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Abstract

We consider kinetic systems comprised of a large number of interacting particles and dis-
cuss one specific approach to modelling such an object from a physical point of view. The
subsequent kinetic model obtained through this process is a nonlinear integro-partial differ-
ential equation; namely, the Boltzmann equation. We focus, in particular, on the spatially
homogeneous Boltzmann equation for soft potentials (HBESP) and without angular cutoff
and use techniques adapted from the hard potential theory together with classical ideas
to study the instantaneous appearance (generation) and propagation of Lp-norms. By con-
sidering solutions over a fixed interval of time and with sufficient assumptions regarding
their L1 and L2 moments, we are able to demonstrate that Lp-norms of solutions to the
non-cutoff (HBESP) are both generated and propagated in time.

Keywords: kinetic theory; nonlinear Boltzmann equation; analysis of partial differential
equations; integro-differential equations; nonlocal analysis; well-posedness
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Chapter 1

Introduction

1.1 Introduction to kinetic models and equations

The aim of kinetic theory, in a general sense, is to describe the dynamics of systems com-
prised of a large number of interacting particles, such as gases or plasmas. The most obvious
approach to this problem is to solve the dynamical system which details the precise posi-
tion and velocity of every particle in the system. Of course, this approach is also highly
intractable, since one would ultimately require knowledge of the system’s initial state and
in most practical cases, due to the typically very large number of constituent particles as
well as their size relative to measurement devices, being able to accurately determine both
the position and velocity of each particle at an initial time is not physically realistic. How-
ever, even though we are physically limited in our ability to measure such quantities, we
will afford ourselves the mathematical convenience of denoting the total state of a system
of N particles at a given time by a vector

zN := (x1, x2, ..., xN , v1, v2, ..., vN ),

where xi ∈ R3 and vi ∈ R3 correspond to the position and velocity of the ith particle
respectively. We then refer to the 6N -dimensional space of all possible states zN as the phase
space for the system. Now, to account for the uncertainty in any simultaneous measurement
of a particle’s position and velocity, we modify our approach to the problem by instead
modelling the system with a probability density function, f(t, zN ), such that f(t, zN )dzN

represents the probability that the N particles occupy the volume element dzN of the phase
space at time t. While this kinetic model is more physically appropriate, it still depends
on far too many variables for the problem to be computationally feasible. It is then the
central idea of kinetic theory that for a system comprised of only one particle species, one
may consider as a kinetic model for the entire system, the one-particle marginal density,
f (1)(t, x, v), that corresponds to the probability of finding a single representative particle
at the point (x, v) in the reduced one-particle phase space at time t. Then, if we had a
closed evolution equation for f (1) (or which is sometimes referred to as a kinetic equation)
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that would describe how f (1) changes in time, this would potentially address the issue of
computational feasibility as f (1)(t, x, v) depends only on seven variables. As we shall see
below, it is in fact possible, under certain assumptions, to derive (at least formally) such an
expression.

Let us consider, for the moment, a system whose particles are identical and follow the
laws of classical mechanics but do not interact. Then, the time evolution of a given one-
particle phase point (x(0), v) is given by

(x(t), v) = Tt(x(0), v) := (x(0) + tv, v).

In this case, the probability that a particle is in the state (x(0), v) at time t = 0 must
be the same as the probability that a particle is in the state Tt(x(0), v) at some later time
t; that is, for any given initial region, Ω0, of the one-particle phase space, we have∫

Ω0
f (1)(0, x(0), v)dx(0) dv =

∫
Ω

f (1)(t, x(t), v)dx(t) dv,

where Ω = Tt(Ω0) = {(x(t), v) = Tt(x(0), v) ∈ R3×3 : (x(0), v) ∈ Ω0}. Then, for any time t,
the transformation Tt has unit Jacobian determinant since

|DTt| =
∣∣∣∣∣1 t

0 1

∣∣∣∣∣ = 1,

and hence ∫
Ω

f (1)(t, x(t), v)dx(t) dv =
∫

Ω0
f (1)(t, x(0) + tv, v)|DTt|dx(0) dv

=
∫

Ω0
f (1)(t, x(0) + tv, v)dx(0) dv.

Therefore, since Ω0 is any arbitrary region in the phase space, we may conclude from the
above integrals that

f (1)(t, x, v) = f (1)(0, x(0), v).

By differentiating this expression, we then obtain the evolution equation

f
(1)
t + ∂(x(0) + tv)

∂t
· ∇xf (1) = f

(1)
t + v · ∇xf (1) = 0.

Of course, for any real kinetic system this equation is incomplete as we have yet to include
the effect of particle interactions on f (1). It turns out that there are various ways in which
one may rectify this omission and, in fact, this is the primary reason why there is no unique
kinetic equation for any given system. In the proceeding section, we shall provide one such
method for dealing with particle interactions.
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1.2 Boltzmann’s collision operator

We begin by first outlining the various postulates regarding the interactions between par-
ticles that will allow us mathematically describe their impact on the density function f (1),
through which we may also introduce the relevant terminology and notation.

It is firstly assumed that the way in which constituent particles interact is only through
elastic binary collisions; that is, collisions that conserve momentum and energy and occur
at a given position and time between two particles only. A relevant remark to make about
this assumption is that it inherently imposes a restriction on the types of systems we may
consider since they must be dilute enough for us to be able to neglect collisions simultane-
ously occurring between three or more particles. We also note that our elasticity condition
allows us to accurately describe the geometry of such collisions and, in fact, there are two
common ways for us to do this.

Indeed, if we let v′ and v′
∗ denote the velocities of two particles before collision, referred

to as pre-collisional velocities, and similarly let v and v∗ denote the post-collisional velocities,
then by conservation of momentum and kinetic energy we have

v′ + v′
∗ = v + v∗ (1.1)

and ∣∣v′∣∣2 +
∣∣v′

∗
∣∣2 = |v|2 + |v∗|2. (1.2)

By rewriting (1.1) as
v′ − v = v∗ − v′

∗,

it is clear that the vectors v′ − v and v∗ − v′
∗ lie in the same plane. Moreover, by (1.1), we

have that ∣∣v′ + v′
∗
∣∣2 = |v + v∗|2

and so together with (1.2) we find that

∣∣v′∣∣2 +
∣∣v′

∗
∣∣2 + 2⟨v′, v′

∗⟩ = |v|2 + |v∗|2 + 2⟨v, v∗⟩ =
∣∣v′∣∣2 +

∣∣v′
∗
∣∣2 + 2⟨v, v∗⟩,

which implies ⟨v′, v′
∗⟩ = ⟨v, v∗⟩. With this in mind, we may apply (1.2) again to obtain

∣∣v′ − v′
∗
∣∣2 =

∣∣v′∣∣2 +
∣∣v′

∗
∣∣2 − 2⟨v′, v′

∗⟩

= |v|2 + |v∗|2 − 2⟨v, v∗⟩

= |v − v∗|2.

Geometrically, this corresponds to the lengths of the diagonals between the vectors v′ − v

and v∗ − v′
∗ being equal, and since these vectors are parallel we may conclude that they

form opposite sides of a rectangle in some plane in the particle phase space; see Figure 1.1.
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Figure 1.1: Geometry of an elastic binary collision

Defining now the spherical variable σ ∈ S2 by σ := v′−v′
∗

|v′−v′
∗| and referring to the geometry

of binary collisions described above or Figure 1.1, we see that we may relate the pre-
collisional velocities to the post-collisional velocities through the following formulas known
as the σ-representation of the pre-collisional velocities

v′ = v + v∗
2 + |v − v∗|

2 σ,

v′
∗ = v + v∗

2 − |v − v∗|
2 σ.

(1.3)

Note also, that we may write the post-collisional velocities in terms of the pre-collisional
velocities in a very similar manner:

v = v′ + v′
∗

2 + v′ − v′
∗

2 κ,

v∗ = v′ + v′
∗

2 − v′ − v′
∗

2 κ,

where κ ∈ S2, similarly to σ, is defined by κ := v−v∗
|v−v∗| . With this notation, the deviation

angle between pre- and post-collisional velocities, θ, must satisfy

cos θ = ⟨κ, σ⟩.

For convenience, if we let x and x∗ denote the center positions of the two particles
involved in the collision, we may alternatively use the spherical variable ω ∈ S2, defined
by ω := x∗−x

|x∗−x| , to relate the pre- and post-collisional variables. The easiest way to see this
relationship is by first noticing that, at the time of collision, ω must bisect the angle formed
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between the relative velocities (v∗ − v) and −(v′
∗ − v′) and can therefore be expressed as

ω = (v∗ − v) − (v′
∗ − v′)

|(v∗ − v) − (v′
∗ − v′)| = (v′ − v) + (v∗ − v′

∗)
|(v′ − v) + (v∗ − v′

∗)| ,

but since (v′ − v) and (v∗ − v′
∗) are parallel (see Figure 1.1) we may more simply write

ω = v′ − v

|v′ − v|
.

Thus, referring again to Figure 1.1, we get the ω-representation:

v′ = v − ⟨v − v∗, ω⟩ω,

v′
∗ = v∗ + ⟨v − v∗, ω⟩ω,

(1.4)

and
v = v′ − ⟨v′ − v′

∗, ω⟩ω,

v∗ = v′
∗ + ⟨v′ − v′

∗, ω⟩ω.
(1.5)

Now that we have made precise what we mean by a collision, we may begin to discuss
their impact on f (1). Recall that f (1)(t, x, v)dx dv gives the probability that, at time t, there
is a particle in the volume element dx dv of the one-particle phase space. So, if our goal is to
determine how f (1)(t, x, v) evolves in time, we must therefore keep track of the number of
collisions involving particles with state (x, v) over time. Consequently, our updated kinetic
equation should take the form

f
(1)
t (t, x, v) + v · ∇xf (1)(t, x, v) = G(t, x, v) − L(t, x, v), (1.6)

where the gain term Gdx dv dt is the probability that a particle enters the volume element
dx dv during the time interval dt due to collision and the loss term Ldx dv dt similarly
denotes the probability that a particle leaves the volume element dx dv in the time interval
dt due to collision. Continuing with our consideration of a system of N identical particles,
we may then write

G = (N − 1)g, and L = (N − 1)ℓ,

where gdx dv dt and ℓdx dv dt represent the probability of a collision between any two given
fixed particles, say the starless particle (whose phase point we denote with starless variables
(x, v)) and the starred particle (whose phase point is denoted with starred variables (x∗, v∗)).

Let us focus, for now, on computing the loss term and for simplicity we will proceed
with the assumption that the constituent particles are hard spheres with radii r

2 , where by
hard we mean the particles are perfectly rigid so that the joint probability of there being
two particles such that |x − x∗| < r is zero. Now, let us take the starless particle as our
frame of reference. If we treat the starless particle as having twice its actual radius and

5



rω
v -v*
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Figure 1.2: ω-representation of a binary collision relative to one particle

the starred particle as being just its center point with relative velocity (v∗ − v), then the
cylinder whose base is given by the surface area element of the extended starless particle,
dS = r2dω (where dω denotes the surface area element about ω of the unit sphere), and
side given by (v∗ − v) with length |v∗ − v|dt (see Figure 1.2), contains all possible starred
particles with relative velocity (v∗ − v) that will collide with dS within the time interval
dt (or have already collided with dS within dt time depending on the sign of ⟨v∗ − v, ω⟩).
Then, since this cylinder has volume |⟨v∗ − v, ω⟩|dt r2dω and the probability of finding two
particles in any volume element dx dx∗ dv dv∗ of the two-particle phase space at time t is
given by the two-particle marginal density f (2)(t, x, x∗, v, v∗)dx dx∗ dv dv∗, we find that the
probability of the starred particle colliding with dS of the starless particle within dt time
is f (2)(t, x, x + rω, v, v∗)dx dv dv∗ |⟨v∗ − v, ω⟩|dt r2dω. The total probability that the starred
and starless particles will collide in the fixed volume of the phase space dx dv within the
time interval dt is then

ℓdx dv dt = r2dx dv dt

∫
R3

∫
S2

−

f (2)(t, x, x + rω, v, v∗)|⟨v∗ − v, ω⟩|dω dv∗,

where S2
− is the hemisphere of S2 such that ⟨v∗ − v, ω⟩ < 0 since this corresponds to the

case where the particles are moving towards each other. Therefore, we may write

L = (N − 1)r2
∫
R3

∫
S2

−

f (2)(t, x, x + rω, v, v∗)|⟨v∗ − v, ω⟩|dω dv∗.

As for the gain term, since the volume |⟨v∗ − v, ω⟩|dt r2dω also contains all possible
particles with relative velocity −(v∗ −v) that have already collided with the starless particle
within dt time, we may compute G in the same way as for L only by integrating over the
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hemisphere, S2
+, of S2 that corresponds to ⟨v∗ − v, ω⟩ > 0:

G = (N − 1)r2
∫
R3

∫
S2

+

f (2)(t, x, x + rω, v, v∗)|⟨v∗ − v, ω⟩|dω dv∗.

If we further postulate that the pre-collisional velocities of any particles which are about
to collide are independent, an assumption which physically corresponds to a sufficient level
of molecular chaos (often referred to as Boltzmann’s chaos assumption), then we may rewrite
the loss term as

L = (N − 1)r2
∫
R3

∫
S2

−

f (1)(t, x, v)f (1)(t, x + rω, v∗)|⟨v∗ − v, ω⟩|dω dv∗.

We cannot, however, simply do the same for the gain term since the velocities appearing in
the joint density are understood as post-collisional and should be treated as dependent. To
deal with this, we recognize that

f (2)(t, x, x + rω, v, v∗) = f (2)(t, x, x + rω, v′, v′
∗),

in which case we may write

G = (N − 1)r2
∫
R3

∫
S2

+

f (2)(t, x, x + rω, v′, v′
∗)|⟨v∗ − v, ω⟩|dω dv∗

= (N − 1)r2
∫
R3

∫
S2

+

f (1)(t, x, v′)f (1)(t, x + rω, v′
∗)|⟨v∗ − v, ω⟩|dω dv∗.

Moreover, since the ω-representation for v′ and v′
∗, as well as |⟨v∗ − v, ω⟩|, are even functions

in ω, we see that under the change of variable ω → −ω we have

G = (N − 1)r2
∫
R3

∫
S2

−

f (1)(t, x, v′)f (1)(t, x − rω, v′
∗)|⟨v∗ − v, ω⟩|dω dv∗.

By taking the so-called Boltzmann-Grad limit, where we let N → ∞ and r → 0 in
such a way that Nr2 tends to a constant C, then (N − 1)r2 ≃ Nr2 = C and we no longer
distinguish between x and x ± rω. Therefore, in the limit we may express the right hand
side of (1.6) as follows:

G(t, x, v) − L(t, x, v) = C

∫
R3

∫
S2

−

(
f ′(1)

f ′
∗

(1) − f (1)f∗
(1)
)

|⟨v∗ − v, ω⟩|dω dv∗, (1.7)

where we have used the abbreviations: f ′(1) := f (1)(t, x, v′), f ′
∗

(1) := f (1)(t, x, v′
∗), f (1) :=

f (1)(t, x, v), and f∗
(1) := f (1)(t, x, v∗). Note that for the remainder of this thesis we will

employ this notation more broadly so that for any function, say h, of velocity v we may
write for example:

h′
∗ := h(v′

∗).
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We may also observe that in the Boltzmann-Grad limit, while the domain of integration
changes from S2

− to S2
+, the integrand in (1.7) is invariant under the previously performed

change of variable ω → −ω. Therefore, rather than integrating over the hemisphere S2
−, we

may instead simply integrate over the whole sphere:

G(t, x, v) − L(t, x, v) = C

2

∫
R3

∫
S2

(
f ′(1)

f ′
∗

(1) − f (1)f∗
(1)
)

|⟨v∗ − v, ω⟩|dω dv∗, (1.8)

the right hand side of which we call Boltzmann’s collision operator (with respect to ω) for
hard spheres and is viewed as an operator acting on f (1) at the point (t, x, v). Finally, by
replacing the right hand side of (1.6) with Boltzmann’s collision operator, we then arrive
at the Boltzmann equation for a system of hard spheres

f
(1)
t + v · ∇xf (1) =

∫
R3

∫
S2

(
f ′(1)

f ′
∗

(1) − f (1)f∗
(1)
)(C

2 |⟨v∗ − v, ω⟩|
)

dω dv∗. (1.9)

Now that we have a kinetic equation which is closed in terms of f (1), for brevity we shall
begin writing f to represent the one-particle marginal probability density function in place
of f (1).

While the formal derivation leading to the Boltzmann equation for hard spheres (1.9) is a
useful exercise which highlights how the structure of the collision operator directly connects
to the postulates assumed about the system, it is not of the particular form that we shall
consider moving forward. For one, we should like to consider the Boltzmann equation with
respect to σ rather than ω and, in general, we will not restrict ourselves to the case of
hard spherical particles and extend the range of possible interactions to inverse-power law
potentials. Indeed, one typically expresses Boltzmann’s collision operator acting on two
functions g and h as follows:

Q(g, h)(t, x, v) :=
∫
R3

∫
S2

(
h′g′

∗ − hg∗
)

B(v − v∗, σ)dσ dv∗, (1.10)

and the Boltzmann equation is then given by

ft + v · ∇xf = Q(f, f). (1.11)

Furthermore, if we consider densities, f , which are constant in the spatial variable x, the
kinetic equation for the system is given by the spatially homogeneous (or just homogeneous)
Boltzmann equation:

ft = Q(f, f), (1.12)

and it is this equation that is the central object of this thesis. We note also that in the
homogeneous setting, we may consider the further reduced phase space for one particle
where we neglect the spatial states, in which case the one-particle phase space is written

8



R3
v (though we will generally tend not to include the subscript and simply write R3), and

the density f = f(t, v) is taken over [0, T ] × R3
v.

The function B is called Boltzmann’s collision kernel and for inverse power law potentials
of the form r1−k for k > 2, it can be separated as the product of the kinetic collision kernel,
|v − v∗|γ for γ = k−5

k−1 ∈ (−3, 1), and an angular collision kernel denoted by b(⟨κ, σ⟩), or
equivalently b(cos θ); that is,

B(v − v∗, σ) = |v − v∗|γb(cos θ). (1.13)

Since B depends only on the magnitude of the relative velocity and the cosine of the devia-
tion angle, we may occasionally abuse notation by writing B(|v − v∗|, cos θ). The literature
for the Boltzmann equation is often divided according to the sign of the parameter γ ap-
pearing in the kinetic collision kernel and we typically refer to the cases when: γ > 0 as hard
potentials, γ = 0 as Maxwellian potentials, and γ < 0 as soft potentials. The precise form of
the angular kinetic kernel is not of particular use to us and, in fact, an explicit definition of
b(cos θ) does not exist in general. For our purposes, this fact bears no significant relevance,
though it is however important to note that we may treat this function as being symmetric
with respect to σ and as a locally smoothing function that satisfies:

sin θb(cos θ) ≈ b0
θ1+2s

, θ ≈ 0, (1.14)

where, as noted for example in [18], s = 1
k−1 ∈ (0, 1) and b0 is a constant. In particular this

shows that b has a nonintegrable singularity as θ → 0 and is consequent not integrable over
S2 since ∫

S2
b(cos θ)dσ =

∣∣∣S1
∣∣∣ ∫ π

0
b(cos θ) sin θdθ

=
∣∣∣S1
∣∣∣ (∫ ϵ

0

b0
θ1+2s

dθ +
∫ π

ϵ
b(cos θ) sin θdθ

)
=
∣∣∣S1
∣∣∣ ( b0

2s
· lim

δ→0

(
−θ−2s

∣∣∣∣ϵ
δ

+
∫ π

ϵ
b(cos θ) sin θdθ

)
.

Grad’s angular cutoff is the additional postulate that∫
S2

b(cos θ)dσ < ∞.

It is not hard to imagine that Grad’s angular cutoff considerably changes how one may
mathematically approach the Boltzmann equation and for this reason it is important to
draw the distinction between the Boltzmann equation with and without angular cutoff.
As the title of this thesis suggests, it is indeed the latter that we shall be discussing and
therefore the nonintegrability of the angular collision kernel poses an issue that we will have
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to address. As we will see, this is dealt with primarily through the so-called Cancellation
Lemma which we will introduce in Section 1.5.

1.3 The weak formulation of Boltzmann’s collision operator

We provide now the weak formulation of Q(f, f), as it will play a vital role in our discussion
moving forward. One of the key tools for this derivation is the so-called pre-post-collisional
change of variables:

K′ : R3×3 × S2 −→ R3×3 × S2; (v, v∗, σ) 7−→ (v′, v′
∗, κ) (1.15)

and we claim that this transformation has unit Jacobian determinant. To see this, we first
let F denote the entire integrand of the collision operator Q(f, f); that is,

F := (f ′f ′
∗ − ff∗)|v − v∗|γb(cos θ).

Then, similarly to observation made in the previous section regarding the invariance of the
integrand of (1.7) under the change of variable ω 7→ −ω, we note, due to the symmetry of
the angular collision kernel with respect to σ, that the same is true for F under σ 7→ −σ.
Therefore, it remains valid to write the collision operator (with respect to σ) as

Q(f, f) = 2
∫
R3

∫
S2

+

Fdσ dv∗,

where, similarly to before, S2
+ denotes the hemisphere where ⟨κ, σ⟩ ≥ 0. Integrating the

above expression over v ∈ R3 then gives∫
R3

Q(f, f)dv = 2
∫
R3×R3

∫
S2

+

Fdσ dv∗ dv.

Our goal now is to decompose K′ into a series of transformations each of which may be more
easily applied to the integral above and, since we are currently interested in the claim that
|det DK′(v, v∗, σ)| = 1, we perform these transformations while focusing purely on how they
impact the differential elements and integration ranges. To this end, let us first consider the
map T1 : (v, v∗, σ) 7→ (v, v∗, ω). To formally describe this map we notice, referring to Figure
1.1, that in spherical coordinates we have

σ = (sin θ cos ϕ, sin θ sin ϕ, cos θ), for θ ∈ [0, π/2], (1.16)

and

ω =
(

sin
(

θ + π

2

)
cos ϕ, sin

(
θ + π

2

)
sin ϕ, cos

(
θ + π

2

))
, for θ ∈ [0, π/2],

10



and therefore T1(v, v∗, σ) may be characterized by the map θ 7→ θ+π
2 . Moreover, we may

similarly characterize the inverse transformation T −1
1 (v, v∗, ω) by the map ξ 7→ 2ξ − π,

where ξ is the angle between ω and κ. An important subtlety here is that, while v and
v∗ do not explicitly appear in the characterizations for T1(v, v∗, σ) or T −1

1 (v, v∗, ω), the
parameterization of σ and ω implicitly depends on them since the azimuthal angles θ and ξ

are taken with respect to κ = v−v∗
|v−v∗| . In particular this means that T −1

1 (v′, v′
∗, ω) = (v′, v′

∗, κ),
since in the case the fixed direction is σ which implies T −1

1 (v′, v′
∗, ω) corresponds to the map

ξ = π − θ

2 7→ 2
(

π − θ

2

)
− π = −θ, (1.17)

which is precisely the (signed) angle between σ and κ.
Now, if we denote by u ⊗ v the outer product of vectors u and v, by introducing the

map T2 : (v, v∗, ω) 7→ (v′, v′
∗, ω) defined by

T2(v, v∗, ω) =


I − ω ⊗ ω ω ⊗ ω 0

ω ⊗ ω I − ω ⊗ ω 0
0 0 I




v

v∗

ω

,

we see that K′=T −1
1 ◦ T2 ◦ T1. Furthermore, since T2 is linear, its Jacobian determinant

is simply the determinant of the matrix above. Now, since (1.5) and (1.4) imply that the
matrix (

I − ω ⊗ ω ω ⊗ ω

ω ⊗ ω I − ω ⊗ ω

)

is an involution, it must have unit determinant and thus so must T2.
Therefore, by first switching to spherical coordinates and applying the change of variable

T1(v, v∗, σ) we get

2
∫
R3×R3

∫
S2

+

Fdσ dv∗ dv = 2
∣∣∣S1
∣∣∣ ∫

R3×R3

∫ π
2

0
F |sin θ|dθ dv∗ dv

= 4
∣∣∣S1
∣∣∣ ∫

R3×R3

∫ 3π
4

π
2

F |sin θ|dξ dv∗ dv

= 4
∫
R3×R3

∫
S1/4

F

∣∣∣∣∣∣ sin θ

sin
(

θ+π
2

)
∣∣∣∣∣∣dω dv∗ dv,

11



where S1/4 denotes the quarter of the unit sphere corresponding to ξ ∈ [π
2 , 3π

4 ]. Then, by
applying T2(v, v∗, ω) followed by T −1

1 (v′, v′
∗, ω) we obtain

2
∫
R3×R3

∫
S2

+

Fdσ dv∗ dv = 4
∫
R3×R3

∫
S1/4

F

∣∣∣∣∣∣ sin θ

sin
(

θ+π
2

)
∣∣∣∣∣∣dω dv′

∗ dv′

= 4
∣∣∣S1
∣∣∣ ∫

R3×R3

∫ π
4

π
2

F

∣∣∣∣∣∣ sin θ

sin
(

θ+π
2

) sin ξ

∣∣∣∣∣∣dξ dv′
∗ dv′

= 2
∫
R3×R3

∫
S2

−

F

∣∣∣∣∣∣ sin θ

sin
(

θ+π
2

) sin ξ

sin(2ξ − π)

∣∣∣∣∣∣dκ dv′
∗ dv∗,

where, as in (1.17), ξ = π−θ
2 . Hence, we may compute

∣∣∣∣∣∣ sin θ

sin
(

θ+π
2

) sin ξ

sin(2ξ − π)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ sin θ

sin
(

θ+π
2

) sin
(

π−θ
2

)
sin(−θ)

∣∣∣∣∣∣ = 1,

and therefore, again since F is invariant under the mapping κ 7→ −κ, we see altogether that
|det K′(v, v∗, σ)| = 1, so∫

R3
Q(f, f)dv = 2

∫
R3×R3

∫
S2

+

Fdκ dv′
∗ dv′ =

∫
R3×R3

∫
S2

Fdκ dv′
∗ dv′,

and hence we see the validity of the claim.
Now, consider an arbitrary continuous function, φ, of v. Then, by the pre-post-collisional

change of variable (1.3), we have

∫
R3×R3

∫
S2

φf ′f ′
∗|v − v∗|γb(⟨κ, σ⟩)dσ dv∗ dv =

∫
R3×R3

∫
S2

φ

(
v′ + v′

∗
2 + |v′ − v′

∗|
2 κ

)
f ′f ′

∗

·
∣∣v′ − v′

∗
∣∣γb(⟨κ, σ⟩)dκ dv′

∗ dv′.

By relabelling (v′, v′
∗, κ) as (v, v∗, σ), we may then rewrite the right hand side above by

∫
R3×R3

∫
S2

φ

(
v + v∗

2 + |v − v∗|
2 σ

)
ff∗|v − v∗|γb(⟨σ, κ⟩)dσ dv∗ dv,

which, by the σ-representation (1.3), is the same as∫
R3×R3

∫
S2

φ′ff∗|v − v∗|γb(⟨κ, σ⟩)dσ dv∗ dv.
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With this in mind, by multiplying Q(f, f) by φ and integrating over all v ∈ R3, we formally
obtain the weak formulation of Boltzmann’s collision operator:∫

R3
Q(f, f)φdv =

∫
R3×R3

∫
S2

(φ′ − φ)ff∗|v − v∗|γb(⟨κ, σ⟩)dσ dv∗ dv. (1.18)

An interesting observation to make here is that the transformation K∗ : (v, v∗, σ) 7→
(v∗, v, −σ) also has unit Jacobian determinant since it is also involutory, and making this
change of variable on the weak formulation (1.18) yields∫

R3
Q(f, f)φdv

=
∫
R3×R3

∫
S2

(
φ

(
v + v∗

2 − |v − v∗|
2 (−σ)

)
− φ

)
ff∗|v − v∗|γb(⟨κ, −σ⟩)d(−σ) dv dv∗

=
∫
R3×R3

∫
S2

(
φ

(
v∗ + v

2 − |v∗ − v|
2 σ

)
− φ∗

)
f∗f |v∗ − v|γb(⟨κ, σ⟩)dσ dv∗ dv

=
∫
R3×R3

∫
S2

(φ′
∗ − φ∗)ff∗|v − v∗|γb(⟨κ, σ⟩)dσ dv∗ dv.

Combining this result with (1.18) then gives yet another weak formulation:∫
R3

Q(f, f)φdv = 1
2

∫
R3×R3

∫
S2

(φ′ + φ′
∗ − φ − φ∗)ff∗|v − v∗|γb(⟨κ, σ⟩)dσ dv∗ dv. (1.19)

In this form we may now more easily verify that the object:∫
R3

Q(f, f)φdv

is well-defined when φ is sufficiently smooth. Indeed, following the discussion in [17], since
cos θ = ⟨κ, σ⟩ we see that for fixed velocities v and v∗, σ → κ as θ → 0. Thus, recalling the
σ-representation of the pre-collisional velocities (1.3), taking θ → 0 gives

v′ −→ v + v∗
2 + |v − v∗|

2 κ = v + v∗
2 + |v − v∗|

2
v − v∗
|v − v∗|

= v

and hence, if φ is at least in C2, the linear approximation of φ′ about θ = 0 can be expressed
as

φ′ ≈ φ′
∣∣∣∣
σ=κ

+
〈

∇φ′
∣∣∣∣
σ=κ

, σ − κ

〉
= φ + |v − v∗|

2 ⟨∇φ, σ − κ⟩.

Moreover, with the same reasoning we may also write

φ′
∗ ≈ φ∗ − |v − v∗|

2 ⟨∇φ∗, σ − κ⟩, θ ≈ 0.
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Furthermore, there exists some κ⊥ such that ⟨κ⊥, κ⟩ = 0 and

∇φ − ∇φ∗ = ⟨∇φ − ∇φ∗, κ⟩κ + cκ⊥

for some constant c and hence

⟨∇φ − ∇φ∗, σ − κ⟩ = ⟨∇φ − ∇φ∗, κ⟩⟨κ, σ⟩ + c⟨κ⊥, σ⟩ − ⟨∇φ − ∇φ∗, κ⟩

= ⟨∇φ − ∇φ∗, κ⟩(⟨κ, σ⟩ − 1) + c⟨κ⊥, σ⟩.

Additionally, similarly to (1.16), since

σ = (cos ϕ sin θ)e1 + (sin ϕ sin θ)e2 + (cos θ)κ

with the spherical coordinates taken about the κ-axis, ⟨κ⊥, σ⟩ must be a linear combination
of cos ϕ and sin ϕ and therefore∫ 2π

0
φ′ + φ′

∗ − φ − φ∗dϕ ≈
∫ 2π

0

|v − v∗|
2 ⟨∇φ − ∇φ∗, σ − κ⟩dϕ

=
∫ 2π

0

|v − v∗|
2 ⟨∇φ − ∇φ∗, κ⟩(⟨κ, σ⟩ − 1) + c⟨κ⊥, σ⟩dϕ

= π⟨∇φ − ∇φ∗, v − v∗⟩(cos θ − 1)

= O(θ2|v − v∗|2)

where the last equality follows from the Taylor expansion of cos θ about θ = 0 and the Mean
Value Theorem. Thus, from the approximation above and (1.14), we find that

∫ 2π

0
(φ′ − φ) sin θb(cos θ)dϕ ≈ b̃0|v − v∗|2

θ2s−1 , θ ≈ 0

and hence, since (2s − 1) > −1, we may conclude that the right hand side of (1.19) is finite
when ∫

R3×R3
ff∗|v − v∗|γ+2dv∗ dv < ∞.

While we will not make use explicitly of (1.19) in the main chapters of this thesis, there is
another important and quite immediate consequence of this weak formulation that is worth
mentioning. By not expanding the time derivative on the left hand side of the Boltzmann
equation (1.11) (the expansion that originally led to the PDE at the end of section 2.1) and
integrating over the whole one-particle phase space, we have

d
dt

∫
R3×R3

fφdx dv =
∫
R3×R3

Q(f, f)φdx dv. (1.20)
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Thus, by (1.19), when φ satisfies

φ′ + φ′
∗ = φ + φ∗, ∀(v, v∗, σ) ∈ R3 × R3 × S2,

then
d
dt

∫
R3×R3

fφdx dv = 0.

In particular, due to our elastic collision assumption, this demonstrates that we have the
following conservation laws for the Boltzmann equation:

d
dt

∫
R3×R3

f


1
v

|v|2

dx dv = 0, (1.21)

which correspond to conservation of total mass, momentum and kinetic energy respectively.
In a similar manner, applying the pre-post-collisional change of variable (1.3) to (1.19)

and relabelling gives∫
R3

Q(f, f)φdv = 1
2

∫
R3×R3

∫
S2

(φ + φ∗ − φ′ − φ′
∗)f ′f ′

∗B(v − v∗, σ)dσ dv∗ dv,

which we may add to (1.19) to obtain∫
R3

Q(f, f)φdv = −1
4

∫
R3×R3

∫
S2

(φ′ +φ′
∗ −φ−φ∗)(f ′f ′

∗ −ff∗)B(v −v∗, σ)dσ dv∗ dv. (1.22)

Now, since the map (x, y) 7→ (log x − log y)(x − y) ≥ 0, if we take φ = log f , then from
(1.22) we see that ∫

R3
Q(f, f) log fdv = −D(f) ≤ 0,

where D(f) is the entropy dissipation functional :

D(f) := 1
4

∫
R3×R3

∫
S2

(log
(
f ′f ′

∗
)

− log(ff∗))(f ′f ′
∗ − ff∗)B(v − v∗, σ)dσ dv∗ dv.

Then from (1.20) we obtain the famous result originally stated in Boltzmann’s H Theorem:

d
dt

H(f) = −
∫
R3

D(f)dx ≤ 0, (1.23)

where H is known as Boltzmann’s H functional (or entropy) and is defined as

H(f) :=
∫
R3×R3

f log fdx dv.

Hence, Boltzmann’s H Theorem states, in particular, that the Boltzmann entropy is non-
increasing in time.
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1.4 Introduction of main results

We now discuss the central problem that is dealt with in this thesis; that is, the generation
and propagation of Lp-norms of solutions to the homogeneous Boltzmann equation (1.12).
By generation of Lp-norms we mean the following: if f(t, v) solves (1.12) with suitable initial
data f0 such that f0 /∈ Lp(R3

v), then ∥f(t)∥Lp(R3
v) < ∞ for any t > 0. Whereas propagation of

Lp-norms refers to the case where f0 ∈ Lp(R3
v) implies ∥f(t)∥Lp(R3

v) < ∞ for all t > 0. This
problem has been extensively studied under Grad’s angular cutoff assumption for hard and
Maxwellian potentials (γ ∈ (0, 1), and γ = 0 respectively). We first note that in this case,
existence and uniqueness of solutions to the Boltzmann equation (1.11) was established in
[19] and later, existence and uniqueness of solutions which conserve mass, momentum, and
energy was proven in [13] in the spatially homogeneous setting. Then for hard potentials,
it was shown that L1 moments of these solutions are generated in time, a result which
was then extended in [5] where it was shown that both generation and propagation of
exponential L1 moments hold for solutions to (1.12), where we generally refer to Lp-norms
with a particular polynomial or exponential weight (see (1.27) below for the polynomial
case) as Lp moments or exponential Lp moments respectively. Together these papers both
imply the generation of L1-norms due to the fact that they are bounded by L1 moments
(either polynomial or exponential) and that it is assumed that the initial data has finite
second moment (which corresponds to the assumption that the system begins with finite
mass and energy). A similar result for Lp moments was demonstrated in [10, 14] under
the assumption that the initial data has sufficiently many Lp moments. Propagation of
L∞-norms was also studied and proved in [11, 6] for γ > 0. Moreover, it is known from
[6, 15, 8, 20] that the results mentioned above for p ∈ [1, ∞] remain true when γ = 0. In
fact, with the added assumption that the angular collision kernel b is finite, [8] proves the
propagation of a uniform Maxwellian upper bound. As a final remark regarding the cutoff
theory, we note that various results related to the generation and propagation of higher Lp

moments (both polynomial and exponential) have also been obtained in [7, 20, 10, 14, 5, 6]
for γ > 0, and in [19, 20, 6, 15] for γ = 0.

In the non-cutoff setting, weak solutions were shown to exist for (1.12) for γ > −1 and
suitable initial conditions. This result was extended in [17] to show that the same is true
for all soft potentials γ < 0 and later it was proven in [12] that, with regular enough initial
data, there exists a unique classical solution for the whole range γ ∈ (−3, 1). Now, while
the problem of Lp generation and propagation has been studied far less in the non-cutoff
case, due to the development of new tools, as in [2, 3] for example, the community has
seen recent progress within this context. In particular, it was proved in [16] for γ > 0 and
in [15] for γ = 0 that L1 propagation holds for solutions to the homogeneous non-cutoff
Boltzmann equation, and in [4] it was further established that Lp-norms of such solutions
are both generated and propagated for p ∈ (1, ∞] when γ ≥ 0. In any case, however, the
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theory relating to soft potentials (γ < 0) remains underdeveloped and it is this gap in the
literature that we, in some capacity, strive to fill here.

Now, it is the latter paper mentioned above, [4], by Alonso which this thesis is primarily
based on and therefore we include here, together with the statements of our main results,
the parallel results presented in [4] and provide a rough structure of their proofs so that we
may draw comparison and highlight significant differences.

As is implied by the chapter titles, we treat p < ∞ and p = ∞ separately as the
approach varies between these distinct cases. As such, let us consider first the case when
p < ∞. The a priori estimates given by Alonso in [4, Theorem 1] may then be stated as
follows: for p ∈ (1, ∞), s ∈ (0, 1) as in (1.14), and γ ∈ [0, 1], if f(t, v) is a sufficiently
smooth solution to the homogeneous Boltzmann equation (1.12) on [0, ∞) × R3 with initial
condition f0 ∈ U(D0, E0), then there is a constant C depending only on γ, s, D0, and E0

such that
∥f(t)∥Lp ≤ C

(
t
− 3(p−1)

2sp + 1
)

. (1.24)

Moreover, if additionally f0 ∈ Lp, then

sup
t≥0

∥f(t)∥Lp ≤ C max {∥f0∥Lp , E0} . (1.25)

Here, for D0, E0 > 0:

U(D0, E0) :=
{

g ∈ L1 : ∥g∥L1 ≥ D0, ∥g∥L1
2

+ ∥g∥L log L ≤ E0
}

(1.26)

where
∥g∥L log L :=

∫
R3

|g| log(1 + |g|)dv,

and for p ≥ 1, r ∈ R, and ⟨v⟩ :=
√

1 + |v|2,

∥g∥Lp
r

:= ∥⟨v⟩rg∥Lp , (1.27)

which we commonly refer to as the rth Lp moment of g. We note that with this new notation,
the condition f0 ∈ U(D0, E0) corresponds to the minimum assumption one may take for
the initial data for a system assumed to have zero total momentum and is justified by the
conservation laws (1.21) and Boltzmann’s H Theorem (1.23).

Alonso proves this result via the weak formulation of (1.12) with the particular choice
of test function being pfp−1. Specifically speaking, by multiplying (1.12) by pfp−1 and
integrating over v ∈ R3 Alonso obtains

d
dt

∥f(t)∥p
Lp = p

∫
R3

Q(f, f)fp−1dv.
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Then, using the weak formulation of Q(f, f) given by (1.18), the right hand side is bounded
by a linear combination of

∥∥∥f p
2

∥∥∥2

L2
γ/2

and the Sobolev norm
∥∥∥f p

2

∥∥∥2

Hs
γ/2

given in general by

∥g∥Hs
r

:= ∥⟨·⟩rg∥Hs

where, if we denote the Fourier transform of g by F [g],

∥g∥Hs :=
(∫

R3
|⟨ξ⟩sF [g](ξ)|2dξ

) 1
2

.

Notably, this bounding yields

d
dt

∥f∥p
Lp + C

∥∥∥f p
2

∥∥∥2

Hs
γ/2

≤ c
∥∥∥f p

2

∥∥∥2

L2
γ/2

, for s, r ∈ R. (1.28)

Obtaining such an estimate, however, relies on the fact that γ ≥ 0. Moreover, via Sobolev
embedding and Lebesgue interpolation, Alonso relates this inequality to an ODE of which
∥f(t)∥p

Lp is a sub-solution; a procedure which, through inequalities such as

∥f∥p
Lp ≤ ∥f∥p

Lp
γ

for example, relies further on γ ≥ 0. The final step is then demonstrating that the right
hand sides of (1.24) or (1.25), depending on whether or not f0 ∈ Lp, are super-solutions to
that same ODE.

As we will see, in order to obtain a similar estimate to (1.28) and furthermore, a similar
type of ODE for γ < 0, we must restrict ourselves to a fixed finite time interval, impose
stronger L1 moment assumptions on the initial data f0, and assume the L2 moments (up
to a specified degree) of the solutions f(t, v) are bounded over our given interval of time.
More specifically, we assume

f0 ∈ Vp(D0, E0) :=
{

g ∈ L1 : ∥g∥L1 ≥ D0, ∥g∥L1
νp

+ ∥g∥L log L ≤ E0

}
(1.29)

for νp := max
{

2, |γ|, 3|γ|(p−1)
2sp

}
, and that the solutions f(t, v) satisfy

f(t, v) ∈ T :=
{

g ∈ L2 : ∥g(t)∥L2
|γ|,

≤ Ct, ∀t ∈ [0, T ]
}

(1.30)

where Ct is some monotonically increasing function of t such that

CT := sup
t∈[0,T ]

Ct < ∞ (1.31)
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and depends only on γ, s, D0, and E0. Consequently, it no longer becomes appropriate for
us to make any claims regarding Lp generation or propagation for p < 2. We lastly note that
some justification for the latter additional assumption is provided by [9, Theorem 1] and is
included in chapter 2. With these added assumptions, by following the structure of Alonso’s
proof outlined above we are able to obtain a priori estimates for Lp-norms of solutions to
the homogeneous Boltzmann equation (1.12) for soft potentials (γ < 0). These estimates
are stated in the first main result of this thesis:

Theorem 1.1. Let p ∈ (2, ∞), s ∈ (0, 1), γ ∈ (max{−3, −2s − 3
2}, 0), Vp(D0, E0) be as in

(1.29) with D0, E0 > 0, T be as in (1.30) for a fixed T > 0, and CT be as in (1.31). Then, if
f(t, v) ∈ T is a sufficiently smooth solution to the homogeneous Boltzmann equation (1.12)
on [0, T ] ×R3 with f0 ∈ Vp(D0, E0) and Q as in (1.10) with B satisfying (1.13) and (1.14),
there is a constant C depending only on γ, s, D0, and E0 such that

∥f(t)∥Lp ≤ C (max {1 + T, CT })
3(p−1)

2sp
+1
(

t
− 3(p−1)

2sp + 1
)

, for all t ∈ (0, T ]. (1.32)

Moreover, if we additionally assume that f0 ∈ Lp, then

sup
t∈[0,T ]

∥f(t)∥Lp ≤ ∥f0∥LpeC max{1+T,CT }T . (1.33)

We include also our version of Alonso’s regularization result [4, Corollary 1], although
our proof has been substantially simplified due to our much stronger assumptions.

Theorem 1.2. Let s ∈ (0, 1), γ ∈ (max{−3, −2s − 3
2}, 0), V2(D0, E0) be as in (1.29) with

p = 2 and D0, E0 > 0, T be as in (1.30) for a fixed T > 0, and CT be as in (1.31). Then, if
f(t, v) ∈ T is a sufficiently smooth solution to the homogeneous Boltzmann equation (1.12)
on [0, T ] ×R3 with f0 ∈ V2(D0, E0) and Q as in (1.10) with B satisfying (1.13) and (1.14),
there is a constant C depending only on γ, s, D0, and E0 such that

∫ T

t
∥f(τ)∥2

Hs
γ/2

dτ ≤ C (max{1 + T, CT })4 , t ∈ [0, T ].

When p = ∞, Alonso is able to obtain very similar a priori estimates for L∞-norms
as was previously achieved for finite p. Indeed, the statement provided in [4, Theorem 2]
can be written: for s ∈ (0, 1) and γ ∈ [0, 1], if f(t, v) is a sufficiently smooth solution
to the homogeneous Boltzmann equation (1.12) on [0, ∞) × R3 with initial condition f0 ∈
U(D0, E0), then there is a constant C depending only on γ, s, D0, and E0 such that

∥f(t)∥L∞ ≤ C
(
t− 3

2s + 1
)

, for any t > 0. (1.34)
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Moreover, if additionally f0 ∈ L∞, then

sup
t≥0

∥f(t)∥L∞ ≤ C max {2∥f0∥L∞ , E0} , (1.35)

where C depends also on ∥f0∥L2.
While the statement of the result is similar to the case when p < ∞, the idea of the

proof is quite different. This is because when p < ∞ we could choose a convenient test
function to produce an Lp-norm on the left hand side of the weak homogeneous Boltzmann
equation that one could then work to bound, but when p = ∞ there is no such convenient
test function. What Alonso does instead is introduce the positive level set function

fk :=
(
f − K(1 − 2−k)

)
χ{f≥K(1−2−k)}

for k ∈ Z≥1 and K > 0, so that the weak formulation of (1.12) with test function fk gives

1
2

d
dt

∥fk(t)∥2
L2 =

∫
R3

Q(f, f)fkdv.

A similar bounding procedure as in the finite p case is employed again to bound the right
hand side of the expression above. As before, this procedure relies on the fact that γ ≥ 0
and therefore must be adapted for the γ < 0 setting. The estimate obtained, once integrated
over a time interval [ξ, t], can be written

1
2∥fk(t)∥2

L2 + C

∫ t

ξ
∥fk(τ)∥2

Hs
γ/2

dτ ≤ 1
2∥fk(ξ)∥2

L2 + c

∫ t

ξ
∥fk(τ)∥2

L2
γ/2

dτ + cK

∫ t

ξ
∥fk(τ)∥L1

γ
dτ.

(1.36)
In view of the left hand side above, Alonso defines an energy functional

Wk := 1
2 sup

t∈[tk,T ]
∥fk(t)∥2

L2 + C

∫ T

tk

∥fk(τ)∥2
Hs

γ/2
dτ

where tk := t∗(1 − 2−k+1) for some fixed t∗ > 0 (or in the propagation case we may simply
take instead tk ≡ 0 in the definition above). The strategy is then to show that for a particular
choice of K, Wk → 0 as k → ∞ since if that were the case and due to the fact that taking
k → ∞ implies fk → (f − K)χ{f≥K}, this would then show that∥∥∥(f − K)χ{f≥K}

∥∥∥
L2

= 0

and hence
∥f∥L∞ ≤ K.

Alonso achieves this by using (1.36) to relate Wk to a recurrence relation of which, similarly
to the ODE in the finite p setting, Wk is a sub-solution. Again, the assumption that γ ≥ 0
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is used in this process. For a suitable choice of K, Alonso is able to obtain a super-solution
to that recurrence relation that can clearly be seen to tend to zero as k → ∞. This choice
of K is then precisely what appears on the right hand sides of (1.34) and (1.35).

We follow the same framework to obtain a similar recurrence relation when γ < 0, how-
ever there are multiple arguments that must be modified in the soft potential setting. These
new arguments are what make up the list of lemmas appearing in Preliminary Results sec-
tion of chapter 3. Too, in this case we must still consider only those solutions f(t, v) ∈ T
over a finite time interval and with initial data satisfying additional L1 moment require-
ments. In fact, the assumptions placed on f0 end up being stronger than before. Specifically,
we enforce that

f0 ∈ V∗
ζ (D0, E0) :=

{
g ∈ L1 : ∥g∥L1 ≥ D0, ∥g∥L1

ν∗
ζ

+ ∥g∥L log L ≤ E0

}
, (1.37)

where ν∗
ζ = max

{
2, 3|γ|

2s(2−ζ)

}
for ζ ∈ (1, 2). With that in mind, our final main result can be

stated as follows:

Theorem 1.3. Let s ∈ (0, 1), γ ∈ (max{−3, −2s − 3
2}, 0), V∗

ζ (D0, E0) be as in (1.4) for
any ζ ∈ (1, 2) and with D0, E0 > 0, T be as in (1.30) for a fixed T > 0, and CT be as in
(1.31). Then, if f(t, v) ∈ T is a sufficiently smooth solution to the homogeneous Boltzmann
equation (1.12) on [0, T ] × R3 with f0 ∈ V∗

ζ (D0, E0) and Q as in (1.10) with B satisfying
(1.13) and (1.14), there is a constant C depending only on γ, s, D0, and E0 such that for
any 0 < t∗ < T sufficiently small we have

sup
t∈[t∗,T ]

∥f(t)∥L∞ ≤ C (max {1 + T, CT })
6+8s(ζ−1)

sζ

( 1
t∗

) 3
sζ ( 3

2s
+1)

. (1.38)

If we additionally assume that f0 ∈ L∞, then

sup
t∈[0,T ]

∥f(t)∥L∞ ≤ max
{

2∥f0∥L∞ , C (max{1 + T, CT })
6+8s(ζ−1)

sζ e
3

sζ
C max{1+T,CT }T

}
.

(1.39)

1.5 Essential theorems and inequalities

For the sake of completeness, we include here (without proof) the various theorems, some
of which are standard to the field of kinetic theory and others being classical inequalities,
which we will make use of in the proceeding chapters.

The first, and perhaps most important, is the cancellation lemma due to Alexandre,
Desvillettes, Villani, and Wennberg [1]:
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Theorem 1.4 (Cancellation Lemma [1]). Let B be as in (1.13) and (1.14). Then, for a.e.
v∗ ∈ R3, ∫

R3×S2
(f ′ − f)B(v − v∗, σ)dσ dv = (f ∗ S)(v∗),

where

S(z) :=
∣∣∣S1
∣∣∣ ∫ π

2

0
sin θ

[ 1
cos3(θ/2)B

( |z|
cos(θ/2) , cos θ

)
− B(|z|, cos θ)

]
dθ.

Another standard result in kinetic theory we will make use of is the following theorem
due to Alexandre, Morimoto, Ukai, Xu, and Yang [3].

Theorem 1.5. [3] Let s ∈ (0, 1) as in (1.14), γ ∈ (−3, 1), and g ∈ U(D0, E0) for U as
in (1.26) with D0, E0 > 0. Then for f sufficiently smooth, there are constants c and C

depending only on D0, E0 such that∫
R3×R3

∫
S2

g∗(f ′ − f)2|v − v∗|γb(cos θ)dσ dv∗ dv ≥ c∥f∥2
Hs

γ/2
− C∥f∥2

L2
γ/2

.

We end this section now by listing three classical inequalities so that we may more easily
refer to their parameters when used in the following two chapters.

Theorem 1.6 (Sobolev inequality). Let f ∈ Hk(Rn) and ℓ be such that

1
ℓ

= 1
2 − k

n
.

Then, if
k <

n

2 ,

there exists a constant C depending only on k and n such that

∥f∥Lℓ ≤ C∥f∥Hk .

Theorem 1.7 (Hardy-Littlewood-Sobolev inequality). Let f ∈ Lk(Rn) for k > 1. Then,
there is a constant C > 0 such that∥∥∥f ∗ |·|−α

∥∥∥
Lℓ

≤ C∥f∥Lk ,

where α := n
(
1 + 1

ℓ − 1
k

)
.

Theorem 1.8 (Young’s convolution inequality). Let p, q, r ∈ [1, ∞] be such that

1
p

+ 1
q

= 1
r

+ 1,
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and let f ∈ Lp(Rn) and g ∈ Lq(Rn). Then,

∥f ∗ g∥Lr ≤ ∥f∥Lp∥g∥Lq .
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Chapter 2

Lp Theory

2.1 Preliminary results

Let us suppose for now that p ∈ [1, ∞), γ ∈ (−3, 0), s ∈ (0, 1) as in (1.14), and B(v − v∗, σ)
is as given in (1.13), but note that the ranges for p and γ will become more restricted in
Theorem 2.1 (the main result of this chapter) below. As it will quickly become relevant, let
us also define the class of functions as seen in section 1.4:

Vp(D0, E0) :=
{

g ∈ L1 : ∥g∥L1 ≥ D0, ∥g∥L1
νp

+ ∥g∥L log L ≤ E0

}
,

where νp := max
{

2, |γ|, 3|γ|(p−1)
2sp

}
.

One of the pivotal ideas we make use of in this thesis is that for a particular choice
of test function, we may bound the weak collision operator by a linear combination of the
following integrals:

Ip(g, f) :=
∫
R3×R3

∫
S2

g∗
[
(f ′)p − fp]B(v − v∗, σ)dσ dv∗ dv, (2.1)

Jp(g, f) :=
∫
R3×R3

∫
S2

g∗
[
(f ′)

p
2 − f

p
2
]2

B(v − v∗, σ)dσ dv∗ dv, (2.2)

where B satisfies (1.13) and (1.14). This idea is made precise in the following lemma.

Lemma 2.1. Let Q be as in (1.10) with B satisfying (1.13) and (1.14). Then, for f suffi-
ciently smooth, ∫

R3
Q(f, f)fp−1dv ≤ 1

p′ Ip(f, f) − 1
max{p, p′}

Jp(f, f),

where p and p′ are Hölder conjugates.

This lemma is a consequence of [4, Lemma 1] which states that for any h ≥ 0 and
p ∈ [1, ∞], one has

h
2
p′ − 1 ≤ 1

p′ (h
2 − 1) − 1

max{p, p′}
(h − 1)2, (2.3)
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where equality is obtained when p = 2. With this in mind we present the proof of Lemma
2.1 as given in [4].

Proof. By (2.3) with

h =
(

f ′

f

) p
2

,

we see that

(
f ′

f

) p
p′

− 1 ≤ 1
p′

[(
f ′

f

)p

− 1
]

− 1
max{p, p′}

[(
f ′

f

) p
2

− 1
]2

= 1
fp

( 1
p′
[
(f ′)p − fp]− 1

max{p, p′}

[
(f ′)

p
2 − f

p
2
]2)

.

Then since

f
[
(f ′)p−1 − fp−1

]
= fp

(
f ′

f

)p−1
− fp = fp

[(
f ′

f

) p
p′

− 1
]

,

by the weak formulation (1.18) with test function φ = fp−1, we find that∫
R3

Q(f, f)fp−1dv =
∫
R3×R3

∫
S2

f∗f
[
(f ′)p−1 − fp−1

]
B(v − v∗, σ)dσ dv∗ dv

≤ 1
p′ Ip(f, f) − 1

max{p, p′}
Jp(f, f).

Now, if f solves the homogeneous Boltzmann equation (1.12) with f0 ∈ Vp(D0, E0),
then for U as in (1.26), since Vp(D0, E0) ⊆ U(D0, E0) the conservation laws (1.21) imply
f ∈ U(D0, E0) and hence in this case Theorem 1.5 gives

Jp(f, f) ≥ C
∥∥∥f p

2

∥∥∥2

Hs
γ/2

− c
∥∥∥f p

2

∥∥∥2

L2
γ/2

, (2.4)

for constants c and C depending only on D0 and E0. As for Ip, we may apply the Cancellation
Lemma 1.4 with fp in the place of f to obtain

Ip(f, f) =
∫
R3

f∗(fp ∗ S)(v∗)dv∗

=
∫
R3×R3

f∗ (fpS(v∗ − v)) dv dv∗

=
∫
R6

f∗fp
∣∣∣S1
∣∣∣ ∫ π

2

0
sin θ

[
1

cos3 θ
2

B

(
|v − v∗|
cos θ

2
, cos θ

)
− B(|v − v∗|, cos θ)

]
dθ dv dv∗

=
∣∣∣S1
∣∣∣ ∫

R6
f∗fp|v − v∗|γ

∫ π
2

0
sin θ

(
1

cos3+γ θ
2

− 1
)

b(cos θ)dθ dv dv∗.
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Then, by writing the MacLaurin series for
(
cos−(3+γ) θ

2 − 1
)
:

(
cos−(3+γ) θ

2 − 1
)

=
( 1

cos3+γ(0) − 1
)

+
(3 + γ

2
sin(0)

cos4+γ(0)

)
θ+

+
[ 3 + γ

4 cos5+γ(0)
(
(4 + γ) sin2(0) + cos2(0)

)]
θ2 + O(θ3) (as θ → 0),

we see that there is a constant, c, depending only on γ such that
(
cos−(3+γ) θ

2 − 1
)

≈ cθ2

for θ ≈ 0. Therefore, if we let b̃(cos θ) :=
(
cos−(3+γ) θ

2 − 1
)

b(cos θ), we find that for ϵ ≪ 1

∥∥∥b̃∥∥∥
L1(S2)

= 2
∣∣∣S1
∣∣∣ ∫ π

2

0
sin θ

∣∣∣b̃(cos θ)
∣∣∣dθ

= 2
∣∣∣S1
∣∣∣ (c

∫ ϵ

0
θ1−2sdθ +

∫ π
2

ϵ
sin θ

∣∣∣b̃(cos θ)
∣∣∣dθ

)

= 2
∣∣∣S1
∣∣∣ [ c

2 − 2s

(
θ2−2s

∣∣∣∣ϵ
0

+
∫ π

2

ϵ
sin θ

∣∣∣b̃(cos θ)
∣∣∣dθ

]
< ∞

since 2 − 2s > 0. Thus, there exists some constant C depending only on γ and s such that

Ip(f, f) = 1
2

∫
R6

f∗fp|v − v∗|γ
∫
S2

b̃(cos θ)dσ dv dv∗

≤ C

∫
R3×R3

f∗fp|v − v∗|γdv∗ dv. (2.5)

Lemma 2.2. Let p ∈ [1, ∞), s ∈ (0, 1), γ ∈ (max{−3, −2s− 3
2}, 0), f be sufficiently smooth,

and Ip be as in (2.1). Then, there exist constants c, C depending only on γ and s such that

Ip(f, f) ≤ max
{

∥f∥L1
|γ|

, ∥f∥L2
|γ|

}
·


c
∥∥∥f p

2

∥∥∥2

L2
γ/2

, −3
2 < γ (2.6a)

c

ϵ

∥∥∥f p
2

∥∥∥2

L2
γ/2

+ Cϵ
∥∥∥f p

2

∥∥∥2

Hs
γ/2

, γ ≤ −3
2 (2.6b)

for any ϵ > 0.

Proof. Due to the Cancellation Lemma, it suffices to show that the right hand sides of
(2.6a) and (2.6b) provides an upper bound for the right hand side of (2.5). To this end, we
first make the observation that if |v − v∗| ≤ 1 we can write |v| ≤ 1 + |v∗|, so

1 ≥ |v − v∗|2

≥ |v|2 + |v∗|2 − 2|v||v∗|

≥ |v|2 + |v∗|2 − 2|v∗| (1 + |v∗|)

= |v|2 − |v∗|2 − 2|v∗|,
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and hence

|v|2 + 1 ≤ |v∗|2 + 2|v∗| + 2

≤ 2 (|v∗| + 1)2

= 8
(1

2 |v∗| + 1
2

)2

≤ 4
(
|v∗|2 + 1

)
.

In particular, when |v − v∗| ≤ 1 we have ⟨v⟩ ≤ 2⟨v∗⟩.
Let us now consider the case when γ > −3

2 . In this case, with the observation above we
see that ∫

|v−v∗|≤1
f∗fp|v − v∗|γdv∗ dv =

∫
|v−v∗|≤1

f∗⟨v⟩|γ|⟨v⟩γfp|v − v∗|γdv∗ dv

≤ 2|γ|
∫

|v−v∗|≤1
f∗⟨v∗⟩|γ|⟨v⟩γfp|v − v∗|γdv∗ dv.

Furthermore, applying Cauchy-Schwarz and using the fact that, for any fixed v, {v∗ ∈ R3 :
|v − v∗| ≤ 1} ⊆ R3 we obtain

∫
|v−v∗|≤1

f∗fp|v − v∗|γdv∗ dv ≤ 2|γ|
∫
R3

(
⟨v⟩

γ
2 f

p
2
)2
(∫

|v−v∗|≤1
|v − v∗|2γdv∗

) 1
2

·

(∫
R3

(
⟨v∗⟩|γ|f∗

)2
dv∗

) 1
2

dv

and since |·|γχ{|·|≤1} ∈ L2 for −3
2 < γ, this shows that∫

|v−v∗|≤1
f∗fp|v − v∗|γdv∗ dv ≤ c∥f∥L2

|γ|

∥∥∥f p
2

∥∥∥2

L2
γ/2

. (2.7)

On the other hand, if we let Av := {v∗ ∈ R3 : |v∗| ≤ 1
2 |v|}, then if |v − v∗| > 1 for

v∗ ∈ Av, we must have |v| > 1 and hence

|v − v∗| ≥ |v| − |v∗| ≥ 1
2 |v| = 1

2
√

2

√
|v|2 + |v|2 >

1
2
√

2
⟨v⟩.
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In this case we have∫
|v−v∗|>1

f∗fp|v − v∗|γχAv dv∗ dv ≤ (2
√

2)|γ|
∫

|v−v∗|>1
f∗fp⟨v⟩γχAv dv∗ dv

≤ (2
√

2)|γ|
∫

|v−v∗|>1
f∗fp⟨v∗⟩|γ|⟨v⟩γχAv dv∗ dv

≤ (2
√

2)|γ|
∫
R3

(f
p
2 ⟨v⟩

γ
2 )2

∫
R3

f∗⟨v∗⟩|γ|dv∗ dv

= (2
√

2)|γ|∥f∥L1
|γ|

∥∥∥f p
2

∥∥∥2

L2
γ/2

.

If instead v∗ ∈ Ac
v, then ⟨v⟩ ≤ 2⟨v∗⟩ and in which case

∫
|v−v∗|>1

f∗fp|v − v∗|γχAc
v
dv∗ dv =

∫
|v−v∗|>1

f∗fp ⟨v⟩|γ|⟨v⟩γ

|v − v∗||γ| χAc
v
dv∗ dv

≤ 2|γ|
∫

|v−v∗|>1
f∗fp⟨v∗⟩|γ|⟨v⟩γχAc

v
dv∗ dv

≤ (2
√

2)|γ|∥f∥L1
|γ|

∥∥∥f p
2

∥∥∥2

L2
γ/2

.

Therefore, we see that∫
|v−v∗|>1

f∗fp|v − v∗|γdv∗ dv ≤ c∥f∥L1
|γ|

∥∥∥f p
2

∥∥∥2

L2
γ/2

(2.8)

for a constant c depending only on γ. Then, combining inequalities (2.7) and (2.8), we arrive
at ∫

R3
f∗fp|v − v∗|γdv∗ dv ≤ c max

{
∥f∥L1

|γ|
, ∥f∥L2

|γ|

}∥∥∥f p
2

∥∥∥2

L2
γ/2

, for − 3
2 < γ.

Hence, we can see that there is a constant c depending only on γ and s such that (2.6a)
holds.

Consider now the case when γ ≤ −3
2 . Then, similarly to above∫

|v−v∗|≤1
f∗fp|v − v∗|γdv∗ dv ≤ 2|γ|

∫
|v−v∗|≤1

f∗⟨v∗⟩|γ|⟨v⟩γfp|v − v∗|γdv∗ dv.

Now, by Cauchy-Schwarz

∫
|v−v∗|≤1

f∗fp|v − v∗|γdv∗ dv ≤ 2|γ|
(∫

R3

∣∣∣f∗⟨v⟩|γ|
∣∣∣2dv∗

) 1
2

·

(∫
R3

∣∣∣∣∫
R3

fp⟨v⟩γ |v − v∗|γdv

∣∣∣∣2dv∗

) 1
2

,
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which is the same as∫
|v−v∗|≤1

f∗fp|v − v∗|γdv∗ dv ≤ 2|γ|∥f∥L2
|γ|

∥∥∥(fp⟨·⟩γ) ∗ |·|−|γ|
∥∥∥

L2
. (2.9)

Then, we may apply Theorem 1.7 (Hardy-Little-Sobolev inequality) with α ≡ |γ|, ℓ ≡ 2,
and n ≡ 3 to obtain∫

|v−v∗|≤1
f∗fp|v − v∗|γdv∗ dv ≤ c∥f∥L2

|γ|
∥fp∥

L
6/(9−2|γ|)
γ

,

for a constant c depending only on γ. Furthermore, by rewriting the right hand side of the
above inequality and applying Theorem 1.6 (Sobolev inequality) with n ≡ 3, ℓ ≡ 12

9−2|γ| ,
and k ≡ s′ := 6|γ|−9

12 we get∫
|v−v∗|≤1

f∗fp|v − v∗|γdv∗ dv ≤ c∥f∥L2
|γ|

∥∥∥f p
2

∥∥∥2

L
12/(9−2|γ|)
γ/2

≤ C∥f∥L2
|γ|

∥∥∥f p
2

∥∥∥2

Hs′
γ/2

, (2.10)

for a constant C depending only on γ.
Now, since (2.8) remains true for γ ≤ −3

2 , we also have∫
|v−v∗|>1

f∗fp|v − v∗|γdv∗ dv ≤ c∥f∥L1
|γ|

∥∥∥f p
2

∥∥∥2

Hs′
γ/2

,

which together iwht (2.10) implies that there is a constant C depending only on γ and s

such that
Ip(f, f) ≤ C max

{
∥f∥L1

|γ|
, ∥f∥L2

|γ|

}∥∥∥f p
2

∥∥∥2

Hs′
γ/2

, for γ ≤ −3
2 . (2.11)

Now, because 0 < s′ < s for γ ∈ (−2s − 3
2 , −3

2), there exists some θ ∈ (0, 1) which
depends only on γ and s such that s′ = θ(0)+(1−θ)s. Therefore, an application of Young’s
inequality shows that for any ϵ > 0 and z ∈ R3,

⟨z⟩2s′ =
(

ϵ

ϵ
⟨z⟩2

)(1−θ)s

= 1
ϵ(1−θ)s

[(
ϵ⟨z⟩2

)θ(0) (
ϵ⟨z⟩2

)(1−θ)s
]

≤ 1
ϵ(1−θ)s

[
θ
(
ϵ⟨z⟩2

) θ(0)
θ + (1 − θ)

(
ϵ⟨z⟩2

) (1−θ)s
(1−θ)

]

= θ

ϵ(1−θ)s + (1 − θ)ϵθs⟨z⟩2s.
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With this in mind, by Plancherel’s Theorem we have that for any ϵ > 0∥∥∥f p
2

∥∥∥2

Hs′
γ/2

=
∫
R3

⟨z⟩2s′
∣∣∣(⟨·⟩

γ
2 f

p
2
)̂

(z)
∣∣∣2dz

≤
∫
R3

(
θ

ϵ(1−θ)s + (1 − θ)ϵθs⟨z⟩2s
) ∣∣∣(⟨·⟩

γ
2 f

p
2
)̂

(z)
∣∣∣2dz

= θ

ϵ(1−θ)s

∥∥∥f p
2

∥∥∥2

L2
γ/2

+ (1 − θ)ϵθs
∥∥∥f p

2

∥∥∥2

Hs
γ/2

.

Thus, we may finally conclude from (2.11), that (2.6b) also holds.

Now, ideally we would like to treat the coefficient
(

max
{

∥f∥L1
|γ|

, ∥f∥L2
|γ|

})
as constant

in time, however the problem of L2 moment estimation for solutions to (1.12) with soft
potentials is currently open. The way in which we deal with this is by further restricting
the a priori estimates provided in this thesis to densities, f , which solve (1.12) with f0 ∈
Vp(D0, E0) and additionally satisfy

∥f∥L2
|γ|

≤ Ct,

where Ct depends on γ, s, D0, and E0, and is a monotonically increasing function of t.
Moreover, as in Section 1.4, we denote for any given T ≥ t ≥ 0

T := {g ∈ L2
|γ| : ∥g(t)∥L2

|γ|
≤ Ct, ∀t ∈ [0, T ]},

and
CT := sup

t∈[0,T ]
Ct < ∞.

Our assumptions regarding Ct are motivated by the result due to Carlen, Carvalho, and Lu
in [9, Theorem 1], the statement of which we present as the following lemma.

Lemma 2.3. [9, Theorem 1] Let f(t, v) solve the homogeneous Boltzmann equation (1.12)
on (0, ∞) × R3 with f0 ∈ U(D0, E0) ∩ L1

r and Q as in (1.10) with B satisfying (1.13) and
(1.14). Then, there exists a constant C depending only on γ, s, D0, E0 and ∥f0∥L1

r
such

that
∥f(t)∥L1

r
≤ C(1 + t).

Before we may move on to the main result of this chapter, we include one final lemma
which serves as the culmination of Lemmas 2.1-2.3.

Lemma 2.4. Let p ∈ (1, ∞), s ∈ (0, 1), γ ∈ (max{−3, −2s − 3
2}, 0), Vp(D0, E0) be as

in (1.29) with D0, E0 > 0, and T and Ct be as in (1.30) for a fixed T > 0. Then, if
f(t, v) ∈ T is a sufficiently smooth solution to the homogeneous Boltzmann equation (1.12)
on [0, T ] ×R3 with f0 ∈ Vp(D0, E0) and Q as in (1.10) with B satisfying (1.13) and (1.14),
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there are constants c and C depending only on γ, s, D0, and E0 such that∫
R3

Q(f, f)fp−1dv ≤ c

p′ max {1 + t, Ct}
∥∥∥f p

2

∥∥∥2

L2
γ/2

− C

max{p, p′}

∥∥∥f p
2

∥∥∥2

Hs
γ/2

.

Proof. We first note that by Lemma 2.3, since f0 ∈ Vp(D0, E0) and f ∈ T we have

max
{

∥f∥L1
|γ|

, ∥f∥L2
|γ|

}
≤ cCt

where Ct := max{1 + t, Ct} and c is a constant depending only on γ, s, D0, and E0. Then,
by Lemmas 2.1 and 2.2 as well as (2.4), we have for γ ≤ −3

2∫
R3

Q(f, f)fp−1dv

≤ 1
p′ Ip(f, f) − 1

max{p, p′}
Jp(f, f)

≤ Ct

p′

(
c

ϵ

∥∥∥f p
2

∥∥∥2

L2
γ/2

+ Cϵ
∥∥∥f p

2

∥∥∥2

Hs
γ/2

)
+ 1

max{p, p′}

(
c̃
∥∥∥f p

2

∥∥∥2

L2
γ/2

− C̃
∥∥∥f p

2

∥∥∥2

Hs
γ/2

)

for any ϵ > 0. Hence, for ϵ sufficiently small and using the fact that 1
max{p,p′} ≤ 1

p′ , we get

∫
R3

Q(f, f)fp−1dv ≤ cCt

p′

∥∥∥f p
2

∥∥∥2

L2
γ/2

− C

max{p, p′}

∥∥∥f p
2

∥∥∥2

Hs
γ/2

,

where c and C depend only on γ, s, D0, and E0.
The result follows similarly for the case when −3

2 < γ.

2.2 Generation and propagation of Lp-norms

With the collection of lemmas in the previous section, we are now in a position to state and
prove the a priori estimates comprising our first main result.

Theorem 2.1. Let p ∈ (2, ∞), s ∈ (0, 1), γ ∈ (max{−3, −2s − 3
2}, 0), Vp(D0, E0) be as in

(1.29) with D0, E0 > 0, T be as in (1.30) for a fixed T > 0, and CT be as in (1.31). Then, if
f(t, v) ∈ T is a sufficiently smooth solution to the homogeneous Boltzmann equation (1.12)
on [0, T ] ×R3 with f0 ∈ Vp(D0, E0) and Q as in (1.10) with B satisfying (1.13) and (1.14),
there is a constant C depending only on γ, s, D0, and E0 such that

∥f(t)∥Lp ≤ C (max {1 + T, CT })
3(p−1)

2sp
+1
(

t
− 3(p−1)

2sp + 1
)

, for all t ∈ (0, T ]. (2.12)

Moreover, if we additionally assume that f0 ∈ Lp, then

sup
t∈[0,T ]

∥f(t)∥Lp ≤ ∥f0∥LpeC max{1+T,CT }T . (2.13)
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Proof. By multiplying (1.12) by pfp−1, integrating over v ∈ R3, and applying lemma 2.4,
we find that

d
dt

∥f(t)∥p
Lp + pC̃

max{p, p′}

∥∥∥f p
2

∥∥∥2

Hs
γ/2

≤ pcCt

p′

∥∥∥f p
2

∥∥∥2

L2
γ/2

= pcCt

p′ ∥f∥p
Lp

γ/p

,

for Ct := max{1 + t, Ct} as in lemma 2.4 and constants c, C̃ depending only on γ, s, D0,
and E0. In particular, since ⟨v⟩γ ≤ 1 we have

d
dt

∥f(t)∥p
Lp + pC̃

max{p, p′}

∥∥∥f p
2

∥∥∥2

Hs
γ/2

≤ pcCt

p′ ∥f∥p
Lp (2.14)

and furthermore, since 1 ≤ p
max{p,p′} and p

p′ ≤ p, we may more simply write

d
dt

∥f(t)∥p
Lp + C̃

∥∥∥f p
2

∥∥∥2

Hs
γ/2

≤ pcCt∥f∥p
Lp . (2.15)

Since (2.15) implies that

d
dt

∥f(t)∥p
Lp ≤ pcCt∥f(t)∥p

Lp ≤ pcCT ∥f(t)∥p
Lp ,

if f0 ∈ Lp then we may apply Grönwall’s inequality to directly conclude that

∥f(t)∥p
Lp ≤ ∥f0∥p

LpepcCT t

which proves (2.13).
Let us now proceed with the assumption that f0 /∈ Lp. If we take θ = 3(p−1)

3(p−1)+2s ∈ (0, 1)
so that 1 = p(1 − θ) + pθ 3−2s

3p , by Lebesgue interpolation we get

∥f∥p
Lp =

∫
R3

⟨v⟩|γ|⟨v⟩γfpdv

=
∫
R3

⟨v⟩|γ|
(
⟨v⟩

γ
p f
)p

dv

=
∫
R3

⟨v⟩|γ|
(
⟨v⟩

γ
p f
)p(1−θ) (

⟨v⟩
γ
p f
)pθ 3−2s

3p
3p

3−2s
dv

=
∫
R3

(
⟨v⟩

|γ|
p(1−θ) + γ

p f

)p(1−θ) (
⟨v⟩

γ
p f
)pθ 3−2s

3p
3p

3−2s
dv

≤ ∥f∥p(1−θ)
L1

νp
∥f∥pθ

L
3p

3−2s
γ/p

,
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where the final inequality follows from Hölder’s inequality and the fact that |γ|
p(1−θ) + γ

p =
3|γ|(p−1)

2ps ≤ νp, for νp as in Vp(D0, E0). Thus, from lemma 2.3 we may further write

∥f∥p
Lp ≤ [C(1 + t)]p(1−θ)∥f∥pθ

L
3p

3−2s
γ/p

≤ CC
p(1−θ)
t ∥f∥pθ

L
3p

3−2s
γ/p

where C depends at most on γ, s, D0, E0. Furthermore, by applying Theorem 1.6 (Sobolev
inequality) with n = 3, k = s, and ℓ = 3−2s

6 gives

∥∥∥f p
2

∥∥∥
Hs

γ/2
≥ c

∥∥∥f p
2

∥∥∥
L

3−2s
6

γ/2

= c∥f∥
p
2

L
3p

3−2s
γ/p

,

with c depending only on s and hence

∥f∥Lp ≤ C

c2θ
C

p(1−θ)
t

∥∥∥f p
2

∥∥∥2θ

Hs
γ/2

, (2.16)

or equivalently
c2

C
C

− p(1−θ)
θ

t ∥f∥
p
θ
Lp ≤

∥∥∥f p
2

∥∥∥2

Hs
γ/2

. (2.17)

Applying Young’s inequality to (2.16) yields

pcCt∥f∥p
Lp ≤ pcCT ∥f∥p

Lp

≤ pCCT C
p(1−θ)
t

∥∥∥f p
2

∥∥∥2θ

Hs
γ/2

=

(pCCT

C̃θ

) 1
1−θ

C
p
t

1−θ (
C̃
∥∥∥f p

2

∥∥∥2

Hs
γ/2

)θ

≤ (1 − θ)
(

pCCT

C̃θ

) 1
1−θ

C
p
t + θC̃

∥∥∥f p
2

∥∥∥2

Hs
γ/2

= (1 − θ)cC
1

1−θ

T C
p
t + θC̃

∥∥∥f p
2

∥∥∥2

Hs
γ/2

,

where CT := Ct

∣∣∣
t=T

, and the constant c depends only on γ, s, D0, and E0. This estimate,
together with (2.15) then gives

d
dt

∥f(t)∥p
Lp + (1 − θ)C̃

∥∥∥f p
2

∥∥∥2

Hs
γ/2

≤ (1 − θ)cC
1

1−θ

T C
p
t ,

and thus (2.17) further implies that

d
dt

∥f(t)∥p
Lp + CC

− p(1−θ)
θ

t ∥f∥
p
θ
Lp ≤ cC

1
1−θ

T C
p
t .
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Now, let Xp(t) := ∥f(t)∥p
Lp and Yp(t) := C

p
t . With this notation, the inequality above

can be written
dXp(t)

dt
+ C(Xp(t))

1
θ

(Yp(t))
1−θ

θ

≤ cC
1

1−θ

T Yp(t),

and hence Xp is a sub-solution to the ODE

dXp(t)
dt

+ C(Xp(t))
1
θ

(Yp(t))
1−θ

θ

= cC
1

1−θ

T Yp(t). (2.18)

If we then consider Y ∗
p := C

p
T and X∗

p (t) := C∗
T Y ∗

p

(
t− θ

1−θ − 1
)

for

C∗
T := max


cC

1
1−θ

T

C

θ

,

(
θ

C(1 − θ)

) θ
1−θ

 ,

where c, C are as in (2.18), then

dX∗
p (t)

dt
+

C(X∗
p (t))

1
θ

(Yp(t))
1−θ

θ

≥
dX∗

p (t)
dt

+
C(X∗

p (t))
1
θ

(Y ∗
p )

1−θ
θ

= −
(

θ

1 − θ

)
C∗Y ∗

p t− θ
1−θ + C(C∗

T )
1
θ Y ∗

p

(
t− θ

1−θ + 1
) 1

θ

≥ −
(

θ

1 − θ

)
C∗Y ∗

p t− θ
1−θ + C(C∗

T )
1
θ Y ∗

p

(
t− 1

1−θ + 1
1
θ

)
= C(C∗

T )
1
θ Y ∗

p +
[
C(C∗

T )
1
θ −

(
θ

1 − θ

)
C∗

T

]
Y ∗

p t− 1
1−θ

≥ C(C∗
T )

1
θ Yp(t) +

[
C(C∗

T )
1
θ −

(
θ

1 − θ

)
C∗

T

]
Y ∗

p t− 1
1−θ .

Now, by construction
C(C∗

T )
1
θ ≥

(
θ

1 − θ

)
C∗

T

and
C(C∗

T )
1
θ ≥ cC

1
1−θ

T ,

and hence we conclude that

dX∗
p (t)

dt
+

C(X∗
p (t))

1
θ

(Yp(t))
1−θ

θ

≥ cC
1

1−θ

T Yp(t).

In particular, this implies that X∗
p (t) is a super-solution to (2.18) and therefore Xp(t) ≤

X∗
p (t) for all t ∈ (0, T ]. By recalling the definition of θ above, we have thus shown that

∥f(t)∥Lp ≤ (C∗
T )

1
p CT

(
t
− 3p

2sp′ + 1
) 1

p

≤ (C∗
T )

1
p CT

(
t
− 3

2sp′ + 1
)

, for all t ∈ (0, T ].
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Finally, since θ
1−θ = 3(p−1)

2s ≥ 1 and CT ≥ 1, we may write

C∗
T ≤ c

[
CT

(3(p − 1)
2s

)] 3(p−1)
2sp

≤ CC
3(p−1)

2sp

T

for some constant C depending only on γ, s, D0, and E0. Therefore, combining this with
the inequality above proves (2.12).

We conclude this chapter with a regularization result similar to that of [4, Corollary
1]. This result fits nicely into the Lp theory, however we note that it will be of particular
importance in the next chapter.

Theorem 2.2. Let s ∈ (0, 1), γ ∈ (max{−3, −2s − 3
2}, 0), V2(D0, E0) be as in (1.29) with

p = 2 and D0, E0 > 0, T be as in (1.30) for a fixed T > 0, and CT be as in (1.31). Then, if
f(t, v) ∈ T is a sufficiently smooth solution to the homogeneous Boltzmann equation (1.12)
on [0, T ] ×R3 with f0 ∈ V2(D0, E0) and Q as in (1.10) with B satisfying (1.13) and (1.14),
there is a constant C depending only on γ, s, D0, and E0 such that

∫ T

t
∥f(τ)∥2

Hs
γ/2

dτ ≤ C (max{1 + T, CT })4 , t ∈ [0, T ].

Proof. Similarly to how we obtained (2.14), by multiplying (1.12) by 2f , integrating over
v ∈ R3, and applying lemma 2.4 with p = 2 we have

d
dt

∥f(t)∥2
L2 + C∥f∥2

Hs
γ/2

≤ cCt∥f∥2
L2 ≤ cCT ∥f∥2

L2 ,

where CT := max{1 + t, Ct}|t=T as in the preceding proof. Then, since f ∈ T we may
further write

d
dt

∥f(t)∥2
L2 ≤ cC

3
T .

Integrating along [t, T ] then gives

∥f(T )∥2
L2 + C

∫ T

t
∥f(τ)∥2

Hs
γ/2

dτ ≤ ∥f(t)∥2
L2 + cC

3
T (T − t),

and in particular
∫ T

t
∥f(τ)∥2

Hs
γ/2

dτ ≤ 1
C

(
∥f(t)∥2

L2 + cC
3
T (T − t)

)
.

Therefore, again since f ∈ T we get
∫ T

t
∥f(τ)∥2

Hs
γ/2

dτ ≤ CC
4
T ,

where C depends only on γ, s, D0, and E0.
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Chapter 3

L∞ Theory

3.1 Preliminary results

We begin by letting K ≥ 0 and defining f+
K := (f − K)χ{f≥K}. We will also denote Kk =

K
(
1 − 2−k

)
for k ∈ Z≥1 and write

fk := f+
Kk

. (3.1)

As mentioned in section 1.4, our strategy will be to investigate the weak form of the homo-
geneous Boltzmann equation (1.12) with the test function being the level set function fk.
As such, we would like to obtain a result similar to that of Lemma 2.4 with fk in the place
of fp−1. The following lemma provides the first step towards that goal.

Lemma 3.1. Let Q be as in (1.10) with B satisfying (1.13) and (1.14). Then, for f suffi-
ciently smooth and fk as in (3.1),∫

R3
Q(f, f)fkdv ≤ KI1(f, fk) + 1

2I2(f, fk) − 1
2J2(f, fk), (3.2)

where Ip and Jp are as in (2.1) and (2.2) with p = 1, 2.

Proof. We first observe that

f(f ′
k − fk) = (f − Kk)(f ′

k − fk) + Kk(f ′
k − fk)

= (f − Kk)(χ{f≥Kk} + χ{f<Kk})(f ′
k − fk) + Kk(f ′

k − fk).

Then, since

(f − Kk)χ{f<Kk}(f ′
k − fk) = (f − Kk) = (f − Kk)χ{f<Kk}f ′

k ≤ 0,
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we further see that

f(f ′
k − fk) ≤ fk(f ′

k − fk) + Kk(f ′
k − fk)

= f2
k

(
f ′

k

fk
− 1

)
+ Kk(f ′

k − fk)

= 1
2
(
(f ′

k)2 − f2
k

)
− 1

2(f ′
k − fk)2 + Kk(f ′

k − fk),

where the final equality follows from (2.3) with p = 2. In particular, since Kk ≤ K, one has

f(f ′
k − fk) ≤ 1

2
(
(f ′

k)2 − f2
k

)
− 1

2(f ′
k − fk)2 + K(f ′

k − fk).

Now, by the weak formulation of the collision operator (1.18) with test function φ = fk,
we get ∫

R3
Q(f, f)fkdv =

∫
R3×R3

∫
S2

f∗f(f ′
k − fk)B(v − v∗, σ)dσ dv∗ dv

≤ KI1(f, fk) + 1
2I2(f, fk) − 1

2J2(f, fk).

As we can see, Lemma 3.1 bears a strong resemblance to Lemma 2.1 in the previous
chapter with p = 2, with the primary distinction being the appearance of the additional I1

term. Now, as we will see, we are able to use the same procedure as in the proof of Lemma
2.4 for the difference of integrals I2 − J2 but this, however, requires us to separately bound
I1. We therefore proceed by dealing with this particular obstacle.

Lemma 3.2. Let s ∈ (0, 1), γ ∈ (max{−3, −2s − 3
2}, 0), U(D0, E0) be as in (1.26) with

D0, E0 > 0, T be as in (1.30) for a fixed T > 0, and CT be as in (1.31). Then, if f(t, v) ∈ T
is a sufficiently smooth solution to the homogeneous Boltzmann equation (1.12) on [0, T ]×R3

with f0 ∈ U(D0, E0) and Q as in (1.10) with B satisfying (1.13) and (1.14), there is a
constant c depending only on γ, s, D0, and E0 such that for any 0 < t∗ < T sufficiently
small

I1(f, fk)(t) ≤ c max{1 + T, CT }t
− 3

2s∗ ∥fk(t)∥L1 , for all t ∈ [t∗, T ]. (3.3)

Moreover, if we additionally assume that f0 ∈ L∞, then

I1(f, fk)(t) ≤ c max{1 + T, CT }ecCT T ∥fk(t)∥L1 , for all t ∈ [0, T ]. (3.4)

Proof. Let us start with the observation that due to Lemma 2.2 with p = 1, if −3
2 < γ,

then regardless of whether or not f0 ∈ L∞ we have

I1(f, fk) ≤ cCT ∥fk∥L1 , (3.5)
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where CT := max{1 + t, Ct}|t=T and c is some constant depending only on γ, s, D0, and
E0. Notably, we may also write

I1(f, fk) ≤ cCT t
− 3

2s∗ ∥fk∥L1 . (3.6)

Let us now consider the case when γ ≤ −3
2 and f0 ∈ L∞. Then, since f0 ∈ V(D0, E0),

we have f0 ∈ L1 ∩ L∞ and hence f0 ∈ Lp for all p ∈ [1, ∞]. So, by Theorem 2.1 we deduce
that for any p > 2,

sup
t∈[0,T ]

∥f(t)∥Lp ≤ ∥f0∥LpecCT T . (3.7)

Now by (2.5), Hölder’s inequality with q and q′, and Theorem 1.8 (Young’s convolution
inequality) we get

I1(f, fk) ≤ C

∫
R3×R3

f∗fk|v − v∗|γdv∗ dv

= C

(∫
|v−v∗|≤1

f∗fk|v − v∗|γdv∗ dv +
∫

|v−v∗|>1
f∗fk|v − v∗|γdv∗ dv

)
≤ C

(
∥f∥Lq′

∥∥∥fk ∗ |·|γχ{|·|≤1}

∥∥∥
Lq

+ c∥f∥L1∥fk∥L1

)
≤ c

(
∥f∥Lq′

∥∥∥|·|γχ{|·|≤1}

∥∥∥
Lq

+ 1
)

∥fk∥L1 .

Now, by choosing 1 < q < 3
|γ| , then |·|γχ{|·|≤1} ∈ Lq and q′ > 2. Hence, by (3.7) we obtain

I1(f, fk) ≤ C
(
∥f∥Lq′ + 1

)
∥fk∥L1 (3.8)

≤ C
(
∥f0∥Lq′ ecCT T + 1

)
∥fk∥L1

≤ cecCT T ∥fk∥L1 , (3.9)

where c depends only on γ, s, D0, and E0. Therefore, (3.8) together with (3.5) imply (3.4)
holds for any γ ∈ (max{−3, −2s − 3

2}, 0).
Let us now continue with the case where γ ≤ −3

2 but forgo the assumption that f0 ∈ L∞.
Then, by Theorem 2.1 we have for t∗ small enough

∥f(t∗)∥Lq′ ≤ C

(
t
− 3

2sq
∗ + 1

)
≤ ct

− 3
2sq

∗ ≤ ct
− 3

2s∗

where c depends only on γ, s, D0, E0 and q′ is as above. By treating t∗ as an initial time,
we may then invoke (2.13) of Theorem 2.1 to obtain

sup
t∈[t∗,T ]

∥f(t)∥Lq′ ≤ ∥f(t∗)∥Lq′ ecCT T ,
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and in particular
sup

t∈[t∗,T ]
∥f(t)∥Lq′ ≤ ∥f(t∗)∥Lq′ ≤ ct

− 3
3s∗ .

Now, since (3.8) remains true even when f0 /∈ L∞, we then see that

I1(f, fk) ≤ C
(
∥f∥Lq′ + 1

)
∥fk∥L1

≤ C

(
ct

− 3
2s∗ + 1

)
∥fk∥L1

≤ Ct
− 3

2s∗ ∥fk∥L1

≤ CCT t
− 3

2s∗ ∥fk∥L1

for all t ∈ [t∗, T ]. Therefore, together with (3.6) we deduce that (3.3) holds for all γ ∈
(max{−3, −2s − 3

2}, 0).

Since the upper bound obtained above for I1 differs when it is additionally assumed
that f0 ∈ L∞, we save our discussion regarding the further estimation of the right hand
side of (3.2) for the proof of Theorem 3.1 in the proceeding section where the arguments
presented are separated into the L∞-norm generation and propagation settings. Now, we
shall see that these arguments follow an identical procedure as in the proof of Lemma 2.4 to
bound I2 − J2, which will consequently yield, up to some constants, the difference of L2

γ/2-
and H2

γ/2-norms. In this case, it is not immediately clear how the L1-norm appearing on
the right hand side of both (3.3) and (3.4) will be compatible with our I2 − J2 bound. The
next lemma provides an important tool that we may use to make sense of this.

Lemma 3.3. If α ≥ 0 and β ∈ (0, 1], then for fk as in (3.1) we have

χ{f≥Kk} ≤
(

1
2β − 1 · 2k

K
fk−β

)α

.
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Proof. We first notice that since {f ≥ Kk} ⊆ {f ≥ Kk−β}, we have χ{f≥Kk} ≤ χ{f≥Kk−β}}.
With this in mind, we compute

fk−β = (f − Kk−β)χ{f≥Kk−β}

=
[
f − K

(
1 − 2β

2k

)]
χ{f≥Kk−β}

=
[
f − Kk + Kk − K

(
1 − 2β

2k

)]
χ{f≥Kk−β}

=
(

f − Kk + K − K

2k
− K + K2β

2k

)
χ{f≥Kk−β}

=
(

f − Kk + K
2β − 1

2k

)
χ{f≥Kk−β}

≥
(

f − Kk + K
2β − 1

2k

)
χ{f≥Kk}

≥ K
2β − 1

2k
χ{f≥Kk},

and therefore

χ{f≥Kk} ≤
(

1
2β − 1 · 2k

K
fk−β

)α

for any α ≥ 0.

This lemma essentially means that, up to a constant, we may bound the level set function
fk by f1+α

k−β for any β ∈ (0, 1] and α ≥ 0. This increase in power allows us to interpolate
fk between Lp-norms that may not have otherwise been allowed only by moving down a
fraction of a level. This idea is made precise in the proof of the following lemma.

Lemma 3.4. Let s ∈ (0, 1), γ ∈ (−3, 0), f be sufficiently smooth, fk be as in (3.1), and
denote qs := 6

3−2s and q′
s its Hölder conjugate. Then, for p ∈ (1, qs) and rs := 1

p − 1
qs

, there
is a constant C depending only on s such that

∥fk∥Lp ≤ C

(
2k

K

)rsζ

∥f∥rs(2−ζ)
L1

|γ|/2rs(2−ζ)
∥fk−1∥2rs(ζ−1)

L2 ∥fk−1∥Hs
γ/2

, (3.10)

for any ζ ∈
(
1, min

{
2, 1

rs

})
and

∥fk∥L1 ≤ C

(
2k

K

) sζ
3 +1

∥f∥
2s(2−ζ)

3
L1

3|γ|/2s(2−ζ)
∥fk−1∥

2s(ζ−1)
3

L2 ∥fk−1∥2
Hs

γ/2
, (3.11)

for any ζ ∈ (1, 2).
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Proof. Let ζ ∈
(
1, min

{
2, 1

rs

})
, q = qs

p , and ℓ = ζ
q′ . Then, by Hölder’s inequality

∥fk∥Lp =
(∫

R3
⟨v⟩

|γ|qs
2q f ℓ

k⟨v⟩
γqs
2q fp−ℓdv

) 1
p

≤
∥∥∥f ℓ

k

∥∥∥ 1
p

Lq′
|γ|qs/2q

∥∥∥fp−ℓ
k

∥∥∥ 1
p

Lq
γqs/2q

. (3.12)

We now consider separately first and second terms on the right hand side of (3.12).
Indeed, let us first focus on the first term. First of all, since ℓq′ = ζ ∈

(
1, min

{
2, 1

rs

})
,

we can write
1

ℓq′ = 1
ζ

= (1 − θ) + θ

2

for θ =
(
1 − 1

ζ

)
∈ (0, 1). Thus,

∥∥∥f ℓ
k

∥∥∥ 1
p

Lq′
|γ|qs/2q

=
(∫

R3
⟨v⟩

|γ|qsq′
2q f ℓq′

k dv

) 1
pq′

=
(∫

R3
⟨v⟩

|γ|
2rs f

ζ(1−θ)
k f

2ζθ
2

k dv

)rs

≤
(∫

R3
⟨v⟩

|γ|
2rsζ(1−θ) fkdv

)rsζ(1−θ) (∫
R3

f2
k dv

) r2ζθ

2

= ∥fk∥rs(2−ζ)
L1

|γ|/2rs(2−ζ)
∥fk∥2rs(ζ−1)

L2

≤ ∥f∥rs(2−ζ)
L1

|γ|/2rs(2−ζ)
∥fk−1∥2rs(ζ−1)

L2 . (3.13)

As for the second term, it follows from Lemma 3.3 with α ≡ ℓq and β ≡ 1, and the Sobolev
inequality with n ≡ 3, k ≡ s, and ℓ ≡ 6

3−2s (as in Theorem 1.6) that

∥∥∥fp−ℓ
k

∥∥∥ 1
p

Lq
γqs/2q

=
(∫

R3
⟨v⟩

γqs
2 f

(p−ℓ)q
k dv

) 1
pq

≤
(

2k

K

) ℓq
pq (∫

R3
⟨v⟩

γqs
2 f

(p−ℓ)q+ℓq
k−1 dv

) 1
pq

=
(

2k

K

) ζ
pq′ (∫

R3
⟨v⟩

γqs
2 f qs

k−1dv

) 1
qs

=
(

2k

K

)rsζ

∥fk−1∥Lqs
γ/2

≤ C

(
2k

K

)rsζ

∥fk−1∥Hs
γ/2

, (3.14)

where the constant C depends only on s. Therefore, (3.12) together with (3.13) and (3.14)
yields (3.10).
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To see (3.11), we first note that by Lemma 3.3 with α ≡ 1 and β ≡ 1
2 , we have

∥fk∥L1 ≤ 1√
2 − 1

2k

K

∫
R3

f1+1
k−1/2dv = 1√

2 − 1
2k

K

∥∥∥fk−1/2

∥∥∥2

L2
.

Now, using (3.10) with p = 2 and observing that in this case rs = 1
2 − 1

qs
= 1

2 − 3−2s
6 = s

3 ,
we get

∥fk∥L1 ≤ C
2k

K

(2k

K

) sζ
3

∥f∥
s(2−ζ)

3
L1

3|γ|/2s(2−ζ)
∥fk−1∥

2s(ζ−1)
3

L2 ∥fk−1∥Hs
γ/2

2

= C

(
2k

K

) sζ
3 +1

∥f∥
2s(2−ζ)

3
L1

3|γ|/2s(2−ζ)
∥fk−1∥

4s(ζ−1)
3

L2 ∥fk−1∥2
Hs

γ/2
.

Moreover, since 1
rs

= 3
s > 3 when p = 2, we find that

(
min

{
2, 1

rs

})
= 2 and hence we see

that (3.11) holds for any ζ ∈ (1, 2).

It is due to Lemma 3.4, or more specifically (3.11), that we require the introduction of
the class mentioned in section 1.4:

V∗
ζ (D0, E0) :=

{
g ∈ L1 : ∥g∥L1 ≥ D0, ∥g∥L1

ν∗
ζ

+ ∥g∥L log L ≤ E0

}
,

where ν∗
ζ = max

{
2, 3|γ|

2s(2−ζ)

}
for ζ ∈ (1, 2), since we control the the weighted L1-norm

appearing on the right hand side of (3.11) when f solves (1.12) with f0 ∈ V∗
ζ . In particular,

by Lemma 2.3, if f solves (1.12) with f0 ∈ V∗
ζ then we may write

∥fk∥L1 ≤ CC
2s(2−ζ)

3
t

(
2k

K

) ζ

q′
s

+1

∥fk−1∥
2s(ζ−1)

3
L2 ∥fk−1∥2

Hs
γ/2

(3.15)

in the place of (3.11), where C depends only on γ, s, D0, and E0, and Ct = max{1 + t, Ct}
for Ct as in (1.30). It will also be relevant to note for later that V∗

ζ (D0, E0) ⊆ V2(D0, E0)
since ν2 = max

{
2, |γ|, 3|γ|

4s

}
and for any ζ ∈ (1, 2)

3|γ|
2s(ν − 1) ≥ |γ|, and 3|γ|

2s(ν − 1) ≥ 3|γ|
4s

.

To conclude this section, we prove one final and fairly general lemma relating to the
energy functional, mentioned in section 1.4, that will be introduced in the proof of our next
main result.

Lemma 3.5. Let a, b, C > 0, c > 1, k ∈ Z≥1, and W0 be constant with respect to k. Then,

Wk := W0
(
2− a

c−1
)k
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is a super-solution to the equation

Wk = C2akK−bW c
k−1 (3.16)

when
K ≥

(
C2

ac
c−1 W c−1

0

) 1
b . (3.17)

Moreover, Wk is a solution to (3.16) when (3.17) holds with equality.

Proof. The proof follows from computation:

C2akK−bW c
k−1 = C2akK−bW c

0

(
2− a

c−1
)c(k−1)

=
(
C2

ac
c−1 W

(c−1)
0

)
K−bW0

(
2− a

c−1
)k

.

Then,
Wk ≥ C2akK−bW c

k−1

when (3.17) holds, and
Wk = C2akK−bW c

k−1

when (3.17) holds with equality.

3.2 Generation and propagation of L∞-norms

Let K, k, Kk, and fk be as in the previous section.

Theorem 3.1. Let s ∈ (0, 1), γ ∈ (max{−3, −2s − 3
2}, 0), V∗

ζ (D0, E0) be as in (1.4) for
any ζ ∈ (1, 2) and with D0, E0 > 0, T be as in (1.30) for a fixed T > 0, and CT be as in
(1.31). Then, if f(t, v) ∈ T is a sufficiently smooth solution to the homogeneous Boltzmann
equation (1.12) on [0, T ] × R3 with f0 ∈ V∗

ζ (D0, E0) and Q as in (1.10) with B satisfying
(1.13) and (1.14), there is a constant C depending only on γ, s, D0, and E0 such that for
any 0 < t∗ < T sufficiently small we have

sup
t∈[t∗,T ]

∥f(t)∥L∞ ≤ C (max {1 + T, CT })
6+8s(ζ−1)

sζ

( 1
t∗

) 3
sζ ( 3

2s
+1)

. (3.18)

If we additionally assume that f0 ∈ L∞, then

sup
t∈[0,T ]

∥f(t)∥L∞ ≤ max
{

2∥f0∥L∞ , C (max{1 + T, CT })
6+8s(ζ−1)

sζ e
3

sζ
C max{1+T,CT }T

}
.

(3.19)
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Proof. Let us forgo the additional assumption that f0 ∈ L∞ for now and begin by proving
(3.18). To this end, by multiplying (1.12) by fk and integrating over v ∈ R3, we obtain∫

R3
Q(f, f)fkdv =

∫
R3

fkftdv

=
∫

f≥Kk

(f − Kk)ftdv

= 1
2

d
dt

∫
R3

(f − Kk)2χ2
{f≥Kk}dv

= 1
2

d
dt

∥fk(t)∥2
L2 .

Now, by Lemma 3.1 we have∫
R3

Q(f, f)fkdv ≤ KI1(f, fk) + 1
2I2(f, fk) − 1

2J2(f, fk).

Then, we may bound 1
2I2 − 1

2J2 via the same procedure used in the proof of Lemma 2.4 for
1
p′ Ip − 1

max{p,p′}Jp. Indeed, by taking p = 2 in the proof of Lemma 2.4 and replacing f with
fk, we obtain

1
2I2(f, fk) − 1

2J2(f, fk) ≤ cCT ∥fk∥2
L2

γ/2
− C∥fk∥2

Hs
γ/2

,

where CT := max{1 + t, Ct}|t=T for Ct as in (1.30) and c and C are constants depending
only on γ, s, D0, and E0. Therefore,

1
2

d
dt

∥fk(t)∥2
L2 + C∥fk∥2

Hs
γ/2

≤ KI1(f, fk) + cCT ∥fk∥2
L2

γ/2
≤ KI1(f, fk) + cCT ∥fk∥2

L2 (3.20)

Moreover, by integrating (3.20) over τ ∈ (ξ, t) for any ξ ≤ t, we get

1
2∥fk(t)∥2

L2 + C

∫ t

ξ
∥fk(τ)∥2

Hs
γ/2

dτ ≤ 1
2∥fk(ξ)∥2

L2 + K

∫ t

ξ
I1(f, fk)(τ)dτ+

cCT

∫ t

ξ
∥fk(τ)∥2

L2dτ. (3.21)

Let us now define the times tk := t∗
(
1 − 2−(k+1)

)
. Then, since 0 < t1 = 3

4 t∗, by (3.3) in
Lemma 3.2 with t∗ ≡ t1 we see that there is a constant c depending only on γ, s, D0, and
E0 such that when t∗ > 0 is sufficiently small we have

I1(f, fk)(t) ≤ cCT

(3
4 t∗

)− 3
2s

∥fk(t)∥L1 , for all t ∈ [t1, T ],

which we may instead simply write as

I1(f, fk)(t) ≤ cCT t
− 3

2s∗ ∥fk(t)∥L1 , for any t ∈ [t1, T ]. (3.22)
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Combining this result with (3.21) then gives

1
2∥fk(t)∥2

L2 + C

∫ t

ξ
∥fk(τ)∥2

Hs
γ/2

dτ ≤ 1
2∥fk(ξ)∥2

L2 + cCT t
− 3

2s∗

(
K

∫ t

ξ
∥fk(τ)∥L1dτ+∫ t

ξ
∥fk(τ)∥2

L2dτ

)

for all t ∈ [ξ, T ].
Now, if we define the energy functional

Wk := 1
2 sup

t∈[tk,T ]
∥fk(t)∥2

L2 + C

∫ T

tk

∥fk(τ)∥2
Hs

γ/2
dτ,

the inequality above implies that for tk−1 ≤ ξ ≤ tk ≤ t ≤ T we have

Wk ≤ 1
2∥fk(ξ)∥2

L2 + cCT t
− 3

2s∗

(
K

∫ T

tk−1
∥fk(τ)∥L1dτ +

∫ T

tk−1
∥fk(τ)∥2

L2dτ

)
.

Then, since tk − tk−1 = t∗2−(k+1), taking the mean over ξ ∈ [tk−1, tk] gives

1
2∥fk(ξ)∥2

L2 ≤ 1
2|tk − tk−1|

∫ tk

tk−1
∥fk(τ)∥2

L2dτ

= 2k

t∗

∫ tk

tk−1
∥fk(τ)∥2

L2dτ,

and thus

Wk ≤ 2k

t∗

∫ T

tk−1
∥fk(τ)∥2

L2dτ + cCT t
− 3

2s∗

(
K

∫ T

tk−1
∥fk(τ)∥L1dτ +

∫ T

tk−1
∥fk(τ)∥2

L2dτ

)

≤ cCT t
− 3

2s∗

[
K

∫ T

tk−1
∥fk(τ)∥L1dτ +

(
2k

t∗
+ 1

)∫ T

tk−1
∥fk(τ)∥2

L2dτ

]

≤ CCT t
− 3

2s
−1

∗

(
K

∫ T

tk−1
∥fk(τ)∥L1dτ + 2k

∫ T

tk−1
∥fk(τ)∥2

L2dτ

)

for some constant C depending only on γ, s, D0, and E0. Furthermore, by Lemma 3.4 with
p = 2 we see that for any ζ ∈ (1, 2) there is a constant C depending only on s such that

2k∥fk∥2
L2 ≤ 2kC

(2k

K

) sζ
3

∥f∥
s(2−ζ)

3
L1

3|γ|/2s(2−ζ)
∥fk−1∥

2s(ζ−1)
3

L2 ∥fk−1∥Hs
γ/2

2

= C
(
2

2sζ
3 +1

)k
( 1

K

) 2sζ
3

∥f∥
2s(2−ζ)

3
L1

3|γ|/2s(2−ζ)
∥fk−1∥

4s(ζ−1)
3

L2 ∥fk−1∥2
Hs

γ/2
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and thus since f0 ∈ V∗
ζ (D0, E0) there is a constant C, by Lemma 2.3, depending only on γ,

s, D0, and E0 such that

2k∥fk∥2
L2 ≤ CCT

(
2

2sζ
3 +1

)k
( 1

K

) 2sζ
3

∥fk−1∥
4s(ζ−1)

3
L2 ∥fk−1∥2

Hs
γ/2

.

Lemmas 3.4 and 2.3 similarly show that

K∥fk∥L1 ≤ CCT

(
2

sζ
3 +1

)k
( 1

K

) sζ
3

∥fk−1∥
4s(ζ−1)

3
L2 ∥fk−1∥2

Hs
γ/2

,

and in particular, this implies

K∥fk∥L1 + 2k∥fk∥2
L2 ≤ CCT

(
2

2sζ
3 +1

)k
( 1

K

) sζ
3

∥fk−1∥
4s(ζ−1)

3
L2 ∥fk−1∥2

Hs
γ/2

. (3.23)

Therefore, we find that

Wk ≤ CC
2
T t

− 3
2s

−1
∗

(
2

2sζ
3 +1

)k
( 1

K

) sζ
3
∫ T

tk−1
∥fk−1(τ)∥

4s(ζ−1)
3

L2 ∥fk−1(τ)∥2
Hs

γ/2
dτ

and hence

Wk ≤ CC
2
T t

− 3
2s

−1
∗

(
2

2sζ
3 +1

)k
( 1

K

) sζ
3

2
2s(ζ−1)

3

(
1
2 sup

t∈[tk−1,T ]
∥fk−1(t)∥2

L2

) 2s(ζ−1)
3

·

∫ T

tk−1
∥fk−1(τ)∥2

Hs
γ/2

dτ,

from which we see that

Wk ≤ CC
2
T t

− 3
2s

−1
∗

(
2

2sζ
3 +1

)k
( 1

K

) sζ
3

2
2s(ζ−1)

3 W
2s(ζ−1)

3 +1
k−1 . (3.24)

Now, we see from Lemma 3.5 by setting a ≡ 2s(ζ−1)
3 , b ≡ sζ

3 , c ≡ 2s(ζ−1)
3 + 1 and

C ≡ CC
2
T t

− 3
2s

−1
∗ , that

W ∗
k := W0

(1
2

)k

satisfies (3.24) with equality when

K =
(

CC
2
T t

− 3
2s

−1
∗ 2

2s(ζ−1)
3 +1W

2s(ζ−1)
3

0

) 3
sζ

(3.25)

and hence
Wk ≤ W ∗

k −→
k→∞

0
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provided W0 < ∞. Indeed, since

W0 = 1
2 sup

t∈[t0,T ]
∥f(t)∥2

L2 + C

∫ T

t0
∥f(τ)∥2

Hs
γ/2

dτ,

we see from Theorem 2.2, together with the fact that f ∈ T , that there is a constant c

depending only on γ, s, D0, and E0 such that

W0 ≤ 1
2C

2
T + CC

4
T ≤ cC

4
T < ∞. (3.26)

Hence, if we take k → ∞, then Kk → K and tk → t∗

sup
t∈[t∗,T ]

∥fK(t)∥L2 = 0,

from which we deduce that
f(t, v) ≤ K

for any t ∈ [t∗, T ] and for almost all v ∈ R3, where K is as above in (3.25). Therefore, from
(3.25) and (3.26) we finally conclude that for t∗ sufficiently small and any t ∈ [t∗, T ], we
have

∥f(t)∥L∞ ≤ C

( 1
t∗

) 3
sζ ( 3

2s
+1)

C
3

sζ

(
2+ 8s(ζ−1)

3

)
T = CC

6+8s(ζ−1)
sζ

T

( 1
t∗

) 3
sζ ( 3

2s
+1)

,

where C depends only on γ, s, D0, and E0, thus giving (3.18).
Let us now further suppose that f0 ∈ L∞. Now, taking K ≥ 2∥f0∥L∞ implies Kk =

K(1 − 2−k) ≥ ∥f0∥L∞ since (1 − 2−k) ≥ 1
2 for every k ≥ 1. Therefore, integrating (3.20)

over τ ∈ [0, t] gives

1
2∥fk(t)∥2

L2 + C

∫ t

0
∥fk(τ)∥2

Hs
γ/2

dτ ≤ K

∫ t

0
I1(f, fk)(τ)dτ + cCT

∫ t

0
∥fk(τ)∥2

L2dτ.

Additionally, by Lemma 3.2 we have the following bound for I1(f, fk):

I1(f, fk)(t) ≤ cCT ecCT T ∥fk(t)∥L1 , for all t ∈ [0, T ],

where c depends only on γ, s, D0, and E0. Thus, we may further write

1
2∥fk(t)∥2

L2 + C

∫ t

0
∥fk(τ)∥2

Hs
γ/2

dτ ≤ cCT ecCT T K

∫ t

0
∥fk(τ)∥L1dτ + cCT

∫ t

0
∥fk(τ)∥2

L2dτ

≤ cCT ecCT T
∫ t

0
K∥fk(τ)∥L1 + ∥fk(τ)∥2

L2dτ
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for any t ∈ [0, T ]. Then similarly to the previous case, by defining the modified energy
functional

Wk,0 := 1
2 sup

t∈[0,T ]
∥fk(t)∥2

L2 + C

∫ T

0
∥fk(τ)∥2

Hs
γ/2

dτ

we see from the above inequality that

Wk,0 ≤ cCT ecCT T
∫ T

0
K∥fk(τ)∥L1 + ∥fk(τ)∥2

L2dτ.

Now, since 1 < 2k we see from (3.23) that

K∥fk(τ)∥L1 + ∥fk(τ)∥2
L2 ≤ CCT

(
2

2sζ
3 +1

)k
( 1

K

) sζ
3

∥fk−1∥
4s(ζ−1)

3
L2 ∥fk−1∥2

Hs
γ/2

for a constant C depending only on γ, s, D0, and E0. With this inequality in mind, we may
then write

Wk,0 ≤ CC
2
T eCCT T

(
2

2sζ
3 +1

)k
( 1

K

) sζ
3
∫ T

0
∥fk−1(τ)∥

4s(ζ−1)
3

L2 ∥fk−1(τ)∥2
Hs

γ/2
dτ,

and thus similarly to (3.24) we have

Wk,0 ≤ CC
2
T eCCT T

(
2

2sζ
3 +1

)k
( 1

K

) sζ
3

2
2s(ζ−1)

3 W
2s(ζ−1)

3 +1
k−1,0 . (3.27)

Therefore, we again see that by Lemma 3.5 with a, b, c as above and C ≡ CC
2
T eCCT T , that

W ∗
k,0 := W0,0

(1
2

)k

satisfies (3.27) with equality when

K =
(

CC
2
T eCCT T 2

2s(ζ−1)
3 +1W

2s(ζ−1)
3

0,0

) 3
sζ

,

where
W0,0 = 1

2 sup
t∈[0,T ]

∥f(t)∥2
L2 + C

∫ T

0
∥f(τ)∥Hs

γ/2
.

In particular, Lemma 3.5 implies that W ∗
k,0 is a super-solution to (3.27) when

K = max

2∥f0∥L∞ ,

(
CC

2
T eCCT T 2

2s(ζ−1)
3 +1W

2s(ζ−1)
3

0,0

) 3
sζ

 , (3.28)
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and hence Wk,0 ≤ W ∗
k,0 with this choice of K. Then, since the bounding in (3.26) also

applies to W0,0, we may conclude that

Wk,0 ≤ W ∗
k,0 −→

k→∞
0

and thus, similarly to above, taking k → ∞ yields

∥f(t)∥L∞ ≤ K, for all t ∈ [0, T ]

for K as in (3.28). Finally, from (3.26) we conclude that there is a constant C depending
only on γ, s, D0, and E0 such that

sup
t∈[0,T ]

∥f(t)∥L∞ ≤ max
{

2∥f0∥L∞ , CC
6+8s(ζ−1)

sζ

T e
3

sζ
CCT T

}
,

which is precisely (3.19).
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Chapter 4

Further research

We dedicate this final chapter to the discussion of various potential future research directions
which have emerged as a result of the work presented in Chapters 2 and 3. Throughout this
thesis, we have imposed a number of assumptions that may, to some degree, restrict the
utility of our main results. In particular, it was mentioned in Section 1.4 that the space
U(D0, E0), as defined in (1.26), reflects the minimum assumptions we may take for the
initial data of a zero total momentum system and therefore corresponds to the most general
set of solutions to the Boltzmann equation (spatially homogeneous or not). However, due
our need to control higher moments of solutions to the homogeneous Boltzmann equation
(1.12) (a consequence of Lemmas 2.2 and 3.4) we required that the initial data be limited the
spaces Vp(D0, E0), as defined in (1.29), in the Lp-norm setting with p < ∞, or V∗

ζ (D0, E0),
as defined in (1.4), when studying L∞-norms. An interesting question then becomes how
one might modify Lemmas 2.2 and 3.4 in such a way that these more strict conditions for the
initial data, f0, may be relaxed so that one may, for example, only require f0 ∈ U(D0, E0).

Due again primarily to Lemma 2.2, we also consider only those solutions to (1.12) that
are also elements of T as defined in (1.30). This condition essentially corresponds to the
propagation of L2 moments for solutions to (1.12) with soft potentials and, as mentioned
in Section 2.2, it is currently unknown whether or not this assumption is reasonable. Con-
sequently, the problem of L2 moment generation and propagation is of particular interest
for future work.

Lemma 2.2 additionally restricts γ from the full range of soft potentials, (−3, 0), to(
max{−3, −2s − 3

2}, 0
)
. This assumption is enforced so that we may apply Sobolev em-

bedding (see (2.10)) to prove estimate (2.6b). Thus, in order to obtain results similar to
Theorems 2.1, 2.2, and 3.1 for the full range of soft potentials, γ ∈ (−3, 0), a different
approach must be taken which therefore results in another research direction.

Finally, each of the main results presented in this thesis represent a priori estimates for
solutions to the homogeneous Boltzmann equation (1.12) and hence the important question
which remains is whether or not these results can be extended to weak solutions of (1.12).
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