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Abstract

In algebraic geometry, gap functions are useful tools in the study of singularities of curves.
It is thus desirable to have a classification of gap functions with arbitrary degrees. Gap
functions with degrees 1 and 2 are known classically and Buczyński, Ilten, Ventura have
classified gap functions with degree 3. In this thesis, building on the results of Buczyński,
Ilten, Ventura, we present an algorithm that computes gap functions with arbitrary dimen-
sions and degrees. After implementing the algorithm in Maple, we classify all 4 dimensional
gap functions, which can help study all the curve singularities with delta invariant 4.
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Chapter 1

Introduction

1.1 Motivation

In algebraic geometry, the main objects of study are algebraic varieties, which are solution
sets to systems of polynomial equations. Like in many other branches in math, after defining
the objects that are to be studied, one is interested in classifying all those objects up to
isomorphism. Thus, classification of varieties is a major problem. To make this problem more
manageable, we can use invariants to focus on a smaller family of varieties. An invariant
is a property of a variety that is preserved under isomorphism. For example dimension
is an invariant of a variety. By considering varieties of dimension one, we arrive at the
sub-problem of classifying curves.

When we study algebraic curves, the study of singularities is inevitable. A singularity is
a point on a curve that is not smooth (see Definition 2.1.5). Even when we are interested in
studying smooth curves, singular curves come into play. To see this, consider the geometric
genus, another invariant of varieties. When the ground field is C, the complex numbers,
a smooth curve can be viewed as a two dimensional manifold over the real numbers. The
geometric genus specifies how many holes this surface has. For example the real manifold
corresponding to the projective line P1

C is a sphere with no holes and the geometric genus
of P1 is thus 0. The geometric genus of a curve is a non-negative integer which lets us
sub-divide the problem of classifying curves into the problem of classifying curves of a
fixed genus g. Then, one can use moduli spaces to study this smaller family. For example,
the moduli space Mg parameterizes smooth curves of genus g. Unfortunately, Mg is not
compact, which prevents us from using those theorems that require compactness. A method
for compactifying this space is the Deligne-Mumford compactification, which uses curves
with nodal singularities [DM69].

Curve singularities have been studied extensively. For example, plane curves with nodal
singularities have been studied extensively through moduli spaces called Severi varieties [DH88].
There is also the Clemens conjecture which states that a general quintic hypersurface in P4
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will contain only finitely many smooth rational curves of a fixed degree and the singularities
of the non-smooth ones can be quite constrained [Kat86; JK96; Cot05].

For plane curves, there are classical results regarding the classification of the singularities
that can occur. A curve of degree d in P2 has arithmetic genus d(d−1)/2 (see [Har77, Exercise
7.2]). For d ≤ 5 all possible configuration of singularities are known (see [Nam84]). There
are partial results for d = 6 but a complete classification remains open.

In [IM21], the authors use classification of singularities with delta-invariant two to give
an algorithm that determines which rational curves with arithmetic genus two admit a toric
degeneration. Their work emphasizes the significance of classifying singularities with a given
delta-invariant.

A method for studying the singular point on a curve is to consider the local ring of
the curve at that point. The local ring of a point on a curve gives information about a
Zariski open neighborhood of that point. However the Zariski topology is very coarse and
an open set of the curve is the entire curve minus a finite number of points. To give more
local information (e.g in a neighborhood of the point in the usual Euclidean topology) we
can use a procedure called completion (see Definition 2.2.1). The isomorphism class of the
completion of a local ring can be used as the definition of the singularity type of a point.
Buczyński, Ilten and Ventura introduced gap functions as an invariant for the isomorphism
class of the completion of the local rings [BIV20]. Thus, gap functions serve as tools for
classifying singularities of curves.

Let K be an algebraically closed field. A gap function is a map coming from a subalgebra
R of a finite product of rings of power series ∏r

i=1 K[[ti]] (see Definition 2.4.1). To see how
gap functions are related to singularities of curves, assume C is a curve and Q is a point on
C. Let OC,Q be the local ring of this point and R its completion. To get an invariant for the
isomorphism class of R we can look at R relative to its normalization (see Definition 2.3.5)
which is a product of rings of power series S = ∏r

i=1 K[[ti]] (Proposition 2.3.6). We will see
that the gap function corresponding to R ⊂ S provides an invariant that describes how far
R is from being equal to S. Here r is the number of branches of the curve at the singular
point.

Example 1.1.1. Let K = C be the field of complex numbers and let Y1 be the affine plane
curve given by the vanishing of y2−x2(x+ 1). See Figure 2.2a for a graph of the real points
of Y1. We will see in Example 2.1.7 that the origin P = (0, 0) is a singular point (a node)
of Y1. The completion of the local ring OY1,P is isomorphic to

ÔY1,P
∼= K[[x, y]]/(xy) ∼= K[[(t1, 0), (0, t2)]] ⊂ K[[t1]]×K[[t2]], (1.1)

(See Example 2.2.6 for more details). Here S := K[[t1]] × K[[t2]] is the normalization of
the completion of the local ring (see Proposition 2.3.6). The ring K[[(t1, 0), (0, t2)]] is the
power series ring in (t1, 0), (0, t2) where K is a subring by c 7→ (c, c). Thus elements of
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K[[(t1, 0), (0, t2)]] are of the form(
c+

∞∑
i=1

ait
i
1, c+

∞∑
i=1

bit
i
2

)
∈ K[[t1]]×K[[t2]], for some c, ai, bi ∈ K.

Also, the second isomorphism in (1.1) is via the map that sends a constant c to (c, c), and
x 7→ (t1, 0) and y 7→ (0, t2). The gap function associated to the subalgebra K[[(t1, 0), (0, t2)]] ⊂
S is the function λ : Z2

≥0 → Z≥0 where

λ(i, j) =

0 if i = 0 or j = 0,

1 otherwise .

We will see how to compute gap functions in Examples 2.4.5 and 2.4.6. For now we mention
that if ÔY1,P had been equal to S, then the gap function λ would have been the zero function.
The fact that λ is attaining non-zero values shows that ÔY1,P is not the full ring S and the
higher the values λ attains, the further ÔY1,P is from being equal to S.

To specify a gap function it is enough to specify its values on Z2
>0 (the values at points

with a zero component can be determined by the values on Z2
>0, see Corollary 2.5.2) and

we usually write down these values as a table of integers. For example λ can be represented
by the table

...
...

1 1 . . .

1 1 . . .

.

At the nodal singularity (0, 0) ∈ Y1 there are two distinct tangent directions and we say
there are two branches and r = 2. This is also reflected by the fact that the domain of λ is
Zr≥0 = Z2

≥0.
The gap function λ provides an invariant for the isomorphism class of OY1,P which can

be used to distinguish a node from other singularity types. For example consider the affine
curve Y2 given by the vanishing of y2 − x3 (see Figure 2.2b for a graph of the real points
of Y2). The origin is a singular point (a cusp) whose singularity type is different from that
of a node. This can be seen by comparing the gap function coming from a cusp (the gap
function 1.1 in Table 2.1) to the gap function coming from a node (shown in the above
table).

The degree of a gap function is the maximum value it attains, which is by design the same
as the delta-invariant of the corresponding singularity. The delta-invariant is an invariant
of a singular point that measures how bad the singularity is: As the value gets higher, the
singularity becomes more complicated. The delta-invariant is related to another invariant
of the curve, namely the arithmetic genus. It is a non-negative integer and the difference
between the arithmetic genus and geometric genus measures how far a curve is from being
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smooth. For example for a smooth curve the two genuses are equal. This difference between
the two genuses is exactly equal to the sum of the delta-invariants of all singular points of the
curve. See [Kun05, Chapter 14] for more details on the connection between the two genuses
and delta-invariant of singularities. For singularities with delta-invariant one, two and three,
the authors in [BIV20] show that gap functions completely determine the singularity types.

Classical results can be used to classify all gap functions with degree one and two.
Buczyński, Ilten and Ventura [BIV20] have classified gap functions with degree three. The
purpose of this thesis is to introduce an algorithm (see Section 3.2) which computes gap
functions with any degree. By using an implementation of this algorithm, we can completely
classify gap functions with degree 4 (see Theorem 4.2.1).

1.2 Approach

1.2.1 Generating gap functions

Given a positive integer δ, a candidate gap function with degree δ is a function λ : Zr≥0 → Z
whose maximum value is δ. The goal of the algorithm we give is to compute a set of
candidate gap functions with degree δ such that the the set of gap functions with degree δ
is a subset of the output. We will try to eliminate from the output those functions that are
not gap functions as much as possible. The output of the algorithm for δ ≤ 4 are all the
gap functions coming from curve singularities.

An important property of gap functions is that it can be completely specified by its
values on a finite set of points. More specifically, for every gap function λ, there is a
point (a1, . . . , ar) ∈ Zr≥0 such that λ is completely determined by its values on the set
{(x1, . . . , xr) : xi ≤ ai} (see Lemma 2.5.7). This allows us to store a gap function in a finite
r-dimensional array in a computer. Moreover the ai’s are bounded from above and this
bound depends solely on δ (see Lemmas 2.5.5 and 2.5.6). This means that we are searching
for gap functions in a finite space of arrays. To eliminate tables that are not gap functions
from the output as much as possible, we will use the following properties. Some of these
properties were proved in [BIV20] and the rest are proved in Chapter 2:

1. Suppose λ : Zr≥0 → Z is a gap function. Define

λH : Zr−1
≥0 → Z

(x1, . . . , xr−1) 7→ λ(x1, . . . , xr−1, 0),

and

λL : Z≥0 → Z

x 7→ λ(0, . . . , 0, x).

4



Then, λH and λL are gap functions with

δ(λ) ≥ δ(λH) + δ(λL) + 1. (1.2)

(see Lemma 2.6.3). We act in reverse and start with an r − 1-dimensional and a one-
dimensional gap functions with degrees less than δ and try to assemble them into an
r-dimensional gap function λ with degree δ.

2. From one entry of the table to the next, a gap function increases by at most one unit
(see Lemma 2.5.1). Thus, we start from the entry (1, . . . , 1) and fill the table entry by
entry until we reach an entry with the value δ. We stop and output the table.

3. Going from one entry to the next, often the values of the previous entries will force
the gap function to increase by one (see Lemma 2.5.8). This property is called upward
propagation, and thanks to this property many tables that are not gap functions will
be eliminated.

We consider a table filled, once there is an entry with the value δ. As a final check, we
test two conditions:

• The first condition is a technical one, that comes from a property of gap functions
which we call the semigroup property (see Lemma 3.2.1). It will eliminate some of the
tables in the output that are not gap functions.

• To minimize duplication, if under a permutation of the components, the table becomes
equal to a previously obtained table, then the current table is is discarded. We call
this the symmetry check.

The algorithm (see Chapter 3 for a complete description) will output the tables that
pass the above two checks. We have implemented this algorithm in Maple [Map19].

At this point we have a list of tables that are candidates for being gap functions for
curve singularities. The next step is to prove that each table is a gap function by manually
finding the corresponding subalgebra R ⊂ S = ∏r

i=1 K[[ti]] whose gap function is that table.
In this thesis, we do this part for δ = 4. We will see that there are 39 gap functions with
δ = 4. In this way, we classify all the gap functions with δ = 4 and will prove the following
theorem in Section 4.2.

Theorem 4.2.1. The standard gap functions with degree 4, up to permutation of the coor-
dinates, are those listed in Tables 4.1, 4.2, 4.3, and 4.4. Furthermore, Tables 4.5, 4.6, 4.7,
4.8, and 4.9 list the corresponding algebras R ⊂ S.
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1.2.2 Finding the subalgebras

Now we explain our method of finding R and S. Some of the tables are readily seen to
be gap functions: These are the tables for which equality holds in Equation (1.2). We will
prove that, using the upward propagation property, that every cell of the table is completely
determined by the values of previous cells (see Proposition 2.6.6). Therefore, when equality
holds, λ is uniquely determined by λH and λL. In this situation, we say λ is the product of
λH and λL. The algebras R and S for λ are easily obtained from the corresponding algebras
of λH and λL.

When equality does not hold in (1.2), the computation is not as easy. Here we follow
the method used in [BIV20], which is look at entries where the gap function stays constant
and to repeatedly use Lemmas 2.5.1 and 2.5.6 to produce generators for the subalgebra R
of S = ∏r

i=1 K[[ti]]. In this way we will find the subalgebras for every table in the output,
verifying that all of them are gap functions.

The structure of this thesis is as follows:
In Chapter 2, we recall basic concepts from algebraic geometry. We will then review the

notions of completion and normalization of rings in commutative algebra. Then, we focus
on gap functions and their relation to singularities of curves. After that, we talk about
properties of gap functions that will be used in the algorithm. The first half of Chapter 3
presents the algorithm for computing gap function candidates in detail. The second half
contains a proof of why the algorithm gives the correct output. The output of the algorithm
for δ = 4 is given in Tables in Chapter 4. Finally, in Chapter 4 we prove that each table in
the output of the algorithm for δ = 4 is a gap function. We include complete computations
of the algebras R ⊂ S for several cases. The tables in this chapter give the algebras R ⊂ S
for each output of the algorithm. Appendix A contains our implementation of the algorithm
in Maple.
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Chapter 2

Preliminaries

In this chapter, we review preliminary definitions and results. It helps if the reader is familiar
with basic notions in algebraic geometry at the level of [Har77, Chapter 1]. Sections 2.1
through 2.3 review basic concepts such as varieties, local rings, smoothness, completion
and normalization in algebraic geometry. Then, in Section 2.4 we give the definition of
gap function and provide examples. After that, in Sections 2.5 and 2.6, we talk about the
properties of gap functions. We provide proofs for properties that are new, and references
for existing results. Finally, in Section 2.7 we will discuss the geometry of gap functions.

2.1 Basic notions

In this section we follow [Har77, Ch. I] and recall basic facts about affine varieties. Because
we are interested in local behaviour of varieties, it is enough for our purposes to consider only
affine varieties. Let K be an algebraically closed field. Let An = Kn be the n-dimensional
affine space. Closely related to An is the ring of polynomials A = K[x1, . . . , xn] in n variables.

Definition 2.1.1. Let f1, f2, . . . , fr ∈ A be polynomials. An algebraic set in An is a set of
the form

V (f1, . . . , fr) = {(x1, . . . , xn) ∈ An : fi(x1, . . . , xn) = 0, 1 ≤ i ≤ r}.

An algebraic set is irreducible if it is not the union of two proper algebraic subsets. An affine
variety is an irreducible algebraic set.

The collection of algebraic subsets of An can be taken as the closed subsets of a topology
on An. This topology is called the Zarisky topology. An open subset in this topology is the
complement of an algebraic set.

If X ⊂ An is an affine variety, the dimension of X, denoted by dimX, is by definition
the supremum of all integers n such that there is a chain of length n of affine varieties Xi

contained in X:
X0 ⊂ X1 ⊂ . . . ⊂ Xn = X.

7



Figure 2.1: The real points on the plane curve x2 + y2 − 1 = 0 in Example 2.1.3.

One can show that dimAn = n [Har77, Proposition I.1.9] and for two varieties X ⊂ Y ,
dimX ≤ dim Y [Har77, Exercise I.1.10]. Hence, an affine variety in An has dimension at
most n. In this thesis, when we draw a variety, we implicitly assume that K = C and that
we are plotting the real points of that variety.

Definition 2.1.2. A curve is a variety of dimension 1.

Example 2.1.3. Let X be the curve defined by X = V (x2 +y2−1) ⊂ A2. Figure 2.1 shows
a plot of X.

Example 2.1.4. The varieties Y1 = V (y2 − x2(x + 1)) and Y2 = V (y2 − x3) are other
examples of plane curves. Figure 2.4 shows these curves. There is a major difference between
the curve in Example 2.1.3 and the ones in Example 2.1.4. Every point on the curve X is a
smooth point whereas, the curves Y1 and Y2 have a point (the origin) where the curve either
intersects itself (in Y1) or the point is a corner point (in Y2). We call these points singular
points of the curves. In the next definition, we make the notion of smoothness precise.

Recall that an additive subgroup I of a ring A is called an ideal if for every a ∈ A

and x ∈ I, we have ax ∈ I. The ideal generated by a subset of A is the smallest ideal of A
containing that subset. For a variety X ⊂ An, the ideal of X is the ideal of A = K[x1, . . . , xn]
generated by

{f ∈ A : f(P ) = 0 for all P ∈ X}.

A famous theorem in commutative algebra, namely Hilbert’s basis theorem [Eis95, Theorem
1.2] states that the ideal of a variety is always finitely generated.

Definition 2.1.5 ([Har77, Chapter I.2]). Let X ⊂ An be an affine variety of dimension r.
Let f1, . . . , ft ∈ A = K[x1, . . . , xn] be polynomials which generate the ideal of X. Let P ∈ X
be a point, with coordinates P = (a1, . . . , an). The point P is nonsingular if the rank of the
matrix ||(∂fi/∂xj)(a1, . . . , an)|| is n− r. Otherwise, the point P is singular.

8



(a) the nodal curve Y1 : y2 − x2(x+ 1) = 0 (b) the cuspidal curve Y2 : y2 − x3 = 0

Figure 2.2: The plane curves in Example 2.1.4 with singularities at (0, 0)

Example 2.1.6. Let X be as in Example 2.1.3. The ideal of X is generated by f =
x2 + y2 − 1. Then [

∂f/∂x ∂f/∂y
]

=
[
2x 2y

]
,

has rank 1 for every point on X. This shows that every point of X is smooth (see Figure 2.1).

Example 2.1.7. Let Y1 be as in Example 2.1.4. The ideal of Y1 is generated by f =
y2 − x2(x+ 1). Since the matrix[

∂f/∂x ∂f/∂y
]

=
[
−3x2 − 2x 2y

]
,

has rank zero at the point (0, 0), this point is a singular point of the curve. This point is
the origin in Figure 2.4. A similar computation shows that (0, 0) is a singular point of Y2.

To study the singular points of a variety, we consider the local ring of the variety at a
point.

Definition 2.1.8 ([Har77, Section I.3]). Let X ⊂ An be a variety and suppose P ∈ X.
A function f : X → K is regular at P , if there is an open neighbourhood U of P and
polynomials g, h ∈ K[x1, . . . , xn], such that h does not vanish on U and f = g

h . We say f is
regular on X, if it is regular at every point of X.

The next definition introduces the local ring of a variety at a point.

Definition 2.1.9 ([Har77, Section I.3]). Let X be a variety and P ∈ X. The local ring of
P on X, denoted by OX,P , is the set of all pairs (U, f), where U is an open subset of X
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containing P and f is a regular function on U . We identify two pairs (U, f) and (V, g), if
on U ∩ V , f = g.

The local ring OX,P has the unique maximal ideal

M = {(U, f) ∈ OX,P : f(P ) = 0},

since if (U, f) /∈M , i.e. f(P ) 6= 0, then (U, f) is a unit with inverse (U\V (f), 1/f). A basic
result from algebraic geometry tells us what the local ring of a variety at a point looks like.
To state this result we need the notion of localization of rings.

Definition 2.1.10. Let R be a ring and U ⊂ R a subset containing 1 that is closed under
multiplication. The localization of R with respect to U , denoted by U−1R, is the set of
equivalence classes of formal fractions r

u with r ∈ R, u ∈ U . Two such fractions r1
u1
, r2
u2

are
equivalent if there exists u′ ∈ U such that u′(r1u2 − r2u1) = 0.

One can prove that the equivalence classes of fractions U−1R in the above definition is
a ring with 1 [AM69, Section 3]. An important example of a multiplicatively closed set U
is U = R\I where I ⊂ R is a prime ideal. In this situation we denote the localization of R
with respect to R\I by RI .

Theorem 2.1.11 ([Har77, Section I.3]). Let X be a variety and suppose I is the ideal of X.
For any point Y ∈ X, let MP ⊂ A(X) = K[x1, . . . , xn]/I be the maximal ideal generated by
the set of polynomials f ∈ A(X) such that f(P ) = 0, then OP is the localization A(X)MP

.

Example 2.1.12. Let Y2 be as an Example 2.1.4 and consider P = (0, 0). Then, A(Y2) =
K[x, y]/(y2 − x3) and

OY2,P
∼=
(
K[x, y]/(y2 − x3)

)
(x,y)

.

2.2 Completion

Let X be a variety and P ∈ X. The local ring OX,P contains information about a neigh-
bourhood of P . But in the Zariski topology, a neighbourhood of a point almost covers the
variety X and is too big. For example, if X is a curve, a Zariski open neighbourhood of P
is X minus a finite number of points. Thus, the local ring OX,P gives information about
almost all of X. To study the local behaviour of a point P ∈ X, we can use a procedure
called completion, which takes a ring R and produces a related ring R̂.

To illustrate the kind of information we can get from R̂, suppose for the moment that
we are working over C, the field of complex numbers. Over C, we have two topologies,
the Zariski topology and the usual Euclidean topology. If we are interested in the local
behaviour of P , we might want to consider a neighbourhood of P in Euclidean topology. By
passing from OX,P to the completion ÔX,P , we are in a sense achieving this. The current
section defines completion and presents some of its properties.
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Definition 2.2.1 ([Eis95, Chapter 7]). Let R be a ring and let M ⊂ R be an ideal. The
completion of R with respect to the ideal M , denoted R̂M , is the ring

R̂M =
{

(g1, g2, . . .) ∈
∞∏
i=1

R/M i : gj ≡ gi (modM i) for all j > i

}
.

If M is understood from the context, we denote the completion simply by R̂.

To see what the intuition behind completion is, consider the case where the ground
field is C, the complex numbers. Any rational function (in one or more variables) can be
considered as an analytic function by considering its power series expansion around a point.
The power series expansion is a powerful tool in the analytic setting (i.e. when K = C) but
it is not applicable in the algebraic setting (i.e. when K is an arbitrary algebraically closed
field). We can still use the formal power series through completion. By using the completion
of the local ring of a variety at a point, we can gain more local information compared to
the data the local ring provides. The next example makes the connection to formal power
series more clear.

Example 2.2.2. Let R = K[x] and M = (x). We claim that the completion R̂M is isomor-
phic to K[[x]], the ring of formal power series in one variable. To see this consider the ring
homomorphism

φ : K[[x]]→ R̂M
∞∑
i=0

aix
i 7→ (a0, a0 + a1x, a0 + a1x+ a2x

2, . . .).

This map is obviously injective. To prove surjectivity, note that each element g ∈ R̂M has
a unique representative (g1, g2, . . .) where for every i ≥ 1, gi is a polynomial of degree less
than i, and gi− gi−1 is either 0 or a monomial of degree i− 1. Let ai−1 be the coefficient of
this monomial (or 0, if gi − gi−1 = 0). Then, ∑∞i=0 aix

i ∈ K[[x]] maps to g.

Example 2.2.3. Let R = K[x1, . . . , xn] and M = (x1, . . . , xn). Similar to Example 2.2.2,
one can show that R̂M ∼= K[[x1, . . . , xn]].

When the ring R is the local ring OX,P , we will always apply completion with respect
to its unique maximal ideal. In this way, the notation ÔX,P is unambiguous.

Theorem 2.2.4 ([Har77, Theorem 5.4A, 5.5A]). Let X be a variety of dimension n and
let P ∈ X be a smooth point. If ÔX,P is the completion of the local ring OX,P with respect
to its maximal ideal, then

ÔX,P
∼= K[[x1, . . . , xn]].

According to this theorem, we cannot distinguish between smooth points on varieties of
the same dimension by looking at the completion of their local rings.
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Definition 2.2.5 ([Har77, Section I.5]). Let X,Y be two varieties. We say the point P ∈ X
and Q ∈ Y are analytically isomorphic, if there is an isomorphism ÔX,P

∼= ÔY,Q as K-
algebras.

By Theorem 2.2.4, any two smooth points on varieties of the same dimension are ana-
lytically isomorphic.

Example 2.2.6 ([Har77, Example I.5.6.3]). Consider the nodal curve Y1 in Example 2.1.4.
The curve is defined by the vanishing of f(x, y) = y2 − x2(x + 1). Although f(x, y) is
irreducible in K[x, y] (and thus the nodal curve is irreducible), we show that in K[[x, y]],
this polynomial factors as f = gh where

g = y + x+ g2 + g3 + · · · ,

h = y − x+ h2 + h3 + · · · ,

where gi, hi are homogeneous polynomials of degree i. We can inductively find gi, hi. For
example, for i = 2, by looking at the degree 3 parts of f = gh, we get

−x3 = (y − x)g2 + (y + x)h2.

Because (y − x, y + x) = (x, y), we can solve the above equation for g2, h2. Next, we find
g3, h3 by looking at the degree 4 parts of f = gh and continue in this manner to get all gi, hi.
This shows that from the point of view of power series, the polynomial f(x, y) is reducible.

Now let us look at the local ring of Y1 at the origin P = (0, 0). It is

OY1,P = K[x, y](x,y)/(f).

The completion R of the local ring with respect to its maximal ideal will be

R ∼= K[[x, y]]/(f).

Because f factors in K[[x, y]] as f = gh where g, h have linear terms, there is an automor-
phism of K[[x, y]] that maps g 7→ x and h 7→ y, i.e.

R ∼= K[[x, y]]/(xy).

This corresponds to the fact that in a small neighbourhood (in the sense of the usual
Euclidean topology) of the origin, the nodal curve is the union of two branches (see Fig-
ure 2.2a). That is the singular point of Y1 is analytically isomorphic to the singular point
of two intersecting lines defined by xy = 0.

We now define the singularity type of a point on a curve.
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Definition 2.2.7. Let C be a curve. The singularity type of a point P on C is the isomor-
phism class of ÔC,P .

We see that for two curves C,C ′, the point P ∈ C and P ′ ∈ C ′ have the same singularity
type if and only if they are analytically isomorphic.

2.3 Normalization

In this section we review a notion from commutative algebra called normalization. Normal-
ization helps us in producing invariants for the local ring ÔC,P .

Definition 2.3.1 ([AM69, Ch. 5]). Let R be a subring of S. We say s ∈ S is integral over
R if there exists a monic f(x) ∈ R[x] such that f(s) = 0.

Example 2.3.2. Let R = K[t2, t3] ⊂ S = K[t]. Then t ∈ S is integral over R because it is
the root of f(x) = x2 − t2.

Example 2.3.3. Let R = K[t2, t3] ⊂ S = K[t]. Then 1
t ∈ S is not integral over R. To see

this suppose f(x) = xn + a1x
n−1 + . . .+ an ∈ R[x] is a polynomial with f(1

t ) = 0. Then

(1
t

)n
+ a1

(1
t

)n−1
+ . . .+ an = 0.

By multiplying by tn, we get

1 + t(a1 + ta2 + . . .+ ant
n) = 0,

implying that t divides 1, a contradiction.

Lemma 2.3.4. For two rings R ⊂ S, the set C = {s ∈ S : s is integral overR} is a subring
of S containing R.

Proof. See [AM69, Corollary 5.3].

We recall that for a ring R, the total quotient ring of R is the localization of R with
respect to the set of non-zerodivisors of R. The natural map from R to the total quotient
ring given by r 7→ r

1 is injective (see for example [Eis95, Section 2.1]). When R is an integral
domain, then U = R\{0} is the set of non-zerodivisors and the localization U−1R is a field,
called the field of fractions of R.

Definition 2.3.5. The ring C in the Lemma 2.3.4 is called the integral closure or normal-
ization of R in S. If R = C, we say R is integrally closed or normal. If for a ring R, S is not
specified, we take S to be the total quotient ring of R.
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Proposition 2.3.6 ([Kun05, Theorem 16.14]). Let C be a curve and P ∈ C. Then the
normalization of ÔC,P is isomorphic to

r∏
i=1

K[[ti]],

for some r ∈ Z>0. We call r the number of branches of C at P .

Example 2.3.7. Consider the nodal curve Y1 in Example 2.1.4 given by f(x, y) = y2 −
x2(x + 1). Let P = (0, 0) be the point at the origin. We saw in Example 2.2.6 that the
completion R of the local ring OY1,P with respect to its maximal ideal is

R ∼= K[[x, y]]/(xy).

In Example 1.1.1 we saw the isomorphism

K[[x, y]]/(xy) ∼= K[[(t1, 0), (0, t2)]] ⊂ K[[t1]]×K[[t2]],

and it is straightforward to show that K[[t1]]×K[[t2]] is both integrally closed and integral
over K[[(t1, 0), (0, t2)]]. Therefore, the normalization of R is isomorphic to the product of
two rings of power series. Here the curve has two branches at the origin (with tangent lines
y − x = 0 and y + x = 0, the linear terms of g, h). Similarly, for the cuspidal curve Y2 in
Example 2.1.4, the completion of the local ring at the origin is isomorphic to K[[t2, t3]] with
normalization K[[t]]. The curve Y2 has one branch with a double tangent line y = 0.

2.4 Gap functions

Previously, we saw that for a curve C and a point P ∈ C, we can take the isomorphism
class of ÔC,P as the singularity type of the point P . In this section, we present the concept
of gap function which is an isomorphism invariant of ÔC,P . We saw in Section 2.3 that S,
the normalization of ÔC,P , is of the form

S =
r∏
i=1

K[[ti]],

where r ∈ Z>0.

Definition 2.4.1 ([BIV20, See Section 2]). For any K-subalgebra R ⊂ S, the gap function
of R in S is the map λR : Zr≥0 → Z≥0 with

λR(α) = dimS/ (R+ 〈tα1
1 , . . . , tαr

r 〉) ,

where 〈•〉 denotes the ideal in S generated by •, while the quotient is of vector spaces.
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The degree of the gap function λR is

δ(λR) = sup
α∈Zr

≥0

λR(α).

A gap function is standard if λ(ei) = 0 for any i, and λ(e1 + . . . + er) = r − 1, where ei is
the i-th standard basis vector of Zr.

We note that since the quotient of vector spaces S/〈tα1
1 , . . . , tαr

r 〉 is finite-dimensional,
the dimension in the above definition is always finite. Moreover, in applications, R is the
completion of a local ring and S its normalization and in this case the degree of the corre-
sponding gap function is also finite.

Remark 2.4.2. In Definition 2.4.1, tαi
i denotes the n-tuple

(0, . . . , 0, tαi
i , 0, . . . , 0),

in S, where tαi
i appears in the i-th position. With this notation, we can write for example

(t1 + t2)(t1 + 2t2) = (t21 + 2t22).

Note that t0i then denotes the n-tuple with 1 in the i-th position and zero elsewhere.

Remark 2.4.3. In [BIV20], the authors define a gap function for any K-vector subspace
R ⊂ S. Because we will only be dealing with subalgebras of S, in Definition 2.4.1, we defined
gap functions only for subalgebras.

Notation 2.4.4 ([BIV20, Section 2]). There is a standard discrete valuation map ν :
K[[t]]→ Z ∪ {∞}, which is defined by

ν :
∞∑
i=0

ait
i 7→ min{i ∈ Z≥0 : ai 6= 0}.

Over the ring S = ∏r
i=1 K[[ti]], there are r discrete valuations, νi : S → Z ∪∞. These are

obtained by projecting S to its i-th factor and taking the standard discrete valuation on
K[[ti]]. We also obtain the following map on a subalgebra R ⊂ S,

ν : R→ (Z ∪∞)r,

(f1, . . . , fr) 7→ (ν1(f1), . . . , νr(fr)).

We denote by Σ the image ν(R). It is easy to see that if R is a ring, then Σ is a semigroup.
Given an element α ∈ Zr≥0 and an index 1 ≤ i ≤ r, αi denotes the i-th coordinate of

α. We set |α| = Σr
i=1αi. The element ei ∈ Zr denotes the i-th vector of the standard basis.

Given some element α ∈ Zr≥0 and an index 1 ≤ i ≤ r, we will say that α[i] belongs to or
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· · ·
0 1 2 3 4

Figure 2.3: The picture of the gap function in Example 2.4.5

is contained in Σ if there exists an element α′ ∈ Σ such that αj ≤ α′j for all 1 ≤ j ≤ r,
and αi = α′i. We will also refer to α[i] as an element of Σ. This notation will facilitate
our discussion when we have a gap function and we want to find the generators of the
corresponding subalgebra.

Example 2.4.5. We would like to compute the gap function of the subalgebra R =
K[[t3, t4, t5]] ⊂ S = K[[t]]. To compute λ(α) when α = 0 we note that the ideal 〈1〉 ⊂ S is
the entire ring S, hence R+ 〈1〉 = S and

λ(0) = dimS/ (R+ 〈1〉) = dimS/S = 0.

When α = 1, the ideal 〈t〉 ⊂ S is the set of all power series without the term t0. Because R
contains the constants (i.e. elements of K), we have R+ 〈t〉 = S and

λ(1) = dimS/ (R+ 〈t〉) = dimS/S = 0.

For α = 2 since R+ 〈t2〉 = K[[t2, t3]] lacks the basis vector t,

λ(2) = dimS/
(
R+ 〈t2〉

)
= dimS/

(
K[[t2, t3]]

)
= 1.

Similarly, because for α ≥ 3, R+ 〈tα〉 = R lacks the basis vectors t and t2, we have

λ(α) = dimS/ (R+ 〈tα〉) = dimS/R = 2.

Recall that the degree of the gap function λ is the largest value λ attains, which in this case
is 2. This has a natural explanation, because two basis elements t, t2 ∈ S are missing in R.
The gap function counts these missing basis elements. We can visualize the gap function
λR as in Figure 2.3. In this figure, a circle at integer α is filled if the basis element tα ∈ S
is in R (not missing), and an empty circle shows that the basis element tα is missing in R.

We always show gap functions as a table of values. For instance, the gap function λR in
example 2.4.5 is ∣∣0 1 2 2 . . .

In the above table, the values of the gap function λR(α) are shown for α ≥ 1. The first time
a value shows up in the table is marked with a blue colour. We note that the values in the
table are increasing and they stabilize once the degree of the gap function is attained.
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Example 2.4.6. Let R = K[[t1 + t2, t
2
2]] ⊂ S = K[[t1]] × K[[t2]]. In order to compute the

gap function λR first we find some elements of S that are not in R.

1. First, we want to show that α2t
2
2 + α3t

3
2 + . . . ∈ R for every αi ∈ K: By multiplying

(t1 + t2) ∈ R by α3t
2
2 + α5t

4
2 + . . . ∈ R, we have α3t

3
2 + α5t

5
2 + . . . ∈ R, then if we

add it to α2t
2
2 + α4t

4
2 + . . . ∈ R, we have α2t

2
2 + α3t

3
2 + α4t

4
2 + . . . ∈ R. This means

λR(k, 2) = λR(k, i) for i > 2 and k ≥ 0.

2. We show that β2t
2
1 + β3t

3
1 + . . . ∈ R: If we substitute (t1 + t2) for t1 in the above

expression, we have

β2(t1 + t2)2 + β3(t1 + t2)3 + . . . = β2(t21 + t22) + β3(t31 + t32) + . . . .

By (1.), series that only have t2 to the power of 2 and more are in R, and (t1 + t2)i

for i ≥ 2 is also in R. If we subtract them, then we can conclude that t1 to the power
of 2 and more is also in R. Hence, λR(2, k) = λR(i, k) for i > 2 and k ≥ 0.

3. Since (0, t22) ∈ R, (t21, 0) ∈ R, we have (0, t22) + (t21, 0) = (t21, t22) ∈ R.

4. At this point, the points (β0 + β1t1, α0 + α1t2) are left. In order to find dimS/R,
we have to find a basis. For the basis we have two conditions: Firstly, elements of
the basis generates all the elements (β0 + β1t1, α0 + α1t2). Secondly, they are linearly
independent.

We know that (1, 0), (t1, 0), (0, 1), (0, t2) generates all the elements (β0 + β1t1, α0 +
α1t2), but some of them may be linearly dependent.

• We want to show that (t1, 0), (0, t2) are linearly dependent, i.e. a combination of
them has to be zero in S/R, so their combination has to be in R.

(t1, 0) + (0, t2) = (t1, t2) = (t1 + t2) ∈ R.

Thus, we have to eliminate one of them for example (0, t2).

• We want to show that (1, 0), (0, 1) are linearly dependent too. R is a K-algebra
generated by t1 + t2 and t22. It means that a copy of K is in R, i.e. R has the
elements of the form (C,C), where C is a constant. Thus, (1, 1) is in R. Since
(1, 1)− (1, 0) = (0, 1), (1, 0) and (0, 1) are also linearly dependent. Now, we can
eliminate one of them for example (0, 1).
By these two observations, (1, 0), (t1, 0) is a basis for (β0 + β1t1, α0 + α1t2).
Therefore, the general elements in S/R can be written (β0 + β1t1, 0). Hence,
dimS/R = 2, and we cannot generate (β0 + β1t1, 0) by t1 + t2 and t22.

5. We have (t1, 0) in basis, and (0, t32) ∈ R, (t1, 0) + (0, t32) = (t1, t32). Thus, (t1, t32) ∈ R.

17



By finding the elements that are in R, we now know the elements that are not in R:
(1, 0), (t1, 0).

Now, we can find the gap function for R = K[[t1 + t2, t
2
2]].

λ(0, 0) = dimS/
(
R+ 〈t01, t02〉

)
= dimS/ (R+ 〈1〉) = 0,

λ(1, 0) = dimS/
(
R+ 〈t11, t02〉

)
= dimS/ (R+ 〈(t1, 0), (0, 1)〉) = 0,

because we are adding the elements that are not in R to R, we have everything in the
denominator. Therefore, the dimension of the quotient is zero. Similarly,

λ(0, 1) = dimS/
(
R+ 〈t01, t12〉

)
= dimS/ (R+ 〈(1, 0), (0, t2)〉) = 0,

λ(1, 1) = dimS/ (R+ 〈t1, t2〉) = dimS/ (R+ 〈(t1, 0), (0, t2)〉) = #{(1, 0)} = 1,

λ(2, 0) = dimS/
(
R+ 〈t21, t02〉

)
= dimS/

(
R+ 〈(t21, 0), (0, 1)〉

)
= #{(t1, 0)} = 1,

λ(0, 2) = dimS/
(
R+ 〈t01, t22〉

)
= dimS/

(
R+ 〈(1, 0), (0, t22)〉

)
= #{(t1, 0)} = 1,

Since (t21, 0) and (0, t22) are in R, they are zero in S/R.

λ(2, 2) = dimS/
(
R+ 〈t21, t22〉

)
= dimS/

(
R+ 〈(t21, 0), (0, t22)〉

)
= #{(1, 0), (t1, 0)} = 2.

Therefore, δ(λR) = supα λR(α) = 2. The gap function λR is

...
...

1 2 . . .

1 1 . . .

Example 2.4.7. Let C1 and C2 be two curves. Pick smooth points P1 ∈ C1 and P2 ∈ C2.
Then by Theorem 2.2.4 the rings ÔC1,P1 and ÔC1,P1 are both isomorphic to the power
series ring in one variable K[[t]]. Becuase the normalization of K[[t]] is itself, we conclude
that the gap functions corresponding to the singularity types of P1 and P2 are equal to
the zero function λ : Z≥0 → Z≥0. This illustrates how gap functions are invariants for the
isomorphism class of the completion of local rings.

2.5 Known properties of gap functions

The algorithm that we will give in next chapter for computing gap functions uses many
properties of gap functions. In this section we will review those properties that have been
proved in [BIV20]. We have chosen not to include some of the proofs for two reasons: Firstly,
they are available in [BIV20] and secondly, the proofs are not essential in the description of
our algorithm. Throughout this section, λ is the gap function of some subalgebra R ⊂ S =∏r
i=1 K[[ti]]. By a cell of λ, we mean an element in its domain of definition.
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Lemma 2.5.1 ([BIV20, Remark 2.4]). We have λ(α+ ei)− 1 ≤ λ(α) ≤ λ(α+ ei) where ei
is the i-th standard basis vector, i.e. from α to α + ei, λ either stays constant or increases
by 1. Moreover, λ(α) = λ(α + ei) if and only if α[i] belongs to Σ. In particular, α ∈ Σ if
and only if λ(α) = λ(α+ ei) for all i.

One implication of the above lemma is that if λ is a gap function with degree δ and
λ(α) = δ for some α ∈ Zr≥0, then by incrementing the components of α, the value of λ does
not change.

Corollary 2.5.2. A standard gap function λ is completely determined by its values on Zr>0.
In particular, for any α ∈ Zr≥0 with αi = 0, α 6= 0, we have λ(α) = λ(α+ ei)− 1.

Proof. Suppose λ is a standard gap function corresponding to K-algebrasR ⊂ S = ∏n
i=1 K[[ti]].

Being standard implies t0i /∈ R. Thus, if α = (α1, . . . , αi−1, 0, αi+1, . . . , αn) 6= 0, we have

λ(α) = dimS/
(
R+ 〈tα1

1 , . . . , t
αi−1
i−1 , t

0
i , t

αi+1
i+1 , . . . , t

αn
n 〉
)

= dimS/
(
R+ 〈tα1

1 , . . . , t
αi−1
i−1 , t

1
i , t

αi+1
i+1 , . . . , t

αn
n 〉
)
− 1

= λ(α+ ei)− 1.

Example 2.5.3. Consider the gap function λ we computed in Example 2.4.6. The table at
the end of the example shows the values of λ on Z2

>0. By Corollary 2.5.2, λ(α) = 0 when α
is on the horizontal or vertical axis.

Lemma 2.5.4 ([BIV20, Lemma 2.5]). Fix γ ∈ Z≥0. Assume that R ⊂ S is a subalgebra
and let λ = λR. Suppose that for any α ∈ Zr≥0 satisfying |α| ≤ 2γ + 2, we have λ(α) ≤ γ.
Then λ(α) ≤ γ for all α ∈ Zr≥0, that is the degree of λ is at most γ.

The significance of the above lemma is the following: suppose we are computing a gap
function λ with degree δ. The above lemma tells us that λ attains the value δ at least once
among all the points α ∈ Zr≥0 with |α| ≤ 2(δ − 1) + 2. The next lemma imposes an even
more strict condition on when δ appears for the first time as the value of λ.

Lemma 2.5.5 ([BIV20, Lemma 2.9]). Let R ⊂ S be a subalgebra and assume that λ = λR

is a standard gap function. Fix γ ≥ r − 1. Consider any α ∈ Zr>0 with l coordinates αi
equal to one, such that |α| > 2γ + 2 − l. Assume that for all α′ ∈ Zr>0 with α′ 6= α and
(α− α′)i ≥ 0 for all i, we have λ(α′) ≤ γ. Then λ(α) ≤ γ.

The algorithm of Chapter 3 produces tables that are candidates for being gap functions.
For each table λ in the output, to prove it is a gap function, the final step will be to produce
the subalgebra R ⊂ S such that λ = λR. The next lemma will help us produce the suitable
R.
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1.1: 0 1 1 . . .

1.2:

...
...

1 1 . . .
1 1 . . .

Table 2.1: Gap functions with δ = 1

Lemma 2.5.6 ([BIV20, Lemma 2.10]). Assume that R is a complete subalgebra of S, that
λ = λR is a standard gap function, and that dimS/R is finite. Fix some 1 ≤ i ≤ r.
Consider α ∈ Zr>0 such that for any α′ ∈ Zr>0 with α′i = αi and α′j ≥ αj for all j 6= i,
λ(α′ + ei) = λ(α′). Then for some unit u ∈ K[[ti]], utαi

i ∈ R.

The next lemma states that the number of gap functions of a given degree is finite and
that we can store a gap function in a finite amount of memory in a computer.

Lemma 2.5.7 ([BIV20, Remark 5.1]). For a fixed δ, there are only finitely many possible
standard gap functions λ of degree δ coming from subalgebras of S. Moreover, λ is deter-
mined by its values on those α ∈ Zr>0 satisfying |α| ≤ 2δ.

Proof. By definition, a standard gap function of degree δ can have dimension at most
r = δ + 1. Fix δ and r ≤ δ + 1. Let λ be a standard r-dimensional gap function of degree
δ coming from a subalgebra of S = ∏r

i=1 K[[ti]]. By Corollary 2.5.2, λ is determined by its
values on Zr>0. Now assume α ∈ Zr≥0 is such that |α| > 2δ. Define γ = maxα′ λ(α′) where
the maximum is taken over those α′ ∈ Zr≥0 such that α′i ≤ αi for every i and α′ 6= α. We
claim λ(α) = γ. By Lemma 2.5.1, λ(α) ≥ γ. If γ = δ, then we already have λ(α) = γ. If
γ < δ, then |α| > 2δ ≥ 2γ + 2, and by Lemma 2.5.5, we conclude λ(α) = γ. In this way,
by having the values of λ at the entries α with |α| ≤ 2δ, we can inductively determine the
values of λ everywhere.

Lemma 2.5.8 (Upward propagation, [BIV20, Remark 5.2]). Suppose λ is a standard gap
function and α ∈ Zr≥0. Fix an integer 1 ≤ i ≤ r. If λ(α) < λ(α+ei), then for α′ ∈ Zr≥0 such
that α′j ≥ αj for all j and α′i = αi, we have λ(α′) < λ(α′ + ei). We call such a behaviour
upward propagation.

By using the lemmas in this section, the authors in [BIV20] have classified the standard
gap functions of degree at most 3. We record this result in the following proposition.

Proposition 2.5.9. The positive standard gap functions λ for subalgebras R of S with
δ(λ) ≤ 3 are, up to permutation of the r coordinates, those listed in Table 2.1, 2.2 and 2.3 .
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2.1.1: 0 1 2 . . . 2.1.2: 0 1 1 2 . . .

2.2.1:

...
...

1 2 . . .
1 1 . . .

2.2.2:

...
...

1 2 . . .
1 2 . . .

Table 2.2: Gap functions with δ = 2

2.6 Further properties of gap gunctions

In this section, we will state several properties of gap functions that do not appear in the
literature. Since these results are new, we will provide proofs. All of these properties are
about building new gap functions from existing ones by either projection from one gap
function or assembling two gap functions.

Let R be a subalgebra of S as before and suppose λR is the corresponding gap func-
tion. We say λR is an r dimensional gap function if its domain of definition is Zr≥0. The
first operation on gap functions that we will discuss is projection, which produces a lower
dimensional gap function.

Definition 2.6.1. Let λR : Zr≥0 → Z≥0 be the gap function corresponding to R ⊂ S. Fix
1 ≤ i ≤ r. The projection of λR onto its i-th hyperplane is the function

λR,Hi : Zr−1
≥0 → Z≥0

(α1, . . . , αr−1) 7→ λR(α1, . . . , αi−1, 0, αi, . . . , αr−1).

Similarly, the projection of λR onto its i-th axis is the function

λR,Li : Z≥0 → Z≥0

α1 7→ λR(0, . . . , 0, α1, 0, . . . , 0),

where α1 appears in i-th position. When R is known from context, we denote the projections
simply by λHi and λLi .

Lemma 2.6.2. Let λ : Zr≥0 → Z≥0 be a standard gap function and fix 1 ≤ i ≤ r. Then, the
projections λHi and λLi are standard gap functions.

Proof. Let λ be a standard gap function corresponding to a subalgebra R ⊂ S = ∏r
j=1 K[[tj ]].

To show λHi is a gap function, let I = 〈t0i 〉, S′ = S/I and R′ = R/I. Then the gap function
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3.1.1: 0 1 2 3 . . . 3.1.2: 0 1 2 2 3 . . .

3.1.3: 0 1 2 2 2 3 . . . 3.1.4: 0 1 1 2 2 3 . . .

3.2.1:

...
...

...
1 2 3 . . .
1 2 3 . . .
1 2 3 . . .

3.2.2:

...
...

...
...

1 2 2 3 . . .
1 2 2 3 . . .
1 2 2 3 . . .

3.2.3:

...
...

...
2 3 3 . . .
2 3 3 . . .
1 2 2 . . .

3.2.4:

...
...

...
1 2 3 . . .
1 2 3 . . .
1 2 2 . . .

3.2.5:

...
...

...
...

1 2 2 3 . . .
1 2 2 3 . . .
1 2 2 2 . . .

3.2.6:

...
...

...
1 2 3 . . .
1 2 2 . . .
1 1 1 . . .

3.3.1: λ(1, 1, 1) = 2, λ(1, 1, 2) = 3
3.3.2: λ(1, 1, 1) = 2, λ(1, 2, 2) = 3
3.3.3: λ(1, 1, 1) = 2, λ(2, 2, 2) = 3
3.4: λ(1, 1, 1, 1) = 3

Table 2.3: Gap functions with δ = 3

of the subalgebra R′ ⊂ S′ is the map λR′ : Zr−1
≥0 → Z≥0, where

λR′(α1, . . . , αr−1) = dim S/I

R/I + 〈tα1
1 , . . . , t

αi−1
i−1 , t

αi
i+1, . . . , t

αr−1
r 〉

= dim S

R+ 〈tα1
1 , . . . , t

αi−1
i−1 , t

0
i , t

αi
i+1, . . . , t

αr−1
r 〉

= λ(α1, . . . , αi−1, 0, αi, . . . , αr−1)

= λHi(α1, . . . , αr−1).

Because λ is standard, t0j /∈ R for all 1 ≤ j ≤ r, and the same is true for R′. Therefore
λR′ = λHi is a standard gap function. By using the same argument with the ideal I =
〈t01, . . . , t0i−1, t

0
i+1, . . . , t

0
r〉, we can prove that λLi is also a standard gap function.

This lemma will be crucial in our algorithm for producing gap functions because it
allows us to build an r dimensional gap function by assembling an (r− 1)-dimensional and
a 1-dimensional gap functions. The next lemma tells us what the degrees of the smaller gap
functions in the assembly can be.
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Lemma 2.6.3. Let λ : Zr≥0 → Z≥0 be a standard gap function with projections λHi and
λLi, where 1 ≤ i ≤ r is fixed. Then,

δ(λ) ≥ δ(λHi) + δ(λLi) + 1.

Proof. We prove the lemma for i = r. The proof for other values of i are similar. Suppose
λHi takes the value δ(λHi) at (α1, . . . , αr−1). Then

λ(α1, . . . , αr−1, 0) = δ(λHi).

By upward propagation (Lemma 2.5.8) and

λ(1, 1, . . . , 1, 0) = r − 2,

λ(1, 1, . . . , 1, 1) = r − 1,

we have
λ(α1, . . . , αr−1, 1) = δ(λHi) + 1. (2.1)

Consider the path in Zr≥0 given by

(0, . . . , 0, 1)→ (0, . . . , 0, 2)→ · · · → (0, . . . , 0, k),

where k is such that λ(0, . . . , 0, k) = λLi(k) = δ(λLi). By applying upward propagation to
Equation (2.1) and

λ(0, . . . , 0, 1) = λLi(1) = 0,

we have
λ(α1, . . . , αr−1, k) ≥ (δ(λHi) + 1) + δ(λLi).

This means δ(λ) ≥ δ(λHi) + δ(λLi) + 1.

We will see in Proposition 2.6.6 that in the above lemma, the situation where δ(λ) =
δ(λHi) + δ(λLi) + 1 is very special.

Notation 2.6.4. For a power series f(t) ∈ K[[t]], we call the coefficient of t0 the constant
term of f and denote it by f(0). If g = (f1(t1), f2(t2), . . . , fr(tr)) ∈

∏r
i=1 K[[ti]] is an r-tuple

of power series, we define
g(0) = (f1(0), f2(0), . . . , fr(0)).

Lemma 2.6.5. Let λ : Zr≥0 → Z≥0 be a standard gap function corresponding to a subalgebra

R = K[[f1, . . . , f`]] ⊂ S =
r∏
i=1

K[[ti]],
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where fi = (fi,1(t1), . . . , fi,r(tr)) ∈ S. Then for fixed i, the constant terms of fi,j are equal.
This shows we may assume the constant terms of fi,j are all zero.

Proof. By assumption

λ(1, 1, . . . , 1) = dim S

R+ 〈t1, . . . , tr〉

= dim K× . . .×K
span{(1, 1, . . . , 1), f1(0), . . . , f`(0)}

= r − 1,

where on the first line, K is repeated r-times. This shows that fi(0) ∈ span{(1, 1, . . . , 1)}.

Proposition 2.6.6. Assume λH : Zr−1
≥0 → Z≥0 and λL : Z≥0 → Z≥0 are two standard gap

functions associated to subalgebras

R1 = K[[f1, . . . , fm]] ⊂ S1 =
r−1∏
i=1

K[[ti]],

R2 = K[[g1, . . . , gn]] ⊂ S2 = K[[tr]],

respectively. If δ = δ(λH) + δ(λL) + 1, then

1. There exists a unique standard gap function λ : Zr≥0 → Z≥0 with degree δ such that
its projections λHn and λLn are equal to λH and λL, respectively.

2. Assume the subalgebras giving the gap functions λH and λL are unique up to automor-
phisms of S1 and S2 respectively. Then λ in part 1 is the gap function of the unique
subalgebra

K[[f1, . . . , fm, g1, . . . , gn]] ⊂ S =
r∏
i=1

K[[ti]],

up to automorphisms of S.

Proof. Statement 1: To show the existence, let λ be the gap function of

R := K[[f1, . . . , fm, g1, . . . , gn]] ⊂ S.

From the definition of R and by using the proof of Lemma 2.6.2 we have λHn = λH and
λLn = λL. To show λ has degree δ, we prove that for α1, . . . , αr ≥ 1

λ(α1, . . . , αr) = λH(α1, . . . , αr−1) + λL(αr) + 1,

which is the same as showing

dim S

R+ 〈tα1
1 , . . . , tαr

r 〉
= dim S1

R1 + 〈tα1
1 , . . . , t

αr−1
r−1 〉

+ dim S2
R2 + 〈tαr

r 〉
+ 1.
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It is enough to show that there is a vector space isomorphism

S

K[[f1, . . . , fm, g1, . . . , gn]] + 〈tα1
1 , . . . , tαr

r 〉
∼=

S1
K[[f1, . . . , fm]] + 〈tα1

1 , . . . , t
αr−1
r−1 〉

× S2
K[[g1, . . . , gn]] + 〈tαr

r 〉
×K.

So, we need to define a linear map:

φ : S → S1
K[[fi]] + 〈tα1

1 , . . . , t
αr−1
r−1 〉

× S2
K[[gj ]] + 〈tαr

r 〉
×K,

such that kerφ = K[[f1, . . . , fm, g1, . . . , gn]] + 〈tα1
1 , . . . , tαr

r 〉.
For (h1(t1), h2(t2), . . . , hr(tr)) ∈ S, where hi(ti) ∈ K[[ti]], define φ by

(h1(t1), . . . , hr(tr)) 7→
(
(h1(t1), . . . , hr−1(tr−1)), hr(tr), h1(0)− hr(0)

)
.

We have to show that it is surjective and the kernel is as above. First, we need to show the
surjectivity: we take an arbitrary element in the right hand side as(

(h1(t1), . . . , hr−1(tr−1)), hr(tr), C
)
,

where C ∈ K. After adding (c, c, . . . , c) ∈ K[[fi]] for some suitable c ∈ K to (h1, . . . , hr−1),
we can assume that h1(t1) does not have a constant term. Similarly we may assume hr(tr)
does not have a constant term. Now, we calculate

φ(h1 + C, h2 + C, . . . , hr−1 + C, hr) =
(
(h1 + C, . . . , hr−1 + C), hr, h1(0) + C − hr(0)

)
=
(
(h1, . . . , hr−1), hr, C

)
,

which shows that φ is surjective. Now, it is left to show that

kerφ = K[[f1, . . . , fm, g1, . . . , gn]] + 〈tα1
1 , . . . , tαr

r 〉.

First, we show that K[[f1, . . . , fm, g1, . . . , gn]] + 〈tα1
1 , . . . , tαr

r 〉 ⊂ kerφ. We take an element
(H1(t1), . . . ,Hr(tr))+(H ′1(t1), . . . ,H ′r(tr)) ∈ K[[f1, . . . , fm, g1, . . . , gn]]+〈tα1

1 , . . . , tαr
r 〉, where

Hi(ti), H ′i(ti) ∈ K[[ti]], such that (H1, . . . ,Hr) ∈ K[[f1, . . . , fm, g1, . . . , gn]] and (H ′1, . . . ,H ′r) ∈
〈tα1

1 , . . . , tαr
r 〉. Our goal is to show φ(H1 +H ′1, . . . ,Hr +H ′r) = 0.

Because λH and λL are standard, we may assume the generators fi, gj do not have
a constant term (see Lemma 2.6.5). Therefore, H1, . . . ,Hr have the same constant term.
Similarly since α1, . . . , αr ≥ 1, we have that H ′1, . . . ,H ′r do not have a constant term.
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Therefore,

φ(H1 +H ′1, . . . ,Hr +H ′r)

=
(
(H1 +H ′1, H2 +H ′2, . . . ,Hr−1 +H ′r−1), Hr +H ′r, H1(0) +H ′1(0)−Hr(0)−H ′r(0)

)
=
(
(0, . . . , 0), 0, 0

)
= 0.

Now, in order to show that kerφ ⊂ K[[f1, . . . , fm, g1, . . . , gn]] + 〈tα1
1 , . . . , tαr

r 〉, we take an
element (H1(t1), . . . ,Hr(tr)) in kerφ where hi(ti) ∈ K[[ti]]:

φ(H1(t1), . . . ,Hr(tr)) = 0⇒
(
(H1, . . . ,Hr−1), Hr, H1(0)−Hr(0)

)
= 0.

Thus, (H1, . . . ,Hr−1) ∈ K[[f1, . . . , fm]] + 〈tα1
1 , . . . , tαr

r 〉, Hr ∈ K[[g1, . . . , gn]] + 〈tαr
r 〉 and the

Hi’s have the same constant (H1, . . . ,Hr−1 have the same constant because λH is standard
and the previous equation gives H1(0) = Hr(0)). Then,

(H1(t1), . . . ,Hr−1(tr−1), H1(0)) ∈ K[[fi, gj ]],

(0, . . . 0, Hr(tr)−Hr(0)) ∈ K[[fi, gj ]].

Adding the two gives (H1, . . . ,Hr) ∈ K[[f1, . . . , fm, g1, . . . , gn]] + 〈tα1
1 , . . . , tαr

r 〉. By the first
homomorphism theorem, the claim is proved.

The uniqueness of λ follows from upward propagation (Lemma 2.5.8). Indeed, to get

δ(λ) = δ(λH) + δ(λL) + 1,

the gap function λ increases value from α ∈ Zr≥0 to α+ ei exactly according to whether λH
or λL increases from the projection of α to projection of α + ei. Any extra increases in λ

will force δ(λ) to be larger than δ(λH) + δ(λL) + 1.
Statement 2: Let R′ := K[[h1, . . . , h`]] ⊂ S be a subalgebra with gap function λ. Let p

be the projection of S onto the first n − 1 components and let pr be the projection of S
onto the last component

p : S →
r−1∏
i=1

K[[ti]],

pr : S →
∏

K[[tr]].

Consider the subalgebra R̃ ⊂ S generated by all p(hi) and pr(hi) (for 1 ≤ i ≤ `). Denote
the gap function of R̃ by λ̃. By the proof of Lemma 2.6.2, λ̃Hn = λHn is the gap function
of the subalgebra of S1 generated by all p(hi) and λ̃Ln = λLn is the gap function of the
subalgebra of S2 generated by all pr(hi). By the proof of statement 1, we conclude λ̃ = λ.
We now prove R′ = R̃. It is obvious that R′ ⊂ R̃. If we look at the surjective linear map of
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vector spaces ψ : S/R′ → S/R̃, because

dimS/R′ = δ = dimS/R̃,

we conclude that ψ is an isomorphism, i.e. R′ = R̃.
Finally, because λ̃Hn = λH is the gap function of the subalgebra of S1 generated by all

p(hi), by hypothesis there is an automorphism of S1 that restricts to an isomorphism

K[[p(h1), . . . , p(h`)]] ∼= K[[f1, . . . , fm]].

Similarly, there is an automorphism of S2 that restricts to an isomorphism

K[[pr(h1), . . . , pr(h`)]] ∼= K[[g1, . . . , gn]].

The above automorphisms of S1 and S2 combine to an automorphism of S that restricts to
an isomorphism

R′ = K[[p(h1), . . . , p(h`), pr(h1), . . . , pr(h`)]] ∼= K[[f1, . . . , fm, g1, . . . , gn]].

Definition 2.6.7. We call the unique λ in Proposition 2.6.6, the product of the gap functions
λH and λL.

The fact that the product of two gap functions is again a gap function will help us in the
next chapter to immediately identify some of the outputs of the algorithm as gap functions.

2.7 Geometry of gap functions

Let P be a singular point on a curve C. Assume λ : Zr≥0 → Z≥0 is the gap function of the
subalgebra

ÔC,P ↪−→
r∏
i=1

K[[ti]],

where r is the number of branches at P . For a fixed 1 ≤ i ≤ r, the projection λLi of λ onto
its i-th component is the gap function describing the i-th branch of the singularity at P .
Moreover, λ describes how the r branches intersect at P . By using Lemma 2.6.3 r-times,
we have

δ(λ) ≥
r∑
i=1

δ(λLi) + (r − 1). (2.2)

Here equality occurs when the branches intersect transversely, i.e. the intersection of the
tangent space of one branch with the tangent space of the remaining r− 1 branches is zero.
If this intersection is not zero, then δ(λ) will be larger and equality does not hold.
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(a) The point (0,0) on the curve
y2 − x2(x + 1) = 0 is a simple
node. The two branches intersect
transversely.

(b) The point (0,0) on the curve
x2 − x4 − y4 = 0 is a tacnode.
The two branches intersect non-
transversely.

Figure 2.4: The singularities in Example 2.7.1

Example 2.7.1. Let λ be the gap function 1.2 in Table 2.1. Here, the projections λL1 , λL2 :
Z≥0 → Z≥0 are the zero function. This means that λ describes a singularity with two smooth
branches (see Theorem 2.2.4) which intersect transversely. An example of this situation is
a simple node (see Figure 2.4a).

As another example, let λ′ be the gap function 2.2.1 in Table 2.2. Again there are
two smooth branches but they do not intersect transversely since for λ′, equality does not
hold in (2.2). The two branches have the same tangent direction at the singular point (see
Figure 2.4b).

Now we can interpret the product of two gap functions geometrically. Suppose λL, λH are
gap functions corresponding to singularities with one branch and r−1 branches, respectively.
Then the product of λL and λH describes the unique singularity type where the single branch
corresponding to λL intersects transversely the singular point with r − 1 branches coming
from λH .
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Chapter 3

Algorithm for computing gap
functions

In this chapter, we introduce an algorithm that computes tables that are candidates for
being standard gap functions. From here on, we refer to standard gap functions simply as
gap functions. As input, the algorithm takes an integer δ and a list of gap functions with
degree less than δ. The output is a list of tables Λ such that the set of all gap functions with
degree δ is a subset of Λ. A key challenge is to make Λ as small as possible. We will use
the properties of gap functions in Sections 2.4, 2.5 and 2.6 to eliminate as many redundant
and non-gap tables as possible. Ideally we want the output to be equal to the set of all gap
functions with degree δ up to permutations of the components. We will see that for δ ≤ 4,
the algorithm is correct.

3.1 Data structure for representing a gap function

We saw in Lemma 2.5.7 that a gap function can be represented as a finite table of values.
More specifically, we can store a gap function λ : Zr≥0 → Z≥0 as a finite r-dimensional array
of non-negative integers. Moreover, there is a minimal array that represents λ. Before we
give the exact statement in Lemma 3.1.2, we need to define a partial ordering on Zr≥0.

Definition 3.1.1. Let r ≥ 1. We define the partial ordering 4 on Zr≥0 as follows: For
α, α′ ∈ Zr≥0, we write α 4 α′ if for every 1 ≤ i ≤ r, αi ≤ α′i.

Lemma 3.1.2. Let λ : Zr≥0 → Z≥0 be standard gap function with degree δ. Then, the set
A = {α ∈ Zr≥0 : λ(α) = δ} has an element α̃ such that α̃ 4 α for every α ∈ A.

Proof. By definition, A is non-empty, and since for every α′ ∈ Zr≥0, the set {α ∈ Zr≥0 : α 4

α′} is finite, A has a minimal element with respect to 4. We claim this minimal element is
the desired α̃. If α ∈ A, by minimality of α̃, either α̃ 4 α or α̃, α are not comparable. We
claim the latter cannot happen. Define α̂ ∈ Zr≥0 by α̂i = min{αi, α̃i} for every 1 ≤ i ≤ r.
By definition, α̂ ≺ α̃. Thus, λ(α̂) < δ. Build a path from α̂ to α by using the standard basis
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vectors as steps. Next, use the same sequence of steps to build a path starting from α̃ and
ending in some β ∈ Zr≥0. Now, upward propagation (Lemma 2.5.8) implies λ(β) > λ(α̃) = δ,
a contradiction.

Definition 3.1.3. For a standard gap function λ : Zr≥0 → Z≥0, we call α̃ in Lemma 3.1.2,
the final index or size of λ.

Definition 3.1.4. We define GapFunction to be the data structure that can store the data
of a gap function. It is a finite r-dimensional array of non-negative integers whose indexing
starts from zero. If λ is a variable of type GapFunction, the following table shows our
convention for accessing the data stored in λ.

λ.size largest index of the array with respect to 4
λ.dim the dimension of the array, i.e. r
λ(α) the value of the array at index α ∈ Zr≥0

λ.degree the value at the largest index, i.e. λ(λ.size)

Remark 3.1.5. We distinguish between the terms “GapFunction” and “gap function”.
The latter is a function Zr≥0 → Z≥0 as in Definition 2.4.1. The former is an array of non-
negative integers that may or may not contain the valid data of a gap function. When we
say a GapFunction is a gap function, we mean the array contains the data of an actual gap
function (coming from K-algebras R ⊂ S).

3.2 Description of algorithm

The input and output of the algorithm we will present for computing potential gap functions
is as follows:

Input an integer δ > 0,
a list of all gap functions with degree less than δ

Output a set L of GapFunctions with dimension at most δ + 1 such that
the set of all gap functions with degree δ is a subset of L

Recall that by definition, the dimension of a standard gap function can be at most one
more than the degree. We present the algorithm in several procedures. The first procedure of
the algorithm is called fillGapFunction which takes as input a partially filled GapFunction

and tries to fill the rest of the cells according to the properties satisfied by a gap function.
This procedure starts from a given cell, and fills the next cell, then the next until it gets
to the last index. To understand what we mean by the next cell, let us first describe the
procedure increment.
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3.2.1 Procedure increment

This procedure (pseudocode on page 31) takes a starting index α(s) and a final index α(f).
It then produces the index α right after α(s) by incrementing the first component of α(s). If
this incremented first component is not more than the first component of α(f), the new index
is returned (along with the boolean value true, which means the incrementing operation is
successful). Otherwise, it sets the first component to 1 and increments the second component
by 1, then compares it with the second component of α(f). The procedure continues in this
way. If α(s) ≺ α(f), then there always exists a next index which will be the output of the
procedure along the boolean value true. If α(f) 4 α(s), then there is no next index and the
procedure returns α(f) along with the boolean value false.

Procedure 1: increment
input : α(s) ∈ Zr>0(the current index), α(f) ∈ Zr>0(the final index)
output: true or false, α(n) ∈ Zr>0(the next index)

1 α(n) ← α(s);
2 r ← the number of components of α(s);
3 α

(n)
1 ← α

(n)
1 + 1;

4 for i = 1 to r do
5 if α(n)

i ≤ α(f)
i then

6 return (true,α(n));
7 end
8 else if α(n)

i > α
(f)
i and i < r then

9 α
(n)
i+1 ← α

(n)
i+1 + 1;

10 α
(n)
i ← 1;

11 else
12 return (false, α(f));
13 end
14 end

3.2.2 Procedure main

The procedure main (pseudocode on page 33) is the entry point into our algorithm. The
input to main are the degree (δ), dimension (r) and a list (called gapFunList) of all gap
functions with degree less than δ. The output of main is a set of GapFunctions that are
candidates for being gap functions with degree δ and dimension r.

First we describe what it does and then explain the pseudocode step by step: When we
compute a GapFunction λ, it is the procedure fillGapFunction that fills in the majority
of the entries of λ. The procedure fillGapFunction accepts a partially filled GapFunction

(whose entries on the coordinate hyperplanes are all filled in) and then completely fills the
GapFunction. Before we can pass a GapFunction λ to fillGapFunction, the entries of λ
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on the coordinate hyperplanes (i.e. those entries α ∈ Zr≥0 with at least one zero component),
needs to be filled. If α is a one dimensional array (i.e. λ.dim= 1), this is already done since
in this case λ(0) = λ(1) = 0, and fillGapFunction can start filling from αstart = 1 (recall
that αstart, the starting entry for fillGapFunction must already be filled in). However, for
higher dimensional gap functions, we need to prepare the table λ, i.e. fill all the entries on the
coordinate hyperplanes of λ and then by setting λ(1, 1, . . . , 1) = r− 1 (since λ is standard),
we can pass λ to fillGapFunction along with αstart = (1, 1, . . . , 1). The procedure main

does this preparation.
In Lines 1-10 we handle the 1-dimensional gap functions. First we check if the input δ is

zero. If so there is nothing to compute since there is only one gap function with degree zero,
namely the 1-dimensional zero function. If δ > 0 then we create a new 1-dimensional array
with size 2δ (recall that the arrays are zero indexed and the size is the index of the last entry
and not the number of entries), set the entries λ(0), λ(1) to zero and pass this partially filled
λ to fillGapFunction. Starting from Line 11, we handle the r-dimensional case when r > 1.
For computing gap function candidates with dimension r > 1, the procedure main assembles
a one-dimensional GapFunction (named axis) and an (r − 1)-dimensional GapFunction

(named hyperplane) by using another procedure called assembleGapFunction which in
turn calls fillGapFunction to produce the ultimate result. We will later give the details of
the procedure assembleGapFunction. In Lines 12-14 we create two lists. The lists axisList

and hyperplaneList are populated with gap functions with dimension 1 and r− 1 respec-
tively. These 1- and (r − 1)-dimesnioal gap functions all have degree less than δ and are
available in the input gapFunList. For each pair (axis, hyperplane) where axis is in
axisList and hyperplane is in hyperplaneList if the condition

axis.degree + hyperplane.degree ≤ δ − 1.

is satisfied, we call the procedure assebmleGapFunction (in Line 18) to assemble the
pair into an r-dimensional GapFunction. The above condition comes from Lemma 2.6.3.
By iterating through all 1-dimensional and (r − 1)-dimensional gap functions provided in
gapFunList we practically build all GapFunctions that are candidates to be gap functions.
Finally in Lines 19-23 we check to see the assembled gap functions are not repetitive (sym-
metry check).
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Procedure 2: main
input : δ (an integer, the degree), r (an integer, the dimension), gapFunList (a

list of all gap functions with degree less than δ)
output: Prints a set of GapFunctions that are candidates for being gap functions

with degree δ and dimension r. Also, adds these GapFunctions to
gapFunList.

1 if r = 1 then
2 if δ = 0 then

/* if δ = 0, there is only one gap function which is the zero
map Z≥0 → Z≥0 */

3 print 0 and add to gapFunList;
4 end

/* If δ > 0, we immediately use fillGapFunction */
5 sx ← 2(δ − 1) + 2;
6 λ← a new GapFunction with dimension 1 and size sx;
7 λ(0)← 0;
8 λ(1)← 0;
9 fillGapFunction(λ, δ, αstart = 1, gapFunList)

10 end
11 if r ≥ 2 then
12 define lists axisList and hyperplaneList;
13 add all GapFunctions in gapFunList with dimension 1 to axisList;
14 add all GapFunctions in gapFunList with dimension r − 1 to hyperplaneList;
15 for axis in axisList do
16 for hyperplane in hyperplaneList do
17 if axis.degree+hyperplane.degree≤ δ − 1 then

/* assembled is a list of GapFunctions */
18 assembled← assembleGapFunction(axis,hyperplane,δ);
19 for gapFun in assembled do
20 if no permutation of gapFun is in gapFunList then
21 print gapFun and add it to gapFunList;
22 end
23 end
24 end
25 end
26 end
27 end
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3.2.3 Procedure assembleGapFunction

The input to assembleGapFunction (pseudocode on page 35) is a pair: a 1-dimensional
GapFunction named axisGap and an (r−1)-dimensional GapFunction named hyperplaneGap.
The output is a list of GapFunctions λ whose projections λL1 and λH1 are exactly axisGap

and hyperplaneGap respectively.
In Lines 3-13 we handle the 2-dimensional base case. The if in Line 6 verifies that

Lemma 2.6.3 is satisfied for projections. If so, then a new 2-dimensional array λ with size
(2(δ − 1) + 1, 2(δ − 1) + 1) is created in Line 7. In Lines 8 and 9 we populate the axes of
λ with entries in the 1-dimensional gap functions axisGap and hyperplaneGap. In Line 10
we set λ(1, 1) = 1 since λ is a standard gap function and then pass λ to fillGapFunction

to be filled.
Starting from Line 14 we handle the r-dimensional case when r > 2. The purpose is to

build an r-dimensional GapFunction λ by assembling axisGap and hyperplaneGap. Line 15
creates the list hListArray. The i-th entry of this array will later be populated by those
(r − 1)-dimensional GapFunctionss that could be the projection of the desired λ onto its
i-th hyperplane (i.e. λHi). At this stage we only know the 1st entry in hListArray: It is a
list containing only the GapFunction hyperplaneGap (Line 16).

In each iteration of the for loop in Lines 17-27 we use recursion to populate a list
assembled of GapFunctions that will be the i-th entry in hListArray. Each GapFunction

in assembled has dimension r − 1 and the goal is to assemble it from axisGap (with
dimension 1) and the projection of hyperplaneGap onto its (i− 1)-th hyperplane which is
an (r−2)-dimensional GapFunction (defined in Line 18). To assemble these two, we need to
know the degree of the resulting (r−1)-dimensional GapFunction. In fact we do not exactly
know what the degree is but we have an upper bound for the degree from Lemma 2.6.3.
This upper bound is ∆ in Line 19. The for loop in Lines 20-23 does the assemble for every
degree in 0, . . . ,∆ using recursion. The resulting GapFunctions are all added to the i-th list
in hListArray. If nothing is added to the i-th list in hListArray (Line 24), then it is not
possible to assemble axisGap and hyperplaneGap and we return an empty list.

Assuming that every entry of hListArray is a non-empty list, the for loop in Line 28 is
executed. Here for every n-tuple (λH1 , . . . , λHn) of (r−1)-dimensional GapFunctions where
λHi is in the list at the i-th entry of hListArray, we test whether or not λH1 , . . . , λHn are
compatible (in Line 29). By compatible we mean that every pair λHi , λHj when considered
as coordinate hyperplanes of λ, should have the same entries on the intersection of these
two coordinate hyperplanes. The procedure tests all combinations, and for every compatible
combination (λH1 , . . . , λHr ), it places the entries of λHi as the entries of the i-th coordinate
hyperplane of λ. We also set λ(1, . . . , 1) = r − 1 because we want λ to be standard. The
GapFunction λ is now ready to be passed to fillGapFunction.

34



Procedure 3: assembleGapFunction
input : axisGap (a GapFunction of dimension 1), hyperplaneGap (a GapFunction), δ (an integer)
output: a list of GapFunctions λ with degree δ such that the projections λL1 , λH1 are exactly

axisGap and hyperplaneGap (see Definition 2.6.1) for projections.
/* this procedure assumes axisGap has dimension 1 */

1 r ← axisGap.dim+hyperplaneGap.dim;
2 gapFunList← an empty list of GapFunctions;
3 if r = 2 then
4 Lx ← 2(δ − 1) + 1;
5 Ly ← 2(δ − 1) + 1;
6 if axisGap.degree+hyperplaneGap.degree≤ δ − 1 then
7 λ← an empty GapFunction with size (Lx, Ly);

/* when r = 2, hyperplaneGap has dimension 1 */
/* copy the entries of axisGap to the entries on the first axis of λ */

8 λ(i, 0)← axisGap(i) for all i;
/* copy the entries of hyperplaneGap to the entries on the second axis of λ

*/
9 λ(0, i)← hyperplaneGap(i) for all i;

10 λ(1, 1)← 1;
/* Now λ is partially filled and ready to be passed to fillGapFunction */

11 fillGapFunction(λ, δ, (1, 1), gapFunList);
12 end
13 end
14 if r > 2 then
15 hListArray ← an array of size r, the i-th entry is an empty list of GapFunctions;

/* The i-th list in hListArray holds a list of (r − 1)-dimensional GapFunctions
that are potentially the coordinate hyperplanes λHi of the GapFunction λ we
are trying to produce */

16 add hyperplaneGap to the first list in hListArray;
17 for i = 2 to r do
18 iHyperplane ← the projection of hyperplaneGap onto its (i− 1)-th coordinate hyperplane;

/* to produce λHi we use recursion and assemble iHyperplaneGap and axisGap */
19 ∆← δ − (axisGap.degree)− 1;

/* ∆ is an upper bound for the degree of λHi */
20 for j = 0 to ∆ do
21 assembled ← assembleGapFunction(axisGap, iHyperplane, j);
22 add the GapFunctions in assembled to the i-th list in hListArray;
23 end
24 if the i-th list in hListArray is empty for some i then

/* axisGap and hyperplaneGap cannot be assembled together */
25 return an empty list;
26 end
27 end
28 for every (λH1 , . . . , λHr ) with λHi in the i-th list of hListArray do
29 if λH1 , . . . , λHr are compatible as projections of an r-dimensional GapFunction then
30 λ← a new GapFunction with dimension r and size (2(δ − 1) + 1, . . . , 2(δ − 1) + 1);
31 for i = 1 to r do
32 fill the entries of λ on the i-th coordinate hyperplane with entries of λHi ;
33 end
34 λ(1, 1, . . . , 1)← r − 1;

/* λ is standard */
35 fillGapFunction(λ, δ, (1, 1, . . . , 1),gapFunList);
36 end
37 end
38 end
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3.2.4 Procedure fillGapFunction

This procedure (pseudocode on page 37) takes as input a partially filled GapFunction λ

and a starting index αstart ∈ Zr>0 and tries to fill the rest of the cells. It assumes all the
cells whose index has a zero component are filled. It also assumes the value at index αstart

is filled. So the first cell to fill is increment(αstart,λ.size). The procedure fillGapFunction

uses a subprocedure called shouldStop. Every time we fill a cell of λ in fillGapFunction,
the procedure shouldStop is called to check whether we are done filling the cells of λ (in
which case shouldStop returns true) or not (when shouldStop returns false). We give the
details of the procedure shouldStop in section 3.2.5.

The first task in fillGapFunction is to call shouldStop to make sure there is more work
to do on λ (Line 1). If shouldStop returns true, we are done, otherwise we increment αstart

in Line 6. The for loop in line 7 starts from α = αstart, after each iteration increments α using
α ←increment(α, λ.size) until α reaches λ.size (inclusive). In each iteration the algorithm
fills the cell of λ at position α. The filling is done using two properties of gap functions: First
in Lines 8-17 we test whether the upward propagation property (Lemma 2.5.8), uniquely
determines the value of λ at position α. If so, we fill in the cell α and call shouldStop. If
shouldStop declares false, we go to the next iteration for α. If upward propagation does
not determine the cell at α, we use Lemma 2.5.5 for determining λ(α) in Lines 18-35. There
are two cases: 1) The lemma forces the value of α to be the same as the previous cell, in
which case we are done with cell α. 2) The lemma cannot decide, in which case there are
two possibilities for λ(α). Either λ(α) = λ(α−e1) or λ(α) = λ(α−e1)+1. Both possibilities
are then pursued.
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Procedure 4: fillGapFunction
input : λ (a GapFunction), δ (an integer), αstart (a list of integers), gapFunList (a list of

GapFunctions)
output: a set of GapFunctions obtained by filling λ with δ in one of the cells (candidates for being

gap functions obtained through the partially filled input λ); these GapFunctions are
added to gapFunList

1 if shouldStop(λ,α,δ,gapFunList)=true then
2 return;
3 end
4 αfinal ← λ.size;
5 d← λ.dim;
6 αstart ← increment (αstart, αfinal);

/* In the next for loop, after each iteration the counter α is incremented by α←
increment(α, αfinal). Comparison with the final value αfinal is also done using 4.
*/

7 for α from αstart to αfinal do
/* Check and see if λ(α) can be determined by upward propagation */

8 for every i, j such that i 6= j do
9 if λ(. . . , αi − 1, . . . , αj − 1, . . .) < λ(. . . , αi, αj − 1, . . .) then

10 λ(. . . , αi, . . . , αj , . . .)← λ(. . . , αi − 1, . . . , αj) + 1;
11 if shouldStop(λ,α,δ,gapFunList)=true then
12 return;
13 else
14 go to the next iteration for α;
15 end
16 end
17 end

/* check Lemma 2.5.5 */
/* numOfOnes(α)= #{i|αi = 1} */

18 if |α| > 2λ(α− e1) + 2−numOfOnes(α) then
/* λ(α) must be equal to λ(α− e1) */

19 λ(α)← λ(α− e1);
20 if shouldStop(λ,α,δ,gapFunList)=true then
21 return;
22 else
23 go to next iteration for α;
24 end
25 else

/* λ(α) can be either λ(α− e1) or λ(α− e1) + 1 */
26 λ′ ← λ;
27 λ′(α)← λ(α− e1);
28 fillGapFunction(λ′, δ, α,gapFunList);
29 λ(α)← λ(α− e1) + 1;
30 if shouldStop(λ,α,δ,gapFunList)=true then
31 return;
32 else
33 go to next iteration for α;
34 end
35 end
36 end
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3.2.5 Procedure shouldStop

The aim of this procedure (pseudocode on page 39) is to decide whether we are done with
filling a GapFunction λ. It takes as input λ, the index α of the cell that was just filled in,
the degree δ that we are trying to reach and a list Λ of already computed GapFunctions
with degree δ. The output is false if we decide that more cells of λ needs to be filled or true
when we decide the process of filling is finished. In case the process is finished, the resulting
λ is either a potential gap function (which is then printed and added to the list Λ) or it
violates one of the properties and is not a valid gap function (which is then discarded).
First we test whether the value of λ at the cell α is at most one more than λ(α − ei) (see
Lemma 2.5.1). If this property is violated λ is not valid and we return true and discard λ
(by not adding it to Λ). Next, we test whether λ(α) is equal to δ. If this is not the case, we
have not reached the degree that we aimed for and more cells of λ needs to be filled and
we return false. If λ(α) = δ, then the process of filling λ is done. Before outputting λ (and
adding it to the list Λ), two checks are done:

• λ needs to satisfy the semigroup property (Lemma 3.2.1), for all 1 ≤ i ≤ λ.dim.

• λ needs to be a new table, i.e. no permutation of the components of λ is equal to a
previously computed table in the list Λ.

If λ passes these two checks, we output λ, add it to the list Λ and return true.

Lemma 3.2.1 (Semigroup property). Suppose λ : Zr≥0 → Z≥0 is a standard gap function.
Then for each 1 ≤ i ≤ r, the set

Σi = {α ∈ Zr≥0 : λ(α) = λ(α+ ei)},

is a semigroup.

Proof. If α, α′ ∈ Σi, then by Lemma 2.5.1, α[i] and α′[i] belong to Σ. Thus, (α + α′)[i]
belongs to Σ which gives α+ α′ ∈ Σi.

Since a gap function is represented by a finite array, checking whether an array satisfies
the semigroup property is done in a finite number of steps.
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Procedure 5: shouldStop
input : λ (a GapFunction), α (a list of non-negative integers), δ (an integer), Λ (a

list of GapFunctions)
output: false if the procedure of filling λ is not finished; true if the procedure of λ

is done and if the obtained λ is not valid, it is discarded otherwise it is
printed and also added to Λ

1 d← λ.dim;
/* Check if from α− ei to α, the value of λ increases by at most 1 */

2 for i from 1 to d do
3 if λ(α− ei) < λ(α)− 1 then
4 return true;
5 end
6 end

/* Check if λ(α) 6= δ */
7 if λ(α) < δ then
8 return false;
9 end

/* Otherwise, we have λ(α) = δ */
/* We need to check two properties: 1) Semigroup property, 2)Symmetry

check. */
10 λ̃← a new GapFunction of size α with entries 4 α copied from λ;

/* Check semiGroupProperty */
/* semigroupProperty(λ̃,i) is a procedure that takes a GapFunction λ̃

and a direction i and validates Lemma 3.2.1 for λ̃ and i. The output
is true if λ̃, i satisfy the lemma, false otherwise. */

11 for i = 1 to d do
12 if semiGroupProperty(λ̃, i)=false then
13 return true;
14 end
15 end

/* Symmetry check */
16 permutationList← a list of all permutations of (1, 2, . . . , d);
17 for λ′ in Λ do
18 for π in permutationList do

/* π · λ̃ is a new GapFunction and is the result of permuting the
components of the array λ̃ */

19 if λ′ = π · λ̃ then
/* λ̃ already exists in Λ */

20 return true;
21 end
22 end
23 end
24 print λ̃;
25 add λ̃ to Λ;
26 return true;
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3.3 Correctness of the algorithm

In this final section, we prove that the output of the procedure main is exactly what we
want.

Proposition 3.3.1. The output of the procedure main for input (δ, r, gapFunList) is a list
of r-dimensional GapFunctions with degree δ such that the set of all r-dimensional gap
functions with degree δ is subset of the output. Here we assume that δ ≥ 0, r ≥ 1 and
gapFunList contains all gap functions with degree less than δ and dimension less than r.

Proof. We need to show that the algorithm terminates and that the output is correct.
Termination is established by the finite nature of the tables we create and test. More
specifically, given δ, r the algorithm tries to assemble a 1- and a (r − 1)-dimensional gap
functions with degree less than δ from the list gapFunList. The number of possibilities here
is finite because gapFunList is a finite list. During each assembly, the algorithm tries to fill
an r-dimensional GapFunction with size

(2(δ − 1) + 1, . . . , 2(δ − 1) + 1) , (3.1)

one entry at a time, which is done in a finite number of steps. The reason this size is chosen
is because if a gap function does not attain the value δ by the entry (3.1), then its degree
will be less than δ (see Lemma 2.5.4).

Now we explain the correctness of the algorithm. Because we are claiming that the
output is a superset of the set of all gap functions with degree δ and dimension r, it is
enough to show out of all possible GapFunctions, the ones that are discarded violate at
least one property of gap functions. Note that the algorithm is recursive (in Procedure 3),
hence we assume the output of the algorithm is correct for dimension less than r and degree
less than δ.

Firstly in main and assembleGapFunction, we are producing GapFunctions whose pro-
jections onto their first axis and first coordinate hyperplane are gap functions in gapFunList.
This discards GapFunctions that violate Lemma 2.6.2. Moreover, GapFunctions violat-
ing Lemma 2.6.3 are also discarded. These are all GapFunctions discarded in main and
assembleGapFunction.

In fillGapFunction the only properties that are checked are upward propagation
(Lemma 2.5.8) and Lemma 2.5.5. Therefore, this procedure discards those GapFunctions
violating one of the two lemmas.

It remain to see what GapFunctions are discarded in shouldStop: If a GapFunction

violates Lemma 2.5.1 it is discarded. After that the last filled entry is compared with
δ. If it is less than δ, shouldStop signals fillGapFunction to continue filling entries,
however if the last filled entry is equal to δ, then filling is considered done and the procedure
checks the semigroup property (see Lemma 3.2.1) against the GapFunction. If the semigroup
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property does not hold, the GapFunction is discarded otherwise it is compared with all
GapFunctions with dimension r and degree δ that have been previously computed. If the
current GapFunction is not a permutation of some previously computed table, then it is
printed to the output and saved.

At this point we have an algorithm that produces candidate gap functions. In the next
chapter, we will focus on the output for δ = 4 and show that every GapFunction in the
output is indeed a gap function corresponding to a subalgebra R ⊂ S.
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Chapter 4

Gap functions with degree 4

In this chapter we consider the output of the algorithm of Chapter 3 for δ = 4, i.e. the
gap functions with degree 4. We have implemented this algorithm in Maple. Appendix A
contains the code of our implementation and its output for δ ≤ 3 is exactly the gap functions
in Tables 2.1, 2.2, and 2.3. In Section 4.1, we list the output of the algorithm for δ = 4 in
tables. As we mentioned in Chapter 3, the set of gap functions with degree 4 is a subset of
this output. In Section 4.2, we will show that each table of the output is a gap function by
producing the corresponding K-algebras R ⊂ S. In Section 4.3, we summarize our results
and discuss future work.

4.1 Tables of gap functions with degree 4

Tables 4.1, 4.2, 4.3 and 4.4 list the r-dimensional GapFunctions that are the output of the
algorithm in Chapter 3 for δ = 4 and 1 ≤ r ≤ 4. Each table is labeled with three numbers
δ.r.n: the first number δ denotes the degree of GapFunction, the second number r is the
dimension of the table and the last part is the number of the table among tables with a
given δ, r.

4.1.1: 0 1 1 2 2 3 3 4 . . . 4.1.2: 0 1 2 2 3 3 3 4 . . .

4.1.3: 0 1 2 2 3 4 . . . 4.1.4: 0 1 2 3 3 3 3 4 . . .

4.1.5: 0 1 2 3 3 3 4 . . . 4.1.6: 0 1 2 3 3 4 . . .

4.1.7: 0 1 2 3 4 . . .

Table 4.1: Gap functions with r = 1 and δ = 4

In Table 4.3, a 3-dimensional GapFunction λ is presented as a sequence of 2-dimensional
GapFunctions. A table in level [i] contains the values λ(α1, α2, i). Similarly, a 4-dimensional
gap function λ′ in Table 4.4 is presented as a sequence of 2-dimensional GapFunctions. The
table at level [i, j] contains the values λ′(α1, α2, i, j).
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4.2 Generators of subalgebras

In this section, we prove the main result of this thesis.

Theorem 4.2.1. The standard gap functions with degree 4, up to permutation of the coor-
dinates, are those listed in Tables 4.1, 4.2, 4.3, and 4.4. Furthermore, Tables 4.5, 4.6, 4.7,
4.8, and 4.9 list the corresponding algebras R ⊂ S.

Proof. In Proposition 3.3.1, we saw that the set of all gap functions with degree 4 is a
subset of the potential gap functions listed in Tables 4.1, 4.2, 4.3, and 4.4. It is enough
now to produce subalgebras R ⊂ S for each table. Tables 4.5, 4.6, 4.7, 4.8 and 4.9 list the
generators for each table. We explain how we found these generators.

It is easy to find the generators for those potential gap functions λ with projections λHi

and λLi that satisfy
4 = δ(λ) = δ(λHi) + δ(λLi) + 1, (4.1)

for some i. When this equality holds the potential gap function is uniquely determined from
its projections via upward propagation (Lemma 2.5.8) and the generators for R can be
obtained by taking the union of generators for λHi and λLi (Proposition 2.6.6). The tables
that this equality holds for them are

• Tables 4.2.i for i ∈ {8, 9, 10, 11, 15, 16},

• Tables 4.3.j for j ∈ {2, 7, 8, 9, 10, 11},

• Tables 4.4.k for k ∈ {2, 3, 4}.

For example consider the Table 4.2.15. The projections of this potential gap function onto
the axes are∣∣ 0 1 1 2 . . . , corresponding to R1 = K[[t21, t31]] ⊂ S = K[[t1]],∣∣ 0 1 1 . . . , corresponding to R2 = K[[t22, t52]] ⊂ S = K[[t2]].

The generators for R1 and R2 can be found in [BIV20, Tables 6, 7]. These projections have
degrees 2 and 1 respectively and they satisfy (4.1). The subalgebra R ⊂ S = K[[t1]]×K[[t2]]
that has Table 4.2.15 as gap function is then

R = K[[t21, t31, t22, t52]].

For the tables that are not product of lower degree gap functions, we need to do more
work. The general argument is as in [BIV20, Proposition 5.4]. We describe the procedure
and then give several examples. The procedure is the following 4 steps:

1. Given a table λ, we write down certain elements in Σ by using Lemma 2.5.1 and
Lemma 2.5.6.
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2. For each element σ of Σ in the previous step, we write down an element fσ in R. We
use automorphisms of S and certain elements in R to make fσ as simple as possible.

3. We set R to be the subalgebra inside S = ∏r
i=1 K[[ti]] (here r is the dimension of

λ) generated by all fσ we found in the previous step. An explicit computation then
shows that the completion R′ of R is such that λR′ = λ.

4. We can use a computer algebra system (such as Macaulay2) to compute the relations
among the generators of R. This then gives R′ as a quotient of S.

Example 4.2.2. Consider Table 4.1.1. We want to find the generators of R ⊂ K[[t]] for
this table and show that this is in fact a gap function. We can see by Lemma 2.5.1 that

λ(2) = λ(3)→ 2 ∈ Σ,

λ(4) = λ(5)→ 4 ∈ Σ,

λ(6) = λ(7)→ 6 ∈ Σ,

and
λ(8) = λ(9) = λ(10) = . . . → k ∈ Σ for k ≥ 8.

Hence, there exists a function x ∈ R such that ν(x) = 2. After applying an automorphism of
K[[t]], we may assume that x = t2. There is also y ∈ R such that ν(y) = 9. Because i ∈ Σ for
i ≥ 8, by subtracting suitable elements in R from y we can assume y = t9. The generators
for this gap function is R = K[[t2, t9]]. To compute the relations among the generators (e.g
in Macaulay2), we can eliminate t in the ideal 〈x − t2, y − t9〉 ⊂ K[x, y, t]. This results in
the ideal 〈x9 − t2〉. The completion of R then has a presentation R ∼= K[[x, y]]/(x9 − y2).

Example 4.2.3. Consider Table 4.2.7. By Lemma 2.5.1, we have

λ(1, 1) = λ(1, 2)⇒ (1, 1)[2] ∈ Σ⇒ (m, 1) ∈ Σ for some 4 > m ≥ 1,

λ(2, 1) = λ(2, 2)⇒ (2, 1)[2] ∈ Σ⇒ (n, 1) ∈ Σ for some 4 > n ≥ 2,

λ(3, 1) = λ(3, 2)⇒ (3, 1)[2] ∈ Σ⇒ (p, 1) ∈ Σ for some 4 > p ≥ 3.

By the above inequalities, we conclude the following (3, 1) ∈ Σ and after an automorphism
of S = K[[t1]] × K[[t2]] we may assume t31 + t2 ∈ R. In addition, we have (∞, k) ∈ Σ
for k ≥ 2, and (k,∞) ∈ Σ for k ≥ 4. Now we can write the generators as follows: R =
K[[t41, t51, t61, t71, t22, t32, t31 + t2]]. To compute the relations among the generators, denote the
seven generators of R that we just found by g1, . . . , g7. Then eliminate t1, t2 from the ideal
〈x1−g1, . . . , x7−g7, t1t2〉 ⊂ K[x1, . . . , x7, t1, t2]. Note that here we are including t1t2 because
of the relation t1t2 = 0.
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Example 4.2.4. Let’s consider Table 4.3.4. Here R ⊂ S = ∏3
i=1 K[[ti]]. Since the size of

this table is (2, 4, 2), we can conclude that

(2,∞,∞), (3,∞,∞) ∈ Σ,

(∞, 4,∞), (∞, 5,∞), (∞, 6,∞) ∈ Σ,

(∞,∞, 2), (∞,∞, 3) ∈ Σ.

By using Lemma 2.5.1, we can see the following:

(1, 2, 1) ∈ Σ, (1, 3, 1) ∈ Σ, (1, 4, 1) ∈ Σ,

which will show that (1,∞, 1) ∈ Σ, and after an automorphism of S we have t1 + t3 ∈ R.
Also by subtracting powers of t1 + t3 from the element in R with valuation (2,∞,∞), we
conclude t21 ∈ R.

Also, we have (2, 2, 1), (2, 3, 1) ∈ Σ. Moreover, by Lemma 2.5.6 with α = (1, 2, 0), i = 2,
we have

u′t22 ∈ R⇒ (∞, 2,∞) ∈ Σ.

Now, by computation in the semigroup Σ, we have:

(1, 3, 1) + (∞, 2,∞) = (∞, 5,∞) ∈ Σ,

(2, 3, 1) + (∞,∞, 2) = (∞,∞, 3) ∈ Σ.

So (1, 3, 1), (∞, 2,∞) already generate (∞, 4,∞), (∞, 5,∞), (∞, 6,∞), (∞, 7,∞) in Σ.
Furthermore,

(1, 2, 1) ∈ Σ⇒ (t1, β2t
2
2 + β3t

3
2, γ1t3) ∈ R

(1, 3, 1) ∈ Σ⇒ (t1, β′2t32, γ′1t3) ∈ R

(2, 2, 1) ∈ Σ⇒ (t21, β′′2 t22 + β′′3 t
3
2, γ
′′
1 t3) ∈ R.

Since we have (2,∞,∞), (∞, 2,∞) ∈ Σ, we can eliminate the components t21, β2t
2
2, and β′′2 t22.

Therefore, we have

(t1, 0, γ1t3) ∈ R,

(0, 0, γ′′1 t3) ∈ R.

Also, since (2, 3, 1) ∈ Σ, we can conclude that (0, β′′′3 t
3
2, γ
′′′
1 t3) ∈ R, which finally brings

us to (0, t32, γ′′′1 t3) ∈ R. Hence, after an automorphism of S, the generators are R =
K[[t21, t1+t3, t22, t32+t3]]. Relations among the generators are computed similar to the previous
examples.
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Example 4.2.5. Consider gap function 4.4.1. Since the size of the function is (2, 2, 2, 2),
we have

(2,∞,∞,∞), (3,∞,∞,∞) ∈ Σ,

(∞, 2,∞,∞), (∞, 3,∞,∞) ∈ Σ,

(∞,∞, 2,∞), (∞,∞, 3,∞) ∈ Σ,

(∞,∞,∞, 2), (∞,∞,∞, 3) ∈ Σ.

By looking at the table and considering Lemma 2.5.1,

(1, 1, 1, 1), (1, 1, 2, 1) ∈ Σ,

(1, 1, 1, 2), (1, 1, 2, 2) ∈ Σ,

(2, 1, 1, 1), (2, 1, 2, 1) ∈ Σ,

(2, 1, 1, 2), (1, 2, 1, 1) ∈ Σ,

(1, 2, 2, 1), (1, 2, 1, 2) ∈ Σ,

(2, 2, 1, 1) ∈ Σ.

Thus, we can conclude that after a suitable automorphism of S = ∏4
i=1 K[[ti]]

(t1, t2, t3, t4) ∈ R,

(t1, β1t2, 0, η1t4) ∈ R,

(t1, β′1t2, γ1t3, 0) ∈ R,

(t1, β′′1 t2, 0, 0) ∈ R,

(0, t2, γ′1t3, η′1t4) ∈ R,

(0, t2, 0, η′′1 t4) ∈ R,

(0, t2, γ′′1 t3, 0) ∈ R,

(t1, 0, γ′′′1 t3, η
′′′
1 t4) ∈ R,

(t1, 0, 0, η′′′′1 t4) ∈ R,

(t1, 0, γ′′′′′1 t3, 0) ∈ R,

(0, 0, t3, η′′′′′1 t4) ∈ R.

We want to show that (t1, 0, 0, η′′′′1 t4), (0, t2, 0, η′′1 t4), and (0, 0, t3, η′′′′′t4) are enough. Because

V = {(αt1, βt2, γt3, ηt4)|α, β, γ, η ∈ K}

is a vector space of dimension 4, there can be at most 4 independent vectors. Those three
vectors are linearly independent. We now have two cases: either the span of all the elements
cover the whole 4 dimensional space (V ) or their span is 3 dimensional. We claim that the
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span of these elements cannot be 4 dimensional.

V = span{(t1, 0, 0, 0), (0, t2, 0, 0), (0, 0, t3, 0), (0, 0, 0, t4)}.

If the span is 4-dimensional, then t1, t2, t3, t4 ∈ R.

λ(α1, α2, α3, α4) = dim K[[t1]]× · · · ×K[[t4]]
R+ 〈tα1

1 , tα2
2 , tα3

3 , tα4
4 〉

.

So we have a gap function that λ(1, 1, 1, 1) = δ = 3 and it does not change after that
cell. For αi ≥ 1, 〈tα1

1 , tα2
2 , tα3

3 , tα4
4 〉 ⊂ R = K[[t1, t2, t3, t4]]. Hence, it does not change from

(α1, α2, α3, α4) = (1, 1, 1, 1) onwards:

λ(α1, . . . , α4) = dim S

R
= 3⇒ δ = 3,

which is a contradiction. Therefore, it has to be 3-dimensional. So these three vectors are
enough:

(t1, 0, 0, η′′′′1 t4), (0, t2, 0, η′′1 t4), (0, 0, t3, η′′′′′1 t4).

Therefore, R = K[[t1 + η1t4, t2 + η2t4, t3 + η3t4, t
2
1, t

3
1, t

2
2, t

3
2, t

2
3, t

3
3]]. Note that this R is not

necessarily unique up to automorphisms of S because we have two parameters η1, η2 in the
generators. Among all gap functions with degree 4 there are two, namely 4.4.1 and 4.3.1,
whose algebras are not necessarily unique up to automorphisms of their normalizations.

4.3 Analysis of results and future work

Our work in this thesis shows that there are 39 standard gap functions with degree 4. A
summary of the number of gap functions with degree at most 5 is (the last row comes from
the output of our algorithm for δ = 5, see Appendix B):

Degree Number of gap functions
1 2
2 4
3 14
4 39
5 ≤ 119

A distinct feature of δ = 4 is that there might exist non-isomorphic subalgebras R ⊂ S
whose gap functions are the same. This does not happen when δ ≤ 3. If λ is a gap function
with degree δ for which there are non-isomorphic subalgebras, then by taking the product
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of λ with the one dimensional zero gap function, we produce a gap function with degree
δ + 1 that has non-isomorphic subalgebras. In this way non-uniqueness of the subalgebras
will propagate to higher degrees.

The following is a list of questions for future work:

1. We have seen that our algorithm is correct (produces only gap functions) when the
degree is at most 4. Is this algorithm correct for higher degrees?

2. How many gap functions with degree 5 are there? Appendix B contains the output of
our algorithm for δ = 5. Are all of them gap functions?

3. Does the sequence of the number of gap functions with degree δ (i.e. 2, 4, 14, 39, . . .)
follow a specific pattern? Can we give an upper bound for the number of gap functions
with a given degree?

4. Are there non-isomorphic subalgebras R1, R2 ⊂ S whose gap functions are equal to
the gap function 4.3.1? What about the gap function 4.4.1? We conjecture that
non-isomorphic R1, R2 with this property exist for both tables.
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4.2.1:

...
...

...
...

1 2 3 4 . . .
1 2 3 3 . . .
1 2 2 2 . . .
1 1 1 1 . . .

4.2.2:

...
...

...
...

...
1 2 3 3 4 . . .
1 2 3 3 3 . . .
1 2 2 2 2 . . .

4.2.3

...
...

...
...

...
...

1 2 2 3 3 4 . . .
1 2 2 3 3 3 . . .

4.2.4:

...
...

...
...

1 2 3 4 . . .
1 2 2 3 . . .

4.2.5:

...
...

...
...

...
...

1 2 3 3 3 4 . . .
1 2 3 3 3 3 . . .

4.2.6:

...
...

...
...

...
1 2 3 3 4 . . .
1 2 3 3 3 . . .

4.2.7:

...
...

...
...

1 2 3 4 . . .
1 2 3 3 . . .

4.2.8:
...

...
...

...
...

...
1 2 2 3 3 4 . . .

4.2.9:
...

...
...

...
...

...
1 2 3 3 3 4 . . .

4.2.10:
...

...
...

...
...

1 2 3 3 4 . . .

4.2.11:
...

...
...

...
1 2 3 4 . . .

4.2.12:

...
...

...
...

2 3 3 4 . . .
2 3 3 3 . . .
2 3 3 3 . . .
1 2 2 2 . . .

4.2.13:

...
...

...
2 3 4 . . .
2 3 3 . . .
2 3 3 . . .
1 2 2 . . .

4.2.14:

...
...

...
2 3 4 . . .
2 3 3 . . .
1 2 2 . . .

4.2.15:

...
...

...
...

2 3 3 4 . . .
1 2 2 3 . . .

4.2.16:

...
...

...
2 3 4 . . .
1 2 3 . . .

Table 4.2: Gap functions with r = 2 and δ = 4. Product gap functions are underlined.
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4.3.1†:

Level [1]
...

...
...

2 2 2 . . .
2 2 2 . . .

Level [2]
...

...
...

2 3 3 . . .
2 3 3 . . .

Level [3]
...

...
...

2 3 4 . . .
2 3 3 . . .

4.3.2:

Level [1]
...

...
...

2 2 2 . . .

Level [2]
...

...
...

2 3 3 . . .

Level [3]
...

...
...

2 3 4 . . .

4.3.3:

Level [1]
...

...
2 3 . . .
2 2 . . .

Level [2]
...

...
3 4 . . .
2 3 . . .

4.3.4:

Level [1]
...

...
3 3 . . .
3 3 . . .
3 3 . . .
2 2 . . .

Level [2]
...

...
3 4 . . .
3 3 . . .
3 3 . . .
2 2 . . .

4.3.5:

Level [1]
...

...
3 3 . . .
3 3 . . .
2 2 . . .

Level [2]
...

...
3 4 . . .
3 3 . . .
2 2 . . .

4.3.6:

Level [1]
...

...
3 3 . . .
2 2 . . .

Level [2]
...

...
3 4 . . .
2 3 . . .

4.3.7:

Level [1]
...

...
3 4 . . .
3 3 . . .
3 3 . . .
2 2 . . .

4.3.8:

Level [1]
...

...
3 4 . . .
3 3 . . .
2 2 . . .

4.3.9:

Level [1]
...
4 . . .
3 . . .
3 . . .
2 . . .

4.3.10:

Level [1]
...
4 . . .
3 . . .
2 . . .

4.3.11:

Level [1]
...
3 . . .
2 . . .

Level [2]
...
4 . . .
3 . . .

Table 4.3: Gap functions with r = 3 and δ = 4. Product gap functions are underlined. The
symbol † denotes a gap function whose algebra is not necessarily unique.
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4.4.1†:

Level [1, 1]
...

...
3 3 . . .
3 3 . . .

Level [2, 1]
...

...
3 3 . . .
3 3 . . .

Level [1, 2]
...

...
3 3 . . .
3 3 . . .

Level [2, 2]
...

...
3 4 . . .
3 3 . . .

4.4.2:

Level [1, 1]
...

...
3 3 . . .

Level [2, 1]
...

...
3 3 . . .

Level [1, 2]
...

...
3 3 . . .

Level [2, 2]
...

...
3 4 . . .

4.4.3:

Level [1, 1]
...

...
3 3 . . .

Level [1, 2]
...

...
3 4 . . .

4.4.4:

Level [1, 1]
...
3 . . .

Level [2, 1]
...
4 . . .

4.5.1: λ(1, 1, 1, 1, 1) = 4

Table 4.4: Gap functions with r = 4, 5 and δ = 4. Product gap functions are underlined.
The symbol † denotes a gap function whose algebra is not necessarily unique.
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λ Elements in Σ Generators of R Relations
4.1.1 2, 9 x = t21, y = t91 x9 − y2

4.1.2 3, 5, 6 x = t31, y = t51 x5 − y3

4.1.3 3, 7, 8 x = t31, y = t71,
z = t81

x2z − y2, xy3 − z3,
x3y − z2, y5 − xz4,

x5 − yz

4.1.4 4, 5, 6 x = t41, y = t51,
z = t61

x3 − z2,
y2 − xz

4.1.5 4, 5, 7 x = t41, y = t51,
z = t71

y3 − x2z, xy2 − z2,
x3 − yz

4.1.6 4, 6, 7
9

x = t41, y = t61,
z = t71, w = t91

yz − xw, z3 − y2w,
xz2 − w2, x2z − yw,
y3 − w2, xy2 − zw,
x2y − z2, x3 − y2

4.1.7 5, 6, 7
8, 9

x = t51, y = t61,
z = t71, w = t81,

q = t91

w2 − zq, zw − yq,
yw − xq, z2 − xq,
yz − xw, y2 − xz,
x2w − q2, x2z − wq,
x2y − zq, x3 − yq

Table 4.5: Generators for gap functions with δ = 4, r = 1.
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λ Elements in Σ Generators of R (Number of) Relations

4.2.1

(4,∞), (5,∞),
(6,∞), (7,∞),
(∞, 4), (∞, 5),
(∞, 6), (∞, 7),
(1, 1), (2, 2),

(3, 3)

x1 = t41, x2 = t51,
x3 = t61, x4 = t71,
y1 = t42, y2 = t52,
y3 = t62, y4 = t72,

z1 = t1 + t2, z2 = t21 + t22,
z3 = t31 + t32

52

4.2.2

(3,∞), (5,∞),
(7,∞), (∞, 3),
(∞, 4), (∞, 5),

(2, 1)

x1 = t31, x2 = t51, x3 = t71,
y1 = t32, y2 = t42, y3 = t52,

z = t21 + t2

19

4.2.3
(2,∞), (7,∞),
(∞, 2), (∞, 3),

(5, 1)

x1 = t21, x2 = t71,
y1 = t22, y2 = t32,
z = t51 + t2

11

4.2.4

(4,∞), (5,∞),
(6,∞), (7,∞),
(∞, 2), (∞, 3),

(2, 1)

x1 = t41, x2 = t51,
x3 = t61, x4 = t71,
y1 = t22, y2 = t32,
z = t21 + t2

18

4.2.5 (3,∞), (4,∞),
(∞, 2), (5, 1)

x1 = t31, x2 = t41,
y1 = t22, y2 = t3z,
z = t51 + t2

9

4.2.6
(3,∞), (5,∞),
(7,∞), (∞, 2),
(∞, 3), (4, 1)

x1 = t31, x2 = t51, x3 = t71,
y1 = t22, y2 = t32,
z = t41 + t2

12

4.2.7

(4,∞), (5,∞),
(6,∞), (7,∞),
(∞, 2), (∞, 3),

(3, 1)

x1 = t41, x2 = t51,
x3 = t61, x4 = t71,
y1 = t22, y2 = t32,
z = t31 + t2

18

4.2.8 (∞, 2), (∞, 7) x = t1,
y1 = t22, y2 = t72

xy2, xy1,
y7

1 − y2
2

4.2.9 (∞, 3), (∞, 4) x = t1,
y1 = t32, y2 = t42

xy2, xy1,
y4

1 − y3
2

4.2.10 (∞, 3), (∞, 5),
(∞, 7)

x = t1,
y1 = t32, y2 = t52, y3 = t72

6

4.2.11 (∞, 4), (∞, 5),
(∞, 6), (∞, 7)

x = t1,
y1 = t42, y2 = t52,
y3 = t62, y4 = t72

10

4.2.12
(2,∞), (5,∞),
(∞, 2), (∞, 5),

(3, 3)

x1 = t21, x2 = t51,
y1 = t22, y2 = t52,
z = t31 + t32

8

Table 4.6: Generators for gap functions with δ = 4, r = 2. Product gap functions are
underlined.
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λ Elements in Σ Generators of R (Number of) Relations

4.2.13
(2,∞), (5,∞)
(∞, 3), (∞, 4),
(∞, 5), (3, 2)

x1 = t21, x2 = t51,
y1 = t32, y2 = t42, y3 = t52,

z = t31 + t22

13

4.2.14

(3,∞), (4,∞),
(5,∞), (∞, 3),
(∞, 4), (∞, 5),

(2, 2)

x1 = t31, x2 = t41, x3 = t51,
y1 = t32, y2 = t42, y3 = t52

z = t21 + t22

18

4.2.15 (2,∞), (3,∞),
(∞, 2), (∞, 5)

x1 = t21, x2 = t31,
y1 = t22, y2 = t52

6

4.2.16
(2,∞), (3,∞),
(∞, 3), (∞, 4),

(∞, 5)

x1 = t21, x2 = t31,
y1 = t32, y2 = t42, y3 = t52

10

Table 4.7: Generators for gap functions with δ = 4, r = 2 (continued). Product gap functions
are underlined.
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λ Elements in Σ Generators of R (Number of) Relations

4.3.1† (1,∞, 1), (∞, 1, 2),
(2, 1,∞), (∞,∞, 3)

x1 = t21 + t2, x2 = t2 + at23,
x3 = t1 + t3 + bt23,

y1 = t33

10

4.3.2 (1, 1,∞), (3,∞,∞),
(∞,∞, 1)

x = t1 + t2, y = t31,
z = t3

yz, xz,
x3y − y2

4.3.3 (2,∞,∞), (∞, 2,∞),
(1, 1, 1)

x = t21, y = t22,
z = t1 + t2 + t3

xy,
yz2 − y2, xz2 − x2

4.3.4
(1,∞, 1), (∞, 3, 1),

(2,∞,∞),
(∞, 2,∞)

x = t1 + t3, y = t32 + t3,
z = t21,
w = t22

5

4.3.5
(1,∞, 1), (∞, 2, 1),

(2,∞,∞), (∞, 3,∞),
(∞, 4,∞), (∞,∞, 2)

x = t1 + t3, y = t22 + t3,
z = t21,

w1 = t32, w2 = t42,
p = t23

13

4.3.6 (1,∞, 1), (2,∞,∞),
(∞, 2,∞), (∞, 3,∞)

x = t1 + t3,
y = t21,

z1 = t22, z2 = t32

6

4.3.7 (3, 1,∞), (2,∞,∞),
(∞,∞, 1)

x = t31 + t2,
y = t21, z = t3

yz, xz,
y4 − x2y

4.3.8 (2, 1,∞), (3,∞,∞),
(∞, 2,∞), (∞,∞, 1)

x = t21 + t2, y = t31,
z = t22, w = t3

6

4.3.9 (2,∞,∞), (5,∞,∞)
(∞, 1,∞), (∞,∞, 1)

x1 = t21, x2 = t51,
y = t2, z = t3

6

4.3.10
(3,∞,∞), (4,∞,∞),
(5,∞,∞), (∞, 1,∞),

(∞,∞, 1)

x1 = t31,x2 = t41, x3 = t51,
y = t2,
z = t3

10

4.3.11
(2,∞,∞), (3,∞,∞),
(∞, 1,∞), (∞,∞, 2),

(∞,∞, 3)

x1 = t21, x2 = t31,
y = t2,

z1 = t23,z2 = t33

10

Table 4.8: Generators for gap functions with δ = 4, r = 3. Product gap functions are
underlined. The symbol † denotes a gap function whose algebra is not necessarily unique.
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λ Elements in Σ Generators of R (Number of) Relations

4.4.1†

(1,∞,∞, 1), (∞, 1,∞, 1),
(∞,∞, 1, 1), (2,∞,∞,∞),
(3,∞,∞,∞), (∞, 2,∞,∞),
(∞, 3,∞,∞), (∞,∞, 2,∞),

(∞,∞, 3,∞)

x1 = t1 + η1t4, x2 = t2 + η2t4,
x3 = t3 + η3t4,
y1 = t21, y2 = t31,
z1 = t22, z2 = t32,
w1 = t23, w2 = t33

38

4.4.2 (1, 1,∞,∞), (1,∞, 1,∞),
(∞,∞,∞, 1)

x = t1 + t2, y = t1 + t3,
z = t4

yz, xz,
x2y − xy2

4.4.3 (∞, 1, 1,∞), (1,∞,∞,∞),
(∞, 2,∞,∞), (∞,∞,∞, 1)

x = t2 + t3, y = t1,
z = t22, w = t4

6

4.4.4
(1,∞,∞,∞), (∞, 1,∞,∞),

(∞,∞, 2,∞),
(∞,∞, 3,∞), (∞,∞,∞, 1)

x = t1, y = t2,
z1 = t23, z2 = t33

w = t4

10

Table 4.9: Generators for gap functions with δ = 4, r = 4. Product gap functions are
underlined. The symbol † denotes a gap function whose algebra is not necessarily unique.
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Appendix A

Implementation of algorithm in
Maple

This appendix contains our implementation of the algorithm for producing candidate gap
functions with a given degree δ in Maple. First the code in Section A.1 must be executed.
Then, to compute r-dimensional gap functions with degree δ, we use the following block of
code. Here we are setting r = 1 and δ = 5 which results in GapFunctions with dimension
1 and degree at most 5. To compute GapFunctions with a given dimension and degree,
replace 1 in the first line with the desired dimension and replace 5 in the third line with the
desired degree. For example to compute 3-dimensional GapFunctions with degree 5, this
block must be run first for r = 1, then r = 2 and finally r = 3.

> r:= 1:
gapFunList:=GapList([]):
delta:=5;
dimension:=r;
for i from dimension-1 to delta do
main(i,dimension, gapFunList);

od;
printf("-------------------------------------------------\n");
printf("Total number of %d-dimensional gap functions: %d\n",dimension,

nops(gapFunList:-data[dimension]));
printf("-------------------------------------------------\n");
counter:=0:
previousDelta:=dimension-1:
for gapFun in gapFunList:-data[dimension] do

currentDelta:=gapFun:-getDelta();
if currentDelta<>previousDelta then

previousDelta:=currentDelta;
counter:=1;

else
counter:=counter+1;

fi;
printf("Table %d.%d.%d\n",gapFun:-getDelta(),gapFun:-getDimension(),counter);
gapFun:-printGap();
printf("\n");
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od:

A.1 Maple implementation

> with(combinat):

> incrementList:=proc(index, finalValues, startValue::integer:=0)
local listSize, i, indexList;
indexList:=index;
listSize:=nops(indexList);
indexList[1]:=indexList[1]+1;
for i from 1 to listSize do
if indexList[i]>finalValues[i] and i<listSize then
if finalValues[i]>=startValue then indexList[i]:=startValue else

indexList[i]:=0; fi;
indexList[i+1]:=indexList[i+1]+1;

elif indexList[i]>finalValues[i] and i=listSize then
if finalValues[i]>=startValue then indexList[i]:=startValue else

indexList[i]:=0; fi;
return indexList, false;

else
return indexList, true;

fi;
od;

end proc:

isOutOfBounds:=proc(currentList, finalList)
local i;
for i from 1 to nops(currentList) do
if currentList[i]>finalList[i] then return true; fi;

od;
return false;

end proc:

getBoundary:=proc(currentList, finalList)
local i;
return [seq(min(currentList[i],finalList[i]),i=1..nops(currentList))];

end proc:

> unprotect(’GapFunction’, ’GapList’);
module GapFunction()
option object;

local dimension::integer:=0; #holds the dimension of the gap function
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local bounds::list; #bounds of the axes (a list)
local gapFun::Array:=Array(0..0); #the gap function is stored internally

as n-dim Array

export ModuleApply::static := proc()
Object(GapFunction, _passed);

end;

export ModuleCopy::static := proc(self::GapFunction, proto::GapFunction,
sizeList::list,$)

local indexList:=[];
local i;
for i from 1 to nops(sizeList) do
indexList:=[op(indexList),0..sizeList[i]];

od;
self:-gapFun:=Array(op(indexList));
self:-dimension:=nops(sizeList);
self:-bounds:=sizeList;

end;

export ModulePrint::static := proc(self::GapFunction)
#printArray(self:-gapFun);
nprintf("GapFunction\ndim=%d\ndelta=%d",self:-dimension,self:-getDelta());

end;

export printGap := proc()
printf("Dim=%d, delta=%d:\n\n",dimension,getDelta());
printArray(gapFun);

end;

local printArray::static := proc(T::Array)
local arraySize:=[upperbound(T)];
local d:=nops(arraySize);
local lx,ly,i,j;
if d=0 then
printf("0\n");

elif d=1 then
for i from 0 to upperbound(T) do
printf("%d ",T[i]);

od;
printf("\n");

elif d=2 then
lx,ly:=upperbound(T);
for j from ly by -1 to 0 do
for i from 0 to lx do
printf("%d ",T[i,j]);

od;
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printf("\n");
od;

else
local loopIndex:=[seq(0,i=1..d-2)];
local finalValues:=arraySize[3..-1];
local shouldContinue:=true;
while shouldContinue do

printf("Level %a=\n",loopIndex);
lx,ly:=arraySize[1],arraySize[2];
for j from ly by -1 to 0 do
for i from 0 to lx do

printf("%d ",T[i,j,op(loopIndex)]);
od;
printf("\n");

od;
printf("--------------\n");
loopIndex,shouldContinue:=incrementList(loopIndex,finalValues);

od;
printf("\n");

fi;

end;

export get:=proc(indexList)
return gapFun[op(indexList)];

end;

export set:=proc(indexList, entry)
gapFun[op(indexList)]:=entry;

end;

export getDelta:=proc()
if dimension=0 then 0 else gapFun[op(bounds)] fi;

end;

export getDimension:=proc()
return dimension;

end;

export getBounds:=proc()
return bounds;

end;

export getAxis:=proc(axis::integer)
local i;
if axis<1 or axis>dimension then error "Invalid axis index: axis should

be in the range 1..dimension."; fi;
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local index:=[seq(0,i=1..dimension)];
local axisSize:=bounds[axis];
local incrementVector:=[seq(0,i=1..dimension)];
incrementVector[axis]:=1;

index[axis]:=axisSize;
local axisDelta:=get(index);
if axisDelta=0 then return GapFunction([0]); fi;

local deltaIndex:=axisSize;
while get(index)=axisDelta and deltaIndex>0 do
deltaIndex:=deltaIndex-1;
index[axis]:=deltaIndex;

od;

if deltaIndex=0 then error "invalid gap function"; fi;

deltaIndex:=deltaIndex+1;
local axisGap:=GapFunction([deltaIndex]);
for i from 1 to deltaIndex do

index[axis]:=i;
axisGap:-set([i],get(index));

od;
return axisGap;

end;

export getAxes:=proc()
local i;
local axisList:=[];
for i from 1 to dimension do
axisList:=[op(axisList),getAxis(i)];

od;
return axisList;

end;

export getHyperplane:=proc(hIndex::integer) #hIndex is the hyperplane
index

local gapIndex, tempSum;
if hIndex<1 or hIndex>dimension then error "Invalid hyperplane index:

should be in the range 1..dimension."; fi;
local hSize:=[op(bounds[1..hIndex-1]),op(bounds[hIndex+1..-1])]; #hSize

is the hyperplane size
local lastPosition:=hSize;
local lastPositionInGap:=bounds;
lastPositionInGap[hIndex]:=0;
local hDelta:=get(lastPositionInGap);
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local loopIndex:=[seq(0,1..dimension-1)];
local shouldContinue:=true;
local sumIndex:=add(lastPosition);
while shouldContinue do
gapIndex:=[op(loopIndex[1..hIndex-1]),0,op(loopIndex[hIndex..-1])];
tempSum:=add(loopIndex);
if get(gapIndex)=hDelta and sumIndex>tempSum then
lastPosition:=loopIndex;
sumIndex:=tempSum;

fi;
loopIndex,shouldContinue:=incrementList(loopIndex,hSize);

od;

local hyperplaneGap:=GapFunction(lastPosition);
loopIndex:=[seq(0,1..dimension-1)];
shouldContinue:=true;
while shouldContinue do
gapIndex:=[op(loopIndex[1..hIndex-1]),0,op(loopIndex[hIndex..-1])];
hyperplaneGap:-set(loopIndex,get(gapIndex));
loopIndex,shouldContinue:=incrementList(loopIndex,lastPosition);

od;

return hyperplaneGap;

end;

export isEqual:=proc(argGap::GapFunction)
local i;
#test dimension equality
local argDimension:=argGap:-getDimension();
if dimension<>argDimension then return false; fi;

#test bounds equality
local argBounds:=argGap:-getBounds();
for i from 1 to dimension do
if bounds[i]<>argBounds[i] then return false; fi;

od;

#test entries
local loopIndex:=[seq(0,i=1..dimension)];
local shouldContinue:=true;
while shouldContinue do
if get(loopIndex)<>argGap:-get(loopIndex) then return false; fi;
loopIndex,shouldContinue:=incrementList(loopIndex, bounds);

od;
return true;

64



end;

export fillWith:=proc(gap::GapFunction, endingIndex::list)
local d:=getDimension();
local d_gap:=gap:-getDimension();
if d<>d_gap then error "gap function dimesnions don’t match"; fi;
local bounds_gap:=gap:-getBounds();
local i;
for i from 1 to d do
if bounds[i]<endingIndex[i] or bounds_gap[i]<endingIndex[i] then error

"invalid ending index"; fi;
od;
local shouldContinue:=true;
local loopIndex:= [seq(0,i=1..d)];
while shouldContinue do

set(loopIndex, gap:-get(loopIndex));
loopIndex,shouldContinue:= incrementList(loopIndex,endingIndex);

od;
return;

end;

export makeCopy::static:=proc(gap::GapFunction)
local finalIndex:=gap:-getBounds();
local copyGap:=GapFunction(finalIndex);
copyGap:-fillWith(gap, finalIndex);
return copyGap;

end;

local permuteList:=proc(L::list, permutation::list)
local i;
if nops(L)<>nops(permutation) then error "list size does not match the

permutation size"; fi;
local listSize:=nops(L);
local permutedList:=[seq(0,i=1..listSize)];
for i from 1 to listSize do
permutedList[i]:=L[permutation[i]];

od;
return permutedList;

end;

export permuteAxes:=proc(permutation::list)
local i;
if nops(permutation)<>dimension then error "the permutation size does

not mach the dimension"; fi;

local permutedBounds:=permuteList(bounds,permutation);
local permutedGap:=GapFunction(permutedBounds);
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local shouldContinue:=true;
local loopIndex:= [seq(0,i=1..dimension)];
local permutedIndex;
while shouldContinue do

permutedIndex:=permuteList(loopIndex,permutation);
permutedGap:-set(permutedIndex, get(loopIndex));
loopIndex,shouldContinue:= incrementList(loopIndex,bounds);

od;
return permutedGap;

end;

end module:

module GapList()
option object;

export data::list:=[]; #holds the list

export ModuleApply::static := proc()
Object(GapList, _passed);

end;

export ModuleCopy::static := proc(self::GapList, proto::GapList,
initialList::list, $)

self:-data:=initialList;
end;

export ModulePrint::static := proc(self::GapList)
nprintf("GapList\n%a",self:-data);

end;

export get:=proc(index)
return data[index];

end;

end module:

> isSymmetry:=proc(T::GapFunction, gapList::list) local i, loopIndex,
shouldContinue, gapFun, lx_gapFun, ly_gapFun, lz_gapFun,
symmetry,dimension,gapFunSizeList, indexList,
sizeList,permutationList, permutation;

#isSymmetry returns true if T is a permutation of a gap function in
gapList and returns false if it is a new gap function

dimension:=T:-getDimension();
permutationList:=permute(dimension);
indexList:=[seq(0,i=1..dimension)];
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sizeList:=T:-getBounds();
for gapFun in gapList do

gapFunSizeList:=gapFun:-getBounds();
for permutation in permutationList do

symmetry:=true;
for i from 1 to dimension while symmetry=true do

if sizeList[permutation[i]]<>gapFunSizeList[i] then
symmetry:=false; fi;

od;
loopIndex:=[seq(0,i=1..dimension)];
shouldContinue:=true;
while shouldContinue and symmetry=true do

for i from 1 to dimension do
indexList[permutation[i]]:=loopIndex[i];

od;
if T:-get(indexList)<>gapFun:-get(loopIndex) then symmetry:=false;

fi;
loopIndex,shouldContinue:=incrementList(loopIndex,gapFunSizeList);

od;
if symmetry=true then return true; fi;

od;#end for permutation
od;
return false;

end proc:

>
fillGapFunction:=proc(lambda::GapFunction,delta::integer,startIndex::list,
gapFunList::GapList) local shouldStop, gapFunctionSize,
loopIndex,shouldContinue,
numOfOnes,sumOfList,dimension,tempIndex,gamma,l,newProperty,skip,i,j,tempIndex2,tempIndex3;

shouldStop:=proc(currentIndex::list) local
gapFun,newPropertyHolds,direction, i, previousEntryIndex;

#first we check to see if the latest entry in the table satisfies the
property that in one step the increment is at most 1

local incrementPropertyHolds:=true;
for i from 1 to nops(currentIndex) while incrementPropertyHolds do
previousEntryIndex:=currentIndex;
if currentIndex[i]>0 then
previousEntryIndex[i]:=currentIndex[i]-1;
if lambda:-get(currentIndex)-lambda:-get(previousEntryIndex)>1 then

incrementPropertyHolds:=false fi;
fi;

od;
if incrementPropertyHolds=false then return true fi; #in case the table

is constructed badly we should stop and move on to the next table

if lambda:-get(currentIndex)=delta then
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gapFun:=GapFunction(currentIndex);
gapFun:-fillWith(lambda,currentIndex);
#issymmetry,newproperty
newPropertyHolds:=true;
for i from 1 to gapFun:-getDimension() while newPropertyHolds do
direction:=[seq(0,s=1..gapFun:-getDimension())];
direction[i]:=1;
newPropertyHolds:=newProperty(gapFun,direction);

od;
if newPropertyHolds and

isSymmetry(gapFun,gapFunList:-data[gapFun:-getDimension()])=false
then

local d:=gapFun:-getDimension();
gapFunList:-data[d]:=[op(gapFunList:-data[d]),gapFun];

fi;
return true;

else
return false;

fi;
end proc:

numOfOnes:=proc(indexList::list) local index, i;
index:=0;
for i in indexList do
if i=1 then index:=index+1; fi;

od;
return index;

end proc;

sumOfList:=proc(L::list) local s,i;
s:=0;
for i in L do
s:=s+i;

od;
return s;

end proc;

newProperty:=proc(gapCandidate::GapFunction, direction); local
semiGrouplist, i, j, index, elements, sum,
finalPoint,point,dimension,isLessThanOrEqual;

finalPoint:=gapCandidate:-getBounds()-direction;
#if the gap function size is 1 in the axis of direction, there’s

nothing to check
for i in finalPoint do
if i=0 then return true; fi;
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od;
dimension:=gapCandidate:-getDimension();
semiGrouplist:=[];
shouldContinue:=true;
loopIndex:=[seq(1,i=1..dimension)];

while shouldContinue do
if

gapCandidate:-get(loopIndex)=gapCandidate:-get(loopIndex+direction)
then

semiGrouplist:=[op(semiGrouplist),loopIndex];
fi;
loopIndex,shouldContinue:=incrementList(loopIndex,finalPoint,1);

od;
#Computes the semigroup generated by semiGrouplist
elements:=convert(semiGrouplist, set);
i:=1;
j:=1;
while i<=nops(elements) do

while j<=nops(elements) do
sum:=elements[i]+elements[j];
isLessThanOrEqual:=true;
for index from 1 to dimension while isLessThanOrEqual do

if sum[index]>finalPoint[index] then isLessThanOrEqual:=false; fi;

od;

if isLessThanOrEqual and member(sum,elements)=false then
elements:=elements union {sum};
i:=1;
j:=1;

fi;
j:=j+1;

od;
i:=i+1;
j:=i;

od;
for point in elements do

if gapCandidate:-get(point)<>gapCandidate:-get(point+direction) then
return false; fi;

od;
return true;

end proc:

if shouldStop(startIndex) then return; fi;
gapFunctionSize:=lambda:-getBounds();
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dimension:=lambda:-getDimension();
loopIndex:=startIndex;
shouldContinue:=true;
loopIndex,shouldContinue:=incrementList(loopIndex,gapFunctionSize,1);
while shouldContinue do
skip:=false;

#start upward propagation
if dimension>1 then
for i from 1 to dimension while skip=false do
for j from 1 to dimension while skip=false do
if i<>j then
if loopIndex[i]-1>=0 and loopIndex[j]-1>=0 then
tempIndex:=loopIndex;
tempIndex2:=loopIndex;
tempIndex3:=loopIndex;
tempIndex[i]:=tempIndex[i]-1;
tempIndex[j]:=tempIndex[j]-1;
tempIndex2[i]:=tempIndex2[i]-1;
tempIndex3[j]:=tempIndex3[j]-1;
if lambda:-get(tempIndex)<>lambda:-get(tempIndex2) then
lambda:-set(loopIndex, lambda:-get(tempIndex3)+1);
skip:=true;

fi;
if shouldStop(loopIndex) then return; fi;

fi;
fi;

od;
od;
if skip=true then
loopIndex,shouldContinue:=incrementList(loopIndex,gapFunctionSize,1);
next;

fi;
fi;
#start lemma 2.9
if loopIndex[1]-1>=0 then
tempIndex:=loopIndex;
tempIndex[1]:=tempIndex[1]-1;
gamma:=lambda:-get(tempIndex);
l:=numOfOnes(loopIndex);
if sumOfList(loopIndex)>2*gamma+2-l then
lambda:-set(loopIndex,gamma);
if shouldStop(loopIndex) then return; fi;
#no need for next because lemma 2.9 is the last part of while

else
lambda:-set(loopIndex,gamma);

70



fillGapFunction(GapFunction:-makeCopy(lambda),delta,loopIndex,
gapFunList);

lambda:-set(loopIndex,gamma+1);
if shouldStop(loopIndex) then return; fi;

fi;
fi;

loopIndex,shouldContinue:=incrementList(loopIndex,gapFunctionSize,1);
od; #end of while

end proc:

> assembleGapFunction:=proc(axisGap::GapFunction,
hyperplaneGap::GapFunction, delta)

local num, dimension, Lx,Ly,i,j,gapFunList,lambda, XiPlane, hList,
deltaBound,
numberOfPlanes,planeListIndex,shouldContinue,shouldContinueInner,isCompatible,
currentPlane, currentPlaneSize,currentPlaneDelta,hyperplaneGapIndex,
hyperplaneFinalGapIndex, gapIndex, boundaryIndex, allOnes;

dimension:=axisGap:-getDimension()+hyperplaneGap:-getDimension();
gapFunList:=GapList([seq([],i=1..dimension)]);
if dimension=2 then

Lx:=2*(delta-1)+1;
Ly:=2*(delta-1)+1;
if axisGap:-getDelta()+hyperplaneGap:-getDelta()<=delta-1 then

lambda:=GapFunction([Lx,Ly]);
for i from 0 to Lx do

if i>axisGap:-getBounds()[1] then
lambda:-set([i,0],axisGap:-getDelta());

else
lambda:-set([i,0],axisGap:-get([i]));

fi;
od;
for j from 0 to Ly do

if j>hyperplaneGap:-getBounds()[1] then
lambda:-set([0,j],hyperplaneGap:-getDelta());

else
lambda:-set([0,j],hyperplaneGap:-get([j]));

fi;
od;
lambda:-set([1,1],1);
fillGapFunction(lambda,delta,[1,1], gapFunList);

fi;
else
hList:=[seq([],i=1..dimension)];
hList[1]:=[hyperplaneGap];
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for i from 2 to dimension do
XiPlane:=hyperplaneGap:-getHyperplane(i-1);
deltaBound:=delta-hyperplaneGap:-getAxis(i-1):-getDelta()-1;
for j from 1 to deltaBound do
hList[i]:=[op(hList[i]),op(assembleGapFunction(axisGap,XiPlane,j))];

od;
od;
numberOfPlanes:=[seq(nops(hList[i]),i=1..dimension)];
for num in numberOfPlanes do
if num=0 then return []; fi;

od;
planeListIndex:=[seq(1,i=1..dimension)];
shouldContinue:=true;
while shouldContinue do
lambda:=GapFunction([seq(2*(delta-1)+1,i=1..dimension)]);
isCompatible:=true;
for i from 1 to dimension while isCompatible do

currentPlane:=hList[i][planeListIndex[i]];
currentPlaneSize:=currentPlane:-getBounds();
currentPlaneDelta:=currentPlane:-getDelta();
hyperplaneGapIndex:=[seq(0,i=1..dimension-1)];
hyperplaneFinalGapIndex:=[seq(2*(delta-1)+1,i=1..dimension-1)];
shouldContinueInner:=true;
while shouldContinueInner do
if i<dimension then
gapIndex:=[op(hyperplaneGapIndex[1..i-1]),0,op(hyperplaneGapIndex[i..-1])];

else
gapIndex:=[op(hyperplaneGapIndex[1..i-1]),0];

fi;
if isOutOfBounds(hyperplaneGapIndex, currentPlaneSize) then
boundaryIndex:=getBoundary(hyperplaneGapIndex, currentPlaneSize);
for j from 1 to i-1 while isCompatible do
if gapIndex[j]=0 and

lambda:-get(gapIndex)<>currentPlane:-get(boundaryIndex) then
isCompatible:=false; fi;

od;
lambda:-set(gapIndex, currentPlane:-get(boundaryIndex));

else
for j from 1 to i-1 while isCompatible do
if gapIndex[j]=0 and

lambda:-get(gapIndex)<>currentPlane:-get(hyperplaneGapIndex)
then isCompatible:=false; fi;

od;
lambda:-set(gapIndex, currentPlane:-get(hyperplaneGapIndex));

fi;
hyperplaneGapIndex,shouldContinueInner:=incrementList(hyperplaneGapIndex,hyperplaneFinalGapIndex);

od; #end while shouldContinueInner
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#improve the runtime? if isCompatible=false then
planeListIndex[i]:=planeListIndex[i]+1; fi;

od; #end for i

if isCompatible then
allOnes:=[seq(1,i=1..dimension)];
lambda:-set(allOnes, dimension-1);
fillGapFunction(lambda,delta,allOnes,gapFunList);

fi;
planeListIndex,shouldContinue:=incrementList(planeListIndex,numberOfPlanes,1);

od;
fi;
return gapFunList:-data[dimension];

end proc:

> main:=proc(delta,dimension, gapFunList::GapList) local Lx, Ly, xAxis,
yAxis, i,j, k, m, lambda,assembled, gapFun, permutationList, axisGap,
hyperplaneGap, hyperplaneIndex, axis, hyperplane;

#check to see if the number of entris in gapFunList equals dimension, if
not add empty lists to it until it becomes so

if nops(gapFunList:-data)<dimension then
for i from nops(gapFunList:-data)+1 to dimension do

gapFunList:-data:=[op(gapFunList:-data),[]];
od;

fi;

if dimension=1 then
if delta=0 then

lambda:=GapFunction([0]);
gapFunList:-data[1]:=[op(gapFunList:-data[1]),lambda];
return;

fi;
Lx:=2*(delta-1)+2;
lambda:=GapFunction([Lx]);
lambda:-set([1],0);
fillGapFunction(lambda,delta,[1], gapFunList);

elif dimension=2 then
for k from 1 to nops(gapFunList:-data[1]) do
for m from k to nops(gapFunList:-data[1]) do

xAxis:=gapFunList:-data[1][m];
yAxis:=gapFunList:-data[1][k];
if xAxis:-getDelta()+yAxis:-getDelta()<=delta-1 then
assembled:=assembleGapFunction(xAxis, yAxis,delta);
for gapFun in assembled do
if isSymmetry(gapFun, gapFunList:-data[dimension])= false then
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gapFunList:-data[dimension]:=[op(gapFunList:-data[dimension]),
gapFun];

fi
od;

fi;
od; #end for m

od; #end for k
else #dimension>2

for k from 1 to nops(gapFunList:-data[1]) do
for m from 1 to nops(gapFunList:-data[dimension-1]) do

axis:=gapFunList:-data[1][k];
hyperplane:=gapFunList:-data[dimension-1][m];
if axis:-getDelta()+hyperplane:-getDelta()<=delta-1 then
assembled:=assembleGapFunction(axis, hyperplane,delta);
for gapFun in assembled do
if isSymmetry(gapFun, gapFunList:-data[dimension])= false then
gapFunList:-data[dimension]:=[op(gapFunList:-data[dimension]),

gapFun];
fi

od;
fi;

od; #end for m
od; #end for k

fi; #end if dimension
end proc:
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Appendix B

Ouput of algorithm for degree 5

In this appendix we include the output of our algorithm for δ = 5. These tables are
GapFunctions with degree 5 containing all gap functions with degree 5. There may or
may not be tables that are not valid gap functions. We have separated the output based on
the dimension r of the tables.

B.1 GapFunctions with r = 1

delta := 5
dimension := 1

-------------------------------------------------
Total number of 1-dimensional gap functions: 12
-------------------------------------------------
Table 5.1.1
Dim=1, delta=5:
0 0 1 1 2 2 3 3 4 4 5
Table 5.1.2
Dim=1, delta=5:
0 0 1 2 2 3 4 4 4 5
Table 5.1.3
Dim=1, delta=5:
0 0 1 2 2 3 4 4 5
Table 5.1.4
Dim=1, delta=5:
0 0 1 2 3 3 3 4 5
Table 5.1.5
Dim=1, delta=5:
0 0 1 2 3 3 4 4 4 4 5
Table 5.1.6
Dim=1, delta=5:
0 0 1 2 3 3 4 4 5
Table 5.1.7
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Dim=1, delta=5:
0 0 1 2 3 3 4 5
Table 5.1.8
Dim=1, delta=5:
0 0 1 2 3 4 4 4 4 4 5
Table 5.1.9
Dim=1, delta=5:
0 0 1 2 3 4 4 4 4 5
Table 5.1.10
Dim=1, delta=5:
0 0 1 2 3 4 4 4 5
Table 5.1.11
Dim=1, delta=5:
0 0 1 2 3 4 4 5
Table 5.1.12
Dim=1, delta=5:
0 0 1 2 3 4 5

B.2 GapFunctions with r = 2

delta := 5
dimension := 2

-------------------------------------------------
Total number of 2-dimensional gap functions: 42
-------------------------------------------------
Table 5.2.1
Dim=2, delta=5:
0 1 2 3 4 5
0 1 2 3 4 4
0 1 2 3 3 3
0 1 2 2 2 2
0 1 1 1 1 1
0 0 0 0 0 0
Table 5.2.2
Dim=2, delta=5:
0 1 2 3 4 4 5
0 1 2 3 4 4 4
0 1 2 2 3 3 3
0 0 1 1 2 2 2
Table 5.2.3
Dim=2, delta=5:
0 1 2 3 4 5
0 1 2 3 4 4
0 1 2 2 3 3
0 0 1 1 2 2
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Table 5.2.4
Dim=2, delta=5:
0 1 2 3 4 4 4 5
0 1 2 3 4 4 4 4
0 1 2 3 3 3 3 3
0 0 1 2 2 2 2 2
Table 5.2.5
Dim=2, delta=5:
0 1 2 2 3 3 4 4 5
0 1 2 2 3 3 4 4 4
0 0 1 1 2 2 3 3 3
Table 5.2.6
Dim=2, delta=5:
0 1 2 3 4 4 5
0 1 2 2 3 3 4
0 0 1 1 2 2 3
Table 5.2.7
Dim=2, delta=5:
0 1 2 3 3 4 5
0 1 2 3 3 3 4
0 0 1 2 2 2 3
Table 5.2.8
Dim=2, delta=5:
0 1 2 3 4 4 5
0 1 2 3 3 3 4
0 0 1 2 2 2 3
Table 5.2.9
Dim=2, delta=5:
0 1 2 3 3 4 4 4 5
0 1 2 3 3 4 4 4 4
0 0 1 2 2 3 3 3 3
Table 5.2.10
Dim=2, delta=5:
0 1 2 3 3 4 5
0 1 2 3 3 4 4
0 0 1 2 2 3 3
Table 5.2.11
Dim=2, delta=5:
0 1 2 3 4 5
0 1 2 3 3 4
0 0 1 2 2 3
Table 5.2.12
Dim=2, delta=5:
0 1 2 3 4 4 4 4 5
0 1 2 3 4 4 4 4 4
0 0 1 2 3 3 3 3 3
Table 5.2.13
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Dim=2, delta=5:
0 1 2 3 4 4 4 5
0 1 2 3 4 4 4 4
0 0 1 2 3 3 3 3
Table 5.2.14
Dim=2, delta=5:
0 1 2 3 4 4 5
0 1 2 3 4 4 4
0 0 1 2 3 3 3
Table 5.2.15
Dim=2, delta=5:
0 1 2 3 4 5
0 1 2 3 4 4
0 0 1 2 3 3
Table 5.2.16
Dim=2, delta=5:
0 1 2 2 3 3 4 4 5
0 0 1 1 2 2 3 3 4
Table 5.2.17
Dim=2, delta=5:
0 1 2 3 3 4 4 4 5
0 0 1 2 2 3 3 3 4
Table 5.2.18
Dim=2, delta=5:
0 1 2 3 3 4 5
0 0 1 2 2 3 4
Table 5.2.19
Dim=2, delta=5:
0 1 2 3 4 4 4 4 5
0 0 1 2 3 3 3 3 4
Table 5.2.20
Dim=2, delta=5:
0 1 2 3 4 4 4 5
0 0 1 2 3 3 3 4
Table 5.2.21
Dim=2, delta=5:
0 1 2 3 4 4 5
0 0 1 2 3 3 4
Table 5.2.22
Dim=2, delta=5:
0 1 2 3 4 5
0 0 1 2 3 4
Table 5.2.23
Dim=2, delta=5:
1 2 3 4 5
1 2 3 3 4
1 2 3 3 3
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0 1 2 2 2
0 0 1 1 1
Table 5.2.24
Dim=2, delta=5:
1 2 3 4 4 5
1 2 3 4 4 4
1 2 3 4 4 4
1 2 3 3 3 3
0 1 2 2 2 2
0 0 1 1 1 1
Table 5.2.25
Dim=2, delta=5:
1 2 3 4 5
1 2 3 4 4
1 2 3 3 3
0 1 2 2 2
0 0 1 1 1
Table 5.2.26
Dim=2, delta=5:
1 2 3 3 4 4 5
1 2 3 3 4 4 4
1 2 3 3 4 4 4
0 1 2 2 3 3 3
0 0 1 1 2 2 2
Table 5.2.27
Dim=2, delta=5:
1 2 3 4 5
1 2 3 3 4
1 2 3 3 4
0 1 2 2 3
0 0 1 1 2
Table 5.2.28
Dim=2, delta=5:
1 2 3 3 4 4 5
1 2 3 3 4 4 4
0 1 2 2 3 3 3
0 0 1 1 2 2 2
Table 5.2.29
Dim=2, delta=5:
1 2 3 4 5
1 2 3 3 4
0 1 2 2 3
0 0 1 1 2
Table 5.2.30
Dim=2, delta=5:
1 2 3 4 4 4 5
1 2 3 4 4 4 4
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1 2 3 4 4 4 4
0 1 2 3 3 3 3
0 0 1 2 2 2 2
Table 5.2.31
Dim=2, delta=5:
1 2 3 4 4 5
1 2 3 4 4 4
1 2 3 4 4 4
0 1 2 3 3 3
0 0 1 2 2 2
Table 5.2.32
Dim=2, delta=5:
1 2 3 4 5
1 2 3 4 4
1 2 3 4 4
0 1 2 3 3
0 0 1 2 2
Table 5.2.33
Dim=2, delta=5:
1 2 3 4 4 4 5
1 2 3 4 4 4 4
0 1 2 3 3 3 3
0 0 1 2 2 2 2
Table 5.2.34
Dim=2, delta=5:
1 2 3 4 4 5
1 2 3 4 4 4
0 1 2 3 3 3
0 0 1 2 2 2
Table 5.2.35
Dim=2, delta=5:
1 2 3 4 5
1 2 3 4 4
0 1 2 3 3
0 0 1 2 2
Table 5.2.36
Dim=2, delta=5:
1 2 3 3 4 4 5
0 1 2 2 3 3 4
0 0 1 1 2 2 3
Table 5.2.37
Dim=2, delta=5:
1 2 3 4 4 4 5
0 1 2 3 3 3 4
0 0 1 2 2 2 3
Table 5.2.38
Dim=2, delta=5:
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1 2 3 4 4 5
0 1 2 3 3 4
0 0 1 2 2 3
Table 5.2.39
Dim=2, delta=5:
1 2 3 4 5
0 1 2 3 4
0 0 1 2 3
Table 5.2.40
Dim=2, delta=5:
2 3 4 4 5
1 2 3 3 4
1 2 3 3 4
0 1 2 2 3
0 0 1 1 2
Table 5.2.41
Dim=2, delta=5:
2 3 4 5
1 2 3 4
1 2 3 4
0 1 2 3
0 0 1 2
Table 5.2.42
Dim=2, delta=5:
2 3 4 5
1 2 3 4
0 1 2 3
0 0 1 2

B.3 GapFunctions with r = 3

delta := 5
dimension := 3

-------------------------------------------------
Total number of 3-dimensional gap functions: 42
-------------------------------------------------
Table 5.3.1
Dim=3, delta=5:
Level [0]=
0 1 1 1 1
0 1 1 1 1
0 0 0 0 0
--------------
Level [1]=
1 2 2 2 2
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1 2 2 2 2
0 1 1 1 1
--------------
Level [2]=
1 2 3 3 3
1 2 3 3 3
0 1 2 2 2
--------------
Level [3]=
1 2 3 4 4
1 2 3 4 4
0 1 2 3 3
--------------
Level [4]=
1 2 3 4 5
1 2 3 4 4
0 1 2 3 3
--------------
Table 5.3.2
Dim=3, delta=5:
Level [0]=
0 1 1 1 1
0 0 0 0 0
--------------
Level [1]=
1 2 2 2 2
0 1 1 1 1
--------------
Level [2]=
1 2 3 3 3
0 1 2 2 2
--------------
Level [3]=
1 2 3 4 4
0 1 2 3 3
--------------
Level [4]=
1 2 3 4 5
0 1 2 3 4
--------------
Table 5.3.3
Dim=3, delta=5:
Level [0]=
0 1 2 2
0 1 2 2
0 1 1 1
0 0 0 0
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--------------
Level [1]=
1 2 3 3
1 2 3 3
1 2 2 2
0 1 1 1
--------------
Level [2]=
2 3 4 4
2 3 4 4
1 2 3 3
0 1 2 2
--------------
Level [3]=
2 3 4 5
2 3 4 4
1 2 3 3
0 1 2 2
--------------
Table 5.3.4
Dim=3, delta=5:
Level [0]=
0 1 2 2
0 1 1 1
0 0 0 0
--------------
Level [1]=
1 2 3 3
1 2 2 2
0 1 1 1
--------------
Level [2]=
2 3 4 4
1 2 3 3
0 1 2 2
--------------
Level [3]=
2 3 4 5
1 2 3 4
0 1 2 3
--------------
Table 5.3.5
Dim=3, delta=5:
Level [0]=
1 2 2 2
1 2 2 2
1 2 2 2
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0 1 1 1
0 0 0 0
--------------
Level [1]=
2 3 3 3
2 3 3 3
2 3 3 3
1 2 2 2
0 1 1 1
--------------
Level [2]=
2 3 4 4
2 3 4 4
2 3 4 4
1 2 3 3
0 1 2 2
--------------
Level [3]=
2 3 4 5
2 3 4 4
2 3 4 4
1 2 3 3
0 1 2 2
--------------
Table 5.3.6
Dim=3, delta=5:
Level [0]=
1 2 2 2
1 2 2 2
0 1 1 1
0 0 0 0
--------------
Level [1]=
2 3 3 3
2 3 3 3
1 2 2 2
0 1 1 1
--------------
Level [2]=
2 3 4 4
2 3 4 4
1 2 3 3
0 1 2 2
--------------
Level [3]=
2 3 4 5
2 3 4 4
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1 2 3 3
0 1 2 2
--------------
Table 5.3.7
Dim=3, delta=5:
Level [0]=
1 2 2 2
0 1 1 1
0 0 0 0
--------------
Level [1]=
2 3 3 3
1 2 2 2
0 1 1 1
--------------
Level [2]=
2 3 4 4
1 2 3 3
0 1 2 2
--------------
Level [3]=
2 3 4 5
1 2 3 4
0 1 2 3
--------------
Table 5.3.8
Dim=3, delta=5:
Level [0]=
1 2 3 3
1 2 3 3
1 2 3 3
1 2 2 2
0 1 1 1
0 0 0 0
--------------
Level [1]=
2 3 4 4
2 3 4 4
2 3 4 4
2 3 3 3
1 2 2 2
0 1 1 1
--------------
Level [2]=
2 3 4 5
2 3 4 4
2 3 4 4
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2 3 3 3
1 2 2 2
0 1 1 1
--------------
Table 5.3.9
Dim=3, delta=5:
Level [0]=
1 2 3 4
1 2 3 3
1 2 3 3
1 2 2 2
0 1 1 1
0 0 0 0
--------------
Level [1]=
2 3 4 5
2 3 4 4
2 3 4 4
2 3 3 3
1 2 2 2
0 1 1 1
--------------
Table 5.3.10
Dim=3, delta=5:
Level [0]=
1 2 3
1 2 2
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 4
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
2 3 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.11
Dim=3, delta=5:
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Level [0]=
1 2 3
1 2 2
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 4
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
2 3 4
2 3 4
1 2 3
0 1 2
--------------
Table 5.3.12
Dim=3, delta=5:
Level [0]=
1 2 3
1 2 3
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 4
2 3 4
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
2 3 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.13
Dim=3, delta=5:
Level [0]=
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1 2 3
1 2 3
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 4
2 3 4
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.14
Dim=3, delta=5:
Level [0]=
1 2 3
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 4
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
2 3 4
1 2 3
0 1 2
--------------
Table 5.3.15
Dim=3, delta=5:
Level [0]=
2 3 3
2 3 3
2 3 3
1 2 2
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1 2 2
0 1 1
0 0 0
--------------
Level [1]=
3 4 4
3 4 4
3 4 4
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
3 4 4
3 4 4
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.16
Dim=3, delta=5:
Level [0]=
2 3 3
1 2 2
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
3 4 4
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
2 3 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.17
Dim=3, delta=5:
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Level [0]=
2 3 3
1 2 2
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
3 4 4
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
2 3 4
2 3 4
1 2 3
0 1 2
--------------
Table 5.3.18
Dim=3, delta=5:
Level [0]=
2 3 4
2 3 3
2 3 3
1 2 2
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
3 4 5
3 4 4
3 4 4
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.19
Dim=3, delta=5:
Level [0]=
2 3 4
1 2 3
1 2 2
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0 1 1
0 0 0
--------------
Level [1]=
3 4 5
2 3 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.20
Dim=3, delta=5:
Level [0]=
2 3 3
2 3 3
2 3 3
2 3 3
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
3 4 4
3 4 4
3 4 4
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
3 4 4
3 4 4
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.21
Dim=3, delta=5:
Level [0]=
2 3 3
2 3 3
2 3 3
1 2 2
0 1 1
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0 0 0
--------------
Level [1]=
3 4 4
3 4 4
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
3 4 4
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.22
Dim=3, delta=5:
Level [0]=
2 3 3
2 3 3
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
3 4 4
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.23
Dim=3, delta=5:
Level [0]=
2 3 3
1 2 2
0 1 1

92



0 0 0
--------------
Level [1]=
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 5
2 3 4
1 2 3
0 1 2
--------------
Table 5.3.24
Dim=3, delta=5:
Level [0]=
2 3 4
2 3 3
2 3 3
2 3 3
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
3 4 5
3 4 4
3 4 4
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.25
Dim=3, delta=5:
Level [0]=
2 3 4
2 3 3
2 3 3
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
3 4 5
3 4 4
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3 4 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.26
Dim=3, delta=5:
Level [0]=
2 3 4
2 3 3
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
3 4 5
3 4 4
2 3 3
1 2 2
0 1 1
--------------
Table 5.3.27
Dim=3, delta=5:
Level [0]=
1 2 2
1 2 2
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 3
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 4
3 4 4
3 4 4
2 3 3
1 2 2
--------------
Level [3]=
3 4 4
3 4 4
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3 4 4
2 3 3
1 2 2
--------------
Level [4]=
3 4 5
3 4 4
3 4 4
2 3 3
1 2 2
--------------
Table 5.3.28
Dim=3, delta=5:
Level [0]=
1 2 2
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 4
3 4 4
2 3 3
1 2 2
--------------
Level [3]=
3 4 4
3 4 4
2 3 3
1 2 2
--------------
Level [4]=
3 4 5
3 4 4
2 3 3
1 2 2
--------------
Table 5.3.29
Dim=3, delta=5:
Level [0]=
1 2 2
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1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 3
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 4
3 4 4
2 3 3
1 2 2
--------------
Level [3]=
3 4 5
3 4 4
2 3 3
1 2 2
--------------
Table 5.3.30
Dim=3, delta=5:
Level [0]=
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 4
2 3 3
1 2 2
--------------
Level [3]=
3 4 4
2 3 3
1 2 2
--------------
Level [4]=
3 4 5
2 3 4
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1 2 3
--------------
Table 5.3.31
Dim=3, delta=5:
Level [0]=
1 2 2
0 1 1
0 0 0
--------------
Level [1]=
2 3 3
1 2 2
0 1 1
--------------
Level [2]=
3 4 4
2 3 3
1 2 2
--------------
Level [3]=
3 4 5
2 3 4
1 2 3
--------------
Table 5.3.32
Dim=3, delta=5:
Level [0]=
3 4
2 3
2 3
1 2
1 2
0 1
0 0
--------------
Level [1]=
4 5
3 4
3 4
2 3
2 3
1 2
0 1
--------------
Table 5.3.33
Dim=3, delta=5:
Level [0]=
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3 4
2 3
2 3
2 3
1 2
0 1
0 0
--------------
Level [1]=
4 5
3 4
3 4
3 4
2 3
1 2
0 1
--------------
Table 5.3.34
Dim=3, delta=5:
Level [0]=
3 4
2 3
2 3
1 2
0 1
0 0
--------------
Level [1]=
4 5
3 4
3 4
2 3
1 2
0 1
--------------
Table 5.3.35
Dim=3, delta=5:
Level [0]=
3 4
2 3
1 2
0 1
0 0
--------------
Level [1]=
4 5
3 4
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2 3
1 2
0 1
--------------
Table 5.3.36
Dim=3, delta=5:
Level [0]=
1 2
1 2
1 2
0 1
0 0
--------------
Level [1]=
2 3
2 3
2 3
1 2
0 1
--------------
Level [2]=
3 4
3 4
3 4
2 3
1 2
--------------
Level [3]=
3 4
3 4
3 4
2 3
1 2
--------------
Level [4]=
4 5
3 4
3 4
2 3
1 2
--------------
Table 5.3.37
Dim=3, delta=5:
Level [0]=
1 2
1 2
0 1
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0 0
--------------
Level [1]=
2 3
2 3
1 2
0 1
--------------
Level [2]=
3 4
3 4
2 3
1 2
--------------
Level [3]=
3 4
3 4
2 3
1 2
--------------
Level [4]=
4 5
3 4
2 3
1 2
--------------
Table 5.3.38
Dim=3, delta=5:
Level [0]=
1 2
1 2
0 1
0 0
--------------
Level [1]=
2 3
2 3
1 2
0 1
--------------
Level [2]=
3 4
3 4
2 3
1 2
--------------
Level [3]=
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4 5
3 4
2 3
1 2
--------------
Table 5.3.39
Dim=3, delta=5:
Level [0]=
2 3
1 2
1 2
0 1
0 0
--------------
Level [1]=
3 4
2 3
2 3
1 2
0 1
--------------
Level [2]=
4 5
3 4
3 4
2 3
1 2
--------------
Table 5.3.40
Dim=3, delta=5:
Level [0]=
2 3
1 2
0 1
0 0
--------------
Level [1]=
3 4
2 3
1 2
0 1
--------------
Level [2]=
4 5
3 4
2 3
1 2
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--------------
Table 5.3.41
Dim=3, delta=5:
Level [0]=
0 1 2 3 3
0 1 2 2 2
0 0 1 1 1
--------------
Level [1]=
1 2 3 4 4
1 2 3 3 3
0 1 2 2 2
--------------
Level [2]=
2 3 4 4 5
1 2 3 3 4
0 1 2 2 3
--------------
Table 5.3.42
Dim=3, delta=5:
Level [0]=
1 2 3
0 1 2
0 0 1
--------------
Level [1]=
2 3 4
1 2 3
0 1 2
--------------
Level [2]=
3 4 5
2 3 4
1 2 3

B.4 GapFunctions with r = 4

delta := 5
dimension := 4

-------------------------------------------------
Total number of 4-dimensional gap functions: 17
-------------------------------------------------
Table 5.4.1
Dim=4, delta=5:
Level [0, 0]=
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0 1 1 1
0 1 1 1
0 0 0 0
--------------
Level [1, 0]=
1 2 2 2
1 2 2 2
0 1 1 1
--------------
Level [2, 0]=
1 2 2 2
1 2 2 2
0 1 1 1
--------------
Level [0, 1]=
1 2 2 2
1 2 2 2
0 1 1 1
--------------
Level [1, 1]=
2 3 3 3
2 3 3 3
1 2 2 2
--------------
Level [2, 1]=
2 3 3 3
2 3 3 3
1 2 2 2
--------------
Level [0, 2]=
1 2 3 3
1 2 3 3
0 1 2 2
--------------
Level [1, 2]=
2 3 4 4
2 3 4 4
1 2 3 3
--------------
Level [2, 2]=
2 3 4 4
2 3 4 4
1 2 3 3
--------------
Level [0, 3]=
1 2 3 3
1 2 3 3
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0 1 2 2
--------------
Level [1, 3]=
2 3 4 4
2 3 4 4
1 2 3 3
--------------
Level [2, 3]=
2 3 4 5
2 3 4 4
1 2 3 3
--------------
Table 5.4.2
Dim=4, delta=5:
Level [0, 0]=
0 1 1 1
0 0 0 0
--------------
Level [1, 0]=
1 2 2 2
0 1 1 1
--------------
Level [2, 0]=
1 2 2 2
0 1 1 1
--------------
Level [0, 1]=
1 2 2 2
0 1 1 1
--------------
Level [1, 1]=
2 3 3 3
1 2 2 2
--------------
Level [2, 1]=
2 3 3 3
1 2 2 2
--------------
Level [0, 2]=
1 2 3 3
0 1 2 2
--------------
Level [1, 2]=
2 3 4 4
1 2 3 3
--------------
Level [2, 2]=

104



2 3 4 4
1 2 3 3
--------------
Level [0, 3]=
1 2 3 3
0 1 2 2
--------------
Level [1, 3]=
2 3 4 4
1 2 3 3
--------------
Level [2, 3]=
2 3 4 5
1 2 3 4
--------------
Table 5.4.3
Dim=4, delta=5:
Level [0, 0]=
0 1 1 1
0 0 0 0
--------------
Level [1, 0]=
1 2 2 2
0 1 1 1
--------------
Level [0, 1]=
1 2 2 2
0 1 1 1
--------------
Level [1, 1]=
2 3 3 3
1 2 2 2
--------------
Level [0, 2]=
1 2 3 3
0 1 2 2
--------------
Level [1, 2]=
2 3 4 4
1 2 3 3
--------------
Level [0, 3]=
1 2 3 4
0 1 2 3
--------------
Level [1, 3]=
2 3 4 5
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1 2 3 4
--------------
Table 5.4.4
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
1 2 2
0 1 1
--------------
Level [2, 0]=
1 2 3
1 2 2
0 1 1
--------------
Level [0, 1]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 1]=
2 3 4
2 3 3
1 2 2
--------------
Level [0, 2]=
1 2 3
1 2 2
0 1 1
--------------
Level [1, 2]=
2 3 4
2 3 3
1 2 2
--------------
Level [2, 2]=
3 4 5
2 3 4
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1 2 3
--------------
Table 5.4.5
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
1 2 2
0 1 1
--------------
Level [2, 0]=
1 2 3
1 2 2
0 1 1
--------------
Level [0, 1]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 1]=
2 3 4
2 3 3
1 2 2
--------------
Level [0, 2]=
1 2 3
1 2 3
0 1 2
--------------
Level [1, 2]=
2 3 4
2 3 4
1 2 3
--------------
Level [2, 2]=
3 4 5
2 3 4
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1 2 3
--------------
Table 5.4.6
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
1 2 2
0 1 1
--------------
Level [2, 0]=
2 3 3
2 3 3
1 2 2
--------------
Level [3, 0]=
2 3 3
2 3 3
1 2 2
--------------
Level [4, 0]=
2 3 3
2 3 3
1 2 2
--------------
Level [0, 1]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 1]=
3 4 4
3 4 4
2 3 3
--------------
Level [3, 1]=
3 4 4
3 4 4
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2 3 3
--------------
Level [4, 1]=
3 4 4
3 4 4
2 3 3
--------------
Level [0, 2]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 2]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 2]=
3 4 4
3 4 4
2 3 3
--------------
Level [3, 2]=
3 4 4
3 4 4
2 3 3
--------------
Level [4, 2]=
3 4 5
3 4 4
2 3 3
--------------
Table 5.4.7
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
1 2 2
0 1 1
--------------
Level [2, 0]=
2 3 3
2 3 3
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1 2 2
--------------
Level [3, 0]=
2 3 3
2 3 3
1 2 2
--------------
Level [0, 1]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 1]=
3 4 4
3 4 4
2 3 3
--------------
Level [3, 1]=
3 4 4
3 4 4
2 3 3
--------------
Level [0, 2]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 2]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 2]=
3 4 4
3 4 4
2 3 3
--------------
Level [3, 2]=
3 4 5
3 4 4
2 3 3
--------------
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Table 5.4.8
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
0 1 1
--------------
Level [2, 0]=
2 3 3
1 2 2
--------------
Level [3, 0]=
2 3 3
1 2 2
--------------
Level [4, 0]=
2 3 3
1 2 2
--------------
Level [0, 1]=
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
1 2 2
--------------
Level [2, 1]=
3 4 4
2 3 3
--------------
Level [3, 1]=
3 4 4
2 3 3
--------------
Level [4, 1]=
3 4 4
2 3 3
--------------
Level [0, 2]=
1 2 2
0 1 1
--------------
Level [1, 2]=
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2 3 3
1 2 2
--------------
Level [2, 2]=
3 4 4
2 3 3
--------------
Level [3, 2]=
3 4 4
2 3 3
--------------
Level [4, 2]=
3 4 5
2 3 4
--------------
Table 5.4.9
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
0 1 1
--------------
Level [2, 0]=
2 3 3
1 2 2
--------------
Level [3, 0]=
2 3 3
1 2 2
--------------
Level [0, 1]=
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
1 2 2
--------------
Level [2, 1]=
3 4 4
2 3 3
--------------
Level [3, 1]=
3 4 4
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2 3 3
--------------
Level [0, 2]=
1 2 2
0 1 1
--------------
Level [1, 2]=
2 3 3
1 2 2
--------------
Level [2, 2]=
3 4 4
2 3 3
--------------
Level [3, 2]=
3 4 5
2 3 4
--------------
Table 5.4.10
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
1 2 2
0 1 1
--------------
Level [2, 0]=
2 3 3
2 3 3
1 2 2
--------------
Level [0, 1]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 1]=
3 4 4
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3 4 4
2 3 3
--------------
Level [0, 2]=
1 2 3
1 2 2
0 1 1
--------------
Level [1, 2]=
2 3 4
2 3 3
1 2 2
--------------
Level [2, 2]=
3 4 5
3 4 4
2 3 3
--------------
Table 5.4.11
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
0 1 1
--------------
Level [2, 0]=
2 3 3
1 2 2
--------------
Level [0, 1]=
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
1 2 2
--------------
Level [2, 1]=
3 4 4
2 3 3
--------------
Level [0, 2]=
1 2 3
0 1 2
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--------------
Level [1, 2]=
2 3 4
1 2 3
--------------
Level [2, 2]=
3 4 5
2 3 4
--------------
Table 5.4.12
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
0 1 1
--------------
Level [2, 0]=
2 3 3
1 2 2
--------------
Level [3, 0]=
2 3 3
1 2 2
--------------
Level [4, 0]=
2 3 4
1 2 3
--------------
Level [0, 1]=
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
1 2 2
--------------
Level [2, 1]=
3 4 4
2 3 3
--------------
Level [3, 1]=
3 4 4
2 3 3
--------------
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Level [4, 1]=
3 4 5
2 3 4
--------------
Table 5.4.13
Dim=4, delta=5:
Level [0, 0]=
0 1 1
0 0 0
--------------
Level [1, 0]=
1 2 2
0 1 1
--------------
Level [2, 0]=
2 3 3
1 2 2
--------------
Level [3, 0]=
2 3 4
1 2 3
--------------
Level [0, 1]=
1 2 2
0 1 1
--------------
Level [1, 1]=
2 3 3
1 2 2
--------------
Level [2, 1]=
3 4 4
2 3 3
--------------
Level [3, 1]=
3 4 5
2 3 4
--------------
Table 5.4.14
Dim=4, delta=5:
Level [0, 0]=
0 1
0 1
0 0
--------------
Level [1, 0]=
1 2
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1 2
0 1
--------------
Level [2, 0]=
2 3
1 2
0 1
--------------
Level [0, 1]=
1 2
1 2
0 1
--------------
Level [1, 1]=
2 3
2 3
1 2
--------------
Level [2, 1]=
3 4
2 3
1 2
--------------
Level [0, 2]=
2 3
1 2
0 1
--------------
Level [1, 2]=
3 4
2 3
1 2
--------------
Level [2, 2]=
4 5
3 4
2 3
--------------
Table 5.4.15
Dim=4, delta=5:
Level [0, 0]=
0 1
0 0
--------------
Level [1, 0]=
1 2
0 1
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--------------
Level [2, 0]=
2 3
1 2
--------------
Level [3, 0]=
2 3
1 2
--------------
Level [4, 0]=
3 4
2 3
--------------
Level [0, 1]=
1 2
0 1
--------------
Level [1, 1]=
2 3
1 2
--------------
Level [2, 1]=
3 4
2 3
--------------
Level [3, 1]=
3 4
2 3
--------------
Level [4, 1]=
4 5
3 4
--------------
Table 5.4.16
Dim=4, delta=5:
Level [0, 0]=
0 1
0 0
--------------
Level [1, 0]=
1 2
0 1
--------------
Level [2, 0]=
2 3
1 2
--------------
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Level [3, 0]=
3 4
2 3
--------------
Level [0, 1]=
1 2
0 1
--------------
Level [1, 1]=
2 3
1 2
--------------
Level [2, 1]=
3 4
2 3
--------------
Level [3, 1]=
4 5
3 4
--------------
Table 5.4.17
Dim=4, delta=5:
Level [0, 0]=
0 1
0 0
--------------
Level [1, 0]=
1 2
0 1
--------------
Level [2, 0]=
2 3
1 2
--------------
Level [0, 1]=
1 2
0 1
--------------
Level [1, 1]=
2 3
1 2
--------------
Level [2, 1]=
3 4
2 3
--------------
Level [0, 2]=

119



2 3
1 2
--------------
Level [1, 2]=
3 4
2 3
--------------
Level [2, 2]=
4 5
3 4

B.5 GapFunctions with r = 5

delta := 5
dimension := 5

-------------------------------------------------
Total number of 5-dimensional gap functions: 5
-------------------------------------------------
Table 5.5.1
Dim=5, delta=5:
Level [0, 0, 0]=
0 1 1
0 1 1
0 0 0
--------------
Level [1, 0, 0]=
1 2 2
1 2 2
0 1 1
--------------
Level [2, 0, 0]=
1 2 2
1 2 2
0 1 1
--------------
Level [0, 1, 0]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 1, 0]=
2 3 3
2 3 3
1 2 2
--------------
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Level [2, 1, 0]=
2 3 3
2 3 3
1 2 2
--------------
Level [0, 2, 0]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 2, 0]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 2, 0]=
2 3 3
2 3 3
1 2 2
--------------
Level [0, 0, 1]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 0, 1]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 0, 1]=
2 3 3
2 3 3
1 2 2
--------------
Level [0, 1, 1]=
2 3 3
2 3 3
1 2 2
--------------
Level [1, 1, 1]=
3 4 4
3 4 4
2 3 3
--------------
Level [2, 1, 1]=
3 4 4
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3 4 4
2 3 3
--------------
Level [0, 2, 1]=
2 3 3
2 3 3
1 2 2
--------------
Level [1, 2, 1]=
3 4 4
3 4 4
2 3 3
--------------
Level [2, 2, 1]=
3 4 4
3 4 4
2 3 3
--------------
Level [0, 0, 2]=
1 2 2
1 2 2
0 1 1
--------------
Level [1, 0, 2]=
2 3 3
2 3 3
1 2 2
--------------
Level [2, 0, 2]=
2 3 3
2 3 3
1 2 2
--------------
Level [0, 1, 2]=
2 3 3
2 3 3
1 2 2
--------------
Level [1, 1, 2]=
3 4 4
3 4 4
2 3 3
--------------
Level [2, 1, 2]=
3 4 4
3 4 4
2 3 3
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--------------
Level [0, 2, 2]=
2 3 3
2 3 3
1 2 2
--------------
Level [1, 2, 2]=
3 4 4
3 4 4
2 3 3
--------------
Level [2, 2, 2]=
3 4 5
3 4 4
2 3 3
--------------
Table 5.5.2
Dim=5, delta=5:
Level [0, 0, 0]=
0 1 1
0 0 0
--------------
Level [1, 0, 0]=
1 2 2
0 1 1
--------------
Level [2, 0, 0]=
1 2 2
0 1 1
--------------
Level [0, 1, 0]=
1 2 2
0 1 1
--------------
Level [1, 1, 0]=
2 3 3
1 2 2
--------------
Level [2, 1, 0]=
2 3 3
1 2 2
--------------
Level [0, 2, 0]=
1 2 2
0 1 1
--------------
Level [1, 2, 0]=
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2 3 3
1 2 2
--------------
Level [2, 2, 0]=
2 3 3
1 2 2
--------------
Level [0, 0, 1]=
1 2 2
0 1 1
--------------
Level [1, 0, 1]=
2 3 3
1 2 2
--------------
Level [2, 0, 1]=
2 3 3
1 2 2
--------------
Level [0, 1, 1]=
2 3 3
1 2 2
--------------
Level [1, 1, 1]=
3 4 4
2 3 3
--------------
Level [2, 1, 1]=
3 4 4
2 3 3
--------------
Level [0, 2, 1]=
2 3 3
1 2 2
--------------
Level [1, 2, 1]=
3 4 4
2 3 3
--------------
Level [2, 2, 1]=
3 4 4
2 3 3
--------------
Level [0, 0, 2]=
1 2 2
0 1 1
--------------
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Level [1, 0, 2]=
2 3 3
1 2 2
--------------
Level [2, 0, 2]=
2 3 3
1 2 2
--------------
Level [0, 1, 2]=
2 3 3
1 2 2
--------------
Level [1, 1, 2]=
3 4 4
2 3 3
--------------
Level [2, 1, 2]=
3 4 4
2 3 3
--------------
Level [0, 2, 2]=
2 3 3
1 2 2
--------------
Level [1, 2, 2]=
3 4 4
2 3 3
--------------
Level [2, 2, 2]=
3 4 5
2 3 4
--------------
Table 5.5.3
Dim=5, delta=5:
Level [0, 0, 0]=
0 1 1
0 0 0
--------------
Level [1, 0, 0]=
1 2 2
0 1 1
--------------
Level [0, 1, 0]=
1 2 2
0 1 1
--------------
Level [1, 1, 0]=
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2 3 3
1 2 2
--------------
Level [0, 2, 0]=
1 2 2
0 1 1
--------------
Level [1, 2, 0]=
2 3 3
1 2 2
--------------
Level [0, 0, 1]=
1 2 2
0 1 1
--------------
Level [1, 0, 1]=
2 3 3
1 2 2
--------------
Level [0, 1, 1]=
2 3 3
1 2 2
--------------
Level [1, 1, 1]=
3 4 4
2 3 3
--------------
Level [0, 2, 1]=
2 3 3
1 2 2
--------------
Level [1, 2, 1]=
3 4 4
2 3 3
--------------
Level [0, 0, 2]=
1 2 2
0 1 1
--------------
Level [1, 0, 2]=
2 3 3
1 2 2
--------------
Level [0, 1, 2]=
2 3 3
1 2 2
--------------
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Level [1, 1, 2]=
3 4 4
2 3 3
--------------
Level [0, 2, 2]=
2 3 4
1 2 3
--------------
Level [1, 2, 2]=
3 4 5
2 3 4
--------------
Table 5.5.4
Dim=5, delta=5:
Level [0, 0, 0]=
0 1 1
0 0 0
--------------
Level [1, 0, 0]=
1 2 2
0 1 1
--------------
Level [0, 1, 0]=
1 2 2
0 1 1
--------------
Level [1, 1, 0]=
2 3 3
1 2 2
--------------
Level [0, 0, 1]=
1 2 2
0 1 1
--------------
Level [1, 0, 1]=
2 3 3
1 2 2
--------------
Level [0, 1, 1]=
2 3 3
1 2 2
--------------
Level [1, 1, 1]=
3 4 4
2 3 3
--------------
Level [0, 0, 2]=
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1 2 3
0 1 2
--------------
Level [1, 0, 2]=
2 3 4
1 2 3
--------------
Level [0, 1, 2]=
2 3 4
1 2 3
--------------
Level [1, 1, 2]=
3 4 5
2 3 4
--------------
Table 5.5.5
Dim=5, delta=5:
Level [0, 0, 0]=
0 1
0 0
--------------
Level [1, 0, 0]=
1 2
0 1
--------------
Level [0, 1, 0]=
1 2
0 1
--------------
Level [1, 1, 0]=
2 3
1 2
--------------
Level [0, 2, 0]=
2 3
1 2
--------------
Level [1, 2, 0]=
3 4
2 3
--------------
Level [0, 0, 1]=
1 2
0 1
--------------
Level [1, 0, 1]=
2 3
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1 2
--------------
Level [0, 1, 1]=
2 3
1 2
--------------
Level [1, 1, 1]=
3 4
2 3
--------------
Level [0, 2, 1]=
3 4
2 3
--------------
Level [1, 2, 1]=
4 5
3 4

B.6 GapFunctions with r = 6

delta := 5
dimension := 6

-------------------------------------------------
Total number of 6-dimensional gap functions: 1
-------------------------------------------------
Table 5.6.1
Dim=6, delta=5:
Level [0, 0, 0, 0]=
0 1
0 0
--------------
Level [1, 0, 0, 0]=
1 2
0 1
--------------
Level [0, 1, 0, 0]=
1 2
0 1
--------------
Level [1, 1, 0, 0]=
2 3
1 2
--------------
Level [0, 0, 1, 0]=
1 2
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0 1
--------------
Level [1, 0, 1, 0]=
2 3
1 2
--------------
Level [0, 1, 1, 0]=
2 3
1 2
--------------
Level [1, 1, 1, 0]=
3 4
2 3
--------------
Level [0, 0, 0, 1]=
1 2
0 1
--------------
Level [1, 0, 0, 1]=
2 3
1 2
--------------
Level [0, 1, 0, 1]=
2 3
1 2
--------------
Level [1, 1, 0, 1]=
3 4
2 3
--------------
Level [0, 0, 1, 1]=
2 3
1 2
--------------
Level [1, 0, 1, 1]=
3 4
2 3
--------------
Level [0, 1, 1, 1]=
3 4
2 3
--------------
Level [1, 1, 1, 1]=
4 5
3 4
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