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Abstract 

The ability to respond quickly to a perturbation is essential to the survival of an animal. As 

animal size increases, several features that influence response time also change—larger 

animals suffer from longer sensorimotor delays, proportionally weaker muscles, and 

heavier body segments. Larger animals also have more time available to react due to longer 

characteristic movement times. I studied how these features affect neural control of the 

fastest perturbation responses, and I used simple neuromechanical models to estimate how 

response time changes with animal size. In chapters 2 and 3, I quantified the scaling of 

inertial delays—the time required to physically reposition body segments and regain 

stability after a perturbation. In chapters 4 and 5, I quantified the scaling of the fastest 

response times to a perturbation under two control configurations—feedforward vs. 

feedback control. I tested whether they are affected more by the force generation capacity 

of muscles or by sensorimotor delays. I developed two tasks representing common 

perturbation response scenarios in animal locomotion: a distributed mass pendulum 

approximating swing limb repositioning (swing task), and an inverted pendulum 

approximating whole body posture recovery (posture task). I parameterized the anatomical, 

muscular, and inertial properties of these models using literature scaling relationships. I 

found that inertial delays depended both on movement task and movement size. Inertial 

delays got longer with larger movements, and scaled faster in the posture task than the 

swing task. As movement size increased, inertial delays exceeded sensorimotor delays, and 

this occurred for smaller movements in larger animals. Across animal size and task, force 

capacity of muscles limited feedforward control response times, while sensorimotor delays 

limited feedback control response times and forced the use of lower controller gains to 

prevent instability. Feedback control response times also exceeded available movement 

times in animals of all sizes, while feedforward control did so only for the largest animals. 

Feedback control was about four times slower than feedforward control in the smallest 

animals, but only around two times slower in the largest animals. Thus, both small and 

large animals are more likely to use feedforward control to react quickly against 

perturbations.  

Keywords: Biomechanics, scaling, response time, perturbation, control theory, time delays 
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Chapter 1. Introduction 

Animals come in a wide range of sizes and locomote in many different ways, and 

we can take advantage of this diversity to gain a deeper understanding of the neural control 

of locomotion. Terrestrial mammals range in size from the two gram Etruscan pygmy 

shrew to the twelve ton African bush elephant (Jürgens, 2002; Larramendi, 2015). Yet they 

share the same materials and structure in the design of their neuro-musculoskeletal system. 

For example, all mammals have skeletal systems composed of calcium phosphates and can 

tolerate limited stresses (bending stress limits ~200 Mpa (Norberg and Aldrin, 2010)), 

similarly organized nervous systems with limited signal conduction velocities (nerve 

conduction velocities ~60 m/s (More, 2013)), and similar muscle architecture with limited 

force production capacity (maximum isometric stress ~20 N/cm2 (Medler, 2002)). Studying 

how animals of different sizes are able to locomote effectively, and the challenges that they 

face due to physiological limitations, can give us insights that we would miss if we studied 

only one species. The findings would have several applications—it could help us better 

understand motor control in humans and help us develop better therapeutic interventions, 

help us develop better robots and exoskeletons, and further our understanding of animal 

biology and evolution.  

We can probe how the neural control of locomotion works in animals by 

quantifying its performance limits. For example, we could quantify how fast animals could 

run, how heavy a weight they could lift, or how far they could jump. Here, I chose to 

quantify the fastest response times to a perturbation in animals. To respond as quickly as 

possible to a perturbation, all the relevant components of an animal’s neuro-

musculoskeletal system would have to perform at their limits. It would have to sense the 

perturbation quickly and accurately, transmit the signals and compute the correct responses 

as fast as possible, and then activate its muscles to produce the strongest forces that can 

reposition the body while maintaining posture and balance. Thus, I can study how 

physiological limits of the neuro-musculoskeletal system affect neural control. Measuring 

perturbation response times in-vivo in different sized animals in a standardized and 

comparable manner would be difficult, and would face ethical issues, as failure to respond 
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effectively can result in falls and injury. Therefore, I use computational modeling, where I 

can individually vary the features of the neuro-musculoskeletal system that contribute to 

the perturbation response, and study its effect on response time. Computational modeling 

also allows me to integrate information from disparate fields in the literature, and study 

combinations of parameters that don’t exist in nature.  

In this thesis, I use simple neuromechanical computational models to study how the 

fastest perturbation responses scale with animal size, and how physiological limitations 

affect response time. This thesis combines techniques and knowledge from several research 

areas—such as scaling, biomechanics, control systems and neuroscience. In the coming 

sections of this introduction, I provide a brief background on concepts from these research 

areas that occur repeatedly in my own research. I review scaling theory (1.1), engineering 

control systems theory (1.2), the neural control of locomotion (1.3), and the components 

of response time (1.4). Finally, I describe the aims and approaches used in this thesis (1.5). 

1.1. Scaling approach 

Scaling is the study of how a change in size of a system affects its features and 

behavior. It was originally used in engineering applications, such as the design of buildings, 

bridges and ships. For example, engineers use the scaling approach to understand how the 

forces and stresses experienced by a bridge will change depending on its size, and select 

the appropriate architecture and construction materials. Engineers also produce scaled 

down replicas of large machines such as ships or airplanes and conduct tests on them to 

predict how the full scale model will perform in the real world (McMahon and Bonner, 

1983). In the scaling approach, we first develop a theoretical model of the system that can 

be scaled to any size. We then use it to make predictions about how the features of the 

system will change based on fundamental design rules. We can then compare these 

predictions against actual measurements to understand the system better. As terrestrial 

mammals span eight orders of magnitude in body mass, we can apply the scaling approach 

to understand their biology too.  
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Size is an important factor in determining the characteristics of an animal. Due to 

the rules of physics, size forces conditions on the morphology and behavior of an animal. 

Bonner described five rules about how size affects biology (Bonner, 2011): 

1. Strength and force varies with size (Strength ∝ 𝑀𝑀2/3), 

2. Surfaces that permit diffusion of oxygen, food and heat vary with size (Surfaces ∝

𝑀𝑀2/3), 

3. Division of labor and complexity of organism changes with size, 

4. The rate of various living processes varies with size: metabolism, generation time, 

longevity, speed of locomotion,  

5. The abundance of species in nature varies with size,  

where 𝑀𝑀 is the body mass of the animal.  

We know of several differences between small and large animals in their 

movements—for example, small animals are non-cursorial while large animals are 

cursorial, small animals have a crouch posture while larger animals are columnar, small 

animals have overdamped limbs and joints while large animals have underdamped limbs. 

The neural control of locomotion thus must also change with animal size. By probing how 

neural control is different, we can gain insights into the nervous system which might not 

be evident if we look only at one animal species. 

Dimensional analysis is a related technique that is helpful in the analysis of systems 

that scale with size. By dimensional analysis, we can determine the constitution of the 

parameters and variables in a system in terms of the fundamental quantities of Newtonian 

mechanics (mass, length and time). We can then non-dimensionalize the equations that 

represent the theoretical model used in the scaling approach. This has several advantages. 

The parameters and variables in the non-dimensional form of the equation do not have 

measured units, simplifying the equation and preventing unit conversion errors. Non-

dimensionalization can reveal intrinsic parameters that provide better insights into the 
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behavior of the system. Finally, we can obtain a general set of results for the non-

dimensionalized system, and can redimensionalize the results to describe the behavior of 

systems with any set of parameters.  

1.1.1. Power laws 

 
Fig 1.1 Power law fits and its log transform. 
On the left is a plot of the forelimb length of 44 species of terrestrial mammals against their mass from 
Kilbourne and Hoffman (Kilbourne and Hoffman, 2013). On the right is a log-log transform of the same plot. 
The black line represents a linear fit to the data. The log transform of the power law makes the data more 
evenly spread out, and easier to visualize and understand.  

Physiological and morphological features that are influenced by animal size can 

often be expressed as a power law known as the allometric equation, expressed in the form:  

𝑌𝑌 = 𝑎𝑎𝑀𝑀𝑏𝑏 1.1 

𝐿𝐿𝐿𝐿𝐿𝐿(𝑌𝑌) = 𝐿𝐿𝐿𝐿𝐿𝐿(𝑎𝑎) + 𝑏𝑏 𝐿𝐿𝐿𝐿𝐿𝐿(𝑀𝑀) 1.2 

where 𝑌𝑌 is the feature being quantified, 𝑎𝑎 and 𝑏𝑏 are constants of the allometric equation, 

and 𝑀𝑀 is the body mass of the animal. The allometric equation (Eqn 1.1) is exponential in 

shape while its log transformed equation (Eqn 1.2) is linear (Fig 1.1). In practice, we collect 

the values of the mass and feature 𝑌𝑌 of many different animals. We then log transform the 

data and plot the values of the feature against mass, and perform a linear fit to extract the 

values of 𝑎𝑎 and 𝑏𝑏. 𝑏𝑏 is the slope of the linear fit and describes how the feature of interest 

changes with size (Alexander, 2003). 𝐿𝐿𝐿𝐿𝐿𝐿(𝑎𝑎) is the intercept of the linear fit. 𝑎𝑎 is the 
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coefficient or the value of the feature 𝑌𝑌 for a 1 kg animal, if the mass units were in 

kilograms. We can compare the exponent obtained from the allometric equation to 

predictions from design principles such as geometric similarity, dynamic similarity, elastic 

similarity and stress similarity. 

Note that the power law fit greatly simplifies our description of the feature, and we 

lose the complexity and great variation seen from species to species. Therefore, we may 

not use these scaling laws to accurately predict a feature in any individual species. For 

example, a hippo and giraffe may both measure 1000 kg but have vastly different 

anatomies. By removing the complexity and detail, and reducing the description of the 

feature to a power law, we might gain insight into underlying mechanisms that are based 

on fundamental physical principles. 

1.1.2. Geometric similarity  

Two objects are said to be geometrically similar if they have exactly the same 

shape, but are of different sizes. When two objects conform to this principle of geometric 

similarity, the ratio of the linear dimension of the first object to the corresponding linear 

dimensions of the second object will remain constant. Furthermore, the surface area of an 

object would be proportional to the square of the linear dimension, and its volume to the 

cube of the linear dimension. If we extrapolate these assumptions to hypothetical animal 

bodies and consider the density of animals to be similar, we can deduce the following 

predictions:  

1. Linear features of the geometrically similar bodies (limb length, nerve length) 
scale ∝ 𝑀𝑀1/3. 

2. Surface area features (skin area, lung surface area, muscle cross-sectional area) 
scale ∝ 𝑀𝑀2/3. 

3. Volume of any part of the body, and assuming constant density, mass of body 
segments scales ∝ 𝑀𝑀1. 

In nature, animal features evolve under various selective pressures including size, 

physical stress, energy minimization and injury prevention, which may cause allometric 

equation exponents to deviate away from geometric similarity. When the empirically 
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measured exponent exceeds or is less than the value expected from geometric similarity, it 

is called positive and negative allometry, respectively. For example, Kilbourne and 

Hoffman found that limb masses scale with geometric similarity while limb lengths scale 

with positive allometry (Kilbourne and Hoffman, 2013). 

1.1.3. Dynamic similarity 

Scaling has also been used to understand the dynamics of animal movement. While 

the principle of geometric similarity provides theoretical predictions for animal anatomical 

changes with size, the principle of dynamic similarity provides predictions for animal 

locomotor changes with size. For two animals to move in a dynamically similar fashion, 

not only do they have to be geometrically similar (i.e. lengths in constant ratio of each 

other), they must also have their movement times be in another constant ratio, and the 

forces exerted in yet another constant ratio. All cursorial land mammals walk at slow 

speeds, trot at intermediate speeds and gallop at fast speeds. Alexander et. al. (1983) 

showed that these land mammals of different sizes adopt similar gaits and move with 

dynamic similarity, when travelling at similar values of a dimensionless number called the 

Froude number (Alexander and Jayes, 1983). This allows us to predict the speeds at which 

different sized animals will change their gait from walking to trotting to galloping, and 

compare their gait features such as duty factor, stride lengths and footfall patterns. For 

example, animals will switch between a trot to a gallop at a Froude number of two to three. 

The theory of dynamic similarity held up when compared to several previous studies. For 

example, when moving at a slow gallop, Biewener (1983) found that the duty factor of 

differently sized animals does not vary significantly, it scaled with 0.41M -0.006 (Biewener, 

1983). Heglund et. al. (1974) found that the stride frequency at the trot gallop transition 

speed scaled with 269M -0.14 strides per minute, and the exponent matches the prediction 

of 1/6 made by dynamic similarity (Heglund et al., 1974). We can also compute 

characteristic movement times for an animal based on its size. The time for an animal to 

fall to the ground from a height equal to its leg length and the natural time period of 

oscillation of an animal limb represented as a simple pendulum both scale with M1/6, which 

again matches predictions by dynamic similarity.  
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1.1.4. Scaling insights 

Scaling studies have given us several insights into the features and behavior of 

animals. For example, geometric similarity predicts that the cross-sectional diameter d of 

skeletal support elements such as muscles and bones scales with M1/3 being a linear feature, 

and the cross-sectional area 𝐴𝐴 = 𝜋𝜋(𝑑𝑑/2)2 scales with M2/3. However, the load acting on 

the skeletal elements (F) scales with the animal’s body mass M1. Therefore, according to 

geometric similarity, the axial, transverse and torsional stresses 𝜎𝜎 = 𝐹𝐹/𝐴𝐴 scales with M1/3, 

indicating that larger animals should suffer from excessive stresses on their skeletal 

elements making them susceptible to fractures and injury. Actual studies revealed that the 

transverse stresses were more concerning than axial stresses, and that cross-sectional 

diameter of the skeletal support elements did scale with geometric similarity. Instead of 

evolving thicker bones to support their body weight, larger animals use a more upright 

(columnar) posture to reduce the stress being applied to their muscles and bones 

(Alexander, 2003; Biewener, 2005). On the other hand, smaller animals use a crouched 

posture which give them more maneuverability. Kleiber showed that the metabolic rate of 

animals scale with M0.75, indicating that larger animals have relatively less calorific needs 

compared to smaller animals (McMahon and Bonner, 1983). Scaling studies have also been 

used to predict the behavior of extinct animals. Economos estimated that the metabolic cost 

of gravity limits the size of land mammals to 20,000 kg, matching the size of the extinct 

species Baluchitherium (Economos, 1981), and Hutchinson et al. studied the locomotion 

of the Tyrannosaurus Rex to conclude that it was not a fast runner (Hutchinson and Garcia, 

2002). While the scaling approach has been applied to quantify several features of animal 

locomotion, it has rarely been applied to the neural control of locomotion (More and 

Donelan, 2018), which is my aim in this thesis.  
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1.2. Control theory 

 
Fig 1.2 Control systems theory. 
(a) Block diagrams of open loop and closed loop control systems. In the open loop configuration, the 
controller generates commands without considering the state of the plant 𝜃𝜃(𝑠𝑠). In the closed loop 
configuration, the controller compares the state of the plant 𝜃𝜃(𝑠𝑠) to a desired reference state 𝑅𝑅(𝑠𝑠), and uses 
the error between them 𝐸𝐸(𝑠𝑠) to generate the actuator commands. (b) Underdamped (blue), critically damped 
(red) and overdamped (green) responses of a feedback control system. The black horizontal dotted lines at 
0.9 and 1.1 denote 10% settling time threshold bands, and the vertical lines at 0.4 (critically damped), 0.8 
(underdamped) and 1.85 (overdamped) represent the settling times of the three curves. (c) Bode plot of a 
control system with the magnitude plot on top and the phase plot at the bottom. In the phase plot, the blue 
line represents the control system without delays, and the dashed red line represents the control system with 
delays. The time delays cause a -180° phase shift which results in instability at the gain crossover frequency 
of 2.06 rad/s. 



9 

Control systems is a field of engineering which develops techniques to evaluate and 

regulate the behavior of dynamical systems. The behavior of dynamical systems can be 

mathematically described by differential equations with time derivatives, and control 

theorists have developed techniques to manipulate these equations and control dynamical 

systems. There are two classes of control systems: linear and nonlinear. Linear control 

systems have special properties of homogeneity and additivity which make them simpler 

to analyze and more mathematically tractable than non-linear systems. If you scale the 

input to a linear control system, the output of the control system also gets scaled by the 

same amount. Similarly, if you change the properties of the plant of a linear control system 

to increase its natural frequency, all time characteristics of its response behavior also 

change by the same amount. The output of a linear control system to the sum of various 

inputs will be equal to the sum of outputs to each individual input. These properties allow 

us to use mathematical techniques to fully describe the behavior of a linear control system. 

Some examples of these techniques for linear control systems are transfer functions, state 

space representations, Routh-Hurwitz stability analysis, root-locus analysis, Bode plots and 

Nyquist plots (Åström and Murray, 2008; Nise, 2011). Using Laplace transforms and 

Fourier transforms, we can convert the time domain representation of the differential 

equation to a frequency domain representation. The frequency domain representation of 

the system reveals several insights into its performance which would be difficult to deduce 

in the time domain. For example, we can look at the root-locus representations of transfer 

functions to separate out the exponential and sinusoidal components of the system’s 

response, or use Bode plots to predict the frequencies that can cause instability. Nonlinear 

control systems might not have additive and homogenous properties, making them much 

less predictable and difficult to analyze. For example, time delays in the control pathways, 

or limits on the force capacity of the actuator, or effects of gravity on the plant can all make 

a linear control system nonlinear.  

Control systems have two main configurations, feedforward and feedback (Fig 

1.2a). In a feedforward (open loop) configuration, the controller produces predefined 

control signals to regulate the “plant” (the dynamical system being controlled). But the 

controller does not sense if the plant is behaving as intended; thus the loop is left open. In 

a feedback (closed loop) configuration, the controller is able to sense the behavior of the 
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plant and uses these feedback signals to calculate the controller output. There are several 

types of controllers under both feedforward and feedback configurations which are 

designed for specific tasks —some examples are on-off, bang-bang, Proportional Integral 

Derivative (PID), Linear Quadratic Regulator (LQR), robust, adaptive and Model 

Predictive Control (MPC) (Bechhoefer, 2021). Under the feedforward control 

configuration, bang-bang controllers are the fastest and most aggressive type (Rao and 

Bernstein, 2001). The controller first commands the plant to use all available force to 

accelerate rapidly towards the target state. Then at a predefined time, the controller 

switches the force direction to rapidly decelerate the plant and bring it to rest at the target 

state. Under bang-bang control, we must optimize the switching time of the force direction 

to get the fastest response. Proportional-Integral-Derivative (PID) control is a simple and 

intuitive feedback controller type, which is popular in engineering applications and often 

tested as a starting option. In PID control, we first compute an error signal (𝑒𝑒) between the 

present state of the plant and the target state. We determine the proportional component of 

the controller commands by multiplying this error by a proportional gain (𝐾𝐾𝑝𝑝). Thus, the 

command will act to rapidly reduce the error based on the magnitude of 𝐾𝐾𝑝𝑝𝑒𝑒. However, 

this command equation resembles the formula of a spring, and can result in oscillations 

around the target state. Therefore, we add a derivative component by differentiating the 

error signal and multiplying it by a derivative gain (𝐾𝐾𝑑𝑑)—this component will act as a 

damper and prevent oscillations. In some cases, the forces generated by the controller might 

be opposed by external forces (such as forces due to gravity or friction), resulting in steady 

state error. Therefore, the error signal is also integrated and multiplied by an integral gain 

(𝐾𝐾𝑖𝑖), to add up the small steady state errors and generate a corrective command that moves 

the plant to the exact target state. When the three gains are optimally tuned, PID controllers 

can produce fast, stable and effective control. 

Feedback control systems have a peculiar flaw—trying to control an otherwise 

stable dynamical system can sometimes make it unstable. We can understand why this 

happens by analyzing the Bode plot of a control system (Fig 1.2c). A stable control system 

acts to move the dynamical system towards the desired state and dampen out any 

oscillations. However, instability occurs when a control system outputs signals with 
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frequencies that are phase shifted by -180 degrees; these feedback signals further amplify 

the inputs, causing growing oscillations that make the system go out of control. Bode plots 

allows us to determine stability margins to prevent this situation from occurring. Time 

delays from signal transmission and processing can also cause phase shifts, which reduces 

the stability margins of the control system.  

We can evaluate the responsiveness of a feedback control system using its step 

response characteristics, which quantifies how the system behaves when it is required to 

suddenly reposition the plant (a step change in its target state). Ideally, when a feedback 

control system is switched on and given a target state to reach, it should rapidly move from 

its initial state to the target state and come to rest there. However, due to the dynamics of 

feedback control systems, this is rarely the case. In Fig 1.2b, I have shown the behavior of 

three types of step responses (an underdamped, overdamped and critically damped 

response). In an underdamped response, the state of the plant overshoots the target before 

it returns back towards it, and then continues to oscillate about the target state forever (Fig 

1.2b blue line). In an overdamped response, the state of the plant approaches the target state 

asymptotically but never fully reaches the target state (Fig 1.2b green line). In between 

these two cases is the critically damped response—the state does not overshoot and 

approaches the target faster than an overdamped response, but slower than an underdamped 

response (Fig 1.2b red line). Settling time is a step response measure that quantifies how 

long the plant takes to move from its initial state to within certain thresholds of the target 

state, and stay within those settling time thresholds. In Fig 1.2b, I indicate when the 

responses reach within 10% settling time thresholds for illustration purposes. Note that the 

underdamped response is faster to reach the thresholds than the critically damped response, 

but takes longer to remain within the thresholds than the critically damped response. To 

quantify the responsiveness of a feedback control system, we need to first define the 

settling time thresholds and allowable overshoot. The choice of settling time thresholds 

and allowable overshoot and can significantly change the values we obtain for response 

time, even if the response remains the same.  

In this thesis, I use techniques from control systems theory to understand the neural 

control of movement in animals. Although control theory was developed for synthetic 
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systems, they have proven to be very useful to probe biological systems (Cowan et al., 

2014; Madhav and Cowan, 2020). Both synthetic and biological control systems have to 

contend with limitations such as time delays and saturation limits which also make the 

behavior of the control system nonlinear, and control theorists have developed techniques 

to study their effects and compensate for them. Here, I have developed simple feedforward 

and feedback control systems with time delays and saturation limits, to model the control 

of fast perturbation responses in animals.  

1.3. Neural control of locomotion 

The nervous system controls locomotion using a hierarchical structure where the 

different levels interact with one another, and each of these levels act with characteristic 

amounts of latency. From a neuroanatomy perspective, the control of locomotion involves 

the central and peripheral nervous systems, the visual, vestibular, cutaneous and 

proprioceptive sensors, and even the muscles. These levels include preflexes, reflexes and 

supraspinal motor centers (Daley, 2018; Rossignol et al., 2006). Preflexes arise from the 

intrinsic mechanical properties of the musculoskeletal system and act instantaneously to 

stabilize the body against perturbations (Brown and Loeb, 2000; Gordon et al., 2020). For 

example, consider a joint being held at a specified angle due to the coactivation of two 

antagonistic muscles. If the joint angle is perturbed, the force-velocity properties of the 

muscles will dampen out the perturbation, and the force-length properties will act as a 

spring to return the joint to the specified angle. The level of coactivation of the muscles 

modulate the strength of the preflex. While the above example is neuraly modulated, the 

passive dynamics of a mechanical system can also contribute to rejecting perturbations. 

For example, passive dynamic walking models are inherently stable in the sagittal plane, 

and can respond to small perturbations instantaneously, without the need of neural control 

(Kuo, 1999). 

Reflex circuits and Central Pattern Generators (CPGs) at the spinal cord form the 

next level of control in the hierarchy. They act with more latency than preflexes, due to 

signal transmission and processing delays (Pearson and Gordon, 2000). Activation of 

peripheral receptors in muscles, joints and skin result in coordinated muscle activation 
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through neural circuits, known as reflexes. One example is the stretch reflex, where the 

muscle spindle discharges in response to an unanticipated lengthening of the muscle. The 

discharge results in the stimulation of pathways in the spinal cord that cause activation of 

the muscle, and inhibition of its antagonistic muscle. Depending on the forces acting across 

the muscle, the muscle could contract concentrically back to its commanded length, or 

contract eccentrically to counteract the forces stretching the muscle—acting as a feedback 

system. Central pattern generators are neural circuits in the spinal cord that can 

independently produce oscillatory signals without any external input or stimulation (Taga, 

1995a, 1995b). These oscillatory signals generate the motor commands that produce 

rhythmic movements, although they usually work in conjunction with reflex feedback 

during locomotion. 

Supraspinal motor centers within the motor cortex, cerebellum and basal ganglia 

form the highest level of control, and act with the longest latency. These centers receive 

sensory feedback from afferents and perform motor planning tasks (Rossignol et al., 2006). 

For example, proprioceptive signals from the limbs travel through the dorsal 

spinocerebellar tract (hindlimbs) and cuneocerebellar tract (forelimbs) in the spinal cord, 

and onto the mossy fibers in the cerebellum. Then, cerebellar granule cells process this 

information along with efference copies of motor commands from the cerebral cortex, and 

finally send out signals to the muscles from cerebellar nuclei. Similarly, proprioceptive 

signals are presumed to travel through the dorsal column medial lemniscus pathway to the 

brainstem nuclei, and then to the thalamus and motor cortex (Dallmann et al., 2021). 

Supraspinal centers can increase the strength of preflexes by modulating central pattern 

generator activity and increasing coactivation, and modulate reflexes by changing reflex 

loop gains through presynaptic inhibition/excitation (Pearson and Gordon, 2000). Studies 

hypothesize that supraspinal motor centers also hold the internal models involved in 

predictive control, state estimation, motor learning, and compensation for sensorimotor 

delays and noise (Herzfeld and Shadmehr, 2014; Miall et al., 1993; Wolpert et al., 1998), 

while Kuo et al. have suggested that CPGs can also function as state estimators (Kuo, 2002; 

Ryu and Kuo, 2021).  
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Using this hierarchical structure for neural control, animals are able to generate a 

vast repertoire of movements. Animals locomote using rhythmic movements such as 

walking, running, hopping, flying and swimming. Central pattern generators can produce 

the feedforward oscillatory motor commands required for locomotion, while feedback 

signals from reflex pathways help regulate the timing and magnitude of the rhythmic 

movements (Dallmann et al., 2021; Ryu and Kuo, 2021; Taga, 1995b). On the other hand, 

goal directed movements such as reaching and foot placement rely predominantly on 

feedback control from the supraspinal motor centers, and computational models indicate 

that the “optimal feedback control method” works well in predicting the generated motor 

commands (Todorov, 2004; Todorov and Jordan, 2002). Additionally, animals must be 

able to reject perturbations and maintain posture and stability. These perturbations 

responses require a combination of feedforward and feedback control and can involve all 

three levels of the neural control hierarchy (Daley, 2018; Daley et al., 2009; Daley and 

Biewener, 2011; Gordon et al., 2020). We do not fully understand how these different 

levels interact with one another to control movement, and which algorithms they use 

process information and generate motor commands (Zuur et al., 2010). 

In this thesis, I choose to focus only on fast perturbation response movements, 

which are controlled through spinal pathways. I study how these responses are affected by 

time delays and muscle force capacity limits, and how they change with animal size. My 

results can help better understand the performance and limitations at the spinal level of 

control, and give insight into the control choices that the nervous system makes in this 

context.  

1.4. Response time and its component delays 

The ability to sense a perturbation, and respond quickly and accurately is important 

for survival. Animals of all sizes would face evolutionary pressures to have fast response 

times—although there are exceptions in nature such as sloths and tortoises who overcome 

the need to be fast by camouflage or armor. The tiny shrew needs a fast response time to 

escape from its predators. While an adult elephant does not have any natural predators, it 

also needs a fast response time to recover from a trip or loss of balance, as a simple fall for 
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such a large animal could result in injury or death. I am interested in how response times 

change with animal size, and how the limitations of the mammalian neuro-musculoskeletal 

system affect response time.  

 
Fig 1.3 Components of perturbation response time. 
We can break down the time required to complete a fast perturbation response into several components. 
Consider an animal that has encountered a trip. There will be a delay in sensing the trip (1. sensing delay), a 
delay to transmit the signal to the spinal cord (2. nerve conduction delay), a delay for the sensory information 
to be processed at the synapse in the spinal cord, and for the appropriate motor commands to be generated 
(3. synaptic delay), another nerve conduction delay to transmit the motor commands to the appropriate 
muscles, a delay to transmit the signal across the neuromuscular junction (5. neuromuscular junction delay), 
a delay to transmit the signal across the muscle and start cross bridge cycling (6. electromechanical delay), 
and a delay to generate forces in the muscle (7. force generation delay). We group these seven delays under 
the term sensorimotor delays. Finally, there is a delay in repositioning the limb such that the animal regains 
its posture and balance, which requires producing forces to overcome inertia (8. inertial delay).  

In order to understand and quantify response time, we can break it down into several 

component delays. For example, consider the elephant in Fig 1.3, that has encountered a 

trip to its hindlimb. In order to respond as quickly as possible to this perturbation, the 

elephant’s nervous system would have to sense the trip, transmit the action potentials to 

the spinal cord, process the sensory information, and send the appropriate motor commands 

the muscles. I termed these neural transmission and processing delays as sensorimotor 

delays. The muscles then have to lift the limb away from the source of the trip and place it 

at a new location to regain stable balance and posture. I termed this delay in overcoming 

inertia and repositioning body segments as inertial delay. In this thesis, I quantify response 

time as the sum of sensorimotor delay and inertial delay. I also explore how using different 

control policies to generate the motor signals affect response time.  
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1.4.1. Scaling of sensorimotor delays and resolution 

Previous research in the Locomotion Lab, Simon Fraser University studied how 

aspects of sensorimotor responsiveness and resolution changed with animal size (More et 

al., 2013, 2011, 2010; More and Donelan, 2018). Responsiveness refers to how quickly an 

animal can sense and respond to a perturbation. Resolution refers to how precisely the 

animal can sense the perturbation, and how finely graded its motor responses can be. More 

et al. showed that for a given nerve thickness, there is a trade-off between responsiveness 

and resolution (More et al., 2010). Peripheral nerves contain thousands of both sensory 

nerve fiber axons and motor nerve fiber axons. Faster nerve conduction velocities would 

improve responsiveness, and depend on the diameter of the axons. Having more sensors 

within a given volume of tissue, or having more motor units in a muscle would improve 

resolution; this depends on the number of axons that can be packed into a nerve. An animal 

can increase its nerve conduction velocity by having larger diameter axons in its nerves, 

but will have to contend with fewer axons in the nerve, compromising resolution. 

Alternatively, it could have a larger number of small diameter axons, and face slower 

conduction velocities.  

More et al. quantified the scaling of nerve conduction velocities and number of 

axons in the peripheral nerves of terrestrial mammals. They found that nerve conduction 

velocities in the sciatic nerve of mammals scale as 63.5M0.04 m/s; while mammalian leg 

lengths scale as 0.162M0.37 m (Kilbourne and Hoffman, 2013; Thangal and Donelan, 2020). 

More et al. also quantified that the number of axons in the sciatic nerve in mammals scale 

as 13587M0.36 (More, 2013). Assuming geometric similarity, we would expect volume and 

cross-sectional area of the regions innervated by the sciatic nerve to scale with M1 and M2/3 

respectively. These results show that as animal size increases, they face relatively longer 

nerve conduction delays and reduced resolution, which can detrimentally affect their 

control of locomotion.  

Next, More et al. quantified the scaling of each of the components of sensorimotor 

delay using both electrophysiological experiments and systematic literature reviews (More 

and Donelan, 2018). They focused on data from the sciatic nerve and medial 
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gastrocnemius, but sometimes included data from other lower limb muscles if there was 

scarcity of data.  

1. They defined sensing delay as the time between the change in length of the muscle and 

the generation of action potentials in the afferent Ia sensory nerve fibers. As there was 

limited information in the literature which was insufficient to indicate any change with 

size for sensing delay, they averaged the three measurements available from cats and 

assumed sensing delay is constant with animal size at 0.6 ms.  

2. They defined nerve conduction delay as the time to transmit action potentials from the 

muscle spindles to the spinal cord along the sensory nerve fibers, and from the spinal 

cord to the muscles along the motor nerve fibers. They quantified nerve conduction 

delay as twice the leg length divided by nerve conduction velocity (determined from 

the sciatic nerve). Nerve conduction delay scaled as 5.3M0.30 ms. 

3. They defined synaptic delay as the time to transmit action potentials across the 

monosynaptic connection from the sensory nerve fiber to the motor nerve fiber in the 

sacro-lumbar spinal cord. Data from four species did not indicate significant changes 

with animal size; they averaged the available measurements and assumed synaptic 

delay is 0.7 ms for all animal sizes.  

5. They defined neuromuscular junction delay as the time for the motor signals to cross 

the neuromuscular junction between the motor nerve and the muscle surface, and 

quantified it as the time between electrical activity at the end of the motor nerve fiber 

and the detection of electrical activity on the muscle. Based on measurements from four 

species, they assumed that neuromuscular junction delay does not change with animal 

size and is constant at 0.9 ms.  

6. They defined electromechanical delay as the time for the action potentials that have 

crossed the neuromuscular junction to transmit through the muscle, release Ca2+ ions 

from the sarcoplasmic reticulum, and initiate cross bridge cycling. They determined 

this by using measurements of the time between electrical activity in the muscle and 

the detection of force from the muscle, from single twitch response studies made in the 
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intact medial gastrocnemius at its resting length. Electromechanical delay scaled as 

4.3M0.21 ms. 

7. They defined force generation delay as the time to reach peak twitch force after force 

is detected in the muscle. They searched for measurements made from single-twitch 

non-potentiated responses in the medial gastrocnemius at its resting length, made by 

stimulating a single motor nerve fiber or multiple fast motor units together. Force 

generation delay scaled as 17.6M0.20 ms. 

These component delays added together represented total sensorimotor delay which 

scaled as 31M0.21 ms. Sensing delay, synaptic delay and neuromuscular junction delay 

share biophysical processes which support the assumption that they do not change 

significantly with animal size. Synaptic delay and neuromuscular junction delay involve 

the release of neurotransmitters from a presynaptic neuron, the neurotransmitters diffusing 

across the short distance of the synaptic cleft, the neurotransmitters binding to receptors on 

a post synaptic membrane and changing its conductance, and finally resulting in action 

potential in the post synaptic membrane. In sensing delay, a stimulus causes a change in 

conductance in a membrane, resulting in an action potential in the sensory nerve fiber. The 

biophysical features that affect these delays, such as the speed of neurotransmitter 

diffusion, size of the synaptic clefts, functions of ion channels or the structure of 

mechanoreceptors, do not change significantly with animal size. Thus, they expect these 

delays do not change significantly with size either. In chapters 2 and 3 of my thesis, I use 

computational modeling to determine the scaling of inertial delay, allowing me to 

determine the scaling of total response time.  

1.5. Aims and approach 

My goal was to quantify how the fastest perturbation response times scale with 

animal size. As animal size increases, the neural control of locomotion faces two prominent 

challenges—their muscles get proportionally weaker, and the time delays within their 

control pathways get longer. I studied how these two limiting factors affect response times 

in animals of different sizes. I designed simple computational models that can be scaled 
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with animal size, and parameterized them using data from the literature. My models 

represented two perturbation response scenarios commonly encountered during 

locomotion: the swing task represented an animal repositioning its limb after a trip during 

the early swing phase (stumble corrective response) (Rossignol et al., 2006), and the 

posture task represented an animal recovering its posture after a push forward in the sagittal 

plane (Horak and Nashner, 1986; Rushmer et al., 1983). In chapters 2 and 3, I quantified 

the scaling of inertial delays. In chapters 4 and 5, I studied how two different control 

configurations—feedforward control and feedback control—affected response time. 

Before studying more biologically realistic models, I first used simple approximations in 

chapter 2 and 4 to provide intuitive understanding of how various factors affected 

perturbation response behavior. I kept these models as simple as possible, and used them 

to make predictions that could be verified in the following chapters. In chapters 3 and 5, I 

used numerical simulations of more biologically realistic models to estimate the scaling of 

response times. Below, I have provided short descriptions for each chapter of this thesis. 

In chapter 2, I used a simple approximation (a single degree-of-freedom rotational 

system) to understand how inertial delays scale with animal size. By ignoring gravity, the 

equations of motion of the system are linear. I analytically derived the equations of motion, 

and tested how inertial delays would scale under assumptions of geometric and dynamic 

similarity. These theoretical calculations showed that if animal muscles could produce 

forces that scaled with dynamic similarity, larger animals would have the same relative 

inertial delays as smaller animals. On the other hand, if animal muscles only produce forces 

that scaled with geometric similarity, larger animals would face relatively longer inertial 

delays than smaller animals, disproportionately burdening them. 

In chapter 3, I built on the results from chapter 2, and quantified the scaling of 

inertial delays using numerical simulations of more biologically realistic models. I 

parameterized each model with values collected from the scaling literature for terrestrial 

mammals, and considered gravity. I represented the swing task using a distributed mass 

pendulum, parameterized it with inertial values corresponding to the forelimb of a 

terrestrial quadruped, and actuated it with torques derived from the force capacity of the 

triceps muscle. I represented the posture task as an inverted pendulum with inertial 
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properties of the whole animal, and actuated the model with torques equalling that from 

four plantarflexors. I used optimization to determine the optimal parameters that minimized 

inertial delay time, and used Monte Carlo simulations to determine the confidence 

intervals. I compared inertial delays to sensorimotor delays, and to available movement 

time, and discussed how it could affect small and large animals differently. I showed that 

the scaling of inertial delays depended both on movement task and movement size, and 

that inertial delays scaled faster than sensorimotor delays and available movement time.  

In chapter 4, I used simple models to study how time delays and saturation limits 

affected response times under feedback control. I first used a linear feedback control 

system under PD control to show how time delays cap the controller gains that can produce 

stable behavior. I then non-dimensionalized a time-delayed and force-limited feedback 

control system, and studied how these limitations affected response times. I showed that 

perturbation response times in animals can either be limited by the force generation 

capacity of muscles (force-limited) or by sensorimotor time delays which constrain the 

maximum feedback gains that can be used to produce stable responses (delay-limited). I 

also provided predictive equations generated using curve fitting for the relationship 

between saturation limits and response time, for the swing task and posture task.  

In chapter 5, I built on the results from chapter 4, and quantified the scaling of 

response times under feedback and feedforward control on more biologically realistic 

models. I considered gravity and parameterized the model with values from the scaling 

literature. I used optimization to determine the optimal parameters that produced the fastest 

response times. I compared response times under feedback and feedforward control to each 

other and to available movement times. I discussed how feasible each form of control is 

for fast perturbation responses, and how it affects small and large animals differently. I 

showed that while feedforward control can fully activate muscles and produce fast 

responses, long sensorimotor delays force feedback control to use low gains to ensure 

stability, allowing only a fraction of the muscles’ force capabilities to be utilized. That is, 

the effectiveness of feedback control within the size range of terrestrial mammals is delay-

limited rather than force-limited.        
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Chapter 2. Scaling of inertial delays in a simple 
biomechanical system 

2.1. Introduction 

Independent of animal size, a fast response time is important to an animal’s 

survival. A tiny shrew needs to react quickly to escape from a predator, and a massive 

elephant needs to recover quickly from a loss of balance to prevent a fall. Response time—

measured as the total delay between the onset of a perturbation and the completion of the 

corrective movement that is in response to the perturbation—is not just important for 

relatively rare escapes and falls, but also for more common motor control tasks. This is 

because time delays within the neural pathways can destabilize feedback control, requiring 

animals to have compensatory neuromechanical strategies (Miall et al., 1993; Milton, 

2011; More and Donelan, 2018; Wolpert et al., 1998). Response time is relevant to the 

control of movement both in terms of its absolute duration and its duration relative to the 

available movement time. For example, the absolute duration of the corrective response 

matters to avoid a snakebite, which can be equally deadly for small and large animals alike. 

And the relative response time matters to avoid a trip when galloping, where the corrective 

response may need to occur within a limb’s swing duration, which takes longer in larger 

animals (Alexander, 2002; Heglund et al., 1974; Heglund and Taylor, 1988).  

Response time is determined, in part, by neuromuscular physiology (Burke et al., 

1973; Grillner, 1972; More et al., 2010; More and Donelan, 2018). Consider an animal 

whose foot catches on a vine—the lengthening of the limb muscles activates the stretch 

reflex, which resists muscle stretch and helps the animal recover its posture (Lloyd, 1943; 

Zehr and Stein, 1999). This stretch reflex consists of several component delays. There are 

delays which represent the time it takes to sense the trip, transmit the action potentials 

through both the sensory and motor nerves, process the response at the synapses in the 

spinal cord, and begin to generate muscle force. I group these component delays together 

and refer to their sum as sensorimotor delay (Section 1.4) (More and Donelan, 2018). After 

the sensorimotor delays, the corrective response to a perturbation often requires that the 

animal reposition its body. If muscles could instantaneously generate infinite force, or if 
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the body and its segments were massless, this could be accomplished instantly. But of 

course, muscles have finite strength and bodies have inertia. Consequently, the animal’s 

inertia impedes the acceleration generated by muscles, further delaying response time. I 

refer to this last contributor to response time as inertial delay and define it as the absolute 

time between the onset of the corrective movement that is in response to a perturbation and 

the completion of this corrective movement. A corrective movement is a dynamic process 

whose duration depends on the movement task and the magnitude of this movement. The 

duration depends on the corrective movement task because the time to swing a limb to a 

new position, for example, may be different from that required to reject a push to the torso 

to avoid a fall. This is because the two tasks involve different muscles, resulting in different 

force capacities, and different parts of the body, resulting in different inertial properties. It 

depends on the magnitude of the required movement because, all else being equal, less 

time is required to accomplish small adjustments to the body’s position and velocity than 

large adjustments. I model these dynamic effects of inertia as a delay by determining the 

duration required for a movement, while controlling for movement magnitude and 

movement task.  

In this chapter, my objective is to understand how inertial delays scale with animal 

size, both in absolute terms and relative to available movement time, under the theoretical 

scaling design rules of geometric similarity and dynamic similarity. Towards this goal, I 

first derived scaling relationships for the time available to produce a corrective movement 

under two scenarios: the natural time period of a swinging limb, and the time required for 

an animal to fall to the ground (Section 2.3.1). Next, I focussed my study on two different 

tasks designed to represent perturbation response scenarios commonly encountered during 

animal locomotion (Section 2.3.2). The swing task represented an animal repositioning its 

limb to produce a corrective foot placement after a trip, and the posture task represented 

an animal recovering its posture after a push forward in the sagittal plane. I derived 

analytical expressions for the scaling of inertial delay using linear models and 

parameterizing them using two scaling design rules: assuming that muscle forces scale with 

𝑀𝑀2/3 under geometric similarity and 𝑀𝑀1 under dynamic similarity. This helps build 

intuition for the dependence of inertial delay on perturbation task, movement magnitude, 

muscle force, muscle moment arm, and inertial properties. 
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2.2. Methods 

I performed all the analytical derivations in this chapter by hand. I used two scaling 

design rules to parametrize my models: geometric similarity and dynamic similarity. I 

assumed that animal morphological features scale with geometric similarity. Two animals 

are geometrically similar if they have exactly the same shape, even if they are of different 

sizes (Alexander, 2003). More specifically, it requires that linear features between animals, 

such as leg length, scale with 𝑀𝑀1/3, surface area features scale with 𝑀𝑀2/3, and volumes and 

masses of body segments scale with 𝑀𝑀1 (McMahon, 1975). The theory of dynamic 

similarity states that two animals will locomote in a dynamically similar fashion when they 

are travelling at equal values of a dimensionless velocity called the Froude number 

(Alexander and Jayes, 1983). For two animals to be dynamically similar, their physical 

dimensions, the time periods of their gait, and the forces that they apply must be in constant 

ratios to each other. The forces applied during their movements must also scale with 𝑀𝑀1.  

2.3. Results 

2.3.1. Scaling of available movement times 

I used characteristic movement times to understand how much time an animal has 

available to respond to a perturbation and complete the corrective movement. I compared 

response times to these available movement times to gauge whether the time required to 

respond may hinder neural control of movement (Hooper, 2012). Here, I analytically 

quantified the scaling of two characteristic movement times: the time it would take an 

animal to fall to the ground, and the time an animal’s leg is in swing phase when running.  

As response time becomes longer relative to fall time, it becomes more difficult for 

an animal to stop a fall and regain balance. To analytically derive the scaling of fall time, 

I used the equations for a body falling under constant acceleration due to gravity (Halliday 

et al., 2010). Consider an animal of mass 𝑀𝑀, falling from the height of its leg 𝐿𝐿 to the floor 

under the force of gravity. 𝐹𝐹𝑔𝑔 is the force of gravity, where 𝑔𝑔 is the acceleration due to 

gravity. The equations for acceleration 𝑦̈𝑦(𝑡𝑡), velocity 𝑦̇𝑦(𝑡𝑡) and position 𝑦𝑦(𝑡𝑡) are: 
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𝑦̈𝑦(𝑡𝑡) =
𝑑𝑑2𝑦𝑦
𝑑𝑑𝑑𝑑2

=
𝐹𝐹𝑔𝑔
𝑀𝑀

=
−𝑔𝑔𝑔𝑔
𝑀𝑀

= −𝑔𝑔 2.1 

𝑦̇𝑦(𝑡𝑡) = �𝑦̈𝑦 𝑑𝑑𝑑𝑑 = −𝑔𝑔𝑔𝑔 + 𝑦̇𝑦0 2.2 

𝑦𝑦(𝑡𝑡) = � 𝑦̇𝑦 𝑑𝑑𝑑𝑑 =
−𝑔𝑔𝑡𝑡2

2
+ 𝑦̇𝑦0𝑡𝑡 + 𝑦𝑦0 2.3 

The initial velocity 𝑦̇𝑦0 is 0 and initial position 𝑦𝑦0 is 𝐿𝐿. Assuming geometric similarity, the 

time 𝑡𝑡𝑓𝑓 required for an animal to fall to the floor is:  

𝑡𝑡𝑓𝑓 = �
2𝐿𝐿
𝑔𝑔
∝ √𝐿𝐿 ∝ 𝑀𝑀1/6 2.4 

It would take longer for an animal to fall like an inverted pendulum, rather than crumple to 

the ground as derived above, but the dependence on mass would not change. Similar to 

falling, if response time exceeds the natural time period of the swinging limb, or some 

fraction of this period, the animal may have difficulty recovering if the swing is perturbed. 

I used the natural time period of a pendulum with the properties of an animal limb as a 

proxy for swing duration (Halliday et al., 2010; Mochon and McMahon, 1980). Assuming 

geometric similarity, the natural time period 𝑡𝑡𝑠𝑠 of a pendulum scales as:  

𝑡𝑡𝑠𝑠 = 2𝜋𝜋�
𝐿𝐿
𝑔𝑔
∝ √𝐿𝐿 ∝ 𝑀𝑀1/6 2.5 

Thus, like time to fall, swing period depends on 𝑀𝑀1/6. Swing duration calculations based 

on values reported in the literature estimate that it scales with 𝑀𝑀0.14 at trot-gallop transition 

speeds and with 𝑀𝑀0.13 at maximum sprint speeds (More and Donelan, 2018). Thus, 

characteristic movement times scale approximately with 𝑀𝑀1/6 based on both theoretical 

considerations and empirical measurements. I use these characteristic movement times to 

normalize the absolute response time.  
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These relative response times are a measure of how long response time is when 

compared to the time available to complete the response. It is unlikely that animals have to 

complete a corrective movement in exactly the duration of the swing phase at sprint speeds. 

It is possible that they can recover from a perturbation if the corrective movements take 

longer, and it is also possible that the corrective movements have to be completed in an 

even shorter period of time. Nevertheless, swing duration seems like a reasonable 

benchmark for the stumble corrective response in the swing task, rather than distributing 

the corrective movement across multiple limbs and multiple phases of the gait cycle. 

Furthermore, swing duration, fall duration, and pendulum period share a common scaling 

exponent providing me with some assurance that relative response time will not depend 

strongly on size as a consequence of my choice of available movement time. 

2.3.2. A simple model of inertial delay 

Model 

To obtain theoretical estimates for the scaling of inertial delays, I first considered a 

simple single degree of freedom rotational system operating without the effect of gravity 

(Fig 2.1). These equations of motion are linear, allowing me to analytically derive the 

scaling of inertial delays. These estimates will support subsequent numerical simulations 

and provide intuition about how various factors contribute to inertial delays. This system 

is an angular version of a sliding block model and can be analytically described as a double 

integrator—a simple and well-studied dynamical system (Rao and Bernstein, 2001; 

Srinivasan, 2010). 
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Fig 2.1 Simple model for inertial delay.  
A single degree of freedom rotational system with a rod of length 𝐿𝐿 and point-mass 𝑀𝑀 rotates about a pin 
joint actuated by torque 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . 𝜃𝜃 is the angle from the horizontal with positive angles in the counter-clockwise 
direction. This model ignores gravity and assumes the rod is massless. 

Scaling of model parameters 

Assuming the system’s morphological features scale with geometric similarity, its 

length would scale with 𝑀𝑀1/3, mass with 𝑀𝑀1 and moment of inertia (𝑀𝑀𝑀𝑀2) with 𝑀𝑀5/3. I 

considered two scenarios for the scaling of maximum muscle force. In the first scenario, I 

assumed that muscle force maintains dynamic similarity between animals of different sizes 

by scaling force in direct proportion to animal mass: 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝑀𝑀1 (Alexander and Jayes, 

1983). In the second scenario, I instead assumed muscle force scales with cross-sectional 

area exponent of geometric similarity: 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝑀𝑀2/3 (Biewener, 1989a). In this model, the 

applied muscle torque 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the product of a constant muscle moment arm 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  and 

the muscle force.  

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 2.6

I also assumed that the muscle moment arm scales with geometric similarity too (𝑀𝑀1/3). 

Analytical derivation for the swing task 

The swing task represents an animal repositioning its swing leg to control foot 

placement and maintain stability during walking and running (Daley and Biewener, 2006; 

Kuo, 1999; Mcgeer, 1990; Seyfarth et al., 2003; Wong and Donelan, 2017). For the swing 

task, the pendulum is required to move from rest at an initial angle 𝜃𝜃0 which I set as 0°, to 
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a final angle 𝜃𝜃𝑓𝑓 under the control of muscle torque 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. The fastest way to complete this 

movement is to apply a constant torque to accelerate from 0 to 𝜃𝜃𝑓𝑓/2, then reverse the 

direction of torque to decelerate and stop at 𝜃𝜃𝑓𝑓. Since the movement is symmetrical, I 

considered only the first half from 0 to 𝜃𝜃𝑓𝑓/2. The equations for the angular acceleration 

𝜃̈𝜃(𝑡𝑡), angular velocity 𝜃̇𝜃(𝑡𝑡) and angle 𝜃𝜃(𝑡𝑡) are:  

𝜃̈𝜃(𝑡𝑡) =
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2

=
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝐿𝐿2

2.7 

𝜃̇𝜃(𝑡𝑡) = � 𝜃̈𝜃 𝑑𝑑𝑑𝑑 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝐿𝐿2

𝑡𝑡 + 𝜃̇𝜃0 2.8 

𝜃𝜃(𝑡𝑡) = � 𝜃̇𝜃 𝑑𝑑𝑑𝑑 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2𝑀𝑀𝐿𝐿2

𝑡𝑡2 + 𝜃̇𝜃0𝑡𝑡 + 0 =
𝜃𝜃𝑓𝑓
2

2.9 

Because the initial velocity 𝜃̇𝜃0 is 0, and my desired final angle is 𝜃𝜃𝑓𝑓/2, I can rearrange Eqn 

2.9 to solve for 𝑡𝑡. The total inertial delay is twice this time to account for the time spent in 

each half of the total movement:  

𝑡𝑡𝐼𝐼𝐼𝐼 = 2�
𝑀𝑀𝐿𝐿2 𝜃𝜃𝑓𝑓
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐

2.10 

Eqn 2.10 shows that inertial delay is proportional to the square root of both the movement 

magnitude (𝜃𝜃𝑓𝑓) and the moment of inertia of the pendulum (𝑀𝑀𝐿𝐿2), and inversely 

proportional to the square root of the applied torque. Therefore, doubling muscle torque 

would only cause an approximately 30% reduction in inertial delay and quadrupling muscle 

torque would only result in a 50% reduction. These calculations indicate that while inertial 

delay in the swing task does depend on actuator limits, increasing muscle torque may not 

be an effective option to reduce inertial delay. Instead, an animal could reduce its leg length 

(𝐿𝐿), which would directly reduce inertial delay.  

Next, I considered two different scenarios for the scaling of muscle force. Assuming 

muscle force scales with dynamic similarity (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝑀𝑀1), I determined the scaling of 

inertial delay by substituting Eqn 2.6 into Eqn 2.10:  
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𝑡𝑡𝐼𝐼𝐼𝐼 = 2�
𝑀𝑀𝐿𝐿2𝜃𝜃𝑓𝑓

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
= 2�

𝑐𝑐1𝑀𝑀5/3𝜃𝜃𝑓𝑓
𝑐𝑐2 𝑀𝑀4/3 ∝ 𝑀𝑀1/6.√∆𝜃𝜃 2.11 

where 𝑐𝑐1 and 𝑐𝑐2 are constants of proportionality. Since 𝜃𝜃0 is 0, I substituted 𝜃𝜃𝑓𝑓 with ∆𝜃𝜃 =

(𝜃𝜃𝑓𝑓 − 𝜃𝜃0), representing the movement magnitude. 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑡𝑡𝐼𝐼𝐼𝐼
𝑡𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎

∝
𝑀𝑀1/6

𝑀𝑀1/6 ∝ 𝑀𝑀0 2.12 

where 𝑡𝑡𝐼𝐼𝐼𝐼 is the inertial delay, 𝑡𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎 is the characteristic movement time, and 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 is the 

relative delay. Therefore, if muscles produce forces proportional to their mass, inertial 

delay will scale with the same exponent as characteristic movement times (Eqns 2.4, 2.5), 

and relative delay would be independent of animal size. As much as animals are like this 

simple model with its assumptions, large and small animals would be dynamically similar 

in their response to disturbances and relative delay would not change with animal size. In 

this situation, inertial delay would not disproportionately burden larger animals.  

Instead, if muscle forces scale with cross-sectional area (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝑀𝑀2/3), getting 

relatively weaker with increases in size, inertial delay scales as: 

𝑡𝑡𝐼𝐼𝐼𝐼 = 2�
𝑀𝑀𝐿𝐿2𝜃𝜃𝑓𝑓

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
= 2�

𝑐𝑐1𝑀𝑀5/3𝜃𝜃𝑓𝑓
𝑐𝑐2𝑀𝑀1 ∝ 𝑀𝑀1/3.√∆𝜃𝜃 2.13 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑡𝑡𝐼𝐼𝐼𝐼
𝑡𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎

∝
𝑀𝑀1/3

𝑀𝑀1/6 ∝ 𝑀𝑀1/6 2.14 

In contrast to dynamic similarity, relative delay will grow with animal size proportional 

to 𝑀𝑀1/6, when muscle force grows only in proportion to cross-sectional area, penalizing 

larger animals. 

Analytical derivation for the posture task 

The posture task models a standing animal recovering its balance after being 

perturbed (Horak and Nashner, 1986; Rushmer et al., 1983; Ting and Macpherson, 2004; 

Winter, 1995). I represented the standing quadruped with an upright single degree of 
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freedom rotational system, which starts from an initial position and has an initial clockwise 

velocity in the sagittal plane due to a perturbation pushing it forward. I defined inertial 

delay as the time required for muscle torque to return the pendulum to rest back at the 

initial upright position after recovering from the perturbation. I again used the simple 

model (Fig 2.1) and ignored the effects of gravity to keep the system linear. For this task, 

the movement is not symmetrical. To analytically derive the equations for inertial delay in 

the posture task, it is convenient to break down the movement into three phases: A, B and 

C. In phase A, the system starts at the initial position with a clockwise velocity due to the 

perturbation. I then apply a counterclockwise torque to decelerate the pendulum and reject 

the velocity perturbation, stopping at a clockwise angle. In phase B, I continue to apply the 

counter-clockwise torque, accelerating the pendulum from rest with a counter-clockwise 

velocity as it moves back towards its initial position. In phase C, I switch the torque 

direction again so that a clockwise torque now decelerates the pendulum and brings it to 

rest at the initial position, thereby completing the response to the velocity perturbation.  

In phase A, the pendulum starts from an initial angle 𝜃𝜃0 𝐴𝐴
  with an initial clockwise 

angular velocity − 𝜃̇𝜃0 𝐴𝐴
  . I defined 𝜃𝜃0 𝐴𝐴

  to be the origin with value 0, and counterclockwise 

movements to be positive. I then applied a counterclockwise torque 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 that brought the 

pendulum to rest at a final position − 𝜃𝜃𝑓𝑓  𝐴𝐴
 . The equations for angular acceleration 𝜃̈𝜃(𝑡𝑡)𝐴𝐴

 , 

angular velocity 𝜃̇𝜃𝐴𝐴 (𝑡𝑡) and angle 𝜃𝜃𝐴𝐴 (𝑡𝑡) are:  

𝜃̈𝜃(𝑡𝑡)𝐴𝐴
 =

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2

=
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝐿𝐿2

2.15 

𝜃̇𝜃𝐴𝐴 (𝑡𝑡) = � 𝜃̈𝜃𝑑𝑑𝑑𝑑𝐴𝐴
 =

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝐿𝐿2

𝑡𝑡𝐴𝐴 − 𝜃̇𝜃0 𝐴𝐴
 = 0 2.16 

𝜃𝜃𝐴𝐴 (𝑡𝑡) = � 𝜃̇𝜃𝐴𝐴 𝑑𝑑𝑑𝑑 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2𝑀𝑀𝐿𝐿2

𝑡𝑡𝐴𝐴 2 − 𝜃̇𝜃0 𝐴𝐴
 𝑡𝑡 𝐴𝐴

 + 0 = − 𝜃𝜃𝑓𝑓  𝐴𝐴
 2.17 

Rearranging Eqn 2.16, I expressed the duration of phase A ( 𝑡𝑡𝐴𝐴 ) in terms of the initial 

velocity of the perturbation: 
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𝑡𝑡𝐴𝐴 =
𝑀𝑀𝐿𝐿2 𝜃̇𝜃0 𝐴𝐴

 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2.18 

Substituting Eqn 2.18 into Eqn 2.17 and simplifying provided the final angle of phase A 

( 𝜃𝜃𝑓𝑓  𝐴𝐴
 ) in terms of the initial velocity 𝜃̇𝜃0 𝐴𝐴

 : 

𝜃𝜃𝑓𝑓 𝐴𝐴
 =

𝑀𝑀𝐿𝐿2 𝜃̇𝜃0 2𝐴𝐴
 

2𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2.19 

In phases B & C, the system is brought back to rest at the origin from the end 

position of phase A (− 𝜃𝜃𝑓𝑓 𝐴𝐴
 ). The movements in phases B and C are equal and opposite, 

with a counterclockwise torque initially accelerating the system from rest to a position of 

− 𝜃𝜃𝑓𝑓 𝐴𝐴
 /2 in phase B, followed by a clockwise torque decelerating the system over the same 

angular distance to rest at the origin in phase C. Therefore, I only need to evaluate the time 

required for phase B, since the time required for phase C will be the same. The subtask to 

be accomplished in phases B and C is the same as that of the entire swing task—begin at 

rest, move through some angular displacement, and end at rest. The additional feature of 

the posture task is that the initial velocity perturbation determines the subsequent angular 

displacement. The equations for the angular acceleration 𝜃̈𝜃(𝑡𝑡)𝐵𝐵
  , angular velocity 𝜃̇𝜃𝐵𝐵 (𝑡𝑡) 

and angle 𝜃𝜃𝐵𝐵 (𝑡𝑡) are:  

𝜃̈𝜃(𝑡𝑡)𝐵𝐵
 =

𝑑𝑑2𝜃𝜃
𝑑𝑑𝑑𝑑2

=
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝐿𝐿2

2.20 

𝜃̇𝜃𝐵𝐵 (𝑡𝑡) = � 𝜃̈𝜃𝐵𝐵 𝑑𝑑𝑑𝑑 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝐿𝐿2

𝑡𝑡𝐵𝐵 + 0 2.21 

𝜃𝜃𝐵𝐵 (𝑡𝑡) = � 𝜃̇𝜃𝐵𝐵 𝑑𝑑𝑑𝑑 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2𝑀𝑀𝐿𝐿2

𝑡𝑡𝐵𝐵 2 + 0 − 𝜃𝜃𝑓𝑓  𝐴𝐴
 =

− 𝜃𝜃𝑓𝑓  𝐴𝐴
 

2
2.22 

Simplifying Eqn 2.22 gives: 

𝜃𝜃𝑓𝑓  𝐴𝐴
 

2
=
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝐵𝐵 2

2𝑀𝑀𝐿𝐿2
2.23 
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Substituting the final angle of phase A ( 𝜃𝜃𝑓𝑓  𝐴𝐴
 ) from Eqn 2.19 into Eqn 2.23 and solving for 

the duration of phase B ( 𝑡𝑡𝐵𝐵 ) gives:  

𝑡𝑡𝐵𝐵 =
𝑀𝑀𝐿𝐿2 𝜃̇𝜃0 𝐴𝐴

 

√2 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2.24 

Solving for the total time for the whole motion (phases A, B and C) gives: 

𝑡𝑡𝐼𝐼𝐼𝐼 = 𝑡𝑡𝐴𝐴 + 2 𝑡𝑡𝐵𝐵 = �1 + √2�
𝑀𝑀𝐿𝐿2 𝜃̇𝜃0 𝐴𝐴

 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
2.25 

Similarly to Eqn 2.10 for the swing task, the analytical derivation in Eqn 2.25 helps 

understand how the various factors contribute to inertial delay (𝑡𝑡𝐼𝐼𝐼𝐼) for the posture task. It 

predicts that the inertial delay during posture recovery after a perturbation is directly 

proportional to the perturbation size 𝜃̇𝜃0 𝐴𝐴
  and inversely proportional to the muscle torque 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.  

Since larger animals have heavier bodies, longer limbs and larger muscles, I scaled 

the size of the perturbation with animal mass to evoke responses with similar relative 

magnitude. To do this, I expressed the initial angular velocity of the pendulum, 

representing the applied perturbation, in terms of linear velocity: 

𝜃̇𝜃0 𝐴𝐴
 =

𝑣𝑣
𝐿𝐿

2.26 

where 𝑣𝑣 is the linear velocity caused by the initial perturbation and 𝐿𝐿 is the length of the 

system. I perturbed each model using an initial linear velocity scaled based on a constant 

dimensionless velocity 𝑣𝑣𝑁𝑁𝑁𝑁 (Hof, 1996):  

𝑣𝑣𝑁𝑁𝑁𝑁 =
𝑣𝑣

�𝑔𝑔𝑔𝑔
 ,       𝑣𝑣 = 𝑣𝑣𝑁𝑁𝑁𝑁�𝑔𝑔𝑔𝑔 ∝ 𝑀𝑀1/6 2.27 

Substituting the values for 𝜃̇𝜃0 𝐴𝐴
  from Eqn 2.26 and 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 from Eqn 2.6 into Eqn 2.25 and 

assuming muscle force scales with dynamic similarity (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝑀𝑀1) predicted that the total 

time for the posture task scales as:  
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𝑡𝑡𝐼𝐼𝐼𝐼 = 𝑡𝑡𝐴𝐴 + 2 𝑡𝑡𝐵𝐵 = �1 + √2�
𝑀𝑀𝐿𝐿2𝑣𝑣

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐿𝐿
=
𝑐𝑐1𝑀𝑀1𝑀𝑀2/3𝑀𝑀1/6

𝑐𝑐2𝑀𝑀1𝑀𝑀1/3𝑀𝑀1/3 ∝ 𝑀𝑀1/6. 𝑣𝑣𝑁𝑁𝑁𝑁 2.28 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑡𝑡𝐼𝐼𝐼𝐼
𝑡𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎

∝
𝑀𝑀1/6

𝑀𝑀1/6 ∝ 𝑀𝑀0 2.29 

If instead muscle force scales with cross-sectional area (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝑀𝑀2/3), the total time for 

the posture task would scale as: 

𝑡𝑡𝐼𝐼𝐼𝐼 = 𝑡𝑡𝐴𝐴 + 2 𝑡𝑡𝐵𝐵 =
𝑐𝑐1𝑀𝑀1𝑀𝑀2/3𝑀𝑀1/6

𝑐𝑐2𝑀𝑀2/3𝑀𝑀1/3𝑀𝑀1/3 ∝ 𝑀𝑀1/2. 𝑣𝑣𝑁𝑁𝑁𝑁 2.30 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑡𝑡𝐼𝐼𝐼𝐼
𝑡𝑡𝑐𝑐ℎ𝑎𝑎𝑎𝑎

∝
𝑀𝑀1/2

𝑀𝑀1/6 ∝ 𝑀𝑀1/3 2.31 

Similarly to the conclusions from Eqn 2.11 in the swing task, I find that if muscles 

produced forces proportional to their mass (dynamic similarity), both inertial delays and 

characteristic movement times would scale with 𝑀𝑀1/6. This would result in constant 

relative delays regardless of animal size. However, if muscles produced forces proportional 

to their cross-sectional area, inertial delay would scale with 𝑀𝑀1/2 in absolute time and 𝑀𝑀1/3 

when expressed relative to movement time.  

The effect of size on inertial delay depended on the task. The effect of size under 

geometric similarity is steeper in the posture task (Eqn 2.30) than what I found in the swing 

task (Eqn 2.13). An additional difference is the effect of movement magnitude—inertial 

delay increases in direct proportion to the size of the velocity perturbation in the posture 

task, and only with the square root of the angular displacement in the swing task. In chapter 

3, I have used computer simulations of nonlinear biomechanical models, parameterized by 

actual measurements from literature, to refine my estimates for the scaling of inertial 

delays. 
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2.4. Discussion 

Here I analytically determined how inertial delays, the component of perturbation 

response time required to physically reposition body segments, scaled under different 

theoretical scaling design rules. I showed that the time available to complete perturbation 

responses (available movement time), scaled with 𝑀𝑀1/6 both for the natural time period of 

a swinging limb and the time required for an animal to fall to the ground. My results showed 

that the scaling of inertial delays would depend both on movement task and movement 

size. If muscles of different sized animals could produce forces proportional to their mass 

(𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝ 𝑀𝑀1), inertial delays in both the swing task and posture task would scale with 𝑀𝑀1/6 

in absolute terms and 𝑀𝑀0 in relative terms. Therefore, small and large animals would be 

dynamically similar in their corrective movements, and larger animals would not be 

disproportionately burdened by longer inertial delays. However, if muscles of different 

sized animals only produce forces proportional to their cross-sectional area (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∝

𝑀𝑀2/3), inertial delays would scale with 𝑀𝑀1/3 in the swing task and 𝑀𝑀1/2 posture task, in 

absolute terms. In relative terms, inertial delays would scale with 𝑀𝑀1/6 in the swing task 

and 𝑀𝑀1/3 posture task. As animals get larger, their inertial delays would also get longer, 

disproportionately burdening larger animals. My results also show that inertial delays 

would increase with the square root of the angular displacement in the swing task, and 

directly with the initial perturbation velocity in the posture task.  

These theoretical results provide a better understanding for the contribution of 

various factors that affect inertial delay, and give me a range of exponents for the actual 

scaling of inertial delay. These results need to be verified against more realistic simulations 

which consider the actual scaling of animal features. The scaling of animal features often 

deviates from theoretical design rules due to physiological limitations or evolutionary 

pressures. Ignoring competing evolutionary pressures, if inertial delays are potentially a 

significant source of delay that slows down response times to the extent that it detrimentally 

affects the neural control of movement and the survivability of the animal, I would expect 

inertial delays in real life to scale closer to predictions based on dynamic similarity. This 

would at least eliminate the disproportionate burden on larger animals. Otherwise, if 

inertial delays are not a significant factor in response time, and need not be compensated 
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for, I would expect inertial delays to scale based on geometric similarity. These predictions 

ignore any other evolutionary pressures or physiological constraints which also depend on 

the same factors that influence inertial delays. Ultimately, the scaling of inertial delays will 

depend on many different factors which affect the inertial properties of body segments 

(mass, length, moment of inertia of body segments), and the force generation capacity of 

muscles (muscle mass, fiber length, cross-sectional area, isometric stress, moment arm). In 

the next chapter, I have used more detailed models that are scaled with animal size and 

parameterized with actual scaling values from the literature, and also considered gravity, 

to obtain more realistic values for the scaling of inertial delays.  
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Chapter 3. Scaling of inertial delays in legged animals 

3.1. Introduction 

The scaling of inertial delay depends upon how muscle forces, muscle moment 

arms, and the body’s inertial properties change with animal size. When compared to small 

animals, larger animals have larger muscles and longer moment arms which increase joint 

torque, but also heavier and longer limbs which increase moment of inertia (Alexander et 

al., 1981; Kilbourne and Hoffman, 2013). These properties don’t scale precisely with 

simplified scaling rules such as geometric or dynamic similarity (Alexander and Jayes, 

1983; McMahon, 1975). Consequently, it is not clear whether allometric scaling of muscle 

forces and muscle moment arms offset size-dependent increases in inertial properties, or 

vice versa. A similar principle is evident in the scaling of skeletal stress, where the 

disadvantages predicted for larger animals when assuming simplified scaling rules are 

reduced or eliminated by compensatory size-related changes in other factors, such as 

posture and moment arms (Alexander, 2003; Biewener, 1990, 1989a). 

To understand whether inertial delays are a significant factor in perturbation 

responses and the neural control of movement, the absolute magnitude of inertial delays 

should also be compared to that of sensorimotor delay and available movement time, not 

just their scaling exponents. I can estimate response time as the sum of sensorimotor delays 

and inertial delays. For a given animal size and perturbation task, inertial delay could 

exceed sensorimotor delay, becoming the dominant contributor to slowing down 

perturbation responses, or vice versa. Relative delay (the ratio of response time to available 

movement time) is also an important indicator of the significance of delays. Longer relative 

delays would result in poorer stability. At its extreme, relative delays that exceed unity 

indicate that the animal would not be able to react at all to perturbations within the available 

time.  

My objective is to quantify the scaling of inertial delays in legged animals using 

numerical simulations of more realistic models, which are parameterized with animal 

features obtained from literature. My intent is to determine how quickly different sized 
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animals can produce corrective movements when their muscles act at their force capacity, 

relative to the time within which those movements need to be performed. I again modeled 

two perturbation response scenarios: a swing leg repositioning task (swing task), and a 

posture correction task (posture task). The nonlinear models considered gravity, and I 

simulated a range of angular repositioning movements in the swing task, and a range of 

perturbation sizes for the posture task. I actuated my models using bang-bang control and 

optimized the time to switch the direction of controller torques to obtain the fastest 

estimates for inertial delay. I compared the more realistic estimates for inertial delay in this 

chapter to theoretical results based on geometric similarity and dynamics similarity 

obtained in chapter 2. I estimated response time as the sum of sensorimotor delay and 

inertial delay. Finally, I compared inertial delay to sensorimotor delay, and response time 

to available movement time, to understand whether these delays significantly affect neural 

control of movement. I also studied the sensitivity of my results to my estimates for the 

isometric torque capacity of muscles, and used Monte Carlo simulations to determine the 

confidence intervals for the inertial delay scaling results.  

3.2. Methods 

3.2.1. Swing task: model 

I modeled the swing task as a distributed mass pendulum actuated by muscle torque 

(Fig 3.1a). I defined inertial delay for this task as the time required to swing the pendulum 

from rest at an initial clockwise angle to rest at a final counterclockwise angle, with 

identical angles in the clockwise and counterclockwise direction. Unlike my simple model, 

I included the effects of gravity, did not assume a point mass, and did not linearize the 

equation of motion. The motion of the pendulum is described by: 

𝜃̈𝜃(𝑡𝑡) =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑀𝑀

+
𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶

𝑀𝑀𝑀𝑀𝑀𝑀
sin𝜃𝜃(𝑡𝑡) 3.1 

where 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the muscle torque, 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 is the distance from the pendulum pivot to limb 

center of mass, 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is the mass of the limb, and 𝑀𝑀𝑀𝑀𝑀𝑀 is the moment of inertia of the 

forelimb about the shoulder joint (Fig 3.1a). I applied the control torque in a bang-bang 
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profile from +𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  to −𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 to determine a lower bound for inertial delay; I did not 

consider realistic muscle dynamics. In this scenario, inertial delay represents the minimum 

movement time possible, and is limited only by maximal torque (Fig 3.1b top panel). 

3.2.2. Swing task: scaling of model parameters 

Table 3.1 summarizes the scaling relationships that I used for my swing task 

parameters. I used scaling equations for forelimb mass, length, distance from shoulder joint 

to limb center of mass, and moment of inertia from Kilbourne and Hoffman (Kilbourne 

and Hoffman, 2013). I used scaling equations for triceps muscle mass, muscle length, and 

moment arm from Alexander et al. (Alexander et al., 1981). I assumed that the triceps is 

the main muscle flexing the shoulder joint in quadrupeds, because it is a prime mover for 

this action and because it is the only shoulder muscle for which all the values necessary to 

compute the scaling of muscle torque are available. Using values for the entire triceps is a 

further simplification, as only one of the three heads of the triceps move the shoulder 

(Rushmer et al., 1983). I assumed that parameters for the antagonistic muscle at the 

shoulder scale in the same way as those for the triceps. 

To determine muscle torque for each animal size, I first determined muscle volume 

by dividing the mass of the muscle by a density of 1060 kg/m3 (Méndez and Keys, 1960). 

I found the muscle cross-sectional area by dividing its volume by the muscle length, 

assuming that muscles have a consistent cross-sectional area. Multiplying the cross-

sectional area by the isometric force generation capacity of mammalian muscle, estimated 

at 20 N/cm2, gave muscle force (Close, 1972; Rospars and Meyer-Vernet, 2016). Finally, 

I calculated muscle torque by multiplying the muscle force and its moment arm.  
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Table 3.1 Swing task input scaling parameters and their confidence intervals. 

Parameter Coefficient (a) Exponent (b) 

 Value 95% CI Value 95% CI 

Forelimb inertial properties (Kilbourne and Hoffman, 2013) 

Mass (kg) 5.82×10-2 4.61×10-2 7.34×10-2 1.00 0.93 1.08 

COM length (m) 5.64×10-2 4.98×10-2 6.38×10-2 0.36 0.32 0.40 

MOI (kg m2) 2.52×10-4 1.61×10-4 3.95×10-4 1.75 1.60 1.89 

Triceps muscle properties (Alexander et al., 1981) 

Mass (kg) 6.20×10-3 5.54×10-3 6.94×10-3 1.11 1.07 1.15 
Muscle length (m) 1.87×10-2 1.72×10-2 2.04×10-2 0.33 0.29 0.37 
Moment arm (m) 8.70×10-3 8.13×10-3 9.31×10-3 0.41 0.38 0.44 

3.2.3. Swing task: simulation 

I performed simulations of the swing task for seven animal masses logarithmically 

spaced from one gram to ten tons, chosen to span the entire size range of terrestrial 

mammals (Jürgens, 2002; Larramendi, 2015). For each animal mass, I used the scaling 

relationships from section 3.2.2 to determine the size-specific parameters for simulation. 

At each animal size, I varied the initial clockwise angle from 0.01 to 30 degrees to quantify 

how movement size affected inertial delay. I numerically simulated the swing task using 

an explicit Runge-Kutta algorithm implemented with MATLAB’s ode45 solver 

(MATLAB R2017b, The MathWorks, Inc., Natick, MA, USA). I used the solver’s event 

detection to determine when the pendulum reached zero angle and, taking advantage of the 

symmetric nature of the problem, switched the direction of the applied torque from 

counterclockwise to clockwise. The simulation continued until the solver’s event detection 

halted the simulation when the pendulum reached zero angular velocity, which occurred 

when the pendulum reached the same counterclockwise angle as it had started in the 

clockwise direction. Fig 3.1b shows an example simulation. Elapsed simulation time was 

the inertial delay for each animal size and each initial angle. For each initial angle, I then 

logarithmically transformed the inertial delay values for the various animal sizes and used 

least squares linear regression to extract the coefficient and exponent for the scaling of 
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inertial delay (LaBarbera, 1989). I used Monte Carlo simulations to estimate the 95% 

confidence intervals.  

3.2.4. Posture task: model 

I modeled the posture task as an inverted pendulum that has been pushed in the 

forward direction resulting in an initial body velocity (Fig 3.2a). The task goal is to apply 

the correct muscle forces to reject the perturbation and return the inverted pendulum to rest 

at an upright posture. I defined inertial delay for this task as the time required to move from 

a vertical position with an initial velocity perturbation in the clockwise direction to rest at 

the vertical position, under the control of muscle torque. Unlike my simple model of this 

task, I included the effects of gravity and did not linearize the equation of motion. The 

motion of this inverted pendulum model is described by:  

𝜃̈𝜃(𝑡𝑡) =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

+
𝑀𝑀𝑀𝑀𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑀𝑀𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2

sin𝜃𝜃(𝑡𝑡) 3.2 

where 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is the muscle torque, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the average length of the forelimb and hindlimb, 

and 𝑀𝑀 is the total mass of the animal. As in the swing task, I applied the control torque in 

a bang-bang profile. In this scenario, inertial delay represents the minimum movement time 

possible, and is limited only by maximal torque. 

3.2.5. Posture task: scaling of model parameters 

Table 3.2 summarizes the scaling relationships I used for the posture task 

parameters. I set the length of the inverted pendulum as the average length of the hindlimb 

and forelimb from Kilbourne and Hoffman, because I wanted the pendulum mass to 

represent the whole-body center of mass of the animal (Kilbourne and Hoffman, 2013). In 

contrast, I set the swing task pendulum length to the length of the forelimb. If I had used 

the length of the forelimb for the posture task inverted pendulum, my values would increase 

by 8% or less. I used scaling equations for ankle extensor muscle mass, muscle length, and 

moment arm from Alexander et al. and computed muscle torque using the steps described 

in section 3.2.2 (Alexander et al., 1981). I assumed that the posture of the animal is 



40 

controlled by the ankle extensor muscle groups on the four legs by setting 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 to be four 

times the torque applied by one set of ankle extensor muscles.  

 Table 3.2 Posture task input scaling parameters and their confidence intervals. 

Parameter Coefficient (a) Exponent (b) 

 Value 95% CI Value 95% CI 

Limb lengths (Kilbourne and Hoffman, 2013) 

Forelimb length (m) 1.61×10-1 1.42×10-1 1.82×10-1 0.38 0.34 0.42 

Hindlimb length (m) 1.63×10-1 1.47×10-1 1.80×10-1 0.36 0.32 0.39 

Ankle extensor muscle properties (Alexander et al., 1981) 

Mass (kg) 5.10×10-3 4.40×10-3 5.92×10-3 0.97 0.92 1.02 
Muscle length (m) 1.06×10-2 8.98×10-3 1.25×10-2 0.14 0.06 0.22 
Moment arm (m) 9.40×10-3 8.79×10-3 1.01×10-2 0.38 0.35 0.41 

3.2.6. Posture task: simulations 

I performed simulations of the posture task for seven animal masses logarithmically 

spaced from one gram to ten tons. For each animal mass, I used the scaling relationships 

from section 3.2.5 to determine the size-specific parameters. At each animal size, I scaled 

the perturbation size based on dimensionless velocity (Eqn 2.27) to evoke a proportional 

response from each animal size. The inverted pendulum can reject the perturbation and 

return to rest at the vertical position only up to a certain limit—if the initial clockwise 

velocity is too large, the counterclockwise torque cannot prevent the inverted pendulum 

from falling to the ground. The largest perturbation that a 10,000 kg animal could reject 

and return to vertical was 0.49 dimensionless velocity, so I varied the initial perturbation 

from 0.01 to 0.49 dimensionless velocity. As with the swing task, I numerically simulated 

the motion in MATLAB. I used optimization to determine when to switch between the 

maximum counterclockwise and clockwise torques such that the pendulum reached the 

original upright posture at the same instant that the velocity went to zero. For each 

perturbation magnitude and animal size, I seeded the optimization with an initial guess of 

the optimal timing and then used the Trust-region dogleg optimization algorithm 
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(implemented using MATLAB’s fsolve function) (Powell, 1968). It used repeated model 

simulations to search for the optimal time to switch torque direction. Fig 3.2b illustrates a 

representative optimal solution. Elapsed simulation time was the inertial delay for each 

animal size and perturbation magnitude. Similar to the swing task, I repeated the 

simulations and optimizations for a range of animal masses and used least squares linear 

regression to extract the coefficient and exponent for the scaling of inertial delay. I then 

used Monte Carlo simulations to estimate the 95% confidence intervals.  

3.2.7. Monte Carlo simulations 

I used Monte Carlo simulations to determine the confidence intervals of my inertial 

delay results, based on the confidence intervals of the input parameters (Buckland, 1984; 

Preacher and Selig, 2012). I have described the parameters and their confidence intervals 

for the swing task in Eqn 3.1 and Table 3.1, and for the posture task in Eqn 3.2 and Table 

3.2.  

Creating probability distributions 

Kilbourne and Hoffman had reported the 95% confidence intervals for the 

exponents of the power laws in their paper, but did not do so for the coefficients (Kilbourne 

and Hoffman, 2013). Therefore, I processed the raw data provided in the supplementary 

material to extract this information. I obtained probability distributions for the limb inertial 

properties using MATLAB’s “fitlm” function, which uses a QR decomposition algorithm 

to compute a linear regression model to the log transformed raw data. Since Alexander et 

al. had 33 specimens in their study to determine muscle properties, I used the reported 

mean and 95% confidence intervals to create t-distributions (31 d.o.f.) for each muscle 

property (Alexander et al., 1981). 

Implementing simulations 

I then sampled one value for each of the input parameters from their respective 

probability distributions and numerically simulated the models to obtain one value for 

inertial delay. For the limb inertial properties, I used MATLAB’s “random” function to 

randomly sample from the linear regression model produced by the “fitlm” function, which 
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assumes a normal distribution of data. For the input muscle properties, I used MATLAB’s 

“trnd” function to randomly sample from the t-distribution. I ran 10,000 simulations in this 

way, obtaining a distribution of coefficients and exponents. My final 95% confidence 

intervals are 1.96 times the standard deviations of these distributions. 

3.3. Results 

3.3.1. Swing task results 

My numerical simulations determined that inertial delay scales with an average of 

𝑀𝑀0.28 for the swing task, across movement magnitudes (Fig 3.1c). This scaling exponent 

falls between my two analytical predictions, which assume that muscle force scales either 

with dynamic similarity 𝑀𝑀1/6 (Eqn 2.11) or with geometric similarity 𝑀𝑀1/3 (Eqn 2.13). 

The coefficient of inertial delay in my numerical simulations increased with the square root 

of movement size (Fig 3.1c top), as predicted by my analytical analysis (Eqn 2.11). As 

movement size increased from 1 degree to 60 degrees, the coefficient increased from 5.8 

ms (4.0–7.5 ms) to 43 ms (30–57 ms), while the exponent remained fairly steady about 

0.28 (0.22–0.34) (Fig 3.5). Here and elsewhere, I report my results as “mean (lower – upper 

95% confidence intervals)”. 

I tested the sensitivity of my numerical results to the applied muscle torque. 

Varying the torque from half to four times its original value only increased the scaling 

exponent of inertial delay from 𝑀𝑀0.276 to 𝑀𝑀0.279. This indicates that my results for the 

scaling of inertial delay are robust to possible inaccuracies in my estimates for the torque 

produced by muscles that flex and extend the shoulder joint. I have provided a short 

description of these tests in section 3.3.5. 
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Fig 3.1 Swing task.  
The model represents repositioning of the swing leg as part of the response to a trip. (a) I modeled the swing 
task as a distributed mass pendulum actuated by muscle torque 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . My model incorporates the distance 
from the pendulum pivot to limb center of mass (𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶), mass of the limb (𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), and moment of inertia of 
the forelimb about the shoulder joint (𝑀𝑀𝑀𝑀𝑀𝑀). (b) Angle (𝜃𝜃), angular velocity (𝜃̇𝜃), and torque (𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) profiles 
in the swing task for a one kg animal for a 30 degree movement, the movement magnitude for which inertial 
delay equals sensorimotor delay in a one kg animal. (c) Variation in coefficient a and exponent b of the power 
law for inertial delay from numerical simulations with movement magnitude (dark blue), sensorimotor delay 
(dark green), and theoretical predictions for the inertial delay exponent based on scaling of muscle force with 
cross-sectional area ∝ 𝑀𝑀2/3 (thick dashed line) and dynamic similarity ∝ 𝑀𝑀1 (thin dashed line). 

3.3.2. Posture task results 

My numerical simulations determined that inertial delay scaled with an average of 

𝑀𝑀0.35 for the posture task, across perturbation magnitudes (Fig 3.2c). The exponent again 

fell between those of the analytical predictions assuming muscle force scaling based on 

dynamic similarity (𝑀𝑀1/6; Eqn 2.28) and on geometric similarity (𝑀𝑀1/2; Eqn 2.30). 

Varying the perturbation size from 0.01 to 0.49 dimensionless velocity caused the 

coefficient to increase nearly linearly from 1.5 ms (1.1–1.9 ms) to 81 ms (53–102 ms), 

while the exponent again remained fairly steady about 0.35 (0.24–0.46) (Fig 3.5). This 

linear dependence on perturbation size was captured by my simple model of this task (Eqn 

2.25).  



44 

 
Fig 3.2 Posture task.  
The model represents an animal recovering its posture after a balance perturbation. (a) I use an inverted 
pendulum with a point-mass body and massless rigid legs, pivoting about a ground-mounted pin joint. My 
model considers limb length (𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), mass of animal (𝑀𝑀), and actuating muscle torque (𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚). (b) Angle 
(𝜃𝜃), angular velocity (𝜃̇𝜃), and torque (𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) profiles in the posture task for a one kg animal for movement 
of 0.21 dimensionless velocity, the perturbation size for which inertial delay equals sensorimotor delay in a 
one kg animal. (c) Variation in coefficient a and exponent b of the power law for inertial delay determined 
from numerical simulations with perturbation size (red), sensorimotor delay (dark green), and theoretical 
predictions for the inertial delay exponent based on scaling of muscle force with cross-sectional area ∝ 𝑀𝑀2/3 

(thick dashed line) and dynamic similarity ∝ 𝑀𝑀1 (thin dashed line). 

3.3.3. Inertial delays, sensorimotor delays and response time 

In both the swing and posture task, inertial delay increases more steeply with animal 

size than sensorimotor delay. Previous research in my lab has studied sensorimotor delay 

in terrestrial mammals of varying sizes and found that it scales with 𝑀𝑀0.21 (More and 

Donelan, 2018). Here I found that swing and posture task inertial delays scaled with an 

average of 𝑀𝑀0.28 and 𝑀𝑀0.35 across perturbation magnitudes, respectively. This does not 

necessitate that inertial delays always exceed sensorimotor delay because inertial delays 

also depend on the movement magnitude—for very small position changes and velocity 

perturbations, inertial delays are far shorter than sensorimotor delay at all animal sizes. But 

as movement magnitudes increase, there reaches a magnitude at which inertial delay first 

matches, and then exceeds sensorimotor delay. This occurs at smaller movement 

magnitudes in larger animals (Fig 3.3). For the swing task, inertial delay exceeded 

sensorimotor delay when the limb swung through angles greater than 30𝑀𝑀−0.14 degrees, 
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corresponding to 63 degrees in a five gram shrew and only 9 degrees in a five ton elephant. 

Shrews experience these limb angles only while galloping, but elephants experience them 

at slower speeds (McMahon, 1975). For the posture task, inertial delay exceeded 

sensorimotor delay for velocity perturbations greater than 0.21𝑀𝑀−0.14 dimensionless 

velocity, corresponding to 0.44 in a five gram shrew and only 0.06 in a five ton elephant. 

For a shrew, this perturbation magnitude is equivalent to its walk-trot transition speed, but 

for an elephant it is equivalent to a much slower speed (Alexander and Jayes, 1983). 

Because day-to-day activities generally involve smaller movements and less extreme 

perturbations, in most situations sensorimotor delay likely dominates response time for 

smaller animals while inertial delays dominate for larger animals (Fig 3.4). 

 
Fig 3.3 Scaling of movements for which inertial delay equaled sensorimotor delay.  
The blue line represents the swing task values, with Y axis shown on the left. The red line represents the 
posture task values, with Y axis shown on the right.  

The dependence of both sensorimotor and inertial delays on animal size results in 

relatively long response times in larger animals. I estimated response time as the sum of 

sensorimotor delay and inertial delay. If this response time equals or exceeds the available 

movement duration, an animal cannot complete the task within the available time. Here, I 
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used swing duration at maximum sprint speed, which scaled as 148𝑀𝑀0.13 ms, as the 

available movement time for fast locomotion (More and Donelan, 2018). I calculated 

relative response time as the response time normalized by the available time—it scaled as 

0.42𝑀𝑀0.08. Inertial delay depends on movement magnitude, and here I assumed a 30° 

swing movement because at this magnitude, inertial delay matches sensorimotor delay in 

a one kg animal. The fraction of swing duration taken up by sensorimotor delay doubled 

over seven orders of magnitude of animal mass, while that of inertial delay increased 

almost six-fold (Fig 3.4). At maximum running speed, response time required only about 

30% of swing duration for a five gram shrew but about 80% for a five ton elephant. For 

larger perturbations, response time could exceed available time in the largest animals. 

These relatively slower response times in larger animals, may hinder their effective control 

of movement. While I considered sensorimotor delays and inertial delays separately in this 

chapter, I studied how these delays combine together under feedforward and feedback 

control in chapter 5, and revisited relative response time (Fig 5.4 and 5.6). 

 
Fig 3.4 Relative response time.  
Inertial delay and sensorimotor delay expressed as fractions of swing duration at maximum sprint speed. 
Inertial delay is shown for a movement of 30 degrees in swing task. At this movement size, inertial delay 
matches sensorimotor delay in a one kg animal. 
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3.3.4. Confidence intervals for the scaling of inertial delay 

Using Monte Carlo simulations, I propagated the uncertainty in the input scaling 

values for the limb inertial properties and muscle properties through to my estimates for 

the scaling of inertial delay. The confidence intervals for the coefficients grew with 

movement size, while it remained constant for the exponents (Fig 3.5). The swing task 

exponent had a mean value of 0.28 and the 95% confidence intervals ranged from 0.22 to 

0.34. The posture task exponent had a mean value of 0.35 and the confidence intervals 

ranged from 0.24 to 0.46. As the mean of the swing task exponent fell within the posture 

task exponent’s confidence intervals, the two perturbations tasks are not statistically 

different. 

 
Fig 3.5 95% confidence intervals for the coefficient and exponent of inertial delay.  
The shaded region represents the 95% confidence interval for the swing task on the left and the posture task 
on the right. Values for the coefficient (a) of the power law are shown on top, and for the exponent (b) are 
shown on the bottom graphs.  

3.3.5. Effect of changing muscle torque on inertial delay scaling 

Due to sparse information on the scaling of muscles involved in swinging the limb 

or correcting posture, and widely varying estimates for the isometric force production 

capacity of mammalian muscle, I am limited in the accuracy of my estimates for muscle 

torque. Therefore, I tested the sensitivity of my numerical results to the applied muscle 

torque. 
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Swing Task 

 I varied the applied torque from zero to four times the original value, for a 30 

degree movement in the swing task. The period of an unactuated forelimb scaled as 

281𝑀𝑀0.19 ms. Inertial delay when using half the original muscle torque value scaled as 

43.3𝑀𝑀0.276 ms, while at four times the original scaled as 15.6𝑀𝑀0.279 ms (Fig 3.6). 

 
Fig 3.6 Effect of muscle torque on the scaling of inertial delay for the swing task.  
I varied muscle torque from 0 to 4 times the initial estimate. I show the coefficient and exponent of the power 
law for a 30 degree movement in the swing task. A value of 0 for muscle torque represents an unactuated 
pendulum. The exponent levels off at a value of 0.28, while the coefficient decreases with inverse 
proportionality to the square root of muscle torque.  

Posture Task 

I varied the applied torque from 0.5 to four times the original value, for a 

perturbation of 0.21 dimensionless velocity for the posture task. If no torque is applied, the 

inverted pendulum would fall to the floor. Therefore, the lower limit of the range of torques 

tested was set to 0.5 times the original value. Inertial delay when using half the original 

muscle torque value scaled as 64.6𝑀𝑀0.363 ms, while at four times the original scaled as 

7.6𝑀𝑀0.346 ms (Fig 3.7). 
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Fig 3.7 Effect of muscle torque on the scaling of inertial delay for the posture task.  
I varied the muscle torque from 0.5 to 4 times the initial estimate. I show the coefficient and exponent of the 
power law for a perturbation of 0.21 dimensionless velocity for the posture task. The exponent levels off at 
a value of 0.346, while the coefficient decreases with inverse proportionality to muscle torque.  

3.4. Discussion 

Here I studied how inertial delays scale with animal size in terrestrial quadrupedal 

mammals. Inertial delay is the component of response time associated with overcoming 

inertia to move body segments or reject a perturbation. I quantified it by modeling two 

scenarios commonly encountered during animal locomotion—a swing task and a posture 

task. The scaling of inertial delays depended on both the movement task and movement 

magnitude. Over the perturbation magnitudes that I considered, inertial delays scaled with 

an average of 𝑀𝑀0.28 for the swing task and 𝑀𝑀0.35 for the posture task, which are both steeper 

than sensorimotor delays at 𝑀𝑀0.21 (More and Donelan, 2018). In chapter 2, I had used 

analytical derivations to show theoretically that if animal muscles could produce forces 

proportional to an animal’s mass, as required for dynamic similarity, inertial delays would 

scale at the same rate as characteristic movement times and relative delay would be 

independent of animal size. However, if muscles only produce forces proportional to their 
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cross-sectional area, which scales with 𝑀𝑀2/3 under geometric similarity, relative delay will 

increase with animal size and disproportionately burden larger animals. My numerical 

predictions for the scaling exponent fell between these theoretical predictions—indicating 

that muscle forces that scale more steeply than with cross-sectional area, and moment arms 

that scale more steeply than assumed by geometric similarity, partly, but not completely, 

overcome the increases in inertia with animal size. 

Previous work has suggested that animals may be more acutely challenged by long 

sensorimotor delays than by inertial delays (Kilbourne and Hoffman, 2013). My 

comparison of these two contributors to response time indicates that this is certainly true 

in all animals when the movement magnitude is small. But for larger movement 

magnitudes, including magnitudes encountered during day-to-day movements, inertial 

delay is greater than sensorimotor delay in larger animals (Fig 3.3). But sensorimotor 

delays appear to always be important—response time is never entirely dominated by 

inertial delay (Fig 3.4). Whether sensorimotor or inertial delays are more challenging to 

motor control depends on both the movement magnitude and the animal size.  

This study had several important limitations. First, the lack of literature on scaling 

of muscle properties constrained the accuracy of our estimates for scaling of muscle torque. 

To my knowledge, only one study reports the scaling of muscle features necessary for 

determining torques acting about the shoulder and ankle joints in quadrupedal mammals 

(Alexander et al., 1981). Second, due to the lack of data for other muscles, I assumed that 

the triceps and the ankle extensors are the dominant muscles involved in moving their 

respective joints and that their antagonistic muscles scale similarly. Thirdly, I assumed that 

the isometric stress produced by mammalian muscle is constant at 20 N/cm2 (Rospars and 

Meyer-Vernet, 2016), although actual isometric stress values for mammalian muscle vary 

from 7 to 148 N/cm2 (Buchanan, 1995; Medler, 2002; Rajagopal et al., 2016). I tested the 

sensitivity of my results to muscle torque and found little effect on the exponent of the 

power law for both tasks (Section 3.3.5). Finally, my models are greatly simplified versions 

of the rather complex multi-jointed, multi-muscled animal. For example, they do not 

consider size specific features such as crouch vs. columnar posture (Biewener, 1989a) and 

high vs. low joint damping (Garcia et al., 2000). A more complete model of different sized 
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animals, like might be possible with OpenSim or a similar approach, may provide more 

realistic estimates of inertial delay (Delp et al., 2007). However, I don’t expect that more 

complete musculoskeletal models would greatly change the identified scaling exponents 

which were robust to the major simplifications of the analytical models of chapter 2 when 

compared to the nonlinear simulations in this chapter. 

My estimate of response time as the sum of sensorimotor delay and inertial delay 

makes several simplifications. Firstly, I assumed that muscles can switch between maximal 

forces instantaneously. However, actual muscles have properties that limit their rate of 

force production, such as activation-deactivation dynamics and force-velocity properties 

(Close, 1972; Loeb et al., 1987; Mörl et al., 2012; Rios et al., 1992; Zajac, 1989). Secondly, 

I assumed that electromechanical delay, force generation delay and inertial delay are 

distinct. However, these component delays are dynamic processes that overlap (More and 

Donelan, 2018; Mörl et al., 2012). Thirdly, I have assumed that sensing delay is 

independent of animal size. I based this assumption on More and Donelan who had 

previously studied the scaling of sensing delay, but due to scarcity of data, assumed it to 

be constant at 0.6 ms across animal size (More and Donelan, 2018). Some sensors, such as 

muscle spindles, are sensitive to length and length changes (Matthews, 1964). For these 

sensors, greater inertia may result in longer sensing delays. This is because the same 

perturbing force will result in slower body accelerations, lower velocities, and smaller 

length changes of the sensors when inertia is greater. While I have not accounted for this 

contribution of inertia to sensing delay in my current modeling work, I suspect it is not a 

major factor—doubling or tripling the nominal sensing delay results in a sensing delay that 

is still short relative to other contributors. Finally, physiological control rarely works in a 

purely feedforward fashion without sensory feedback. Feedback control is more resilient 

to unexpected perturbations and to the inherent noise and delays in biological control 

systems (Kuo, 2002; Todorov and Jordan, 2002). While superior in these regards, it would 

only slow the response time that I have estimated here—the optimal feedforward control 

profile operating at the limits to muscle torque yields a response time that is a lower bound 

on what is possible with feedback control. I suspect that these limitations make my present 

estimates of response time conservative, and that a refined model or an experimental 
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approach will find response times that exceed available movement times, particularly in 

large animals at fast speeds.  

Given the importance of a short response time in controlling movement, how do 

animals cope with their relatively long sensorimotor and inertial delays? I suspect that 

animals benefit from several factors that mitigate the need for rapid response times. In 

smaller animals, these include the innate biomechanical properties of the musculoskeletal 

system to rapidly counteract perturbations. These stabilizing properties arise from the 

intrinsic properties of muscle (Brown and Loeb, 2000; Gerritsen et al., 1998), the increased 

role of joint damping at small sizes (Garcia et al., 2000; Hooper, 2012; Hooper et al., 2009), 

and the geometry of the legs (Biewener, 1989b). While larger animals have underdamped 

joints, the greater inertia of their body segments also mean that an animal can withstand 

larger external perturbations before being destabilized (Kilbourne and Hoffman, 2013). 

Animals may also benefit from neural prediction to help ameliorate the effects of long 

response time (Kuo, 2002; Milton, 2011; More and Donelan, 2018; Wolpert and 

Ghahramani, 2000). This may only be a useful strategy for comparatively larger animals, 

in which the synaptic delays associated with neural computation are short relative to 

movement durations (More and Donelan, 2018).  
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Chapter 4. Analysis of a normalized feedback control 
system with time delays and saturation limits 

4.1. Introduction 

Researchers have used techniques from control theory to gain insights into the 

functioning of biological systems (Cowan et al., 2014; Madhav and Cowan, 2020). We can 

also represent the neural control of movement as a control system (Fig 1.2). The controller 

represents the neural computational centers (supraspinal motor centers, central pattern 

generators and spinal synapses) that generate the motor commands (efferent action 

potentials), the actuator represents the muscles, and the plant represents the body segments 

being moved. The various sensory modalities (visual, vestibular, cutaneous, 

proprioceptive) sense the behavior of the plant and transmit that information back to the 

controller. The signal pathways represent the nerves that transmit information between the 

sensors, controller and plant. This biological control system also faces some of the 

drawbacks seen in synthetic control systems, such as noise and delays in signals, and dead 

zones and saturation limits in the actuator. We can parametrize this control system model 

to represent animal locomotion, and develop and test hypotheses to probe how animals 

control movement. In chapters 2 and 3, I had quantified the scaling of inertial delays (the 

time required to reposition body segments as part of the perturbation response) under bang-

bang control, but did not consider time delays within the control pathways. In chapter 4 

and 5, I have incorporated time delays into the control pathways, and limit the torques 

applied to the plant based on muscle force capacity limits, to understand how these 

limitations together affect the control of perturbation responses. 

The neuromusculoskeletal system has physiological limitations which may 

constrain its performance. These physiological limitations include the magnitude of forces 

that muscles can generate, and the speed at which nerves can conduct action potentials 

(Close, 1972; More et al., 2010). In synthetic systems, time delays and actuator saturation 

are two well studied limitations of both feedforward and feedback control. Actuator 

saturation can represent the limited force generation capacity of muscles, while time delays 

can represent the sensorimotor delays in the nervous system. Actuator saturation reduces 
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responsiveness because the speed at which a physical system can be repositioned depends 

on how quickly the system can be accelerated; this depends on the force capacity of its 

actuators. In the absence of time delays, feedforward and feedback controllers limited by 

actuator saturation can behave similarly. A theoretical feedforward controller “knows” the 

saturation limits and generates motor commands that utilize the maximum available forces 

to produce fast responses (bang-bang control) (Rao and Bernstein, 2001), and a theoretical 

feedback controller could use very high gains that saturate the actuator and produce fast 

responses (Libby et al., 2016). But time delays do not equally affect feedforward and 

feedback systems. While time delays result in slower responses in both feedforward and 

feedback systems, feedback systems have an additional vulnerability. When feedback 

control signals are outdated, the motor commands generated are inaccurate, resulting in 

poor control and reduced stability (Madhav and Cowan, 2020; Milton, 2011). If the delays 

grow too large, the feedback signal will actively destabilize the system instead of 

controlling it. In order to remain stable, the feedback controller has to use lower gains 

which result in lower forces and slower responses. Several studies have explored the effects 

of these limitations on engineering control systems and proposed methods to deal with 

them (Goldfarb and Sirithanapipat, 1999; Insperger, 2006; Skogestad, 2001). 

My objective is to characterize how time delays and actuator saturation affect the 

behavior of a feedback control system that represents the neural control of movement in 

animals, and to quantify how fast the control system can respond given the limitations. 

First, I have revisited a textbook example from linear control systems theory on Bode 

analysis and stability margins. I have then proposed a normalized feedback control system 

under proportional-derivative (PD) control with both time delays and saturation limits. I 

tested the performance of this system in two tasks as I have done in the previous chapters 

on inertial delays. In the swing task, the controller has to reposition the plant from rest at 

the origin, to rest at a new position. In the posture task, the plant has an initial velocity 

perturbation that needs to be rejected, and the controller must return the plant to rest at the 

origin. I determined the optimal controller gains that produced the fastest response times, 

and then characterized how response times change when saturation limits are varied.  
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4.2. Methods 

To understand how time delays and actuator saturation affects feedback control, I 

developed both linear and nonlinear control system models. First, I used Bode plots to 

show how time delays cap the controller gains that can be used in a stable linear feedback 

control system (Section 4.3.1). I performed the derivations both by hand and by using 

MATLAB’s symbolic toolbox (MATLAB R2020a, The MathWorks, Inc., Natick, MA, 

USA). 

 I then proposed a normalized feedback control system with both time delays and 

actuator saturation and used numerical simulations to analyze its behavior. I performed the 

derivations to normalize the equations for this section by hand (Section 4.3.2). I simulated 

the normalized feedback control system using MATLAB’s Simulink toolbox, and used the 

ode45 (Runge-Kutta algorithm) variable time step solver with a relative tolerance of 10-6 

and an absolute tolerance of 10-9 (Section 4.3.3). I modeled the plant as a double 

integrator— it represents single degree of freedom rotational systems which have two 

states—angle 𝜃𝜃(𝑡𝑡) and angular velocity 𝜃̇𝜃(𝑡𝑡) (Rao and Bernstein, 2001). I modeled the 

controller as a proportional-derivative (PD) type controller. I optimized the controller gains 

using MATLAB optimization functions, fminsearch (simplex algorithm) and fmincon 

(interior-point algorithm). 

I evaluated the performance of the system for two perturbation response tasks: a 

swing leg reposition task (swing task), and a posture correction task (posture task), 

similarly to the previous chapters on inertial delays. For the swing task, I set the initial 

conditions for plant states [𝜃𝜃0, 𝜃̇𝜃0] to [0, 0], and the target state to [1, 0]. I calculated both 

settling time and overshoot on the angle vs. time curve. For the posture task, I set the initial 

conditions to [1, -1] and the target state to [1, 0]. I calculated settling time on the angular 

velocity curve and the overshoot on the angle curve. I used 2% settling time thresholds to 

calculate settling time. I defined response time as the fastest settling time of the system 

without any overshoot, and optimized controller gains to search for this specific response.  

I varied the actuator saturation limits to understand how saturation limits affect 

response time in the normalized feedback control system, while keeping time delay fixed. 
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I used curve fitting to obtain an equation to describe the relationship between response time 

and saturation limits. I tested out various curves available in the MATLAB fit library such 

as first, second and third order polynomials, power laws, and single and double 

exponentials—and reported the equations that provided the least root mean square error 

(RMSE).  

In section 4.3.4, I evaluated whether placing time delays in the feedforward 

pathway or the feedback pathway changes system behavior, and I derived these equations 

by hand.  

4.3. Results 

4.3.1. Linear feedback control system and Bode plots 

I used Bode plots to understand how time delays affect a linear feedback control 

system. Bode plots are tools from linear control systems theory that reveal the stability 

margins of a feedback control system, which determine the viable range of parameters that 

one can use while ensuring that the system remains stable. Fig 4.1a shows a block diagram 

of the linear feedback control system. It does not include time delays or actuator saturation 

nonlinearities. It represents a PD controlled double integrator, and the second-order 

differential equation of this system is:  

𝐼𝐼𝜃̈𝜃(𝑡𝑡) = 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = 𝐾𝐾𝑝𝑝[𝑟𝑟(𝑡𝑡) − 𝜃𝜃(𝑡𝑡)] + 𝐾𝐾𝑑𝑑�𝑟̇𝑟(𝑡𝑡) − 𝜃̇𝜃(𝑡𝑡)� 4.1 

where I is the moment of inertia of the plant, 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑑𝑑 are the controller gains, and 𝑟𝑟(𝑡𝑡) 

is the reference signal. 𝜃̈𝜃, 𝜃̇𝜃 𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 are the acceleration, angular velocity and angle of the 

plant, respectively. The controller produced torques 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 to reduce the error between the 

reference signal and the current state, 𝑒𝑒(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) − 𝜃𝜃(𝑡𝑡). 
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Fig 4.1 Linear feedback control system and Bode plot.  
(a) The block diagram of the linear control system, where 𝑅𝑅(𝑠𝑠) is the reference signal, 𝐸𝐸(𝑠𝑠) is the error 
signal, 𝜃𝜃(𝑠𝑠) is the plant output (angle of the plant represented by the double integrator), 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) the actuating 
torque, and 𝑠𝑠 indicates that these time-dependent variables are represented in the frequency domain. (b) Bode 
plot of the open loop transfer function (Eqn 4.2) with the gain crossover frequency (Eqn 4.5) and phase 
margin (Eqn 4.7) indicated on the plot. 

 I performed a Laplace transform on Eqn 4.1 to convert it from the time domain to 

the frequency domain, e.g. 𝑟𝑟(𝑡𝑡) → 𝑅𝑅(𝑠𝑠), in order to get a transfer function that maps the 

commanded angle 𝑅𝑅(𝑠𝑠) onto the plant output 𝜃𝜃(𝑠𝑠) . The open loop transfer function of the 

control system is given by:  

𝐺𝐺(𝑠𝑠) =
𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑑𝑑𝑠𝑠

𝐼𝐼𝐼𝐼2
 4.2 

The closed loop transfer function of the control system with unity feedback is given by:  

𝐻𝐻(𝑠𝑠) =
𝐺𝐺(𝑠𝑠)

1 + 𝐺𝐺(𝑠𝑠) =
𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑑𝑑𝑠𝑠

𝐼𝐼𝐼𝐼2 + 𝐾𝐾𝑑𝑑𝑠𝑠 + 𝐾𝐾𝑝𝑝
 4.3 

The equation for this closed loop control system is equivalent to that for a mechanical 

mass-spring-damper system. Eqn 4.3 shows that the system has three free parameters 

𝐼𝐼,𝐾𝐾𝑑𝑑  𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑝𝑝. I can derive two more parameters which describe the behavior of the system 

from these free parameters—the undamped natural frequency �𝜔𝜔𝑛𝑛 = �𝐾𝐾𝑝𝑝
𝐼𝐼
� and the 

damping ratio �𝜁𝜁 = 𝐾𝐾𝑑𝑑
2�𝐾𝐾𝑝𝑝 𝐼𝐼

� (Åström and Murray, 2008; Ruina and Pratap, 2015). In order 
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to reduce the free parameters that I have to choose, I assumed that the moment of inertia is 

constant, and that the system is critically damped by setting 𝜁𝜁 to 1, 𝐾𝐾𝑑𝑑 = 2�𝐾𝐾𝑝𝑝 𝐼𝐼. 

Therefore, the only parameter that I vary in my control system is the proportional gain, 𝐾𝐾𝑝𝑝.  

A Bode plot of the open loop transfer function provided the stability margins of the 

control system (Fig 4.1b). If the open loop transfer function 𝐺𝐺(𝑠𝑠) equals -1, the closed loop 

transfer function in Eqn 4.3 becomes ∞, signifying instability. This occurs when 𝐺𝐺(𝑠𝑠) has 

a magnitude of 0 dB and a phase of -180° for any input frequency in the Bode plot. In this 

condition, the feedback signal will actively amplify the error and destabilize the feedback 

control system, instead of attenuating the error and stabilizing it. The phase margin is the 

distance of the phase line (Fig 4.1b bottom) from -180°, at the frequency where the gain 

line (Fig 4.1b top) crosses the 0 dB line. While the feedback control system is presently 

linear, adding a time delay would make it nonlinear, and the time delay would cause a 

negative phase shift. The delay that will induce instability—called the delay margin—is 

the time delay that corresponds to the phase margin.  

To determine how the delay margin depended on controller gains and plant inertia, 

I first found the gain crossover frequency by solving for the frequency at which the gain of 

the open loop transfer function equaled 1 (0 dB).  

|𝐺𝐺(𝑠𝑠)| = �
𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑑𝑑(𝑗𝑗𝜔𝜔𝑐𝑐)

𝐼𝐼(𝑗𝑗𝜔𝜔𝑐𝑐)2 � = 1 4.4 

Substituting in the value of 𝐾𝐾𝑑𝑑 for critical damping and solving for 𝜔𝜔𝑐𝑐 gave:  

𝜔𝜔𝑐𝑐 = �√5 + 2 �
𝐾𝐾𝑝𝑝
𝐼𝐼

= 2.06 𝜔𝜔𝑛𝑛  4.5 

The phase margin is how far the phase of the open loop transfer function at the gain 

crossover frequency is from 180°: 

∅(𝐺𝐺(𝑠𝑠)) = tan−1 �
𝐾𝐾𝑑𝑑𝜔𝜔𝑐𝑐
𝐾𝐾𝑝𝑝

� − tan−1 �
0

−𝐼𝐼 𝜔𝜔𝑐𝑐2
� = −1.81 𝑟𝑟𝑟𝑟𝑟𝑟 4.6 
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Eqn 4.6 reduced to a constant value because substituting in Eqn 4.5 for 𝜔𝜔𝑐𝑐 and the critical 

damping equation for 𝐾𝐾𝑑𝑑 caused all variable terms to cancel out.  

𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜋𝜋 − 1.81 = 1.33 𝑟𝑟𝑟𝑟𝑟𝑟   (76.4 °) 4.7 

I obtained the delay margin—the maximum allowable delay before the system becomes 

unstable— by dividing the phase margin by the gain crossover frequency:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
1.33

2.06 𝜔𝜔𝑛𝑛
=  0.647�

𝐼𝐼
𝐾𝐾𝑝𝑝

4.8 

Eqn 4.8 reveals that the maximum proportional gain 𝐾𝐾𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 that a control system with a 

given time delay 𝑡𝑡𝑑𝑑 can use is:  

𝐾𝐾𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 = 0.6472
𝐼𝐼
𝑡𝑡𝑑𝑑2

4.9  

Thus, for a feedback control system with time delay to remain stable, it must limit 

its controller gains such that:  

0 ≤ 𝐾𝐾𝑝𝑝 ≤ 0.6472
𝐼𝐼
𝑡𝑡𝑑𝑑2

, 𝐾𝐾𝑑𝑑 = 2 × 0.647
𝐼𝐼
𝑡𝑡𝑑𝑑

, 𝜔𝜔𝑛𝑛 = 0.647
1
𝑡𝑡𝑑𝑑

 4.10 

Therefore, if a control system has time delays, it limits the viable range of controller gains 

that the system can use while ensuring stability. Eqn 4.10 also reveals proportionalities 

between the controller gains and system parameters, 𝐾𝐾𝑝𝑝 ∝
𝐼𝐼
𝑡𝑡𝑑𝑑2

, 𝐾𝐾𝑑𝑑 ∝
𝐼𝐼
𝑡𝑡𝑑𝑑

, and 𝜔𝜔0 ∝
1
𝑡𝑡𝑑𝑑

. In the 

next section, I developed a normalized feedback control system and determined the optimal 

controller gains that produce the fastest response times within this limited range.  

4.3.2. Normalized feedback control system with time delays and actuator 
saturation 

I developed a normalized feedback control system (one model which can represent 

animals of all sizes), and studied how response times are affected by time delays and 
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actuator saturation limits (Fig 4.2). The equations of motion of the feedback control system 

before normalization are:  

𝐼𝐼𝜃̈𝜃(𝑡𝑡) = 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) 4.11 

𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑) = �
    𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 > 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖
    𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖
−𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 < −𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖

 4.12 

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 = �
0 𝑖𝑖𝑖𝑖 0 < 𝑡𝑡 < 𝑡𝑡𝑑𝑑

𝐾𝐾𝑝𝑝[𝜃𝜃𝑟𝑟 − 𝜃𝜃(𝑡𝑡 − 𝑡𝑡𝑑𝑑)] + 𝐾𝐾𝑑𝑑�−𝜃̇𝜃(𝑡𝑡 − 𝑡𝑡𝑑𝑑)� 𝑖𝑖𝑖𝑖 𝑡𝑡 ≥ 𝑡𝑡𝑑𝑑
 4.13 

where 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 is the controller output subject to saturation limits 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖, and 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 is the torque 

applied to plant. I did not consider actuator (muscle) dynamics in my models, and directly 

applied the controller output as torques to the plant. I also assumed that the controller gets 

full state information; I did not consider sensory dynamics. Due to time delays 𝑡𝑡𝑑𝑑, there is 

an initial deadtime at the start of the simulation where no torques were applied to the plant 

(Eqn 4.13). I only considered a constant reference target 𝜃𝜃𝑟𝑟 in my simulations. 

 
Fig 4.2 Block diagram of feedback control system with time delays and actuator 
saturation.  
𝜃𝜃𝑟𝑟 is the reference signal, 𝐸𝐸(𝑠𝑠) is the error signal, 𝜃𝜃(𝑠𝑠) is the plant output (angle of the pendulum represented 
by the double integrator), 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 is the controller output torque, and 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎  the actuating torque which has been 
subjected to saturation limits. 𝜃𝜃(𝑠𝑠)𝑒𝑒−𝑡𝑡𝑑𝑑 𝑠𝑠 is the time delayed feedback signal. 
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 I normalized Eqn 4.13 using three constants which also represent characteristic 

features of neural control of movement in animals: 

• 𝐼𝐼 is the moment of inertia of the double integrator plant, and also represents the moment 

of inertia of the body segment being moved under neural control by the animal. 

• 𝜃𝜃𝑟𝑟 is the reference target for feedback control, and also represents the size of the 

movement being commanded under neural control in the swing task. For the posture 

task, the movement size is represented by the initial perturbation velocity 𝜃̇𝜃0. 

• 𝑡𝑡𝑑𝑑 is the time delay in feedback control system, and also represents the sensorimotor 

delays in the reflex pathways during neural control of movement.  

The terms in Eqn 4.11 have dimensions of torque (M1L2T-2), where M represents mass, L 

represents length and T represents time dimensions. Therefore, to derive the normalized 

model, I divided each term in Eqn 4.11 by 𝐼𝐼𝜃𝜃𝑟𝑟
𝑡𝑡𝑑𝑑2

.  

𝐼𝐼𝜃̈𝜃

�𝐼𝐼𝜃𝜃𝑟𝑟𝑡𝑡𝑑𝑑2
�

=
𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎

�𝐼𝐼𝜃𝜃𝑟𝑟𝑡𝑡𝑑𝑑2
�

=
𝐾𝐾𝑝𝑝[𝜃𝜃𝑟𝑟 − 𝜃𝜃(𝑡𝑡 − 𝑡𝑡𝑑𝑑)] + 𝐾𝐾𝑑𝑑�−𝜃̇𝜃(𝑡𝑡 − 𝑡𝑡𝑑𝑑)�

�𝐼𝐼𝜃𝜃𝑟𝑟𝑡𝑡𝑑𝑑2
�

4.14 

𝜃̈𝜃 = 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐾𝐾𝑝𝑝�1− 𝜃𝜃�𝑡𝑡 − 1�� + 𝐾𝐾𝑑𝑑 �−𝜃̇𝜃�𝑡𝑡 − 1�� 4.15 

The normalized model is described by Eqn 4.15. Below, I describe how to normalize each 

of the parameters of the model.  

𝑡𝑡 =
𝑡𝑡
𝑡𝑡𝑑𝑑

     𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑡𝑡𝑑𝑑

 4.16 

𝜃𝜃 =
𝜃𝜃
𝜃𝜃𝑟𝑟

     𝜃̇𝜃 =
𝜃̇𝜃

�𝜃𝜃𝑟𝑟𝑡𝑡𝑑𝑑
�

     𝜃̈𝜃 =
𝜃̈𝜃

� 𝜃𝜃𝑟𝑟𝑡𝑡𝑑𝑑2
�

 4.17 

𝜃𝜃0 =
𝜃𝜃0
𝜃𝜃𝑟𝑟

     𝜃̇𝜃0 =
𝜃̇𝜃0

�𝜃𝜃𝑟𝑟𝑡𝑡𝑑𝑑
�

 4.18 
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𝜏𝜏 =
𝜏𝜏

�𝐼𝐼𝜃𝜃𝑟𝑟𝑡𝑡𝑑𝑑2
�

     𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 =
𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖

�𝐼𝐼𝜃𝜃𝑟𝑟𝑡𝑡𝑑𝑑2
� 4.19 

𝐾𝐾𝑝𝑝 =
𝐾𝐾𝑝𝑝

� 𝐼𝐼
𝑡𝑡𝑑𝑑2

�
     𝐾𝐾𝑑𝑑 =

𝐾𝐾𝑑𝑑

� 𝐼𝐼𝑡𝑡𝑑𝑑
� 4.20 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the normalized response time of the model, which I determined using numerical 

simulations for the swing task and posture task in the next section.  

4.3.3. Normalized feedback control system—numerical simulations 

Using numerical simulations, I evaluated how changing the perturbation task, 

controller gains, time delays and actuator saturation limits affected the behavior of the 

normalized feedback control system. First, I did not set saturation limits and used a fixed 

time delay (𝑡𝑡=1), and performed a brute force search to determine how controller gains 

affect settling time and overshoot. Next, I kept time delays constant (𝑡𝑡=1), and varied the 

saturation limits to understand how this affects response times (𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 vs 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖). For each 

saturation limit, I optimized the controller gains to find the fastest response time (fastest 

settling time with 2% thresholds and without any overshoot).  

Swing task results 

A brute force search through a range of controller gains revealed the settling time 

and overshoot landscapes for the swing task. I calculated both settling time and overshoot 

on the angle curve for the swing task (Fig 4.3a bottom panel). The settling time landscape 

is very rough and jagged with several local minima (Fig 4.3b). The overshoot landscape 

has a flat area with zero overshoot, followed by a region of rapid increase. (Fig 4.3c) The 

black dot depicts the fastest settling time achieved without constraining overshoot. The red 

dot corresponds with the fastest settling time without any overshoot; I considered these 

gains to determine response time. Without setting any saturation limits, controller gains of 

0.1617 for 𝐾𝐾𝑝𝑝 and 0.6343 for 𝐾𝐾𝑑𝑑 produced the fastest normalized response time (𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) of 

7.09 in normalized time units (Fig 4.3a).  
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Fig 4.3 Normalized swing task—brute force search.  
(a) Normalized torque (𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎), angular velocity (𝜃̇𝜃) and angle (𝜃𝜃) profiles in the swing task for the fastest 
response. The three black vertical lines depict one time delay period, two time delay periods and the settling 
time. The two black horizontal dashed lines on the angle graph depict the 2% settling time thresholds. (b & 
c) The settling time and overshoot landscapes for the normalized swing task model determined through a 
brute force search for a range of controller gains. The red dot depicts the fastest settling time when overshoot 
is not allowed. The black dot depicts the fastest settling time when overshoot is not constrained (This response 
had 1.76% overshoot). 
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Analysis of the relationship between saturation limits and response time revealed three 

distinct regions (Fig 4.4). The fastest response without considering saturation limits 

produced a peak torque of 0.1617, which equals 𝐾𝐾𝑝𝑝. Fig 4.4 shows how settling time, 

overshoot and controller gains changed when I varied saturation limits from 0.3 to 0.001.  

• High saturation limits region: For 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖> 0.1610, the peak torque did not reach the 

saturation limits, and the settling time and controller gains did not change.  

• Middle region: For 0.079<𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖<0.1610, the saturation limits clipped the positive region 

of the torque curve, and settling time increased gradually with lower saturation limits. 

However, the optimal control gains still remained the same.  

• Low region: 0.009<𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖<0.079, the saturation limits clipped both the positive and 

negative regions of the torque curve, and settling time increased exponentially with 

lower saturation limits. In this region, the controller gains also increased with lower 

saturation limits.  

 
Fig 4.4 Normalized swing task—saturation limits vs. response time. 
(a) Changes in settling time and overshoot when saturation limits are lowered from 0.2 to 0. There are three 
distinct regions in the settling time profile divided by the blue vertical lines. (b) Changes in the optimal 
controller gains that produce the fastest settling times without overshoot for a range of saturation limits. 

 

 



65 

I found that the double exponential function gave the best fit (lowest root mean 

square error) for the middle and low saturation limit regions in the swing task. The swing 

task 𝑡𝑡𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 vs. 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 relationship can be described by the following function:  

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖) = �
7.09 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0.162

5.56𝑒𝑒−27.1𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 + 8.64𝑒𝑒−1.29𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 0.079 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 < 0.161
18.33𝑒𝑒−73.12𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 + 10.12𝑒𝑒−2.88𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 0.009 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 < 0.078

  4.21 

This analysis showed that for feedback control systems with both time delays and 

actuator saturation, there are two ranges in the response time vs. saturation limits graph: a 

force-limited range and a delay-limited range. At the extremes, without saturation limits or 

delays, infinitely high gains can produce instant response times. If I reduced the saturation 

limits to 0, or if the time delays were infinitely long, I would have infinite response times. 

The delay-limited range matched the high saturation limits region (𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 >0.1617), where 

the response time was limited purely by time delays. The force-limited range consisted of 

the middle and low saturation limits regions (𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 <0.1617), where the saturation limits also 

begin to limit response time. Extrapolating to animals, this analysis indicates that for an 

animal to respond quickly, it requires both strong muscles and short sensorimotor delays. 

Deficiencies in either factor will slow the animal’s ability to respond quickly. Whether an 

animal is delay-limited or force-limited would depend on the relative magnitudes of factors 

that affect the perturbation response, such as the moment of inertia of the body segment 

being moved, the sensorimotor delays, the size of the perturbation response movement, and 

the muscle force capacity.  

Posture task results 

For the normalized posture task model, I found that the brute force search results 

were similar to the swing task, while the relationship between response time and saturation 

limits had several differences. For the posture task, I calculated settling time on the angular 

velocity curve, and overshoot on the angle curve. I did this to ensure that the settling time 

thresholds scaled with perturbation size, while not changing with controller gains. The 

settling time landscape was again very rugged. The red dot in Fig 4.5b depicts the controller 

gains that produced the fastest settling time; this set of controller gains also caused no 
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overshoot. Without setting saturation limits, controller gains of 0.1560 for 𝐾𝐾𝑝𝑝 and 0.6530 

for 𝐾𝐾𝑑𝑑 produced the fastest normalized response time (𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) of 7.38 in normalized time 

units (Fig 4.5a). 

 
Fig 4.5 Normalized posture task—brute force search.  
(a) Normalized torque (𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎), angular velocity (𝜃̇𝜃) and angle (𝜃𝜃) profiles in the posture task for the fastest 
response. The three black vertical lines depict one time delay period, two time delay periods and the settling 
time. The two black horizontal dashed lines on the angular velocity graph depict the 2% settling time 
thresholds. (b & c) The settling time and overshoot landscapes for the normalized posture task model 
determined through a brute force search for a range of controller gains. The red dot depicts the fastest settling 
time, and the value does not change if overshoot is allowed or constrained. 
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Analysis of the relationship between saturation limits and response time again 

revealed three distinct regions. The fastest response without considering saturation limits 

produced a peak torque of 0.80. Fig 4.6 shows how settling time, overshoot and controller 

gains changed when I varied saturation limits from 1.2 to 0.001.  

• High saturation limits region: For 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖> 0.80, the peak torque 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 did not reach the 

saturation limits, and the settling time and controller gains did not change.  

• Middle region: For 0.24<𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖<0.79, the saturation limits clipped the positive region of 

the torque curve, and settling time increased gradually with lower saturation limits. 

Unlike the swing task where the controller gains did not change in the middle region, 

the controller gains increased gradually with lower saturation limits. 

• Low region: 0.009<𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖<0.24, the saturation limits clipped both the positive and 

negative regions of the torque curve. Unlike the swing task, the settling time continued 

to increase at the same rate as in the middle region. The controller gains initially show 

a shallow dip before increasing rapidly for lower saturation limits. 

 
Fig 4.6 Normalized posture task—saturation limits vs. response time. 
(a) Changes in settling time and overshoot when saturation limits are lowered from 1 to 0.1. There are three 
distinct regions in the settling time profile divided by the blue vertical lines. (b) Changes in the optimal 
controller gains that produce the fastest settling times without overshoot for a range of saturation limits. 

I again tried fitting various functions to the settling time curve in the middle and 

lower regions. I found that a power law with intercept (power2) function produced the 
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lowest RMSE values. The posture task 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 vs. 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 relationship can be described by the 

following function: 

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖) = �
7.39 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0.80

1.61 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖
−1.10 + 5.17 0.14 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 < 0.80

 4.22 

For this analysis, I have studied the effect of saturation limits on response time and 

kept time delays constant. I could similarly evaluate the effect of varying time delays on 

response time, while keeping saturation limits constant. As I only consider constant 

sensorimotor time delays in my more biologically realistic simulations, while using 

different muscle parameters in the swing and posture task, I have only conducted the first 

analysis for this thesis.  

4.3.4. Delays in the feedforward and feedback pathways 

Reflex pathways suffer from several sensorimotor delays (𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆) which are 

distributed across them. Between the sensors (e.g. cutaneous receptors, muscle spindles) 

and the spinal synapse with the motor neuron, there are sensing delays, nerve conduction 

delays and synaptic delays. I refer to these delays together as sensory delays (𝑡𝑡𝑆𝑆𝑆𝑆). Between 

the spinal synapse and muscles, there are nerve conduction delays, neuromuscular junction 

delays, electromechanical delays and force generation delays. I refer to these delays 

together as motor delays (𝑡𝑡𝑀𝑀𝑀𝑀). In the feedback control model, I placed all the sensorimotor 

delays in the feedback pathways to simplify the analyses (Fig 4.2). I could instead have 

placed the motor delays in the feedforward pathway, and the sensory delays in the feedback 

pathway. Here, I briefly discuss how this assumption does not affect my estimates of 

response time, as it doesn’t affect settling times for a step response.  



69 

 
Fig 4.7 Block diagram with delays in feedforward and feedback pathways. 
 𝑅𝑅(𝑠𝑠) is the reference signal, 𝐸𝐸(𝑠𝑠) is the error signal, 𝜃𝜃(𝑠𝑠) is the plant output (angle of the pendulum 
represented by the double integrator), and 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎(𝑠𝑠) the actuating torque. 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑑𝑑 are the controller gains, 
and 1

𝐼𝐼𝑠𝑠2
 is the double integrator plant.  𝑒𝑒−𝑡𝑡𝑀𝑀𝑀𝑀𝑠𝑠 is the transfer function that delays the motor commands due to 

the time delay 𝑡𝑡𝑀𝑀𝑀𝑀, and 𝑒𝑒−𝑡𝑡𝑆𝑆𝑆𝑆𝑠𝑠 is the equivalent transfer function for the sensory feedback.  

The closed loop transfer function of a system 𝐽𝐽(𝑠𝑠), with a transfer function 𝐺𝐺(𝑠𝑠) in 

the feedforward pathway and 𝐻𝐻(𝑠𝑠) in the feedback pathway is given by 𝐺𝐺(𝑠𝑠)
1+𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠). 

Therefore, the block diagram in Fig 4.7 has a transfer function:  

𝐽𝐽(𝑠𝑠) =
𝜃𝜃(𝑠𝑠)
𝑅𝑅(𝑠𝑠) =

𝐺𝐺(𝑠𝑠)
1 + 𝐺𝐺(𝑠𝑠)𝐻𝐻(𝑠𝑠) =

�𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑑𝑑𝑠𝑠� 𝑒𝑒−𝑡𝑡𝑀𝑀𝑀𝑀𝑠𝑠  1
𝐼𝐼𝑠𝑠2

1 + ��𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑑𝑑𝑠𝑠� 𝑒𝑒−𝑡𝑡𝑀𝑀𝑀𝑀𝑠𝑠  1
𝐼𝐼𝑠𝑠2  𝑒𝑒−𝑡𝑡𝑆𝑆𝑆𝑆𝑠𝑠�

 4.23 

𝜃𝜃(𝑠𝑠)�𝐼𝐼𝑠𝑠2 + �𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑑𝑑𝑠𝑠� 𝑒𝑒−(𝑡𝑡𝑀𝑀𝑀𝑀+𝑡𝑡𝑆𝑆𝑆𝑆)𝑠𝑠� = 𝑅𝑅(𝑠𝑠)��𝐾𝐾𝑝𝑝 + 𝐾𝐾𝑑𝑑𝑠𝑠� 𝑒𝑒−𝑡𝑡𝑀𝑀𝑀𝑀𝑠𝑠� 4.24 

𝐼𝐼𝜃𝜃(𝑠𝑠) 𝑠𝑠2 + 𝐾𝐾𝑝𝑝 𝑒𝑒−(𝑡𝑡𝑀𝑀𝑀𝑀+𝑡𝑡𝑆𝑆𝑆𝑆)𝑠𝑠 𝜃𝜃(𝑠𝑠) + 𝐾𝐾𝑑𝑑 𝑒𝑒−(𝑡𝑡𝑀𝑀𝑀𝑀+𝑡𝑡𝑆𝑆𝑆𝑆)𝑠𝑠 𝜃𝜃(𝑠𝑠) 𝑠𝑠
= 𝐾𝐾𝑝𝑝 𝑒𝑒−𝑡𝑡𝑀𝑀𝑀𝑀𝑠𝑠 𝑅𝑅(𝑠𝑠) + 𝐾𝐾𝑑𝑑 𝑒𝑒−𝑡𝑡𝑀𝑀𝑀𝑀𝑠𝑠 𝑅𝑅(𝑠𝑠) 𝑠𝑠 4.25

 

Converting Eqn 4.25 from the 𝑠𝑠 domain to the time domain:  
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𝐼𝐼𝜃̈𝜃(𝑡𝑡) + 𝐾𝐾𝑝𝑝 𝜃𝜃�𝑡𝑡 − (𝑡𝑡𝑀𝑀𝑀𝑀 + 𝑡𝑡𝑆𝑆𝑆𝑆)� + 𝐾𝐾𝑑𝑑 𝜃̇𝜃�𝑡𝑡 − (𝑡𝑡𝑀𝑀𝑀𝑀 + 𝑡𝑡𝑆𝑆𝑆𝑆)�
= 𝐾𝐾𝑝𝑝 𝑟𝑟(𝑡𝑡 − 𝑡𝑡𝑀𝑀𝑀𝑀) + 𝐾𝐾𝑑𝑑 𝑟̇𝑟(𝑡𝑡 − 𝑡𝑡𝑀𝑀𝑀𝑀) 4.26

 

𝐼𝐼𝜃̈𝜃(𝑡𝑡) = 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)
= 𝐾𝐾𝑝𝑝�𝑟𝑟(𝑡𝑡 − 𝑡𝑡𝑀𝑀𝑀𝑀) − 𝜃𝜃�𝑡𝑡 − (𝑡𝑡𝑀𝑀𝑀𝑀 + 𝑡𝑡𝑆𝑆𝑆𝑆)�� + 𝐾𝐾𝑑𝑑�𝑟̇𝑟(𝑡𝑡 − 𝑡𝑡𝑀𝑀𝑀𝑀) − 𝜃̇𝜃�𝑡𝑡 − (𝑡𝑡𝑀𝑀𝑀𝑀 + 𝑡𝑡𝑆𝑆𝑆𝑆)�� 4.27

 

The total sensorimotor delay is the sum of the sensory and motor delays:   

𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡𝑀𝑀𝑀𝑀 + 𝑡𝑡𝑆𝑆𝑆𝑆 4.28 

Eqn 4.27 shows us that if there were separate delays in the feedforward and feedback 

pathways, the reference signal would be delayed only by the motor delays (𝑡𝑡𝑀𝑀𝑀𝑀), while the 

sensory feedback would be delayed by the total delays (𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆).  

However, if I combined all the delays and put them in the feedback pathway, I could 

remove 𝑡𝑡𝑀𝑀𝑀𝑀 from Eqn 4.27 and replace 𝑡𝑡𝑆𝑆𝑆𝑆 with 𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆 to get:  

𝐼𝐼𝜃̈𝜃(𝑡𝑡) = 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)
= 𝐾𝐾𝑝𝑝[𝑟𝑟(𝑡𝑡) − 𝜃𝜃(𝑡𝑡 − 𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆)] + 𝐾𝐾𝑑𝑑�𝑟̇𝑟(𝑡𝑡) − 𝜃̇𝜃(𝑡𝑡 − 𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆)� 4.29

 

A comparison of Eqns 4.27 and 4.29 clarifies how having delays in both the feedforward 

and feedback pathways will make the tracking of a time varying reference signal more 

difficult than if there were delays only in the feedback pathway. However, since I am only 

considering a step response in my original simulations, the reference signal is constant. 

Therefore, Eqn 4.27 and 4.29 would be equivalent.  

4.4. Discussion 

In this chapter, I characterized how time delays and actuator saturation affected the 

behavior of a feedback control system, and quantified how fast the control system can 

respond given the limitations. Using the Bode plot of a linear control system, I showed 

how time delays cap the maximum controller gains that can be used in a stable feedback 

control system. I then analyzed a normalized feedback control system with both time delays 

and actuator saturation. This analysis showed that perturbation response times in animals 

can either be limited by the force generation capacity of muscles (force-limited) or by 
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sensorimotor time delays which constrain the maximum feedback gains that can be used to 

produce stable responses (delay-limited). I provided predictive equations generated using 

curve fitting for the relationship between saturation limits and response time, for the swing 

task and posture task.  

The behavior of this feedback control system is very sensitive to simulation 

parameters, and I have described three examples here. Firstly, slight changes in the 

definition of allowable overshoot can significantly change the settling times obtained 

through optimization. I chose to allow no overshoot in the simulations that I considered to 

determine response time, by constraining overshoot to zero while optimizing controller 

gains. I based this partially on control systems theory; I wanted to obtain the equivalent of 

a critically damped response of a mass-spring-damper system (Fig 1.2). Furthermore, when 

an animal is trying to accurately place it foots to recover from a trip during a stumble 

correction response, overshooting the step can cause a fall or further destabilize the 

response. Secondly, slight changes in the definition of settling time thresholds can cause 

large discontinuous changes in settling time. This is because the response of a time-delayed 

feedback control system oscillates continuously. The oscillations are initially large, and 

they get smaller in amplitude over time, but they never stop even after reaching within the 

settling time thresholds. A slight change in controller gains could result in an oscillation 

reaching below the lower settling time threshold (Fig 1.2 underdamped-blue line), causing 

settling time to jump to the next time point where the oscillations move back within the 

settling time thresholds. The same thing can happen for a slight change in the definition of 

settling time thresholds. This feature makes the error landscape of the optimization very 

jagged, with many discontinuities and local minima (Fig 4.3, 4.5). To ensure that I have 

obtained the global minimum, I had to try multiple starting points and different 

optimization algorithms (MATLAB’s fminsearch and fmincon optimization functions). 

Thirdly, in the posture task, we can choose to calculate settling time on the angle profile or 

the angular velocity profile; this choice can result in different settling times for the same 

response with the same controller gains. In a linear feedback control system, the settling 

time does not depend on the size of the perturbation. If you scale the target state of the step 

response, the feedback controller will automatically scale its force output, and the settling 

time thresholds will also get scaled wider, to generate the same settling time. While the 
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swing task response matches a classical step response (repositioning the plant state from 

rest at origin to rest at target state), the posture task involves starting at the origin with an 

initial velocity and returning to rest at the origin. Instead of calculating both overshoot and 

settling time on the angle curve, I chose to calculate settling time on the angular velocity 

curve and overshoot on the angle curve (Fig 4.5). By doing so, the settling time thresholds 

get scaled based on the size of the initial angular velocity perturbation, but does not change 

with controller gains. As overshooting the vertical position during a posture correction can 

also result in loss of balance, I calculated overshoot on the angle curve and constrained it 

to be zero during the optimization.  

Several research groups from the field of engineering control systems have studied 

the effects of time delays and actuator saturation on feedback control (Cao et al., 2002; 

Fang and Lin, 2006; Lin and Fang, 2007; Mazenc et al., 2004, 2003; Yakoubi and Chitour, 

2007). Rao and Bernstein studied the performance of several controller types including PD 

controllers in their ability to stabilize control systems with limitations such as saturation 

limits, mass variation, pole perturbation, feedback time delays, unmodeled dynamics and 

input nonlinearities (Rao and Bernstein, 2001). They showed that the PD controller worked 

well compared to other controllers in its ability to stabilize a feedback control system with 

time delays and saturation limits. Goldfarb and Sirithanapipat studied how actuator 

saturation affected the tracking performance of a PD controlled servo-motor system 

(Goldfarb and Sirithanapipat, 1999). For a linear system (without actuator saturation limits) 

required to track a sinusoidal signal composed of many frequencies, using higher controller 

gains improves tracking of a reference input, and infinite controller gains provide perfect 

tracking of all frequencies. The authors showed that for a feedback control system with 

actuator saturation, there is an optimal set of controller gains that provide the best tracking 

performance, and these gains command torques that exceed the saturation limits. Using 

very low gains which prevented actuator saturation caused poor tracking performance, but 

so did using gains higher than the optimal set. Skogestad provided analytical tuning rules 

to derive PID controller gains that achieve robust performance in time delayed control 

systems (Skogestad, 2001). Zhou et al. developed a family of controllers based on low gain 

feedback methodology derived using the parametric Ricatti equation that can stabilize a 

double integrator plant with both time delays and actuator saturation (Zhou et al., 2010). 
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Skogestad, Rao and Bernstein, and Goldfarb and Sirithanapipat show that even though PD 

control was developed for linear systems, it performs well for control systems with 

nonlinearities (Goldfarb and Sirithanapipat, 1999; Rao and Bernstein, 2001; Skogestad, 

2001). I use the PD controller in this thesis as it is the simplest controller to implement and 

interpret. I assumed that the synapses at the spinal cord that perform the computations for 

reflexive control encode simple controller algorithms like PD control, while the supraspinal 

motor centers handle more complex controller algorithms that could require internal 

models and memory. In contrast to the engineering application of these studies, I used 

feedback control systems to model reflexive perturbation responses in animals. Towards 

this goal, I have optimized the feedback system to produce a very specific response (to 

achieve fastest settling times without any overshoot), and characterized how the system 

behaves for changes in time delays and saturation limits.  

Animal features that affect feedback control scale at different rates with animal 

size. For example, in the swing task, limb moment of inertia scales as 2.52×10-4M1.75 kg.m2  

while muscle torques scale as 0.54M1.19 N.m, and sensorimotor delays scale as 31M0.21 ms 

(Kilbourne and Hoffman, 2013; More and Donelan, 2018; Thangal and Donelan, 2020). 

Depending on the relative magnitude of these features to each other, perturbation responses 

under feedback control in animals of a certain size could be delay-limited or force-limited. 

This could potentially result in different control choices for perturbation responses in 

different animal sizes. In the next chapter, I scaled the feedback control system to represent 

animals of different sizes and also considered gravitational effects, to obtain more realistic 

estimates for perturbation response times and determine whether terrestrial mammals are 

delay-limited or force-limited.  
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Chapter 5. Scaling of response times under feedforward 
and feedback control with sensorimotor delays in legged 
animals 

5.1. Introduction 

Perturbation responses in animals rely on both feedforward and feedback control 

strategies to generate motor commands (Dickinson et al., 2000; Gordon et al., 2020; Kuo, 

2002). As feedforward control produces predefined motor commands which do not rely on 

sensory feedback, this strategy can be used to rapidly respond to a perturbation. However, 

since the feedforward controller does not check whether the perturbation response is going 

as planned, it cannot correct for any unexpected disturbances that occur during its 

execution. The feedforward controller also relies on previous experience and learned 

behavior to determine the motor commands, which might not be appropriate in a novel 

context. On the other hand, feedback controllers determine motor commands using sensory 

feedback about the plant behavior, and can correct for unexpected disturbances and ensure 

that the perturbation response proceeds accurately. Feedback controllers have their own 

disadvantages; they are susceptible to noise and time delays in the signal pathways, and 

can become unstable under certain conditions. Therefore, by combining both strategies and 

adapting them to various contexts, animals are able to utilize the advantages of each 

strategy, while compensating for their drawbacks.  

Several groups have studied the neural control of perturbation responses in animals. 

Daley and colleagues have conducted a comprehensive series of experiments to understand 

perturbation responses in running guinea fowl. The perturbations included potholes, step 

up and step down obstacles; these perturbations were significant enough to force the bird 

to alter its gait, but allowed the bird to continue running and did not cause a fall. They 

found a consistent set of strategies that the birds used to navigate these perturbations. The 

birds maintained a constant swing leg angular cycling rate through feedforward control of 

the proximal leg joints, irrespective of whether they were able to anticipate the perturbation 

or not. The distal joints then responded preflexively to compensate for the perturbation, 

acting either as a spring or a damper depending on the leg posture at heelstrike. The 
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perturbation responses were predominantly under feedforward and preflexive control, and 

feedback modulation of the leg only occurred towards the very end of the perturbed stance 

phase (Biewener and Daley, 2007; Daley, 2018; Daley and Biewener, 2011, 2006; Gordon 

et al., 2020). Farley and colleagues studied human responses to anticipated or unanticipated 

changes in floor stiffness while hopping and running (Ferris et al., 1999; Moritz and Farley, 

2006). They showed that humans adjust the overall limb stiffness under feedforward 

control and rely on preflexes to dampen out the effects of the perturbation. Similarly, 

studies on cockroaches have also shown that they rely on feedforward control for 

navigation (Dudek and Full, 2006; Jindrich and Full, 2002). On the other hand, Welch and 

Ting studied human postural responses to support surface translation, and showed that a 

time delayed feedback control model under proportional-derivative-accelerative (PDA) 

control can reproduce the EMG signals of the postural response (Welch and Ting, 2008), 

indicating that postural responses have a feedback control component. 

Several studies have investigated the effects of sensorimotor delays on neural 

control, and hypothesized about the compensatory mechanisms that animals could be using 

to overcome the drawbacks caused by these time delays. The simplest method to deal with 

time delays in a negative feedback control system is to reduce the controller gains—this 

slows down the system’s performance but prevents instability. Weiland et al. artificially 

introduced time delays into the reflex loops that control the femur-tibia joint in stick 

insects, and showed that increasing time delays caused instability in the form of tremors 

(Weiland et al., 1986). Tuthill et al. proposed that the supraspinal motor centers act to 

inhibit the activity (reduce the controller gains) in reflex circuits in order to keep them 

stable despite the sensorimotor delays, as severing supraspinal inputs result in tremors in 

animals (Dallmann et al., 2021; Tuthill and Azim, 2018). A more computationally intensive 

method to compensate for delays is to use neural prediction—the nervous system could 

implement internal models that can estimate the present state of the body from time delayed 

sensory feedback. Miall et al. suggested that one of the functions of the cerebellum is to 

act as a Smith predictor, an internal model specifically designed to compensate for time 

delays in feedback control systems (Miall et al., 1993). Another compensatory method is 

to use positive feedback control instead of negative feedback control in systems with time 

delays—studies have shown that the nervous system implements positive force feedback 
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in the control of rhythmic movements like walking and hopping (Geyer et al., 2003; Hatz 

et al., 2012; Prochazka et al., 1997a). Besides time delays, the nervous system also has to 

deal with other drawbacks such as noise, muscle force capacity limits, limited sensory 

resolution and sensory dead zones. The nervous system could take advantage of the 

interaction between these drawbacks to simplify control. Milton and colleagues studied 

posture control in humans, and suggested that act-and-wait control strategies which take 

advantage of the interplay between the effects of noise and time delays would be effective 

for neural control (Insperger et al., 2015; Milton et al., 2009; Milton, 2015, 2011). Milton 

and Insperger also modeled quiet standing in humans using a feedback control system with 

proportional-derivative (PD) control of an inverted pendulum—and considered time 

delays, saturation limits on the ankle muscle force capacity, and a sensory deadzone in the 

sensing of body angle and angular velocity (Milton and Insperger, 2019). While we would 

expect each of these nonlinearities to detrimentally affect balance, the authors show that 

together, they improve stability.  

  As animal size increases, several features that could affect control also change—

sensorimotor delays get longer, muscles get proportionally weaker, and body segments get 

heavier (Alexander et al., 1981; Heglund et al., 1974; Kilbourne and Hoffman, 2013; More 

and Donelan, 2018; Thangal and Donelan, 2020). But working to the advantage of motor 

control is that the time available to make a corrective response gets longer—larger animals 

take longer to fall to the ground when they lose balance, and they have longer stride times 

when running (Heglund et al., 1974). The detrimental effects of physiological limitations 

such as time delays and muscle force capacity limits would be most evident when an animal 

is forced to respond to a perturbation as fast as possible; this will require using the 

maximum possible muscle forces while ensuring that the response remains accurate and 

does not go unstable. For a given animal size, feedback control could be delay-limited or 

force-limited. Feedback control response times could be similar to or slower than 

feedforward response times. The response times under feedback and feedforward control 

might exceed available time, especially at fast movement speeds where the available time 

to prevent a fall after a perturbation is very limited. Depending on these relationships, 

animals of different sizes could adopt different control strategies: feedback only, 

feedforward only, or a combination of feedback and feedforward control. As conducting 
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perturbation studies on animals of varying sizes while they are running at maximum speeds 

would be difficult, I instead use computational simulations to model their behavior.  

My objective is to understand how muscle force capacity limits and sensorimotor 

delays affect fast perturbation response times in animals of different sizes. Towards this 

objective, I developed feedforward and feedback control systems that can be scaled to 

represent the size range of terrestrial mammals, from 1 gram to 10 tons. I parameterized 

the models with sensorimotor delays, muscle force capacity limits and inertial properties 

using scaling relationships from literature. I again quantified response times for two 

perturbation response tasks: a swing leg repositioning task (swing task), and a posture 

recovery after a balance perturbation task (posture task). I defined response time as the 

settling time of the control system without overshoot, and determined the controller gains 

that produced the fastest responses using optimization. From these simulations, I estimated 

the scaling relationship between response time and animal size for both feedforward and 

feedback control. I determined whether feedback control of fast perturbation responses in 

terrestrial mammals is delay-limited or force-limited. By comparing response times under 

these different types of control to each other, and to available movement times, I quantified 

the effectiveness of these control strategies across animal size. 

5.2. Methods 

I developed feedforward and feedback control models that are scaled with animal 

size and parameterized them with values from literature (Fig 5.1). I created these models 

using MATLAB (MATLAB R2020a, The MathWorks, Inc., Natick, MA, USA). For the 

feedforward control models, I used the ode45 (explicit Runge-Kutta algorithm) variable 

time step solver to numerically integrate the equations of motion. For the feedback control 

models, which required time-delayed state information, I used the dde23 delay-differential 

equation solver (explicit Runge-Kutta algorithm with discontinuity tracking) to 

numerically integrate the equations of motion. For both models, I used a relative tolerance 

of 10-6 and an absolute tolerance of 10-9. I quantified their response times for two 

perturbation response scenarios in animal locomotion: a swing limb repositioning task and 

a whole-body posture recovery task. For the swing task, I set the initial conditions for plant 
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states [𝜃𝜃0, 𝜃̇𝜃0] to [-15°, 0], and the target state to [15°, 0]. I calculated both settling time 

and overshoot on the angle vs. time curve. For the posture task, I set the initial conditions 

to [0, -0.21 dimensionless velocity] and the target state to [0, 0]. I calculated the 

dimensionless velocity as 𝑣𝑣
�𝑔𝑔𝑔𝑔

, where 𝐿𝐿 is the length of the inverted pendulum. I calculated 

settling time on the angular velocity curve and the overshoot on the angle curve. I used 2% 

settling time thresholds to calculate settling time. I defined response time as the fastest 

settling time of the system without any overshoot, and optimized controller gains to search 

for this specific response. 

  
Fig 5.1 Block diagram of the feedback and feedforward control systems. 
The feedback system (top) used a PD controller to generate torque based on time delayed state feedback. The 
feedforward system (bottom) used a bang-bang controller to generate torques.   

5.2.1. Swing task 

The swing task represented an animal that has encountered a trip of the forelimb 

during early swing phase, and has to reposition its foot by swinging it forward to avoid a 

fall (Forssberg, 1979; Rossignol et al., 2006). I modeled the limb as a distributed mass 

pendulum, and the task required repositioning the foot from rest at an initial clockwise 

angle to rest at a final counterclockwise angle. The equation of motion is described by:  
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𝐼𝐼𝜃̈𝜃(𝑡𝑡) = 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 5.1 

where 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 is the torque exerted by the muscle, and 𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 the torque exerted by gravity. 

𝐼𝐼 is the moment of inertia of the pendulum. I set the angle to be zero when the pendulum 

is pointing vertically downwards and defined the counterclockwise direction to be positive. 

The torque due to gravity is described by:  

𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) = 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑔𝑔𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 sin𝜃𝜃(𝑡𝑡)  5.2 

where 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the mass of the pendulum, 𝐼𝐼 is its moment of inertia, and 𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶 is the 

distance from the shoulder joint to the limb center of mass. 𝑔𝑔 is the acceleration due to 

gravity. 

Under feedback control, 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 is the torque applied to the plant, and 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 is the PD 

controller output subject to saturation limits:  

𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑) = �
    𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 > 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖
    𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 − 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖
−𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 < −𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖

 5.3 

𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 is the saturation limit and is estimated as the maximum torque that can be applied by 

the triceps muscle about the shoulder joint to reposition the swing limb.  

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 is described by:  

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = �
0 𝑖𝑖𝑖𝑖 0 < 𝑡𝑡 < 𝑡𝑡𝑆𝑆𝑆𝑆

𝐾𝐾𝑝𝑝[𝑟𝑟 − 𝜃𝜃(𝑡𝑡 − 𝑡𝑡𝑆𝑆𝑆𝑆)] + 𝐾𝐾𝑑𝑑�−𝜃̇𝜃(𝑡𝑡 − 𝑡𝑡𝑆𝑆𝑆𝑆)� + 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑡𝑡 ≥ 𝑡𝑡𝑆𝑆𝑆𝑆
 5.4 

where 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑑𝑑 are the controller gains, 𝑟𝑟 is the reference, 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the steady state 

torque required to counter gravity at the final state, and 𝑡𝑡𝑆𝑆𝑆𝑆 is the sensorimotor delay. 

For a duration equal to the sensorimotor delay at the beginning of the simulation, the 

controller did not apply any forces, and the pendulum moved under the influence of gravity. 

I assumed that the animal had been perturbed during this initial period, but has not had 

enough time to sense the perturbation, compute a recovery strategy and send the motor 
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commands to the muscles. Once this deadtime is over, the controller began to exert forces 

on the pendulum, using historical state information. 

As Eqn 5.4 required time delayed state information, I used dde23 to numerically 

integrate the delay differential equation. I used optimization to solve for the PD controller 

gains that minimized the settling time, while constraining overshoot to 0.  

Under feedforward control, 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 represented the torque produced by the bang-bang 

controller, with an initial deadtime:  

𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = �
0 𝑖𝑖𝑖𝑖 0 < 𝑡𝑡 < 𝑡𝑡𝑆𝑆𝑆𝑆

    +𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡𝑆𝑆𝑆𝑆 < 𝑡𝑡 < 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
−𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ < 𝑡𝑡 < 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒

5.5 

As Eqn 5.5 requires only real time state information, I implemented the ode45 solver to 

integrate the ordinary differential equation. I used the solver’s event detection to determine 

when the pendulum reached zero velocity and stopped the simulation. I used optimization 

to search for the ideal time to switch the direction of the bang-bang controller torque 

(𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ), such that it minimized the difference between the reference target and the final 

position of the pendulum.  

I parameterized the models using the same values that I used in my previous work 

to determine the scaling of inertial delays in chapter 2 and 3 (Thangal and Donelan, 2020). 

I scaled the sensorimotor delays in the feedback pathway (𝑡𝑡𝑆𝑆𝑆𝑆) as 31M0.21 ms (More and 

Donelan, 2018). I scaled the ability of the triceps to generate torque (𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖) as 0.54M1.19 Nm, 

the moment of inertia of the mammalian forelimb (𝐼𝐼) as 0.00025M1.75 kg.m2, the distance 

from the shoulder joint to the forelimb center-of-mass (𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶) as 0.056M0.36 m, and the 

mass of the forelimb (𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙), as 0.058M1 kg (Alexander et al., 1981; Kilbourne and 

Hoffman, 2013; Thangal and Donelan, 2020). I estimated 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 for each animal size using 

scaling values for the triceps muscle mass, muscle length and moment arm from Alexander 

et al. (Alexander et al., 1981). I found muscle volume from mass by assuming a density of 

1060 kg/m3 (Méndez and Keys, 1960), and cross-sectional area by dividing muscle volume 

by muscle length. I then multiplied cross-sectional area by the isometric stress of muscles, 

estimated to be 20 N/cm2 (Close, 1972; Rospars and Meyer-Vernet, 2016), to get muscle 
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force. 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 is muscle force multiplied by the moment arm. I assumed that the triceps is the 

main muscle moving the shoulder joint in quadrupeds, that the antagonistic muscle has 

similar parameters to the triceps, and that the muscle has constant cross-sectional area, as 

scaling data on these muscles are limited (Thangal and Donelan, 2020). While feedforward 

response times increased with the size of the movement, feedback response times did not. 

The task required swinging the limb from rest at -15° to rest at +15°, for consistency 

between the feedback and feedforward simulations. I found response times for seven 

logarithmically spaced animal sizes from 1 gram to 10 tons to cover the size range of 

terrestrial mammals, and also evaluated sizes of 5 grams and 5 tons to get a more realistic 

estimates for extant terrestrial mammals (Jürgens, 2002; Larramendi, 2015). I then 

performed a least squares linear regression on the logarithmically transformed animal mass 

vs. simulation outputs (controller gains and response times) to extract the coefficient and 

exponent of the scaling relationship (LaBarbera, 1989). I have tabulated the input and 

output parameters of the swing task in Table 5.1. 

5.2.2. Posture task 

The posture task represented an animal recovering its posture after a push forward 

in the sagittal plane, under the control of its plantarflexors (Winter, 1995; Winter et al., 

2001). I used a point mass inverted pendulum to represent the entire body, with a mass 𝑀𝑀 

equal to the weight of the whole animal, and length 𝐿𝐿 set to the average length of the 

forelimb and hindlimb for each animal mass (Kilbourne and Hoffman, 2013). I started the 

simulation with an initial clockwise angular velocity which I scaled with animal size. The 

task required rejecting the initial velocity caused by the push, and returning to rest at the 

vertical position. The equation of motion is described by:  

𝐼𝐼𝜃̈𝜃(𝑡𝑡) = 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 − 𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 5.6 

where 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 is the torque exerted by the muscle, and 𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 the torque exerted by gravity. 

𝐼𝐼 is the moment of inertia of the pendulum, computed as 𝑀𝑀𝐿𝐿2. I set the angle to be zero 

when the inverted pendulum is pointing vertically upwards and defined the 

counterclockwise direction to be positive. The torque due to gravity is described by:  
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𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑡𝑡) = 𝑀𝑀𝑀𝑀𝑀𝑀 sin𝜃𝜃(𝑡𝑡)  5.7  

I determined 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎 for feedback and feedforward control in the posture task using 

the same equations as the swing task, and simulated and optimized my simulations using 

the same methods. While the swing task had a non-zero final angle and required a steady 

state torque in the controller to compensate for gravity at the final state, feedback control 

of the posture task required only proportional-derivative control, as the simulation ends 

with a vertical final position.  

I parameterized the models using the same values that I used in my previous work 

to determine the scaling of inertial delays in chapter 2 and 3 (Thangal and Donelan, 2020). 

I scaled 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 as 3.41M1.21 Nm, which is four times the maximum torque that can be exerted 

by the ankle plantarflexors based on Alexander et al. (Alexander et al., 1981). I scaled 

whole body inertia 𝐼𝐼 as 0.0264M1.74 kg.m2, and the length of the pendulum 𝐿𝐿 as 0.162M0.37 

m (Kilbourne and Hoffman, 2013). I started the simulation at the vertical position with an 

initial forward velocity scaled with a dimensionless velocity of 0.21 Froude number. I again 

chose this value for consistency between the feedback and feedforward simulations. I have 

tabulated the input and output parameters of the posture task in Table 5.2. 

5.3. Results 

5.3.1. Feedback control response time—normalized model predictions vs. 
simulation results.  

Predictions for response time based on the relationship between normalized 

saturation limits and response time (𝑡𝑡𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 vs. 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖) from chapter 4 compared well to results 

from the more biologically realistic and scaled model simulations in chapter 5. The 

normalized models did not incorporate gravitational torques, only torques generated by the 

PD controller. For the scaled models, I considered gravitational torques. I subjected the PD 

controller torques to time delays and saturation limits, but did not do so to the gravitational 

torques. Additionally for the swing task, the scaled models also incorporated a steady state 

torque to counter gravitational torques at the target state. The predictive equations for the 

swing task are:  
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𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖) = �
7.09 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0.162

5.56𝑒𝑒−27.1𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 + 8.64𝑒𝑒−1.29𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 0.079 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 < 0.161
18.33𝑒𝑒−73.12𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 + 10.12𝑒𝑒−2.88𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 0.009 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 < 0.078

  4.21

Feedback control response times in the realistic simulations for the swing task scaled as 

199 M0.21 ms. The normalized equations predicted response time from the scaled 

simulations with an average accuracy of -10.5% (range: -8%, -14%) (Fig 5.2 left).  

The predictive equations for the posture task are:  

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑓𝑓(𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖) = �
7.39 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0.80

1.61 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖
−1.10 + 5.17 0.14 ≤ 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖 < 0.80

 4.22 

Feedback control response times in the realistic simulations for the posture task scaled as 

240 M0.22 ms. The normalized equations predicted response time from the scaled models 

with an average accuracy of 5% (range: 2%, 13%) (Fig 5.2 right). 

 
Fig 5.2 Feedback control response time—normalized model predictions vs. simulation 
results. 
Normalized prediction for the swing task (left) and posture task (right) in dotted lines. Scaled feedback 
control model simulation results in solid lines.  

5.3.2. Scaling of control in the swing task   

Feedback control performed poorly when compared to feedforward control (Figs 

5.3 and 5.4). In the fastest feedforward control responses, the response time depends on the 

size of the movement–small movements are accomplished quickly, but large movements 
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take more time. Perhaps non-intuitively, response time is independent of movement size in 

feedback control–it takes the same amount of time to perform a small movement as a large 

movement if the controller gains are the same and the torques do not exceed saturation 

limits. Thus, to compare response times in the two types of control, it is useful to pick a 

movement size. Here I used a swing leg repositioning from -15° to +15° because 

sensorimotor delays and inertial delays are equally matched in a one kg animal for this 

movement size (Thangal and Donelan, 2020). For this movement size, the fastest response 

times under feedback control scaled as 199 M0.21 ms, compared to 62M0.24 ms under 

feedforward control (Fig 5.3c). More generally, feedback control response times ranged 

from four times longer in smaller animals to two times longer in larger animals, when 

compared to feedforward control (Fig 5.4b). This is because the feedback controllers were 

delay-limited, and unable to utilize a significant portion of their muscle torque capacity 

due to the stability limitations imposed by long sensorimotor delays (Fig 5.4a). 

 
Fig 5.3 Swing task under feedback control. 
This model represents repositioning of the swing limb in response to a trip. (a) I modeled the plant as a 
distributed mass pendulum actuated by torques generated by the PD controller. (b) Torque (𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), angular 
velocity (𝜃̇𝜃) and angle (𝜃𝜃) profiles in the swing task for a 1 kg animal and a 30 degree movement under 
feedback control. The grey dashed line at 31 ms represents the initial sensorimotor delay period and the gray 
vertical line at 200 ms represents response time, computed as the settling time of the angle curve with a 2% 
threshold (grey dashed horizontal lines). (c) Log-log plots for the scaling of the controller gains (top) and the 
response times under feedback control (thick blue line), feedforward control (thin blue line) and sensorimotor 
delays (thin green line). The dots denote the actual values obtained through optimization, while the lines 
denote the power law fit.  
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Larger animals also have slower characteristic movements, giving them longer to 

complete a perturbation response. I estimated the shortest time available to complete a 

perturbation response for animals of different sizes, as the swing duration at maximum 

sprint speed (More and Donelan, 2018; Thangal and Donelan, 2020). Response times under 

feedback control exceeded swing duration at maximum sprint speed at all animal sizes, 

while feedforward control did not (Fig 5.4 c).  

 
Fig 5.4 Swing task—comparison of feedforward and feedback response times. 
(a) The fraction of maximum isometric torque (𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖) utilized by the feedback controller in the swing task. (b) 
The ratio of feedback control response times to feedforward control response times. (c) Fraction of swing 
duration at maximum sprint speed required to perform a corrective movement using feedback control (thick 
blue line), feedforward control (thin blue line) and sensorimotor delays (thin green line). 

In section 5.3.5, I have provided a breakdown of the various contributors to total torque 

(Fig 5.3b top panel) applied by the feedback controller. Table 5.1 lists the input parameters 

and the optimized output parameters in the swing task. 
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Table 5.1 Table of input parameters and results for the swing task. 

Parameter Coefficient (a) Exponent (b) 

Swing task inputs 
𝒕𝒕𝑺𝑺𝑺𝑺: Sensorimotor delay (ms) 31 0.21 
𝑴𝑴𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍: Forelimb mass (kg)  5.8×10-2 1.00 
𝑰𝑰: Forelimb inertia (kg.m2) 2.52×10-4 1.75 
𝑳𝑳𝑪𝑪𝑪𝑪𝑪𝑪: COM length (m) 5.6×10-2 0.36 
𝝉𝝉𝒊𝒊𝒊𝒊𝒊𝒊: Triceps torque (N.m) 0.54 1.19 
Swing task outputs 
Swing duration at max sprint (ms) 147.85 0.17 
Feedback control results  

𝑲𝑲𝒑𝒑: Proportional gain (N.m/rad) 1.76 ×10-2 1.28 
𝑲𝑲𝒅𝒅: Derivative gain (N.m/(rad/s)) 4.76×10-3 1.54 
Feedback response time (ms) 199.43 0.21 
Feedforward control results  

𝒕𝒕𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔: Switch time (ms) 46.32 0.23 
Feedforward response time (ms) 61.90 0.24 

5.3.3. Scaling of control in the posture task 

While the feedback controllers in the posture task were able to use more of the 

available torque than in the swing task, it still performed poorly compared to feedforward 

control (Figs 5.5 and 5.6). In order to compare response times, I chose to perturb the 

inverted pendulum by a force causing an initial dimensionless velocity of 0.21 Froude 

number for both the feedforward and feedback control simulations, resulting in larger 

initial velocities for larger animals (Thangal and Donelan, 2020). Since larger animals have 

heavier bodies, longer limbs and larger muscles, I scaled the perturbation with size in order 

to elicit equivalent responses from different sized animals. For this perturbation size, the 

fastest response times under feedback control scaled as 240 M0.22 ms, compared to 95M0.28 

ms under feedforward control (Fig 5.5c). Feedback control response times ranged from 

four times longer in smaller animals to one and a half times longer in larger animals, when 

compared to feedforward control (Fig 5.6b). Other than for the largest animals, feedback 

control in the posture task was also delay-limited (Fig 5.6a).  
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Fig 5.5 Posture task under feedback control. 
This model represents whole body posture control after a push forward in the sagittal plane. (a) I modeled 
the plant as a point mass pendulum actuated by torques generated by the PD controller. (b) Torque (𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), 
angular velocity (𝜃̇𝜃) and angle (𝜃𝜃) profiles in the posture task for a 1 kg animal, perturbed by a force causing 
an initial velocity of 0.21 dimensionless velocity, under feedback control. The grey dashed line at 31 ms 
represents the initial sensorimotor delay period and the gray vertical line at 238 ms represents response time, 
computed as the settling time of the angular velocity curve with a 2% threshold (grey horizontal dashed 
lines). (c) Log-log plots for the scaling of the controller gains (top) and the response times under feedback 
control (thick red line), feedforward control (thin red line) and sensorimotor delays (thin green line). The 
dots denote the actual values obtained through optimization, while the lines denote the power law fit. 

Feedback control response times in the posture task also exceeded available time 

for all animal sizes. I estimated time available to complete the perturbation response as the 

time required to fall under gravity to the ground, from a height equal to the leg length for 

each animal size, which scaled as 182M0.19 ms. Feedforward response times for the largest 

animals also exceeded available time (Fig 5.6c). 
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Fig 5.6 Posture task—comparison of feedforward and feedback response times. 
(a) The fraction of maximum isometric torque (𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖) utilized by the feedback controller in the posture task. 
(b) The ratio of feedback control response times to feedforward control response times. (c) Fraction of time 
taken to fall to the ground under gravity required to perform a corrective movement using feedback control 
(thick red line), feedforward control (thin red line) and sensorimotor delays (thin green line). 

In section 5.3.5, I have provided a breakdown of the various contributors to total torque 

(Fig 5.5b top panel) applied by the feedback controller. Table 5.2 lists the input parameters 

and the optimized output parameters in the posture task. 

Table 5.2 Table of input parameters and results for the posture task. 

Parameter Coefficient (a) Exponent (b) 

Posture task inputs 
𝒕𝒕𝑺𝑺𝑺𝑺: Sensorimotor delay (ms) 31 0.21 
𝑰𝑰: Whole body inertia (kg.m2)  2.64×10-2 1.74 
𝑳𝑳: Center of mass height (m) 1.62×10-1 0.37 
𝝉𝝉𝒊𝒊𝒊𝒊𝒊𝒊: Plantarflexor torque (N.m) 3.41 1.21 
Posture task outputs 
Time to fall leg length (ms) 182.02 0.19 
Feedback control results  

𝑲𝑲𝒑𝒑: Proportional gain (N.m/rad) 5.64 1.34 
𝑲𝑲𝒅𝒅: Derivative gain (N.m/(rad/s)) 5.80×10-1 1.53 
Feedback response time (ms) 239.96 0.22 
Feedforward control results  

𝒕𝒕𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔: Switch time (ms) 72.30 0.28 
Feedforward response time (ms) 94.55 0.28 
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5.3.4. Comparing swing and posture task responses to in-vivo perturbation 
studies 

 
Fig 5.7 Angle profiles for the posture task under feedforward and feedback control. 
Angle vs. time profiles from the posture correction response for animal sizes ranging from 1 gram to 10 tons 
under feedforward control (left) and feedback control (right), for a 0.21 dimensionless velocity perturbation.  

The kinematic profiles from my simulations are qualitatively similar to those 

reported in in-vivo perturbation studies, even though most perturbation studies on animals 

do not elicit the fastest possible responses. My simulations model the fastest perturbation 

responses controlled purely through monosynaptic reflex pathways, and I consider 

feedforward and feedback control separately. Perturbation responses from in-vivo studies 

are difficult to separate into purely feedforward or feedback strategies, and often involve 

both the reflexive and supra-spinal motor pathways. Eng et al. studied stumble corrective 

responses in humans, and reported that an approximately 40° swing leg repositioning 

response to an early swing phase trip took about 500 ms (Eng et al., 1994). According to 

my simulations, for a 70 kg human performing a 30° swing leg repositioning, the fastest 

possible swing task responses would take 172 ms under feedforward control and 487 ms 

under feedback control. I also compared my posture task simulations to three studies that 

reported on human and cat postural responses to support-surface translations (Horak and 

Nashner, 1986; Ting and Macpherson, 2004; Welch and Ting, 2008). Horak and Nashner 

reported that for a 0.05 dimensionless velocity perturbation, their human subjects took 

about 600 ms to regain posture, and suffered a maximum lean of 3° (Horak and Nashner, 

1986). Welch and Ting reported that for a 0.09 dimensionless velocity perturbation, their 
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human subjects took about 1000 ms to regain posture, and suffered a maximum lean of 5° 

(Welch and Ting, 2008). My posture task simulations predict that for a 70 kg human 

subjected to a 0.21 dimensionless velocity perturbation, recovering balance would take 310 

ms under feedforward control and 611 ms under feedback control, and also force them to 

lean to a maximum angle of about 5°. Ting and Macpherson reported that cats subjected to 

a 0.09 dimensionless velocity postural perturbation take about 1000 ms to regain posture, 

and exhibit a 5° lean (Ting and Macpherson, 2004). My posture task simulations predict 

that for a 4 kg cat subjected to a 0.21 dimensionless velocity perturbation, recovering 

balance would take 140 ms under feedforward control and 326 ms under feedback control, 

and force it to lean to a maximum angle of about 3.5°. In Fig 5.7, I have shown the angle 

vs. time profiles for different sized animals in the posture task under feedforward and 

feedback control. These profiles match the behavior seen in studies on posture correction 

in quadrupeds. The maximum lean of the posture task model (about 7° for a 0.21 

dimensionless velocity perturbation) would not cause the center of mass to move outside 

the base of support in quadrupeds. However, I have not considered similar effects in bipeds. 

Bipeds would be forced to use a stepping strategy, instead of a hip or ankle strategy, if 

large perturbations cause the center of mass to move beyond the base of support.  

5.3.5. Components of total applied torque under feedback control 

I calculated the total torque experienced by the pendulum as the sum of the muscle 

torque (generated by the feedback controller), and gravitational torque. The muscle torque 

composed of proportional and derivative components in the posture task, and an additional 

steady state component in the swing task. I capped the muscle torques at a saturation limit, 

computed as the maximum isometric torque that can be produced by the relevant muscles. 

Saturation occurred only for animals heavier than one ton in the posture task. During an 

initial delay period equal to the sensorimotor delay, I did not apply muscle torques and the 

pendulum moved purely under gravitational torques. I considered this the time required for 

the animal to sense the perturbation, compute the motor commands and transmit the signals 

to the muscles. After this deadtime, I turned on the muscle torques, computed based on 

time delayed state feedback. Fig 5.8 depicts the contribution of each component to the 

applied torque for a 1 kg animal in the swing task and posture task.  



91 

  
Fig 5.8 Components of total torque. 
For the swing task on the left, the controller torque consisted of a proportional component (𝐾𝐾𝑝𝑝—black dashed 
line), a derivative component (𝐾𝐾𝑑𝑑—black dotted line), and a steady state component (𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠—black 
dash dot line). These three components made up the muscle torque (𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎—solid black line). The total torque 
(𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡—thick blue line) is the sum of 𝜏𝜏𝑎𝑎𝑎𝑎𝑎𝑎  and gravitational torque (𝜏𝜏𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔—yellow green line). For the 
posture task on the right, I show the total torque in red. The posture task does not have a steady state torque 
component. The values shown here are for a 1 kg animal in the swing task and posture task.  

5.4. Discussion 

Using neuromechanical models representing fast perturbation responses, I 

quantified the scaling of response times under feedforward and feedback control, subject 

to muscle force capacity limits and sensorimotor delays. Previous work in my lab had 

quantified the scaling of sensorimotor delays (signal transmission and processing time 

delays in the mono-synaptic stretch reflex) (More and Donelan, 2018), and I quantified 

inertial delays (movement time required to physically reposition body segments as part of 

the response to a perturbation) in Chapter 2 and 3 of this thesis (Thangal and Donelan, 

2020). In this chapter, I evaluated how the type of control used (feedforward vs. feedback 

control) further affected response times. In general terms, feedforward control is fast but 

inaccurate, feedback control is slow but ensures accuracy. In this study, I have only 

considered the speed of the response, I have ensured perfect accuracy under both types of 

control. Response times under feedforward and feedback control depended on several 

factors such as the force generation capacity of muscles, the moment of inertia of the body 

segments and the sensorimotor delays in the reflex pathways. If sensorimotor delays were 



92 

short relative to the other factors, feedback control could have produced comparable 

response times to feedforward control. I could also have found different results for small 

and large animals—feedback control could have performed comparably to feedforward 

control in larger animals, but worse in smaller animals. However, I found that while 

feedforward control can fully activate muscles and produce fast responses, long 

sensorimotor delays required feedback control to use low gains to ensure stability, allowing 

only a fraction of the muscles’ force capabilities to be utilized. That is, the effectiveness of 

feedback control within the size range of terrestrial mammals is delay-limited rather than 

force-limited. Responses under feedback control were at least two times longer than 

feedforward control across animal size, for both the swing task and posture task. Feedback 

control response times exceeded available movement time for all animal sizes, while 

feedforward response times did so only for the largest animals in the posture task (Figs 

5.4c and 5.6c). Feedback control does not seem effective for fast perturbation responses in 

animals of all sizes. 

In chapter 4, I had proposed a method to normalize the feedback control system 

using three constant parameters which also represent characteristic features of a 

perturbation response—the sensorimotor delays in the control pathways (𝑡𝑡𝑑𝑑), the moment 

of inertia of the body segment being moved (𝐼𝐼), and the size of the corrective movement 

(𝜃𝜃𝑟𝑟). The normalized feedback control model illustrated how perturbation responses in 

animals could either be delay-limited or force-limited. Using curve fitting, I obtained 

equations for the relationship between normalized response time and saturation limits 

(𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 vs. 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖). Predictions from these equations compared well to results from the more 

biologically realistic simulations in chapter 5 that were scaled with animal size (-10.5% 

accuracy in the swing task and 5% accuracy in the posture task). Because my results from 

chapter 4 based on fundamental principles held up when I increased the complexity of my 

simulations, I gain confidence that my predictions and trends in this study are correct, and 

will be relevant in in-vivo studies.  

While my simulations determined that feedback control is delay-limited, I have not 

considered realistic muscle dynamics in my simulations, and I did not limit the available 

torque depending on the velocity of the movement. In real life, an animal performing fast 
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perturbation responses will not be able to generate high torques at high muscle contraction 

velocities due to force-velocity properties of muscle. Therefore, perturbation responses 

involving large corrective movements and high velocities might still be force-limited 

instead of delay-limited. Due to insufficient literature to accurately model the muscle 

tendon architecture across the size range of terrestrial mammals, I did not incorporate Hill 

type muscles in my simulations. Perhaps, more biologically realistic multi-segmented and 

muscled neuro-musculoskeletal models that represent the response of a single species, and 

which can be fully parameterized based on literature, will be more appropriate to 

understanding the effects of incorporating realistic muscle dynamics.  

To reach these conclusions, I had to make several assumptions and simplifications. 

I have carried over assumptions made in the estimation of parameters in previous 

publications, such as for the scaling of sensorimotor delays (More and Donelan, 2018) and 

the inertial delays (Thangal and Donelan, 2020). For example, for the scaling of 

sensorimotor delay, More et al. had assumed sensing delay, synaptic delay and neuro-

muscular junction delay are constant across animal size based on limited information in the 

literature. In calculating isometric torque limits, I assumed that the triceps (swing task) and 

the ankle extensors (posture task) are the dominant muscles involved in moving their 

respective joints, that their antagonistic muscles scale similarly, and that the isometric 

stress produced by mammalian muscle is constant at 20 N/cm2 (Rospars and Meyer-Vernet, 

2016). Although animal limbs are actually multi jointed and muscled, I used pendular 

models to represent body segments, and a single pair of opposing muscles to actuate them 

(Alexander et al., 1981; Böhmer et al., 2020). I have also not considered several animal 

features that have been shown to change with animal size such as posture, limb stiffness, 

joint damping, and sensor accuracy; evaluating the effects of these features would require 

more complete neuromusculoskeletal models (Biewener, 2005; Garcia et al., 2000; More 

et al., 2010). I used a PD feedback controller as it is simple to implement, simple to 

interpret, and has been successfully used in the literature to model control of locomotion 

(Donelan and Pearson, 2004; Geyer et al., 2003; Hatz et al., 2012; Prochazka et al., 1997b; 

Welch and Ting, 2008). However, the actual control strategy implemented within the spinal 

reflex pathways is undoubtedly more complex, involving several control pathways with 

varying time delays and control strategies, and remains a topic of research (Nishikawa et 
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al., 2007; Prochazka et al., 1997c; Yakovenko et al., 2004; Zehr and Stein, 1999). In 

engineering control systems, there are advanced feedback controller types such as Model 

Predictive Control (MPC), or Smith-predictors, which can compensate for time delays and 

also generate bang-bang control. Here, I assumed that the spinal level synapses that 

represent the feedback controller do not encode these complex algorithms and use the 

simpler and more straightforward PD control instead. Here I have tried to estimate the 

limits of this neural control system by considering sensorimotor delays from the longest 

reflex pathways (transmitted twice the animal’s leg length), which uses the least neural 

computation (a single synapse), and compared response times to the shortest available 

movement times (swing duration at maximum sprint speed). Using these highly simplified 

models and evaluating the limits of their performance as a function of animal size, I gain 

insight into the complex processes of animal locomotor control (Full et al., 1999). Given 

these assumptions, as well as the nature of any purely modeling approach, these results are 

estimates that need to be tested experimentally. One candidate experimental approach 

would be in-vivo experiments where the delays in sensory feedback or transmission of 

motor commands can be systematically manipulated while studying the response of the 

nervous system (Weiland et al., 1986).  

While I find that time delays are detrimental to the control of fast perturbation 

responses, other studies have pointed out that the nervous system could use time delays to 

its benefit in certain control situations. Prochazka et al. studied how delayed positive 

feedback can help stabilize reflexive control pathways (Prochazka et al., 1997c). 

Nishikawa et al. show that time delays increase gains at the resonant frequency of a control 

system, which could assist in the control of rhythmic movements (Nishikawa et al., 2007). 

Milton et al. suggested that the nervous system could be implementing adaptive act-and-

wait control strategies which use the interplay between noise and delays to simplify control 

(Milton et al., 2009; Milton, 2011). However, during my simulations, delays did not 

provide any benefits. For example, if an animal trips during early swing while running at 

high speed, it would want to react immediately, fully activating its muscles to rapidly and 

accurately place its foot forward to regain stability. Irrespective of the control strategy, the 

animal would lose the time required to sense the perturbation and transmit action potentials 

to the spinal cord. Under feedback control, the animal is further limited as it has to use low 



95 

gains in order to ensure a stable response, while the corrective movement might not be 

quick enough to prevent a fall. Under this scenario, and others like it, delays appear to only 

negatively affect the control of movement.  

One implication of my findings is that the compensatory mechanisms used by 

animals to overcome the disadvantages caused by long sensorimotor delays will likely vary 

with animal size. Previous studies in small animals such as guinea fowl (Biewener and 

Daley, 2007; Daley and Biewener, 2006) and cockroaches (Dudek and Full, 2006; Garcia 

et al., 2000; Jindrich and Full, 2002) have shown that smaller animals rely more on 

feedforward control than feedback control for fast locomotion, and utilize the inherent 

mechanical properties of their musculoskeletal system (preflexes) to compensate for 

perturbations encountered during movement (Brown and Loeb, 2000). Garcia et al. showed 

that as animal size decreases, the damping ratio of their limbs increases—making small 

animals overdamped and larger animals underdamped (Garcia et al., 2000). Muscle forces 

applied to an overdamped limb will rapidly reposition itself and come to rest—the damping 

will prevent overshoot or oscillations. Therefore, smaller animals would prefer to use 

feedforward control, which can produce faster responses than feedback control while still 

ensuring stability. Muscle forces applied to an underdamped limb will cause it to accelerate 

quickly, which could result in overshoot and oscillations. Therefore, larger animals would 

prefer to use feedback control which can ensure accuracy and stability. My results further 

add to these studies, by showing that uncompensated feedback control is up to four times 

slower than feedforward control in the smallest animals, but only about two to one and a 

half times slower in the largest animals. If larger animals could compensate for 

sensorimotor delays and reduce feedback control response times to be shorter than 

available movement time, feedback control could perform comparably to feedforward 

control. Larger animals do not have highly damped joints, but synaptic delays make up a 

smaller proportion of overall response time (More and Donelan, 2018). These relatively 

shorter synaptic delays might allow larger animals to rely on more computationally 

expensive control strategies that combine feedback control with internal models that 

compensate for delays (Smith predictors) (Miall et al., 1993). My results show that as 

animal size increases, delayed feedback control is able to use more of the available muscle 

force capacity, narrowing the performance advantage that feedforward control has over 
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feedback control. Effective feedback control, when combined with the computational 

options available when synaptic delays are relatively short, may be a more viable control 

strategy for larger animals. 
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Chapter 6. Conclusion 

While it is generally accepted that delays detrimentally affect biological control 

systems, there is a lack of literature quantifying these delays and their impact on the neural 

control of locomotion. In this thesis, I have used computational models to investigate the 

effect of delays on the neural control of fast perturbation responses as a function of animal 

size. I built on previous electrophysiological studies from my lab which quantified the 

sensorimotor delays that constitute the time required to transmit neural signals and process 

the motor commands required to respond to a perturbation (More and Donelan, 2018). In 

order to get a complete picture of response time, I had to quantify inertial delays—the time 

required to overcome inertia and reposition body segments as part of the perturbation 

response. In chapter 2, I studied a simple model of a rotor being repositioned under muscle 

torques, and used it to analytically derive estimates for inertial delays. I developed two 

different tasks designed to represent perturbation scenarios commonly encountered during 

animal locomotion: a swing leg repositioning task, and a posture recovery task. I showed 

that if muscle forces scaled with dynamic similarity, inertial delays would scale at the same 

rate as the time available to make a perturbation response. Therefore, larger animals would 

not be disproportionately burdened by inertial delays when compared to smaller animals. 

Instead, if muscle forces only scale with geometric similarity, inertial delays scale faster 

than the available time, making inertial delays a bigger problem for neural control in larger 

animals. Next, I used more biologically realistic models with anatomical, muscular and 

inertial properties parameterized with scaling values from literature, and numerically 

simulated them to get better estimates for inertial delays. My results showed that inertial 

delays depended both on movement task and movement size, and the results fell in between 

analytical predictions based on the scaling of muscle force with dynamic similarity vs. 

geometric similarity. As movement magnitude increased, inertial delays exceeded 

sensorimotor delays, and this occurred for smaller movements in larger animals. My results 

indicate that if small animals were trying to improve their response times by compensating 

for delays, they would benefit more from compensating for sensorimotor delays, as they 

are the larger source of delay. On the other hand, larger animals would benefit more from 
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reducing inertial delays, which could be achieved through postural changes or neural 

prediction.  

In chapters 4 and 5, I compared feedback and feedforward control in their ability to 

perform fast perturbation responses. I first developed a normalized model of feedback 

control to understand how two factors affect response times: the ability of muscles to 

generate force and time delays in the feedback pathways. I showed that feedback control 

could be force-limited or delay-limited, and developed predictive equations for the 

relationship between normalized torque limits and response time. Next, I determined 

whether feedback control in animals of different sizes is force-limited or delay-limited, 

using more elaborate models scaled with animal size. My results showed that feedback 

control in animals of all sizes is delay-limited rather than force-limited. Feedback control 

response times also exceeded available movement times in animals of all sizes, while 

feedforward control did so only for the largest animals. Feedback control was about four 

times slower than feedforward control in the smallest animals, but only around two times 

slower in the largest animals. Thus, smaller animals are more likely to use feedforward 

control and preflexes to remain stable against perturbations. Larger animals would also 

depend predominantly on feedforward control, but could rely on feedback control with 

internal models that can compensate for delays and allow higher gains resulting in faster 

responses.   

This research has both fundamental and applied importance. By studying which 

aspects of neural control are preserved and which ones are modified with animal size, I 

added to our understanding of the fundamental principles of the nervous system (More and 

Donelan, 2018). My results help understand the role of control in determining the limits of 

animal performance, such as top speed and agility. Developing algorithms that allow 

legged robots to independently maintain stability and locomotion has been challenging. 

Studying how evolution has tackled these control challenges gives us a better 

understanding of the variety of control methods which might have applications in legged 

locomotion. 
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6.1. Future work 

Lack of sufficient data for several parameters limited the fidelity of my models, and 

new studies to quantify the scaling of these features will help build more accurate models 

for neural control in legged animals. Based on limited data from More et al., I assumed that 

the sensing delay, synaptic delay and neuromuscular junction delay components of 

sensorimotor delay are constant and do not change with size (More and Donelan, 2018). I 

could find only one publication which reported on the scaling of cross-sectional area and 

moment arm features of muscles in terrestrial mammals necessary to estimate the torque 

generated by them (Alexander et al., 1981). A recent publication by Bishop and colleagues 

reported on the scaling of limb muscle features in terrestrial mammals (Bishop et al., 2021). 

They grouped together muscles into proximal muscles (muscles with majority of their bulk 

above the elbow or knee) and distal muscles (muscles with most of their bulk below the 

elbow or knee), and reported values for the forelimb and hindlimb. They found that for 

proximal forelimb muscles, the muscle mass, muscle length, physiological cross-sectional 

area and force generation capacity scaled with 𝑀𝑀1.01, 𝑀𝑀0.27, 𝑀𝑀0.73 and 𝑀𝑀0.72, respectively. 

For the swing task, I used values of 𝑀𝑀1.11, 𝑀𝑀0.33, 𝑀𝑀0.78 and 𝑀𝑀0.78 respectively—based on 

values for the triceps reported by Alexander et al. Bishop and colleagues found that for 

distal hindlimb muscles, the muscle mass, muscle length, physiological cross-sectional 

area and force generation capacity scaled with 𝑀𝑀0.90, 𝑀𝑀0.20, 𝑀𝑀0.78 and 𝑀𝑀0.72, respectively. 

For the posture task, I used values of 𝑀𝑀0.97, 𝑀𝑀0.14, 𝑀𝑀0.83 and 𝑀𝑀0.83, respectively—based 

on values for the ankle extensors reported by Alexander et al. While the exponents reported 

by the two studies are generally similar, the differences could be due to Alexander et al. 

considering only individual muscles, whereas Bishop et al. considered all the proximal or 

distal muscles together. However, Bishop et al. do not report values for muscle moment 

arms, necessary to calculate muscle torques in my models. Publications that quantify the 

scaling of features of prime mover muscles of limbs in terrestrial mammals are needed, 

along similar lines to Dick and Clemente, who have compiled the scaling of muscle features 

in Verano lizards (Dick and Clemente, 2016). I have also not considered joint stiffness and 

damping in my simulations, as I could not find publications that have quantified the scaling 

of these features in terrestrial mammals. In my studies on both inertial delays and 
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perturbation response times, predictions and trends from simple models matched well with 

more biologically realistic simulations. This gives me confidence that my predictions will 

continue to be relevant in even more elaborate and morphologically accurate multi-jointed 

and multi-muscled models. These future studies can check if my assumptions and 

simplifications hold true, and shed light on how factors that I have not considered affect 

my results.  

Perturbation studies involving the manipulation of sensorimotor delays in-vivo can 

shed light on the control strategies used by the nervous system. Several studies have 

investigated the effects of removing sensory feedback on locomotor behavior in animal 

models (Donelan and Pearson, 2004; Gordon et al., 2020; Rossignol et al., 2006; Stapley 

et al., 2002). Instead of removing sensory feedback, we could decrease the nerve 

conduction velocity using cooling techniques to increase the sensorimotor delays in the 

reflex (Herrera et al., 2010; Todnem et al., 1989). Such experiments would have to devise 

ways to cool only the nerves while minimizing changes to the muscle, perhaps by using 

nerve cuffs (Haugland and Hoffer, 1994). Animals use a combination of feedforward 

control and feedback control, with feedback control dominating the response for slower 

movements, and feedforward control dominating at faster movements (Daley, 2018; 

Dickinson et al., 2000; Gordon et al., 2020). I hypothesize that increasing sensorimotor 

delays would detrimentally affect feedback control more than feedforward control, causing 

feedforward control to dominate the response at slower movement speeds. We can design 

perturbation studies that elicit stumble corrective responses or posture recovery responses, 

and analyse the EMG signals to differentiate the feedforward and feedback contributions 

to the response (Eng et al., 1994; Gordon et al., 2020; Welch and Ting, 2008). We should 

also study how the control strategies scale with perturbation size, with the largest 

perturbations resulting in a fall, as this will elicit the fastest possible responses. Such 

studies would help validate my predictions, and improve our understanding of how the 

nervous system deals with time delays.  

I have also used torque actuation in my simulations and have not incorporated Hill-

type muscle models. In my simulations, I have considered electromechanical delay (after 

the motor signal has crossed the neuromuscular junction, time required for action potentials 
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to travel over the muscle, release Ca2+ ions from the sarcoplasmic reticulum, and start cross 

bridge cycling) and force generation delay (time from detection of force in the muscle to 

peak twitch force) (Section 1.4.1). These two components are the dominant contributors to 

sensorimotor delay time across animal size (More and Donelan, 2018). These constant time 

delays approximate the activation-deactivation dynamics and the gradual increase in forces 

seen in real muscle. I could remove these constant delays and incorporate Hill-type muscle 

models. However, I would require parameters to characterize the activation-deactivation 

dynamics, force-length relationship, force-velocity relationship, pennation angle, parallel 

elastic element properties and series elastic element properties—for the shoulder flexor and 

extensor muscles (swing task), and the ankle dorsiflexor and plantarflexor muscles (posture 

task). For my simulations, I used the muscle mass, muscle length and moment arm data for 

the triceps and ankle plantarflexor muscles from Alexander et al. to determine the 

maximum isometric force (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), assuming muscle density of 1060 kg/m3 (Méndez and 

Keys, 1960), and maximum isometric stress to be 20 N/cm2 (Close, 1972; Rospars and 

Meyer-Vernet, 2016). I could use these same values to parametrize scaled Hill-type muscle 

models (Zajac, 1989). I could parameterize the force-length curve by setting the peak of 

the force-length curve to 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and the optimal fiber length and force-length relationship 

width to equal muscle length. I can similarly characterize the force-velocity curve, setting 

the force intercept to 𝐹𝐹𝑚𝑚𝑢𝑢𝑠𝑠𝑠𝑠, the velocity intercept to be 10 muscle lengths/sec, and eccentric 

contraction force to be 1.5𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. I could also assume that the muscles acting at 

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  produce a stress of 32 Mpa in the tendon causing a strain of 3.3 %, to calculate series 

elastic element stiffness. However, scaling studies have reported that several of these 

parameters that Zajac assumes are constant do change with animal size, such as fiber type 

distribution and maximum shortening velocity (Marx et al., 2006; Medler, 2002). 

Shadwick and Pollock provide scaling equations for gastrocnemius tendon elastic modulus, 

cross-sectional area and slack length, which I can use to calculate tendon stiffness (Pollock 

and Shadwick, 1994a, 1994b). However, I have not been able to find similar series elastic 

element parameters for the shoulder muscles, and the parallel elastic element properties for 

either set of muscles. While adding Hill type muscle models will make my simulations 

more biologically realistic, this would also reduce the fidelity of my models due to the 
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increased number of parameters and the variability in the reported values of these 

parameters in the literature.  

Certain features of muscle behavior that are not captured by Hill-type muscle 

models—such as short-range stiffness, history dependent effects and muscle internal mass 

effects—can also influence perturbation responses. Muscles exhibit short-range stiffness, 

a large increase in force beyond what is predicted by the force-length curve, for a short 

range at the beginning of a muscle stretch movement (Rack and Westbury, 1974). De 

Groote et al. have shown that short-range stiffness has to be considered to accurately 

simulate the preflexive part of the response to a support surface translation perturbation in 

standing humans (De Groote et al., 2017). Muscles also exhibit history dependent effects 

which can be important for perturbation responses. The forces generated by a muscle 

depend not just on its present activation, length, and velocity—but also on the movement 

preceding the present state (Lin, 2009). Lin and Rymer conducted postural response 

experiments with mass loads—and showed that the initial short-range stiffness after a 

perturbation acted as a spring to return the body to its original posture, while the subsequent 

reduction in muscle forces prevented oscillations that could arise from the spring-like 

initial response (Lin and Rymer, 2000). Ross et al. have shown that the internal mass of 

the muscle also affects its maximum contraction velocity and force production, indicating 

that Hill-type muscle models might overestimate the perturbation rejection capabilities in 

larger animals (Ross et al., 2018b; Ross and Wakeling, 2016). New muscle models which 

can emulate these features of muscle behavior, such as cross-bridge models, titin-clutch 

models and mass enhanced Hill-type models, can improve simulations of perturbation 

responses (Campbell, 2009; Nishikawa, 2020; Ross et al., 2018a). 

While this thesis focusses on the effect of delays on the response time to a 

perturbation, we can use similar modeling approaches to evaluate the effect of delays on 

stability against perturbation responses. We could implement the simplest models of 

rhythmic limit-cycle locomotion such as walking or hopping gait with time-delayed neural 

control and realistic muscle dynamics (Blickhan, 1989; Geyer et al., 2003; Seyfarth et al., 

2003)—and quantify stability using stability measures such as the Lyapunov exponent or 

Gait Sensitivity Norm (Bruijn et al., 2011; Dingwell and Cusamano, 2000; Hobbelen and 
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Wisse, 2007; Lockhart and Liu, 2008; Thangal et al., 2013). Several muscle features such 

as their force-length and force-velocity properties, short range stiffness and history 

dependent behavior have been shown to be important to the stability of limit-cycle gaits 

(Gerritsen et al., 1998; Lin, 2009). The collision of the foot with the ground during 

rhythmic locomotion is also important for stability (Daley, 2018; Wong and Donelan, 

2017).  Future studies should explore how time-delayed control, rhythmic locomotion and 

realistic muscle models interact, and how this affects stability of locomotion.  

Research suggests that animals use state estimation and internal models to 

compensate for sensorimotor delays, and animals of different sizes could require different 

levels of complexity in their internal models for effective locomotion (Miall et al., 1993; 

Wolpert and Ghahramani, 2000; Wolpert and Kawato, 1998). While the sensorimotor 

delays experienced by an animal are fixed, inertial delays vary with movement size and 

movement task. My results indicate that sensorimotor delays would be the dominant 

contributor to response time in smaller animals, while inertial delays would be the 

dominant contributor in larger animals (Section 3.3.3). To the best of my knowledge, 

synaptic delay (the time required for an action potential to cross a single synapse) is about 

0.7 ms and does not change significantly with animal size (More and Donelan, 2018), while 

movement times do scale steeply with animal size (Heglund et al., 1974; Heglund and 

Taylor, 1988). Larger animals could use the increased computation time available to them 

to employ more complex and accurate internal models to compensate for the longer delays 

faced by them, and we could test this idea using simulations. Synaptic delay can also 

represent the time required for the multi-synaptic neuronal computations associated with 

state estimation. Since synaptic delay takes up a smaller fraction of the available movement 

time as animal size increases, this could promote the use of more computational resources 

for state estimation in larger animals. Alternatively, we could find that increased internal 

model complexity is not needed—simple internal models could prove effective in 

compensating for delays and producing effective motor control in animals of all sizes. A 

candidate internal model is the Smith Predictor, which is specifically designed to 

compensate for time delays (Miall et al., 1993; Nise, 2011). The Smith Predictor adds two 

more loops with internal models to the original feedback control system; these additional 

feedback loops predict the time delayed feedback from the original feedback system and 
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cancel out the time delayed feedback. Theoretically, this allows the feedback controller to 

use high gains without the risk of instability. The effectiveness of using state estimation 

depends on the accuracy of the internal models, and we have to vary the accuracy of the 

internal models in the simulation. We could use artificial neural networks with increasing 

layers to simulate increased complexity. If larger animals require more layers to accurately 

compensate for delays, this would support the idea that different sized animals require 

different levels of complexity in their internal models for effective locomotion. 

Recent findings have challenged the assumption that neural computations occur 

only at the synapse, and that complex computations require multi-synaptic circuits (Gidon 

et al., 2020). In this thesis, I have assumed that control of the perturbation responses that I 

have modeled are mediated through mono-synaptic reflexes—hence, it can only encode 

simple control algorithms. Gidon et al. showed that the dendrites within the body of a single 

human layer 2/3 cortical neuron can perform XOR computations, previously thought to 

require at least two layers of neural synapses (Gidon et al., 2020). This study indicates that 

we underestimate the computational power of neurons. A monosynaptic reflex itself could 

potentially encode complex controllers which could compensate for noise and time delays, 

and produce faster control than predicted by my simulations.  
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