 G(I) + I outperforms I
Our proposed model in Figure 3.5 outperforms the inferior modality classifier. As shown
in this figure, this model concatenates the inferior modality latent representations with the
guided representations and trains the combined decoder on the concatenated representa-
tion. The improvement in the performance of this model over the inferior modality model
can be seen in Figures 5.2 and 5.4 and the ROC curves in Figure 5.3, where the melanoma
inference improves when directly predicting the diagnosis as well as from the 7-point crite-
ria. The proposed model outperforms the inferior modality model across all the individual
MRI sequences as well as the ALL sequence MRI, shown in Table 5.1. Similarly, in the
case of the Derm7pt dataset, we observe improvements in six of the seven 7-point criteria
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and diagnosis predictions, shown in Table 5.4. With this, we show that our proposed model
successfully leverages the existing multimodal data to improve the performance of the novel
inferior modality data.

Further, from the Figures 5.2 and 5.4, we observe that in the case of RadPath dataset,
the improvements of the proposed method are prominent on the BA metric while the im-
provements in the case of the Derm7pt dataset are more evident on the F1 metric. This
reversal of trend is mainly due to the difference in the sizes of the two datasets. The confu-
sion matrices in Table 5.2 show that the proposed method in the case of RadPath dataset
improves the performance in the case of minority classes resulting in a higher BA, while
the overall performance (F1) of the proposed method is not significantly higher than the
baseline method. However, the confusion matrices in Tables 5.6 and 5.7 show that in the
case of Derm7pt dataset, the proposed method improves the overall performance with com-
paratively smaller improvements in the performance of the minority classes.

5.3.5 G(I) + I is comparable to S + I for RadPath

In the case of the RadPath dataset, the proposed model (Figure 3.5) performs comparably to
the multimodal model (Figure 5.1) that uses both superior and inferior modalities during the
inference. As shown in Table 5.1, the proposed method with only the inferior modality (ALL
sequence MRI) is able to close in on the performance of the multimodal model. Additionally,
it outperforms the superior modality histopathology model, which in a clinical setting would
imply an alleviated need for the acquisition of the superior modality. However, we do not
observe this behavior in the case of the Derm7pt dataset (Tables 5.4 and 5.5). The proposed
model, while outperforming the inferior modality model, does not match the performance
of the superior modality model, or the multimodal model. This can be explained by the
loss curves of the two guidance models shown in Figure 5.5. The latent representations
of radiology are able to map more closely to superior histopathology representations than
the clinical mapping to the dermoscopic representations. This behavior can be attributed
to the relative importance of the two modalities used in the diagnosis – radiology being
more important to tumor diagnosis than clinical images for lesion diagnosis. Further, we
hypothesize that the performance of the multimodal model (S+I) forms an upper bound on
the performance achievable by the proposed model (G(I) + I) as the guidance (G(I)) only
aims to mimic the latent representation of the superior modality (S), without completely
replicating it.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Motivated by the observation that, for a particular clinical task, better-performing med-
ical imaging modalities are typically less feasible to acquire, in this work, we proposed a
student-teacher method that distills knowledge learned from a better-performing (superior)
modality to guide a more feasible yet under-performing (inferior) modality and steer it
towards improved performance. Our evaluation on two multimodal medical imaging-based
diagnosis tasks (skin and brain cancer diagnosis) demonstrated the ability of our method
to boost the classification performance when only the inferior modality is used as input.
We even observed (for the brain tumor classification task) that our proposed model, us-
ing guided unimodal data, achieved results comparable to a model that uses both superior
and inferior multimodal data, i.e. potentially alleviating the need for a more expensive or
invasive acquisition.

6.2 Limitations and Future Work

While the proposed method is successfully able to leverage the existing multimodal medical
images to improve the diagnosis using the novel medical images of the inferior modality,
we note that the proposed method has certain limitations and suggest directions for future
work to mitigate these limitations and improve the performance of the guidance.

1. The training strategy of the proposed method involves three sequential steps (as dis-
cussed in Chapter 3) – training the modality-specific classifiers, training the guidance
model, and finally, training the combined decoder. We believe that training our mod-
els in an end-to-end fashion, in a single optimization step, as opposed to multiple
sequential optimizations, would enhance the performance of the proposed method.
Such end-to-end trained models would result in a guidance model that optimizes the
latent representations for the end goal of classification as opposed to the proposed work
where they are constrained to mimic the superior modality latent representations that
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might not be optimal for the classification. While this could be computationally chal-
lenging for datasets with huge images, such as RadPath, it could prove to be beneficial
for datasets like Derm7pt with regular image sizes.

2. Data augmentation is a popular technique used to mitigate model overfitting and has,
in turn, shown to improve model performance. In training the guidance model (as
discussed in section 3.2.2), we make use of an autoencoder-like model to map from the
latent representation of the inferior modality to that of the paired superior modality.
The current implementation involves a one-to-one mapping from an unaugmented
inferior modality latent space to the unaugmented superior modality latent space.
The lack of data augmentation limits the performance of the guidance, as seen in
the case of the Derm7pt dataset in Figure 5.5. However, we believe it is possible to
circumvent this limitation with the use of an augmentation-invariant mapping, where
the latent representations of different augmentations of an inferior modality image are
encouraged to be identical before mapping it to the corresponding superior modality
representation – a many-to-one mapping.

3. The surging interest in multimodal data analysis has given rise to a variety of tech-
niques for aggregating information from multiple modalities. In this work, we use a
simple concatenation of the latent representations to aggregate the multimodal infor-
mation (Figure 3.5). We believe the use of advanced aggregation strategies such as (i)
the use of attention before aggregation to assign due importance to the different la-
tent representations as in the work proposed by Braman et al. [39] and (ii) Kronecker
product-based aggregation to produce more expressive combined representations as in
the work proposed by Chen et al. [38] could improve the performance of the proposed
method.

4. While the proposed method successfully improves the diagnosis performance in the
case of 2D images of skin lesions (Derm7pt) and 3D images of multi-sequence MRIs
(RadPath), given the variety of modalities involved in the acquisition of medical data,
such as the tabular metadata, sequential genomic data, etc., the future work could
leverage such non-imaging modalities in the guidance of the inferior modality. The
only difference in this case would be the replacement of the CNN-based encoder with
an appropriate modality-specific encoder.

5. As previously mentioned, our work uses multimodal medical images to improve the
diagnosis using the novel images of the inferior modality. However, given the prevalent
issue of DL models failing on out-of-distribution data, the novel images of the inferior
modality have to be acquired from the same scanner while following the same ac-
quisition protocols. The difference in acquisition protocols between different hospitals
significantly limits the applicability of our method. Future works should be able to
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leverage the multimodal data of Hospital A to improve the diagnosis done at Hospital
B. In order to achieve this, the current work needs to be extended in the direction of
domain generalization to handle the distribution shift in data.

6. One of the limitations of the proposed method that hinders its widespread applicability
is the requirement of paired multimodal datasets. Unpaired multimodal KD has been
employed by Dou et al. [78] and Li et al. [79] for medical image segmentation, where
they leverage the anatomical similarity along with the co-registered images across
different modalities. The anatomical structures more evident in the teacher modality
are used to improve the segmentation of the same structures in the student modality.
Future works along the lines of unpaired multimodal guidance for classification tasks
would significantly improve the utility of the proposed work.
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