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Abstract

Quantifying the dynamics and energetics of a system as it undergoes a transition between
stable conformations is central to the study of reaction mechanisms and the derivation
of reaction rates. For conformational changes in biomolecules, the space the system nav-
igates is high dimensional, presenting challenges to the observation of reactive events in
simulation or experiment and obscuring dynamical details that are relevant to the reaction
mechanism. Developments in recent decades in transition-path theory, transition-path sam-
pling, and single-molecule experimental techniques have transformed our ability to observe
biomolecular reactions in microscopic detail and extract general features of the mechanism.
Nearly simultaneously, rapid developments in the field of stochastic thermodynamics extend
familiar notions of work, heat, and entropy to nonequilibrium contexts. One focus of these
efforts is the design of protocols that dynamically manipulate the system’s conformation
with minimal energetic cost. In this thesis, I investigate slow, energetically efficient driving
protocols that drive a system between conformations corresponding to endpoints of a reac-
tion, aiming to find connections between principles of efficient driving and the spontaneous
transition mechanism in the absence of driving. First, I develop an alternative perspective of
transition-path theory (which describes reactive events) that unites it with stochastic ther-
modynamics to describe flows of entropy, energy, and information during the reaction. This
also provides a thermodynamic measure of the relevance of a particular degree of freedom
to the reaction, providing an optimization criterion for selecting collective variables. Next, I
design protocols that invert the magnetization of a 3×3 Ising model with minimal energetic
cost, determining that using multiple control parameters, which provide additional flexibil-
ity in manipulating the system conformation, allows it to be driven along a fast-relaxing
pathway between reaction endpoints. Finally, I directly compare these designed protocols
with the spontaneous transition mechanism for magnetization inversion in the same Ising
model, finding that designed protocols capture general features of the spontaneous mecha-
nism and energetics given the constraints on the control parameters. This work provides a
basis for investigating the connection between efficient protocols and spontaneous transition
mechanism which can be further probed in a wider variety of systems.

Keywords: Reaction mechanisms, transition-path theory, minimum-work protocols, nonequi-
librium thermodynamics
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Chapter 1

Introduction

The reaction mechanism describing how reactants transform into products is of central in-
terest to chemistry. Complex reactions can be deconstructed into a series of elementary steps
whose interdependence leads to the overall reaction kinetics. Additionally, rate-limiting steps
that are critical to reaction progress can be identified. Theoretical models describing reac-
tion mechanisms significantly improve understanding of these complex processes, providing
language to qualitatively describe the transient behaviour of the system as it undergoes a
reaction and quantifying its speed (kinetics) and spontaneous direction (thermodynamics),
allowing predictions of how perturbations to the system or environment might change the
reaction outcomes.

In biochemical contexts, reactions often consist of conformational changes in large
biomolecules [1], where the system must navigate its high-dimensional conformation space
between one region characterizing the reactants to another characterizing the products.
For example, proteins fold from a disordered peptide chain into an energetically stable
conformation whose structure and dynamics serve a specific biological function. Molecular
machines catalyze unfavorable reactions, pump ions or molecules across cell membranes, and
transport cargo around the cell, undergoing significant conformational changes while per-
forming these tasks. These molecules are typically flexible, soft-matter materials in aqueous
solution, constantly bombarded with surrounding water molecules that make their motion
stochastic. Additionally, biomolecules operate in nonequilibrium environments, consuming
chemical energy to fuel a myriad of biological processes and dissipating heat along the way
as required by the second law of thermodynamics [1].

Progress in single-molecule experimental techniques, such as atomic force microscopy
and optical tweezers [2], has greatly improved the ability to observe biological processes
and determine quantitative aspects of their thermodynamics and kinetics [3]. To comple-
ment this, computer simulations are routinely performed on large biomolecules, providing
atomistic detail of their mechanisms [4, 5].

In this thesis, nonequilibrium driving protocols are investigated [6, 7], which can be
used to study conformational changes in biomolecules. If a set of externally controllable
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parameters are chosen that restrain the system conformation to the reactant region or to
the product region, changing these parameters drives the system between conformations of
interest. These protocols can be implemented in experiment, for example by holding the two
ends of a biomolecule in optical tweezers and pulling them apart or pushing them together
to unfold and fold the molecule [8, 9, 10], and in simulation, by providing an energetic bias
that restrains the system’s conformation [11]. Driving protocols provide work to the system
and, when performed in finite duration, necessarily dissipate some excess work as heat.

This thesis examines whether there is a correspondence between protocols designed to
be energetically efficient when driving the system in finite time between reactant and prod-
uct, and the reaction mechanism for the spontaneous transition in the absence of driving.
Throughout, a classical description of the system that incorporates stochastic dynamics is
used, which is well-suited to describing conformational changes in biomolecules in noisy
environments [1, 2]. Additionally, a reaction is described generally as a transition from a
reactant molecule or conformation A to product B in order to represent the concept of a
reaction without details of the system involved.

1.1 Spontaneous transitions

How do reactions occur? The reactant and product are usually metastable molecular species
or conformations, meaning their free energy is low relative to the free-energetic barrier
separating them (Fig. 1.1). In order for the reaction to occur, the system must accumulate
sufficient free energy to overcome the barrier; reaction theories attempt to quantify the
frequency of this event by considering the underlying dynamics and energetics.

The speed and spontaneous direction of a reaction from reactant A to product B are
parameterized by phenomenological rate constants kA→B and kB→A and equilibrium free-
energy difference ∆FAB [12]

A kA→B−−−−⇀↽−−−−
kB→A

B . (1.1)

Finding values for these reaction parameters either experimentally, theoretically, or com-
putationally, is a major focus of research in quantitative sciences. Importantly, the rate
constants and free-energy difference are related by the principle of detailed balance [13]

kA→B

kB→A
= e−β∆FAB , (1.2)

providing a constraint on the equilibrium kinetic and thermodynamic parameters of the
process.

1.1.1 Reaction theories

One of the first conceptual insights into chemical reactions is the existence of an energetic
barrier separating metastable states A and B; a successful reaction requires the system to
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Figure 1.1: Schematic for an A → B reaction. The system free energy is plotted as a
function of the reaction coordinate, with metastable states A and B separated by a free-
energy barrier. The reaction free energy is the difference between A and B, ∆FAB. The
frequency with which the system crosses the energy barrier from A → B (B → A) is given
by rate constants kA→B and kB→A.

gain sufficient activation energy to form the activated complex or transition-state species
at the peak of the energy barrier, then release this energy as it forms the stable product.
The activation energy relates the rate of a reaction to the temperature of the environment
through the Arrhenius equation [12]

kA→B = Γe−β∆E‡
, (1.3)

for inverse temperature β = 1/kBT in units of Boltzmann’s constant, and energy differ-
ence ∆E‡ ≡ ETS − EA between the activated complex (transition state) and the reactant.
This explains a qualitative observation about reactions: as the temperature is increased, the
speed of the reaction increases. Measurements of the rate constant at a range of tempera-
tures allow calculation of the activation energy. The prefactor Γ is referred to as a frequency
factor, accounting for the frequency of collisions that allow reactant A to form the activated
complex. For reactions in the gas phase, this frequency factor can be accounted for via
collision theory [12] which estimates the frequency of collisions with sufficient energy and
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correct orientation for the system to overcome the energy barrier at a particular tempera-
ture. For conformational changes in solution, collisions come from the surrounding solvent
molecules and the prefactor can be estimated using transition-state theory and a diffusion
equation for the dynamics [14].

Transition-state theory derives the rate constant using statistical mechanics [15, 16, 17],
providing a connection between the rate constant and thermodynamic parameters of the
activated complex. The transition state is imagined as a hypersurface of the configuration
space parameterized by a reaction coordinate that the system must pass through as it reacts
from A to B. Assuming that the reactant region is in thermal equilibrium and forbidding
any recrossing of the transition-state surface, statistical mechanics can be used to derive
the rate constant in terms of the free-energy difference between the reactant A and the
transition state,

kTST
A→B = kBT

h
e−β∆F ‡ = kBT

h
e∆H‡/kBe−β∆E‡

. (1.4)

where ∆H‡ is the activation entropy of the reaction, accounting for the difference in the
entropy of the accessible conformational space in the transition-state region and the reactant
region, and h is Planck’s constant. Transition-state theory has been wildly successful at
describing a wide variety of reactions and extended to include quantum effects such as
tunnelling [18]. Its language and concepts form the basis of a chemist’s understanding of
activated processes.

A drawback of transition-state theory is the absence of recrossing; once the system has
passed through the transition-state surface from A it is assumed to never return. Thus the
unidirectional flux across the barrier used to derive the rate constant in transition-state
theory overestimates the true rate constant,

kA→B = κkTST
A→B (1.5)

where κ ≤ 1 is a transmission coefficient correcting for recrossing events [19]. The trans-
mission coefficient and the activation free energy each depend on the choice of dividing
surface (although their product is always the “true” rate constant). By varying the position
of the dividing surface away from the top of the energy barrier, different estimates of the
rate constant are obtained via transition-state theory (which excludes calculation of the
transmission coefficient). For example, variational transition-state theory [18, 19] finds a
position for the transition-state surface that minimizes the rate constant estimated using
transition-state theory.

However, consideration of recrossing events is necessary to estimate the transmission
coefficient and the “true” rate constant. Ideally, its calculation should consider both the
immediate dynamics at the transition state and information about the trajectory at later
times so that trajectories that cross the transition-state surface multiple times are counted
a single time toward the reactive flux. An improvement on the transition-state theory as-
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sumptions was made by Kramers [14, 20] to allow calculation of the transmission coefficient
for dynamics described by diffusion on a one-dimensional reaction coordinate, considering
both high- and low-friction regimes. Assuming that the system is in local equilibrium in the
energetic well corresponding to mesostate A (meaning the initial probability distribution in
the state space on A’s side of the transition barrier is proportional to the Boltzmann dis-
tribution), Kramers assumes a steady state where once the system reaches the product it is
reinitialized in the reactant state, generating a flux of trajectories from A to B. The rate at
which system probability leaks over the barrier into mesostate B can be estimated from the
diffusion equation by approximating the free-energy surface near A and the transition-state
region as quadratic functions with curvatures ωA and ω‡ respectively. In the high-friction
limit, this yields the transmission coefficient

κKramers = ωAω‡

2πγ
(1.6)

as a correction to the transition-state theory rate constant that accounts for recrossing
events, where γ is the friction coefficient for the diffusive system.

Since Kramers’ reaction theory models the noisy environment encountered by bio-
molecules, it is useful in predicting rate constants for biomolecular transformations so long
as the dynamics are accurately described by diffusion on a one-dimensional reaction co-
ordinate. For example, it has been useful in interpreting information from atomic force
spectroscopy experiments [21, 22], where, e.g., protein folding can be probed by pulling the
ends of the molecule apart. However, the a priori assumption of a one-dimensional reaction
coordinate that accurately captures the reaction dynamics is challenging since criteria for
identifying such a coordinate are unclear [23]. Kramers’ description of diffusion-dominated
activated processes has been extended to multidimensional diffusion [24], easing the as-
sumption of a one-dimensional reaction coordinate, but still requiring knowledge of a small
set of relevant coordinates to make the calculation tractable. However, the development
of transition-path theory provides a quantitative definition of the “true” one-dimensional
reaction coordinate required for Kramers’ description, as discussed in Section 1.1.2.

1.1.2 Transition-path theory

While the concept of a transition state is useful in many contexts, there are also many reac-
tions that cannot be described using transition-state theory. These include conformational
changes where the energy landscape is rugged or lacks an identifiable transition state that is
a bottleneck for the reaction. Additionally, biomolecules have very high-dimensional confor-
mational spaces (in principle, 3N coordinates are required to describe the three-dimensional
position of an N -atom molecule), resulting in massive amounts of data that require dimen-
sionality reduction to extract useful information, such as a small set of coordinates that
capture important aspects of the reaction mechanism. It is usually not clear a priori what
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system coordinates might serve as good reaction coordinates, despite the fact that reaction
theories tend to rely on their existence and appropriate identification. It is therefore im-
portant to derive a reaction theory that does not depend on already knowing a physical
one-dimensional coordinate or any specific details about the reaction mechanism, including
the presence of a single transition state. This allows the theory to describe many types of
reactions, either as an activated process with a single energy barrier or as diffusion through a
network of mesostates as in Markov-state models [25]. Seminal work in the last few decades
in transition-path sampling [26, 27, 28] and transition-path theory [29, 30] have come far
in quantitatively describing reactions using statistical tools, also yielding a one-dimensional
reaction coordinate between any two mesostates A and B.

It is first important to understand some of the challenges associated with describing reac-
tions in atomistic detail, rather than integrating out degrees of freedom deemed irrelevant to
the reaction. Of particular relevance to this discussion is classical molecular dynamics sim-
ulations, which describe a molecule’s three-dimensional position and velocity as the system
is propagated forward in time using Newton’s equations of motion, with the system’s po-
tential energy described by an empirical force field which sums energetic contributions from
internal degrees of freedom (bonds, angles, and torsions) as well as Coulombic and inter-
atomic repulsive forces between pairs of atoms. Molecular dynamics simulations are widely
used throughout the natural sciences to study a variety of problems in biology, chemistry,
and materials, elucidating relationships between the structure, function, and dynamics of
molecules.

To ensure accuracy in simulating the dynamics of many interacting atoms, a relatively
small integration time step must be used, typically on the order of femtoseconds; in contrast,
timescales for biologically relevant reactions are typically on the order of micro-seconds to
seconds [25]. This timescale separation means that gathering samples of the rare reactive
trajectories of the system that travel between metastable states in order to determine their
statistics cannot be done with “brute force” by simply simulating the dynamics until re-
actions occur; instead, techniques must be developed to directly sample these trajectories.
The same timescale problem will appear again when discussing collective variables and
free-energy calculations in Section 2.3.1.

The seminal method for directly sampling reactive trajectories was developed in 1998
by Dellago, et al. [26], known as transition-path sampling. Since then, many more methods
to sample and analyze transition paths have been developed, such as transition-interface
sampling [31], milestoning [28], and forward-flux sampling [32]. The original transition-
path sampling technique enacts a Markov process in the space of trajectories, using random
shooting from a trial trajectory to generate new samples. From this, a sample of trajectories
from A to B is obtained, which can be used to obtain rate constants using Chandler’s
reactive-flux formalism [26, 33]. In principle, information about the reaction mechanism is
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also contained in this trajectory sample, but a theoretical framework is needed to extract
and interpret such information.

Thus transition-path theory [29] was developed to quantitatively describe the entire
reaction and determine its rate constant, without assumptions of metastability for the re-
actant and product or any specific details of the reaction mechanism (e.g., the presence of a
single transition state). Imagine a long ergodic equilibrium trajectory that travels infinitely
many times between two non-overlapping subsets of microstates corresponding to the reac-
tant and product, A and B. Next, select from this ergodic supertrajectory all the trajectory
segments that leave A and next reach B without returning to A. Each trajectory segment is
a transition path or reactive trajectory, and the entire ensemble of reactive trajectories is the
transition-path ensemble (TPE). All reaction parameters as well as the reaction mechanism
can be determined from this ensemble of trajectories.

The statistical description of the transition-path ensemble relies on the definition of the
committor function q(ϕ) (also called the commitment or splitting probability [34], or the
folding probability in the protein folding literature [35]), the probability that a trajectory
initiated from a microstate ϕ next reaches B before A. The committor maps the confor-
mation space onto the interval q(ϕ) ∈ [0, 1], identifying the transition-state ensemble as
conformations making up the q(ϕ) = 0.5 isocommittor surface [36]. The committor allows
calculation of the reaction rate, mean first-passage time, and mean transition-path duration
from a one-dimensional description [37] providing a connection to Kramers’ theory and the
required one-dimensional reaction coordinate. The versatility of transition-path theory in
describing a wide variety of systems makes it a leading theory today in determining reaction
mechanisms in computational sciences. Additionally, transition-path theory has been used
to interpret experimental data and estimate the committor function for a protein-folding re-
action [3, 38]. Some quantitative and qualitative aspects of this theory are reviewed further
in Section 2.2.

The committor’s relevance to determining reaction parameters and reaction mecha-
nisms has earned it the title of the “true” or “ideal” one-dimensional reaction coordi-
nate [23, 39, 40, 41, 42]. Its importance to chemical physics has spurred work to use machine
learning to estimate the committor for systems of interest [43, 44, 45] (calculating the com-
mittor is generally a computationally expensive task [23]). However, the committor does not
necessarily convey mechanistically useful information, as it simply gives a number for each
microstate of the system. Instead, the dominant features of the system on the isocommittor
surfaces (all conformations with the same committor value) [46] are of interest. In particu-
lar, it is helpful to determine a small set of physically relevant collective variables (functions
of system microstate) that provide intuitive understanding about the reaction mechanism;
the committor and/or other statistics (such as the free-energy landscape) can then be de-
termined in the given collective-variable space. To obtain accurate information about the
reaction mechanism, the chosen set of collective variables must capture the relevant infor-
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mation about the reaction. A number of approaches have been proposed to identify small
sets of relevant collective variables, often relying on ideas of timescale separation to identify
slow degrees of freedom by approximating eigenfunctions of the dynamical operator [47, 48]
or determining a reduced representation that is predictive about future states of the sys-
tem [49]. The development of methods to identify and represent relevant degrees of freedom
for a reaction is currently an active area of research.

1.2 Efficient control

Considerable progress has been made in recent decades in understanding nonequilibrium
systems and the statistical nature of the second law of thermodynamics, including the
derivation of nonequilibrium work relations, fluctuation theorems, and thermodynamic un-
certainty relations [50, 6, 51, 52, 53]. In this thesis, control protocols which drive the system
between conformations corresponding to the endpoints A and B of a reaction are investi-
gated. In contrast to transition paths, which occur due to spontaneous fluctuations from
the environment occasionally giving rise to rare reactive trajectories, control protocols are
enacted by an experimenter external to the system, who changes a set of control parameters
according to a fixed schedule, driving the system between thermodynamic states which could
be designed to correspond to reaction endpoints. Control protocols can be implemented in
experiment [8, 9, 54, 10] or simulation [55, 56], providing molecular-level information about
a wide variety of systems.

1.2.1 Driving protocols in simulation and experiment

Control parameters can be any externally tunable parameters of the system that allow
the system to be driven between desired thermodynamic states. Examples from classical
thermodynamics include temperature, pressure, and volume. Single-molecule experimental
techniques developed over the last decades have broadened the spectrum of available control
parameters. For example, optical tweezers can provide force to the ends of a protein and
cause it to unfold; in this case the distance between optical tweezers holding the ends of
the molecule serves as a control parameter, and it is tuned according to some protocol to
drive the system between folded and unfolded conformations. Significant experimental and
theoretical work has been done to learn thermodynamic properties of systems from their
response to such experimental control protocols [57, 58, 22]. Computer simulations offer even
greater flexibility in choosing control parameters; essentially any function of the system’s
atomic coordinates can be driven between relevant endpoints via some time-dependent
biasing potential.

This thesis investigates protocols that minimize the average excess work done on the
system during a long-but-finite duration, and probes their relationship to spontaneous tran-
sition paths. In order to explain some relevant concepts related to control protocols, imagine
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an ideal gas contained in a piston with adjustable volume that is driven from a low-pressure
to high-pressure state by decreasing the volume in a constant-temperature environment
(volume is the control parameter in this scenario).

If the volume is changed slowly throughout the protocol (a reversible or quasistatic
process), the system relaxes continuously to remain in thermal equilibrium with the en-
vironment, and the distribution of gas molecules throughout the piston remains uniform.
Work is done on the system reversibly, equal to the change in free energy between the fi-
nal and initial equilibrium ensembles corresponding to low- and high-pressure states of the
system [12]

Wrev = ∆F eq = kBT ln Vf
Vi

, (1.7)

where Vi and Vf are the initial and final volumes of the system, respectively.
However, if the volume is reduced relatively quickly, the gas particles will not instanta-

neously be uniformly distributed throughout the piston; they only partially relax towards
the uniform distribution throughout the control protocol, and only fully equilibrate when
the system is left for a long time at the final volume. The system is out of equilibrium with
the environment throughout the protocol, and on average excess work is performed on the
system above the equilibrium free-energy change:

⟨Wex⟩Λ ≡ ⟨W⟩Λ − ∆F eq ≥ 0 , (1.8)

where ⟨. . .⟩Λ denotes an average over system responses to the same driving protocol Λ. The
excess work is dissipated as heat to the environment when the system relaxes, quantify-
ing the energy “wasted” during the process. This inequality for excess work derives from
the second law of thermodynamics, which requires irreversible entropy production for any
nonequilibrium process.

The second law of thermodynamics is a statistical law that is only true on average [51].
For systems such as biomolecules that experience large fluctuations, the excess work done on
the system differs each time the protocol is performed, forming an excess-work distribution
P (Wex|Λ). This distribution can have nonzero probability for negative values of excess
work, indicating that for some trajectories the work is less than the free-energy difference.
However, the average excess work is positive (1.8).

Remarkably, the inequality Eq. (1.8) can be derived from an equality (assuming the
system begins in equilibrium),

⟨e−βW⟩Λ = e−β∆F eq
, (1.9)

which was first introduced by Jarzynski in 1997 [50]. The Jarzynski equation holds for
any protocol duration (even when the system is far from equilibrium during the protocol),
in principle allowing calculation of the equilibrium free-energy difference between thermo-
dynamic states from nonequilibrium system responses. Soon after, Crooks derived a work
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fluctuation theorem for nonequilibrium control protocols [6]

P (W|Λ)
P (−W|Λ̃)

= e−βWex
, (1.10)

which relates the work distributions in the forward and time-reversed protocols to the ex-
cess protocol work. The time-reversed protocol begins with the system in equilibrium at the
final control parameter, then runs the protocol in reverse to reach the initial control param-
eter (e.g., expanding the gas in the piston rather than compressing it). When the process
is performed in finite time, the system lags the equilibrium distribution during both the
forward and reverse protocols, yielding different work distributions for each process. How-
ever, Eq. (1.10) places a tight constraint on the allowable work distributions for the forward
and time-reversed processes in terms of the excess work. Similar fluctuations theorems have
been derived for nonequilibrium processes other than control protocols [51], relating the
probabilities of forward and time-reversed processes to irreversible entropy production.

These nonequilibrium work relations allow equilibrium thermodynamic information to
be extracted from nonequilibrium driving protocols. For example, the free-energy difference
between equilibrium ensembles can be computed using Eq. (1.9), although in practice bidi-
rectional variations on (1.9) such as Bennett’s acceptance ratio [59] are used to improve
accuracy and reduce bias in the estimate [60, 61, 62]. The potential of mean force on the
system along the driving coordinate can also be calculated using nonequilibrium protocols,
as shown by Hummer and Szabo [63]. This makes nonequilibrium protocols a useful tool for
determining quantitative information about the system’s underlying free-energy landscape.
The potential of mean force for DNA hairpin folding has been calculated experimentally
using such methods [10].

1.2.2 Minimum-work protocols

The equilibrium free-energy difference between control-protocol endpoints is fixed because
free energy is a state function, however the work done during the protocol is path dependent.
For a fixed protocol duration, it is therefore of interest to find a protocol that minimizes ex-
cess work. Such minimum-work protocols (MWPs) in turn provide insight into energetically
efficient operation of biological molecular machines [1], the design of methods for efficient
chemical processing [64], and informs the design of novel nanotechnology [65]. Additionally,
the magnitude of excess work has implications for the precision and accuracy of free-energy
estimates from nonequilibrium control protocols [60, 61, 62], which are improved when less
excess work is done. Exact results for minimum-work protocols for any duration have been
derived in a few model systems [66]; approximations are available in the limits of long and
short protocol duration [67, 7, 68, 69, 70].

In this thesis, minimum-work protocols in the limit of long-but-finite duration are con-
sidered, as derived in Ref. [7]. Here, a linear-response expansion of the system’s response
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to the driving protocol yields a Riemannian metric in control-parameter space measuring
the excess power during the protocol. Minimum-work protocols designed using this metric
are geodesics, the generalization of straight lines between protocol endpoints to curved,
non-Euclidean geometry.

The metric is interpreted as generalized friction, quantifying system resistance (due to
equilibrium fluctuations) to changes in the control parameter. For the example of isothermal
compression of gas in a piston, this resistance comes from the particles accumulating near
the piston as the volume is reduced because there has not been sufficient time for the
particles to diffuse out of the way and form the equilibrium uniform distribution. This same
idea is intuitive in biomolecular experiments, for example in optical-tweezer experiments
where a protein is pulled apart. When the pulling is done in finite time, interactions within
the protein that keep it in a folded state resist the changes in control parameter that drive
these interactions to break.

The generalized friction encodes information about changes in the system’s equilib-
rium free-energy during the protocol [67] (its thermodynamics) and equilibrium relaxation
modes [68, 71] (its kinetics). Since generalized friction is related to equilibrium fluctuations,
it seems natural that the geometry of control-parameter space would reflect the geometry
of the underlying system energetics and dynamics.

1.3 Motivation for this thesis

To study the correspondence between driving protocols and spontaneous transitions, control
protocol endpoints are chosen such that the system is restrained to reaction endpoints A or B

when in equilibrium at corresponding control-parameter values. The choice of A and B and
appropriate control parameters depend on the system of interest; in this thesis, calculations
are performed on a particular model system but general principles will be drawn that could
apply to many systems of interest.

The long-duration limit for driving protocols is considered rather than studying minimum-
work protocols for all durations. The generalized friction metric that derives from a linear-
response approximation of a protocol’s excess work has enticing features that may enable a
correspondence with spontaneous transition mechanisms. It quantifies resistance to driving
the system through an ensemble of pathways in conformational space by capturing local
features of the system’s free energy and relaxation times in the corresponding conjugate-
force space, which reflects the dynamics of collective variables the control parameters are
able to control. Local features of the system’s energetics and dynamics are also relevant to
characterizing transient dynamics during a spontaneous transition path [72, 73, 74, 75]. If
there is a significant energy barrier the system must overcome to get from A to B, it seems
intuitive that a minimum-work protocol would drive the system through a saddle point on
the free-energy surface (where the transition state of the spontaneous reaction is expected
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to occur), requiring the minimum work possible to drive the system over the energy barrier.
This suggests a correspondence between the minimum-work protocol and the spontaneous
transition path of the system between A and B which will be investigated throughout this
thesis.

Theoretical descriptions of minimum-work protocols and spontaneous transitions differ
in several ways. Minimum-work protocols are performed in a fixed duration, while sponta-
neous transition paths from A to B have a range of duration. Protocols exchange work with
the system throughout the protocol, while there is no work performed on the system during
a spontaneous transition. Protocol endpoints are defined in control-parameter space, while
endpoints of a spontaneous transition are defined in conformational (or collective-variable)
space. Protocols drive the system out of equilibrium, while spontaneous transitions occur
when the system is at equilibrium.

Nevertheless, there are some commonalities between the processes that are worth inves-
tigating. Both processes share the same conformational space, with internal energy coupling
the system’s many degrees of freedom. The energy and entropy of the conformational space,
and changes in these state functions during trajectories either generated by a control pro-
tocol or selected as a transition path, can therefore be directly compared. With appropriate
choice of control parameters, the endpoint distributions of the protocol can approximate the
unperturbed distribution in metastable basins surrounding transition-path endpoints A and
B, providing at minimum a control-parameter space capable of distinguishing metastable
conformations. However, there is great interest in sets of collective variables that not only
distinguish metastable basins but also provide information about the reaction mechanism.
A control-parameter space is designed to bias collective variables that are presumed to be
relevant to a reaction and minimum-work protocols are found and tested for their corre-
spondence to the spontaneous reaction mechanism.

1.4 Outline of this thesis

Chapter 2 begins with some mathematical background on stochastic dynamics, transition-
path theory, and minimum-work protocols. Chapter 3 provides a thermodynamic accounting
of the information contained in reactive trajectories, allowing quantitative determination
of the relevance of a set of collective variables to a reaction. This establishes a connection
between a dynamical theory describing spontaneous transitions and thermodynamic defini-
tions of energy and entropy along individual trajectories [76]. In Chapter 4, minimum-work
protocols for driving an Ising model system between energetically stable configurations are
calculated. The additional freedom provided by controlling multiple collective variables is
explored and related to reduced excess work relative to a naive (constant-velocity) protocol
between the same endpoints [77]. In Chapter 5, the two paradigms are drawn together, com-
paring the mechanism and energy flows into the system during a minimum-work protocol
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and during the spontaneous transition-path ensemble, highlighting some intuitive connec-
tions between the processes and some complicating factors. Conclusions and suggestions for
future work are discussed in Chapter 6.
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Chapter 2

Theoretical Background

In this chapter, some necessary theoretical background is introduced which will inform the
work in the remainder of this thesis. Section 2.1 begins with a review of stochastic dynamics,
followed by some background into information theory in Section 2.1.2 and stochastic ther-
modynamics in Section 2.1.3. The fundamentals of transition-path theory are then reviewed
in Section 2.2 and the utility of the committor as a reaction coordinate is discussed in more
detail. In Section 2.3, the thermodynamics of control protocols are reviewed, followed by
introduction of minimum-work protocols in the linear-response regime and the generalized
friction.

2.1 Stochastic dynamics and thermodynamics

Equilibrium thermodynamics explains many observations in the physical sciences, including
phase transitions, reaction spontaneity, and reversible processes. As interest in and ability
to study nonequilibrium systems grows, integrating system dynamics into descriptions of
thermodynamics has become a necessary tool to understand biological phenomena. This
motivates the field of stochastic thermodynamics, which provides definitions of work, heat,
and entropy for individual trajectories that are then readily applied to nonequilibrium sys-
tems. These use stochastic descriptions of system dynamics, where noise provides a random
force to the system in addition to conserved and non-conserved forces, for example, that
arise from internal energy and nonequilibrium environmental forces.

2.1.1 Ensemble and trajectory descriptions of stochastic dynamics

Suppose the system is in microstate ϕ at time t. In deterministic classical mechanics, ϕ(t)
describes the position and momentum of each coordinate of the system at time t; by in-
tegrating classical equations of motion, the microstate at a later time ϕ(t + δt) can be
determined [78]. Importantly, a trajectory initiated from a point ϕ follows the same path
through phase space each time. This is not the case with stochastic dynamics; each step
in the dynamics incorporates random forces, so a trajectory initiated from ϕ follows a
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different path in each trial, leading to a distribution of possible outcomes at a later time
p(ϕ, t+δt|ϕ, t). However, with certain assumptions on the random noise, average properties
of the ensemble of trajectories can be derived. Formal introductions to stochastic dynam-
ics are presented elsewhere [13]. This section instead focuses on developing some intuition
about stochastic dynamics, with relevant equations and notation appearing as necessary.

To begin, assume the system is initialized in state ϕ at time t0 and the system dynamics
are simulated via a Markov jump process for n discrete time steps until time tn to produce a
trajectory {ϕ(t)} = {ϕ0, t0;ϕ1, t1; . . . ;ϕn, tn}. It is assumed that the dynamics are Marko-
vian, that is, the next state visited by the system depends only on the current state and
not past states visited by the system [13, 79]. The probability of producing a particular
trajectory {ϕ(t)} can then be expressed as

p({ϕ(t)}) = p(ϕ0, t0)
n∏

i=1
p(ϕi, ti|ϕi−1, ti−1) , (2.1)

where p(ϕi, ti|ϕi−1ti−1) is the transition probability, the probability the system makes a
transition from ϕi−1 to ϕi in the time interval ti−1 → ti, and p(ϕ0, t0) is the initial proba-
bility distribution of the system.

The transition probabilities should be chosen such that at long times the system distri-
bution reproduces the distribution of interest. To generate the dynamics of an equilibrium
distribution π(ϕ), the transition probabilities should be independent of time and obey the
principle of detailed-balance [13]

p(ϕ|ϕ′)π(ϕ′) = p(ϕ′|ϕ)π(ϕ) . (2.2)

For each pair of microstates, the equilibrium probability the system is in ϕ′ and makes a
transition to ϕ is equal to the probability the system is in ϕ and makes a transition to ϕ′.
Rearranging, the ratio of transition rates is equal to the ratio of equilibrium probabilities

p(ϕ|ϕ′)
p(ϕ′|ϕ) = π(ϕ)

π(ϕ′) . (2.3)

There are many possible ways to choose transition probabilities that satisfy these con-
ditions. Given an initial state ϕ0 drawn from the initial probability distribution p(ϕ0, t0), a
general Monte Carlo procedure generates a new trial state ϕ∗ with probability ptrial(ϕ∗|ϕ0)
and then draws a random number between 0 and 1 to determine whether or not the new
state is accepted. The total transition probability from ϕ0 to ϕ∗,

p(ϕ1 = ϕ∗, t1|ϕ0, t0) = ptrial(ϕ∗|ϕ0)paccept(ϕ∗|ϕ0) , (2.4)

where paccept(ϕ∗|ϕ0) is the acceptance probability that must be chosen to ensure dynamics
obey detailed balance. If the random number is less than the transition probability, the
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system moves to ϕ1 = ϕ∗ at time t1, otherwise it stays in state ϕ0 at time t1. The process
is repeated till a trajectory of the desired length is generated.

There are many choices for generating the trial state, depending on the system of interest.
In molecular simulations, random perturbations to positions and momenta of atoms could
be applied [80]. For the Ising model studied in this thesis (introduced in Section 4.2), a
trial state is generated by randomly choosing one of N spins making up the system from
a uniform distribution and flipping it, thus ptrial(ϕ∗|ϕ0) = N−1. If the trial probability is
symmetric, ptrial(ϕ∗|ϕ0) = ptrial(ϕ0|ϕ∗), the constraint on transition probabilities imposed
by detailed balance falls on the acceptance probability. For physical systems with energy
V (ϕ) that relax to a Boltzmann distribution, the acceptance probabilities must satisfy

paccept(ϕ∗|ϕ0)
paccept(ϕ0|ϕ∗) = e−β[V (ϕ∗)−V (ϕ0)] . (2.5)

Common choices for the acceptance probability include the Metropolis criterion [81] and
the Glauber criterion [82], but other choices are possible as long as they obey certain con-
straints to ensure the process converges to the desired distribution. The Glauber acceptance
probability is used in this thesis, which has the form

paccept,GL(ϕ∗|ϕ0) = 1
1 + eβ[V (ϕ∗)−V (ϕ0)] . (2.6)

The Glauber acceptance criterion (2.6) satisfies detailed balance,

paccept,GL(ϕ∗|ϕ0)
paccept,GL(ϕ0|ϕ∗) = 1 + eβ[V (ϕ0)−V (ϕ∗)]

1 + eβ[V (ϕ∗)−V (ϕ0)] (2.7a)

= eβV (ϕ∗) + eβV (ϕ0)

eβV (ϕ0) + eβV (ϕ∗)
eβV (ϕ0)

eβV (ϕ∗) (2.7b)

= e−β[V (ϕ∗)−V (ϕ0)] . (2.7c)

Equation (2.1) is the probability for a single trajectory generated by a Markov jump
process. It is often of interest to obtain average quantities over all possible trajectories
{ϕ(t)}; it is therefore useful to have a description of the way the system’s probability
distribution evolves in time p(ϕ, t) from an initial distribution. This is commonly expressed
as a Master equation [13]

dtp(ϕ, t) =
∑
ϕ′

Tϕϕ′(t)p(ϕ′, t) , (2.8)

where Tϕϕ′(t) = limδt→0 p(ϕ, t + δt|ϕ′, t)/δt is the transition rate of ϕ′ → ϕ transition at
time t, which is expressed as the transition probability per infinitesimal time step divided
by time step δt. The ϕ → ϕ transition rate is defined as

Tϕϕ = −
∑
ϕ′ ̸=ϕ

Tϕ′ϕ (2.9)
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to ensure the probability distribution remains normalized.
The Master equation describes how the probability distribution changes from the ini-

tial condition p(ϕ0, t0) as the system evolves stochastically. When the transition rate is
independent of time, the system may relax to a stationary distribution pss(ϕ)

0 = dtp
ss(ϕ) =

∑
ϕ′

Tϕϕ′pss(ϕ′) , (2.10)

where the probability of each state is constant. This is the global balance condition [13],
ensuring that there are no changes to the probability of any state ϕ

0 =
∑
ϕ′

[
Tϕ′ϕpss(ϕ) − Tϕϕ′pss(ϕ′)

]
. (2.11)

However, the stationary distribution is not necessarily an equilibrium distribution; there
may be net probability flows in the system that are balanced such that there is no over-
all change in the probability of each state. Equilibrium requires the stronger condition of
detailed balance, which can be expressed in terms of transition rates as

Tϕϕ′π(ϕ′) = Tϕ′ϕπ(ϕ) , (2.12)

for all pairs of states ϕ, ϕ′. Not only is the overall probability in each state conserved at
equilibrium, but probability flux between all states is equal in both directions, resulting in
no flux or probability flows throughout the state space. If global balance holds but detailed
balance does not, the stationary distribution can be called a nonequilibrium steady state [79].

2.1.2 Entropy and information theory

Statistical mechanics treats the system state ϕ as a random variable Φ. This allows an
information-theoretic perspective on entropy that parallels its thermodynamic definition.
The foundations of information theory were laid out by Claude Shannon at Bell Labs in
1948 [83]. Since then, it has been recognized that information is physical, as elegantly argued
by Landauer [84]. Some key concepts from information theory are briefly reviewed to better
elucidate this connection, which will be relevant for Chapter 3.

First, consider quantifying the uncertainty about a random variable X before taking a
measurement. Throughout, the convention of capital symbols to denote a random variable
and lowercase symbols to denote a particular realization of the random variable is used. The
uncertainty about discrete random variable X with probability mass function p(X = x) is
given by its Shannon entropy, defined to be

H(X) ≡ −
∑

x

p(x) ln p(x) . (2.13)
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Notably, this is the same form for thermodynamic entropy derived by Gibbs, up to a con-
stant kB [12]. The average amount of information gained about the distribution upon mea-
surement of the random variable is equal to its Shannon entropy, therefore information
represents a reduction in uncertainty.

Information theory gains more power by considering multiple random variables X and
Y . Consider X and Y jointly distributed according to the probability mass function p(X =
x, Y = y). For example, X and Y could be coordinates representing the state of a two-
dimensional system. The joint entropy of the joint random variable (X, Y ) is

H(X, Y ) ≡ −
∑
x,y

p(x, y) ln p(x, y) . (2.14)

Similarly, the marginal entropy of one of these random variables (without loss of generality
X) is expressed in terms of its marginal distribution p(x) =

∑
y p(x, y) as

H(X) = −
∑

x

p(x) ln p(x) (2.15a)

= −
∑
x,y

p(x, y) ln
∑

y

p(x, y) . (2.15b)

This is the uncertainty about the joint state that can be reduced from observing only X.
The conditional entropy of X given Y can be similarly defined as

H(X|Y ) ≡ −
∑
x,y

p(x, y) ln p(x|y) , (2.16)

which represents the remaining uncertainty about X when Y is known. This hints that
information is shared between X and Y , which can be precisely quantified by the mutual
information between X and Y ,

I(X; Y ) ≡
∑
x,y

p(x, y) ln p(x, y)
p(x)p(y) . (2.17)

Mutual information is a nonlinear statistical measure of the relationship between random
variables X and Y , specifically measuring the reduction in uncertainty about one variable
from measuring the other,

I(X; Y ) = H(X) − H(X|Y ) (2.18a)

= H(Y ) − H(Y |X) (2.18b)

= I(Y ; X) . (2.18c)
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It is a symmetric quantity that is positive semi-definite

I(X; Y ) = −
∑
x,y

p(x, y) ln p(x)p(y)
p(x, y) (2.19a)

≥ ln
∑
x,y

p(x, y)p(x)p(y)
p(x, y) (2.19b)

= ln
∑
x,y

p(x)p(y) (2.19c)

= ln 1 (2.19d)

= 0 , (2.19e)

and zero if and only if X and Y are independent [p(x, y) = p(x)p(y)]. Eq. (2.19b) uses
Jensen’s inequality [83].

Information theory also has broad relevance throughout the field of stochastic thermo-
dynamics, as an essential aspect of describing many classes of nonequilibrium systems [85,
86, 87].

2.1.3 Stochastic thermodynamics

Stochastic thermodynamics defines thermodynamic quantities for individual trajectories.
Here, a trajectory generated by a Markov jump process introduced in Section 2.1.1 is con-
sidered. The transition rate for a ϕ′ → ϕ transition is Tϕϕ′ , and the probability the system
is in state ϕ at time t is p(ϕ, t). Let V (ϕ, t) denote the energy of state ϕ at time t. The
first law of thermodynamics accounts for changes to the system’s energy as work or heat,

dtV (t) =
∑
ϕ

dt [p(ϕ, t)V (ϕ, t)] (2.20a)

=
∑
ϕ

[V (ϕ, t)dtp(ϕ, t) + p(ϕ, t)dtV (ϕ, t)] (2.20b)

= Q̇(t) + Ẇ(t) (2.20c)

where the overdot notation indicates a rate (here, of heat and work) that cannot be expressed
as the time derivative of a state function. Work is performed by an external agent making
changes to the energy of microstates, while heat is produced during system transitions by
exchange of energy with thermodynamic reservoirs. The sign convention is used that positive
heat and work correspond to energy flows into the system. Further discussion of work done
on the system during a control protocol is discussed in Section 2.3.2.

Heat flow to the system for the instantaneous transition from ϕ′ → ϕ is the change in
system energy during the transition at time t, which is equal to a log ratio of transition
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rates that obey detailed balance [88],

qϕϕ′(t) ≡ kBT [V (ϕ, t) − V (ϕ′, t)] = kBT ln Tϕ′ϕ(t)
Tϕϕ′(t) . (2.21)

Assuming the reservoirs in contact with the system remain in equilibrium, the heat flow is
proportional to the negative entropy change in the environment

qϕϕ′(t) = −kBT henv
ϕϕ′(t) . (2.22)

Entropy is expressed as a dimensionless quantity throughout this thesis. The change in
system entropy for a ϕ′ → ϕ transition is the difference in specific entropy h(ϕ, t) ≡
− ln p(ϕ, t),

∆hsys
ϕϕ′(t) ≡ ln p(ϕ′, t)

p(ϕ, t) . (2.23)

Thus the total (irreversible) entropy production for a ϕ′ → ϕ transition is

hirr
ϕϕ′(t) = ∆hsys

ϕϕ′(t) + henv
ϕϕ′(t) (2.24a)

= ln Tϕϕ′(t)p(ϕ′, t)
Tϕ′ϕ(t)p(ϕ, t) , (2.24b)

the log ratio of the forward and reverse flux for a transition between ϕ′ and ϕ at time t, also
called the thermodynamic force [88]. If the system is in equilibrium so there is equal flux
of forward and reverse transitions [Tϕϕ′π(ϕ′) = Tϕ′ϕπ(ϕ)], the total entropy production is
zero for each transition,

hirr
ϕϕ′ = hsys

ϕϕ′ + henv
ϕϕ′ (2.25a)

= −kBT ln Tϕ′ϕ

Tϕϕ′
+ kBT ln π(ϕ′)

π(ϕ) (2.25b)

= 0 . (2.25c)

Assuming the system has reached steady state pss(ϕ) with its reservoirs (which may be
out of equilibrium), multiplying the thermodynamic quantities defined for each transition
by the net probability flux of the transition

Jϕϕ′ ≡ Tϕϕ′pss(ϕ′) − Tϕ′ϕpss(ϕ) , (2.26)
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gives ensemble-averaged thermodynamic quantities. The steady-state heat flow to the sys-
tem is

Q̇ = kBT

2
∑
ϕϕ′

Jϕϕ′ ln Tϕ′ϕ

Tϕϕ′
(2.27a)

= −kBTḢenv , (2.27b)

where the factor of 1
2 accounts for the inclusion of each pair of states twice in the sum.

System entropy is unchanging at steady state (even for nonequilibrium steady states)
since it is a state function of an unchanging distribution:

dtH
sys = 1

2
∑
ϕϕ′

Jϕϕ′ ln pss(ϕ′)
pss(ϕ) (2.28a)

= 1
2
∑
ϕϕ′

Jϕϕ′
[
ln pss(ϕ′) − ln pss(ϕ)

]
(2.28b)

= 1
2

∑
ϕ′

ln pss(ϕ′)
∑
ϕ

Jϕϕ′ −
∑
ϕ

ln pss(ϕ)
∑
ϕ′

Jϕϕ′

 (2.28c)

= 0 , (2.28d)

using
∑
ϕ′ Jϕϕ′ =

∑
ϕ′ Jϕ′ϕ = 0 for all ϕ when the system is at steady state (Eq. (2.11)).

Therefore the total entropy production rate is equal to the rate of change in environmental
entropy

Ḣ irr =
∑
ϕ>ϕ′

Jϕϕ′ ln Tϕϕ′pss(ϕ′)
Tϕ′ϕpss(ϕ) (2.29a)

=
∑
ϕϕ′

Jϕϕ′ ln pss(ϕ′)
pss(ϕ) +

∑
ϕϕ′

Jϕϕ′ ln Tϕϕ′

Tϕ′ϕ
(2.29b)

= dtH
sys + Ḣenv (2.29c)

= 0 + Ḣenv ≥ 0 , (2.29d)

and is positive semi-definite. Ḣ irr = 0 if and only if detailed balance (2.12) holds. Irreversible
entropy production is the driving force behind all spontaneous processes, and there is signif-
icant interest in understanding its role in biological processes [1, 89]. Chapter 3 shows that
irreversible entropy production also plays a role in characterizing reaction mechanisms.

2.2 Theory and analysis of spontaneous transition paths

Given the stochastic dynamics described in Section 2.1.1, the theory of transition paths
can now be introduced. Transition-path theory for Markov jump processes in discrete state
spaces [30, 90] is presented, but the theory was originally developed for continuous sys-
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tems [29]. Concepts of the transition-path ensemble, the committor, and reaction statistics
computed from the committor are reviewed below.

2.2.1 Transition-path theory

Assume a system’s dynamics are governed by the Master equation Eq. 2.8 with ϕ′ → ϕ

transition rate Tϕϕ′ and that the system has reached the equilibrium distribution π(ϕ)
such that detailed-balance holds (Eq. (2.12)). Select from the state space Φ two distinct
subsets of reactant microstates A and product microstates B. These subsets should be non-
overlapping so the system must travel through an intermediate region I as it progresses from
A to B. During a long ergodic equilibrium supertrajectory, the system transitions between
A and B infinitely many times; the transition-path ensemble (TPE) is the set of trajectory
segments (also called reactive trajectories or transition paths) that travel directly from A

to B. Statistics such as reactive flux, mean first-passage time, and mean transition-path
duration are derived from the frequency of A → B transition events using transition-path
theory.

The joint probability that the system is in state ϕ and on a reactive trajectory segment

p(ϕ, A → B) = π(ϕ)p(A → B|ϕ) , (2.30)

is conveniently expressed as the product of the marginal (equilibrium) probability the system
is in state ϕ and the conditional probability p(A → B|ϕ) that the system is currently on
an A → B reactive trajectory given that it is currently in state ϕ. It then remains to find
this conditional probability.

Define the forward committor q+(ϕ) to be the probability the system will next reach
B given that it is in state ϕ, and the backward committor q−(ϕ) to be the probability the
system was more recently in A than B given that it is currently in state ϕ. These committor
functions can be defined recursively for discrete-state systems:

∑
ϕ′

Tϕ′ϕq+(ϕ′) = 0 (2.31a)

∑
ϕ′

Tϕ′ϕ
π(ϕ)
π(ϕ′)q−(ϕ′) = 0 (2.31b)

with boundary conditions q+(ϕ) = 0(1) and q−(ϕ) = 1(0) for ϕ ∈ A(B). For discrete-
state systems, the committors can be calculated numerically by solving the system of linear
equations 2.31 to find the committor of each state.

For equilibrium systems, the principle of microscopic reversibility [13] is used to relate
the backward committor to the forward committor. The backward committor q−(ϕ) is the
probability the system in state ϕ was generated from a trajectory that originated in A.
Each such trajectory from A to ϕ has an equally probable time-reversed trajectory from ϕ
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to A. Therefore the ratio of A → ϕ vs. B → ϕ trajectories is equal to the ratio of ϕ → A vs.
ϕ → B trajectories. Since the probability of a ϕ → A trajectory is 1 − q+(ϕ), the forward
and backward committor functions are related by the equality

1 − q+(ϕ) = q−(ϕ) . (2.32)

This implies that due to time-reversal symmetry of equilibrium dynamics, either committor
function (usually the forward committor is adopted) is sufficient on its own to fully describe
the statistics of reactive trajectories in the intermediate state space between A and B.

With these two definitions, the joint probability the system is in state ϕ and on a reactive
trajectory is expressed as

p(ϕ, A → B) = π(ϕ)q−(ϕ)q+(ϕ) . (2.33)

In words, this is the equilibrium probability the system is in state ϕ and was more recently
in A and next reaches B. The independence (on the rhs) of the probability the system was
more recently in A given it is currently in ϕ and the probability the system next reaches B

conditioned on state ϕ can be understood from the Markov property: whether the system
was more recently in A or B does not influence future dynamics since they are assumed
to be memoryless and depend only on the current state ϕ. Therefore the probability the
system next proceeds to B (rather than A), conditioned on current state ϕ, is independent
of whether the system was more recently in A or B. Equation (2.33) readily yields the
probability distribution of reactive trajectories,

p(ϕ|A → B) = π(ϕ)q−(ϕ)q+(ϕ)
pA→B

, (2.34)

where
pA→B =

∑
ϕ

π(ϕ)q−(ϕ)q+(ϕ) (2.35)

is the probability the system is on an A → B reactive trajectory at time t during the ergodic
supertrajectory.

A particularly useful output of transition-path theory is a description of the probability
current of reactive trajectories. Consider the transition-path ensemble to be in a steady
state where the system is initiated at the boundary of A and is constrained to reach B

without returning to A. The system is instantly regenerated at the boundary of A once
it reaches the boundary of B. This results in a steady-state current of trajectories flowing
from A to B, with reactive probability current between states ϕ′ and ϕ given by

JA→B
ϕϕ′ = π(ϕ′)q−(ϕ′)Tϕϕ′q+(ϕ) . (2.36)
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This is the joint probability that the system is in state ϕ′, was more recently in A than B,
makes a transition in simulation time dt to state ϕ, and will next reach B before A. When
averaged over all transitions that leave A and start a transition path, or all transitions that
finish transition paths with a jump into B, the reactive probability current yields the flux
of A → B transitions through the intermediate region I

νA→B =
∑

ϕ′∈A,ϕ∈I

JA→B
ϕϕ′ (2.37a)

=
∑

ϕ′∈I,ϕ∈B

JA→B
ϕϕ′ . (2.37b)

In fact, any dividing surface between A and B can be used to find the reaction rate, since
the steady-state reactive flux is the same through any dividing surface. Additionally, the
flux of A → B transitions is equal to the flux of B → A “reverse” transitions, since the
system is at equilibrium. The reactive flux is related to the rate constants by

kA→B = νA→B

pA
(2.38a)

kB→A = νA→B

pB
(2.38b)

where

pA =
∑
ϕ

π(ϕ)q−(ϕ) (2.39a)

pB =
∑
ϕ

π(ϕ)[1 − q−(ϕ)] (2.39b)

is the probability the system was more recently in A (B) than in B (A) at some time t

during the ergodic supertrajectory. The mean first-passage time to B (A) given that the
system is currently in A (B) is the inverse of the rate constant

τFP
A→B = k−1

A→B (2.40a)

τFP
B→A = k−1

B→A . (2.40b)

Another quantity available from transition-path theory is the mean duration of transition
paths τA→B, which is derived from the probability pA→B that the system is currently on an
A → B transition path and the mean round-trip time [91]

τRT ≡ τFP
A→B + τFP

B→A (2.41)
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for the system starting in A to reach B and come back to A for the first time,

τA→B = pA→B τRT (2.42a)

= pA→B

(
τFP

A→B + τFP
B→A

)
(2.42b)

= pA→B

( 1
kA→B

+ 1
kB→A

)
(2.42c)

= pA→B

(
pA

νA→B
+ pB

νA→B

)
(2.42d)

= pA→B

νA→B
, (2.42e)

using

pA + pB =
∑
ϕ

π(ϕ)q−(ϕ) +
∑
ϕ

π(ϕ)[1 − q−(ϕ)] (2.43a)

=
∑
ϕ

π(ϕ) (2.43b)

= 1 (2.43c)

to obtain (2.42e). Analogous expressions have been derived for continuous state-space
systems [29].

Transition-path theory has become the leading tool for describing reaction events, al-
lowing calculation of average transition-path properties using the committor. Additionally,
the committor is widely considered the “true” or “optimal” reaction coordinate [23, 46, 36].
Importantly, it provides language to describe reactions where an intuitive system coordinate
that acts as a reaction coordinate cannot necessarily be found, and it provides quantitative
information about the rate of the reaction through the reactive flux.

The committor and transition-path theory can also provide mechanistic information
by highlighting regions of conformational space that are particularly relevant to the reac-
tion [92]. The committor foliates the conformational space between A and B into a series
of isocommittor surfaces (all microstates with the same value of the committor), and im-
portant features of the system on these surfaces can be determined. For example, the reac-
tive probability distribution may lie within a “transition tube” in an appropriately chosen
collective-variable space, so that the mechanism can be described by a single most likely
transition path that in some way averages the distribution on each isocommittor surfaces.
A minimum-free energy path can be found that is parallel to the free-energy gradient in
collective-variable space (analogous to the minimum-energy path in the full configuration
space) [93, 73, 92], or a maximum-flux transition path [74, 75] that maximizes the reac-
tive flux on each isocommittor surface. Algorithms to compute these paths using molecular
dynamics simulations in a space of many collective variables have been developed [94, 73].
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Importantly, they require that the committor in chosen collective-variable space is a good
approximation to the committor in the full configuration space.

2.3 Minimum-work control theory

In this section, the thermodynamic foundation necessary to understand minimum-work
control protocols in the linear-response regime is discussed, beginning with a discussion of
control-parameter space and its relationship to the conformational space it biases.

2.3.1 Control parameters and collective variables

As introduced in Section 1.2.1, there are many choices for control parameters to drive a
system, such as temperature, pressure, and external magnetic fields. Since it is of interest
to drive the system between metastable states, control parameters with clear correspondence
to system collective variables are chosen. For example, a collective variable can be chosen
that is presumed to have relevance to the reaction, then the system can be restrained to
particular values of this collective variable using a harmonic trap. The centre of the trap
(and/or its spring constant) acts as a control parameter, and the system is driven between
values of the chosen collective variable corresponding to metastable states by a control
protocol that moves the center of the trap [66, 95, 62].

The control parameter biases the system’s internal energy Eint(ϕ) with a control-parameter-
dependent external energy Eext(ϕ,λ), to give total energy

V (ϕ,λ) = Eint(ϕ) + Eext(ϕ,λ) . (2.44)

The total potential is related to the equilibrium probability distribution of the system at
each control parameter,

π(ϕ|λ) = eβ[F eq(λ)−V (ϕ,λ)] , (2.45)

with equilibrium free energy given λ of

F eq(λ) = −kBT ln
∑
ϕ

e−βV (ϕ,λ) (2.46a)

= ⟨V (ϕ,λ)⟩eq
λ − kBTHeq(λ) , (2.46b)

where ⟨. . .⟩eq
λ denotes an average over the equilibrium distribution π(ϕ|λ), and

Heq(λ) = −
∑
ϕ

π(ϕ|λ) ln π(ϕ|λ) (2.47)
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is the entropy of the equilibrium distribution at λ. Appropriately chosen control parameters
allow the system to preferentially sample regions of conformational space that are typically
inaccessible to the system but may be visited transiently during a reaction.

Since the conformational space is typically too high-dimensional to interpret, sampling
is often done in a lower-dimensional space defined by a set of collective variables X(ϕ)
to identify metastable conformations and free-energy barriers between them. A single point
x = X(ϕ) in collective-variable space corresponds to a manifold of microstates in the higher-
dimensional conformational space, so calculation of the marginal equilibrium probability of
these coarse variables π(X(ϕ)) in the absence of control (Eext(ϕ,λ) = 0) is desired. This
is expressed in terms of the free energy of a particular value of collective variable x,

F (x) = −kBT ln
∑
ϕ

e−βEint(ϕ)δ [X(ϕ) − x] (2.48a)

= −kBT ln π(x) − kBT ln Z , (2.48b)

where δ [X(ϕ) − x] selects all microstates ϕ with collective variable at point x and Z =∑
ϕ e−βEint(ϕ) is the partition function of the (unperturbed) equilibrium distribution. If

the collective variable is a one-dimensional reaction coordinate (such as the committor),
Eq. (2.48) is the free energy of the reaction shown in Fig. 1.1, which incorporates both
energetic and entropic aspects of the (many) system configurations consistent with the
given value of the reaction coordinate.

Calculation of free energy in collective-variable space can be a computationally expensive
task since sufficient sampling of the entire collective-variable space is needed to ensure
converged estimates of free energy. For systems with metastable conformations, a trajectory
initiated in one mesostate spends a (potentially) long time sampling microstates in that
mesostate before overcoming the energy barrier to sample the other mesostate, and due
to the timescale separation between the simulation timestep and reaction transitions, it
becomes impractical to compute free energies via a brute-force approach.

Instead, enhanced-sampling methods use control parameters to more efficiently sam-
ple relevant regions of conformational space and compute free energies or other equilib-
rium properties [96]. Equilibrium samples are drawn independently from several control-
parameter values that span the relevant collective-variable space. Because the control-
parameter perturbations (and resulting equilibrium distributions (2.45)) that have been
applied to the system are known, it is possible to reweight equilibrium samples taken from
a range of control-parameter values to infer the distribution of the unperturbed system in
collective-variable space [97, 96]. An analogous result was derived for nonequilibrium control
protocols [63] where the system is driven along a single collective variable; the free energy
along this driving protocol can be recovered by reweighting observations at each value of
the collective variable using the work on the system up to that point in the protocol.
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2.3.2 Thermodynamics of control protocols

Control protocols change control parameters λ between initial λinitial and final λfinal values
in finite time, so that entire trajectories are relevant rather than equilibrium samples from
independent simulations performed at each control-parameter value.

The combination of microstate ϕ and control parameter λ has an associated energy
V (ϕ,λ). The first law of thermodynamics requires that energy be conserved; therefore,
changes in the system’s energy must be accounted for as heat or work,

dV (ϕ,λ, t) =
∑
ϕ

[
∂V (ϕ, λ, t)

∂λ

∂λ

∂t
+ ∂V (ϕ, λ, t)

∂ϕ

∂ϕ

∂t

]
(2.49a)

= d̄W(ϕ,λ, t) + d̄Q(ϕ,λ, t) , (2.49b)

where d denotes an exact differential and d̄ an inexact differential. The work on the system
is alternatively expressed as

d̄W(t) = −
∑

i

d̄λi(t)Xi(ϕ,λ, t) (2.50)

in terms of forces Xi(ϕ,λ, t) ≡ −∂V (ϕ, λ, t)/∂λi conjugate to respective control parameters
λi.

The mean work during a protocol of duration ∆t is

⟨W⟩Λ = −
∫ ∆t

0
dt
∑

i

λ̇i(t)⟨Xi(ϕ,λ, t)⟩Λ , (2.51)

where λ̇i ≡ ∂λi/∂t is the velocity of control parameter i, and ⟨. . .⟩Λ denotes a nonequilibrium
average over the protocol, which depends on current control parameters and the entire
history of control-parameter changes and system response.

When this process is done reversibly (quasistatically) so that the system is in equilibrium
throughout the protocol, the mean conjugate force is related to changes in the equilibrium
free energy, [67]

⟨Xi(ϕ,λ, t)⟩rev
Λ = ⟨Xi⟩eq

λ(t) = −∂F eq(λ)
∂λi

, (2.52)

and the work on the system is equal to the free energy difference between control-parameter
endpoints (2.46):

W =
∫ ∆t

0
dt
∑

i

λ̇i(t)
∂F eq(λ)

∂λi
(2.53a)

=
∫ ∆t

0
dt

dF eq(λ)
dt

(2.53b)

= F eq(λfinal) − F eq(λinitial) . (2.53c)
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This equality between work and free energy is true for any quasistatic protocol, regardless
of the exact path taken through control-parameter space.

When the control parameters are tuned in finite duration ∆t, on average excess work is
done on the system above the equilibrium free energy change,

⟨Wex⟩Λ = −
∫ ∆t

0
dt
∑

i

λ̇i(t)⟨δXi(ϕ,λ, t)⟩ (2.54)

where δXi(ϕ,λ, t)) ≡ Xi(ϕ,λ, t) − ⟨Xi⟩eq
λ(t) is defined as the deviation of instantaneous

conjugate force from its equilibrium mean at control parameter λ.
The excess work during a protocol has special significance for nonequilibrium driving

protocols. Assuming the system begins in equilibrium at λinitial and relaxes to equilibrium at
λfinal after the end of the protocol, excess work is equal to the irreversible entropy production
of the nonequilibrium driving protocol, quantifying the energy wasted during the process.

β⟨Wex⟩Λ ≡ β(⟨W⟩Λ − ∆F eq) (2.55a)

= β⟨∆V ⟩Λ − β⟨Q⟩Λ − β⟨∆V ⟩eq + ∆Hsys,eq (2.55b)

= βδ⟨V (∆t)⟩Λ + ∆Henv
Λ + ∆Hsys,eq . (2.55c)

In (2.55b), the first law is used to equate work with change in energy and heat flow, and
the free energy difference is expressed as changes in energy and entropy. Eq. (2.55c) equates
heat with the environmental entropy change and defines the deviation of energy at the
end of the protocol from its equilibrium value as δ⟨V (∆t)⟩Λ ≡ ⟨V (∆t)⟩Λ − ⟨V ⟩eq

λfinal
. When

the system relaxes to equilibrium after the end of the protocol, δ⟨V (t → ∞)⟩Λ = 0. Also
recognizing that ∆Henv

Λ + ∆Hsys = ∆H irr
Λ , the excess work is equal to irreversible entropy

production,
β⟨Wex⟩Λ = ∆H irr

Λ . (2.56)

The connection between excess work and entropy production plays a central role in nonequi-
librium work relations, such as the Jarzynski equality Eq. (1.9) [50] which allows estimation
of the equilibrium free-energy difference ∆F eq from nonequilibrium driving experiments,
and Crooks’ work fluctuation theorem Eq. (1.10) [6] which places a tight constraint on
allowable work fluctuations.

2.3.3 Linear-response approximation to excess work

Given the role excess work plays in the nonequilibrium thermodynamics of driving protocols,
it is helpful to understand how it depends on the choice of driving protocol. To this end,
results have been derived to exactly or approximately calculate the excess work for different
types of protocols. Exact results are analytically tractable for only a few special cases,
such as for driving a system in a harmonic trap with control over the trap center and spring
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constant [66]. Since exact results are difficult to derive, it is valuable to make approximations
to the protocol work valid in different limits. In this thesis, the long-duration limit of protocol
work is examined, using an approximation of excess work that uses linear-response theory.

The mean excess power on a system at time t is

⟨Pex(t)⟩Λ = −
∑

i

λ̇i(t)⟨δXi(t)⟩neq , (2.57)

the product of the (nonequilibrium) value of the conjugate forces and the rate of change of
each control parameter at a given time. For a given control protocol, λ̇(t) is fixed and the
nonequilibrium lag of conjugate forces from their equilibrium values throughout the con-
trol protocol must be determined. In Ref.[7], the lag is approximated using linear-response
theory, which is outlined below.

For quasistatic protocols, the conjugate forces relax to their quasistatic values through-
out the protocol. Assuming the protocols are performed in long-but-finite duration and that
control parameters change continuosly with smooth first and second derivatives, the system
response to external perturbations can be approximated using linear-response theory [13]
as

⟨δXi(t)⟩neq ≈
∫ t

−∞
dt′∑

j

χ
λ(t)
ij (t − t′)

[
λj(t′) − λj(t)

]
. (2.58)

Here, χλij(t − t′) is the linear-response function

χλij(t − t′) ≡ β
d
dt

⟨δXj(t′)δXi(t)⟩λ (2.59)

representing the response of conjugate force Xi at time t to a step perturbation of control
parameter λj at time t′ at control-parameter value λ.

Integration by parts yields an approximation for the nonequilibrium conjugate force as

⟨δXi(t)⟩neq ≈
∫ t

−∞
dt′∑

j

⟨δXi(0)δXj(t − t′)⟩λ̇j(t′) . (2.60)

Assuming the control-parameter velocity changes slowly, a Taylor expansion of the control-
parameter velocity λ̇(t′) around t′ = t, truncated at the constant term yields

⟨δXi(t)⟩neq ≈ −
∑

j

ζij(λ(t))λ̇j(t) , (2.61)

where
ζij(λ) ≡

∫ ∞

0
dt⟨δXi(0)δXj(t)⟩λ (2.62)

is the generalized friction matrix, the time integral of the correlation function of conjugate
forces for the system at equilibrium at control parameter λ.
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Combining this approximation for the mean nonequilibrium lag of conjugate forces with
the control-parameter velocity yields the linear-response estimate for the mean excess power
throughout the protocol, which is valid in the long-duration limit,

Pex,LR(t) =
∑
ij

λ̇i(t)ζij(λ(t))λ̇j(t) . (2.63)

This phenomenological expression for the excess power is local, depending only on instan-
taneous values of the control parameters and their time derivatives, rather than depending
on the entire history of control-parameter perturbations. Integrating excess power over the
protocol duration yields the mean excess work

⟨Wex⟩Λ ≈
∫ ∆t

0
dt Pex,LR(t) . (2.64)

2.3.4 Theoretical insight from generalized friction metric

The linear-response approximation to the excess work during a protocol has several features
that provide insight into minimum-work protocols in the long-duration limit.

First, the generalized friction matrix has special mathematical properties that make it a
Riemannian metric, providing a thermodynamic measure of the distance between two equi-
librium distributions in control-parameter space which accounts for fluctuations required
for the system to relax between the two distributions [67]. Minimum-work protocols are
geodesics of the generalized friction in control-parameter space, which are shortest paths
when distance is measured in terms of the friction metric rather than Euclidean projections.
The friction defines a thermodynamic length for a given protocol,

LΛ =
∫ ∆t

0
dt
√

Pex,LR(t) , (2.65)

which is independent of duration ∆t. Using the Cauchy-Schwarz inequality, thermodynamic
length provides a lower bound on protocol excess work

Wex,LR
Λ =

∫ ∆t

0
dt Pex,LR(t) (2.66a)

= 1
∆t

∫ ∆t

0
dt 1 ·

∫ ∆t

0
dt

[√
Pex,LR(t)

]2
(2.66b)

≥ 1
∆t

[∫ ∆t

0
dt
√

Pex,LR(t)
]2

(2.66c)

= L2

∆t
. (2.66d)
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This lower bound is realized for protocols with constant excess power [7]. Therefore, minimum-
work protocols in the linear-response regime are independent of protocol duration (up to a
constant scaling of control-parameter velocity) and have constant excess power.

The generalized friction can be decomposed into components measuring the size of
force fluctuations and the timescale of relaxation in the equilibrium distribution at control
parameter λ:

ζij(λ) = ⟨δXiδXj⟩λτij(λ) , (2.67)

where ⟨δXiδXj⟩λ is the equilibrium covariance between conjugate force Xi and Xj at control
parameter λ, and

τij(λ) =
∫ ∞

0
dt

⟨δXi(0)δXj(t)⟩λ
⟨δXiδXj⟩λ

(2.68)

is the integral relaxation time between conjugate forces Xi and Xj . The relevance of the
force covariance matrix to control protocols is discussed in Ref. [67].

A major advantage of the linear-response approximation to excess work is the local
description of the conjugate force lag from local perturbations. This greatly simplifies the
original situation where the nonequilibrium conjugate force depends on the entire protocol
history. The protocol that minimizes the linear-response approximation of excess work can
be found using calculus of variations [78]. This amounts to solving the Euler-Lagrange
equation [78] for λ(t)

ζkiλ̈i + ∂ζki

∂λj
λ̇j λ̇i − 1

2
∂ζij

∂λk
λ̇j λ̇i = 0 . (2.69)

with endpoints λ(0) = λinitial and λ(∆t) = λfinal. For most systems, this Euler-Lagrange
equation is not exactly solvable. Section 2.3.5 provides a method for generating numerical
solutions to this equation. However, for a one-dimensional control parameter λ, the Euler-
Lagrange equation can be solved for arbitrary generalized friction [7], yielding

λ̇MWP(t) ∝ ζ(λ(t))−1/2 (2.70)

where the proportionality constant is chosen such that the protocol is completed in dura-
tion ∆t. The resulting design principle of one-dimensional minimum-work control says that
minimizing work requires slower changes to the control parameter wherever the resistance
to driving (i.e., generalized friction) is large. The performance of one-dimensional driving
using this framework have been studied numerically in several model systems [98, 99, 100].

2.3.5 Numerical calculations of minimum-work protocols

Solving the Euler-Lagrange equation for minimum-work protocols (Eq. (2.69)) is a non-
trivial task. Analytical forms for the generalized friction are only available for a handful
of systems [7, 101, 98], necessitating numerical estimation of the generalized friction at
a range of control-parameter values. Optimization of a one-dimensional protocol is fairly
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straightforward since the path is fixed and only the control-parameter velocity must be
optimized. This can be done by numerically estimating the friction coefficient for a discrete
set of M control parameter values λ(m) between protocol endpoints, then solving Eq. (2.70)
to find the time tMWP(λ(m)) for each control-parameter value λ(m) during the protocol.
Beginning with tMWP(λ0) = 0, subsequent times can be found by expressing Eq. (2.70) as
an iterative relation of discrete time intervals

tMWP(λ(m + 1)) = tMWP(λ(m)) + dtMWP
m→m+1 (2.71a)

= tMWP(λ(m)) +
[

ζ(λ(m)) + ζ(λ(m + 1))
2

]1/2
[λ(m + 1) − λ(m)] .

(2.71b)

All times tMWP(λ(m)) can be divided by the final time tMWP(λ(M−1)) to obtain the optimal
scaled protocol duration for each control-parameter point. This algorithm gives the proto-
col time for control-parameter points with equal spatial separation; in Appendix B.2.1, a
method to calculate a one-dimensional minimum-work protocol with discrete points equally
spaced in time is discussed.

Designing multidimensional control protocols is more involved, since the spatial path
through multidimensional control-parameter space must also be optimized. Additionally,
it is typically impractical to sample the friction matrix over control-parameter space for
more than a few control parameters. A few numerical methods have been developed to
calculate minimum-work protocols, some relying on the generalized friction framework [102,
103] and others on importance sampling [104] or machine-learning approaches [105]. An
approach based on the string method found in Ref. [103] is outlined below. The string
method was originally developed to find minimum-energy paths between metastable states
in configuration space [93].

The string method divides a control protocol into M discrete segments, with each node
at a point in control-parameter space. The string is initialized as a straight line between
control-parameter endpoints, then iteratively updated to solve a discrete version of the
Euler-Lagrange equation (2.69). The string is updated from the nth to (n + 1)th iteration
by solving the set of linear equations for each component λα at each discrete point m along
the string:

λn+1
α (m)−λn

α(m) = ∆r

{
D2λn+1

α (m) (2.72)

+
∑
ijk

[ζ−1]nαk(λ(m)) Dλn
i (m) Dλn

j (m)
[
∂iζkj(λ(m)) − 1

2∂kζij(λ(m))
]}

where ∂iζkj(λ) = ∂ζkj(λ)/∂λi is the partial derivative of the kjth component of the friction
matrix with respect to λi (assuming all other control parameters are fixed) at control-
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parameter value λ, ∆r is a parameter controlling the size of the string update, and

Dλα(m) ≡ λα(m + 1) − λα(m − 1)
2δt

(2.73a)

D2λα(m) ≡ λα(m + 1) + λα(m − 1) − 2λα(m)
δt2 (2.73b)

are finite-difference estimators of time derivatives for the string, with δt denoting the dif-
ference in scaled protocol time between adjacent string points. The string is repeatedly
updated using Eq. (2.72) until it converges to user-specified precision.

The string update step requires estimation of the friction matrix and its derivative in
each control-parameter direction for each point in the current iteration of the string. If these
quantities can be estimated from short equilibrium simulations at each control-parameter
value, the estimates can be obtained in parallel to reduce computational cost. The estimates
from all string points are inserted into Eq. (2.72) to update the string. However, accurate cal-
culation of the friction matrix and its derivative for a single control-parameter value can take
significant sampling time. If the friction matrix has constant integral relaxation time for all
components across control-parameter space, the force variance matrix ζij(λ) ≈ ⟨δXjδXi⟩λ
takes the place in Eq. (2.64) of the friction matrix [103]. In this case, the derivative of the
force variance matrix in control-parameter space is ∂i⟨δXjδXk⟩λ = ⟨δXiδXjδXk⟩λ. Esti-
mating second and third cumulants from an equilibrium distribution take significantly less
sampling time than estimating the integrated correlation function of the conjugate forces; if
the constant-relaxation-time approximation holds, there is a significant reduction in compu-
tational cost for computing minimum-work protocols using this method. This approximation
was used in [103] to design minimum-work protocols in a 100-dimensional control-parameter
space.

Minimum-work protocols are calculated using the string method in Chapter 4, with
some modifications to account for the varying integral relaxation time throughout control-
parameter space for the chosen model system, that precludes using the force variance matrix
alone to design minimum-work protocols.
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Chapter 3

Information Thermodynamics of
Transition Paths

The reaction coordinate describing a transition between reactant and product is a fundamen-
tal concept in the theory of chemical reactions. As discussed in Section 1.1.2, the committor
is widely considered to be the “true” reaction coordinate, describing every aspect of the
transition from A → B. In this chapter, a novel information-theoretic justification of the
committor as the reaction coordinate is derived. Additionally, it is shown that selecting
the transition-path ensemble (the set of trajectories from reactant to product) from a long
ergodic equilibrium trajectory results in entropy production that precisely equals the infor-
mation generated by system dynamics about the reactivity of trajectories. The components
of entropy production and information generation due to an arbitrary system coordinate
are also equal; this reveals equivalent thermodynamic and information-theoretic measures
of the suitability of low-dimensional collective variables that encode information relevant
for describing reaction mechanisms, the need for which was discussed in Section 2.2. The
committor is a single coordinate that preserves all system entropy production and distills
all system information about reactivity, giving further support for its role as the reaction
coordinate. The equality between entropy production and dynamical information generation
also holds at the level of arbitrary individual coordinates, providing parallel measures of the
coordinate’s relevance to the reaction. The results derived in this chapter use ideas from
the fields of information theory (Section 2.1.2), stochastic thermodynamics (Section 2.1.3),
and transition-path theory (Section 2.2).

3.1 Information-theoretic perspective on the transition path
ensemble

Consider a multidimensional system Φ evolving according to Markovian dynamics governed
by the Master equation [13], dtp(ϕ) =

∑
ϕ′ Tϕϕ′p(ϕ′), where Tϕϕ′ is the transition rate from

state ϕ′ → ϕ and p(ϕ) is the probability of state ϕ. It is assumed that the transition
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rates obey detailed balance [13] and the system is in equilibrium with its environment so
that p(ϕ) = π(ϕ), the equilibrium probability of ϕ. The transition-path ensemble (TPE) is
studied, the set of trajectories that leave one subset of states A ∈ Φ and next visit a distinct
subset B ∈ Φ\A before returning to A. In most applications, A and B are metastable states
separated by a dynamical barrier; following Refs.[30, 90] it is only assumed that A and B

do not overlap and lack direct transitions; i.e., Tϕϕ′ = 0 for ϕ′ ∈ A and ϕ ∈ B.
The TPE is formed by selecting from a long ergodic equilibrium supertrajectory the

trajectory segments that leave A and reach B before A. Transition paths are therefore
selected based on the trajectory outcome S+ [the next mesostate (A or B) visited by the
system] and origin S− (the mesostate most recently visited by the system). This partitions
the supertrajectory into four trajectory subensembles, each with particular s ≡ (s−, s+):
The forward (reverse) transition-path ensemble is the set of trajectory segments with s =
(A, B) [s = (B, A)], and the stationary subensemble from A → A (B → B) has s = (A, A)
[s = (B, B)], as depicted in Fig. 3.1. Every trajectory segment in the forward TPE has a
corresponding equally probable time-reversed trajectory segment in the reverse TPE.

At any time during the equilibrium supertrajectory, random variables Φ and S are
defined that respectively denote the current system state and trajectory subensemble, with
p(ϕ, s) the joint distribution that the system is currently in state ϕ and is currently on
a trajectory segment with respective origin and outcome s = {s−, s+}. Since the system
dynamics are Markovian, the trajectory outcome and origin are conditionally independent
given current state ϕ, so the joint distribution can be factored as [30]

p(ϕ, s) = π(ϕ)p(s+|ϕ)p(s−|ϕ) . (3.1)

The conditional probabilities of trajectory outcome and origin given current state ϕ are

p(S+ = B |ϕ) = q+(ϕ) (3.2a)

p(S− = A |ϕ) = q−(ϕ) . (3.2b)

Here q+(ϕ) is the forward committor, the probability that the system currently in state
ϕ will next reach B before A, and q−(ϕ) is the backward committor, the probability that
the system (currently in ϕ) was more recently in mesostate A than in B. The committors
obey boundary conditions q+(ϕ) = 0 and q−(ϕ) = 1 for ϕ ∈ A, and q+(ϕ) = 1 and
q−(ϕ) = 0 for ϕ ∈ B. Since the system is in equilibrium and the transition rates obey
detailed balance, q−(ϕ) = 1 − q+(ϕ) [30], a single committor (without loss of generality,
the forward committor q+(ϕ)) provides information about both the outcome and origin of
the trajectory segment, so q+(ϕ) is referred to as the reaction coordinate.

During the equilibrium supertrajectory, the system continually evolves from A to B

and B to A, completing a unidirectional cycle through each trajectory subensemble with
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A

B

A B

s�

s+

A → A

B → BB → A

A → B

A B A B

A BA B

Figure 3.1: Partitioning a long ergodic equilibrium supertrajectory into subensembles based
on trajectory outcome S+ and origin S−. Contours: example double-well potential energy
βEint. Shaded regions: A is the region to the left of the left energy minimum and B is the
region to the right of the right minimum. Heat map: probability distribution p(ϕ|s) of system
state conditioned on trajectory subensemble s. Solid curves: representative trajectory from
each subensemble. The forward (reverse) TPE in the top-right (bottom-left) panel has net
flux of trajectories from A → B (B → A). The top-left (bottom-right) panel shows the
stationary subensemble from A → A (B → B).
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stochastic transition times depending on underlying microscopic dynamics. Transition-path
theory [90, 91, 29] derives quantitative properties (reaction rate and free-energy difference)
of the A → B reaction from the equilibrium probability flux of subensemble transitions

νS =
∑

ϕ/∈A,ϕ′∈A

Tϕϕ′π(ϕ′)q+(ϕ) (3.3)

and the respective marginal probabilities p(s+) and p(s−):

kAB = νS
p(S− = A) = νS

p(S+ = A) (3.4a)

kBA = νS
p(S− = B) = νS

p(S+ = B) (3.4b)

β∆FAB = ln p(S− = A)
p(S− = B) = ln p(S+ = A)

p(S+ = B) , (3.4c)

where kAB (kBA) is the rate constant for the A → B (B → A) transition and ∆FAB ≡
FB − FA is the free-energy difference. The second equality in each line uses p(S− = A) =
p(S+ = A) which follows from detailed balance. Mesoscopic reaction properties are thus
derived from information about the subensembles, specifically the proportion of time spent
in each subensemble and how frequently the subensemble switches.

Therefore, the reaction coordinate should be maximally informative about the current
subensemble. This is precisely quantified by mutual information, a non-linear statistical
measure of the relationship between two random variables, specifically quantifying the re-
duction of uncertainty (given by Shannon entropy H(X) ≡ −

∑
x p(x) ln p(x)) about one

random variable from measuring another [83]:

I(S; Φ) ≡
∑
ϕ,s

p(ϕ, s) ln p(ϕ, s)
π(ϕ)p(s) , (3.5)

where p(s) =
∑
ϕ p(ϕ, s) is the marginal probability that the system is currently on a tra-

jectory segment with outcome and origin s = (s−, s+). Operationally, p(s) can be estimated
from the proportion of time τs spent in subensemble s during an equilibrium supertrajectory
of length τ , p(s) = limτ→∞ τs/τ . The mutual information between trajectory outcome and
origin and a general state function f(ϕ) is constrained by the data processing inequality [83]
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such that I(S; Φ) ≥ I(S; f(Φ)). The committor satisfies this equality:

I(S; Φ) =
∑
ϕ,s

π(ϕ)p(s|ϕ) ln p(s|ϕ)
p(s) (3.6a)

=
∑
ϕ,s

∑
qo

π(ϕ)p(s|ϕ) ln p(s|ϕ)
p(s) δ[q+(ϕ) − qo] (3.6b)

=
∑
qo,s

p(s|qo) ln p(s|qo)
p(s)

∑
ϕ

π(ϕ)δ[q+(ϕ) − qo]

 (3.6c)

=
∑
qo,s

π(qo)p(s|qo) ln p(s|qo)
p(s) (3.6d)

=
∑
qo,s

p(qo, s) ln p(qo, s)
π(qo)p(s) (3.6e)

= I(S; q+(Φ)) . (3.6f)

In (3.6a), the mutual information is expressed in terms of conditional probability p(s|ϕ).
In (3.6b), a sum over all discrete committor values appearing in the system is included, al-
lowing separation of all states with the same committor value in Eq. (3.6c), where it is also
recognized that the probability the system is in a particular subensemble given state ϕ de-
pends only on its committor value, p(s|ϕ) = p(s|q+(ϕ)). This allows the mutual information
between trajectory subensemble and system state to be expressed as the mutual informa-
tion between trajectory subensemble and the committor of system state in Eq. (3.6f). Since
I(S; Φ) = I(S; q+(Φ)), the committor is a sufficient statistic for the mutual information
between trajectory subensemble and full system state [83]. In this sense, the committor is
the “optimal” reaction coordinate, since it is maximally informative about the trajectory
subensemble given a measurement of system state. This is the first major result.

3.1.1 Physical origin of subensemble random variables

Physically, the trajectory outcome and origin (and hence the committors) represent un-
certainty in the state of the environment. Classical mechanics assumes a constant-energy
universe (system Φ plus environment Ψ) governed by deterministic dynamics so that the
outcome and origin of the trajectory initiated from a given state of system and environment
are deterministic (and can be determined by integrating the state of the universe forward
and backward in time until the system reaches A or B), i.e., p(s|ϕ,ψ) is either 0 or 1.
This partitions the state space of the universe into four quadrants corresponding to each
trajectory subensemble, with each state (ϕ,ψ) belonging to only one subensemble; thus the
uncertainty about the trajectory subensemble given a state of the universe is zero,

H(S|Φ, Ψ) ≡ −
∑
ϕ,ψ,s

p(ϕ,ψ, s) ln p(s|ϕ,ψ) = 0 . (3.7)
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In this case, the mutual information between the universe and trajectory subensemble is
the uncertainty about the trajectory subensemble,

I(S; Φ, Ψ) = H(S) − H(S|Φ, Ψ) = H(S) , (3.8)

thus measurement of the state of the universe fully determines the trajectory outcome and
origin.

However, the microstate of the environment is not typically resolved, instead its inter-
action with the system is coarse-grained into friction and fluctuations [13]. Measurement of
the system state alone does not fully determine the trajectory outcome and origin, which
become random variables with positive conditional Shannon entropy

H(S|Φ) ≡ −
∑
s,ϕ

p(ϕ, s) ln p(s|ϕ) > 0 (3.9)

reflecting uncertainty in the state of the environment that is relevant to classification of the
current subensemble.

3.2 Joint system and subensemble dynamics and irreversible
entropy production

The main utility of introducing random variables for the trajectory outcome and origin
is that reactive events are now part of an ergodic trajectory that unidirectionally cycles
through subensembles and forms a nonequilibrium steady state, allowing the use of tools and
concepts from stochastic thermodynamics outlined in Section 2.1.3 to discuss the statistics
of reactive trajectories. In particular, the entropy production of the transition-path ensemble
is now derived and its equivalence with information generated about the trajectory outcome
S+ is proved.

The joint dynamics of (Φ,S) are described using the Master equation

dtp(ϕ, s) =
∑
ϕ′,s′

T ss
′

ϕϕ′ p(ϕ′, s′) (3.10)

where T ss
′

ϕϕ′ is the (ϕ′, s′) → (ϕ, s) transition rate. Conditional transition rates for the
system in the A → B subensemble were derived in Ref. [90], and they are adapted for all
subensembles below.
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Following [90], the transition probability over time dt for a ϕ′ → ϕ transition given the
trajectory remains in subensemble s is

T s=s
′

ϕϕ′ dt = p(ϕ, s+, s−|ϕ′, s′
+, s′

−) (3.11a)

= p(s+, s−|ϕ,ϕ′, s′
+, s′

−) p(ϕ|ϕ′, s′
+, s′

−) (3.11b)

= p(ϕ|ϕ′, s′
+, s′

−) (3.11c)

= p(ϕ|ϕ′, s′
+) (3.11d)

=
p(ϕ, s′

+|ϕ′)
p(s′

+|ϕ′) (3.11e)

=
p(s′

+|ϕ) p(ϕ|ϕ′)
p(s′

+|ϕ′) . (3.11f)

Equation (3.11b) splits the joint probability into conditional and marginal probabilities.
In (3.11c), p(s+, s−|ϕ,ϕ′, s′

+, s′
−) = 1 when the subensemble does not change. In (3.11d),

the Markov property is used to eliminate the dependence of the next state on trajectory
origin. In (3.11e), the conditional probability is expressed as the ratio of joint and marginal
probabilities. In (3.11f), it is recognized that the trajectory outcome depends only on the
most recent state ϕ and drop the dependency on ϕ′. Finally, recalling that s+ = s′

+ for
these transitions and re-expressing the transition probability as a transition rate, the rate
of a ϕ′ → ϕ transition is subensemble s is

T s=s
′

ϕϕ′ = p(s+|ϕ)
p(s+|ϕ′)Tϕϕ′ . (3.12)

Transition rates for the four sets of transitions that change subensemble are similarly
derived, where either the trajectory origin or outcome changes while the other is constant.
The transition probability in time dt for a ϕ′ → ϕ transition out of A where the subensemble
changes from s′ = (A, A) → s = (A, B) is:

T
s=(A,B),s′=(A,A)
ϕϕ′ dt = p(ϕ, S+ = B, S− = A|ϕ′, S′

+ = A, S′
− = A) (3.13a)

= p(S+ = B, S− = A|ϕ,ϕ′, S′
+ = A, S′

− = A) p(ϕ|ϕ′, S′
+ = A, S′

− = A)
(3.13b)

= p(S+ = B|ϕ,ϕ′, S′
+ = A, S′

− = A) p(ϕ|ϕ′, S′
+ = A, S′

− = A) (3.13c)

= p(S+ = B|ϕ) p(ϕ|ϕ′) . (3.13d)

(3.13c) uses the fact that S− = A when ϕ′ ∈ A. (3.13d) uses the Markov property to
simplify the conditional distributions. The transition probability is then re-expressed as a
transition rate

T
s=(A,B),s′=(A,A)
ϕϕ′ = p(S+ = B|ϕ) Tϕϕ′ . (3.14)

41



Similarly, the transition rate for a ϕ′ → ϕ transition where the subensemble outcome
changes from s′ = (B, B) → s′ = (B, A) is

T
s=(B,A),s′=(B,B)
ϕϕ′ = p(S+ = A|ϕ) Tϕϕ′ . (3.15)

The trajectory origin changes when the system finishes a transition path at the boundary
of A or B. The probability for a ϕ′ → ϕ transition into A where the subensemble changes
from s′ = (B, A) → s = (A, A) is:

T
s=(A,A),s′=(B,A)
ϕϕ′ dt = p(ϕ, S+ = A, S− = A|ϕ′, S′

+ = A, S′
− = B) (3.16a)

= p(S+ = A, S− = A|ϕ,ϕ′, S′
+ = A, S′

− = B) p(ϕ|ϕ′, S′
+ = A, S′

− = B)
(3.16b)

= p(ϕ|ϕ′, S′
+ = A) (3.16c)

=
p(ϕ, S′

+ = A|ϕ′)
p(S′

+ = A|ϕ′) (3.16d)

=
p(S′

+ = A|ϕ,ϕ′) p(ϕ|ϕ′)
p(S′

+ = A|ϕ′) (3.16e)

= p(ϕ|ϕ′)
p(S′

+ = A|ϕ′) . (3.16f)

(3.16c) recognizes that S+ = A and S− = A for ϕ ∈ A and uses the Markov property to
eliminate dependence on S′

− in p(ϕ|ϕ′, S′
+ = A, S′

− = A). (3.16f) uses S′
+ = A for ϕ ∈ A.

Finally, the transition probability is re-expressed as the transition rate

T
s=(A,A),s′=(B,A)
ϕϕ′ = 1

p(S+ = A|ϕ′)Tϕϕ′ , (3.17)

and similarly derive the transition rate for a ϕ′ → ϕ transition where the system enters B

and finishes a forward TPE (s′ = (A, B) → s = (B, B)) as

T
s=(B,B),s′=(A,B)
ϕϕ′ = 1

p(S+ = B|ϕ′)Tϕϕ′ . (3.18)

42



When averaged over all such transitions, these transition rates yield the unidirectional
probability flux νS between trajectory subensembles (3.4),

νS =
∑

ϕ/∈A,ϕ′∈A

p(S+ = B|ϕ) Tϕϕ′π(ϕ′) (3.19a)

=
∑

ϕ/∈B,ϕ′∈B

p(S+ = A|ϕ) Tϕϕ′π(ϕ′) (3.19b)

=
∑

ϕ∈A,ϕ′ /∈A

Tϕϕ′π(ϕ′) p(S− = B|ϕ′) (3.19c)

=
∑

ϕ∈B,ϕ′ /∈B

Tϕϕ′π(ϕ′) p(S− = A|ϕ′) . (3.19d)

Note that each RHS of (3.19) has an implicit conditional probability for the other element
of the trajectory subensemble, each of which equals unity on the relevant system subspace,
e.g., p(S− = A|ϕ′) = 1 for ϕ′ ∈ A in (3.19a).

To summarize, the transition rates for joint system-subensemble dynamics are:

T ss
′

ϕϕ′ =



T sϕϕ′ ≡ Tϕϕ′
p(s+|ϕ)
p(s+|ϕ′) , s′ = s

Tϕϕ′p(S+ = B|ϕ) ,

ϕ
′ ∈ A , ϕ /∈ A ,

s′ = (A, A) , s = (A, B)

Tϕϕ′p(S+ = A|ϕ) ,

ϕ
′ ∈ B , ϕ /∈ B ,

s′ = (B, B) , s = (B, A)

Tϕϕ′/p(S+ = A|ϕ′) ,

ϕ
′ /∈ A , ϕ ∈ A ,

s′ = (B, A) , s = (A, A)

Tϕϕ′/p(S+ = B|ϕ′) ,

ϕ
′ /∈ B , ϕ ∈ B ,

s′ = (A, B) , s = (B, B)

−
∑

ϕ′′ ̸=ϕ′

s′′ ̸=s′

T s
′′s′
ϕ′′ϕ′ , ϕ = ϕ′ , s = s′

0 otherwise

. (3.20)

The top transition does not change the subensemble, and biases transitions within subensem-
ble s toward states with higher probability of trajectory outcome s+. The middle four tran-
sitions switch subensembles and are unidirectional, contributing to the probability flux νS

(Eqs. (3.3), (3.19)). The (ϕ′, s′) → (ϕ, s) transition rate is defined such that the probability
distribution remains normalized under time evolution (Eq. 2.9). These joint dynamics are
Markovian: since the underlying system dynamics are Markovian, the transition rates (3.20)
do not depend on the trajectory origin s−, and the outcome s+ does not induce dependence
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on earlier system states. Considered alone, system dynamics are at equilibrium and mi-
croscopically reversible; adding the trajectory outcome and origin variables (that are not
functions of system state and explicitly depend on the past and future) breaks time-reversal
symmetry, producing absolutely irreversible trajectory-subensemble transitions and time-
asymmetric system transitions within a given subensemble.

3.2.1 Time-asymmetry of transition-path dynamics

To quantify the time-asymmetry for a particular ϕ′ → ϕ transition in subensemble s,
(3.20), Bayes’ rule, and the equilibrium detailed-balance relation Tϕϕ′π(ϕ′) = Tϕ′ϕπ(ϕ) are
combined to derive a local detailed-balance relation,

T sϕϕ′p(ϕ′|s)
T sϕ′ϕp(ϕ|s) = p(s−|ϕ′)p(s+|ϕ)

p(s−|ϕ)p(s+|ϕ′) . (3.21)

The A → A (and analogously B → B) stationary subensemble has s+ = s− = A, and due
to system detailed balance p(S− = A|ϕ) = p(S+ = A|ϕ), so the RHS is unity and detailed
balance holds for transitions within stationary subensembles. The reactive subensembles
(forward or reverse TPE) have different trajectory outcome and origin so the RHS side differs
from unity, leading to a detailed-balance-breaking flux (and hence entropy production) along
particular transitions within these subensembles.

Within a fixed subensemble s, the net trajectory flux is

Jsϕϕ′ = T sϕϕ′p(ϕ′, s) − T sϕ′ϕp(ϕ, s) (3.22a)

=
[
p(s−|ϕ′)p(s+|ϕ) − p(s−|ϕ)p(s+|ϕ′)

]
Tϕϕ′π(ϕ′) . (3.22b)

The second equality follows from p(ϕ, s) = p(s|ϕ)π(ϕ); the conditional independence of s+

and s− given state ϕ, i.e., p(s+, s−|ϕ) = p(s+|ϕ)p(s−|ϕ); and substitution for T sϕ′ϕ using
(3.20). The stationary subensembles (A → A and B → B) have no net flux because each
trajectory segment and its time-reversed counterpart occur at equal rates within the same
subensemble. In contrast, the forward and reverse TPEs have net trajectory flux since each
transition path and its time-reversed counterpart occur in different subensembles.

3.2.2 Entropy production for joint dynamics

Time-asymmetry within the transition-path ensembles implies that there is irreversible en-
tropy production for dynamics in these subensembles. The change in joint entropy H(Φ,S) ≡
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−
∑
ϕ,s p(ϕ, s) ln p(ϕ, s) is decomposed into three terms [106]

0 = dtH(Φ,S) =
∑
ϕ,ϕ′,s

T sϕϕ′p(ϕ′, s) ln
T sϕϕ′p(ϕ′, s)
T sϕ′ϕp(ϕ, s)︸ ︷︷ ︸

Ḣirr(Φ,S)

−
∑
ϕ,ϕ′,s

T sϕϕ′p(ϕ′, s) ln
T sϕϕ′

T sϕ′ϕ︸ ︷︷ ︸
Ḣenv(Φ,S)

+
∑

ϕ,ϕ′,s̸=s′

T ss
′

ϕϕ′p(ϕ′, s′) ln p(ϕ′, s′)
p(ϕ, s)︸ ︷︷ ︸

Ḣsub(Φ,S)

, (3.23)

where Ḣ irr(Φ,S) is the irreversible entropy production and Ḣenv(Φ,S) the environmental
entropy change for transitions that do not change the subensemble, and Ḣsub(Φ,S) is the
change in joint entropy due to transitions that change the subensemble.

To simplify the entropy change for transitions that change the subensemble, the joint
transition rates (Eq. 3.20) for these four sets of transitions are inserted into the third term
of Eq. (3.23) to obtain:

Ḣsub(Φ,S) =
∑

ϕ∈A,ϕ′ /∈A

Tϕϕ′π(ϕ′)p(S− = B|ϕ′) ln p(ϕ′,S = (B, A))
p(ϕ,S = (A, A)) (3.24a)

+
∑

ϕ/∈A,ϕ′∈A

Tϕϕ′π(ϕ′)p(S+ = B|ϕ) ln p(ϕ′,S = (A, A))
p(ϕ,S = (A, B))

+
∑

ϕ∈B,ϕ′ /∈B

Tϕϕ′π(ϕ′)p(S− = A|ϕ′) ln p(ϕ′,S = (A, B))
p(ϕ,S = (B, B))

+
∑

ϕ/∈B,ϕ′∈B

Tϕϕ′π(ϕ′)p(S+ = A|ϕ) ln p(ϕ′,S = (B, B))
p(ϕ,S = (B, A))

=
∑

ϕ/∈A,ϕ′∈A

Tϕ′ϕπ(ϕ)p(S− = B|ϕ) ln p(ϕ,S = (B, A))
π(ϕ′) (3.24b)

−
∑

ϕ/∈A,ϕ′∈A

Tϕϕ′π(ϕ′)p(S+ = B|ϕ) ln p(ϕ,S = (A, B))
π(ϕ′)

+
∑

ϕ/∈B,ϕ′∈B

Tϕ′ϕπ(ϕ)p(S− = A|ϕ) ln p(ϕ,S = (A, B))
π(ϕ′)

−
∑

ϕ/∈B,ϕ′∈B

Tϕϕ′π(ϕ′)p(S+ = A|ϕ) ln p(ϕ,S = (B, A))
π(ϕ′)

= 0 . (3.24c)

In (3.24a), the indices in the first and third terms are rewritten, and the simplifications
p(ϕ,S = (A, A)) = π(ϕ) for ϕ ∈ A and p(ϕ,S = (B, B)) = π(ϕ) for ϕ ∈ B are used. The
first and second terms and the third and fourth terms cancel because of the equilibrium
relationships p(S+ = A|ϕ) = p(S− = A|ϕ), p(S+ = B|ϕ) = p(S− = B|ϕ), p(ϕ,S =
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(B, A)) = p(ϕ,S = (A, B)), and Tϕϕ′π(ϕ′) = Tϕ′ϕπ(ϕ). Therefore subensemble transitions
do not change the joint entropy.

Substituting in the joint transition rates (3.20) for dynamics within a subensemble
T sϕϕ′ = Tϕϕ′p(s+|ϕ)/p(s+|ϕ′), the environmental entropy change is

Ḣenv(Φ,S) =
∑
ϕ,ϕ′,s

T sϕϕ′p(ϕ′, s)
[
ln Tϕϕ′

Tϕ′ϕ
+ 2 ln p(s+|ϕ)

p(s+|ϕ′)

]
(3.25a)

= 2
∑
ϕ,ϕ′,s

T sϕϕ′p(ϕ′, s) ln p(s+|ϕ)
p(s+|ϕ′) (3.25b)

= 2
∑

ϕ,ϕ′,s+

T
s+
ϕϕ′p(ϕ′, s+) ln p(s+|ϕ)

p(s+|ϕ′) (3.25c)

= 2İΦ(S+; Φ) , (3.25d)

where İΦ(S+; Φ) ≥ 0 is the rate of change in mutual information between the trajectory
outcome and system state due to system dynamics in a fixed subensemble [107]. Eq. (3.25b)
is obtained by summing over s to cancel contributions from the equilibrium transition rates,
and (3.25c) is obtained by summing over the trajectory origin S−.

Finally, the irreversible entropy production Ḣ irr(Φ,S) of the cycle is expressed in terms
of the irreversible entropy production of dynamics given fixed subensemble s, Σ̇s, which
quantifies the time irreversibility of system dynamics within that subensemble [108]:

Ḣ irr(Φ,S) =
∑
s

p(s)
∑
ϕ,ϕ′

T sϕϕ′p(ϕ′|s) ln
T sϕϕ′p(ϕ′|s)
T sϕ′ϕp(ϕ|s) (3.26a)

=
∑
s

p(s)Σ̇s (3.26b)

≡ ⟨Σ̇⟩ , (3.26c)

where ⟨Σ̇⟩ ≡
∑
s p(s)Σ̇s ≥ 0 is the subensemble-weighted average of the irreversible entropy

production rate within each subensemble.
Rearranging (3.23) gives:

0 ≤ ⟨Σ̇⟩ = 2İΦ(S+; Φ) (3.27a)

= İΦ(S+; Φ) − İΦ(S−; Φ) , (3.27b)

where İΦ(S−; Φ) ≤ 0 is the rate of change in mutual information between trajectory origin
and system state due to Φ dynamics in a fixed subensemble. The rate of change in mutual
information between system state and trajectory outcome due to Φ dynamics is of equal
magnitude and opposite sign from the rate of change in mutual information between system
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state and trajectory origin due to Φ dynamics:

İΦ(S+; Φ) =
∑

ϕ,ϕ′,s+

T
s+
ϕϕ′p(ϕ′, s+) ln p(s+|ϕ)

p(s+|ϕ′) (3.28a)

=
∑

ϕ,ϕ′,s+

Tϕϕ′π(ϕ′)p(s+|ϕ) ln p(s+|ϕ)
p(s+|ϕ′) (3.28b)

=
∑

ϕ,ϕ′,s−

Tϕϕ′π(ϕ′)p(s−|ϕ) ln p(s−|ϕ)
p(s−|ϕ′) (3.28c)

=
∑

ϕ,ϕ′,s−

Tϕ′ϕπ(ϕ)p(s−|ϕ) ln p(s−|ϕ)
p(s−|ϕ′) (3.28d)

= −
∑

ϕ,ϕ′,s−

Tϕ′ϕp(ϕ, s−) ln p(s−|ϕ′)
p(s−|ϕ) (3.28e)

= −İΦ(S−; Φ) . (3.28f)

In (3.28b) the joint transition rate is expanded using the subensemble-specific transition
rates (3.20); (3.28c) relates outcome and origin probabilities using equilibrium relations
p(S+ = A|ϕ) = p(S− = A|ϕ), p(S+ = B|ϕ) = p(S− = B|ϕ); and (3.28d) uses detailed
balance, Tϕϕ′π(ϕ′) = Tϕ′ϕπ(ϕ).

These information rates reflect the dependence of the trajectory outcome and origin
variables on the past and future states of the system: as the system evolves, uncertainty
about the outcome S+ diminishes, increasing the information the current system state
carries about S+, while uncertainty (given current system state Φ) about the origin S−

increases, decreasing information Φ carries about S−.
Since the stationary subensembles have no net flux, they also have no entropy production

(Σ̇s=(A,A) = Σ̇s=(B,B) = 0), hence (3.27a) reduces to an equation for a single subensemble,

0 ≤ pRΣ̇R = İΦ(S+; Φ) . (3.29)

This equates the rate İΦ(S+; Φ) of generating information about the outcome with the prod-
uct of the entropy production rate of a reactive subensemble Σ̇R = Σ̇s=(A,B) = Σ̇s=(B,A)

and that subensemble’s marginal probability pR = p(S = (A, B)) = p(S = (B, A)). Al-
though the supertrajectory is at equilibrium with no entropy production, Σ̇R physically
represents the dissipation that would be necessary in a system evolving according to the
TPE’s detailed-balance-breaking transition rates (top line of (3.20) for s− ̸= s+). Equa-
tion (3.29) is the second major result: the entropy production in a reactive subensemble
equals the information generated about the reactivity of trajectories.
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3.2.3 Thermodynamic metric

The TPE entropy production (3.29) can also be cast geometrically, by deriving a Fisher-
information metric I(ϕ) that imposes an information geometry on the state space [109, 110].
Suppose the state space Φ is continuous and represented by a set of coordinates {ϕi}.
The Master equation dtp(ϕ) =

∑
ϕ′ Tϕϕ′p(ϕ′) represents a discrete approximation of the

continuous dynamics [13]. The difference in mutual information rates (3.27b) is rearranged
to obtain the transition-weighted relative entropy [83]

D[p(s|ϕ′)||p(s|ϕ)] ≡
∑
s

p(s|ϕ′) ln p(s|ϕ′)
p(s|ϕ) (3.30)

between the conditional subensemble distributions p(s|ϕ′) and p(s|ϕ) before and after the
transition, respectively, then expand in small state changes ϕ− ϕ′:

pRΣ̇R = İΦ(S+; Φ) − İΦ(S−; Φ) (3.31a)

=
∑

ϕ,ϕ′,s+

Tϕϕ′π(ϕ′)p(s+|ϕ) ln p(s+|ϕ)
p(s+|ϕ′) −

∑
ϕ,ϕ′,s−

Tϕ′ϕπ(ϕ)p(s−|ϕ) ln p(s−|ϕ′)
p(s−|ϕ)

(3.31b)

=
∑

ϕ,ϕ′,s+,s−

Tϕϕ′π(ϕ′)p(s+|ϕ)p(s−|ϕ) ln p(s+|ϕ)
p(s+|ϕ′)

−
∑

ϕ,ϕ′,s+,s−

Tϕ′ϕπ(ϕ)p(s−|ϕ)p(s+|ϕ) ln p(s−|ϕ′)
p(s−|ϕ) (3.31c)

=
∑

ϕ,ϕ′,s+,s−

Tϕϕ′π(ϕ′)p(s+|ϕ)p(s−|ϕ) ln p(s+|ϕ)p(s−|ϕ)
p(s+|ϕ′)p(s−|ϕ′) (3.31d)

=
∑
ϕ,ϕ′

Tϕϕ′π(ϕ′)D[p(s|ϕ′)||p(s|ϕ)] (3.31e)

≈
∑
ϕ,ϕ′

Tϕϕ′π(ϕ′)1
2
∑
i,j

(ϕi − ϕ′
i)Iij(ϕ′)(ϕj − ϕ′

j) . (3.31f)

In (3.31c), each term is multiplied by unity (
∑

s− p(s−|ϕ) and
∑

s+ p(s+|ϕ) respectively),
then detailed balance (Tϕϕ′π(ϕ′) = Tϕ′ϕπ(ϕ)) is used to combine terms in (3.31d). The ith
component of the state-space vector is denoted by ϕi, and Iij(ϕ) is the Fisher information
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of the trajectory outcome/origin distribution at state ϕ,

Iij(ϕ) ≡
∑
s

p (s|ϕ) ∂ ln p(s|ϕ)
∂ϕi

∂ ln p(s|ϕ)
∂ϕj

(3.32a)

=
∑
s

1
p (s|ϕ)

∂p(s|ϕ)
∂ϕi

∂p(s|ϕ)
∂ϕj

(3.32b)

= 2(
1 − q+(ϕ)

)
q+(ϕ)

∂
(
1 − q+(ϕ)

)
q+(ϕ)

∂ϕi

∂
(
1 − q+(ϕ)

)
q+(ϕ)

∂ϕj
(3.32c)

+ 1(
1 − q+(ϕ)

)2

∂
(
1 − q+(ϕ)

)2

∂ϕi

∂
(
1 − q+(ϕ)

)2

∂ϕj
+ 1(

q+(ϕ)
)2

∂
(
q+(ϕ)

)2

∂ϕi

∂
(
q+(ϕ)

)2

∂ϕj

=

 2
(
1 − 2q+(ϕ)

)2

(
1 − q+(ϕ)

)
q+(ϕ)

+
4
(
1 − q+(ϕ)

)2

(
1 − q+(ϕ)

)2 +
4
(
q+(ϕ)

)2

(
q+(ϕ)

)2

 ∂q+(ϕ)
∂ϕi

∂q+(ϕ)
∂ϕj

(3.32d)

= 2
q+(ϕ)

(
1 − q+(ϕ)

) ∂q+(ϕ)
∂ϕi

∂q+(ϕ)
∂ϕj

. (3.32e)

In (3.32c), each term from (3.32b) is expressed in terms of the forward committor q+(ϕ).
The chain rule is used to pull out a common factor in (3.32d), and the expression is simplified
in (3.32e).

In information geometry [109, 110], Fisher information arises as a distance metric in
the parameter space of a probability distribution. Here, the conditional probability p(s|ϕ)
changes as the system evolves, where the system state ϕ parameterizes the conditional
probability distribution through the committor q+(ϕ). When the system is in A (B), there
is no uncertainty about trajectory outcome S+ and origin S−, so the conditional probability
p(s|ϕ ∈ A) (p(s|ϕ ∈ B)) is unity for s = (A, A) (s = (B, B)) and zero for all other
subensembles. As the system evolves, the conditional distribution over subensembles p(s|ϕ)
corresponding to the current system state changes. The information-geometric distance
between successive points in state space where there are changes to coordinates ϕi and ϕj

is quantified by the Fisher information metric, with squared line element [111]

dℓ2
ϕϕ′ ≡ 1

2
∑
i,j

(ϕi − ϕ′
i)Iij(ϕ′)(ϕj − ϕ′

j) . (3.33)

Equation (3.31f) is then the rate of mean square distance accumulated by the system
evolving at equilibrium,

⟨dℓ2⟩
dt

=
∑
ϕ,ϕ′

Tϕϕ′ π(ϕ′) dℓ2
ϕϕ′ . (3.34)
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Multiplying by the mean round-trip time τRT = τFP
A→B + τFP

B→A = (νs)−1 to complete a
cycle through the subensembles (the sum of mean first-passage times from A to B and B

to A [91]), the squared reaction-coordinate length L2
AB is obtained as the mean-squared

metric distance for a round trip A → B → A:

L2
AB ≡ (τA + τB)⟨dℓ2⟩

dt
(3.35a)

≈ 2τRTpRΣ̇R (3.35b)

= 2τRΣ̇R (3.35c)

Σ̇R ≈ L2
AB

2τR
, (3.35d)

for mean transition-path duration τR = τRTpR, given by the mean time to complete a cycle
through all subensembles multiplied by the marginal probability of a reactive subensem-
ble [90, 91]. The reaction-coordinate length LAB roughly quantifies the mean number of
fluctuations [112, 67] required for the system to complete a round trip. Therefore, TPE
entropy production provides a meaningful measure of the distance between A and B [113],
quantifying the time-irreversibility in the transition.

3.3 Quantitative measure of coordinate’s relevance to reac-
tion

The TPE entropy production quantitatively measures the relevance of an arbitrary coordi-
nate to the reaction, which is demonstrated below for a simple model system. The system
is assumed to have bipartite dynamics [86, 87], essentially that instantaneous transitions
only happen in either a one-dimensional coordinate X or in all other degrees of freedom Y

making up the system state Φ = (X,Y ):

Txx′,yy′ =



Txx′,y x ̸= x′ , y = y′

Tx,yy′ x = x′ , y ̸= y′

−
∑

x′′ ̸=x′

y′′ ̸=y′

Tx′′x′,y′′y′ x = x′ , y = y′

0 otherwise

. (3.36)

Dynamics that do not obey the bipartite assumption introduce further complications in
unambiguously partitioning the entropy production between coordinates [114].
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Combining (3.2), (3.22a), and (3.23) gives the full TPE entropy production as a function
of the forward committor,

pRΣ̇R = 1
2
∑
ϕ,ϕ′

Tϕϕ′π(ϕ′)(q+(ϕ) − q+(ϕ′)) ln q+(ϕ)(1 − q+(ϕ′))
q+(ϕ′)(1 − q+(ϕ)) , (3.37)

which splits into contributions from the two transition types:

pRΣ̇R = pRΣ̇X
R + pRΣ̇YR (3.38a)

= 1
2
∑

x,x′,y

Txx′,yπ(x′,y)[q+(x,y) − q+(x′,y)] ln q+(x′,y)[1 − q+(x,y)]
q+(x,y)[1 − q+(x′,y)] (3.38b)

+ 1
2
∑

x,y,y′

Tx,yy′π(x,y′)[q+(x,y) − q+(x,y′)] ln q+(x,y)[1 − q+(x,y′)]
q+(x,y′)[1 − q+(x,y)] .

The same decomposition holds for the information rate in Eq. (3.27a) [107], so that
TPE entropy production due to X dynamics is equal to the information rate (due to X

dynamics) between Φ and S+:

pRΣ̇X
R = İX(S+; Φ) , (3.39)

where
İX(S+; Φ) ≡

∑
x,x′,y,s+

T
s+
xx′,yp(x′,y, s+) ln p(s+|x,y)

p(s+|x′,y) . (3.40)

This is the third major result: the entropy production due to dynamics of coordinate X

equals the mutual information generated by X dynamics, thereby quantifying the relevance
of X transitions to identifying the current subensemble and highlighting those transitions
that are ‘correlated’ with reactive trajectories and therefore important to the reaction mech-
anism.

In particular, for X∗ determining the committor and Y ∗ orthogonal degrees of freedom
that are therefore not relevant to the reaction [q(x,y) = q(x)], the entropy production rate
due to Y ∗ dynamics is (simplifying (3.38b)):

Σ̇Y ∗
R =

∑
x,y,y′

Tx,yy′π(x,y′)[q+(x) − q+(x)] ln q+(x)[1 − q+(x)]
q+(x)[1 − q+(x)] = 0 . (3.41a)

Therefore Σ̇X∗
R = Σ̇R. This is additional confirmation that the committor is the reaction

coordinate, in that it provides a thermodynamically complete coarse-grained representation
of the transition-path ensemble, fully accounting for its entropy production [108].
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3.3.1 Illustrative example: 2D bistable potential

The ability of TPE entropy production to identify relevant reaction coordinates is illustrated
with overdamped dynamics in a double-well energy landscape (Fig. 3.2a). The bistable
energy potential is separable into terms only depending on the reaction coordinate r and
on the bath mode b:

Eint(r, b) = −kBT ln
[
e− 1

2 βkm(r+rm)2
+ e− 1

2 βkm(r−rm)2
]

+ 1
2kb2 , (3.42)

where rm = 1 defines the locations of the energy minima, and km is the landscape curvature
near those energy minima, chosen such that the energy barrier Eint(0, 0) − Eint(rm, 0) is
4kBT .

To exemplify the typical situation where the reaction coordinate is not known a priori
and coordinates are thus chosen based on convenience or intuition, fixed system coordinates
(x, y) lie at an angle θ to the correct reaction coordinate, the linear coordinate passing
through both energy minima:

r = x cos θ + y sin θ (3.43a)

b = −x cos θ + y sin θ . (3.43b)

The state space (x, y) is divided into discrete segments dx = dy = 0.04rm, and the Master
equation with transition rates Txx′,yy′ = Γ ∗ min

[
1, e−β∆Eint

]
with diffusion prefactor Γ =

0.1 dt−1 and energy change ∆Eint = Eint(x, y) − Eint(x′, y′) [115] is used to evolve the
system’s dynamics. The committor is solved on the discrete state space using the recursion
relations [30]

∑
ϕ′

Tϕ′ϕq+(ϕ′) = 0 (3.44a)

∑
ϕ′

Tϕϕ′
π(ϕ′)
π(ϕ) q−(ϕ′) = 0 . (3.44b)

Reaction endpoints are defined by A = {x, y | r(x, y) ≤ −rm} and B = {x, y | r(x, y) ≥ rm},
so that the committor is independent of b. The TPE entropy production is calculated from
(3.38).

For θ = 0◦, X is the reaction coordinate, Y is an orthogonal bath mode [116], and X

dynamics fully capture the TPE entropy production without Y contribution. Figure 3.2b
shows that as the underlying energy landscape is rotated relative to system coordinates, the
X-coordinate entropy production decreases and Y -coordinate entropy production increases,
with equal contribution at θ = 45◦. The entropy production for each coordinate is propor-
tional to the squared Euclidean distance between A and B projected onto each coordinate,
Σ̇X

R (θ) ∝ cos2 θ and Σ̇Y
R(θ) ∝ sin2 θ. This proportionality is an interesting result in light
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Figure 3.2: TPE entropy production rate for 2D double-well potential with rotating coor-
dinate system. a) Double-well energy landscape (purple) with fixed x-axis (red solid) and
y-axis (blue solid), and rotated reaction coordinate (black dashed). Gray contours: forward
committor. b) Share of TPE entropy production due to coordinate X (red dots) and Y
(blue dots), as a function of reaction-coordinate angle θ. Red solid: cos2 θ. Blue solid: sin2 θ.

of the information metric derived in Section 3.2.3, and could warrant further investigation
into geometric aspects of reaction dynamics and information.

3.4 Discussion

The information thermodynamics of a system undergoing reactions between distinct state-
space subsets A and B has been derived, making a fundamental connection between transition-
path theory, information theory, and stochastic thermodynamics. Partitioning a long ergodic
equilibrium trajectory into reactive and non-reactive subensembles results in entropy pro-
duction for system dynamics in the reactive subensembles (physically representing the dis-
sipation needed to implement the detailed-balance-breaking transition rates of the TPE),
which in turn identifies transitions that are relevant to the overall reaction mechanism.
This rigorous equality between TPE entropy production and informativeness of dynam-
ics also holds for an arbitrary coordinate, revealing parallel stochastic-thermodynamic and
information-theoretic measures of the relevance of collective variables to the system reaction,
that are each maximized by the committor.

This work has implications for the identification of important collective variables and
analysis of reaction mechanisms. While the committor provides a microscopically detailed
reaction coordinate that maps each system microstate to a scalar value, it does not immedi-
ately identify physically meaningful collective variables (e.g., internal molecular coordinates)
that are relevant to the reaction [46, 23, 75]. These results indicate that relevant coordinates
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are identified as having nonzero entropy production in the transition-path ensemble; thus
partitioning the entropy production between multiple relevant collective variables for that
provide physical intuition can yield a low-dimensional model that allows increased insight
into the reaction mechanism.

More concretely, this connection that has been established between transition-path the-
ory and stochastic thermodynamics suggests a novel method for rigorously grounded infer-
ence of reaction coordinates: generate an ensemble of transition paths using transition-path
sampling [26, 27] or related algorithms [31, 32, 28]; estimate entropy production along cho-
sen coordinates [89, 117, 118] or identify linear combinations of coordinates producing the
most entropy using dissipative-components analysis [119]; use these most dissipative coordi-
nates to enhance sampling of transition paths; and through further iteration identify system
coordinates producing the most entropy in the transition-path ensemble and hence of most
relevance to the reaction.

Machine-learning approaches to solve for high-dimensional committor coordinates [43,
44, 45] or find low-dimensional reaction models that retain predictive power [120, 49] are
active areas of research [121]. The information-theoretic and thermodynamic perspectives
on reactive trajectories described in this chapter provide guidance to the development of
data-intensive automated methods to infer these models and their corresponding reaction
mechanisms.
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Chapter 4

Multidimensional Minimum-Work
Protocols

4.1 Introduction

In the previous chapter, a thermodynamic perspective on reaction dynamics that allows
quantification of reaction information was discussed. This provides a concrete theoretical
framework for determining small sets of collective variables that are relevant to a reaction.
As discussed in Section 2.3.1, there is interest in understanding the correspondence be-
tween relevant collective variables and efficient driving protocols. However, there has been
little work in the literature to date discussing minimum-work protocols that drive multiple
spatial coordinates of a system between metastable states. In this chapter, protocols in a
multidimensional control-parameter space are examined to establish some intuition about
principles of minimum-work driving.

Many systems of interest have slow relaxations between metastable mesostates, and
finding good control parameters to drive the system can be non-trivial [11]. For finite-
duration protocols where the system has insufficient time to fully relax, the system can
get stuck in metastable mesostates, causing the nonequilibrium system distribution to lag
the equilibrium distribution, resulting in excess work. A longer-duration protocol would
allow further time for the system to relax from these metastable mesostates towards the
equilibrium distribution and reduce excess work, but it may not be feasible or desirable to
increase duration.

A similar problem arises in enhanced-sampling contexts, where external control parame-
ters are used to bias system degrees of freedom that are relevant to characterizing metastable
mesostates, reducing the time required to sample the system space and compute free en-
ergies [96, 122]. A collective variable is sought that captures the slowest relaxation mode,
otherwise the system can get stuck in a metastable region, resulting in slow convergence of
relevant statistics (e.g., free-energy profiles) [11, 56]. Using multiple biasing coordinates that
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couple to relevant relaxation modes can significantly improve sampling speed by allowing
the system to more easily circumvent dynamical barriers [123, 124, 125, 126, 127].

Inspired by these results, multidimensional minimum-work protocols are investigated in
this chapter in more detail, using external magnetic fields to drive a 3 × 3 Ising system
between energetically stable configurations. Reducing the size of the system and control-
parameter space greatly simplifies the calculations, since analytical calculations of the Boltz-
mann distribution and static equilibrium properties throughout control-parameter space are
possible. Of particular interest is the development of a physically intuitive picture of the
geometric aspects of control protocols and the generalized friction matrix. The Ising model
is introduced in Section 4.2, then the calculations of minimum-work protocols are outlined
in Section 4.3. Section 4.4 presents the results of the calculations and further analysis on
the differences between naive and designed protocols. Section 4.5 concludes with a broader
discussion of the results and their overall relevance to this thesis.

4.2 Ising system

The Ising model is a workhorse model used throughout statistical mechanics to study a va-
riety of systems and phenomena, such as phase transitions, nucleation, and gene-regulatory
networks [128]. Its basic components are a set of up or down spins (or more generally, a
Bernoulli random variable) with pairwise coupling energy J . If J > 0, spin pairs have lower
energy when they are aligned, and the Ising model is called ferromagnetic. Additionally, a
magnetic field λ can be applied to spins to affect the relative energies of the up and down
orientation of each spin.

Calculations of minimum-work protocols to drive a large 2D Ising model between the
all-down and all-up configurations using multiple control parameters have been done in
Refs. [102, 103, 104]. In particular, Ref. [103] drove the Ising model using a set of magnetic
fields applied to blocks of spins in the 2D array, which pushes on collective variables given
by the magnetization of spins under the control of a field. The minimum-work protocols
designed for this control-parameter space resemble the minimum-free energy path (Sec. 2.2)
calculated for this system [94].

Our system is a 2-dimensional 3×3 Ising model with fixed anti-symmetric boundary
conditions [103], illustrated in Fig. 4.1. The spins are ferromagnetically coupled, with spin
configuration {σ} having internal energy

Eint({σ}) ≡ −J
∑
{i,j}

σiσj , (4.1)

where J = 1 kBT is the coupling coefficient for Boltzmann constant kB and temperature T ,
σi ∈ {−1, 1} is the orientation of spin i, and

∑
{i,j} denotes a sum over nearest-neighbor spin

pairs. The system evolves under single-spin-flip Glauber dynamics [82], where at the end of

56



a) b)

Figure 4.1: Schematic of 3×3 Ising model with 9 fluctuating spins (black, shown in initial
all-down configuration) and 12 fixed boundary spins (gray). a) 2D control parameter given
by two external fields on spins colored blue and green, respectively. b) 4D control parameter
given by four external fields on spins colored according to their symmetry type. Spins with
the same color are influenced by a common magnetic field.

a fixed time interval a spin is chosen at random and a spin-flip is attempted, with accep-
tance probability given by the Glauber criterion (Eq. 2.6). The system has two energetically
metastable configurations, with spins all down or all up, and the dynamical barrier sepa-
rating the metastable configurations has activation energy ∆E‡ = 8kBT ; the spin-inversion
transition from all down to all up is a relatively rare event, with mean first-passage time of
∼ 2 × 103 attempted spin flips [90].

The spin-inversion reaction to flip the system configuration from all-down to all-up is
driven by a set of external magnetic fields h applied to sets of spins (background colors in
Fig. 4.1), chosen to reflect the symmetry of the boundary conditions. The applied magnetic
fields λ bias the total energy as

V ({σ},λ) ≡ Eint({σ}) − λT ·X({σ}) , (4.2)

where X({σ}) is a vector of conjugate forces for configuration {σ}, with force Xi ≡
−∂V/∂λi conjugate to control parameter (external field) λi, equaling the total magneti-
zation of the spin set controlled by λi. The system magnetization is inverted by changing
the magnetic field from λi,initial = −0.5 kBT for all i (favoring the all-down configuration)
to λi,final = 0.5 kBT (favoring the all-up configuration).

Two multidimensional control-parameter spaces are explored, associated with a 2D mag-
netic field applied to the blue and green spins (Fig. 4.1a, the spins that are most biased by
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the boundary conditions) or a 4D magnetic field applied to all spins (Fig. 4.1b, the highest
dimensionality that does not break the symmetry imposed by the boundary conditions).
The 2D control-parameter space is a two-dimensional manifold of the 4D control-parameter
space with λred = λblack = 0 kBT .

4.3 Methods

In both 2D and 4D control-parameter spaces three types of protocols between the same
endpoints are considered. A naive protocol changes all magnetic fields with constant velocity.
The time-optimized protocol changes all magnetic fields together (i.e., λi(t) = λj(t) for all
i, j, t), with velocity optimized to minimize (within the linear-response approximation) the
work (see Section 2.3.5). Both these protocol types are equivalent to one-dimensional control
using a single magnetic field to drive the system, with scalar conjugate force equal to the
total magnetization of controlled spins (only blue and green spins’ magnetization for 2D, and
total magnetization for 4D). This yields a one-dimensional friction coefficient, the sum of all
elements of the 2D or 4D friction matrices ζ1D(λ) =

∑
ij ζij(λ). During the time-optimized

protocols, all fields are changed with velocity proportional to the inverse square-root of the
one-dimensional friction coefficient [7], λ̇1D ∝ ζ1D(λ)−1/2. The fully optimized protocols
solve the Euler-Lagrange equation [78] for the excess work (2.64) in all control-parameter
dimensions, which is done numerically using the string method [103] (see Section 2.3.5).

The 4×4 friction matrix (2.62) is estimated on a discrete grid in 4D control-parameter
space, then used to design fully optimized 2D and 4D protocols. Sampling the friction in a
multidimensional space has a significant computational cost since the number of grid points
scales exponentially with the number of control parameters; in contrast, the time-optimized
protocol can be calculated by estimating the friction matrix along the one-dimensional
protocol path, which has a significantly smaller computational cost. (The naive protocol
requires no prior sampling.) Each protocol type is simulated for a range of protocol dura-
tions to collect an ensemble of system responses. Appendix B provides details on numerical
methods.

4.3.1 Reference relaxation time

Throughout, work and power are reported divided by the number Ni of spins controlled by
field i (Nred = 4, Nblue = Ngreen = 2, and Nblack = 1). The protocol duration is scaled by a
reference relaxation time τrel discussed below.

Since the system is driven from all-down to all-up, a reference relaxation time is chosen
to reflect the timescale of this transition. The rate constant k(λ) for the reaction from
all-down to all-up at equilibrium for control-parameter λ is calculated from transition-path
theory [90] (Section 2.2). This gives the mean number of all-down to all-up transitions
observed per unit time, given that the system is initially in the all-down configuration.
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This rate constant is averaged over control-parameter values along the 4D naive protocol
to obtain an average rate constant k̄ for the spin inversion during this protocol:

k̄ = 1
∆t

∫ ∆t

0
dt k(λ(t)) . (4.3)

k̄ represents the mean number of transitions from all-down to all-up during a naive 4D
protocol of duration ∆t, assuming the system is in local equilibrium in the initial metastable
basin throughout the protocol. τrel = k̄−1 then is the protocol time required for the system to
make on average one spin-inversion transition. For this system, τrel = 1102 dt, where during
each dt one spin flip is attempted. The moderate-duration protocols shown in Figs. 4.5, 4.8,
4.9, and 4.11 have duration ∆t = 1000 dt ≈ 0.91 τrel.

4.4 Results

4.4.1 Avoiding high friction

To illustrate general features of the multidimensional friction matrix for this system, Fig. 4.2a
shows the trace (a scalar capturing the essential features) of the 2×2 friction matrix in the
control-parameter space defined by axes (λblue, λgreen). The friction is maximized at (1, −1),
where the fields cancel the fixed boundary conditions (Fig. 4.1), stabilizing the all-down
and all-up configurations relative to the unperturbed system (λi = 0 for all i). Both com-
ponents of the friction (2.67), the force covariance (Fig. 4.2b) and the integral relaxation
time (Fig. 4.2c), are similarly peaked.

Figure 4.2 also shows the 2D time-optimized and fully optimized protocols. (The naive
protocol follows the same path as the time-optimized protocol but with constant protocol
velocity.) The naive and time-optimized protocols follow a straight line between the fixed
endpoints and drive the system through a high-friction region, with the time-optimized
protocol slowing down where the friction along the path is large, near control parameters
corresponding to the unperturbed system. In contrast, the fully optimized protocol avoids
this by making an excursion through low-friction regions of control-parameter space.

Figure 4.3 shows the three protocol types in 2D and 4D control-parameter spaces. The
time-optimized protocols have high initial and final velocity, and low velocity in the middle
of the protocol, where fields are close to zero and friction is large. This is consistent with
the minimum-work protocol for one-dimensional barrier crossing [95], where the protocol
slows to allow time for stochastic fluctuations to kick the system over an energy barrier,
thereby remaining closer to equilibrium relative to the naive protocol.

The fully (both temporally and spatially) optimized protocols depart dramatically from
the naive and time-optimized protocols. Consistent with results in a larger Ising model [103],
the green field (whose corresponding spins are initially anti-aligned with their boundary
conditions and therefore energetically frustrated) is increased rapidly in the early stages of
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Figure 4.2: 2D fully optimized (black) and time-optimized (gray) protocols overlaid on
a heatmap showing the trace of the a) friction (2.62), b) force covariance, or c) integral
relaxation time (2.68) matrix. Points denote control-parameter values evenly spaced in time
on the given protocol.

the protocol, while the blue field (whose corresponding spins are initially aligned with their
boundary conditions) is decreased initially, then increased later. 2D and 4D protocols show
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Figure 4.3: Designed protocols for driving spin-inversion in the 3 × 3 Ising model. Magnetic
fields λi as a function of scaled protocol time t/∆t during naive (top row), time-optimized
(middle), and fully optimized (bottom) protocols in 2D (left column) and 4D (right) control-
parameter spaces. Colors correspond to spin sets in Fig. 4.1.

the same trend, but the addition of time-varying red and black fields in 4D protocols shifts
the relative timing of changes in green and blue fields.

A striking feature of both the 2D and 4D fully optimized protocols is the non-monotonic
magnetic fields at early and late stages. In the linear-response regime, a 1D minimum-
work protocol must be monotonic since a non-monotonic protocol drives through the same
control-parameter value more than once, producing unnecessary dissipation; in the metric
language of the linear-response approximation, the shortest curve between two points cannot
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Figure 4.4: Comparison of excess work in naive and designed protocols. (a) Excess
work (2.64) scaled by number N of controlled spins (i.e., N = 4 controlled spins for 2D
protocols and N = 9 for 4D) as a function of protocol duration ∆t, for each of the six
protocol types (Fig. 4.3): 2D (circles) and 4D (squares) control-parameter spaces; and naive
(black), time-optimized (gray), and fully optimized (red). (b) Ratio of excess work during
naive protocols to excess work during time-optimized (gray) and fully optimized (red) pro-
tocols for 2D (circles) and 4D (squares) control. Horizontal dotted lines: excess work for
an instantaneous protocol. Dashed lines: linear-response approximations, accurate at long
duration. Protocol durations are scaled by reference relaxation time τrel.

cross itself. But individual fields for minimum-work protocols can be non-monotonic as long
as the protocol path in multidimensional space does not loop back on itself.

4.4.2 Reducing excess work and keeping close to equilibrium

Next, the excess work for all protocols is compared to assess their relative performance.
Figure 4.4a shows the excess work as a function of protocol duration. In the limit of long
duration, the excess works approach their respective linear-response approximations and
scale as ∆t−1. For short protocols, the excess works approach that of an instantaneous pro-
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Figure 4.5: Quasistatic (curves) and nonequilibrium (points) mean magnetization of each
spin type (different colors, see Fig. 4.1) as a function of elapsed time t along a moderate-
duration (∆t ≈ τref) protocol of each type (see Fig. 4.3).

tocol, given by the relative entropy of the initial and final equilibrium distributions [69].
Figure 4.4b shows the ratio of excess work for naive relative to time-optimized and fully
optimized protocols. While the 2D and 4D time-optimized protocols respectively do ∼1.2×
and ∼2× less excess work than the corresponding naive protocols, the fully optimized pro-
tocols respectively do ∼9× and ∼26× less excess work than the naive protocols. (Fully
optimized control protocols do more work than all other protocols (including an instanta-
neous protocol) for short durations (∆t/τrel ≲ 0.1).)

Fully optimized protocols keep the system much closer to equilibrium than naive and
time-optimized protocols for a fixed duration, resulting in significant work reduction. Fig-
ure 4.5 shows for moderate protocol duration (∆t ≈ τrel) the quasistatic and nonequilibrium
mean magnetizations ⟨σi⟩ of each spin type. In fully optimized protocols, there is a rough
ordering of spin flips matching the corresponding field increases (Fig. 4.3): green spins flip
first, red and black spins flip next, and blue spins flip last (also depicted schematically in
Fig. 4.6). This temporal separation of spin flips contrasts with naive and time-optimized
protocols, where the different spin types have nearly equal mean magnetization throughout
the protocol.
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Figure 4.6: Spin-inversion mechanism at five evenly spaced times during the 4D fully opti-
mized protocol. The relative equilibrium population of up and down orientations are indi-
cated by the transparency of the arrowheads.

Throughout the naive and time-optimized protocols, the system remains bistable, with
the external fields primarily biasing the relative energies of the all-down and all-up config-
urations. For the moderate duration shown, the system gets stuck in the initial metastable
basin so nonequilibrium mean magnetizations significantly lag the quasistatic limit. In con-
trast, the fully optimized protocols keep the system much closer to equilibrium, with modest
lag during the 2D protocol and nearly no lag during the 4D protocol.

4.4.3 Reducing spin covariance and flattening the energy landscape

Since the fully optimized protocols drive the system through configuration space differently
than the naive and time-optimized protocols, it is helpful to understand general features
that are associated with reduced protocol work in the fully optimized protocols.

Figure 4.7 shows the equilibrium variance of each spin and covariance between neigh-
boring and non-neighboring spins. The 9×9 spin-covariance matrix is “coarse-grained” (by
summing spin-covariance elements for the same spin types into a single entry) to form
the 4×4 force-covariance matrix, a factor in the friction (2.67) that contributes to excess
power for 4D protocols. Since each spin magnetization is a Bernoulli random variable, it
is a quadratic function of the mean, ⟨δσ2

i ⟩ = 1 − ⟨σi⟩2, where each variance peaks when
its mean changes sign (Fig. 4.5). At some point during a long-duration protocol, the mean
magnetization of each spin must change sign and hence the corresponding diagonal element
of the force-covariance matrix must reach a fixed maximal value; however, the contribu-
tion from off-diagonal elements (covariance between distinct spins) can be reduced. In the
naive and time-optimized protocols, where the system primarily occupies the all-up and
all-down configurations, all spin covariances (even for non-neighboring spin pairs) are large
where those configurations are equally populated. The fully optimized protocols disrupt this
bistability and lower the total energy of many other configurations; this reduces spin co-
variance, with low covariance between neighboring spins and near-zero covariance between
non-neighboring spins. The fully optimized 4D protocol, with additional controls, reduces
covariance more than the 2D protocol.
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Figure 4.7: Equilibrium spin covariance as a function of elapsed time t along a protocol
of each type (Fig. 4.3). Purple: spin variance. Gold: covariance between neighboring spins.
Blue: covariance between non-neighboring spins.

The covariance between spins reflects the internal energy that couples their orientations;
high covariance stems from ensembles dominated by low-internal-energy configurations with
aligned spins, while low covariance results from the system accessing configurations with
anti-aligned spins and hence higher internal energy. Next, the energetic and entropic prop-
erties of instantaneous system distributions along the control protocol are calculated.

Figure 4.8 shows the free energy along each protocol, as well as its component ener-
gies (4.2) and entropy H ≡ −

∑
{σ} p({σ}) ln p({σ}) for (equilibrium or nonequilibrium)

probability distribution p({σ}). The fully optimized protocols drive the system through
distributions with high mean internal energy (4.1). This indicates significant population
of high-internal-energy configurations (i.e., with anti-aligned spins), relative to naive and
time-optimized protocols where the internal energy is relatively constant (consistent with the
system primarily occupying the all-down or all-up configuration). These configurations with
high internal energy are stabilized by stronger external fields, flattening the total-energy
landscape relative to naive and time-optimized protocols. The fully optimized protocols
also significantly increase the entropy, indicating many accessible system configurations, in
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(curves) and nonequilibrium (points) distributions, as a function of elapsed time t along a
moderate-duration (∆t ≈ τrel) protocol of each type.

contrast to naive and time-optimized protocols which primarily fluctuate near the all-up
and all-down configurations.

The flattened total-energy landscape and increased entropy during the fully optimized
protocol results in relatively constant free energy, requiring comparatively low-magnitude
quasistatic work throughout the protocol. In contrast, the naive and time-optimized proto-
cols drive the system through a substantial free-energy barrier, requiring quasistatic work
input to the system during the first half of the protocol and quasistatic work extraction
during the second half.
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4.4.4 Heterogeneously inputting and extracting work, coinciding with
system relaxation

I now investigate how fully optimized protocols drive each spin set differently than naive
and time-optimized protocols, by splitting total work into quasistatic and excess works by
each control-parameter component:

W =
∑

i

[Wqs
i + Wex

i ] (4.4a)

=
∑

i

[∫ ∆t

0
dt Pqs

i (t) +
∫ ∆t

0
dt Pex

i (t)
]

(4.4b)

≈
∑

i

[
−
∫ ∆t

0
dt λ̇i(t)⟨Xi⟩eq

λ(t) +
∫ ∆t

0
dt
∑

j

λ̇i(t)ζij(λ(t))λ̇j(t)
]

. (4.4c)

The final line uses the linear-response approximation (2.64). The quasistatic works of
all components sum to the path-independent equilibrium free-energy difference between
control-protocol endpoints,

∑
i Wqs

i = ∆F ; however, the quasistatic work of each compo-
nent is path-dependent.

Figure 4.9 shows components of the quasistatic power Pqs
i (t) and finite-duration power

Pi(t), for moderate protocol duration (∆t ≈ τrel). During naive and time-optimized proto-
cols, each field inputs and extracts work equally, inputting work in roughly the first half
of the protocol to increase the system’s free energy and extracting it in the second half to
reduce the free energy (Fig. 4.8). For finite duration, the mean conjugate force lags its equi-
librium mean (Fig. 4.5), and the quasistatic work is not fully extracted in the second half of
the protocol, resulting in excess work. The fully optimized protocols input and extract work
differently through the different fields, with zero power for each component where either the
field velocity is zero or the spin magnetization for that field is zero (i.e., controlled spins on
average flip from down to up).

The 2D fully optimized protocol is roughly divided into three stages according to sign
changes of the power. Until t/∆t ≈ 0.3, the green field is increased while the blue field is
decreased (Fig. 4.3), inputting power to the green spins to increase their mean magnetization
(Fig. 4.5) while power is extracted from the blue spins (which do not significantly change
mean magnetization), so that overall nearly no power is input to the system and the free
energy is relatively constant (Fig. 4.8). Second (until t/∆t ≈ 0.7), both fields are increased
and work is input to the blue spins to increase their magnetization, while work is extracted
from the green spins as they are stabilized in spin-up. Finally, the green field is reduced
and work is input to the green spins, while increasing the blue field stabilizes the spin-up
configuration of the blue spins and extracts work: the two fields act in concert to keep the
free energy more constant. This elaborate and heterogeneous schedule of work input and
extraction could reflect the system’s energetic requirements to fluctuate into configurations
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Figure 4.9: Quasistatic power (curves) and finite-duration power (Eq. (4.4b), points) of
each field (colors, see Fig. 4.1) as a function of elapsed time t along a moderate-duration
(∆t ≈ τrel) protocol of each type (see Fig. 4.3). Power Pi is scaled by the number Ni of
spins controlled by field i.

with high internal energy: during naive and time-optimized protocols the system must
wait for appropriate fluctuations from the environment to overcome the internal energy
barrier separating the all-down and all-up configurations in order to relax to equilibrium; in
contrast, the fully optimized protocols externally provide the appropriate energy to each spin
as work, allowing the system to access high-internal-energy configurations and significantly
decreasing the time required for system relaxation. The 4D fully optimized protocol shows
similar features to 2D in the green and blue power, but events happen relatively earlier in
green and later in blue.

Fig. 4.10 shows the work Wi by each field i as a function of protocol duration, asymp-
toting to the instantaneous work (−[λi,final − λi,initial]⟨Xi⟩eq

λ(t=0) ≈ 1 kBT per spin) for short
durations and reaching the (path-dependent) quasistatic work in the long-duration limit.
For the naive and time-optimized protocols, each field does the instantaneous work until
∆t ≈ τrel before crossing over to near-zero quasistatic values for longer durations.

The fully optimized protocols input work via the green field and extract work via the
blue field in the quasistatic limit. Work input from the green field increases from instanta-
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Figure 4.10: Work (4.4a) as a function of protocol duration ∆t for each field (colors, see
Fig. 4.1), for each protocol type (see Fig. 4.3). Dotted lines: instantaneous work. Dashed
curves: linear-response approximation. Protocol durations are scaled by reference spin-
inversion relaxation time τrel.

neous to quasistatic values at short durations while work inputs from other fields remain
near instantaneous values. When the duration is sufficiently long for the system to relax
(∆t ≈ 0.1τrel), the work from the remaining fields crosses over from instantaneous to qua-
sistatic values, with the blue field extracting work from the system for moderate-to-long
duration. This suggests that work input by the green field early in the protocol is trans-
duced through the system to be extracted by the blue field later in the protocol. Driving
the green spins to flip early in the protocol initiates the transition mechanism, with further
work input to red and black spins continuing the complete spin inversion by allowing the
system to access high-internal-energy configurations, and final work extraction from blue
spins stabilizing the system in the low-internal-energy all-up configuration. Providing work
to specifically support this transition mechanism—rather than simply homogeneously in-
putting and extracting work to each spin type—keeps the system close to equilibrium for
durations ∼10× shorter than naive and time-optimized protocols.

Figure 4.11 shows the excess power by each field for moderate duration (∆t ≈ τrel),
as well as linear-response approximations (4.4b). The excess power during naive and time-
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Figure 4.11: Exact excess power (points, Eq. (4.4b)) and linear-response approximation
(curves, Eq. (4.4c)) for each field (colors, see Fig. 4.1) as a function of elapsed time t along
a moderate-duration (∆t ≈ τrel) protocol of each type (Fig. 4.3).

optimized protocols is essentially equal for each field, consistent with the field velocities
(Fig. 4.3) and lag of conjugate forces (Fig. 4.5) being equal for each component in these
protocols. The linear-response approximation for the excess power during naive protocols
peaks in the middle where friction is largest (Fig. 4.2). In time-optimized protocols, the
linear-response approximation to the excess power is essentially the same for each field and
constant, flattening the excess-power peak in naive protocols by reducing protocol velocity
in this region. The excess power at this moderate duration (significantly distant from equi-
librium) unsurprisingly differs from the linear-response approximation for both naive and
time-optimized protocols. Nevertheless, the excess power during the fully optimized protocol
is significantly reduced relative to both naive and time-optimized protocols and agrees well
with the linear-response approximation, indicating that the system remains much closer to
equilibrium.
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4.5 Discussion

The naive and time-optimized protocols (which follow the same path through multidimen-
sional control-parameter space) change all fields simultaneously, biasing the total magneti-
zation to drive the system from all-down to all-up. The barrier separating the energetically
metastable configurations remains large throughout the protocol, and for moderate-duration
protocols, the slow transitions between these endpoints prevent the system from relaxing to
equilibrium, resulting in significant lag and large excess work. The time-optimized protocol
reduces velocity where the friction is large to allow more time for system relaxation, which
for moderate-to-long durations reduces the excess work relative to the naive protocol.

In contrast, fully optimized protocols in multidimensional control-parameter spaces have
more flexibility to manipulate the system’s total energy (4.2); they use this flexibility to
flatten the total-energy landscape through a heterogeneous schedule of work input and
extraction through each spin (Figs. 4.8, 4.9), also speeding up system transitions from all-
down to all-up. Both these equilibrium thermodynamic and kinetic properties are captured
by the generalized friction matrix through the respective matrices of force covariance and
integral relaxation time (2.67). Both components of the friction play a role in improved
understanding of minimum-work control in multidimensional control-parameter spaces.

The force covariance matrix is a property of the equilibrium distribution without any
reference to the system’s dynamics. It quantifies the curvature of equilibrium free energy in
control-parameter space [67]. For systems where the integral relaxation time is constant, the
force covariance matrix replaces the generalized friction as the metric on control-parameter
space that quantifies excess work, indicating that constant free-energy paths minimize work.
Although the integral relaxation time is not constant throughout control-parameter space
for this system (Fig. 4.2c), fully optimized protocols still have relatively constant free energy
relative to naive and time-optimized protocols (Fig. 4.8), a factor that helps to reduce work.

Off-diagonal elements of the force covariance matrix in fully optimized protocols are
significantly reduced relative to naive and time-optimized protocols (Fig. 4.7), reflecting
that the system accesses configurations which are otherwise inaccessible due to high inter-
nal energy. This has interesting connections to strategies for optimal inference of system
parameters [129]. There, a spin system is perturbed by external fields to new equilibrium en-
sembles that allow more efficient inference of system coupling constants (i.e., fewer samples
are required to estimate parameters to a given precision), and the perturbation is updated
using the Fisher information matrix for desired system parameters. Inference is optimal at
field strengths that decorrelate spins, allowing the system to occupy otherwise-inaccessible
configurations. Since the excess work during the protocol is known to affect the efficiency
of free-energy estimation [60, 61, 62] and the force covariance matrix is proportional to the
Fisher information matrix [67], it is not surprising that parallels in design strategy exist.
However, a key distinction is the dynamical nature of control protocols, where the relax-

71



ation kinetics between equilibrium distributions of successive control parameters is relevant;
thus the importance of the generalized friction, which captures relaxation timescales via the
integral relaxation time matrix.

The fully optimized protocols reveal a clear mechanism for spin inversion. First, work is
input to green spins (initially energetically frustrated) causing them to flip, which together
with direct work input by red and black fields drives neighboring red and black spins to
flip. At the midpoint of the 4D fully optimized protocol, both green spins are up, red and
black spins are evenly split between up and down, and blue spins are both down. Past the
midpoint, work is extracted from red and black spins by increasing the corresponding fields
to stabilize spins in the up orientation, which together with work input to neighboring blue
spins causes blue spins to flip. Finally, work is extracted from blue spins to stabilize the
system in the all-up configuration.

Using this strategy, the system reaches the linear-response regime for durations ∼10×
shorter than in the naive and time-optimized protocols (Fig. 4.10). Excess work scales as
∆t−1 for long-duration protocols where the system is in the linear-response regime. A proto-
col that enables fast relaxation so the system reaches this regime and excess-work scaling at
relatively short duration results in work reduction relative to a naive protocol that reaches
the linear-response regime at longer duration. The fully optimized protocols appear to facil-
itate such fast-relaxing paths in configuration space, reducing the time spent in the initial
metastable basin before making a transition over the energy barrier. Earlier studies showed
an empirical similarity between the minimum-work protocol and the minimum free-energy
path [103, 94], which represents the spontaneous (in the absence of driving) transition path
between metastable mesostates. The minimum-work protocols here also drive the system
along a plausible spontaneous transition path: green spins flip first, followed by red and
black spins, and finally blue spins. There may be a deeper connection between minimum-
work protocols and spontaneous transition paths of the unperturbed system, that would
allow extraction of kinetic information about transition paths from minimum-work proto-
cols or use kinetic information to design efficient protocols. A more detailed quantitative
comparison is necessary to elucidate this connection.
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Chapter 5

Connections between
Minimum-Work Protocols and
Transition Paths

5.1 Introduction

Here the correspondence between the system’s response to a minimum-work protocol and
its dynamics during a spontaneous transition is investigated. The 3 × 3 ferromagnetic Ising
system (Fig. 5.1) is examined as it spontaneously transitions from the all-down to all-up
configuration with no external magnetic fields (λ = 0), and as it is driven between all-down
and all-up configurations by a set of time-dependent magnetic fields (Chapter 4). This
chapter focuses on the 4D fully optimized protocol since it drives all spins in the system
and is the highest-dimension protocol calculated for this system. A sufficiently long protocol
duration, ∆t = τref , such that the system is in the linear-response regime is considered so
that the system is near equilibrium (although excess work is still done on the system).

Two aspects of the reaction are of interest to this study: the reaction mechanism and
its transient energetic costs. In this context, the reaction mechanism is a sequence of spin
flips that brings the system from all down to all up; since there are 9 spins, there are 9
steps to the reaction mechanism. However, the system response to control protocols and its
spontaneous transition paths are both ensembles of trajectories where any spin can (and
frequently does) flip orientations multiple times throughout a single trajectory. Section 5.2
first considers how information about the reaction mechanism can be extracted from the
trajectory ensembles.

The energetic cost of the mechanism is also characterized. Control protocols do work
on the system, providing an energetic bias that produces a system response. Chapter 4
shows that during the fully optimized 4D protocol, work is done by green fields early in the
protocol, which flips green spins and increases the system’s internal energy, and then later
blue fields extract work from blue spins as they flip and decrease the system’s internal energy
(Fig. 4.10). Spontaneous transition paths similarly take in heat to overcome the energy
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all-down configuration all-up configuration

Figure 5.1: Schematic of 3×3 Ising model with 9 fluctuating spins (black, shown in initial
all-down configuration) and 12 fixed boundary spins (gray). Spins are colored according to
their symmetry type.

barrier, but must wait for the appropriate fluctuations from the environment to complete
a successful transition path. The random fluctuations that do give rise to transition paths
are characterized by transition rates which are biased relative to the equilibrium detailed-
balance transition rates, as described in Section 3.2, and therefore the heat flows associated
with these conditional transition rates can be determined. Energy flows into the system
can also be assigned to different degrees of freedom, which provides some insight into the
reaction mechanism [116, 130]. These energetic changes in the Ising system will be examined
during both the driven and spontaneous processes.

5.2 Trajectory ensembles from minimum-work protocols and
the transition-path ensemble

By repeating a control protocol many times, an ensemble of system responses can be gen-
erated that (roughly) transit from the all-down to all-up configurations. A sample of 5000
trajectories is generated in response to a control protocol by simulating the 4D fully opti-
mized protocol for ∆t = τrel as described in Appendix B.

Similarly, the transition-path ensemble (TPE) is an ensemble of reactive trajectories
from all down to all up. To generate an ensemble of transition paths, the forward committor
is calculated by solving the linear equation (Eq. (2.31))

∑
ϕ′

Tϕ′ϕq(ϕ′) = 0 (5.1)
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with boundary conditions q(ϕ) = 0 for ϕ the all-down configuration and q(ϕ) = 1 for ϕ
the all-up configuration. Because the forward and backward committors for an equilibrium
system are related by detailed balance, the superscript in q+(ϕ) is eliminated and the
forward committor is referred to as the committor throughout this chapter.

After calculating the committor for the Ising system, trajectory segments belonging to
the transition-path ensemble are generated using modified transition rates (Eq. 3.20, [90]).
A trajectory is initialized in the all-down configuration ϕ′ = A, then the next state ϕ outside
of A is chosen with probability

pinitial(ϕ) = Tϕϕ′q(ϕ)∑
ϕ′′ Tϕ′′ϕ′q(ϕ′′) , (5.2)

where the denominator normalizes this probability over all possible transitions out of A.
Subsequent states are generated using modified transition rates, which for the forward TPE
are

T R
ϕϕ′ = Tϕϕ′

q(ϕ)
q(ϕ′) . (5.3)

Trajectories are terminated once they reach B for the first time. A sample of 40, 000 transi-
tion paths are generated using this method. Figure 5.2a shows a sample of these transition
paths and trajectories generated from protocol simulations by projecting the state space
onto the committor coordinate.

The trajectory ensemble generated by protocol simulations and the transition-path en-
semble differ in the duration of trajectories and the configuration at the beginning and end.
In the TPE, the endpoint configurations of each trajectory are the same by definition (the
all-down and all-up configurations, respectively), but the duration of each trajectory differs.
In contrast, each trajectory generated by the protocol is of equal duration, but the start
and end configurations are not constrained, as discussed below.

The difference in endpoints between the processes can be approximately resolved by
choosing control parameters and protocol endpoints that restrain the system to configura-
tions corresponding to the reaction endpoints. For the Ising model, the reactant A is defined
to be the all-down configuration and the product B to be the all-up configuration; these
configurations have committor values q(ϕ ∈ A) = 0 and q(ϕ ∈ B) = 1, respectively. For the
Ising model, the 4D fully optimized protocol starts with all fields at λi,initial = −0.5kBT and
ends with λi,final = 0.5kBT , whose equilibrium distributions are dominated by the all-down
or all-up configuration, respectively (which leads to mean system magnetization close to −1
and 1). The system does not reach the equilibrium distribution by the end of the protocol,
but for sufficiently long protocols will be “close” to this endpoint. The system’s distance
from the equilibrium distribution depends on the protocol duration, but since minimum-
work protocols in the linear-response regime are independent of protocol duration, a single
protocol duration (∆t = τrel) in this regime is used as a representative of the process for

75



0 0.5 1 1.5
t/ traj

0

0.5

1

q(
(t)

)

MWP
TPE

0 0.03 0.06
q( (t = 0))

0

0.5

1

p(
q(

(t)
))

0.94 0.97 1
q( (t = traj))

0 1 2 3
traj/ traj

0

0.5

1

p(
tra

j)

a) b)

c)

Figure 5.2: Trajectory ensembles from the minimum-work protocol and transition-path en-
semble. a) 10 sample trajectories generated by an MWP (red) and from the transition-path
ensemble (blue), projected onto the committor q(ϕ). The trajectory time is scaled by the
mean duration τtraj of trajectories in the respective ensemble. b) Distribution of start and
end configurations for trajectories in each ensemble. c) Distribution of trajectory durations
for trajectories in each ensemble.

all protocols in the linear-response regime. Figure 5.2b shows that the distribution of com-
mittor values for configurations at the start and end of the protocol performed in duration
∆t = τref are highly peaked in the q = 0 and q = 1 states respectively, indicating that
on average the trajectories generated by a protocol of this duration transit between the
reaction endpoints.

Resolving the range of transition-path durations requires a different approach. Because
the system must wait for appropriate fluctuations from the environment to make progress
during a transition from all down to all up, each step requires a stochastic amount of time
and the overall transition paths have a range of durations. Additionally, the system can
move “backward” during the trajectory, leading to several recrossings of a dividing sur-
face between A and B. (Note that these are the same recrossing events that are ignored
in transition-state theory and minimized in variational transition-state theory through op-
timization of the dividing surface). Combining information from multiple trajectories is
therefore challenging, as at a given time t since the start of the transition path, one trajec-
tory could be significantly closer to the product than another. This contrasts with control
protocols where the external fields are the same at time t for all trajectories, and for long-
duration protocols, the system state will be close to equilibrium and therefore relatively
consistent across multiple trajectory samples.
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If the reactive trajectories are described by a one-dimensional coordinate x(t) (for exam-
ple, from single-molecule force spectroscopy [131]), there are methods to combine temporal
information from trajectories of multiple durations to obtain a mean transition path time
for each value of the one-dimensional coordinate, ⟨t(x)⟩, using various ideas based on mean
first-passage times [132, 133, 134, 135]. However, an average one-dimensional trajectory is
not of interest to the present analysis since general mechanistic information is desired in
terms of physically intuitive collective variables (here given by each spin’s magnetization).

Two approaches are therefore used for averaging information from the transition-path
ensemble, one that aligns the time axis of each trajectory and one that aligns committor
values. The time in each trajectory can be linearly rescaled by its total duration τtraj to get a
reaction coordinate t/τtraj ∈ [0, 1] that represents the proportion of time elapsed during the
trajectory, which is termed the scaled transition-path time. In practice, the scaled transition-
path time t/τtraj is divided into 20 discrete bins and the mean properties in each bin for each
trajectory is determined, then averaged over all trajectories, ensuring that long trajectories
are not disproportionately weighted in the ensemble average [134]. This is a relatively ad
hoc approach to rescaling transition paths of multiple durations that would benefit from
further improvement, but it nevertheless captures mechanistic information.

Another approach uses the committor, which in principle contains the information about
the reaction mechanism in the transition-path ensemble since it is the “ideal” reaction
coordinate. For a continuous system, visualizing the isocommittor surfaces throughout a
collective-variable space would provide information about the order of events and the bottle-
necks of the reaction. However, the Ising model has a discrete state space and there is no
guarantee that a particular isocommittor surface is populated by any system configurations
(for example, there is no configuration with q(ϕ) = 0.5). Instead, the range of committor
values is divided into discrete bins and all configurations from each trajectory that fall
in the same bin are grouped together. Such an approach allows calculation of the mean
properties of each spin during the transition path. Averaging over the committor coordinate
directly tends to under-emphasizes configurations at the start and end of the transition
mechanism, and therefore a nonlinear transformation of the committor is used to make these
configurations more visible. Inspired by the mathematical form of TPE entropy production
in Chapter 3, the committor is transformed by the mapping

f(ϕ) = ln q(ϕ)
1 − q(ϕ) , (5.4)

and configurations that fall into 9 evenly spaced bins for this coordinate are grouped to-
gether. Note that an invertible transformation of the committor does not affect the infor-
mation contained in the one-dimensional coordinate, and therefore f(ϕ) is still a “perfect”
reaction coordinate.
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Figure 5.3: Mean magnetization of each spin set (colors in Fig. 5.1) a) at scaled time
t/∆t during the minimum-work protocol, b) binned to the rescaled committor ln[q/(1 − q)]
during the transition-path ensemble, and c) at scaled transition-path time t/τtraj during the
transition-path ensemble.

5.3 Reaction mechanism for spin inversion

Figure 5.3 shows the mean state of each spin set during the 4D fully optimized protocol and
during the transition path as parameterized by the scaled committor or scaled transition-
path time. The two methods of averaging the mean state in the transition-path ensemble
look very similar, but using scaled transition-path time allows one to use more discrete bins
and obtain smoother curves. The mean state of the system during the 4D fully optimized
protocol and during the transition-path ensemble show similar characteristics, but differ in
their finer details. In general, the green spins (which are initially energetically frustrated due
to the adjacent boundary spins of opposite sign) flip relatively early in both processes, and
the blue spins (which end in an energetically frustrated orientation) flip relatively late. The
red and black spins flip throughout the middle of the protocol. However, the finer details of
the processes differ; the MWP seems to flip both green spins around the same time (early
in the protocol), while in the TPE at least one red spin flips relatively early, on average
before the second green spin.

The differences in the detailed mechanisms may be due to the constraint on driving
in the 4D control parameter space where, e.g., all four red fields are changed in the same
way throughout the protocol. This constraint means it is not possible for the protocol to
drive one spin to the up orientation independently of other spins in the same spin set. The
resulting protocol in the 4D space is therefore symmetric in the identity of each of the spins.
In contrast, trajectories in the transition-path ensemble seem to break this symmetry, but
the average state of each spin as a function of the rescaled committor or scaled transition-
path time does not show this symmetry-breaking.

Therefore, a method is developed to determine mechanistic information that distin-
guishes between spins in the same spin set from the trajectories generated by MWPs or
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Figure 5.4: Symmetry-broken mechanism for the spin-inversion transition. The mean state
of each spin during the a) MWP, b) TPE as a function of the scaled committor, and c)
TPE as a function of scaled trajectory time t/τtraj. The first spin(s) to flip in each spin set
are indicated by solid curves and the last spin(s) are indicated by dashed curves.

that form the TPE. Since the order of spin flips during the mechanism is of interest, the
order lα of spin flips (with α = 1 . . . 9) is determined for each trajectory that gives the
identity of the α-th spin to flip during a trajectory. Each spin may flip multiple times in a
single trajectory, so to get an average order for the trajectory, the proportion of time spent
in the up orientation for each spin is calculated, then all spins are ordered in descending
proportion: a spin that spends more time during the trajectory in the up orientation than
another is identified as flipping earlier in the reaction (has a lower value of α). There are
four spin types identified by colors in Fig. 5.1. To break this symmetry, nine spin types are
identified: the first, second, third, and fourth red spin; the first and second green spin; the
first and second blue spin; and the black spin. These coarse variables still do not contain
exact geometric information (e.g., they do not specify where the second red spin is located
relative to the first red spin), but do break the symmetry within a single trajectory. The
same analysis is performed on all trajectories in the ensemble to break the symmetry be-
tween spins in the same spin set. Once the order of each spin in the trajectory is determined
so that spins in the same spin set are ordered, the mean magnetization of each spin type
can be averaged over all trajectories.

Figure 5.4 shows the average trajectory during the MWP and TPE with broken sym-
metry for spins in the same spin set. In the MWP, each spin-flip event happens at relatively
distinct times during the protocol: both green spins flip early, then all red and black spins
flip, then finally both blue spins. Spins in the same spin set flip at approximately the same
time, reflecting the symmetry of the driving protocol. In contrast, the TPE shows symmetry
breaking for spins in the same spin set: a green and red spin flip first; followed by a second
red spin; then the second green, first blue, and black spins; then the third red spin; and
finally the fourth red and second blue spins. Such symmetry breaking cannot be achieved by
a 4D protocol, therefore the mechanism observed in the 4D MWP cannot precisely match
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Figure 5.5: Distribution of spin-flip order lα for each spin type during the MWP (top) and
TPE (bottom). Each histogram shows the distribution of the spin-flip order for a given spin,
with spins in the same set separated based on their flipping order in the trajectory. The
earlier spin(s) of each spin type have darker shading in the histogram, while later spin(s)
are lighter.

the mechanism observed in the TPE. However, the general feature of green spin(s) flipping
early and blue spin(s) flipping late is preserved in both processes, reflecting the bias imposed
by the fixed boundary spins that affects both the geometry of control-parameter space and
the spontaneous transition mechanism.

While Fig. 5.4 separates spin flips in the same spin set, it does not show the overall order
of spin flips during the trajectory. This is shown in Fig. 5.5 by plotting the distribution of the
spin-flip order lα of each spin type relative to all others. The MWP preserves the order across
all trajectories, with both green (blue) spins flipping first (last), and red and black spins
all flipping in between. The TPE spin-order distributions, however, show higher diversity.
The first red and first green spins predominantly flip first, and the second blue and last
red predominantly flip last, but the order of other spins is more variable. This indicates
that there are many paths taken (with relatively high probability) by the system with spin
flips occurring in different orders. It is possible that the TPE transition mechanism in this
system cannot be characterized by a single ordering of spin flips, and instead some other
physically intuitive collective variables that are able to capture the variety of transition
paths would be better suited to describing the mechanism.
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5.4 Energy flows during the minimum-work protocol and
transition-path ensemble

Control protocols produce changes in the system configuration by doing work. In the quasi-
static limit, a protocol drives the system over an internal energy barrier by first providing
some of this energy as work to increase the system’s internal energy and drive it over the
barrier, then extracting work from the system as it decreases in energy. Transition paths
overcome an energy barrier by waiting for a sequence of fluctuations from the environment
that provide the necessary energy as heat to the system. It seems intuitive that if the sys-
tem must overcome some internal energy barrier while changing between collective-variable
endpoints, then a “good” control protocol would provide this energy to the system as work
rather than waiting for the appropriate (rare) thermal fluctuations from the environment,
essentially flattening the total energy landscape along the path the system takes through
configuration space. Here, the energy flows into the system during each trajectory are de-
termined and split between motion in each spin. The idea of analyzing energy flows in the
transition-path ensemble has been discussed previously [116, 130] where energy flows are
shown to be helpful for determining collective variables that may be relevant to the reaction.

During a transition path, no work is done on the system and therefore changes in internal
energy during the trajectory is due to heat flow. For a trajectory {ϕ(tk)} with k = 1 . . . τtraj,
the total heat flow to the system is

Q(τtraj) =
τtraj−1∑

k=1
[Eint(ϕ(tk+1)) − Eint(ϕ(tk))] = Eint(B) − Eint(A) , (5.5)

which is equal to the difference in internal energy of B relative to A. For the Ising sys-
tem, ∆EAB = Eint(B) − Eint(A) = 0 due to the underlying symmetry of the metastable
states. Since the single-spin-flip dynamics that are implemented are multipartite (a mul-
tidimensional extension of the bipartite dynamics condition in Section 3.3 where only one
coordinate moves in a given time step while all others remain stationary), the total heat
flow can be split between each spin to better understand the energetic costs associated with
each spin’s dynamics during the mechanism. The heat flow to spin σi during the trajectory
is

Qi(τtraj) =
τtraj−1∑

k=1
[Eint(ϕ(tk+1)) − Eint(ϕ(tk))]{1 − δ[σi(ϕ(tk+1) − σi(ϕ(tk))]} (5.6a)

=
τtraj−1∑

k=1
∆Ei

int(k → k + 1) (5.6b)

where the final factor in Eq. (5.6a) ensures that only transitions where σi changes contribute
to the average. The mean heat flow to σi is binned to either the scaled transition-path time
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or rescaled committor:

Qi(t/τtraj) =
τtraj−1∑

k=1
∆Ei

int(k → k + 1) δ

[
t

τtraj
− k + 0.5

τtraj

]
(5.7a)

Qi(f) =
τtraj−1∑

k=1
∆Ei

int(k → k + 1) δ

[
f − f(ϕ(tk+1)) + f(ϕ(tk))

2

]
, (5.7b)

where the condition δ[t/τtraj − (k + 0.5)/τtraj] selects all transitions that fall in the discrete
time bin centered at t/τtraj, and δ[f − 1

2(f(ϕ(tk+1)) + f(ϕ(tk)))] selects all transitions that
fall in the discrete rescaled committor bin centered at f = ln[q/(1 − q)]. The heat flow
to spin σi can then be averaged over all trajectories to obtain the ensemble-average heat
flow ⟨Q̇i

R⟩ to that spin during the trajectory. If heat flow is positive into a particular σi,
i.e. ⟨Q̇i

R⟩ > 0, this suggests that motion in σi primarily “activates” the system towards the
energy barrier, while ⟨Q̇i

R⟩ < 0 implies that motion in σi primarily relaxes the system to
the product [116].

During the control protocol, both work and heat change the total energy of the system.
The work and heat steps during the trajectory are considered separately. Work is identified
as the change in total energy V (ϕ,λ) when control parameters change at fixed system
position,

W(∆t) =
∆t−1∑
k=1

[V (ϕ(tk),λ(tk+1)) − V (ϕ(tk),λ(tk))] (5.8a)

= −
∆t−1∑
k=1

∑
i

[λi(tk+1) − λi(tk)]Xi(tk) (5.8b)

=
∑

i

W i(∆t) , (5.8c)

which can be partitioned among the control parameters λi. Heat is the change in total
energy when the system state changes for fixed control parameters

Q(∆t) =
∆t−1∑
k=1

[
V
(
ϕ(tk+1),λ(tk+1)

)
− V

(
ϕ(tk),λ(tk+1)

)]
(5.9a)

=
∆t−1∑
k=1

([
Eint

(
ϕ(tk+1)

)
− Eint

(
ϕ(tk)

)]
−
∑

i

λi(tk+1)
[
Xi(tk+1) − Xi(tk)

])
(5.9b)

=
∆t−1∑
k=1

∑
i

([
Eint

(
ϕ(tk+1)

)
− Eint

(
ϕ(tk)

)]
{1 − δ[σi(tk+1) − σi(tk)]}

− λi(tk+1)
[
Xi(tk+1) − Xi(tk)

])
(5.9c)

=
∆t−1∑
k=1

∑
i

[
∆Ei

int(k → k + 1) + ∆Ei
ext(k → k + 1)

]
, (5.9d)
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where in Eq. (5.9d) heat flow due to changes in σi is identified as making distinct changes
to the internal and external energy. Together, the work and heat change the total energy,

∆V (∆t) = W(∆t) + Q(∆t) (5.10a)

=
∑

i

[
W i(∆t) + Qi(∆t)

]
(5.10b)

which is split into contributions from motion in each control parameter and associated
spin magnetizations. Motion in control parameters is deterministic, while motion in spins
is stochastic.

Control protocols and transition paths share the internal energy landscape Eint. There-
fore changes in internal energy during both processes will be analyzed to better understand
how the system overcomes the energy barrier. After identifying the order of spin flips in a
trajectory, the energy flow associated with each spin in the trajectory is calculated. This
allows identification of differences in energy flows to spins in the same spin set that may
have different roles in the reaction mechanism.

Figure 5.6 shows the mean heat flow to the system during the minimum-work protocol
and during a transition path. When the system moves during the MWP, some of the heat
flow changes internal energy and some of it changes external energy. The change in internal
energy (Fig. 5.6b) for the green spins is positive during the first half of the protocol, for the
blue spins is negative during the second half of the protocol, and for red and black is zero
throughout the protocol. The changes in internal energy for the blue and green spins are
compensated by changes in the external energy (Fig. 5.6a): the external energy decreases on
average when green spins flip (increasing the internal energy) and increases on average when
blue spins flip (decreasing internal energy). This demonstrates how external energy provides
a force to the system which allows it to access high-internal-energy configurations during the
protocol. When control parameters do work they change only the external energy; therefore
this biasing force that allows the system to access high-internal-energy configurations is
provided by control parameters. Additionally, spins from the same spin set have nearly
identical energy flows during the protocol, again reflecting the symmetry of the control
parameters.

Figures 5.6c/d shows the heat flow (change in internal energy) during the transition-path
ensemble for both scaled transition-path time and re-scaled committor. The symmetry-
breaking observed in the reaction mechanism is also reflected in the changes in internal
energy during the transition path. The first green and first red spins take in energy on
average early in the transition path, bringing the system out of the all-down configuration
into higher-internal-energy configurations. Similarly, at the end of the transition path, the
second blue and last red spin release energy as the system reaches the low-internal-energy
all-up configuration. Throughout the middle of the protocol, the other spins on average take
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Figure 5.6: Heat flow to each spin during the MWP and TPE. Top two rows: Mean change in
a) external energy β⟨∆Ei

ext⟩ and b) internal energy β⟨∆Ei
int⟩ due to magnetization change

in σi during the MWP, scaled by protocol duration ∆t. Bottom two rows: Mean change in
internal energy β⟨∆Ei

int⟩ due to magnetization change in σi during the TPE c) projected
onto the scaled committor and d) as function of scaled trajectory time, scaled by the mean
transition-path duration ⟨τtraj⟩. The first spin(s) to flip in each spin set are indicated by
solid curves and the last spin(s) are indicated by dashed curves.
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in or release heat. In general, if a spin flips in the first half of the trajectory, the heat flow
is positive; if it flips in the second half of the trajectory, the heat flow is negative.

The heat flow during the transition-path ensemble also demonstrates differences in how
the scaled transition-path time and rescaled committor provide information about the mech-
anism. While the mean state in these coordinates looks similar with either representation
of transition paths (Fig. 5.4), it is much harder to visualize the heat flows using the scaled
transition-path time than the rescaled committor. The heat flow into the system during the
first step out of the stable all-down configuration and the heat flow out of the system during
the final step into the all-up configuration inevitably occur in the first and last bins of the
scaled transition-path time leading to highly peaked heat flow at these times. Throughout
the middle of the transition path, heat flow is small for two reasons: first, some of the
internal energy changes for transitions throughout the protocol are zero and thus do not
contribute magnitude to the heat flow; second, linearly rescaling the transition-path time
can result in spin flips occurring at a wide range of scaled transition-path times that are
not necessarily aligned between different trajectories, which spreads out the heat flow as-
sociated with this transition over multiple scaled trajectory-time bins. For this reason, the
rescaled committor is a more desirable reaction coordinate, since it provides a measure of
the system’s progress between reaction endpoints independent of the time that the system
reaches a state in any given trajectory. However, qualitative aspects of the heat flows for
the two coordinates are the same.

5.5 Summarizing the mechanisms

Finally, the reaction mechanisms identified for the minimum-work protocol and the transition-
path ensemble are summarized.

The minimum-work protocol has a clear and intuitive reaction mechanism, shown in
Figure 5.7. In the first two steps, both green spins are flipped. Each of the green spins
breaks three energetically favourable interactions and forms one when it flips. The change
in internal energy from each interaction has an absolute value of 2kBT for a total change
of 4kBT . This positive heat flow to green spins is also shown in Fig. 5.6. Once these spins
have flipped, the four red spins and black spin can flip with no change in internal energy,
since they each have two neighbouring spins in the up orientation and two in the down
orientation. They each experience a driving force from the changing magnetic fields which
is equivalent across all of these spins, leading to broad distributions over step number for
all of these spins (Fig. 5.5). In the final two steps the blue spins flip, each of which releases
4kBT of internal energy as the system relaxes into the all-up configuration (Fig. 5.6).

Although the details are harder to pin down, Figure 5.8 shows a mechanism for spin-
inversion during a spontaneous transition path. The first two steps flip a red and green
spin (which can happen in either order) and take in 4kBT of heat in the first step. The
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Figure 5.7: Transition mechanism during the designed protocol (MWP). The change in
internal energy and step number lα are indicated above and below the arrows. The five
middle steps can happen in any order, but each has no change in internal energy.

next five steps can happen in many ways, and different spins will exchange heat with the
environment depending on how the transition occurs. In general, one of these five steps will
take in 4kBT of heat and one will release 4kBT of heat, and other steps can be accomplished
with no change to the internal energy. The final two steps flip the last red and blue spins,
decreasing system energy by 4kBT as it reaches the all-down configuration.

5.6 Discussion

The transition mechanism for spin inversion in a 3×3 Ising model during the fully optimized
4D protocol and during a spontaneous transition path has been investigated. During the
MWP, work is done on the system, which provides an energetic bias that drives the system
up and over the energy barrier. In the transition-path ensemble, the system must wait for
appropriate fluctuations of heat from the environment to overcome the same barrier.

The mechanisms contained in trajectories generated by each process were examined in
detail, where a mechanism in this context is a sequence of spin-flip events. The MWP shows
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1 × (+4kBT ) 1 × (−4kBT )

Figure 5.8: Transition mechanism during the transition-path ensemble (TPE). The change
in internal energy and step number lα are indicated above and below the arrows. The five
middle steps can happen in many orders, and one step will increase the internal energy by
4kBT while another will decrease it by 4kBT .

a clear transition mechanism, with both green spins taking in energy as they flip first,
red and black spins flipping throughout the middle of the protocol with minimal energetic
cost, and finally the blue spins flipping and releasing energy. This ordering preserves the
symmetry of different spin types and is well-preserved across all trajectories.

The transition-path ensemble shows a wider diversity of transition paths that break the
underlying symmetry of spin types. The first two spin flips are usually one green and one
red spin, taking in 4kBT of energy in the first flip and 0kBT in the second. The next five
steps have many orders of spin flips where at least one takes in 4kBT of heat and another
releases 4kBT . The final two steps involve flipping a red and blue spin, releasing 4kBT of
heat in the final step.

The internal energy barrier of 8kBT is consistent between the two processes, but the
overall manner in which the system overcomes the barrier differs. A significant factor af-
fecting the comparison is the constrained symmetry of the 4D protocols, which prevents
the controller from pushing on one spin differently than its symmetric counterpart(s). The
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transition-path ensemble shows symmetry-breaking between spins in the same set, both in
the order in which spin flips occur during the mechanism and the energetic cost. Reliev-
ing this constraint requires optimizing a higher-dimensional protocol, which may show the
symmetry-breaking required to generate a mechanism consistent with the transition path.
The minimum-work protocol in 9D space is too computationally expensive to compute us-
ing the same methods used to generate the 4D fully optimized protocol. Minimum-work
protocols using the linear-response approximation in higher-dimensional spaces have been
computed (e.g., a 100D protocol in Ref. [103]), but under the assumption that relaxation
time is constant throughout control-parameter space so that in the optimization the fric-
tion matrix can be approximated with the force covariance matrix, significantly reducing
computational cost.

More generally, what can be said about connections between minimum-work protocols
and spontaneous transition mechanisms? The choice of control parameters and their ability
to affect change in collective variables that are relevant to describing the reaction mechanism
is an important factor in the comparison. The 4D protocol studied here does not have
the ability to reproduce the dynamics in the transition-path ensemble because some of
the relevant information is coarse-grained. The Ising model has 29 = 512 configurations,
but only 168 are unique with respect to the symmetry operations. There are also 168
unique committor values, indicating that the specific geometry of each state is relevant
to parameterizing the committor. The 4D conjugate-force vector, on the other hand, only
distinguishes 5×3×3×2 = 90 unique configurations. Thus there is loss of information about
the transition mechanism in the 4D collective-variable space. Choosing control parameters
that drive all collective variables that are relevant to the reaction would allow a closer
comparison with the transition-path ensemble.

The underlying transition mechanisms and heat flows differ between the processes. The
MWP seems to drive the system through a specific set of configurations, providing a clear
and interpretable transition mechanism and analysis of energy flow to the system. In con-
trast, for this system the transition-path ensemble has a variety of transition mechanisms
which makes it difficult to determine the details of any one dominant mechanism. If the
transition-path ensemble were such that reactive trajectories tend to follow the same path
(i.e., lie in a “transition tube” [92]) and control parameters are chosen to push on the rele-
vant collective variables to describe the transition, a stronger correspondence between the
processes may be observed.
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Chapter 6

Conclusions

The study of reaction mechanisms is fundamental to the understanding of chemical and bio-
logical processes. Determination of physically intuitive reaction coordinates and the overall
characterization of the reaction pathway from trajectories with microscopic detail is a central
challenge in chemical physics today. As the ability to study larger systems with finer spa-
tial and longer temporal resolution grows, there is greater need for theoretical frameworks
that provide a basis for extraction and interpretation of reaction mechanisms in arbitrary
systems. The development of transition-path theory [29, 30] over the last couple of decades
provides this versatile theoretical description of a reaction through definition of an “ideal”
reaction coordinate, the committor.

In Chapter 3, an information-theoretic interpretation of transition-path theory and the
committor’s ability to identify relevant coordinates is described. Information theory pro-
vides a powerful and versatile framework for interpreting many forms of data and the
information it contains. In the context of reaction mechanisms, the committor is the ideal
reaction coordinate because it preserves the mutual information (a statistical measure of
dependency between random variables) between the system’s microstate and the outcome
(A or B) of the current trajectory segment under elimination of all other degrees of freedom.
This satisfies the intuition about what a reaction coordinate is (a one-dimensional complete
representation of a reactive event [23, 46, 40]) while providing a concrete understanding of
the information preserved under projection of dynamics onto the reaction coordinate, in
this case, information about the trajectory variables that define the transition-path ensem-
ble and dictate its thermodynamics. Furthermore, incorporating information theory into the
definition of the reaction coordinate provides a thermodynamic interpretation of the coarse-
graining of system microstates that is done when low-dimensional collective variables are
found to describe the reaction. In stochastic thermodynamics, a particular coarse-grained
representation of system state is said to be thermodynamically consistent when the (phys-
ical) entropy production of the process is the same when calculated in the full state space
and in the coarse-grained space [51, 108]. Low-dimensional collective variables that describe
reaction dynamics should be thermodynamically consistent with the high-dimensional dy-
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namics, but a definition of what this thermodynamic consistency entails has been lacking.
The transition-path ensemble entropy production introduced in Section 3.2—that character-
izes the time-asymmetry of the reaction dynamics—provides a definition of thermodynamic
consistency for reaction dynamics. Additionally, a thermodynamic definition is provided for
the as-yet vague concept of relevance of a collective variable to the reaction, which provides
a criterion for optimization. This contribution provides a theoretical basis for the devel-
opment of computational methods for extracting and interpreting information about the
reaction mechanism using tools from information theory and stochastic thermodynamics.

In Chapter 4, minimum-work protocols for spin-inversion in a 2D Ising model are calcu-
lated and characterized, focusing on how multidimensional protocols interact with specific
system coordinates and the underlying energy landscape to speed system relaxation and
reduce excess work for the protocol. Designed multidimensional protocols take advantage of
their flexibility to avoid control-parameter regions of high friction (Fig. 4.2a), decorrelate
spins (Fig. 4.7) and flatten the energy landscape, thereby boosting the system population in
configurations with high internal energy (Fig. 4.8), and heterogeneously input and extract
work in concert with system relaxation timescales (Fig. 4.9). This drives the system along
a fast-relaxing path connecting the configuration endpoints, keeping the system closer to
equilibrium and reducing resistance and hence work relative to naive protocols. This work
highlights the advantages of using several collective variables to drive the system since there
is greater flexibility in choosing regions of configuration space to drive the system through.
The designed protocols highlight some relevant features of the system’s energy landscape,
in particular the asymmetric boundary conditions on the system and (approximately) the
size of the energy barrier the system must overcome during the reaction.

Finally, in Chapter 5 the transition-path ensemble for spin-inversion in the same 2D
Ising model is studied, with methods developed to extract the reaction mechanism from
trajectories and compare it to the mechanism during the 4D fully optimized protocol cal-
culated in Chapter 4. The mechanisms differ in their finer details but the general features
are preserved given the constrained symmetry of the 4D protocol. This highlights the im-
portance of identifying relevant collective variables for the reaction: since the spontaneous
transition mechanism depends on energetic and structural relationships between collective
variables, control parameters that cannot affect change in the relevant collective variables
may not be able to drive the system through regions of configuration space that are typically
visited during a spontaneous transition. During a spontaneous transition in the 2D Ising
model, spins of the same symmetry type (e.g. the two green spins) have different heat flow,
and therefore the 4D control parameters that treat all spins of the same type equally cannot
do work on individual spins in a way that matches their energetic requirements in the tran-
sition mechanism. However, given the constraint on the control parameters, the 4D fully
optimized protocol drives the system along a path with a minimal internal energy barrier.
It would be interesting to see how minimum-work protocols for this system designed in a 9D
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control parameter space compare to the 4D protocol and the spontaneous transition mech-
anism, but clever methods for optimizing the protocol in the high-dimensional space need
to be developed. Nevertheless, the results suggest that minimum-work protocols are able
to uncover aspects of the spontaneous transition mechanism, potentially providing another
optimization criterion for finding relevant collective variables and spontaneous transition
mechanisms from nonequilibrium driving protocols.

6.1 Future directions

There are several avenues of investigation opened up by work in this thesis.
The information thermodynamics of transition paths derived in Chapter 3 opens several

opportunities for future work. First, it would be helpful to better understand the meaning
of the transition-path ensemble entropy production rate and how it depends on underlying
details of the system, such as the magnitude of the energy barrier separating metastable
states, position-dependent diffusion throughout configuration space, the presence of multi-
ple distinct transition pathways, and the precise choice of reaction endpoints. To this end,
it would be helpful to derive these results in a continuous state space to complement the
Master-equation description presented in Chapter 3 and expand the applicability of the
theory. Further, developing transition-path thermodynamics under coarse-graining of the
state space [108] would be beneficial to more precisely understand the reaction informa-
tion available from observation of a one-dimensional coordinate. Additionally, the Fisher
information metric in configuration space defined in Section 3.2.3 is intriguing and may be
worth further investigation using ideas from information geometry and its relationship to
stochastic thermodynamics [109, 136]. With a better understanding of the intuition that can
be gained about a reaction from its entropy production rate, single-molecule experiments
examining transition-path dynamics could be performed and analyzed to yield insight into
the reaction [3, 38].

The connection established between transition-path theory and stochastic thermody-
namics suggests that relevant coordinates are identified by their time-asymmetry in the
transition-path ensemble. A promising avenue for future work is the development of al-
gorithms to find maximally informative coordinates from a sample of transition paths
using established methodology for inferring entropy production in nonequilibrium sys-
tems [89, 117, 118, 119]. Additionally, incorporating stochastic-thermodynamic ideas into
the interpretation of reaction mechanisms could be insightful, by using the same concepts
of work, heat, and information flows used to analyze the operation of molecular machines
operating in a nonequilibrium steady state [137, 138]. In particular, analyzing energy flows
into system coordinates was useful in interpreting the spin-inversion mechanism in Chap-
ter 5, and similar ideas have also been used to study conformational changes in alanine
dipeptide [116, 130]. This analysis of energy flows goes beyond a one-dimensional reac-
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tion free-energy profile (Fig. 1.1) and provides more detailed understanding of the energy
landscape and how it depends on collective variables of interest.

Another direction is to extend the information thermodynamics for a transition be-
tween A and B to describe a network of transition paths between N distinct subsets of
configurations I. This has strong ties to Markov-state modeling [25] and milestoning [28],
which use transition dynamics between nearby subsets of (metastable) configurations to
describe dynamics on a global scale between distant configurations of interest. In this case,
the trajectory outcome and origin would be multinomial random variables, with conditional
probabilities given by some multinomial generalization of the committor. Each node would
have its own I → I stationary subensemble with no entropy production, as well as a set
of reactive subensembles going to each other node, each with its own entropy production.
This gives a total of

(N
2
)

reactive subensembles for the entire system, in principle requiring(N
2
)

reaction coordinates that generalize the traditional binomial committor. Nevertheless,
the information generated in this multinomial scenario about the multivariate trajectory
outcome would be equal to the average time-irreversibility throughout all these reactive
subensembles. Relevant coordinates that maximize entropy production in a set of reactive
subensembles of interest could be found, gaining insight into the overall reaction network
and collective variables describing each transition.

Transition-path thermodynamics were derived for a system in equilibrium, but in prin-
ciple this theory could be extended to nonequilibrium steady states, where the system is
connected to one or more reservoirs that maintain it out of equilibrium, breaking the de-
tailed balance condition which is used to derive several relationships in Chapter 3. In a
nonequilibrium context, the mechanism for a system transition from a reactant to a prod-
uct can also be considered, and the time-asymmetry of dynamics within a transition-path
ensemble and the information generated by particular degrees of freedom could be derived
separately from the thermodynamic entropy production of the underlying dynamics. This
may have connections with recent work by Ref. [139], which showed that milestoning (a
transition-path sampling technique [28] that essentially uses a multinomial version of the
trajectory outcome and origin variables [91]) is a thermodynamically consistent method of
coarse-graining nonequilibrium dynamics without losing information about entropy produc-
tion. There are strong similarities to the ideas discussed in Chapter 3, and a more concrete
connection between these ideas is another avenue for cross-pollination of ideas from the
fields of stochastic thermodynamics and transition-path theory.

Regarding minimum-work protocols, there is a need for better computational methods to
design minimum-work protocols, especially in multidimensional control-parameter spaces.
There has been recent progress in machine-learning techniques aimed at finding minimum-
work protocols [105] which do not use the generalized friction and can therefore provide
minimum-work protocols for any protocol duration. However, the generalized friction and
its role in defining thermodynamic geometry in control-parameter space is physically ap-
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pealing and suggests deeper connections with the geometry of the configuration space it has
access to, warranting further investigation into its properties. Therefore better methods to
calculate the generalized friction and its geodesics in a multidimensional control-parameter
space would be helpful in expanding the applications of this approach to designing efficient
protocols.

Finally, methods to optimize control parameters for efficiently driving the system would
be a useful avenue for further investigation. The work in this thesis suggests that small
coordinate sets identified to be relevant to a reaction could be driven with minimal energetic
cost by appropriately choosing control parameters to drive them. This could plug into the
immense progress in using machine learning to learn small sets of collective variables to drive
a system across energy barriers [49, 120, 140, 47, 141, 142, 143, 48]. The correspondence
between “good” collective variables and “good” control parameters (and particular forms of
the energetic coupling between control parameters and collective variables) that do minimal
work could be studied in a more diverse set of model systems to further elucidate connections
between minimum-work control and spontaneous transitions.

6.2 Final remarks

Reaction mechanisms are a fundamental concept in chemistry and biology, and yet their
theoretical description is challenging. Concepts such as the transition state and a one-
dimensional reaction coordinate provide a starting point for development of reaction theo-
ries, but lack a priori definition without first having some intuition about the reaction of
interest. The development of transition-path theory [29, 30] has alleviated some of the am-
biguity associated with these concepts through definition of the committor, which provides
the one-dimensional reaction coordinate and identifies the transition-state ensemble as the
q = 0.5 surface. Yet challenges remain in interpreting the committor and gaining physical
intuition about the mechanism in terms of small sets of system coordinates.

In this thesis, it is shown that stochastic thermodynamics provides some of the remain-
ing pieces of the puzzle, with concepts of entropy production, information generation, and
energy flows allowing identification of relevant dynamics and interpretation of the reaction
mechanism. Given the rapid theoretical developments in the field in the last few decades, it
should not be surprising that this powerful theoretical framework, which combines kinetics
and thermodynamics by defining thermodynamic quantities for individual trajectories, is
well-suited for describing the transient dynamics and energetics of a system as it undergoes
a reaction. Further, the collective motions of the reaction mechanism intricately depend on
interactions between collective variables. Therefore the response to dynamic manipulation
of these collective variables during a protocol reflects their interactions. Protocols that min-
imize work take advantage of the interactions between collective variables that the control
parameters affect, providing work to collective variables in accordance with the energetic
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requirements of their motion and providing fast-relaxing paths through configuration space.
While these concepts were studied in a particular model system, the concepts and resulting
intuition are general enough to be applied to other systems. The work in this thesis provides
an initial road map for further investigations of the connections between efficient control
and spontaneous transitions.
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Appendix A

Code

Select code supporting the work in this thesis is publicly available in a Github reposi-
tory [144]. Further code and data are available upon reasonable request.
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Appendix B

Computational details for Ising
model

B.1 Calculation of generalized friction matrix

The friction matrix for control parameter λ was estimated from time-correlation functions
of pairs of conjugate forces (2.62). Single-spin-flip Glauber dynamics [82] are used to sim-
ulate four equilibrium trajectories, each of length 107dt, where dt is a constant simulation
time interval after which a random spin flip is attempted. Time-correlation functions were
calculated between pairs of conjugate-force trajectories using fast Fourier transforms [81]
and integrated to lag time 2.5 × 104 dt. The four independent estimates of friction at each
control-parameter value were then averaged.

The 4×4 friction matrix is calculated at grid points with discrete spacing dλi = 0.2 within
the control-parameter space bounded by: λred ∈ [−2.1, 2.1], λblue ∈ [−3.0, 1.0], λgreen ∈
[−1.0, 3.0], λblack ∈ [−2.1, 2.1]. Since this control-parameter space has spatial symmetry,
statistical power is doubled by averaging friction values for symmetrically equivalent control-
parameter values: (λred, λblue, λgreen, λblack) → (−λred, −λgreen, −λblue, −λblack).

B.2 Design of control protocols

Here, the methods used to design minimum-work protocols are described in more detail.

The time-optimized protocols are effectively one-dimensional with a single field applied
equally to all spins; these protocols have optimal velocity inversely proportional to the
square root of the 1D friction coefficient ζ1D(λ) ≡

∑
i,j ζij(λ).

The fully optimized protocols are calculated using the string method (Ref. [103] and Sec-
tion 2.3.5).

Calculating both time- and fully optimized protocols requires knowledge of the 4 × 4 fric-
tion matrix in relevant regions of control-parameter space. Each component of the friction
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matrix and its gradient (which is required for fully optimized protocols) with respect to
each control parameter are interpolated using four-dimensional cubic splines [145, 146],
which solve piecewise cubic polynomials over the data array to ensure smooth first and sec-
ond derivatives. Since components of the friction matrix vary several orders of magnitude
throughout control-parameter space, cubic splines are fit to the natural logarithm of each
matrix component and re-exponentiated interpolated values from this surface to recover the
friction coefficient. The natural logarithm of the friction is defined for this Ising model since
each friction matrix component is positive. In low-dissipation regions at relatively large field
values (top and left edges of the 2D control-parameter space in Fig. 4.2), noise causes the
friction estimate at some control-parameter values to become negative; these were set to a
constant value of 10−5 τrel/kBT .

B.2.1 Time-optimized protocols

To calculate the time-optimized protocols (Fig. 4.3, middle), the friction is interpolated at
121 evenly spaced points along the fully naive protocol, then these points are reparameter-
ized to be evenly spaced in terms of the 1D friction ζ1D(λ) ≡

∑
i,j ζij(λ). A reparameteriza-

tion scheme commonly used with the string method was used to keep string points evenly
spaced [73], with the modification that distances between discrete points are measured using
the friction metric [102],to ensure constant excess power along this protocol (Fig. 4.11).

The string method divides a protocol of duration ∆t into M discrete control-parameter
points, with fixed time δt = ∆t/(M −1) between each string point and boundary conditions
λ(0) = λinitial and λ(∆t) = λfinal. Since the minimum-work protocols are independent of
duration (simply differing by a rescaling of δt), ∆t = 1 without loss of generality. Let L2(m)
denote the length of the string up to discrete point m ∈ [0, M − 1]. The generalized friction
is used to define the distance between adjacent string points

dℓ2
λ(m),λ(m−1) =

∑
ij

[λi(m) − λi(m − 1)]
[
ζij
(
λ(m)

)
+ ζij

(
λ(m − 1)

)]
2 [λj(m) − λj(m − 1)] ,

(B.1)
so that the length of the string up to point m is

L2(m) =
m∑

m′=1
dℓ2
λ(m′),λ(m′−1) , (B.2)

and estimates (up to a factor of protocol duration) the excess power on the system up to
time mδt in the protocol, with L2(M − 1) estimating the squared metric distance (and
excess power) between protocol endpoints.

The string points λ∗(m) are then updated by linear interpolation of the current string
so that the mth point is situated in proportion to the total distance m/(M − 1). Define
s(m) = [m/(M − 1)]L2(M − 1) as the distance along the string where point m should sit,
then find the string point k in the original string such that L2(k − 1) < s(m) ≤ L2(k). The
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reparameterized point λ∗(m) is then linearly interpolated between λ(k − 1) and λ(k) by

λ∗(m) = λ(k − 1) + s(m) − L2(k − 1)
dℓ2
λ(k),λ(k−1)

[λ(k) − λ(k − 1)] . (B.3)

The new string has points that are evenly spaced in terms of square distance (B.1), and
therefore has constant excess power.

B.2.2 Fully optimized protocols

To calculate the fully optimized protocols (Fig. 4.3, bottom), the multidimensional Euler-
Lagrange equation [78] for excess work (2.64) is solved numerically using the string method,
as developed in Ref. [103]. This involves numerically solving the Euler-Lagrange equation
for the protocol minimizing the excess work, by dividing the protocol into a discrete set of
points along a “string” that runs between fixed protocol endpoints. The string is initialized
as the naive protocol, where each point is evenly separated in Euclidean space. The string
is updated from the nth to (n +1)th iteration by solving the set of linear equations for each
component λα at each discrete point m along the string:

hn+1
α (m) − hn

α(m) = ∆r

(
D2λn+1

α (m)

+
∑
ijk

[ζ−1]nαk(m) Dhn
i (m) Dhn

j (m)
[
∂iζkj(m) − 1

2∂kζij(m)
])

, (B.4)

where

Dλα(m) ≡ λα(m + 1) − λα(m − 1)
2δt

(B.5a)

D2λα(m) ≡ λα(m + 1) + λα(m − 1) − 2λα(m)
δt2 (B.5b)

are finite-difference estimators of time derivatives for the string and δt is the difference
in scaled protocol time between adjacent string points. ∆r is a parameter controlling the
size of the string update; ∆r = 10−4 for the 4D protocol and ∆r = 10−5 for the 2D
protocol allowed convergence of each string to a constant-excess-power protocol (required
for the time-optimized and fully optimized protocols). Unlike Ref. [103], the string was not
reparameterized to keep points equally spaced; omitting this step allows simultaneously
optimization of the spatial and temporal aspects of the fully optimized protocols.

The algorithm requires evaluation of the friction matrix and its spatial gradients with re-
spect to control parameters at arbitrary control-parameter values, which are obtained from
the spline fit. Ref. [103] assumes the integral relaxation time is constant and therefore the
friction matrix can be replaced by the force covariance matrix; its derivative is simply the
third cumulant of conjugate forces, ⟨δXiδXjδXk⟩. This assumption greatly simplifies the
calculation, but is not a good approximation for this system, as seen in Fig. 4.2 where
the variation in relaxation time throughout the 2D control-parameter space is on the same
order of magnitude as the variation in force covariance, and therefore variation of each
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element contributes significantly to the variation of the total friction. Optimization was
carried out using 121 discrete string points while the symmetry of the protocol was con-
strained, (λred(m), λblue(m), λgreen(m), λblack(m)) = (−λred(M − 1 − m), −λgreen(M − 1 −
m), −λblue(M − 1 − m), −λblack(M − 1 − m)). The 4D fully optimized protocol was passed
through a Gaussian filter [81] with σ = 0.03∆t to smooth noisy fields near protocol end-
points resulting from noisy friction estimates in low-dissipation regions. The smoothing
affects the corresponding linear-response approximation to excess power in Fig. 4.11, which
visibly dips for green and blue fields close to the start and end of the protocol, respectively.
However, the total excess power throughout the vast majority of the protocol is constant
as expected.

B.3 Protocol simulation and analysis

To simulate the control protocol, a trajectory is initialized from the equilibrium distribution
at λ(t = 0), then its spin-flip dynamics are calculated for duration ∆t using Glauber tran-
sition rates 2.6, while changing the control parameters according to the protocol. N = 5000
repetitions of each driving protocol were used to compute nonequilibrium averages of power,
work, spin magnetization, total energy, entropy, and free energy. Quasistatic properties are
calculated from Boltzmann-weighted equilibrium distributions along the protocol.
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