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Abstract

Skeletal muscle is a complex three dimensional material; it differs from many other ma-
terials in its ability to activate and produce force, and is fundamental in locomotion. Its
intricate structure crosses many length scales making it difficult to develop mathematical
models that capture microscopic scale contributions to overall mechanics. In this thesis, we
develop a homogenized model for the skeletal muscle microstructure, which is implemented
in a finite strain nonlinear continuum elasticity model for muscle and solved using a finite
element method. This model allows us to investigate consequences of the microstructure
on overall mechanics. Further, we explore the influence of a neurological disorder, cerebral
palsy, on skeletal muscle. Cerebral palsy muscle undergoes many changes making causation
between the morphology of muscle and overall mechanics difficult to determine experimen-
tally. Utilizing a computational approach, we isolate effects from individual variations in
cerebral palsy muscle properties on three dimensional muscle behaviour.

Keywords: Skeletal Muscle; Biomechanics; Finite Element Method; Cerebral Palsy; Con-
tinuum Mechanics; Mathematical Modelling
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Chapter 1

Introduction

Skeletal muscle is a very complex and highly heterogeneous structure that is used in the
body for locomotion and standing. It differs from many other biological and non-biological
materials in its ability to activate and produce force. These active forces introduce an added
level of complexity and are important to consider along with the passive mechanical forces.
In addition to these unique active forces, skeletal muscle has a very heterogeneous structure
and composition that contribute to both the active and passive mechanics. Within muscle
fibres, there are contractile units, which produce force; meanwhile, the fibres are embedded
in a complex matrix of collagen fibres that provide structure, and substantially contributes
to the passive mechanics of muscle. This very complex structure of muscle can also vary in
the face of muscular disorders, diseases, disuse, and aging; hence, it is crucial to understand
the aggregate passive and active response of muscle and its dependence on this complex
structure. This will be the one of the main goals of this thesis.

To fully understand muscle mechanics, three dimensional mathematical models of muscle
can be used, and there has been substantial development in these models over recent years
(see eg. [14, 192]). In this work, we want to be able to capture the influence of deformation,
tissue heterogeneity, and muscle architecture on the overall muscle mechanics, so we utilize a
continuum model previously developed in Rahemi et al. [129] and Wakeling et al. [192]. This
model is highly adaptable, and has been used to investigate many fundamental properties
of skeletal muscle [129, 130, 144, 192, 148, 143]. The goal of this thesis is to modify the
three dimensional continuum model to apply to skeletal muscle affected by cerebral palsy
(CP), a neurological disorder. This requires capturing the contributions of the microscopic
components of skeletal muscle on the macroscopic scale, modifying the model to capture
the influence of CP, and investigating the active and passive mechanics of muscle affected
by CP. This work can help to develop causation between the many changes that may occur
to muscle and the overall muscle response. The findings can then be used by clinical and
experimental researchers working on therapies and methods for treating CP, as it provides
insight into the components of skeletal muscle that will be the most influential in whole
muscle mechanics.
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In the following sections we go through the basic anatomy of the muscle (Section 1.1),
background on skeletal muscle mechanics from a mathematical perspective (Section 1.2),
and subsequently a description of muscle mechanics from a physiological perspective (Sec-
tion 1.3). After this background on muscle mechanics is given, a description of muscle
pathology is provided with a focus on the influence of CP on muscle mechanics (Section 1.4).
Finally, in Section 1.5 an outline of the remainder of the thesis will be given.

1.1 Anatomy of Muscle

The structure of muscle crosses many length scales (Figure 1.1). At the smallest level, there
are the sarcomeres which are on the scale of µm and are responsible for the active force
produced by the muscle. Sarcomeres are on average about 2.2 µm in length [27] and are
connected in series via Z-disks (Figure 1.2). The proteins responsible for muscle contraction
are the actin and myosin proteins. The thin actin filaments interdigitate through thicker
mysoin proteins connected via the myosin heads or cross bridges (see eg. [187]). The muscle
fibre cells contain many sarcomeres connected in parallel and in series. These fibres are then
typically grouped (functionally) into motor units, which are defined as a group of muscle
fibres innervated by the same neuron cell. These neuron cells send an electrical impulse to
stimulate activation of the sarcomeres, which then contract to generate force. Some muscles,
for example the medial gastronemius muscle in the calf, can contain up to a million muscle
fibres [187].

Within the muscle fibres, chemical reactions occur in which ATP is hydrolyzed, and
this energy is subsequently used, by the sarcomeres, for force generation. In particular, the
energy is used by actin and myosin proteins to contract the sarcomeres, which shortens the
muscle fibre. The theory behind the molecular mechanism that lead to force generation is
called sliding filament theory [75, 74, 76], where the actin filaments slide past the mysosin
filaments. The myosin filament plays a key role in determining if the muscle fibre will be
able to produce force at a given shortening velocity. While there is a range of fibre types,
typically the fibres are classified into fast and slow fibres. Structurally, this corresponds
to different myosin proteins and their ability to hydrolyze ATP [9, 120], but functionally,
this means that fast fibres will be able to produce forces at larger velocities, while slower
fibres may not [78, 141]. In addition to the actin and myosin proteins, there are also large
titin proteins attaching the myosin to the Z-disks. These proteins produce a passive force
when lengthened, which prevent the sarcomere from lengthening beyond a reasonable range.
Titin also has implications for active force produced through force enhancement, in which
the muscle produces larger forces when activated and subsequently lengthened opposed to
lengthening followed by activation (for more details see eg. [71, 69, 109]).

Surrounding the muscle fibres is the extracellular matrix (ECM), which is a highly
complex network of collagen fibres [60]. The ECM consists of three distinct layers: the
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Figure 1.1: The structure of muscle. The myofibres contain the contractile unites of muscle:
the sarcomeres. These myofibres are embedded in the deepest layer of the extracellular ma-
trix (ECM) called the endomysium, which group bundles of myofibres into muscle fascicles.
The next layer of the ECM, the perimysium, surrounds the muscle fascicles. The outer layer
of the ECM, called the epimysium, surrounds the entire muscle belly. In addition to these
components of muscle, there are also nerve cells, satellite cells, blood vessels, etc., which are
important, physiologically, for muscle function.

Actin
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Figure 1.2: Structure (left) and force-length relationship (right) of the sarcomere. The force
produced by the sarcomere is dependent on the length of the sarcomere; in particular, on
the amount of overlap between the actin and myosin. This is typically modelled using a
piece-wise linear function.

endomysium, which encompasses the muscle fibres; the perimysium which is the middle
layer encompassing the muscle fascicles (groups of muscle fibres); and the epimysium, which
is the outermost layer encasing the muscle [60, 126]. Each of these layers provide a distinct
contribution to the structure and function of muscle as they each contain different collagen
types and organizations [60]. The endomysium, being next to the muscle fibres has an
important role of interacting with the muscle fibres and transmitting force to neighbouring
muscle cells and the rest of the ECM [60]. Studies on feline muscle have shown that there
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is a nonlinear stress-stretch relationship, as well as a distinct collagen fibre organization at
this level resulting in a anisotropic material response [180, 127]. On the perimysial layer of
the ECM, there is an orientation to the collagen fibres, which run at an angle to the muscle
fibres [128]; however, there is much less known on this layer of the ECM as measurements
are difficult [61]. The epimysium is much more accessible than the other layers of connective
tissue, and measurements can be performed in vivo [54]. Depending on the specific function
of the given muscle, the structure, amount, and composition may be varied [126, 125]. The
ECM has an intricate structure and is fundamental in muscle mechanics; however, typically
for healthy muscle it consists of less than 10 % of the muscle volume [93, 13]. The remainder
of the muscle volume consists of cellular components: muscle fibres, nerve cells, satellite cells,
adipose tissue etc. Altogether, these components of muscle make up the muscle volume and
have their own contribution to muscle mechanics.

On the whole muscle scale, it is important to consider the materials that allow muscle
to transfer force to the skeletal system: the aponeurosis and the tendon [135]. The muscle
in combination with the aponeurosis and tendon is referred to as the muscle-tendon unit.
The aponeurosis and tendon are particularly important for energy storage, and subsequent
force transmission [135]. The aponeurosis is a very thin layer of connective tissue (≈ 0.25
to 0.75mm [156]), into which the muscle fibres insert. It is made of collagen fibres and
similarly to the ECM has an orientation making the material anisotropic, particularly as it
reaches the end of the muscle and connects to the tendon [7, 205]. The tendon extends the
aponeurosis to the insertion point on the bone; it is also made up of collagen fibres, so it
has an anisotropic material response due to the collagen fibre orientation [154].

While some muscle consists of muscle fibres aligned straight along the desired line of
force production, this is not the case for most muscles [89]. The fibres are often orientated
at an angle to the line of action of the muscle, which is called the pennation angle. This
pennation angle is functionally significant to force production and contraction velocity, and
is typically in the range 0◦ to 35◦ [197, 45]. This orientation of the fibres results in many
different muscle architectures, which can be characterized into parallel fibred, pennate, and
multipennate muscles (Figure 1.3). The simplest is the parallel fibred in which the fibres
are oriented parallel to the line of action of the muscle. The pennate muscles consist of
all the fibres oriented along the pennation angle. The multipennate muscle have an central
or deep aponeurosis that runs through the middle of the muscle belly, which have muscle
fibres inserting from multiple sides; these types of muscles have many pennation angles. This
results in a more complex architecture that is seen in muscles with more complex functions,
such as the deltoid muscles [118]. The main purpose of the complex architectures is that it
allows for the muscle to better perform in specific roles, such as different ranges of muscle
shortening velocities [187]. More detail on the functional significance of these architectures
will be provided in Section 1.3. In this thesis, we will typically work with an idealized block
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Figure 1.3: Types of muscle architectures: parallel (A), pennate (B), and multipennate (C).

of muscle, aside from the final chapter where we consider more complex pennate muscle
geometries.

1.2 Muscle mechanics: a mathematical viewpoint

A complete understanding of skeletal muscle is not possible without the use of mathemat-
ical models, due to its complex nature and its many components. Real muscle is difficult
to manipulate, and there are many changes that can occur in muscle that prevent mea-
surements of the effect from a change in a property of muscle; however, the development of
mathematical models allow for manipulation of individual quantities such as the amount of
ECM or the volume of muscle. This is important not only in typically developed muscle,
but also in muscle affected by disorders, such as cerebral palsy (CP), where many changes
occur to the muscle structure that alter the overall mechanics. These changes are difficult
to isolate experimentally, and this prompts the use of mathematical models of muscle. Al-
though models are idealized and make many approximations, they allow for researchers to
determine causation between changes occurring to muscle and the overall muscle mechanics.

1.2.1 One dimensional muscle modelling

One dimensional skeletal muscle modelling began with work by A.V. Hill [72], in which he
investigated the effect of muscle shortening velocity on force and heat produced. Further
work in one dimensional modelling involved using sliding filament theory to explain the
force-length relationship previously obtained for muscle [63, 131]. These works led to the
development of the Hill type model [203]. This is a one dimensional model for muscle, but
provides many insights into the working of muscle. The model is very computationally ef-
ficient and allows for its implementation in analysis of muscle mechanics, activation, and
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energetics [152, 88]. Additionally, it can also be used in larger scale models of the muscu-
loskeletal system (eg. [40, 41]) and in understanding the influence of muscular diseases (eg.
[198, 184]). The model splits the total force produced by muscle into active and passive
components. It also includes both length and velocity dependent effects in the model (see
Figure 1.4). In particular, the total force produced by a muscle is given by

Fmuscle(λ, λ̇)) = F0(Fpass(λ) + a(t)Fact(λ, λ̇)), (1.1)

where a(t) ∈ [0, 1] gives the level of activation, λ is the stretch in the muscle, and λ̇ is the
stretch rate of the muscle. Here Fpass(λ) and Fact(λ, λ̇) are normalized to the maximum force
produced by the muscle during contraction, F0. The force from the activation is typically
modelled as a multiplicative split between the length and velocity dependent effects

Fact(λ, λ̇)) = Flen(λ)Fvel(λ̇). (1.2)

While these types of models have been successful in many applications, typically at larger
activation and steady strain rate, it has been observed that the Hill model only accounts
for about 50% of the forces in time varying in vivo situations with low activation and
time varying strain rates [41]. This demonstrates that a more complex model is required
to completely capture skeletal muscle tissue. The bulging, architectural effects, and tissue
heterogeneity that occur in muscle are not encoded in Hill-type muscle models and require
higher dimensional models [133].

Figure 1.4: Intrinsic muscle force-velocity and force-length relationships.

1.2.2 Three dimensional muscle modelling

To better understand the entire mechanics of skeletal muscle, including muscle bulging,
tissue heterogeneity, and architectural effects, three dimensional models were developed
(eg. [15, 115, 202, 18, 129]). As the finite deformation of muscle is highly complex and a key
factor in muscle mechanics [136], the three dimensional models allow for us to develop an
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understanding of the bulging and deformations that may occur to muscle. The nonuniformity
of the tissue properties is difficult to capture in a 1D model, and it is impossible to capture
the influence of the distribution of materials inside muscle, such as fat [130], or the specific
structure of the material, such as the non uniform orientations of collagen fibres [14]. The
architecture of muscle is important in determining the muscle function; however, with one
dimensional models, it is difficult to fully understand the influence of the architecture on
bulging or fibre angles [192]. There are many different types of three dimensional models
that have been developed to capture different aspects of skeletal muscle mechanics, and
these will be outlined in the remainder of this section.

Hyperelastic continuum models

The most common type of three dimensional models are the hyperelastic continuum models
of skeletal muscle. First, we can briefly provide some background on the theory of elasticity.
In the linear setting, we have that the stress in a material, σ, can be written in terms of a
fourth order constitutive tensor, C, as

σ = C : ϵ. (1.3)

Here ϵ is the strain in the material and A : B := tr(AB⊤). This is known as Hooke’s Law
and is used in the presence of infinitesimal strains; however, skeletal muscle experiences
finite strains, and so a more complex theory is required. Finite strain requires considering a
nonlinear relationship between the stress in the material and the strain experienced. To do
this we use a hyperelastic formulation, so we can write the stress in terms of a derivative of
a strain-energy potential, W , as

σ = 2E⊤ ∂W (E)
∂E , (1.4)

where E is a finite strain tensor. This formulation will be described in detail in Chapter 2.
The strain-energy potential function is typically a nonlinear function in terms of the in-
variants of the strain tensor E. To determine the deformation of muscle, the finite strain
nonlinear continuum elasticity model is used in the equation of motion given by

∇ · σ + b = ρ ü, (1.5)

where b is the forces on the body, ρ is the density of the material, and ü is the second
derivative of the displacement with respect to time. These models are often solved using a
finite element method.

The hyperelastic continuum models are typically whole muscle models in which the the
material is treated as transversely isotropic [195]. The anisotropy is implemented as a one
dimensional fibres running along the length of the muscle, similarly to muscle fibres (eg.
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[15, 192]). The material is transversely isotropic and the models utilize a nonlinear finite
strain hyperelatic material model. These models are often implemented in a quasi-static
setting with no time dependence; therefore, the governing equations are developed assuming
a balance of stresses without any effects from mass or time (eg. [115, 202, 192]). The quasi-
static approximation is reasonable when the time scale of the elastic waves is much faster
than the activation-type response, or when the mechanics are occurring slow enough that
the system remains nearly in equilibrium, so any of the velocity dependent effects typically
observed in muscle are negligible. One example of this in muscle mechanics would be an
isometric contraction, and in this case the quasi-static models have been shown to be a
good approximation [15, 115, 192]. Comparing to Equation 1.5, the quasi-static version is
given by

∇ · σ + b = 0. (1.6)

The exact formulation will vary slightly between models, and writing the active response
from muscle can be done in terms of the stress or the strain in the material, which have
been found to produce a different overall material response [58]. Most of the models follow
a three-field formulation involving the displacement, pressure, and dilation, developed by
[160]. Oomens et al. [115] utilizes a PDE to govern the active response of the muscle, whereas
other models (since they are quasi-static) only utilize a linear ramping activation [192].
More detail can be added to these types of models by including a fibre-mesh model to help
understand how force transmission through muscle [202]. While many of these models have
been utilized with a simplified geometry of muscle, recently these models have been solved
on MRI derived geometries that can provide more a more accurate mesh [81, 192]. While this
is important for determining the effects of strain and deformation in muscle, Wakeling et al.
[192] find that when looking at the energy associated with muscle contraction the simpler
block geometries typically used sufficiently capture the energy associated with contraction.

These models have been used to look at the influence of activation on muscle deforma-
tion, and vice versa. [35] and [81] investigated the effects of muscle contraction on aponeuro-
sis strains. [81] varied the aponeurosis properties based on experimental data to understand
how they affect the aponeurosis strain, which has been shown to be important to muscle
function [7]. These type of models are particularly useful in understanding how stress and
strain develops during contraction and passive movements. [148] investigated the effects of
compression on strain and stress produced by muscle tissue. Additionally, many models are
used to investigate strain throughout the muscle during the contraction and during passive
lengthening [115, 192, 19].
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Dynamic effects

The aforementioned continuum models of muscle focus on quasi-static deformation, and
do not include any velocity dependent effects; however, the velocity dependent creep and
relaxation have been found to be important in muscle mechanics [72]. Viscoelastic models
of muscle have been developed to capture these effects [185, 196]. [185] developed a vis-
coelastic model to look at the time-dependent properties of muscle in the passive setting.
More recently, [2] developed a passive viscoelastic model using experimental data for cyclic
lengthening tests. These models do not, however, look at the active mechanics of muscle
tissue using a viscoelastic model. Other dynamic effects that need to be considered are
the effects of mass [147, 144, 145]. Muscle deformation is inherently dynamic; however, im-
plementing a dynamic formulation of the model is difficult and computationally intensive
using a continuum formulation. The remainder of the work in this thesis will not consider
the dynamic effects of muscle, and we will work with a hyperelastic quasi-static formulation
of muscle.

Other muscle models

There are other three dimensional models of skeletal muscle that do not utilize the standard
continuum mechanics approach. These models are particularly useful as they are able to
capture more of the architecture and bulging of muscle, but to do not require the intensive
computations that are used to solve the continuum models. The computationally intensive
continuum models make them difficult to implement in larger musculoskeletal models such
as OpenSim [40] that involve many muscles. [57] has developed a fibre based model, which
has a lower computation cost than the typical continuum models. This is for the purposes
of implementing in more complex simulations with multiple muscles. The difference be-
tween this model and the three dimensional continuum models is that they approximate
the muscle as a one dimensional fibres that obeys the properties of continuum mechanics.
This essentially results in a model that improves upon the classical Hill model, but does
not include all the physical details observed in the full three dimensional models.

Micro-mechanical factors in three dimensional models

The aforementioned models take a continuum approach to the macroscopic characterization
of muscle, which utilize phenomenological data for the material parameters. While this works
well in many cases, it can be beneficial to take a principled approach that encompasses
effects from some of the micromechanical properties of muscle. Micromechanical models
of muscle tissue have been developed that do not use a continuum formulation [18]. In
this case, Böl et al. [18] develop the muscle model using truss elements, whose properties
are based of the microscopic data from muscle tissue. Other models incorporate multiscale
aspects of electrophysiology into their model through a combination of ODE systems for
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the electrophysiology and the nonlinear continuum equations on the macroscopic scale [68,
140, 138, 139]. Additionally, there are continuum models that investigate the influence of
the microstructure, but do not capture whole muscle deformation [157, 186]. Sharafi and
Blemker [157] built a model with intention of understanding if the assumptions made on the
macroscopic scale were accurate based on the mechanics at the fibre bundle and fascicle level.
Other micromechanical models, while not directly computing the overall force produced by
the muscle, are able to develop a better understanding of how force is transmitted within the
muscle to the tendon through shear forces [158], as well as the influence of neuromuscular
diseases [186].

To capture the microstructure on the macroscopic level approximations need to be made;
otherwise, it would not be computationally feasible given the complex structure of muscle.
This can be done through the use of homogenized muscle models [172, 171, 14]. The homog-
enization methods used in these studies typically involve combining the effects of the ECM
and the cellular fibre effects. These types of models have been found to produce similar
results as the phenomenological continuum models, but allow for a better understanding of
the effects from specific micromechanical components. In Chapter 3, a homogenized muscle
model will be developed and implemented for the muscle model in [192].

Applications to impaired or diseased muscle tissue

Skeletal muscle models have also been developed to specifically address the mechanics of
impaired muscle tissue, such as that affected by disease, disuse, or aging. For example, the
chemomechanical model developed by [174] can capture the influence of muscular dystro-
phy. The three dimensional models can also be useful in understanding the effects of a
disease or disorder on the fibre level, by varying material properties [186]. As mentioned in
Section 1.4.2, adipose (fat) tissue can infiltrate the muscle and cause changes to its compo-
sition. Rahemi et al. [130] investigated the effects of adipose tissue distribution and models
for incorporating adipose tissue on the force produce by muscle using a continuum model
for whole muscle. In these cases, the three dimensional nature of the model is important as
it allows for the investigation of adipose tissue distributions throughout the muscle. Now
that a variety of muscle models have been described, a description of muscle mechanics from
a physiological viewpoint will be given in the next section (Section 1.3).

1.3 Muscle mechanics: a physiological viewpoint

From a physiological and biomechanical perspective, muscle is often considered to be the
force generator responsible for locomotion; however, muscle may have many other functional
roles. Mechanically, skeletal muscle may act as motors, brakes, springs, or struts [43]. As a
brake, muscle will be able to slow movement by storing energy in the muscle and tendon.
In insect flight, muscle could act as a spring which will produce an oscillatory forces at high
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frequencies [182]. The function of a strut is typically to help transfer force, and is used by
many animals in locomotion such as swimming fish [155] or running turkeys [137]. Each of
these different functions of muscle are highly dependant on the structure and composition
of muscle. Two main properties of muscle that will determine the function of muscle are the
contraction speed at which muscle can produce force and the force a muscle can produce at a
give length. These properties will depend on many things including architecture, activation,
fibre types, and material composition [89]. The remainder of this section will go over the
factors that will influence muscle function in relation to the force a muscle produces at a
given length or velocity.

1.3.1 Whole muscle level contributions to muscle mechanics

Here we go over the mechanics at the whole muscle level, as there are many factors here that
are influential in muscle mechanics. First, we go over the role of muscle architecture and the
various functions of muscles, along with the role of the pennation angle in muscle function.
Further, we discuss the importance of the aponeurosis on muscle function. Finally, we go
over the importance of considering muscle as a three dimensional material with volume and
mass.

Architecture and the muscle-tendon unit

Muscle architecture has a large bearing on how muscle will function in a given organism.
As previously described in Section 1.1, we see that there are three main types of muscle
architectures, and that there is one main feature that distinguishes the paralleled fibered
muscle and the pennate muscle, and that is the orientation of the fibres. While the pennation
angle redirects the force from the line of action of the muscle, typically the reduction of
force from this angle is small since the angle is often less than 25◦ in humans [197]. In most
models of muscle, the force produced by muscle is proportional to the physiological cross
sectional area (PCSA), which accounts for the orientation of the fibres. While the exact
calculation can vary between studies, one common way to calculate PCSA is [89]

PCSA = mmuscle
ρmuscle lfibre

. (1.7)

Here mmuscle is the mass of the muscle, ρmuscle is muscle density, and lfibre is the length of
the fibre. The PCSA multiplied by the cosine of the pennation angle, θ, is proportional to
the muscle force

PCSA × cos(θ) ∝ Muscle Force. (1.8)

This means that if we assume at most θ = 25 degrees, there would be at most a 10%
reduction in force in the direction of the fibres, which is relatively small. The main benefit
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for pennation angle is its use in muscle gearing, as muscle pennation angle will change
throughout the course of muscle contraction Typically, the pennation angle will increase as
muscle activates, this results in a phenomena called gearing [193]. As the angle increases,
the muscle fibres are shortening at a slower rate than the whole muscle belly. The force
produced by the fibres would then be larger than if it were to be shortening at the same
rate of the entire muscle belly (see Figure 1.4). This is because the muscle fibres are still
operating on a region of the force-length curve in which they are producing larger forces.
However, for a muscle with larger pennation angle, there are also shorter fibre lengths, which
result in less range in length of the muscle fibres and also the muscle. There is a trade off
between increasing the force, by increasing the number of fibres in parallel, and muscle’s
range of motion. Depending on the function of muscle one or the other may be desired. The
amount of gearing required will depend on the specific muscle function, but the pennation
angle is critical in allowing muscle to perform a wide range of functions while decreasing
the size and mass of the muscle.

In addition to the influence of the muscle architecture itself the materials through which
muscle force is transmitted to the bone are important. The majority of the muscle fibres in
the muscle belly will insert into the aponeurosis for pennate muscle [116], so it is important
for the aponeurosis to be able to further transmit force to the tendon. The mechanical
behaviour of the aponeurosis is important to muscle function because it needs to be com-
pliant, so that it can bulge and deform with muscle, as well as stiff enough to transmit
force. This is achieved through the organization of the collagen fibres in the aponeurosis, so
that as muscle bulges during contraction, transverse to the muscle’s line of action, it will
increase in stiffness in the longitudinal direction [7, 5]; this will allow it to better transmit
force [7]. The aponeurosis in turn can limit the muscle’s ability to bulge and deform [81],
which has consequences for muscle force production [136]. The force that is transmitted
from the aponeurosis must also be tranmitted through the tendon, which is important in
musculoskeletal mechanics as an energy storage mechanism [135]. While the tendon plays
an important role in skeletal muscle function, the remainder of this thesis will focus on
the muscle and aponeurosis complex, and so we will not provide an in depth review of the
function of tendon. For more detail on the function of the tendon, see eg. [134, 135].

Muscle volume and mass

Early studies in skeletal muscle mechanics (see eg. [203]) work with experimental data
obtained through fibres and fibres bundles, and the models are often formulated in one
dimension. More recent work has found that there are many more effects to consider in
muscle; particularly, the ECM properties and any effects from muscle volume and mass.
Typically during contraction the volume of the muscle is assumed to be nearly constant
[1, 12] or changes by very small amounts [20]; however, during long sustained contractions or
exercise the muscle volume has been observed to increase by up to 10 % [199]. If the volume of
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blood is included in the calculation of the muscle volume, then the volume would also change
significantly during contraction. This restriction on volume change acts as a constraint on
skeletal muscle function resulting in the development of intramuscular pressures, which may
act as a main factor in force generation [161, 164, 162]. In addition to pressure acting as
a constraint due to near constant volume, there is a constraint on the total volume of the
muscle due to its position in the body, so muscle will typically want to have a smaller volume
to reduce the energy required for accelerating the inertial mass of the muscle. The benefit
of larger muscle volumes is that there will be more muscle fibres, which will allow for the
muscle to do more work (at the cost of increased muscle mass).

One aspect of muscle that is often not considered is the influence of muscle mass. Work
by [147] has found that muscle needs to do more work to overcome the influence of inertia
induced by increased muscle mass. Adding internal mass to skeletal muscle results in reduced
work and power output by the muscle [144, 145]. Meanwhile, larger muscles have been found
to have a lower mass specific work [143]. This indicates that the size of muscle will alter its
mechanics, and so will likely alter the structure of muscle. Studies have found that within
a group of animals similarly related the structure will change depending on the size of the
muscle [42] and that as muscle size is increased the relative fibre length will decrease [3, 48].
Hence, muscle volume and mass need to be considered when analyzing muscle mechanics.

Another important macroscopic characteristic of muscle is its three dimensional nature.
As it contracts to produce force and shorten muscle must bulge. This deformation will
change the direction and magnitude of the force produced by the fibres and the speed of
contraction [136]. The muscle bulging will change orientation of the fibres throughout the
process of contraction resulting in forces not all acting along the muscle’s line of action
[94]. The benefit is that this allows muscle to shorten and produce force at shorter muscle
lengths. It has been shown that preventing bulging of the muscle material in one direction
will reduce the contractile force of the muscle along the line of action [149]. This was further
corroborated in [148] where it was shown that for smaller pennation angles, a load on the
muscle transverse to the line of action resulted in less energy being transmitted by the
muscle. The bulging in muscle is also helpful in the gearing of muscle, where the velocity
of the fibre shortening is less than the velocity of the entire muscle shortening [193]. The
bulging allows the pennation angle of muscle to change to allow for the lower fibre velocity,
and, hence, increase force produced by the fibres [136, 132, 191].

1.3.2 Cellular level contributions on muscle mechanics

It is difficult to fully understand how the microscopic components of muscle contribute to the
overall muscle force due to difficulties in experimental measurements. It is known that there
are two main microscopic contributors to the mechanics of skeletal muscle: the ECM and
the contractile units. First, we can discuss what is known at this point on the functional
significance of the ECM. As mentioned in Section 1.1, the ECM consists of three main
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layers (endomysium, perimysium, and epimysium), and each of these layers have different
mechanical properties through variation in structure and collagen types [126, 61]. The main
contributions of the ECM to muscle mechanics is passively during tension. The ECM is a stiff
and complex structure, so it will tend to resist any deformation. As muscle is lengthened,
for example, the stress in the ECM increases and it will store energy. The energy will
then be used depending on the function of the muscle (eg. spring, brake) [43]. Another
way that the ECM will contribute to muscle mechanics is during active force production
through its ability to transmit force from the fibres to the aponeurosis, and consequently,
the tendon and skeletal system. There are two main contributing layers that could directly
influence the force transmission: the endomysial and the perimysial layers. This is because
the endomysium surrounds the fibres and the perimysium surrounds the fascicles (groups
of fibres), so they are near and attach to the contracting fibres. It is likely, however, due
the mechanical properties of each of the layers that the endomysium is responsible for a
larger amount of this force transmission. The reason is that the endomysial layer is much
stiffer compared to the perimysial layer, and so it will be more likely to transmit force (see
[126]). In skeletal muscle it is not uncommon to have fibres that terminate within the muscle
[116], so there needs to be a mechanism for the force transmission from these fibres. The
possible modes of this force transmission are either through shear or tensile forces. Sharafi
and Blemker [158] used modelling techniques to investigate the modes of force transmission
through the ECM, and found that on the endomysial layer, transmission through shear
forces is more effective than through tensile forces. The ECM is a fundamental contributor
to mechanics; however, it is the contractile properties of muscle that allow it to function in
many of its roles.

The second contributor, that we consider, on the microscopic scale to muscle mechanics
are the contractile units or sarcomeres. These units are responsible for the active force pro-
duced by the muscle and consist of two main force contributions: the active force produced
actin-mysosin complex and the passive forces from the titin protein. We can first discuss the
actin-myosin force production, which can be explained using cross-bridge theory [75, 74, 76].
In this theory force production depends on a cyclical mechanism, which uses the hydrolysis
of ATP, and leads to the cross-bridges pulling on the actin to produce force. This force that
the sarcomeres produce depends on the length and velocity of contracting sarcomeres. The
relationship between force developed by the sarcomere and its length (which corresponds to
amount of overlap between the actin and myosin) is piecewise linear. There is an optimal
length at which the sarcomeres will produce force, but at longer or shorter lengths there will
be less overlap or the actin and myosin proteins will reach the Z-disks between sarcomeres
(Figure 1.2). The other factor, contraction velocity of the sarcomere, will decrease the force
as the contraction velocity is increased. At some given contraction velocity, the sarcomere
will no longer be able to produce force and this is called the maximum shorten velocity or
maximum strain rate. These results can be explained via the Huxley model [75]; at larger
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speeds there is a decreased probability of cross-bridges forming as the actin and myosin
slide past each other (resulting in decreased force from activation) and there will also be a
decreased probability of the cross-bridges that have attached detaching (resulting in forces
in the opposite direction of contraction). The specific relationship will depend on the type
of myosin protein in the sarcomere. For muscles that typically operate at larger velocities
to move quickly, but may not need to produce large forces, the sarcomeres will consist of
more myosin proteins with a larger maximum shortening velocity. Beyond the active force
produced by the muscle, the actin-mysosin component does not have a large contribution
to the passive response of muscle. The passive response from the sarcomeres is mainly due
to the titin protein.

Titin, the giant muscle protein, is considered to be the main contributor to passive
force within a muscle fibre [97, 87, 70]. The passive force from the titin has been found
to correspond inversely to size or isoform type, where the larger titin proteins result in a
decreased passive force from the sarcomeres during lengthening [123]. However, on the whole
muscle scale it is often argued that this contribution is small compared to the influence of
the ECM, due to its stiff collagenous structure [60, 105, 91]. This is because large stress
responses from the titin protein are only seen at larger stretches, which are typically not
realized in physiologically relevant muscle lengths (see eg. [53]). The main influence of the
titin molecules turns out to be in a phenomena called force-enhancement [70], but this
will not be investigated in this thesis (for more details on theories and effects of force
enhancement, see eg. [70, 69, 109, 144]).

Throughout this section, we have gone over the basics of muscle mechanics. In particular,
we have gone over the variations in muscle properties that may alter the forces produced
by muscle at a given length and velocity. On the macroscopic scale the overall muscle
architecture is a key indication of the muscle function; however, there are subtle properties
within the muscle fibres that will influence its function. The ECM is a critical component
of muscle giving the muscle its structural stiffness, while the individual proteins in the
sarcomeres will vary to influence the velocities at which the muscle will produce force.
Other materials have less of an effect but are still relevant in the mechanics. For example,
muscular fat, which is typically increased in muscle affected by disease, aging, or disuse,
can decrease the passive stiffness of muscle, as well as decrease the amount of space in
the muscle available for muscle contraction [130]. Muscle properties cross many length
scales, but on each scale the specific construction will alter muscle function. While in this
section we have discussed the components of muscle that can influence mechanics, many
biological processes, including aging and disease, can lead to changes to this structure and
manipulate the mechanics. These will be discussed in the next section under the context of
the neurological disorder CP.
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1.4 Muscle pathology: cerebral palsy

While the mechanics of skeletal muscle have been described above, they can be altered in
the presence of muscular disorders. One such disorder is CP, which results from an upper
motor neuron lesion and can significantly alter both activation patterns and structure of
skeletal muscle [142]. Most of the modern research on the influence of CP began in 1979 with
research by Castle [29]. Much of the early research went into understanding the changes that
can occur during CP. First fibre types and diameters were investigated through histological
cross-sections of dissected CP muscle obtained through surgery [29, 77]. However, currently,
there are improved experimental techniques, including MRI and ultrasound, to see the
changes occurring to skeletal muscle in vivo. Despite improved techniques, it is still very
difficult experimentally to understand the influence of CP on muscle mechanics. One main
reason is that the effects of CP vary both between subjects, but also within subjects between
different muscle groups [91]. One example is the increased stiffness of fibre bundles in the
upper leg muscles observed by Smith et al. [167], whereas no change in fibre bundle stiffness
was observed in calf muscles by Mathewson et al. [98]. Typically, results will vary between
upper and lower limb muscle groups [91].

This section will be organized as follows. First, the effects of CP on activation of skeletal
muscle will be discussed (Section 1.4.1); although, this will be done briefly as the rest of this
thesis will mainly focus on the passive mechanics of CP affected muscle with the exception
of Chapter 5. Next, in Section 1.4.2, the morphology of skeletal muscle under the influence
of CP will be discussed, including changes to the ECM, sarcomeres, and overall structure.

1.4.1 Spasticity and contracture

One main consequence of CP muscle is spasticity, which is the involuntary velocity de-
pendent activation of muscle during lengthening. This is a purely involuntary reflex that
results in stiffer muscle and a decreased range of motion, and has been investigated in many
studies (eg. [50, 8, 122]). The reason spasticity is important in muscle mechanics is that
muscle properties can vary due to changes in neural stimulation [119, 150]. Research is still
investigating the activation patterns during spasticity; however, they have been shown to
vary between muscle groups within a subject [8]. This may help to explain the wide varia-
tion in morphology, as will be discussed in the next section. Since the exact initial insult to
the central nervous system may vary between subjects, this means that the changes to the
activation patterns will vary between subjects depending on the exact location of the insult
[104]. A similar effect is observed in stroke patients, which can result in spasticity occurring
and changes to muscle morphology, similarly to CP [153].

To understand the influence of the spacticity in response to a stretch, models have been
developed. One such example is the work by Fee et al. [50], in which a swinging pendulum
test, which models the lower part of the leg as a pendulum (see eg. [52]), was used on identical
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triplets (two with CP and one TD). They found that including a velocity dependent term
in the model was required to capture the CP muscle response, but not the TD muscle.
This indicates that the spasticity occurring during CP is a velocity dependent response.
While spasticity has been shown to be important, there are many techniques and methods
available for assessing the degree of spasticity. It can typically be done using a stretch-reflex
test [122, 23, 85], but also through more advanced techniques such as wearables [103]. These
tests give measure of spasticity on the Modified Ashworth Scale [16], which can be used to
rank the severity of the condition.

Once spasticity is assessed there are a number of treatment options including non drug
therapies, such as physical therapy and hydrotherapy [49]; drug therapies including Bo-
tulinum toxin A [64]; and surgical interventions, which often involves tendon lengthening
for growing children [169]. The choice in treatment can vary depending on severity, and a
flowchart to guide the order of CP treatments is suggested in [49]. These treatments are still
debated today, and so more details on the underlying mechanics of muscle may help to di-
rect future clinical procedures and reduce the number of invasive and irreversible procedures
needed. The muscle affected by CP often has a larger passive stiffness than normal muscle.
As a result of the increased passive stiffness and muscle weakness, contracture develops,
which is the chronic shortening of muscle. This increase in passive stiffness can be observed
using shear wave elastography [86, 84], and muscle weakness has been widely investigated
using EMG techniques and modelling of the muscle tissue [47, 184, 189]. However, further
investigation needs to go into the changes to the material properties that can occur during
CP, and to determine the components that have a large contribution to the mechanics of
the muscle.

1.4.2 Influence of cerebral palsy on skeletal muscle morphology

The influence of CP on skeletal muscle varies both within and between subjects; however,
there are many changes to muscle morphology that are commonly observed [11, 179, 91]: fi-
brosis, decrease in ECM stiffness, increased fat accumulation, and decreased muscle volume.
Along with these factors, changes to other muscle muscle properties commonly reported are
decreased fibre size, decreased fascicle diameter, reduced satellite cell number, and decreased
serial sarcomere number. While the aforementioned components generally vary as mentioned
above, the results are often conflicting between studies. For example, even the more com-
mon changes such as increased stiffness from the ECM component [179, 11], through fibrosis
in combination with decreased stiffness from the ECM structure, do not always occur (eg.
[98]). The rest of this section will go into the common changes that occur to skeletal muscle
during CP; these results are also summarized in the reviews [11, 179, 91, 73].

The ECM, as mentioned above, is often considered as one of the primary load bearing
structures in skeletal muscle; hence, understanding how it may be altered in CP affected
muscle can be critical to understanding the changes in muscle mechanics. Often measure-
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ments of collagen content are reported as an indicator of the amount of ECM, since it is
difficult to physically measure the volume fraction. It is typically reported that there is
an increase in the collagen content [22, 167, 98]. While the collagen content may increase
during CP, this may not always correspond to an increased stiffness. It has been reported
that there are changes to the structure of the ECM, which may result in a different stiffness
value of the ECM [179]. In studies with mdx mice, fibrosis has not necessarily resulted in
an increase in muscle stiffness [165, 25]. Collagen content is likely not a good indicator of
ECM stiffness, and, instead, the organization of the collagen fibres within the ECM should
be considered [25]. Despite these conclusions with mdx mice, it is not obvious that these
same relationships will occur in CP muscle, but it is likely that similar trends may occur.
CP may not always influence each layer of ECM equally, it has been observed that in CP
muscle the perimysial layer was three times larger in thickness compared to TD muscle [38].
Structurally, it is difficult to understand how this variation in the different layers influences
overall function. Studies mainly investigate the overall influence of the ECM. In passive
experiments with CP muscle biopsies have been performed on CP muscle during tendon
lengthening surgery (eg. [167]). Smith et al. [167] found that there was a significant change
in the stress-stretch relationship of the fibre bundles, but not the fibres. This indicates that
there must be an influence from the ECM on the muscle force. Other studies, from within
the same lab group, have found that there is no effect in fibre bundles and that the differ-
ence is from within fibres [98]. The data is highly contradictory, and this emphasizes both
the complex nature of CP and the difficulty in experimentally measuring the influence of
microstructural properties on whole muscle mechanics.

Another key component of muscle that changes in CP affected muscle is the sarcomere
length [167, 98, 91, 179, 99]. The sarcomere length in skeletal muscle is often lengthened
[179], and this will impact both its passive and active contributions to muscle mechanics.
The influence on passive mechanics is due to the lengthening of the titin molecules in
the sarcomeres. The titin, as previously discussed, is the main contributor to the passive
mechanics from the sarcomere; however, it does not necessarily have a large contributions
on the whole muscle scale within the typical range of skeletal muscle lengths [91, 60]. Lieber
and Friden [91] argue that any influence of the titin will not have a significant contribution
to the overall mechanics, but during CP and as the muscle is stretched, there may be larger
influences from titin. At normal stretches, this is likely the case, but in CP affected muscle
the sarcomeres can be double the length of sarcomeres in TD muscle [167]. With these longer
lengths, it is possible that sarcomeres have a larger passive force. While the effect on passive
mechanics is difficult to guess, it is likely that the sarcomere length will be more influential
in the active mechanics of muscle. If we consider the sarcomere force-length relationship in
Figure 1.2, then if the sarcomere is lengthened by potentially double the length (as observed
in [167]) then there will be around an 80% decrease in the force produced by the sarcomere.
It is likely that in skeletal muscle the force produced will be very low relative to the passive
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forces experienced at a give stretch. A possibility is that the sarcomere properties are altered
in CP muscle, but there is no evidence to support this and so for the remainder of this thesis
we assume that there is no change in the sarcomere properties to accompany the change in
length. Sarcomere length is a critical component in muscle force production, and so changes
during CP will likely have a substantial contribution to muscle mechanics.

A nearly constant finding throughout studies on the gross morphology of CP affected
muscle is the decrease in muscle volume relative to TD muscle [11]. MRI studies investi-
gating muscle geometry have found that the average volume in CP muscle is decreased by
approximately 20-35% in CP muscle [111, 45, 112, 96], depending on muscle location. These
data on muscle volume are important because volume is related to the force a muscle can
produce, as PCSA is often approximated by volume divided by fascicle length [89]. The
deformation in the muscle volume occurs both lengthwise, through a decrease in the muscle
length, but also through a decreased cross-sectional area [96, 10]. There is also typically
a decrease in fascicle length observed in CP muscle [96, 101, 107], and so the decrease in
volume may not necessarily result in a reduced force. In more recent MRI studies the PCSA
was calculated, and it was found that the PCSA was reduced in CP muscle compared to TD
muscle [45]. The decreased PCSA, calculated using the median fibre length, implies that
CP muscle should produce less force.

While the effect of muscle volume and PCSA is related to the amount of force muscle
can produce, the muscle may not have the same material properties as typically developed
muscle. Studies have looked at the correlation between muscle size and PCSA, and the
force produced by muscle, and found that the the muscle volume does not account for the
expected force reduction [66]. As described previously, the ECM properties could vary. The
muscle material could also be altered by increased fat infiltration. It has been shown using
MRI scans that there is an increase amount of fat [110] and changes to the distribution of
fat [46, 110]. Longitudinal studies also looked into fat and found that there is an increase
in fatty tissue in CP affected muscle [114]. Modelling work has found that the change in fat
content can have an impact on the amount of force produced by muscle [130], but this has
not been investigated within the context of CP affected muscle.

Other changes to CP muscle commonly reported are fascicle length, fascicle diameter,
fibre length, and serial sarcomere number. In the modelling done in this thesis, which builds
from the principle components of muscle mechanics, including the sarcomere properties and
material responses, we focus on the changes outlined previously in this section. While fibre
length is important in muscle mechanics, when modelling muscle in a three dimensional
setting local changes to the fibre length need to be considered; therefore, we typically work
with sarcomere length opposed to the fibre length. The many changes observed in CP muscle
are difficult to measure and determine experimentally, and so we need to utilize a model
for muscle.
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1.5 Outline of thesis and contributions

This thesis is the combination of two published articles on homogenizing the skeletal mus-
cle model and applying it to CP, along with a description of the skeletal muscle model.
We investigate muscle material properties and the passive and active mechanics of muscle
affected by CP.

As described in Section 1.4, understanding the effect of CP on force production is diffi-
cult; hence, in this thesis we develop a mathematical model along with a series of numerical
simulations that allow us to achieve a better understanding of the mechanical behaviour
of muscle affected by CP. We utilize a homogenization of the base material to capture the
changes to the ECM. This includes the effects of fibrosis and changes to the ECM structure.
The homogenization and validation of the force outputs will be shown in Chapter 3. The
purpose of this model is to capture the effects of the microstucture of muscle on the macro-
scopic scale. Subsequently in Chapter 4, the model is applied to CP muscle to understand
how muscular disorders may alter skeletal muscle mechanics. This section will demonstrate
the effect of ECM properties and sarcomere length on the overall passive skeletal muscle
mechanics during CP. Then in Chapter 5, fat material properties are incorporated into the
model along with more complex architectures with aponeuroses. Finally, force-length sim-
ulations are performed to understand the influence of the changes that may occur during
CP and how they influence passive stiffness and active muscle force.

1.5.1 Chapter 2: A skeletal muscle model

The chapter provides a summary of the model used throughout the remainder of the thesis,
including the numerical methods used to solve it. We describe muscle as a fibre reinforced
composite in which the active and passive fibre properties of muscle are embedded in a
three dimensional base material, which includes any contributions from the ECM and other
cellular materials.

Contributions: The development of the model was done by Sebastian Dominguez, Hadi
Rahemi, Nilima Nigam, and James Wakeling [129, 44]. The summary of the model included
in the thesis was written by Ryan Konno.

1.5.2 Chapter 3: A homogenized muscle model

This chapter was published in PLoS ONE [82]. Here we develop a homogenized model of the
base material of muscle, which includes effects from the ECM and any cellular materials in
the muscle. This was implemented in the skeletal muscle model described in Chapter 2. To
test the influence of the base material properties on force output and energy distributions,
lengthening and activation simulations were performed.
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Contributions: Ryan Konno, Nilima Nigam and James Wakeling performed conceptu-
alization, experimental design, and editing of the manuscript. Ryan Konno performed all
simulations and drafted and edited the manuscript.

1.5.3 Chapter 4: Passive mechanics in cerebral palsy affected muscle

This chapter was published in Frontiers in Physiology [83]. Here the passive mechanics of
skeletal muscle are investigated in the presence of the neurological disorder CP. This involves
changes to the base material of muscle and its fibre components. This work provides insights
into the passive mechanics of skeletal muscle and can help determine causation between
individual changes occurring and the overall force muscle produces.

Contributions: Ryan Konno, Nilima Nigam, Stephanie Ross, and James Wakeling car-
ried out experimental design, analyses of results, and edited the manuscript. Ryan Konno
performed all simulations and drafted and edited the manuscript.

1.5.4 Chapter 5: Active mechanics in cerebral palsy affected muscle

This final chapter represents work in progress. Here we investigate the active mechanics of
muscle effected by CP. Here we also include the effects from fat/adipose tissue into the model
and investigate the various material properties used in the muscle model. Additionally, the
muscle model is solved on a mesh derived from MRI geometries.

Contributions: Simulations were performed by Ryan Konno. Bart Bolsterlee, Ryan Konno,
Nilima Nigam, and James Wakeling designed the experiments.
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Chapter 2

Mathematical model

This chapter introduces the three dimensional continuum mechanical skeletal muscle model
used throughout the rest of the thesis. First, in Section 2.1, we go over the basics of contin-
uum mechanics including the physical principles, and strain and stress tensors used. Then
we go through the formulation of the model (Section 2.3). Finally, we go over the numerical
methods and discretization (Section 2.4) used to solve the model along with a convergence
study (Section 2.5).

2.1 Continuum mechanics

Let V0 be a body in R3 (called the reference configuration) and x0 a point in V0. Then we
can define a mapping φ(x) : V0 7→ V , where V is bounded region in R3 (Figure 2.1). We can
define a point x := φ(x0) ∈ V . The displacement of a point x0 is then given by u = x − x0.
Using this displacement we can then define the deformation gradient tensor to be

F(x0) := ∂φ(x0)
∂x0

= I + ∇0u(x0), x0 ∈ V0. (2.1)

Here we use the notation that ∇0 is the gradient with respect to the initial configuration,
while ∇ corresponds to the gradient with respect to the current configuration. To simplify
the notation, we also write F = F(x0).

The dilation of the material can also be defined in terms of the deformation gradient

J(x0) := det(F). (2.2)

It is will also be useful in formulating the model to split the material response into a volume
preserving, isochoric, component and volume changing, volumetric, component. We set F̄
to be the isochoric component of F so that

F = (J1/3I) F̄. (2.3)
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V0 V

Figure 2.1: Illustration of the action of the deformation gradient F on a line element dX in
the reference configuration to the current configuration, ie. FdX = dx.

To discuss the mechanics of a body we need to introduce stress and strain tensors to
describe the deformation of the material. Common strain tensors used are the left and right
Caucy-Green Strain tensor B and C, respectively. They can be defined in terms of the
deformation gradient as

B := FF⊤, C := F⊤F. (2.4)

These tensors can also be expressed in their isochoric and volumetric components

C = (J2/3I)C̄, B = (J2/3I)B̄. (2.5)

Cauchy’s Theorem gives us that there exists a Cauchy stress tensor, σ, so that

t(n) = σn, (2.6)

where t is the traction on the surface and n is the unit outward normal in the current
configuration. Equation 2.6 is in the current configuration, which is often not ideal for
computational purposes. In this work we favor a Lagrangian description of the problem, so
that all of our integrals are computed on the reference configuration, V0. In the reference
configuration, we get

T = PN, (2.7)

where T is the traction in the reference configuration, N is the unit outward normal in the
reference configuration, and P is the first Piola-Kirchhoff stress tensor

P := JσF−⊤. (2.8)
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Using Nanson’s formula (see eg. [113]), the relationship between the tractions T and t can
be obtained as TdA = tda, where dA ⊂ ∂V0 and da ⊂ ∂V . Other stress tensors that will
also be useful in the formulation and implementation of the skeletal muscle model is the
Kirchhoff stress tensor, τ , and the second Piola-Kirchhoff stress tensor, S. These can be
defined as

τ := Jσ, S := F−1τF−⊤. (2.9)

Using S, we can calculate the fourth order elasticity tensor

C(C) = 2∂S(C)
∂C . (2.10)

These tensors will give us enough information to formulate the basics of elasticity and our
mathematical model.

To model muscle tissue, we can rely on its elastic qualities and use a hyperelastic model
for muscle. While there are viscoelastic effects observed in skeletal muscle (see Section 1.2),
we do not include these in our model. Using a hyperelastic approach, we can formulate the
muscle tissue in terms of strain-energy potentials. The strain-energy potential is a measure
of potential energy that is a function of the strain in the material. For the model used
in this study, we will write the strain-energy potential in terms of the left Cauchy-Green
strain tensor, ie. W (B). The relationship between the stress in the material and the strain
experienced can be determined through the strain-energy potential using the constitutive
law

σ(B) = 2J−1B⊤ ∂W (B)
∂B . (2.11)

We can also decompose the strain-energy potentials into isochoric and volumetric compo-
nents

W (B) = Wiso(B̄) + Wvol(J). (2.12)

The exact form of the strain-energy potential functions, Wiso and Wvol, depends on the type
of material being modelled and will be described in the following section.

2.2 The skeletal muscle model

We now go over the stress response of the skeletal muscle model previously developed
in [192, 145, 148, 143]. We model muscle as a fibre reinforced composite material, so we
decompose muscle into a three dimensional isotropic component and a one dimensional fibre
component, which accounts for the anisotropy. Hence, the strain-energy potential can be
decomposed into a fibre component that contains all of the contractile and passive along-
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fibre properties, and a base material component that contains the effects from the ECM
and other cellular materials. In particular, the isochoric component of the strain-energy will
include the effects from the fibre and the base material

Wiso(B̄) = Wfibre(λ̄) + Wbase(B̄). (2.13)

Here λ̄ is the stretch in the fibre. Given an initial fibre orientation, a0 ∈ R3 and deformation
gradient, F, at a point x0 ∈ V0, we define λ̄ := J−1/3||F a0||2. Using a similar approach to
[129], we take the base material to have an isotropic material response. The exact form of
the strain-energy potentials can vary; however, typically we use a Yeoh model [201]

W (B) =
3∑

i=0
ci(I3(B) − 3)i, (2.14)

where I3(B) = tr(B). The fibre component of the model will be based on the Hill type
model and includes the effects from the active and passive properties of the muscle. It can
be written as

Wfibre(λ̄, t) = a(x, t)Wact(λ̄) + Wpass(λ̄), (2.15)

where a(x, t) ∈ [0, 1] is the scalar activation function used to ramp the activation of the
muscle fibres.

To determine the constants in the Yeoh model and the form of the active and passive
fibre strain energy functions, we need to calculate the stress response from the material.
Using Equation 2.11 we can obtain the stress response for the base material, and obtain
constants ci, i = 1, ...3, through a nonlinear regression fit to experimental data (Figure 2.2).
For the fibre component, can write the material response in terms of the Cauchy stress as

σfibre(λ̄, t) =
(
a(x, t)σact(λ̄) + σpass(λ̄)

)
a ⊗ a, (2.16)

where the current fibre orientation, a, can be determined in terms of the initial fibre orien-
tation a0 through application of the deformation gradient a := F a0. σact(λ̄) and σpass(λ̄)
can be obtained from experimental data from [200] (Figure 2.2) [145].

The volumetric strain-energy term, Wvol, for the base material acts as a penalty term,
which penalizes any changes in volume. For the muscle model used in this thesis, the form
of Wvol is one typically used for biological materials [32]

Wvol(J) = κ

4 (J2 − 2 log(J) − 1), (2.17)

where κ is the bulk moduli for the tissue and can be obtained through experimental data.
The above description of the strain-energy breakdown for muscle can also be used for the
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Figure 2.2: Intrinsic muscle fibre properties based on experimental data from [200] (left)
and the base material response based on experimental data from the transverse muscle
stress-stretch relationship from [108] (right).

other materials in the muscle-tendon unit, such as the aponeurosis or tendon. The only
difference is that there will no contribution from the active strain-energy potential, ie.
Wact(λ̄) = 0. In the next section we use a three field formulation to derive the model
equations.

2.3 Model formulation

The formulation of our model utilizes a three field formulation in terms of the velocity, pres-
sure, and dilation of the material; in particular, we have unknowns Σ = {u, p, D} ∈ X :=
H1(V ) × L2(V ) × L2(V ). The total potential energy in the system, Etot, is a combination
of the internal and external energies. Note that this energy is calculated with respect to
the reference configuration, and so there is an undetermined constant that may result in
the deformed state having a negative total potential energy. In terms of the strain-energy
potentials, and body and traction forces we have

Etot(Σ) =
∫

V0
Wiso(B) + Wvol(D) + p(D − J(u)) + b · u dV +

∫
∂V0

t(x) · u dA. (2.18)

We introduce the pressure, p, as a Lagrange multiplier that will enforce the constraint
D − J(u) = 0. We now use a variational approach. Assume that we have a stationary
minimum point Σ, so that

Etot(Σ) ≤ Etot(Σ + sδΣ), ∀s > 0, (2.19)
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where δΣ = (δu, δp, δD) ∈ X. Through the Principle of Least Action, we have that
DδΣEtot(Σ, δΣ) = d

dsEtot(Σ + sδΣ)|s=0 = 0. Evaluating the derivative, we get the residual

R(Σ, δΣ) = d

ds
Etot(Σ)|s=0 =

∫
V0

(
∂Wiso(u)

∂u + p
∂J(u)

∂u + b
)

· δu

+ (J(u) − D) δp +
(

dWvol(J)
dJ

− p

)
δD dV

+
∫

∂V0
t · δu dA.

(2.20)

Integrating by parts will give us

R(Σ, δΣ) =
∫

V0
(τiso + pJI) : ∇0 δu + b · δu

+ (J(u) − D) δp +
(

dWvol(J)
dJ

− p

)
δD dV

+
∫

∂V0
t · δu dA.

(2.21)

For more detail on the derivation of the first term, see [117]. Note that τvol = pJI.
We can obtain the Euler-Lagrange equations for this by converting back to the current

configuration. We get the following system of equations

∇ · σ(B) + b = 0 in V,

J(u) = D in V,

p = ∂Wvol(D)
∂D

.

(2.22)

The first equation is the balance of stresses (cf. Equation 1.5) with no time dependent term,
since we are working in the quasi-static regime.

2.4 Numerical methods and discretization

The above residual gives a nonlinear problem, which needs to be linearized. We can apply a
Newton method to the nonlinear problem. In particular, we can look for a Newton update
dΣ := (du, dp, dD) so that the value at a given Newton iteration is

Σi+1 = Σi + dΣi. (2.23)

We can determine the update through the solution of the system of equations

DR(Σi, δΣ) · dΣi = −R(Σi, δΣ), ∀δΣ ∈ X. (2.24)
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Here DR(Σi) is the Gateaux derivative

DR(Σi, δΣ) = lim
ε→0

R(Σi + εdΣi, δΣ) − R(Σi, δΣ)
ε

. (2.25)

Computing the derivative gives

DR(Σi, δΣ) =


(JCi : ∇0dui, ∇0δu)

+ (τi∇0dui, ∇0δu)
(Di∇0 · dui, δp) 0

(Di dpi, ∇0 · δu) 0 −(dpi, δD)
0 −(dDi, δp) (W ′′

vol(Di) dDi, δD)

 .

Here (x, y) =
∫

V0
x · y dV , Ci = Ciso,i + Cvol,i, and τi = τiso,i + τvol,i.

We use a finite element method to discretize the linear system (Equation 2.24). Given a
triangulation T of the reference volume V0 of hexahedral elements Hi with diameter hi. We
can define the mesh size as h := maxi{hi : Hi ∈ T }. The finite element spaces are chosen to
be continuous polynomials for the velocity and discontinuous polynomials in the pressure
and dilation. We can consider the space of polynomials Pk so that we have the following
finite element spaces for H1

∂V (V0) and L2(V0) as

Pk := {q ∈ L2(V0) : q|H ∈ Pk(T ), ∀H ∈ T },

Qk+1 := {w ∈ C(V0) : v|H ∈ Pk+1(H), ∀H ∈ T },
(2.26)

where Pk(V0) is the vector version of Pk(V0).
Out discretized solution at Newton iteration i is then given by Σi,h ∈ Xh := Qk+1 ×

Pk × Pk and similarly the update is dΣi,h ∈ Xh. The discretized linear system is then given

DR(Σi,h, δΣh) · dΣi,h = −R(Σi,h), ∀δΣh ∈ Xh. (2.27)

We can solve the linear system is solved using a Conjugate-Gradient method along with a
SSOR preconditioner [117]. Since we are trying to minimize the residual with the Newton
method, we use the stopping criteria

||R(Σi,h)||L2(V ) < τ, (2.28)

for some given tolerance τ .

2.5 Convergence

In this section the convergence of the above numerical method is demonstrated. This is
done using a simplified block geometry with dimensions 20cm × 5cm × 5cm. The block will
be orientated with its length running along the x-axis and the centroid of the block at the
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origin. The fibres will be orientated parallel to the x-axis. To investigate the convergence of
the method, we perform force-length tests, where we pull the muscle to a strain of 5%, and
then activate the muscle quasi-statically using a linear ramp

a(t) = tact,end − t

tact,end − tact,start
, (2.29)

where tact,start = 0.1s and tact,end = 0.2s. The pulling of the muscle will consist of applying a
zero Dirichlet conditions on the −x face and applying a nonzero positive Dirichlet condition
to the other face, which extends the muscle. The rest of the boundary will have a zero
traction boundary conditions.

For the convergence properties in the primal variables, we refer the reader to Dominguez
[44], where the convergence study was performed for the finite element method used here.
The resulting rates of convergence were 1.9223 in the H1-norm for the displacement, u, and
1.1299 in the L2-norm for the pressure, p, and dilation, D. These are as expected based
on the finite elements used and the convexity of the domain [44]. For a linear problem, we
would expect to see quadratic convergence, but due to the nonlinear nature of the problem
we are solving here, this is not achieved.

Here we look at the convergence results for some of the model outcomes that will be
relevant in later chapters; in particular, we will look at the stretch throughout the muscle
belly, λ̄, and the force computed on the ends of the muscle, F . The stretch will be calculated
as

λ̄(x) = ||ā(x)||2. (2.30)

The force will be calculated as an integral over the +x face

F = 1
2

∫
V

(
τ + τ ⊤

)
F−⊤N dV ≈ Fh = 1

2

N∑
i=1

(τ + τ ⊤)F−⊤N J qi, (2.31)

where qi is the quadrature weight at a given point and N is the number of quadrature
points. We look at the magnitude of this force Fh = ||Fh||2. For the convergence test, we
use Q2 ×P1 ×P1 elements for each level of refinement, and the exact solution is obtained on
a highly refined mesh with Q3 ×P2 ×P2 elements. The error is computed after one timestep
of activation.

The results are shown in Table 2.1. We see approximately quadratic convergence in the
stretch (≈ 2.392), while the force is converging slowly at a rate of ≈ 0.66. Due to the post-
processing required for computation of the stretch and force, these rates of convergence
are reasonable. Additionally, we are not taking a L2-norm in force, and so we would not
expect the quadratic convergence. Additional error comes from the interpolation from the
fine to the coarse mesh. For the force, the rate is lower than the other variables due to
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the additional calculations. The force is calculated on the surface of the mesh, but the
values are computed on at the quadrature points (which are not on the face), so there is an
extrapolation required that introduces additional error.

h ||λ̄h − λ̄exact||L2
eh

eh/2
||Fh − Fexact|| eh

eh/2

0.052 1.223×10−4 4.151×10−2

0.026 2.667×10−5 4.5998 3.079×10−2 1.34
0.013 4.446×10−6 5.9972 1.641×10−2 1.87

Table 2.1: Convergence study of the numerical methods described in Section 2.4 for Q2 ×
P1 × P1 elements. The errors here are calculated in the L2-norm for stretch, while the error
in Fh is give as the relative error between the successive refinements. eh/eh/2 is the ratio in
errors between successive refinements.
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Chapter 3

Modelling extracellular matrix and
cellular contributions to whole
muscle mechanics

3.1 Abstract

Skeletal muscle tissue has a highly complex and heterogeneous structure comprising several
physical length scales. In the simplest model of muscle tissue, it can be represented as a
one dimensional nonlinear spring in the direction of muscle fibres. However, at the finest
level, muscle tissue includes a complex network of collagen fibres, actin and myosin proteins,
and other cellular materials. This study shall derive an intermediate physical model which
encapsulates the major contributions of the muscle components to the elastic response
apart from activation-related along-fibre responses. The micro-mechanical factors in skeletal
muscle tissue (eg. connective tissue, fluid, and fibres) can be homogenized into one material
aggregate that will capture the behaviour of the combination of material components. In
order to do this, the corresponding volume fractions for each type of material need to
be determined by comparing the stress-strain relationship for a volume containing each
material. This results in a model that accounts for the micro-mechanical features found
in muscle and can therefore be used to analyze effects of neuro-muscular diseases such
as cerebral palsy or muscular dystrophies. The purpose of this study is to construct a
model of muscle tissue that, through choosing the correct material parameters based on
experimental data, will accurately capture the mechanical behaviour of whole muscle. This
model is then used to look at the impacts of the bulk modulus and material parameters on
muscle deformation and strain energy-density distributions.

3.2 Introduction

Skeletal muscle is a complex heterogeneous structure, and a three dimensional continuum
model is required to capture its complete mechanics. One dimensional models have been
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developed, often to describe whole body movement or inter-muscular dynamics (eg. [203]).
However, when examining the mechanics or force production of the muscle these models
are not sufficient to understand the complex effects from the heterogeneity or architecture
of muscle [89]. In fact, three dimensions are required to fully capture the bulging and defor-
mation seen in skeletal muscle [133]. Therefore, to capture the complex aspects of muscle
tissue, these models are typically built using the theory of continuum mechanics and solved
using a finite element method [129, 146, 15, 115, 202, 195].

Muscle is composed of many components making it a highly heterogeneous structure,
and these aspects are typically investigated in micro-mechanical [157, 186, 31, 140, 18] and
homogenization [172, 171, 14] models. The tissue heterogeneity effects are often related
to micro-structure [60, 128], and these effects cannot be implemented using a single-scale
model. The micro-mechanical components of muscle are those that are visible on a micro-
scopic level and contribute to the mechanical behaviour of muscle tissue. There are many
micro-mechanical components of muscle aside from the contractile fibres alone. In par-
ticular, muscle consists of connective tissue, fluid, cellular components, and muscle fibres
which make it a highly heterogeneous material. Skeletal muscle consists of muscle fibres
surrounded by a layer of connective tissue (endomysium), and groups of fibres are bundled
together into muscle fascicles by another layer of connective tissue (perimysium). Bundles
of fascicles are what composes the muscle volume and is held together with a third layer
of connective tissue (epimysium) [60, 128]. The combination of connective tissue layers
forms the extra-cellular matrix (ECM) and is typically less than 10 % of the muscle volume
in healthy muscle [13], however the ECM has been shown to have a large impact on the
muscle force development [93]. The reason for this is the high degree of structure found in
the ECM along with the stiff collagen fibres, which results in a significant contribution to
the passive stiffness of the muscle [92, 163, 183, 128, 102, 125, 181].

In order to capture the complex effects of the micro-mechanical factors on a whole
muscle level, a principled approach needs to be taken. This procedure will allow for consid-
eration of microscopic properties and their effects on the macroscopic muscle model. The
micro-mechanical influences on whole muscle effects have been investigated in many studies
(eg. [31, 157, 186, 18, 172, 14]). A study by Ceelen et al. [31] developed a micro-mechanical
model of skeletal muscle for an analysis of the effect of deformation induced hypoxic dam-
age. Sharafi and Blemker [157] developed a formulation of the micro-mechanical effects for
healthy muscle that could be implemented in a macroscopic model. Work by Rhörle et
al. [140] produced a multi-scale framework for a continuum mechanical model, and included
the effects from motor unit recruitment and allows for analysis of electro-physiological be-
haviour. These developments however do not allow for simple application to the macroscopic
level, and hence studies combining the material effects into a homogenous macroscopic model
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have been performed [14, 172, 171]. By performing these homogenizations, a better under-
standing of the mechanical properties can be obtained in microscopically altered muscle
tissue, such as fibrotic tissue that can result from muscular dystrophies, cerebral palsy, and
aging [92, 168].

In this study, a principled approach will be taken to develop an isotropic aggregate ma-
terial that will give a representation of the micro-mechanical effects that can be modelled
on a macroscopic level. This homogenization will take into account two factors: a cellu-
lar component including the fibres and other cellular materials, and an ECM component.
The cellular materials being considered are both effects from cells external to the muscle
fibres (eg. satillite cells, nerve bodies, capilleries), as well as the intracellular effect from
the fibres aside from the myofibrils. Parameters can be developed independently, so that
volume changing as well as isochoric properties can be modified. Additionally, this model
will differ from previous homogenization studies (eg. [14, 172]) by considering a nonlin-
ear Yeoh model [201] for the cellular component. Due to the lack of cellular component
data, mechanical properties from the cells in brain grey matter will be chosen given the
material is composed of the neuron cell bodies. This gives grey matter a nonlinear isotropic
response [79, 124], and since this is a collection of cells and similar to the the model’s cellular
component, these data will be considered. Any anisotropy typically seen in skeletal muscle
will be captured in the one dimensional along-fibre component that takes into account the
effects from myofilaments within the muscle fibres, and anisotropy conferred by the ECM.
Recent experiments have reported varying muscle volume levels over long contractions [199],
and changes in volume have been shown to impact passive muscle tension [164]. The distri-
bution of strain energy-densities has been shown to allow for a deeper understanding of the
underlying physics of skeletal muscle mechanics [192]. Therefore, the purpose of this study
is to develop a principled model that can be accurately fit to existing experimental data,
and can then be used to develop a greater understanding of muscle mechanics in response
to altered micro-mechanical properties. In particular, we will look at the impact of the stiff-
ness, volume fraction, and bulk moduli of the individual components in the model through
a comparison to experimental data and strain energy-density distribution analysis.

3.3 Model

3.3.1 Continuum Mechanical Formulation

Continuum mechanics is an effective method to model the physics of biological materials,
and is typically used in three dimensional skeletal muscle models [15, 129, 146, 172, 14, 140].
To characterize the deformation of a body, Ω0, to a new deformed state, Ω, we can introduce
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the deformation gradient, F. The deformation gradient can be defined as

F = dx
dX (3.1)

where dX is a line element in the original reference configuration and dx is a line el-
ement in the deformed current configuration. F contains the information about how the
original configuration is deformed, via rotations or stretches, to get to the current config-
uration. The dilatation of the material can be denoted as J = det(F), and remains close to 1.

To characterize the response of a material to deformation, the constitutive laws for the
material need to be determined. To do this, stress and strain tensors need to be defined.
The model developed here will consider the left Cauchy-Green strain tensor b = FFT to
characterize the strain in the material. Skeletal muscle can be modelled using a nonlinear
hyperelastic approach. For a hyperelastic material, the formulation of the constitutive rela-
tionships can be performed in terms of a strain-energy function which can be calculated at
each material point, X. The strain-energy function can be represented in the reference con-
figuration as W (X, b) ≡ W (b). Characterizing the material in terms of the strain-energy
allows us to write the constitutive law in terms of the Cauchy Stress Tensor, σ, and the left
Cauchy-Green strain tensor,

σ(b) = 2J−1b∂W (b)
∂b . (3.2)

In order to determine the constitutive law explicitly, the exact form of W (b) needs to be
determined. For skeletal muscle the strain-energy function can be broken into a volumetric
and isochoric component.

Wmuscle = Wvol(J) + Wiso(b̄) (3.3)

where b̄ is the isochoric component of the left Cauchy-Green Strain tensor, and is defined
as b̄ = J−2/3b. The strain-energy function for skeletal muscle, Wmuscle(b), is composed of
the three dimensional base material component, WBM(b), and an along-fibre component,
Wfibre(λ), which depends on the local fibre stretch (λ = ||Fa0||) along the direction of the
muscle fibres. a0 denotes the initial fibre direction with unit length at a given point and
||(·)|| denotes the usual L2 norm of (·). Therefore, the volumetric and isochoric components
are

Wiso = Wfibre(λ) + WBM,iso(b̄),

Wvol = WBM,vol(J).
(3.4)
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The continuum mechanical formulation developed here can be implemented into a three
dimensional finite element model using a three field formulation with the unknowns being
the displacement u, pressure p, and dilation J [160]. The Principle of Stationary Energy
can be applied to the problem by taking the first variation of the total energy. This gives
a nonlinear problem that can be solved using the finite element library Deal ii [6]. Details
on the implementation and finite element method can be found in Domínguez[44] and the
Supplementary Material.

3.3.2 A Principled Approach to Muscle Base Material

Formulation of the Base Material

Muscle is often modelled as a fibre reinforced material [129, 15, 115], and so the model de-
veloped in this study will consider the muscle as a three dimensional isotropic material with
one dimensional fibres running along the length of the muscle belly. The one dimensional
along-fibre component is designed to account for any anisotropic effects in the direction of
the muscle fibres. In particular, this includes the passive along-fibre effects from within the
sarcomeres, such as from the protein titin, and active forces developed between actin and
myosins. To analyze the micro-mechanical properties in whole muscle, the isotropic base
material can then be constructed by combining the effects from the principle components
(ECM and cellular materials). Since the base material has both isochoric and volumetric
parts, the a homogenization will need to occur in both of these strain-energy components.

The base material can be formulated by considering a representative volume element
(RVE) that encompasses a region, VRVE, in the initial reference configuration. Since the
RVE consists of each of the micro-mechanical components of the muscle, a portion of it will
consist of ECM, VECM. The rest of the volume will consist of the cellular component, Vcell.
Let |VRVE| denote the volume the region VRVE, then the volume fraction of each material
can be defined as

|VECM|
|VRVE|

= α,
|Vcell|
|VRVE|

= 1 − α. (3.5)

The volume fractions, α and 1 − α, are determined in the reference configuration of the
RVE, and we assume these volume fractions do not change as the muscle deforms. Since
skeletal muscle achieves near incompressibility, this is an accurate approximation to leading
order.
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The total energy of the RVE, ERVE, can be written in terms of the microscopic strain-
energy functions for the ECM and cellular components as

ERVE(b) =
∫

VRVE
WRVE(b) dV

=
∫

VECM
sECMWECM,RVE(b) dV +

∫
VCELL

WCELL,RVE(b) dV
(3.6)

where sECM is a structural area parameter that is constant over the RVE and will be
discussed in more detail in the next section. Dividing by |VRVE| gives

1
|VRVE|

∫
VRVE

WRVE(b) dV = 1
|VRVE|

∫
VECM

sECMWECM,RVE(b) dV

+ 1
|VRVE|

∫
VCELL

WCELL,RVE(b) dV

= α
1

|VECM|

∫
VECM

sECMWECM,RVE(b) dV

+ (1 − α) 1
|VCELL|

∫
VCELL

WCELL,RVE(b) dV.

(3.7)

Given that the RVE is microscopic in size, the following approximations were made

W (b) ≈ 1
|VRVE|

∫
VRVE

WRVE(b) dV

WECM(b) ≈ 1
|VECM|

∫
VECM

WECM,RVE(b) dV

WCELL(b) ≈ 1
|VCELL|

∫
VCELL

WCELL,RVE(b) dV

(3.8)

where b denotes the left Cauchy-Green strain tensor at the centroid of the RVE. This is the
familiar Voigt approximation used in skeletal muscle homogenization studies [172, 171].

It then follows that the strain-energy function for the macroscopic base material can be
written as a linear combination of the strain energies from each component:

WBM,iso(b) = αsECMWECM(b) + (1 − α)Wcell(b). (3.9)

Similarly, it is possible to decompose the volumetric strain-energy function into its micro-
mechanical components. The volumetric strain-energy component will be characterized us-
ing a strain-energy function typically used for soft biological materials [159], and the aggre-
gate function is given as

WBM,vol(J) = 1
4(J2 − 1 − 2 log(J))[ακECM + (1 − α)κcell]. (3.10)
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The bulk moduli, κECM and κcell, are parameters that will impact the compressibility of
the model and can be varied independently for each component.

Micro-mechanical Components

The strain-energy function for the ECM, WECM(b), can be determined using experimental
data from Gillies et al. [61], which obtained stress-strain curves for decellularized skele-
tal muscle tissue. These data are used as they are the only mechanical data available for
the entire ECM. Other micro-mechanical models consider the response from the isotropic
component of the ECM to be of the same order of magnitude [172] as that of the fibres,
instead, in this model we consider experimental data for the ECM that have been measured
for a decellularized matrix. Additional data for the ECM component will allow for a more
accurate representation in the model. Due to difficulty in measuring the decellularized cross-
sectional area of the ECM, the stress-strain relationship is typically reported with respect
to the cross-sectional area of the muscle tissue. Therefore, to account for this cross-sectional
area calculation in the model, the additional coefficient, sECM, is used.

Material data for the cellular (non-contractile and non-ECM) properties of skeletal mus-
cle are not available. Some studies have been able to measure properties of isolated muscle
fibres. However, tensile data are only available for the longitudinal direction of the muscle
fibres [17], which may not necessarily represent the response in the transverse direction.
Ideally, data for the cellular component of the base material would be tensile data for fi-
bre and other cellular components measured transverse to the fibre orientation. Since these
data are not available other data need to be considered, such as the mechanical behavior of
brain grey matter or liver tissue. These materials are considered since they are essentially
a cellular mass with no collagen fibres and are often modelled as non-linear isotropic ma-
terials [26, 79, 80, 124, 36]. Along fibre data have been considered in the homogenization
models by Bleiler et al. [14] and Spyrou et al. [172], however, they only considered a linear
stress-strain response shown by Smith et al. [168]. Since the liver material has been shown
to have some anisotropy, which is likely due to micro-structural effects, grey matter is used
for the cellular component.

In order to implement the experimental data for the ECM and cellular components
into the model a strain-energy function needs to be used for each of the components. The
Yeoh model (Eq. 3.11) gives the energy associated with a deformation in terms of the first
invariant of b [201].

W (b) = c1(I1 − 3) + c2(I1 − 3)2 + c3(I1 − 3)3 (3.11)
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This provides a computationally simplistic model that can sufficiently capture the isotropic
behaviour of these components as demonstrated by r2 values of 0.998 and 0.999 for the
ECM and cellular material, respectively (Fig 3.1 A). Fig 3.1 illustrates the fit of the model
for the intrinsic micro-mechanical properties (ECM and cellular components) used in the
model along with the experimental whole muscle data from Mohommadkhah et al. [108].
sECM was set at 200 in Fig 3.1 to account for the aforementioned cross-sectional area cal-
culation effects. This gives a significantly stiffer curve for the ECM compared to both the
whole muscle data and the cellular component (Fig 3.1(A)), which is expected.

3.3.3 Implementation of the Along-Fibre Component

The along-fibre component of the model was obtained through fitting to experimental data
by Winters et al. [200] and is shown in Fig 3.1(B) in terms of its stress-stretch relationship.
The stress response for the passive component of the fibres is given as

σpass(λ) = σ0



0 0 ≤ λ ≤ 1.0

2.353(λ − 1.0)2 1.0 ≤ λ ≤ 1.25

3.44(λ − 1.25)2 + 1.18(λ − 1.25) + 0.147 1.25 ≤ λ ≤ 1.5

0.427(λ − 1.5)2 + 2.90(λ − 1.5) + 0.656 1.5 ≤ λ ≤ 1.65

3.023(λ − 1.65) + 1.1 λ > 1.65,

(3.12)

and the active component of the fibres as

σact(λ) =



σ0(0.642 sin(1.29λ + 0.629)

+ 0.325 sin(5.31λ − 4.52)

+ 0.328 sin(6.74λ + 1.69)

+ 0.015 sin(19.8λ − 7.39) if 0.4 ≤ λ ≤ 1.75

+ 0.139 sin(8.04λ + 2.54)

+ 0.0018 sin(32.2λ − 6.45)

+ 0.012 sin(23.2λ − 2.64))

0 otherwise.

(3.13)

Here, σ0 = 2 × 105 Pa is the maximum isometric stress. The active component in the model
is also multiplied by a function a(t) that represents the activation, which increased from 0
to 1 over the course of the contraction. a(t) is linearly ramped in discrete steps t, which we
will call “timesteps". At each step we compute the new state u, p, and J of the muscle. The
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relationship between the stress and the strain-energy functions is given by

σ(λ) = λ
∂W (λ)

∂λ
. (3.14)

The strain-energy function for the along-fibre component can then be formulated as

Wfibre(λ) = Wpass(λ) + a(t)Wact(λ). (3.15)

All of the parameters used in the model, and their values are summarized in Table 3.1.
The base material and along-fibre component were implemented in a quasi-static model
described in Wakeling et al. [192].

Figure 3.1: Intrinsic model properties. (A) shows the uniaxial stress-stretch relationship for
the intrinsic properties of the homogenization: ECM (blue), cellular (yellow), and averaged
whole muscle components (red), along with experimental data from Gillies et al. [61] (ECM,
blue dot), Jin et al. [79] (brain grey matter, yellow dot), and Mohammadkhah et al. [108]
(transverse muscle response, red dot). The averaged whole muscle component was fit to
experimental data and is shown for comparison. Total (yellow), passive (red), and active
(blue) stress-stretch relationships are shown for the along-fibre response in (B) with the
experimental data obtained by Winters et al. [200] and normalized to σ0 = 2 × 105 Pa.
ECM component was scaled by 200 in (A) to account for cross-sectional area calculations.

3.4 Methods

3.4.1 Stress-Strain Experiments

A block of muscle was constructed as seen in Fig 3.2 (A), which had dimensions 20 cm × 6
cm × 4 cm. The fibre properties were implemented along the length of the muscle model in
the longitudinal direction (parallel to the x axis). To perform stress-strain tests that will al-
low for a comparison to experimental whole muscle data, the −x face was constrained from
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Parameter Value/Range of Values
c1,cell 3703
c2,cell -707.7
c3,cell 123.2
c1,ecm 1988
c2,ecm 4917
c3,ecm -591.5

α 2 — 20 %
sECM 150 — 250
κcell 1 × 106 — 1 × 108 Pa

κECM 1 × 106 Pa
σ0 2 × 105 Pa

Table 3.1: Summary of parameters used in the model. List of the values for the aforemen-
tioned parameters used in this model. ci,cell/ecm are the Yeoh model parameters shown in
Equation 3.11 and were obtained using nonlinear regression analysis.

movement in x, y, z directions. A traction was then applied to the +x face of the muscle
which extended the muscle in the longitudinal direction.

Figure 3.2: Mesh and experiment setup. (A) Mesh of the geometry used for the numerical
experiments. The geometry had dimensions 20cm×6cm×4cm and muscle fibre properties
are orientated along the x axis. (B) Shear experiment setup. The −x face was constrained
in all directions, while the +x face was constrained in the x direction only. The arrow
represents direction of applied shear stress.

These tests were performed with varying α in the range 0.02 — 0.20 and sECM coefficients
of 150 and 250. The stiffness coefficients were varied to give results that are comparable to
experimental data for muscle. The range from 2 % to 10 % volume fractions of ECM are
typically found in healthy muscle [93, 13], and larger volume fractions in the range of 10
% to 20 % are found in fibrotic tissue [93]. By comparing the stress-strain curves of the
model to experimental data, the accurate homogenization parameters, sECM and α, can be

40



determined.

3.4.2 Shear Experiments

Shear tests were performed to investigate the behaviour of the model in response to more
complex deformation modes. A shear stress was applied to the +x face of the model, which
was constrained from movement in the x direction. To apply the shear stress to the model,
we specify the component of the non-zero traction boundary condition in the y direction and
set the x and z component of the traction to 0. Meanwhile, the −x face was constrained in all
directions (Fig 3.2 B). The shear stress was applied in three different scenarios to determine
the impact of the base material stiffness and anisotropy in the model: (1) the shear stress
was applied without activation with α = 0.05 and 0.10, (2) the shear stress was applied prior
to activation of the model, and (3) the shear stress was applied after activation of the model.

3.4.3 Investigation of Bulk Modulus and Strain-Energy Properties

Muscle is typically considered to be isovolumetric, however, small changes in volume may oc-
cur during muscle stretches [20], and also during long fatiguing contractions [199]. Willwacher
et al. [199] found that volume changes occured up 9 % in the gastrocnemii during running
activities, and so to confine volume changes to this range a value for κ > 1 × 106 Pa is
required. Given the results from previous studies and lack of experimental data for the
compressibility of the ECM, the κECM was left at 1 × 106 Pa [129]. Skeletal muscle con-
sists of 80 % water [185], which is contained in the cellular component of the muscle and
makes it highly incompressible. Therefore, κcell was varied in the range 1 × 106 to 1 × 108

Pa to look at the effects of the bulk moduli on the stress-strain relationship and strain
energy-density distribution. The micro-mechanical components impact the overall stiffness
of the base material component, and these effects on the strain-energy distribution were
also investigated with κcell = 1 × 107 Pa, κECM = 1 × 106 Pa, and sECM = 150. To obtain a
better understanding of the physics occurring in the model, the volume fractions of ECM
were varied between 2 % and 100 %. The set up for these tests was the same as for the tests
for the stress-strain experiments with the addition of an activation phase after the passive
lengthening. This involved constraining both the positive and negative x faces of the muscle
block after the muscle had been passively lengthened, then increasing the activation in the
muscle to 100 %.
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3.5 Results

3.5.1 Stress-Strain Results

The model qualitatively demonstrates similar stress-stretch behaviour to available exper-
imental data. These data for skeletal muscle vary depending on the species [177, 108], so
it is not useful to compare directly to one particular set of muscle data. The stress values
from the model are the applied traction to the +x face of the block, and the stretch values
are the whole muscle stretch

λmuscle = l

l0
, (3.16)

where l0 and l are the initial length and current length of the muscle belly, respectively. Fig
3.3 shows that for sECM = 150 and 250 there is a particularly good match at smaller stretch
values. Comparable material stiffness to healthy muscle occurs for α < 0.10 for sECM = 150
which is a larger range of volume fractions compared to sECM = 250 (< 0.05). However, to
better capture the nonlinearity seen at larger strains a larger value of sECM = 250 is re-
quired. As the volume fraction of the ECM was increased, there was an increase in stiffness
that is expected with fibrotic tissue.

Figure 3.3: Comparison of model results to experimental data. Comparison of model passive
stress-stretch curves to experimental data for skeletal muscle. (A) gives the model with a
parameter of sECM = 150, while (B) is the model with a parameter of sECM = 250. α was
varied between 0.02 — 0.20, which corresponds to 2 — 20 % volume fraction of ECM. The
grey lines represent experimental data from Takaza et al. [177] (circle) and Mohammadkhah
et al. [108] (dot). Error bars represent ± standard deviation when available.
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3.5.2 Shear Results

The effects of applying a shear stress to the model was demonstrated in Fig 3.4 with shear
strain calcated as

ϵshear = uy

l0
, (3.17)

where uy is the mean displacement in the y direction of the +x face. At small values of
shear strain, there is a linear region in the shear stress-strain relationship and only a small
effect from the variation in α (Fig 3.4). This shows there is more influence from the fibres
for small shear stresses. At larger strains, the stress response for the model varies with α,
and the graph becomes more nonlinear, demonstrating the nonlinearity in the base material
(Fig 3.1A). While the model is active, shear stress-strain relationship becomes more linear
due to larger fibre forces (Fig 3.4B). In Fig 3.4 (D,E), the three dimensional mesh of the
model is shown at 100 % activation. The largest dilations occur in the corners of the model
which experience the most stretching during the shear. Fig 3.4 (D) shows the model during a
fixed-length contraction after a shear stress has been applied. The deformation and dilation
are smaller, compared to Fig 3.4 (E), where the model has been first activated then sheared.

Figure 3.4: Shear properties. Plot of the shear stress-strain relationship for α = 0.05, 0.10
and sECM = 250, while the muscle is passive (A) and active (B). (C) Shear stress-strain
relationship for bulk moduli of 1 × 106, 1 × 107, and 1 × 108 Pa. Wire mesh of muscle model
after shear stress was applied then model was activated (D), and after first activation then
application of shear stress (E). (D,E) Color represents the dilation seen in the muscle model.
(C) Shear stress-strain relationship for bulk moduli of 1 × 106, 1 × 107, and 1 × 108 Pa.
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3.5.3 Volumetric Effects

Variation in the bulk modulus of the cellular component shows small effects on the normal
stress-strain (Fig 3.5) and shear stress-strain (Fig 3.4 (C)) relationships. The largest varia-
tions in the stress-strain relationships were observed between κcell = 1 × 106 Pa and 1 × 107

Pa whereas smaller variations between the relationships were seen at larger κcell. Table 3.2
gives the volume changes and normalized stresses on the +x face of the muscle during the
normal stress-strain experiment, where the change in volume was calculated as the ratio
between the current volume and initial volume. The volume in its new configuration was
calculated as

V ol =
∫

V0
det(F)dV0, (3.18)

where V0 is the initial configuration of the muscle. At larger bulk moduli smaller changes
in volume were seen at maximal activation, for κcell = 1 × 108 Pa the change in volume was
considerably smaller at 0.1 % change in volume compared to the 7.3 % change in volume
seen for κcell = 1 × 106 Pa. While the changes in volume varied substantially, the effect on
the total muscle force was small (Table 3.2).

Figure 3.5: Volumetric impact on stress-strain relationship. Stress-strain relationship with
κcell = 1×106, 1×107, 1×108 Pa. Stress was applied in the longitudinal direction on the +x
face of the muscle model. Increasing values of the bulk moduli result in a stiffer material.

Changes in the κ of the muscle material also had an impact on the strain energy-
density distribution of the model. The strain energy-density calculations were performed as
in Wakeling et al. [192]. There was very little change to many of the energy components, in
particular, the isochoric components of the energies for the passive lengthening periods of
the experiments (Fig 3.6). There was only a substantial effect to the strain energy-densities
in the volumetric component where the energy decreases with increasing bulk moduli. Large
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κcell (Pa) Volume Change (%) Normalized Stress at 100 % Activation
1 × 106 7.3 0.875
1 × 107 0.8 0.907
1 × 108 0.1 0.912

Table 3.2: Total volume change and normalized stress on the +x face of the muscle after
passive lengthening to a stress of 1 × 105 Pa and fixed length contraction to an activation
of 100%. The stress was normalized to σ0. These values are measured with homogenization
parameters of α = 0.05 and sECM = 250.

effects were seen during activation on the volumetric component with activation increasing
the volumetric energy for some values of κcell (1 × 106 Pa) and decreasing the energy for
others (κcell = 1 × 107, 1 × 108 Pa). Overall, the total internal energy remains largely un-
changed by the value of κcell.

3.5.4 Micro-mechanical Impacts on the Strain-Energy Distribution

Fig 3.7 shows the impact of varying the volume fraction of ECM in the ranges 2-100% on the
strain energy-density distribution during a passive lengthening test and fixed-end contrac-
tion. As the volume fraction of the ECM becomes larger the muscle becomes stiffer, smaller
strains are reached and less deformation occurs, which then results in smaller magnitudes of
energy potentials. The volumetric component of the energy decreases as the stiffness in the
material decreases, while the opposite behaviour occurs for each of the other components
in the material. Additionally, similar effects are seen during activation to the results in Fig
3.6, where there is increasing volumetric energy for positive volumetric strain-energies and
decreasing volumetric energy for negative volumetric strain-energies. In contrast to varia-
tions in the bulk moduli (Fig 3.6), the total internal energy in the model is affected more
by variations in the volume fraction of ECM.

3.6 Discussion

3.6.1 Micro-mechanical Properties

The approach taken in this study develops a base material for whole muscle based on the
principle micro-mechanical components. This aggregate base material is implemented into
a continuum mechanical model developed in previous studies [129, 192]. This homogenized
base material showed a good comparison to the experimental data from Takaza et al.[177]
and Mohammadkhah et al. [108], with which it was developed. The sECM parameter was var-
ied to account for uncertainty in the experimental data calculation, however, with improved
experimental techniques alteration of sECM may not be required. As described previously,
the larger values of sECM result in larger nonlinearity in the stress-strain curves for the
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muscle tissue. This implies the ECM component of the model is largely responsible (along
with the anisotropic component) for the nonlinear effects seen in the model, which agrees
with experimental data [168, 60]. Binder-Markey et al. [13] found that the ECM volume
fractions for various skeletal muscles were typically less than 10 %, and for some muscles
(eg. Semimembranosus) the volume fractions were less than 2 %. Therefore, the volume
fractions less than 10 % in Fig 3.3(A) and less than 5 % in Fig 3.3(B) are reasonable ranges
when compared to the experimental data for healthy muscle.

While other models have considered an explicit anisotropic ECM [14, 172, 171], in the
model developed here these effects are accounted for in the one dimensional along-fibre
component. Nevertheless, accurate stress-strain mechanics result from the model (Fig 3.3).
A unique component of this model is the use of a nonlinear cellular component derived from
brain grey matter. The cellular component of muscle is difficult to measure experimentally,
and grey matter provided a good substitute. It demonstrated similar isotropic effects and
structure to the cellular component of muscle, and therefore provided good experimental
data for the model. Some homogenization methods have considered a linear titin response
for the cellular contribution [14, 172], which may not elicit an isotropic response in muscle,
or a response derived through a ratio between the fibre and ECM stiffness to ensure they
are of the same order of magnitude [172]. Here the model is developed using a different
implementation of the cellular component (brain grey matter), and has resulted in realistic
behaviour when compared to skeletal muscle (Fig 3.3). Additionally, when a shear stress
was applied to the model, the material is able to capture most typical shear behaviour
seen in muscle [158, 172]. At small strains there is a linear relationship and little effect
from variations in the base material stiffness. At larger strains, there is more nonlinearity
in the shear stress-strain relationship and more effect from the base material properties.
This demonstrates the nonlinearity in the base material, and is qualitatively similar to the
shear results in other muscle models [172]. The order of magnitude of the shear stress is on
the same order of magnitude as that of the normal stress, which agrees with the previous
findings [158].

3.6.2 Volumetric and Strain-Energy Effects

Skeletal muscles are often viewed as nearly incompressible materials [1], however, volume
changes that may occur have often been within the error of the measurement device [20] and
recent studies have reported volume changes for long fatiguing contractions [199]. Therefore,
the volumetric properties of the model were manipulated to determine the effects of varying
the bulk moduli in nearly incompressible materials. Fig 3.5 demonstrates that variations in
the bulk moduli have little effect on the overall stress-strain relationship during passive tests,
particularly in the physiological range that muscles typically operate over λmuscle < 1.1 [95],
which agrees with previous results [121, 55]. This demonstrates that when considering the
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mechanical behaviour the model there is little dependence on the bulk moduli assuming
it is nearly incompressible. [192] suggested that the isochoric and volumetric components
of the strain-energy can play a critical role in understanding muscle mechanics on a three
dimensional level. When considering the distribution of the strain energy-densities there is
an effect from the bulk moduli of the material. The total potential energy in the system,
including the energy from activation and external work on the material, is balanced during
the quasi-static simulation ran in this study. As the material became more incompressible,
the volumetric strain energy-density decreases counteracting the increase in energy seen in
the isochoric component of the total strain-energy. The increases in isochoric strain-energy
occured due to increased strain during the passive lengthening phase. These impacts on
the energies are likely due to a greater energetic penalty associated with volume change.
The isochoric components of the strain energy-density distribution (passive fibre and base
material) appear nearly unaffected, which can be explained by the difference in magnitudes
of the strain-energy. However, the distribution of the strain energy-densities was impacted
by the choice of bulk moduli, which contributed to the energy balance in muscle and the
ability to resist volume change. The total contractile force produced by the muscle during
the fixed-end contraction was not strongly impacted by the bulk moduli (Table 3.2). The
main effect from increasing the bulk moduli was in the decreased ability of the material to
change volume.

Investigation of the strain-energy distribution in the muscle model allows for an under-
standing of muscle behaviour during deformation and contraction. Fig 3.7 shows that as
the muscle is pulled to a traction of 1 × 105 Pa there is a strong energy dependence on the
stiffness of the material. The results show that there is larger internal energy developed by
the material with lower stiffness (2 % ECM), which is expected given that compliant tissue
will have a larger strain. Interestingly, there are negative volumetric strain energy-densities
that appear during passive lengthening and activation. This is due to the calculation of
the strain energy-densities, which are calculated with respect to the initial configuration in
which the energy is assumed to be zero for all the components. Therefore, negative values
are expected for the balance of the energies. The increasing activation in the muscle had a
relatively small impact on the passive fibre and base material energies (Fig 3.7), likely due
to the constraints imposed during fixed-length activation restricting movement of the ±x

faces of the geometries. Large variations occur in the volumetric and isochoric energies in
Fig 3.7, and are partly due to the difference in bulk moduli of the micro-mechanical com-
ponents (similarly to Fig 3.6). Although, the stiffness of the material does play a significant
role in increasing the variation in energy for varying volume fractions. By investigating the
effects of the strain energy-density distributions, an understanding of how the stiffness of the
material, which can be altered through the homogenized model, impacts the energy lost or
gained through a three dimensional muscle architecture. In this case the increase in stiffness
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of the material was shown to increase the volumetric energies and hence reduce the ability
of a muscle to deform or bulge during contraction. This in turn gives an understanding of
how the combination of the microscopic composition and macroscopic deformation of the
muscle impact the distribution of strain energy-densities, which demonstrates the critical
role these material properties play in contributing to the force produced by skeletal mus-
cle. The micro-mechanical parameters demonstrated a strong impact on muscle mechanics,
while κcell had a strong effect on the model’s ability to change volume, the volume fraction
of the ECM, α, was particularly important in altering the strain energy-density distribution.

3.6.3 Applications

Homogenization models are used to analyze the impacts of the variation of micro-mechanical
components, and have the ability to investigate the effects from many conditions such as
fibrosis. Fibrosis is the increase in collagen content in the muscle as the result of diseases such
as cerebral palsy or muscular dystrophies [168, 92]. This model allows for the investigation
of these effects by altering the volume fraction of the ECM. Fig 3.7 shows that alterations
in the volume fraction of the material have strong effects on the mechanics of the muscle,
and further investigation of varying micro-mechanical properties and the impacts on the
strain energy-density distribution could provide a deeper understanding of the effects from
fibrosis. The stiffness parameter for ECM, sECM, allows for investigation of effects such as
glycination, which is a type of biochemical linkage between a sugar and a protein or lipid.
In the process of aging, glycination occurs which increases the stiffness of the ECM [67],
and these effects could be further understood through an application of this model. The
formulation of forces and energies in the model allows for an analysis of the contribution
from each of the homogenized components to the whole muscle mechanics. This ability
to analyze the impacts from individual components is not typically found in macroscopic
models, but can provide insight into the mechanics of muscles under conditions of varying
micro-mechanical properties.

3.7 Conclusion

In this paper we have developed a principled model for muscle base material, which has
been designed to easily encorporate available micro-mechanical experimental data from the
literature into a macroscopic model. The characteristics of this model were then examined
through tension and activation experiments for both normal stress and shear stress exper-
iments. The breakdown of the strain energy-densities associated with passive lengthening
and activation were analyzed under the effects of micro-mechanical components, and these
components were found to have an effect on the distribution of these energies. This numer-
ical model has the potential for gaining a deeper understanding on the effects of changes to
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the tissue micro-structure and composition on the three dimensional mechanics of muscle
contraction.
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Figure 3.6: Strain energy-density with varying κcell. Plots of passive fibre, base material,
isochoric, volumetric, and total internal strain energy-densities. The energies are plotted
over a passive lengthening period, up to a traction of 1×105 Pa, from timestep 3 to 13, and
a linearly increasing fixed-length activation from timestep 13 to 23. κcell is varied between
values 1 × 106 Pa, 1 × 107 Pa, and 1 × 108 Pa. The larger values of κcell demonstrate
increasing incompressibility and approach the bulk moduli of water (2.15 × 109 Pa [51]),
which is considered to be almost completely incompressible. The total internal strain energy-
density is the combination of the volumetric, isochoric, and activation (not shown in figure)
energies.
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Figure 3.7: Strain energy-density with varying ECM volume fraction. Plots of passive fibre,
base material, isochoric, volumetric, and total internal strain energy-densities. The energies
are plotted over a passive lengthening period, up to a traction of 1 × 105 Pa, from timestep
3 to 13, and a linearly increasing fixed-length activation from timestep 13 to 23. Volume
fractions of the ECM are varied between 2 %, 25 %, 50 %, 75 %, and 100 % to investigate
the physics of the model.
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Chapter 4

The contributions of extracellular
matrix and sarcomere properties to
passive muscle stiffness in cerebral
palsy

4.1 Abstract

Cerebral palsy results from an upper motor neuron lesion and significantly affects skele-
tal muscle stiffness. The increased stiffness that occurs is partly a result of changes in the
microstructural components of muscle. In particular, alterations in extracellular matrix, sar-
comere length, fibre diameter, and fat content have been reported; however, experimental
studies have shown wide variability in the degree of alteration. Many studies have reported
changes in the extracellular matrix, while others have reported no differences. A consistent
finding is increased sarcomere length in cerebral palsy affected muscle. Often many com-
ponents are altered simultaneously, making it difficult to determine the individual effects
on muscle stiffness. In this study, we use a three dimensional modelling approach to isolate
individual effects of microstructural alterations typically occurring due to cerebral palsy on
whole muscle behaviour; in particular, the effects of extracellular matrix volume fraction,
stiffness, and sarcomere length. Causation between the changes to the microstructure and
the overall muscle response is difficult to determine experimentally, since components of
muscle cannot be manipulated individually; however, utilizing a modelling approach allows
greater control over each factor. We find that extracellular matrix volume fraction has the
largest effect on whole muscle stiffness and mitigates effects from sarcomere length.

4.2 Introduction

Cerebral palsy (CP) results from an upper motor neuron lesion and has a significant effect
on the musculoskeletal system. It develops during early childhood and leads to muscle
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alterations including contracture, which is the chronic shortening of a muscle. Contracture
results in muscle that cannot be stretched through its typical range of motion due to an
increase in stiffness, and this has substantial effects on the ability of muscle to generate force
and reduces daily functioning. Typically, this is observed in the upper and lower limb flexor
muscles. CP will affect individuals differently, and the changes that can occur will vary
depending on the location of the muscle and disease severity [91, 39, 65]. This variability
increases the difficulty in quantifying the amount and types of changes that occur as a
result of CP. However, despite the variability, alterations in the microstructural properties
of skeletal muscle are commonly observed [179], which will have a significant effect on whole
muscle behaviour, including force production and movement.

There are many structural differences comparing CP muscle to typically developed (TD)
muscle, including changes in fat content [114, 46], extracellular matrix (ECM) stiffness
[93, 167], amount of ECM [93, 167], fascicle length [107], fibre diameter [98], fibre geometry
[11], and sarcomere length [167, 98, 90]. Experimental studies have investigated CP muscle
stiffness in vivo and have found stiffer tissue compared to TD muscle using shear wave
elastography [86, 24] and through measuring joint movement [10, 184]. However, these
methods are unable to capture the underlying causes of this increased stiffness.

The exact microstructural changes that alter whole muscle stiffness have yet to be fully
understood, as the extent of measured changes varies between studies [91]. For example,
[167] performed passive mechanical experiments on both muscle fibre bundles and single
fibres extracted from CP and TD muscle. They found that CP muscle had longer in vivo
sarcomere lengths and increased fibre bundle, but not fibre, stiffness, which suggests that
the changes in muscle stiffness are due to alterations in the ECM. Another study by [98],
which used a similar experimental protocol as [167], also showed increased in vivo sarcomere
lengths. However, the authors demonstrated a difference in the single fibre stiffness and not
the fibre bundles, suggesting that there is not a significant effect from the ECM, and that
any alterations to passive stiffness occur on the muscle fibre level. [167] performed studies
on the Gracilis and Semitendinosus muscles, whereas [98] looked at the Gastrocnemii and
the Soleus muscles. [98] mention that the difference in the results is possibly due to the
locations of the muscles or different mechanical properties of ECM between TD and CP
muscle. Another possible explanation for the differences between the two studies is the that
the TD groups in the study by [98] had a much older average age (47.7 ± 15.3) compared to
[167] (15.8 ± 1.8). Other studies have reported that CP muscle has a greater accumulation
of fibrotic tissue, and potentially even results in an ECM with a larger volume fraction
but compromised stiffness [93]. Additionally, [22] suggested that collagen plays a role in the
increased muscle stiffness that is observed in CP. However, it has been observed that fibrosis
does not always alter the stiffness of muscle [165], and so there may be an effect from the
stiffness and structure of the ECM. In TD muscle the ECM has been shown to be a major
contributor to passive whole muscle mechanics due its composition of stiff collagen fibres
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[60, 105]. In particular, work has shown that in mammalian muscle, the ECM is responsible
for about half of load bearing in passive tension [105]. Sarcomere length is a commonly
observed alteration in CP muscle, and has been said to have a large effect on active muscle
mechanics [90, 167, 100]. While many changes have been observed in CP muscle, the changes
that are most common between studies are changes in ECM volume fraction, ECM stiffness,
and sarcomere length. However, the individual roles of the ECM properties and sarcomere
length in passive whole muscle stiffness have yet to be fully understood.

The purpose of this study was to determine which microstructural change occurring with
CP has the largest contribution to whole muscle stiffness. In particular, whether the ECM,
through changes in volume fraction or stiffness, or the sarcomere, through increases in length
that result in an increased passive response from the titin, will have the greatest influence
on passive whole muscle behaviour. During experimental studies, it is not possible to change
a component of muscle, while keeping all other components constant; therefore, causation
cannot be determined. This is especially difficult in CP where many components of muscle
are known to vary between individuals [91, 179]. In this study, we try not to determine
the cause of changes to the microstructure, but the relationship between changes to the
microstucture and the overall muscle stiffness. Using a modelling approach, we investigated
the influence of the microstructural components on passive muscle stiffness. We utilized
a three dimensional continuum model of skeletal muscle, developed in previous studies
[192, 129, 144, 82], which can be modified to incorporate the effects of ECM and passive
fibre properties on whole muscle mechanics. Here we do not explicitly model the process
of contracture, but instead the resulting changes to the microstructure. Any mechanical
response we observe in this study will also be relevant to muscle without clear contracture,
but with similar changes to the material properties. By modifying the material properties in
the muscle, we investigated changes that occur with CP to understand how each component
contributes to whole muscle stiffness.

4.3 Methods

4.3.1 Computational Model

In this study, we utilized a continuum mechanical model of muscle as a fibre-reinforced
composite biomaterial. The model uses a three field formulation in terms of the velocity, u,
pressure, p, and dilation, J , and the balance of strain-energy potentials based on work by
[160] and [195]. In particular, we want to minimize the total strain-energy

Etot(u, p, J) = Uint(u, p, J) − Wext(u), (4.1)

where Uint is the internal strain-energy potential and Wext is the total external work done
on the muscle. We characterized the passive mechanical behaviour of muscle in terms of its
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stress-strain behaviour, which is the relationship between the stress applied to the muscle
and the strain experienced. Here we use the full Cauchy stress tensors, so the shear stress
response is built into this tensor implicitly and has been investigated in [82]. The relationship
between the stress in the material, σ, and the strain-energy potential of a material, U , is
given by the constitutive law

σ = 2J−1B∂U(B)
∂B , (4.2)

where B is a strain tensor measuring the deformation. To capture muscle, we split the
model into a three dimensional isotropic base material with one dimensional fibres running
along the length of the muscle, making the composite material anisotropic. The total stress
response from the muscle (σmuscle) is then additive contributions from the base material
(σbase) and fibre (σfibre) components

σmuscle = σfibre + σbase. (4.3)

Our model is a homogenized muscle material that included contributions from the fibres
and base material at every element in the mesh. A more precise formulation of the model is
described in the appendix of [192] and in [82]. We used a finite element method to solve the
continuum model that was implemented using an open source finite element library deal.II
[6].

There are two main components of our muscle model: the fibre components and the three
base material. The base material encompasses effects from extracellular matrix and cellular
components, including satellite cells and capillaries, while the fibre component runs along
the length of the muscle and contains the passive effects from titin and active effects from
the contractile elements. To investigate the role of CP on whole muscle stiffness, considering
the individual effects from the ECM and cellular components is necessary. To do this, we
let α be the volume fraction of the ECM, which includes effects from the collagen fibre
matrix (Figure 4.1). Meanwhile, 1 − α is the volume fraction of the cellular component,
which includes effects from any other material in the muscle aside from the contractile
units. In particular the cellular material includes the myofibres, satellite cells, and other
cellular materials. We also introduced a parameter sECM (Figure 4.1), which is a stiffness
factor multiplying the stiffness of ECM. A larger sECM corresponds to a stiffer ECM, which
can occur as a result of structural changes while the ECM volume fraction remains the same
[59]. Meanwhile, a smaller value of sECM results in an ECM with decreased stiffness, which
can occur as a result of an ECM with compromised structure [93]. The total stress response
from the base material is a homogenization of the ECM and cellular components given by

σbase(B) = αsECMσECM(B) + (1 − α)σCELL(B). (4.4)
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σECM(B) corresponds to the stress response from the ECM, while σCELL(B) is the stress
response from the cellular component. To ensure the volume of the muscle remains nearly
constant, the bulk modulus for the cellular component is chosen to be 1 × 107 Pa, while
the bulk modulus of the ECM component was set to 1 × 106 Pa [82]. While the cellular
component of the muscle contributes less to the overall stress response, it consists largely of
water, so its bulk modulus is set to be larger than the ECM component. The exact form of
the stress-strain response for the microstructural components are given in [82] along with
more detail on the homogenized base material.

Typically Developed Muscle

Cerebral Palsy Muscle

Actin

Myosin

Normal Muscle Length

Typically Developed Sarcomere

Titin

Stretched Titin

Decreased Muscle Length

Decreased region of overlap

between the actin and myosin

Fibrotic Muscle (CP)

Increased ECM Sti�ness (CP)

Muscle Fibre

ECM

Increase in ECM 
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Muscle Cross-section
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Figure 4.1: Comparison of typically developed (TD) and cerebral palsy (CP) muscle. CP
results in contracture, which is the chronic shortening of muscle, decreasing muscle length
relative to TD muscle (not investigated in this study). Longer sarcomere lengths relative to
the rest of the muscle have also been observed compared to TD muscle [167, 100]. There is
an increase in passive forces due to the increased stretch in the titin proteins. The longer
sarcomeres lengths in muscle affected by CP reduces the regions of overlap of the actin
and myosin filaments, which results in decreased contractile forces. Additionally, there is an
increase in extracellular matrix (ECM) volume fraction, and a possible increase or decrease
in ECM stiffness. Any combination of changes to the sarcomere length or ECM properties
could occur with CP.

The other alteration typically observed in CP is an increase in in vivo sarcomere length
[167, 100], which alters the passive muscle stiffness by stretching the titin protein. Experi-
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mentally, the sarcomere lengths for muscles in the lower extremities were measured with 90
degrees hip and knee flexion [98, 167], and with the ankle in full dorsiflexion for the lower
leg muscles [98]. Our model does not have a joint angle, and so we define the in vivo length
of the sarcomeres to be the length of the sarcomeres when the whole muscle is at its resting
length. This change in length also decreases the contractile force produced when the muscle
is active by reducing the number of attached actin-myosin crossbridges (Figure 4.1). We
modelled this using a dimensionless parameter, csarco, which corresponds to a shift in the
passive force-length curve of the sarcomeres

σfibre = σfibre(λtot + csarco), (4.5)

where λtot is the total average stretch of the fibres over the muscle volume. This parameter
acts as an additive contribution to the intrinsic stress-stretch relationship, resulting in larger
stresses in the fibres at a given stretch (Figure 4.2). It is important to note that, while the
fibre component of the muscle depends on csarco, the intrinsic stress response from the base
material, σbase(B), only depends on the deformation and stretch of the muscle, and not
csarco. At a value of csarco = 0.0, the behaviour of the sarcomere is the same as that of TD
muscle. Increasing values of csarco results in longer lengths of the sarcomeres given by

lsarco = l0(λtot + csarco), (4.6)

where lsarco is the new length of the sarcomere and we assume l0 = 2.2µm is the optimal
length of a sarcomere [27]. This will vary depending on the value of csarco. The fibres in
the model are based off the one dimensional Hill type model [72, 203] and are described
in [192]. It is possible the behaviour of the fibre will vary in more than a shift of its force-
length curve, such as a different force-length relationship, which may be due to factors in
the myofibres other than the sarcomeres. However, as this is not observed frequently and
data are limited, we focus on the effects from the sarcomere length.

4.3.2 Whole Muscle Experiments

To investigate the passive effects of α, sECM, and csarco on skeletal muscle, we constructed
a rectangular block of muscle with dimensions 3cm × 1cm × 1cm. These dimensions, while
not the same as muscle affected by CP, sufficiently capture the behaviour of muscle on a
macroscopic scale. Using a block geometry reduces the need to consider the additional effects
from architecture, aponeurosis, and pennation angle, which affects muscle behaviour [192],
and instead allowed us to isolate the effects due to CP independent of a specific architecture.
Additionally, this geometry has been previously validated to capture the general qualitative
behaviour of muscle when compared to the mechanics within a MRI derived whole muscle
geometry [192] and has the benefit of computational simplicity. To compare the passive
behaviour of the model to experimental data, we performed stress-strain tests. This involved
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Figure 4.2: The influence of csarco on the intrinsic fibre stress-stretch relationship. Here we
plot the stress from the fibre component of our model against the stretch in the fibres.
The curve corresponding to typically developed muscle (csarco = 0) was obtained based on
curves and data in [145]. This was done through trigonometric polynomial and second-order
piecewise polynomial fits to experimental data from [200] (denoted by the dots).

constraining one end face of the model from movement in all directions, while a normal
stress was applied to the opposite face stretching the muscle. In addition to the stress-strain
tests, we investigated the stiffness of the muscle to compare with experimental studies (eg.
[167, 100]). α, sECM, and csarco each have an individual contribution to the overall stiffness of
muscle. To investigate the stiffness in the model, the modulus (in Pa) of the muscle material
was calculated during the stress-strain experiments using the slope of the tangent line to the
overall stress-stretch relationship. This was done by performing a nonlinear least-squares
fit of a cubic polynomial to the overall stress-strain data in the longitudinal direction. This
method for calculating the modulus is only representative of the stiffness at the given stretch
value, since the stress-stretch curves are nonlinear; however, we do this to compare with
experimental studies.

TD muscle has been observed to have a value for α between 0.02-0.10 [13], while larger
volume fractions (α ≈ 0.6) have been observed for fibrotic tissue [93, 165]. Experimental
studies have only found an increase in in vivo sarcomere lengths [167, 98, 90], so we varied
csarco from 0 to 0.75. This corresponded to a 0-75 % increase in the sarcomeres relative
to the sarcomeres in typically developed muscle, which has been observed in the literature
[90, 100, 167]. Experiments are often performed on severe cases of CP, so larger sarcom-
ere lengths have been reported (csarco > 0.75); however, in this study, we considered less
severely stretched sarcomeres to represent less severe cases of CP. It is possible that mus-
cle altered by CP does not always have such a substantial increase in sarcomere length,
since measurements are typically taken from children with severe CP undergoing surgery
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[91]. The final parameter that was manipulated in the model is sECM. While the stiffness
of muscle can vary depending on the type of muscle, the properties of the base material,
including the effects from the ECM, represent and have been validated for TD muscle [82],
so we set sECM = 1 for TD muscle (this corresponds to a value of 150 in [82]). During
our stress-strain tests, we then considered the possibility of the ECM component of muscle
being stiffer (sECM = 1.33) and less stiff (sECM = 0.66). Note that a sECM value of 1.33
corresponds to a stiffness of 133 % compared to TD muscle, while a value 0.66 corresponds
to a stiffness of 66 % relative to TD muscle. Data for the changes in stiffness of the ECM are
not available experimentally, so these values of sECM were chosen to investigate the effects
of altering this component. In summary, to investigate the effects of CP, our parameter
ranges were α = 0.02 to 0.6, csarco = 0.0 to 0.75, and sECM = 0.66 to 1.33, while TD muscle
had parameters α = 0.05, csarco = 0.0, and sECM = 1.0.

4.4 Results

4.4.1 Effects of csarco

For TD muscle (csarco = 0.0, sECM = 1.0, and α = 0.05), we observed typical overall stress-
stretch behaviour for passive skeletal muscle: as the stress increased, the muscle stretch
and sarcomere lengths also increased (Figure 4.3). The muscle block in its resting and
stretched states is shown in Figure 4.3 C and D, respectively. The shift in the intrinsic passive
sarcomere stress-stretch relationship, csarco, affected the muscle behaviour in both the stress-
length for the sarcomeres and overall stress-stretch for the whole muscle relationships of the
model (Figure 4.3). At in vivo lengths, we found that there is no longer zero stress for
csarco > 0.0 (Figure 4.3 A). This indicates that larger forces are required to stretch muscles
with increased sarcomere lengths, as well as to hold it at the resting length of the muscle.
We also see that there is a nonlinear relationship between the effect of csarco on the fibre
component (Figure 4.2) and the overall muscle response which is influenced by the base
material (Figure 3). Additionally, optimal length of the sarcomeres no longer occurred at
the same resting length of the whole muscle. For the same range of stress values (0-3 × 105

Pa), we saw a larger range of whole muscle stretches with larger csarco (Figure 4.3). This is
likely due to effects from the base material and, therefore, the ECM, which acts to deform
the muscle back to optimal length. At stretch values less than 1.0, the base material works
to extend the muscle to optimal length, while the sarcomeres are still working to shorten
the muscle for csarco > 0.0.

In addition to the behaviour in the along-fibre direction of the muscle, csarco also affects
the behaviour transverse to the muscle fibres (Figure 4.4). We observed a similar change
in concavity of the stress-stretch curves in both the stress-stretch relationships in the lon-
gitudinal (Figure 4.3 B) and transverse (Figure 4.4) directions. This demonstrates similar
effects from the muscle ECM component in both directions. For stretch values in the y

59



C

x

y

z

D

x
D

is
p
la

c
e
m

e
n
t 

(m
)

0.027

0.020

0.015

0.010

0.050

0.0
0.8 1 1.2 1.4 1.6

Whole Muscle Stretch (x direction)

2 3 4 5 6

Sarcomere Length (µm)

0

0.5

1

1.5

2

2.5

3

S
tr

e
s
s
 (

P
a
)

10
5 A

0

0.5

1

1.5

2

2.5

3

S
tr

e
s
s
 (

P
a
)

10
5 B

c
sarco

= 0.0 c
sarco

= 0.25 c
sarco

= 0.5 c
sarco

= 0.75

A

B

Figure 4.3: Plots of whole muscle stress in the along fibre direction against sarcomere length
(A) and whole muscle stretch (B). Plots are from the computational model during passive
lengthening with ECM volume fraction, α, of 0.05 and ECM stiffness factor, sECM, of 1.0.
Each curve represents a shift in the sarcomere stretch by a factor of csarco. ∗ represents in
vivo sarcomere length for corresponding csarco. C and D show the mesh at resting length
and at a deformed state after the stress has been applied to the model.

direction less than 0.85, the influence of the sarcomeres on the stress-stretch relationship
decreased, and there was larger influence from the ECM. For smaller normal stresses in the
longitudinal directions, there were larger effects from sarcomere length relative to larger
stresses (Figure 4.4). The sarcomeres, acting only in the along-fibre direction, altered three
dimensional deformation, which could effect muscle force production [192].

4.4.2 Effects of α and sECM

The ECM properties also had a substantial effect on the overall stress-stretch relationships
(Figure 4.5). Given the range of possible values for the ECM volume fraction, α, (0.02-0.6),
it had a larger effect on the muscle stiffness compared to the ECM stiffness parameter, sECM.
As sECM was increased, with fixed α = 0.05 or 0.6, the overall stress-stretch relationship
became more linear and covered a smaller range of stretch values (Figure 4.5). Increases
in both α and sECM reduced the effect from the sarcomere length on the stress-stretch
relationship (Figure 4.5). Due to the lack of available data for the stiffness of the ECM, the
sECM was only varied between 0.66 and 1.33, which is a relatively small range compared
to the volume fraction of the ECM. Similar effects were observed from changing sECM and
α, but α had more effect on the overall stress-stretch behaviour. This is expected given the
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Figure 4.4: Plot of the normal stress applied in the along-fibre direction (x) against the
stretch in the muscle transverse to the fibres. Given the symmetry in the muscle geometry
transverse to the fibres (y), the stress-stretch response shown is the same in the z direction.
Each line represents a shift in the sarcomere stretch by a factor of csarco.

change in composition of the base material; however, due to the limited data for sECM, it
is possible that real muscle has a larger range of values than investigated in this study, but
to ensure that we remain within realistic physiological ranges we chose this limited range.
Our results showed that sECM had very little effect on the overall stress-stress relationship
for smaller values of α and it has the most effect when α is large. The main effects from the
sECM are in altering the influence of csarco on the overall muscle stress-stretch relationship
(Figure 4.5). Varying sECM over a larger range of values would likely only influence the
effect of the sarcomere length on the overall stress-stretch response.

4.4.3 Muscle Stiffness

As csarco was increased up to a value of 0.5, the modulus of the muscle in the x direction
increased at optimal length of the muscle (Figure 4.6 A,B). However, after a value of 0.5, the
muscle modulus decreased, and this was observed when looking at the variations in csarco

with constant α and sECM (Figure 4.6 A,B). The modulus at optimal length was dominated
by α. For changes in csarco and sECM, the change in modulus (at most 4 × 105 Pa) was less
than the possible variation in modulus with changes in α (up to 15 × 105 Pa for highly
fibrotic tissue). While holding csarco constant, we found a linear increase in the modulus
when increasing α and sECM (Figure 4.6 C,D).

While holding csarco constant, there was a larger effect from volume fraction of the ECM,
α, than the stiffness of the ECM, sECM, on the overall muscle stiffness (Figure 4.7 A,B).
However, as α was increased, there was a greater effect of sECM. The nonlinear behaviour,
which showed increasing muscle modulus with increasing α and sECM was more pronounced
at larger stretches (Figure 4.7 B,D). At a stretch of 1.20 in the x direction, the stiffness
appeared to be more nonlinear when moving along the lines of constant sECM and when
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Figure 4.5: Stress-stretch plot during passive lengthening of the muscle model for various
values of ECM volume fraction, α, and stiffness, sECM. The traction was linearly increased
on the +x face of the muscle to 3 × 105 Pa, while the −x face was constrained in all
directions. Individual lines on each plot represent a shift in sarcomere stretch by csarco.
Typically developed (TD) muscle has values of α = 0.05, sECM = 1.0, and csarco = 0.0,
while cerebral palsy muscle could have a combination of α > 0.1, sECM = 0.66 or 1.33, and
csarco > 0.

moving along the lines of constant α for α > 0.2 (Figure 4.7 C,D). When holding sECM

constant, there was a larger effect α on the modulus of the muscle compared to csarco,
particularly at larger stretch values (Figure 4.7 C,D). As the stretch increased there was an
increase in modulus from the ECM parameters; however, there was a decrease in the effects
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Figure 4.6: Plot of whole muscle modulus vs. csarco (A,B), α (C), and sECM (D) at optimal
length (λ̄tot = 1.0). Where α is the ECM volume fraction, sECM is the ECM stiffness factor,
and csarco is the shift in the sarcomere stretch. In plots A,D α is held constant at 0.05, and
in plots B,C sECM is held constant at 1.0.

of csarco (Figure 4.7 E and F). The reduced influence of csarco was due to more pronounced
behaviour from the base material at larger stretches (Figures 4.5 and 4.7).

4.5 Discussion

In CP, alterations occur on the microstructural level that can influence whole muscle stiffness
and reduce function. In particular, alterations to ECM properties and sarcomere length can
occur; however, their relative contributions to muscle stiffness in CP is unknown. Isolating
individual effects on passive muscle stiffness is difficult to do in experimental studies as
there is large variability between subjects and individual muscles [108, 28, 177]. Therefore,
to determine whether the ECM properties or sarcomere lengths have more effect on the
passive muscle behaviour, we used a three dimensional continuum model [129, 192, 144, 82].
This model does not actually develop joint contractures; however, it allows us to isolate the
effects from individual microscopic components, and investigate the relative contributions
to whole muscle function.

4.5.1 Physiological Changes to Muscle During Cerebral Palsy

The ECM is composed of a highly structured arrangement of collagen fibres and plays a
substantial role in skeletal muscle mechanics [61]. In this study, we investigated the effects
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Figure 4.7: Surface plot of the whole muscle modulus at an average muscle stretch, λtot, of
1.0 (A,C,E) and 1.2 (B,D,F). The ECM stiffness factor, sECM, was varied between values
of 0.66 and 1.33; ECM volume fraction, α, from 0.02 to 0.6; and shift in sarcomere stretch,
csarco, from 0.0 to 0.75. Modulus values were extracted from passive lengthening simulations
with csarco = 0.0 in A,B; sECM = 1.0 in C,D; and α = 0.05 in E,F.

of changes to ECM volume fraction and stiffness on the whole muscle stiffness. Changes
in ECM volume fraction have been observed in previous studies, particularly as a result
of fibrosis (eg. [167]). This corresponds to an increase in ECM material, while the contri-
butions from the cellular components in muscle, such as the contractile fibres and other
cells, decreases. In addition, fibrosis creates a physical barrier that can impact muscle re-
generation [34], which will reduce the ability for muscle to grow and add sarcomeres in the

64



muscle fibres, further decreasing the compliance of the muscle. Additionally, it is possible
that while the volume fraction stays constant, changes in the structure or composition of
collagen types varies. However, studies have found that the ratio of collagen isoforms is the
same in both TD and CP muscle [166], and so it is unlikely that a difference in collagen
isoforms in muscle accounts for the increase in whole muscle stiffness with CP. It is possible
that there are alterations in ECM structure, such as the organization of collagen fibres,
that occur with CP [93], and this could increase or decrease ECM stiffness depending on
the change. Therefore, both effects were considered in the model to investigate the relative
contributions to stiffness on a whole muscle level.

It has also been well documented that increases in the sarcomere length occur with CP
[91, 179]. Stiffness changes have been reported on the fibre level by looking at the stress-
strain relationship for TD and CP muscle fibres [98]. It is possible that these effects are not
only a result of increased sarcomere lengths, but due to different titin isoforms, as they could
result in a different stress-strain relationship for the individual sarcomeres [123]. However,
[167] found that there is no change in the composition of titin isoforms between TD and CP
muscle. Therefore, changes in stiffness due to the sarcomeres are not likely due to changes
in titin isoforms. While it is possible that an increased stretch of the titin is responsible for
the increased passive stiffness of the fibres, this could also be a result of changes to other
mechanical properties in the myofibres. More investigation is required to confirm the main
cause of the increased stiffness at a fibre level.

4.5.2 Microstructural Contributions to Whole Muscle behaviour

It has been demonstrated experimentally that the ECM has a significant contribution to
muscle passive stiffness [61], and that fibrosis has been observed in CP [93]. We found that
the volume fraction of the ECM had a larger influence on whole muscle stiffness compared
to ECM stiffness and sarcomere length. The contribution from the ECM increased as stretch
increased (Figure 4.7), demonstrating a nonlinear relationship between the ECM volume
fraction and muscle stretch. At larger stretch values, the ECM contributes more to the
whole muscle stiffness; these nonlinear effects imply that fibrosis will substantially reduce
the ability of a muscle to deform at larger stretch values. The ECM is composed of crimped
collagen fibres, which likely do not contribute as much to the stress initially [61], and this
is reflected in a smaller effect from the ECM volume fraction at optimal length. Currently,
experimental data for the variation in stiffness of the ECM due to structural changes are
not available; however, in the ranges tested in this study, the stiffness of the ECM did not
alter whole muscle stiffness as much as the volume fraction. At larger volume fractions of
the ECM there was a more substantial contribution from the ECM stiffness (Figure 4.7 B),
and since larger volume fractions are typically seen in CP, this could play a larger role.

The contribution of the sarcomere length to whole muscle stiffness varied depending on
the ECM properties. There was minimal effect of the sarcomeres on the passive stiffness in
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the fibrotic tissue (Figure 4.6), which corresponds to volume fractions of ECM greater than
10 %, and this larger effect from the ECM has been observed during experiments [167].
Furthermore, the sarcomere effects are mitigated at larger stretches as the ECM begins to
dominate the muscle stiffness. At whole muscle stretches near 1.0, we found a larger effect
of sarcomere length (Figure 4.6), which agrees with the results from [98] for fibre bundles.
The work by [98] indicates that there was no increase in the stiffness of the ECM during
CP in the muscles investigated. They found that there was no difference in the stiffness of
fibre bundles at larger stretches, which could be explained by the dominating behaviour of
the ECM. This agrees with our findings that demonstrate that if a muscle is operating near
optimal length, then there might be a noticeable effect of sarcomere length. However, if the
muscle has a larger range of motion, then the ECM would likely have a larger contribution
to muscle passive stiffness. It is likely that the lengthening of the sarcomeres during CP has
a larger effect on the active properties of the muscle (which we have not evaluated in this
study) compared to the passive properties as noted by [91].

Using this model we can obtain a deeper understanding of the three-dimensional effects
that occur in muscle altered by CP. As shown in previous modelling [192, 148] and exper-
imental studies [132], the ability of a muscle to deform both in the along and transverse
fibre directions can alter muscle function. Additionally, our results agree with experimental
evidence that the whole muscle response is not the same as the response from individual
fibres [194]. In our model, the three-dimensional behaviour is captured in part by the base
material, which works to return the muscle to its original state. At longer muscle lengths,
the base material will work in the same direction as the sarcomeres, which are trying to
shorten the muscle. Meanwhile, when the whole muscle stretch is less than one, the ECM
will be working to return the muscle back to the original muscle length. We have observed
in the model that the stiffness of the muscle decreases after sarcomere lengths greater than
3.3 µm (Figure 4.6), and this is due to the three dimensional behaviour of the model we are
using. In a one dimensional model, there are no effects from the volume conserving nature
of the base material or other effects transverse to the fibres. This is a nearly incompressible
and nonlinear model, and so the effects from the volumetric component of the model con-
tribute more with larger shifts in the sarcomere force-length curve. While these effects have
been observed based on our assumptions for the model (see [192] and [82]), which are typical
of many finite element models [15, 158, 172], these effects have not been reported experi-
mentally. Experimentally, the decrease in muscle stiffness may not be as substantial as the
changes observed in this study; however it is likely a similar trend would appear. Another
important consequence of the three-dimensional behaviour is that changes occurring strictly
in the along-fibre direction, such as changes in the sarcomere length, affect the stretch trans-
verse to the fibres (Figure 4.4). In particular, the bulging and stretching in the transverse
direction is decreased by increased in vivo sarcomere lengths, which increases the passive
stiffness of the muscle fibres. Given this reduced movement in the transverse direction, it is
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likely that there would be a decreased contractile force produced given the significant effect
of three dimensional deformation [148]. This demonstrates that to accurately capture all
of the effects from CP, investigating three dimensional behaviour is required to completely
understand the mechanical behaviour of the muscle.

4.5.3 Model Parameters

Experimental studies are key to understanding the mechanical changes that occur with
CP; however, many of the procedures are invasive and unable to determine the exact role
each change due to CP plays in altering muscle stiffness [91, 167, 179]. Additionally, there
is contradicting data as to whether fibres, ECM, or both have a substantial contribution
to passive stiffness [167, 98], which likely depends on the severity of the disease [179].
There are less invasive procedures that have been developed to investigate the relationship
between muscle stiffness and CP [86]; however, they are still unable to isolate the role
of individual factors. For example, experimental studies have found that stiffness of CP
muscle is twice as high as TD muscle [190]; however, they were not able to determine which
microstructural changes led to this increase in stiffness. While this model cannot directly
determine which microstructural changes will cause this experimental increase in stiffness,
it can provide insight into how various changes on the microscopic level could lead to these
effects on muscle stiffness. We have observed that there is approximately double the increase
in stiffness when the volume fraction of ECM in our model increases from 5 % to 20 %.
Another possible way to achieve this increase in muscle stiffness is through increasing the
stiffness of the ECM, or some combination of the two. The possible changes that cause
increased stiffness can be investigated through our modelling approach and can indicate
which factors may have the most impact on muscle behaviour. It is difficult to perform
experimental tests on whole muscles affected by CP, although tests have been done on mice
with spasticity or fibrosis [165, 204], as muscle can only be dissected during surgery making
it difficult to obtain data for an accurate comparison to similar TD muscle tissue. Muscle
is a three-dimensional material, so applying a continuum model to CP muscle allows us to
understand the underlying muscle mechanics. In particular, developing an understanding
of the complete behaviour of muscle will give insight into the role each microstructural
alteration that occurs in CP will play in whole muscle mechanical behaviour.

While the model has the ability to investigate behaviour of muscle that is difficult to
examine experimentally, it relies on accurate experimental data for its intrinsic properties.
Unfortunately, mechanical data for the effects of stiffness of the ECM are not available,
so the value for the ECM stiffness parameter was chosen to vary by 33 % from healthy
muscle. It is possible that changes in the structure of the ECM would change by more
than this value; however, these values were chosen to probe the behaviour of the ECM
stiffness. Given the derivation of the whole muscle stress in the model (Equation 4.4) it
is likely that the volume fraction of the ECM would still have the largest contribution to
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whole muscle stiffness. Both the ECM volume fraction and stiffness multiply the ECM stress
response, so they have similar contributions to whole muscle behaviour for small variations
in their values. However, only the ECM volume fraction decreases the contributions from
the cellular components. This aspect of the model is realistic, since it is not likely changes
in the structure of the ECM will decrease the contribution of the fibres to whole muscle
stiffness.

4.5.4 Limitations and Future Directions

A limitation of this model is the lack of current experimental certainty on changes that occur
with CP. Many changes to individual components have been observed in CP affected muscle;
however, the extent to which microstructural changes occur are varied [179]. Therefore, the
effectiveness of the model in providing a comparison to CP muscle will depend on the specific
muscle. Additionally, there are very little data available for the changes in stiffness of the
ECM, and so it is possible that this could vary more than investigated in this study. This
would result in a large influence of the stiffness of the ECM component. Work by Brashear
et al. [25] found that stiffness and orientation of the ECM component may have more
effect than the amount of the ECM, so this lack of experimental data for ECM stiffness is a
limitation of our model. Additionally, it is possible that a focalized accumulation of collagen
[39, 188] could occur in contrast to the even distribution investigated in this study. This
would likely influence the mechanical response of muscle; however, this was not investigated
in this study. The reponse of the base material likely changes in response to compression as
opposed to tension. Currently, the available data for the ECM is limited to tension, and so
a different response for compression was not implemented in the model. However, we expect
the effect on the output from our model would be minimal.

In the model, we have assumed for simplicity that with changes in the volume fraction
of the ECM, there is no effect on the amount of force produced by the fibres. Any reduction
in contribution from the muscle fibres is assumed to be included in the decrease in cellu-
lar component contribution to the base material response. In addition to changes in the
microstucture, it is possible that changes occur to the geometry of the muscle in CP. The
results of this study only demonstrate the effects of the changes to the material properties,
and the effect of changes to the geometry could be investigated in future work. We have
not investigated the active behaviour of muscle in this study, although it is fundamental in
muscle function. In CP, the contractile force produced has been seen to decrease [173], so
using this model to investigate the influence of ECM and sarcomere properties on active
force would be valuable and would give additional insight into how the structural alterations
that occur with CP individually impact muscle contraction. In this model, the properties
of our TD muscle may not be representative of all muscles as the material properties vary
both across and within studies [108, 28, 177]. So, while the qualitative passive behaviour is
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captured in this model, the exact values could vary between muscles. However, we would
expect the general trends observed during this study to hold.

4.6 Conclusion

The purpose of this study was to determine the effects of the microstructural changes that
are normally observed during experimental studies of CP muscle, including variation in
ECM volume fraction, stiffness, and sarcomere length, on whole muscle stiffness. To do
this, a three dimensional computational model of skeletal muscle was used, and overall
stress-stretch relationships and muscle stiffness were calculated by measuring the passive
stress of the whole muscle. We found that the volume fraction of the ECM had a larger
effect on overall muscle stiffness compared to the ECM stiffness and sarcomere length, and
that the effects of the sarcomere length were mitigated at larger ECM volume fractions.
Investigating these effects provides a causal relationship between changes to microstructural
properties and the overall response of the muscle. Experimental research is currently unable
to vary independent components of muscle, and so this work can be used to help direct
future experimental research. In this study, we were able to determine the crucial role that
the microstructural alterations observed in CP have on whole skeletal muscle behaviour.
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Chapter 5

Active mechanics in cerebral palsy
affected muscle

5.1 Introduction

In the previous chapter, we only considered the passive mechanics of skeletal muscle; how-
ever, one of the important functions of skeletal muscle is that it can activate to produce
force. In this chapter, the goal will be to investigate the active mechanics of CP affected
muscle. Here we still only consider the quasi-static mechanics of CP muscle. Including the
dynamic effects would substantially complicate the model, and require us to include spas-
ticity effects (see Section 1.4.1). As observed in the previous chapter, the quasi-static regime
will still have interesting mechanics due to the highly nonlinear nature of model and the
complex material response of skeletal muscle.

We also now consider more complex muscle geometries; up to this point, we have only
considered block geometries. In CP muscle, many changes occur to the macroscopic char-
acteristics of muscle, including the muscle volume and the PCSA [45, 66, 111]. To fully
investigate these effects we need a geometry, that more realistically capture the geometry of
muscle in vivo. While utilizing MRI derived geometries would be ideal, these are computa-
tionally expensive and difficult to control for the muscle volume and PCSA independently;
however, we will demonstrate the ability to solve our model on these realistic geometries.
For the majority of this chapter, we opt for a simplified pennate geometry (see Section 1.1),
which has muscle fibres orientated an angle to the line of action and an aponeurosis, which
the fibres insert into. In the previous chapter, we do not consider the effects from adipose
tissue into the model, but in CP muscle there is an increase in volume fraction compared to
TD muscle [46, 114]. Rahemi et al. [130] found that including adipose tissue is important
for isometric muscle mechanics, and that the effect will vary depending on the distribution
of the tissue; therefore, in this section we also consider these effects and develop a material
model for adipose tissue.
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The remainder of this chapter will be organized as follows. First, we investigate the
material properties for the aponeurosis, and implement them into the model to understand
the effects on muscle force (Section 5.2). Subsequently, we determine material properties
for adipose tissue and implement them into our material model for muscle (Section 5.3. We
investigate the active force-length relationships for our model and investigate the influence
of volume, PCSA, and material properties in CP affected muscle (Section 5.4). Finally, in
Section 5.5, we apply the model to a MRI derived subject-specific geometry to demonstrate
the ability of the computational method to handle realistically shaped domains.

5.2 Aponeurosis Properties

Aponeurosis properties are difficult to determine experimentally, as it is a very thin and stiff
tissue. The data used in modelling studies, such as this one, require a stress response for
the material, which comes from dividing the force by the cross-sectional area; however, with
the aponeurosis, accurate data is difficult to obtain as calculating the cross-sectional area is
difficult. To work around this, many skeletal muscle models use properties obtained for the
tendon [192, 35], which are often thought of as extensions of the aponeurosis. Aponeurosis
are typically around a millimeter thick [156], which may be difficult to implement in a
computational model; therefore, the exact material properties may need to be adjusted to
obtain the correct muscle mechanics. The exact properties of the aponeurosis typically used
in modelling vary between studies [81, 192, 35], and so we investigate the different properties
previously used. In our case, the optimal properties will be those that result in the model
producing a realistic approximation of the total muscle force.

5.2.1 Intrinsic properties

We consider the modelling results for the aponeurosis for three recent continuum modelling
studies: Chi et al. [35], Knaus et al. [81], and Wakeling et al. [192]. These studies specifically
modelled the material response of the aponeurosis. We see that the properties used by Knaus
et al. [81] are much stiffer that the other properties used in our model [192] and by [35]
(Figure 5.1). In most cases, the aponeuroses are modelled as a fibre reinforced composite
[192, 81]; however, [35] models aponeurosis as isotropic. Both the fibre and base material
are much stiffer in [81] compared to [192] (Figure 5.1) .

The material response from each of the aforementioned papers in shown in Figure 5.1.
We see that at small stretches the stress for a given stretch is much larger for the material
responses from [81], whereas the most compliant material properties are those from [35].
The bottom left and bottom right plots in Figure 5.1 show that the uniaxial base material
response is larger from [81] compared to the [192], while at small stretches [81] has a more
compliant fibre response. We also plot here the properties from [192] increased by a factor of
10, as this has been done in the past to represent a stiffer aponeurosis [129]. This still results
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in a more compliant response at small stretches, but due to the nonlinear response in the
base material, at larger stretches this material has a stiffer response. We include the material
parameters used for each of these functions in Table 5.1. The along-fibre parameters for [81]
correspond to those from an exponential power law function

W (λ) = ξ

αβ

(
eα(λ2−1)β − 1

)
. (5.1)

The parameters ξ, α, and β are given in Table 5.1. The along-fibre properties from Wakeling
et al. [192] are given by the stress function

σ̂pass,apo(λ) =



0 0 ≤ λ ≤ 1.0

515.882034(λ − 1.0)2 + 0.01(λ − 1.0) + 0.01 1.0 ≤ λ ≤ 1.01

600.590242(λ − 1.01)2 + 0.327640(λ − 1.01) + 0.06168820 1.01 ≤ λ ≤ 1.02

− 9.975321(λ − 1.02)2 + 22.3394455(λ − 1.02) + 0.2250236 1.02 ≤ λ ≤ 1.15

19.7458618(λ − 1.15) + 2.960568 λ > 1.15
(5.2)

which was obtained through fitting to tendon data from [42]. For this function, the coeffi-
cients are normalized to σ0 = 2 × 105 Pa.

Base Material c1 c2 c3
Knaus et al. 2022 45-55×106 0 0

Chi et al. 2010 30×104 80×104 800×104

Wakeling et al. 2020 9.379×105 -6.910×105 9.698×107

Fibre ξ α β

Knaus et al. 2022 15-500×106 0 2.5

Table 5.1: Aponeurosis properties from [192, 81, 35]. Parameters ci, i = 1, 2, 3 correspond
to the parameters from the Yeoh model (Equation 3.11), while the fibre parameters cor-
respond to the parameters from Equation 5.1. Only fibre properties are included for the
data from [81], since [35] used an isotropic response and [192] used an piecewise function
given in Equation 5.2. The properties from Knaus et al. [81] were varied depending on the
aponeurosis type, anterior (AA) and posterior (PA), between the two values listed.

We note at this point the variation in the data that comes from these different models. In
each of the models [35, 81, 192], the aponeurosis properties used were obtained to be within
a physiologically reasonable range and to produce realistic strain mechanics. But due to
the aforementioned computational constraints on the aponeurosis thickness, the properties
shown here may have been adjusted to account for an increased thickness [129, 192]. If a
thicker aponeurosis is utilized, then it is likely that more compliant aponeurosis material
properties are required. Given this, it is possible that the material responses analyzed in this
section may not be adequate for the thickness chosen in our muscle geometry. Nevertheless,
we implement these properties into our model to understand the effects on force developed by
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Figure 5.1: Aponeurosis properties used in [192], [35], and [81]: total (top left and right),
base (bottom left), and fibre (bottom right).

the muscle; the variability in aponeurosis properties observed experimentally and difficulty
in measurement means that the option that results in a reasonable force developed by the
muscle is likely also physiologically reasonable.

5.2.2 Aponeurosis effect on muscle force

The material properties from the previous section were implemented into the skeletal muscle
model, and the resulting mechanics were investigated. Here we use a pennate geometry
with pennation angle θ = 25◦ (Figure 5.2). This allows us to implement and investigate the
properties of the aponeurosis. The block geometry used in the previous chapters did not
have an aponeurosis. With the pennate geometry, muscle fibres insert into the aponeurosis,
which is 2mm thick. The dimensions of the muscle will be a width, w, of 5cm; a length,
l, of 11cm; and a fibre length, lf , of 3.8cm (Figure 5.2). These geometries were shown to
approximate the medial gastronemius muscle. The PCSA is calculated to be 50 cm2, which
using a maximum isometric stress of 2 × 105Pa and assuming the relation

Ftot = PCSA cos(θ) σ0 (5.3)
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gives us a maximum force of 1000N at optimal length (λ = 1). Hence, we should expect
to see forces on this order of magnitude. We are interested in the active force produced
by cerebral palsy affected muscle, so we compute the active force-length relationships. This
involves pulling the muscle to a given length, then activating to 100% activation.

There are two main outputs that can be considered when looking at the force-length
relationship: the magnitude of the force and the shape of the resulting force-stretch re-
lationship for the whole muscle. We investigate the magnitude of the force produced by
the muscle during contraction by comparing model results to the expected force calculated
using Equation 5.3. The expected shape of the force-stretch relationship for whole muscle
should be similar to the response observed in experimental studies [200]. From the intrinsic
material properties in the model (Figure 2.2), we would expect that there will be a local
maximum in the force at λ = 1, and a decrease in the force away from λ = 1, but with
forces increasing at larger stretches, where the passive fibre and base material forces will
dominate.

x

z

y

Figure 5.2: Pennate muscle geometry at 100 % activation. To compute the force-length
relationships, we apply zero Dirichlet conditions in all directions on the −x face, zero traction
conditions on the ±y and ±z faces, while applying the displacement condition, d(t) ̸= 0,
to the +x face to lengthen or shorten the muscle. Once the muscle has reached the desired
length, we set d(t) = 0 and activate the muscle.

We find that the best response is from the aponeurosis properties, in terms of the mag-
nitude of the force at λ = 1 is from Knaus et al. [81] (Figure 5.3). While both the posterior
and anterior aponeurosis produce a good force-length relationship, the best response is from
the anterior aponeurosis properties with the stiffer along-fibre properties. In addition to the
larger magnitude of force, there is a more realistic shape to the force-length relationship.
The more compliant aponeurosis tissue, which corresponds to those from Chi et al. [35] and
Wakeling et al. [192], do not result in the expected shape of active force-length relationship
nor the magnitude (Figure 5.3). The force produced by the muscle only increases as the
strain increases and there is no decrease, as we would expect from experimental studies at
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stretches just greater than 1. The stiffer aponeurosis properties obtained by increasing the
response from [192] by a factor of 10 result in a reasonable shape to the curve, but smaller
magnitude of force relative to [81]. Based on these results, it seems the best aponeurosis
properties come from those by Knaus et al. [81], as they result in the largest forces and
the most realistic force-length relationship; however, in the presence of the aponeurosis in
a pennate geometry, it is possible that Equation 5.3 does not hold exactly, and so we aim
to have forces on at least a similar order of magnitude. Due to the difficulty in measuring
the aponeurosis properties themselves, it is likely that any of these options that produce
the correct shape of the force-stretch relationship would be acceptable.
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Figure 5.3: Total force-length relationship for varying aponeurosis properties from [35, 81,
192].

Comparing the aponeurosis models investigated, the optimal values are from Knaus et
al. [81]; however, the force values are still 50% of those expected from Equation 5.3. It
is possible that another aspect of the model is the cause of the lower forces. The ECM
component of the base material is also a difficult component of muscle to obtain stress
response data. Achieving this response from the ECM requires decellularizing the muscle,
but this may also alter the material response of the ECM. It will certainly alter the structure
and the interaction of the ECM with the muscle fibres, which may be critical to how it
produces force [60]. There is also the problem of measuring the cross-sectional area of ECM
(see Chapter 3), since there will be many gaps in the material from the fibres. A further
investigation of the base material properties may be required to fully understand why these
values are differ from the physiologically expected values.
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5.3 Adipose Tissue

Another property of muscle commonly found to vary in CP muscle is the amount of adipose
tissue [46, 114]. Often there is an increase in the volume fraction of the adipose tissue, which
compromises the tissue structure. Additionally, the amount may vary in location through-
out the muscle and with severity of the disorder [46, 114]. In this section we investigate
the mechanical response of adipose tissue, determine a material model for the tissue, and
implement it into our model.

5.3.1 Intrinsic Properties

There are many reasons for researching the material properties of adipose tissue including
improving surgical models or understanding the effects of vehicle trauma [175]. There were
many available adipose tissue studies including the ones referenced in the review by [175],
although not all apply to muscle mechanics. In particular, there were studies that mainly
looked at high strain rate applications, which include investigating subcutaneous adipose
tissue behaviour during vehicle crashes [176]. Other studies might look at the behaviour
of specific regions of adipose tissue including orbital adipose tissue (in the eye) [33] and
calcaneal pad adipose tissue [106]. In many studies, the data was not available to allow us
to apply it in our model [56, 151, 176]. After review the literature for mechanical studies of
adipose tissue, we were left with following studies: [170, 37, 4, 178].

There are many types of adipose tissue to consider, all of which may differ from that
within muscle, but the adipose tissue within muscle would be difficult to measure exper-
imentally. The main types of adipose tissue that we consider here are subcutaneous and
breast tissue, which was used by [130] to look at the distribution of adipose tissue through-
out the muscle. Ideally, we would also like to have both compression and tension data that
could be implemented into the model, although this is not available in most studies. The
studies on live participants (eg. [178]) will only use the compression tests, since tension is
not possible. It would be ideal to have an isolated response from the adipose tissue (no
effects from skin or other material), although any response will not be able to completely
isolated adipose tissue, as adipose tissue (like muscle fibres) is embedded in an ECM.

To compare the material responses of the adipose tissue we can look at the resulting
stress-strain responses. Here we neglect considering whether the strain in the experimental
data was tensile or compressive and simply look at the magnitude of the strain, so we
can compare with the results used by [130]. One caveat with the data obtained by [170] is
that the data only contains biaxial and triaxial tests. This means that the adipose tissue
was pulled in either two or one direction simultaneously; therefore, this material may have
a stiffer response compared to a uniaxial test. A comparison of the material properties
is shown in Figure 5.4, where the stress-strain curves are shown. Each of the curves are
obtained through digitizing the stress-strain plots from the respected studies.
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Figure 5.4: Stress-stretch response for adipose tissue obtained from [4, 37, 170, 178].

Since we want to use a tensile response for the adipose material properties, we opt to
use the adipose tissue data from [4]. These data are in the middle of the range of adipose
tissue data and are for subcutaneous fat. To determine the correct material model, we test
both the Neo-hookean

WNeo−Hookean(B) = c1(I3(B) − 3) (5.4)

and Yeoh models (Equation 3.11). We find that the Yeoh produced the best results with an
R2 of 0.998. The results are shown in Table 5.2 and Figure 5.5.

Yeoh Neo-hookean
R2 0.998 0.84
c1 323.91 1570.8
c2 5163.1 -
c3 -3872.9 -

Table 5.2: Parameters from the model fits and R2 values for the Neo-hookean and Yeoh
models.

5.3.2 Modelling adipose tissue in skeletal muscle

There are a few possible options for modelling the adipose tissue infiltration in skeletal
muscle. In the study by Rahemi et al. [130], they outlined a number of different imple-
mentations of adipose material properties in the model. The first option would be to treat
adipose tissue as a completely different material from muscle, in a similar way to modelling
the aponeurosis. This would result in each element in the mesh having either adipose tissue
or muscle properties. This approach would not allow for us to consider adipose tissue frac-
tions, which can be obtained using MRI data; hence, to make our model more usable with
MRI data, we opt to homogenize the muscle material with adipose tissue, so that we can
prescribe a muscle volume fraction and a adipose tissue volume fraction in each element.
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Figure 5.5: Fit of the Yeoh and Neo-hookean models to the adipose tissue data from Alkhouli
et al. [4].

The next choice is whether adipose tissue is homogenized as part of the base material
or as a seperate material. We opt to use a similar formulation to M4 in [130], where both
the base material and fibre material are affected by the fraction of adipose tissue. Physio-
logically, this can be though of intracellular adipose tissue, which leaves less room for active
contributions of muscle. The whole strain-energy potential for muscle will be given by

Wmuscle(B) = (1 − β) {αWECM(B) + (1 − α) [Wfibre(B) + WCELL(B)]} + βWadipose(B).
(5.5)

Here β represents the volume fraction of adipose tissue. This option also slight alters the
previous homogenization model derived in Chapter 3, as the contribution from the ECM
volume fraction now alters the fibre component of the model.

Now that we have determined the material properties for the aponeurosis and adipose
tissue, in the next section we look into active mechanics of CP affected skeletal muscle. To
do this, we vary the volume and PCSA, as well as the material properties.

5.4 Active mechanics: the effects of cerebral palsy

In this section, we investigate the active mechanics of CP affected muscle. For these simula-
tions we will consider the pennate geometry, previously described in Figure 5.2. This allows
us to consider effects from CP that we have not investigated previously, such as changes
to the muscle geometry. In CP affected muscle, muscle shape is altered in addition to the
morphological changes occurring to the ECM, adipose tissue, and sarcomeres [46, 11, 66].
The main changes that occur are decreased volume and PCSA; however, it is difficult to
understand how each change independently alters the force produced by the muscle. It is
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likely given Equation 5.3 that the force produced by the muscle is largely influenced by the
PCSA, but this effect could change in the presence of a pennate geometry and different
muscle material properties. To achieve a better understanding of the architectural effects,
as well as the CP material properties, we utilize our model to vary each of the muscle
properties individually.

5.4.1 Methods

For these tests, we use the same experimental setup with pennate geometry as in Section 5.2.
To investigate the effects of the muscle architecture, we vary the dimensions, so that we
either maintain a constant volume or PCSA. Using the results from MRI and ultrasound
studies on changes to the morphology of skeletal muscle [45, 111, 66], we find that the
volume and PCSA typically decrease in CP muscle by about 30%. While the values differ
between studies, 30% is a reasonable value and changing both parameters by 30% allows for
us to compare the two effects; experimentally, a decrease of approximately 35% volume and
approximately 29% PCSA has been observed [45]. To change the volume by maintaining
a constant PCSA, we vary the fibre length, while keeping the other parameters fixed. To
change the PCSA, while maintaining a constant volume, the fibre length is decreased while
the muscle width is increased. In both cases we maintain a fixed pennation angle. A summary
of the changes that are made to investigate the effects of muscle architecture are included
in Table 5.3. In addition to varying the geometry, we also look at the effects of varying the
material properties. For TD material properties, we us α = 0.02, β = 0.1, and csarco = 0,
while for CP material properties we use α = 0.2, β = 0.2, csarco = 0.25. For these tests,
we opt to use the same properties for the aponeurosis as previously used in Wakeling et al.
[192], but with increased stiffness by a factor of 10 as described in Section 5.2. The numerical
experiments will involve computing the active force-stretch relationship, as in Section 5.2.2.

- -30% volume -30% PCSA
lf 3.8 2.66 5.4
w 5 5 3.5

Table 5.3: Geometries used in each of the tests. Note that aponeurosis thickness was fixed
at 0.2cm, the length one aponeurosis was fixed at 11cm, and the pennation angle was fixed
at 25 degrees. The geometries with a decrease in volume had fixed PCSA, and vice versa.
lf is the fibre length and w is the width of the muscle. Values in table are given in cm.

5.4.2 Results

Effects of geometry on whole muscle force

We find that the PCSA has a larger influence than the volume on the total force produced
by muscle near optimal length (Figure 5.6). The resulting force-stretch relationship with
decreased PCSA appears to have a larger range of stretches where the muscle is producing
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the same force as optimal length; meanwhile, there is a shorter range of stretches when
looking at the effects of the decreased muscle volume. We also note that the decreased
volume curve has a larger force produced at larger stretches, which is due to the difference
in fibre stretches in the geometries. Plotting the total force output from the model against
the average stretch throughout the muscle, as opposed to the total stretch of the muscle
from end to end, we see that there is little effect from the volume (Figure 5.7).
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Figure 5.6: Total force-length results for the block geometry with TD and CP muscle ma-
terial properties. The geometries were varied from the typical muscle by a decrease in 30%
volume or 30% PCSA.

The force at optimal length is reduced by 29% with a 30% decrease in the PCSA

(Table 5.4), which is similar to the value predicted by Equation 5.3. This indicates that our
model generally follows the properties expected from experimental studies; however, looking
at the absolute values of the total force, we see that they are significantly lower than the
expected 900N when accounting for the PCSA, adipose tissue, and ECM effects. This is
the same as described in Section 5.2. It is possible that this is due to the base material
response or the shape of the muscle geometry. The muscle geometry used here may not
be close enough to the real muscle shape and may not allow for the correct bulging and
deformation.

- -30% Vol -30% PCSA
TD 403.2 399.4 290.8
CP 107.1 93.82 88.44

Table 5.4: Force (N) produced at optimal length for a given experimental setup. TD muscle
corresponds to α = 0.02, β = 0.1, and csarco = 0. CP muscle corresponds to α = 0.2,
β = 0.1, and csarco = 0.25.
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Figure 5.7: Whole muscle force against the average sarcomere stretch throughout the muscle.

The force output was substantially affected by the material composition. We see that the
CP muscle had a reduced force relative to the TD muscle near optimal length (Figure 5.6.
However, as the stretch is increased, the force produced at larger stretches is more compared
to the TD muscle. This is likely due to the high stiffness and nonlinear response of the
ECM component of the material and the larger sarcomere stretches (csarco = 0.25). Again,
similarly to the TD muscle, there is a larger effect from the PCSA on the force produced;
however, the reduced force is only 18%, which is less than estimated by Equation 5.3. This is
possibly due to the change in the sarcomere length during CP. At non-optimal fibre lengths
that this relation may no longer hold. Similarly to TD muscle, the effect of the volume
decrease is larger at λ ̸= 1. This may be emphasized with the CP material due to the
greater stiffness of the base material.

Effects of CP on average stretch throughout the muscle

The stretch throughout the muscle is directly related to the force output from the muscle,
since the active force-length relationship depends on the stretch at a given point. It is then
useful to investigate the average stretch (λ̄tot) over the muscle before and after activation.
We find, at optimal length, that the average stretch decreases for the TD muscle during
activation, but with the CP material properties there is less of a decrease (Figure 5.8). For
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TD muscle the decrease in stretch during activation is true at all lengths, but in CP muscle,
there is substantially less decrease at larger stretches.
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Figure 5.8: Plots of the average stretch at 0% (top left) and 100% (top right) activation
against the whole muscle stretch. The bottom plot shows the difference in the average
stretch throughout the muscle during activation.

Comparing the average the stretch in the muscle to the whole muscle stretch can be used
to explain the volume effects in Figure 5.6. In Figure 5.6, there was a larger effect from the
decreased muscle volume at larger whole muscle stretches, and this effect disappears when
looking at the force-stretch relation calculated using the average stretch. Comparing the
average stretch in the muscle with whole muscle stretch, we see that the decreased volume
of the muscle results in there being more dependence of the average stretch on the whole
muscle stretch for TD muscle material properties (Figure 5.8). The reason for this is the
shorter fibre lengths used to decrease the muscle volume (see Table 5.3). Additionally, this
means that larger passive forces will be developed and smaller active forces at a given whole
muscle stretch, which explains the effects observed in Figure 5.6. When adding the CP
muscle properties, a similar effect is observed (Figure 5.6), but there is effect from volume
on the average stretch of the muscle at a given whole muscle stretch (Figure 5.8). This
is likely a result of the shift in the intrinsic passive fibre force-stretch relationship and the
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increased base material stiffness; the muscle material will be less compliant, and so the local
stretches in the muscle will be reduced.

5.5 Subject-specific geometries

We can utilize a realistic MRI-derived geometry with our model to account for subject-
specific data (Figure 5.9), which were obtained by D’Souza et al. [45]. Using these data allows
us to account for variations in the structure of muscle that may vary between subjects. Key
changes during CP are the changes to muscle thickness, length, and volume [45, 66, 112, 111],
which all have an effect on the PCSA and mechanics of skeletal muscle [89, 192]. The amount
to which each of these properties vary will depend on the subject [45, 66, 112, 111], and
so using our model we can better understand the muscle mechanics for specific subjects. In
addition to modelling the subject specific effects of CP, we are also able to better capture
the fibre orientations and adipose tissue distributions, which are not uniform throughout
the muscle.

Here we demonstrate the implementation of the model on an MRI derived geometry
as a proof of concept. Further work is required to accurately tune the model to account
for correct aponeurosis dimensions and reduce the run time of these simulations. Along
with the MRI derived geometry, we also account for adipose tissue distributions and fibre
orientations obtained through diffusion tensor imaging (for details see eg. [21]). Figure 5.9
shows a simulation where the muscle was stretched in the x direction to a whole muscle
stretch of 1.1, and subsequently activated to 100% activation at a fixed length. The +z and
−z faces have a portion of the surface covered by an aponeurosis, which the muscle fibres
insert into.
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Figure 5.9: Magnitude of displacement (Top) and z direction displacement at 100% activa-
tion on a TD subject specific MRI-derived geometry.
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Chapter 6

Conclusion

This thesis describes the development of a mathematical model to investigate the effects
of cerebral palsy on skeletal muscle mechanics. This section summarizes the significant
contributions of this work and describes future directions.

6.1 Summary of the thesis

Chapter 2 describes the development of a mathematical model for skeletal muscle using the
theory of finite-strain elasticity. This was based on previous work and uses a quasi-static
formulation of the model [192]. The model can be derived using a strain-energy formulation,
and the resulting model equations can be found using a minimization of potential energy.
The resulting system is highly nonlinear, and so we linearize using a Newton method,
and solve the linearized system using a Conjugate-Gradient method. We also demonstrate
convergence in some of the relevant outcomes.

Chapter 3 describes a principled approach to muscle mechanics. Here the base material
portion of the muscle is broken down into the contributions from the ECM and the cellular
material. The ECM material response is obtained through data from a decellularized muscle
[61], while the cellular material is obtained from brain grey matter [79]. The response from
these two materials is then homogenized into the base material response. This is done using
a representative volume element and a Voigt approximation. This results in an aggregate
material that captures the response from the ECM and cellular material on a macroscopic
scale. Modelling the individual heterogeneities on the macroscopic scale is not computa-
tionally feasible, so this homogenization is required. The remainder of the chapter involves
the implementation into the skeletal muscle model described in Chapter 2, and performing
simulations of muscle contraction. We find that there are significant volume effects, and the
three dimensional implementation is required to fully understand the material behaviour of
skeletal muscle.

Subsequently, in Chapter 4 we apply the homogenized base material model to skeletal
muscle affected by CP. CP muscle suffers from many morphological changes that cause sub-
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stantial alterations to the deformation of skeletal muscle. Some commonly observed changes
are the ECM, which varies in volume fraction and structure, and the sarcomere length, which
is typically longer in CP muscle. This results in a muscle that is much stiffer than typically
developed muscle. To investigate the relative effects from the ECM and sarcomere length,
we passively lengthened the muscle to determine the stress-stretch relationship for a com-
bination of material parameters. The main findings of these tests are that during CP, ECM
has a larger contribution to the muscle stiffness. Another important finding was that due
to the substantial nonlinear stress-stretch relationship in the ECM, the ECM effects were
larger at larger stretches and the sarcomere effects were mitigated at larger stretches. This
work points to the fact that there is relatively small influence from the sarcomeres in passive
mechanics, but there may be a larger effect in active mechanics.

In Chapter 5, the effect of CP on the active mechanics of muscle is investigated. This
includes implementing the muscle model on a more complex pennate geometry and including
the effects of an aponeurosis. To understand the influence of the aponeurosis on muscle
mechanics, we compare aponeurosis models from previous modelling studies, and investigate
the effects on muscle force. In addition to the aponeurosis, we also include the effects
from adipose tissue into the model. The results of CP muscle tissue, as well as the effects
of changes to the muscle architecture are investigated, and effects are characterized by
determining the active force-length relationship. From this, we are able to determine the
effect of CP material properties and geometry on muscle behaviour. We find that the CP
material properties altered the shape of the total force-length relationship and altered the
effect of changes to the muscle volume. The ability to model subject-specific changes is also
important for muscle affected by CP, since the exact changes to muscle often vary between
subjects; hence, we demonstrate the ability to model the active mechanics of CP skeletal
muscle on MRI derived geometries and adipose tissue distributions.

6.2 Future directions

Future directions for this modelling work could involve probing the basic mechanics of
skeletal muscle, as well as the application of the model to more complicated effects from
CP. From a mathematical and physical perspective, there are a number of changes that
could be made to the model to more accurately capture the correct mechanics of muscle.
One change that could be made to improve the response of the muscle in compression is
to implement a tension-compression asymmetry. Muscle has been shown to have a different
response in response to compression opposed to tension [108, 28, 62]. While this is partly
explained by the along-fibre properties in the model, this asymmetry has also been shown
transverse to the muscle fibres [108]. Implementing these effects may help to more accurately
capture the force produced by muscle and the bulging that occurs in muscle mechanics.
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Another direction for this work is a more accurate model for the ECM response, in
which the structure and orientation of the collagen fibres within the matrix is considered.
This has been done in other homogenization models [172, 14] as well as in smaller scale
models [62]. Implementing this aspect of the model would help to develop a more accurate
model of the muscle base material. This comes at the disadvantage of making the model
more computationally costly, and so may not be desirable if implementing the model on
more complex geometries such as an MRI derived mesh.

To further investigate the mechanics of CP affected muscle, directions could involve
a more detailed application of the model to subject-specific data, further study on the
effects of sarcomere length on active force production, and the effects of ECM stiffness.
The accurate modelling of subject-specific data would provide more detail on how CP
affects individual subjects and could allow us to understand the influence of realistic muscle
geometries influence the force produced by muscle. Investigating the influence of muscle
geometries could be done using statistical shape modelling (see eg. [30]), where the average
CP geometries could be compared to average TD muscle geometries. Additionally, the effect
of sarcomere length could be further investigated in the active force produced by muscle. It
was found in Chapter 4 that the sarcomere length was not as important in passive mechanics,
but determining the relative effects of sarcomere length to ECM in active mechanics could be
valuable in clinical treatments for the CP. The structure of the ECM has been investigated
in spastic muscle, and its possible that the structure varies independently of the volume
fraction [93, 25]. This could be investigated using our model to understand the relative effect
of a compromised ECM on the overall muscle mechanics. A more detailed approach would
be to implement the collagen architecture, as described above, and investigate the influence
of changes to muscle behaviour. CP has a complex effect on skeletal muscle, resulting in
many changes to its structure, and determining the relative effects on the mechanics of
muscle can be investigated using this model.
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