
Lagrangian Duality and Adiabatic
Quantum Computation For Constrained

Optimization Problems
by

Einar Gabbassov

B.Sc., Simon Fraser University, 2020

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
Department of Mathematics

Faculty of Science

© Einar Gabbassov 2022
SIMON FRASER UNIVERSITY

Summer 2022

Copyright in this work is held by the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Declaration of Committee

Name: Einar Gabbassov

Degree: Master of Science

Thesis title: Lagrangian Duality and Adiabatic Quantum
Computation For Constrained Optimization
Problems

Committee: Chair: Paul Tupper
Professor, Mathematics

Ben Adock
Supervisor
Professor, Mathematics

Maxwell Libbrecht
Committee Member
Assistant Professor, Computing Science

Gili Rosenberg
Committee Member
Senior Applied Scientist, Amazon Quantum Solutions Lab

Nadish de Silva
Examiner
Assistant Professor, Mathematics

ii

Abstract

The Quantum Approximate Optimization Algorithm (QAOA) is a heuristic method for
solving unconstrained binary optimization problems with a gate-based quantum computer.
The QAOA consists of a particular quantum circuit architecture, together with a prescrip-
tion for choosing the parameterization of the circuit. The first part of the thesis studies
both the architecture and optimal parameterization of the QAOA circuit. After reviewing
the necessary mathematical and physical background, we derive QAOA from scratch and
discuss some of its properties. The second part of the thesis focuses on solving constrained
combinatorial optimization problems in the setting of fault-tolerant quantum computation
and presents a novel Lagrangian duality approach to Discretized Adiabatic Quantum Com-
putation (DAQC). The proposed method allows for building highly resource-efficient and
parallelizable quantum circuits. The thesis presents numerical evidence that demonstrates
that the proposed approach gives the quadratic improvement in circuit complexity and
evolution time over circuits derived from the traditional Quadratic Unconstrained Binary
Optimization (QUBO) formalism. We illustrate our findings in the benchmark of the QUBO-
and Lagrangian-based DAQC on the NP-complete 1D 0-1 knapsack problem.

Keywords: quantum computation; combinatorial optimization

iii

Dedication

“For Frodo”

iv

Acknowledgements

A warm thank you to my fantastic academic supervisor, Ben Adcock. Special thank you to
my industrial supervisors Gili Rosenberg, Artur Scherer, and Pooya Ronagh. I am infinitely
grateful to my wife Mira and my mom Ilmira for their support and kindness.

v

Table of Contents

Declaration of Committee ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Figures ix

1 Introduction 1
1.1 Quantum computing . 1
1.2 Quantum computation for combinatorial optimization problems 2
1.3 Contributions . 2
1.4 Previous work . 3
1.5 Thesis outline . 4

2 Mathematical and physical background 6
2.1 Qubits and Dirac notation . 6
2.2 Measurement . 7
2.3 Evolution operators . 8
2.4 Multiple qubits . 9
2.5 Operations on multiple qubits . 11
2.6 Parameterized operations on multiple qubits 12
2.7 The quantum circuit model . 15
2.8 Entanglement as a computational resource 17
2.9 The Schrödinger equation . 18
2.10 The adiabatic theorem . 19
2.11 Trotter formula . 21

3 Quantum algorithms for solving combinatorial problems 22

vi

3.1 Combinatorial optimisation problems . 22
3.2 MaxCut problem example . 23
3.3 Representing a CO problem as a Hamiltonian 23
3.4 Adiabatic theorem in the optimization context 24
3.5 Building the QAOA circuit . 25
3.6 Determining parameters of a circuit with a variational approach 27

3.6.1 The variational approach as optimization of expected energy 28
3.6.2 The variational algorithm step by step 28
3.6.3 Methods for variational parameter update 29

3.7 Determining parameters of a circuit with a discretized adiabatic process . . 30
3.7.1 Minimum eigengap and circuit’s depth 31
3.7.2 DAQC scheduling . 32

3.8 The QAOA for MaxCut problems . 32
3.8.1 The problem Hamiltonian HC . 33
3.8.2 An initial Hamiltonian Hinit . 35
3.8.3 QAOA circuit for a MaxCut problem 36

3.9 MaxCut QAOA circuit’s structure . 37
3.10 Conclusion . 38

4 Combinatorial problems with constraints 39
4.1 Quadratic Unconstrained Binary Optimization 39
4.2 QUBO issues with constrained problems . 40

4.2.1 Issue with additional auxiliary qubits 41
4.2.2 Issues with circuit connectivity . 41
4.2.3 Issues from classical optimization perspective 42
4.2.4 Concluding remarks about QUBO 42

4.3 The novel approach and its advantages . 43
4.4 Lagrangian duality . 43
4.5 The algorithm . 44
4.6 Lagrangian DAQC for linear problems . 46

4.6.1 Lagrangian multiplier scheduling . 49
4.7 Conclusion . 49

5 Numerical experiments 50
5.1 Knapsack problem . 50

5.1.1 Lagrangian circuit . 51
5.1.2 QUBO circuit . 51

5.2 Experimental setup . 52
5.2.1 Hardware setup . 52
5.2.2 Generation of random instances . 52

vii

5.2.3 Performance Metrics . 53
5.2.4 Experiment results . 54

5.3 Conclusion . 56

6 Conclusions and future work 59

Bibliography 60

Appendix A Trotter approximation 64

Appendix B Derivation of the solution to the time dependent Schrödinger
equation 66

Appendix C On commutativity of an initial and problem Hamiltonians 68

Appendix D Time to solution 70

Appendix E DAQC circuit runtime complexities 71

viii

List of Figures

Figure 2.1 A diagram of a quantum circuit on four wires with an input |x1x2x3x4⟩.
The circuit contains 1-qubit gates Ui and 2-qubit gates Ui,j for
i, j ∈ {1, ..., 4}. The gates are applied from left to right in time.
Each column of gates is applied in a single time step. In total, there
are five sequential steps. Hence the circuit depth is 5. The connec-
tivity is 1, as it suffices to remove the gate U2,3 to split the circuit
into two independent groups of wires. 16

Figure 2.2 A circuit diagram for computing the Bell state |Ψ⟩ by performing
eiπ/4RZ1(π/2)RXX(π/2) |00⟩ in (2.45)-(2.47). 17

Figure 2.3 Estimates of the probabilities of outcomes of the circuit in Fig 2.2
for a different number of measurements (also called shots). As the
number of shots increases, the probability estimates get closer to 1/2. 17

Figure 3.1 The general structure of the p-layered QAOA circuit. We can see the
alternating application of unitary matrices associated with HC and
Hinit. Each layer consists of the unitary matrices exp{−bkHC} and
exp{−ckHinit} where (bk, ck) is a pair of parameters for k = 1, ..., p. 27

Figure 3.2 The quantum-classical feedback loop for finding the best parameters
θ. 29

Figure 3.3 (a) The adiabatic schedule function s(t; a, T) for a = 1, 2, 4 The
parameter a determines the rate of transition. For a linear transition
we set a = 0. For a transition whose rate of change is zero at t =
T/2 we set a = 4. The best parameters T and a are found through
hyperparamter tuning. (b) The curve s(t; a = 4, T) together with a
5-layer circuit’s coefficients ck, bk for k = 1, . . . , 5. 33

Figure 4.1 The k-th layer of the 4-qubit QUBO circuit. Rotation angles are not
displayed for clarity. The circuit is all-to-all connected since each
qubit interacts with every other qubit through RZZ gates. The
dashed wires plotted over some RZZ gates denote wires that are
not affected by the gate. 42

ix

Figure 4.2 The k-th layer of the 4-qubit Lagrangian circuit. Rotation angles are
not displayed for clarity. 48

Figure 5.1 Scaling of the Lagrangian and QUBO circuit with respect to the
size of a KP problem. For each dataset of size n a single pre-tuned
scheduling function is used. 55

Figure 5.2 Scaling of the resources of the Lagrangian and QUBO circuits with
respect to a problem size. (a) The optimal mean depth p scales lin-
early for the Lagrangian circuit, whereas the QUBO circuit has a
quadratic growth. (b) Optimal mean evolution time T also scales
linearly for the Lagrangian circuit. The QUBO circuit has quadratic
growth. (c) R99 of both circuits under their respective optimal pa-
rameters p and T . Given optimal parameters, both circuits have a
comparable R99 with exponential scaling. 57

Figure 5.3 Scaling of the Lagrangian and QUBO circuits with respect to the
coefficients of a KP problem. For all datasets, each circuit has a
single fixed parametrization, that is p, T and s(t) are fixed across all
datasets. 58

x

Chapter 1

Introduction

Digital computers are pillars of our modern civilization. Humanity entered the digital era
when John Bardeen, Walter Brattain and Will Shockley developed the transistor in 1947.
Since then the computing power of the hardware has grown at a phenomenal pace, so much
so that the growth was codified as a law by Gordon Moore in 1965 [42]. Moore’s law states
that, for a constant economic cost, computing power will double every two years. Since then
the law has held approximately true for almost 60 years. However, the current generation
of hardware is beginning to face the limits of what is physically possible to manufacture
for further power gains. The coming end of Moore’s law suggests that traditional computer
devices are struggling to support growing computational requirements. Due to this, research
in alternative computational methods has steadily increased.

1.1 Quantum computing

One possible alternative to classical computation is the computational paradigm provided
by the theory of quantum computation. The main idea is to use quantum mechanics to
perform computations. Specifically, the paradigm aims to harness quantum phenomena
such as quantum superposition and entanglement to realize certain computations efficiently,
namely, those that are very difficult to do with classical physics-based computers.

The theory of quantum mechanics emerged at the beginning of the 20th century when
physicists observed that nanoscopic entities exhibit both particle and wave-like behaviour.
Driven by the intuition that simulating quantum systems was very hard for classical de-
vices, Richard Feynman and others suggested that quantum mechanical properties could be
exploited to perform calculations faster than classical computers [15]. The first theorized
applications of quantum computing were in the field of simulating quantum systems them-
selves. Throughout the decades many different quantum algorithms were discovered that
achieved various types of speedups for certain tasks [41].

As of now, a limited number of practical quantum algorithms are known to provide
a theoretical speedup over classical counterparts. Just as the discovery of new practical

1

quantum algorithms, the search for problems that can be solved with quantum computa-
tion is an ongoing challenge. So far, some of the most promising application domains are
cryptography, quantum chemistry, machine learning and optimization.

1.2 Quantum computation for combinatorial optimization prob-
lems

In 1989, Appoloni, Carvalho and de Falco proposed to use the theory of quantum mechan-
ics for solving Combinatorial Optimization (CO) problems [3]. The main idea behind the
proposed approach is mapping a CO problem to a quantum system and then allowing the
system to evolve under the laws of quantum mechanics. By the end of the evolution, the
system is expected to be in its lowest energy state. The resulting state is also a solution
to the original problem. This publication inspired the development of a variety of quantum
optimization algorithms that work around the idea of mapping a classical problem into some
quantum system.

Unfortunately, most of the proposed algorithms require quantum hardware that can
perform calculations without introducing errors over time and fit the entire quantum algo-
rithm into its physical memory. The current and near-term generation of quantum hardware
cannot meet these requirements. Hence, many quantum optimization algorithms remain
impractical or produce erroneous results. Therefore, the most recent research is focused on
near-term quantum algorithms – algorithms that can work well in the presence of compu-
tational errors and do not require a significant amount of quantum resources.

1.3 Contributions

Almost two decades after the proposal by Appoloni et al., Farhi, Goldstone and Gutmann
[13] introduced a promising quantum heuristic called the QAOA that can run on the near-
term quantum hardware. QAOA aims to solve unconstrained binary optimization problems
and it builds on top of the ideas proposed by Appoloni et al., that is, it approximates
the time evolution from the lowest energy state of a simple physical system to the lowest
energy state of the physical system representing a CO problem. The final lowest energy
state corresponds to an optimal solution to the CO problem and the approximated time
evolution is implemented as a quantum circuit on a gate quantum computer.

In the original paper Farhi et al. present the definition of the algorithm, but they do not
explain the underlying motivation and reasoning. Moreover, the mathematical derivation of
QAOA algorithm is also omitted. Since the introduction of the algorithm, many researchers
studied and further developed QAOA [39, 38, 55, 34, 11]. Despite the fact that the original
paper only gave the definition of the structure of the algorithm, subsequent studies assumed
that the mathematical derivation and motivation of QAOA are well-known.

2

Many real-world optimization problems usually include constraints. Because QAOA only
applies to unconstrained problems, its practical use is limited. Nevertheless, it is possible
to reformulate a linear-constrained problem as an unconstrained one to which QAOA could
then be applied. The most common approach is reformulating a linear-constrained problem
into a QUBO problem [33]. Essentially, QUBO incorporates linear constraints as quadratic
penalties into an objective function. This gives rise to many issues. For example, quadratic
penalties for inequality constraints require many additional slack variables. The slack vari-
ables significantly increase the search space of a problem and make the optimization land-
scape more rugged. Also, converting constraints into squared penalty terms often results
in all-to-all interaction between a problem’s variables, making a problem more complex.
The additional slack variables and complex interactions between variables also significantly
increase the complexity of QAOA and the amount of quantum resources needed.

With these issues in mind, the contributions of this thesis are as follows:

• A complete mathematical derivation of QAOA accompanied with explanations of fun-
damental concepts of quantum mechanics.

• Quantum circuit architecture for QAOA based on Lagrangian duality theory.

• Quadratic improvement in a circuit complexity and evolution time over a QUBO-based
approach for problems with linear inequality constraints.

• Highly parallelizable circuit execution with problem size-independent runtime.

• Analysis of QUBO- and Lagrangian-based formulations and their corresponding quan-
tum circuits for the example of the NP-hard binary Knapsack Problem (KP).

• Numerical study of QUBO-based and Lagrangian-based QAOA with the latter out-
performing the former on a large dataset of different size KPs.

1.4 Previous work

A number of meta-heuristics based on adiabatic quantum computation [1] were proposed for
solving CO problems. One of such techniques is Quantum Annealing (QA) [43]. The heuris-
tic utilizes decreasing quantum fluctuations to search for a low energy state of a Hamiltonian
that encodes the CO problem. The QA heuristic uses a time-dependent Hamiltonian con-
sisting of two non-commuting sub-Hamiltonians. The transverse field sub-Hamiltonian is
gradually decayed, while the Ising sub-Hamiltonian is strengthened during the annealing
process. The subsequent work [51, 16] focused on determining suitable scheduling strategies
of mixing the sub-Hamiltonians to find the ground state with high probability.

Lagrangian duality for constrained binary quadratic problems in the context of quantum
adiabatic evolution is presented in [48]. The study presents a method for solving the La-
grangian dual of a binary quadratic programming problem with inequality constraints. The

3

proposed method successfully integrates the Lagrangian duality with branch-and-bound and
quantum annealing heuristics. The work in [27] considers a quantum subgradient method
for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary
problem. The subgradients are computed using a quantum annealer and then used in a
classical descent algorithm.

Variational approaches for determining adiabatic quantum computation scheduling are
discussed in [37, 36]. Generally, variational methods involve a classical feedback loop where
continuous optimization techniques are used to find a suitable parametrization of a sched-
ule. Although such approaches allow for greater flexibility, they require many runs of a
quantum device. Moreover, most variational approaches optimize for the expected energy
of a system rather than the probability of sampling an optimal solution [39]. If the energy
function is not convex with respect to the variational parameters, then the task of finding
optimal parameters is in itself an NP-hard problem. Moreover, even if a suitable schedule
is determined for some problem instance, each new problem instance requires finding a new
parametrization.

Both QA and QAOA are well suited for optimizing unconstrained binary problems of
MaxCut type which belongs to the class of QUBO problems. Constrained problems are
canonically reformulated as QUBO problems. In QUBO, the constraints are integrated
into an objective function as quadratic penalties. The issue of quadratic penalties present
in QUBO is addressed in [24]. It was suggested to use a special initial Hamiltonian and
specifically prepared initial state which is simultaneously the ground state of the initial
Hamiltonian and satisfies the linear equality constraint. While this approach allows one to
omit quadratic penalties for equality constraints, it becomes increasingly hard to prepare
an initial state in the presence of multiple equality constraints. Overall, such a state can
not be prepared in constant time. The proposed approach can be generalized to inequal-
ity constraints by introducing slack variables. However, as we will see in Section 4.2 the
number of slack variables has an explicit dependence on the constraint bound and implicit
dependence on problem size. This renders all approaches that involve slack variables very
costly as it not only requires more quantum resources but also increases the search space
of a problem.

1.5 Thesis outline

In this section, we briefly summarize the content of the following chapters. Chapter 2 in-
troduces fundamental concepts of quantum mechanics. Chapter 3 introduces combinatorial
optimization and presents the construction of QAOA with different parametrization princi-
ples. Next, Chapter 4 discusses integer programs and their conventional reformulation into
QUBO problems. The chapter highlights the major issues with the QUBO reformulation
and presents a novel method based on the theory of Lagrangian duality. Chapter 5 presents

4

the results of large-scale numerical experiments that demonstrate the superiority of the pro-
posed method over traditional QAOA. Finally, Chapter 6 concludes the thesis and discusses
future work.

5

Chapter 2

Mathematical and physical
background

To understand the inner working of QAOA, we introduce multiple fundamental concepts
used in quantum mechanics. We commence with the postulates of quantum mechanics,
and then we discuss evolution operators, systems with multiple qubits, entanglement and
parametrized quantum gates. Finally, we introduce more advanced concepts such as the
Schrödinger equation, adiabatic theorem [28] and approximation of unitary operators by
Trotter [44].

2.1 Qubits and Dirac notation

In a classical system, the space of states of a system is a mathematical set containing all
possible states. For example, a state-space of an ordinary coin could be a two-element set
{head, tail} or it could be R2 if we were interested in the coin’s position on a table. However,
the space of states of a quantum system is not a set; it is a vector space. We formalize this
claim by stating the first postulate of quantum mechanics [29].

Postulate 1 The state of a system is described by a unit vector in a Hilbert space H.

Like Classical Computing (CC), Quantum Computing (QC) uses bits to manipulate
data. However, QC bits can exist in more than one state simultaneously. For this reason, a
state of n quantum bits is described by a complex unit vector in C2n . Hence, the entire QC
paradigm can be described by linear algebra on the Hilbert space C2n . While a complex unit
vector is a familiar concept, quantum mechanics uses different notations for representing
vectors. We start with a state of a single quantum bit also known as a qubit. If the qubit is
in the state 0 we write

|0⟩ =
(

1
0

)
. (2.1)

6

If the qubit is in the state 1 we write

|1⟩ =
(

0
1

)
. (2.2)

The definition above gives a basis of C2. Hence, we can represent an arbitrary state as a
vector |ψ⟩ which is a linear combination of |0⟩ and |1⟩. That is, we write |ψ⟩ = α |0⟩+ β |1⟩
for α, β ∈ C such that

|α|2 + |β|2 = 1. (2.3)

The discussion above is formalized in the following definition.

Definition 2.1.1 (Quantum superposition principle). If a quantum system (a single qubit)
can be in the state |0⟩, and can also be in |1⟩, then quantum mechanics allows the system
to be in any arbitrary state

|ψ⟩ = α |0⟩+ β |1⟩ =
(
α

β

)
. (2.4)

We say |ψ⟩ is in a superposition of |0⟩ and |1⟩ with probability amplitudes α and β.

2.2 Measurement

We have seen how a single-qubit system is represented in quantum mechanics as a unit
vector in Hilbert space C2. Living in the classical physics world, we cannot directly access
the quantum information encoded in the vector, but we can obtain partial information by
measuring a system. In this section, we will present the measurement postulate and discuss
how probability amplitudes are related to measurement outcomes. Let us commence with
the measurement postulate of quantum mechanics.

Postulate 2 The probability of measuring a system in a given state is given by the mod-
ulus squared of the inner product of the output state and the current state of the system
[32, Section 3.4].

For example, suppose our output state is x ∈ {0, 1}. When we measure a qubit in
the state |ψ⟩ we get probabilistic outcomes 0 or 1 depending on the values of α and β.
Specifically, the probability of observing the outcomes 0 or 1 is given by

Pr(outcome is |x⟩) = |⟨x|ψ⟩|2 =

|α|
2, x = 0

|β|2, x = 1.
(2.5)

7

Therefore the probability amplitudes α and β determine the probabilities of observing
outcomes 0 or 1. We now formalize the concept of measurement of a qubit by giving the
following definition.

Definition 2.2.1 (Quantum measurement). Suppose we have a quantum state |Ψ⟩ and an
orthonormal basis {|ϕ1⟩ , . . . , |ϕm⟩}. We can explicitly write the state using the orthonormal
basis, i.e.,

|Ψ⟩ = c1 |ϕ1⟩+ · · ·+ cn |ϕm⟩ . (2.6)

The probability of measuring each state |ϕi⟩ is given by

Pr(|ϕi⟩) = |ci|2 = | ⟨ϕi|Ψ⟩ |2. (2.7)

After measurement, the system is in the state of the measured outcome |ϕi⟩. This effect is
called the wave function collapse.

For example, suppose we have the basis {|0⟩ , |1⟩} and a qubit’s state is given by

|ψ⟩ = |0⟩+ |1⟩√
2

. (2.8)

If we measure the qubit in the given basis, we will observe one of the outcomes |0⟩ or |1⟩
with probability 1/2. After the measurement, the qubit is in the state of the measured
outcome. This means the state |ψ⟩ was “destroyed” as we lost all information about it.

Since measurement outcomes may be randomly distributed, a single measurement is not
enough in many practical applications. To obtain a sample of measurements, we need to
prepare an ensemble of identical quantum states we are interested in and then perform a
measurement on each member of this ensemble. We will refer to this procedure as sampling.

2.3 Evolution operators

In order to change the state of a qubit, we use unitary operators that act on C2. A unitary
operator is a bounded linear operator U : H → H on a Hilbert space H that satisfies
U∗U = UU∗ = I where U∗ is an adjoint of U . For example, suppose we want to switch the
state of a qubit by negation. This is done with the Pauli X operator defined in the following
equation.

X =
(

0 1
1 0

)
. (2.9)

Note that X is unitary. Indeed, one easily verifies that X∗X = XX∗ = I and ||X||2 = 1.
We can apply the operator X on the state |0⟩ to get the new state |1⟩.

X |0⟩ =
(

0 1
1 0

)(
1
0

)
=
(

0
1

)
= |1⟩ . (2.10)

8

Similarly, we can use the operator X to negate the state |1⟩ i.e., X |1⟩ = |0⟩. We can
immediately see that the operator X is analogous to the logic NOT gate used in CC. This
brings us to the third postulate of quantum mechanics given below.

Postulate 3 The time-evolution of the state of a closed quantum system is described by
a unitary operator. That is, for any evolution of the closed system, there exists a unitary
operator U such that if the initial state of the system is |ψ1⟩, then after the evolution, the
state of the system will be |ψ2⟩ = U |ψ1⟩ [29, Section 3.2].

By a closed quantum system we mean an isolated system that does not interact with any
other physical system. There are infinitely many operators that can be used to evolve the
state of a qubit. The only requirement is unitarity. The most popular operators are Pauli
X, which we have already seen and additional Pauli operators I, Y , and Z, which we define
as follows:

I =
(

1 0
0 1

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.11)

Another important operator is the Hadamard operator:

H = 1√
2

(
1 1
1 −1

)
. (2.12)

The Hadamard operator is interesting because it allows one to model constructive and
destructive interference. For example, it creates a uniform superposition of |1⟩ and |0⟩ when
applied to either of them:

H |0⟩ = 1√
2

(|0⟩+ |1⟩) =: |+⟩ , H |1⟩ = 1√
2

(|0⟩ − |1⟩) =: |−⟩ . (2.13)

Or it destroys the uniform superposition:

H |+⟩ = |0⟩ , H |−⟩ = |1⟩ . (2.14)

The above behaviour follows from the properties of H. Note that H is symmetric and
unitary. Hence H∗H = HH = I.

2.4 Multiple qubits

Having only a single qubit is not enough to perform a meaningful computation. In this
section, we discuss how to represent multi-qubit systems.

Before we give a general definition, we start with a simpler case. Suppose we have a
system of two qubits such that one qubit is in the state |0⟩ and the other qubit is in the

9

state |1⟩. We describe their joint state using the tensor product:

|0⟩ ⊗ |1⟩ =
(

1
0

)
⊗
(

0
1

)
=

1
(

0
1

)

0
(

0
1

)
 =

0
1
0
0

 . (2.15)

For brevity we will use the following notations,

|x1x2⟩ := |x1⟩ ⊗ |x2⟩ (2.16)

or alternatively
|x1x2⟩ := |x1⟩ |x2⟩ (2.17)

where x1, x2 ∈ {0, 1}. This example implies that any |x1x2⟩ has an equivalent representation
in the form of a four-dimensional standard basis vector. The tensor product of two arbitrary
states |ψ⟩ and |ϕ⟩ each representing a single qubit is given by the following equation:

|ψ⟩ ⊗ |ϕ⟩ ≡ |ψ⟩ |ϕ⟩ =
(
ψ1

ψ2

)
⊗
(
ϕ1

ϕ2

)
=

ψ1

(
ϕ1

ϕ2

)

ψ2

(
ϕ1

ϕ2

)
 . (2.18)

The tensor product is a way of combining spaces, vectors or operators together. Suppose that
H1 and H2 are Hilbert spaces of dimension n and m respectively. Then the tensor product
space H1⊗H2 is a new Hilbert space of dimension n×m. For example, given a system with
n qubits the tensor product space is C2⊗· · ·⊗C2 =

(
C2)⊗n which is isometrically isomorphic

to C2n . We formalize the above by the following postulate of quantum mechanics.

Postulate 4 The Hilbert space of a composite system is given by the tensor product of
the separate Hilbert spaces [32, Section 3.6].

When working with multiple qubits, interesting quantum phenomena may arise. In ad-
dition to quantum superposition which we covered in the previous section, a multiple-qubit
system may have quantum entanglement.

Definition 2.4.1 (Quantum entanglement). If a two-qubit state |Ψ⟩ cannot be written as
|ψ⟩ ⊗ |ϕ⟩ for any choice of |ψ⟩ and |ϕ⟩, then |Ψ⟩ is said to be entangled.

Entanglement is a peculiar property that is exclusive to the quantum world. The above
definition implies that entangled qubits have a well-defined joint state |Ψ⟩, but they do
not have well-defined individual states |ψ⟩ and |ϕ⟩. This means any single qubit cannot be

10

described independently of its pair when entangled. The phenomenon of quantum entangle-
ment is what makes quantum physics intrinsically different to classical physics. For clarity,
we provide an example of an entangled quantum state known as the Bell state:

|Ψ⟩ = |00⟩+ |11⟩√
2

. (2.19)

The Bell state |Ψ⟩ cannot be written as a product of any two states |ψ⟩ and |ϕ⟩. Interestingly,
the measurement outcomes of the pair of qubits are maximally correlated. If we measure
one of the qubits and get the outcome x ∈ {0, 1}, then the measurement outcome of the
second qubit is also x.

2.5 Operations on multiple qubits

We have covered how to represent states of a multiple qubit system. In this section, we
cover how to perform quantum operations on such systems. Suppose we have an m1 ×m1

unitary matrix U1 and an m2 ×m2 unitary matrix U2. Then

U = U1 ⊗ U2 (2.20)

is an m1m2 ×m1m2 unitary matrix which satisfies the following rule:

U(|ψ⟩ ⊗ |ϕ⟩) = (U1 ⊗ U2)(|ψ⟩ ⊗ |ϕ⟩) = U1 |ψ⟩ ⊗ U2 |ϕ⟩ . (2.21)

For example, let U = X ⊗ Z with X given in (2.9) and Z given in (2.11). Then

U |0⟩ |+⟩ = (X ⊗ Z)(|0⟩ ⊗ |+⟩) (2.22)

= X |0⟩ ⊗ Z |+⟩

= |1⟩ |−⟩ .

We now introduce additional useful notations that are often used in quantum algorithms.

Definition 2.5.1 (Indexed unitary matrices). Suppose we have a system of n qubits. Let
U be a unitary matrix acting on a vector state |ψ⟩ ∈ C2 of the ith qubit. Then the unitary
matrix Ui on C2n is given by

Ui =
n⊗

k=1
Ak (2.23)

where Ak acts on the kth qubit and satisfies Ak = I for all k ̸= i and Ai = U .

The above is a convenient notation for denoting an operation that modifies only the
state of the ith qubit while keeping the rest of the qubits’ states unchanged. For example,

11

suppose we have n = 3 and U = Z. Then Z2 is given by

Z2 ≡ I ⊗ Z ⊗ I, (2.24)

which we readily see acts only on the second qubit, while keeping the others fixed.
We generalize this notation to a pair of indices. The matrix UiUj acts on the states of

the qubits i and j if

UiUj =
n⊗

k=1
Ak (2.25)

where Ak = I for all k /∈ {i, j} and Ak = U for k ∈ {i, j}. For example, for U = Z and
n = 3 we have

Z1Z2 = Z ⊗ Z ⊗ I, (2.26)

Z2Z3 = I ⊗ Z ⊗ Z, (2.27)

Z1Z3 = Z ⊗ I ⊗ Z. (2.28)

2.6 Parameterized operations on multiple qubits

We now introduce an important class of parameterized unitary matrices often called rotation
gates. First, let us define the exponential of a square matrix T . The exponential of T is given
by the Taylor series of the function f(x) = ex,

eT =
∞∑

k=0

1
k!T

k. (2.29)

Then for σ ∈ {X,Y, Z} and t ∈ R the exponentiation of iσt is given by the following Taylor
series:

eiσt =
∞∑

m=0

(it)m

m! σm. (2.30)

Note that σm = I for m even. Using this property and rearranging odd/even terms in the
series it is possible to write

eiσt = cos(t)I + i sin(t)σ for t ∈ R. (2.31)

It is straightforward to verify that eiσt is a unitary matrix. Given that σ∗ = σ and σ2 = I

we have (
eiσt

)∗
eiσt = (cos(t)I + i sin(t)σ)∗ (cos(t)I + i sin(t)σ)

= cos2(t)I + i cos(t) sin(t)σ − i cos(t) sin(t)σ∗ + sin2(t)σ2

= I.

12

It is worth noting that, in general, for a Hermitian matrix A, the exponential of iAt is
unitary.

We now can define the following parameterized unitary matrices.

RX(t) ≡ e−iXt/2 = cos(t/2)I − i sin(t/2)X, (2.32)

RY (t) ≡ e−iY t/2 = cos(t/2)I − i sin(t/2)Y,

RZ(t) ≡ e−iZt/2 = cos(t/2)I − i sin(t/2)Z.

The above matrices are called 1-qubit rotation gates. Just as in the case of a unitary matrix
Ui acting on the qubit i, we can also define rotation gates RXi(t), RYi(t), RZi(t) which only
rotate the state vector of the ith qubit. For example, for n = 3 we have

RZ1(t) = RZ(t)⊗ I ⊗ I, (2.33)

RZ2(t) = I ⊗RZ(t)⊗ I, (2.34)

RZ3(t) = I ⊗ I ⊗RZ(t). (2.35)

We can also compute their product,

RZ1(t)RZ2(t)RZ3(t) = RZ(t)⊗RZ(t)⊗RZ(t). (2.36)

Finally, we define the 2-qubit rotation gates which arise when exponentiating −i(σ⊗σ)t/2
for σ ∈ {X,Y, Z}. Depending on the parameter t, the 2-qubit gates can entangle pairs of
qubits. These gates are defined as follows

RXX(t) ≡ exp {−i(X ⊗X)t/2} = cos(t/2)I − i sin(t/2)X ⊗X, (2.37)

RY Y (t) ≡ exp {−i(Y ⊗ Y)t/2} = cos(t/2)I − i sin(t/2)Y ⊗ Y, (2.38)

RZZ(t) ≡ exp {−i(Z ⊗ Z)t/2} = cos(t/2)I − i sin(t/2)Z ⊗ Z. (2.39)

In the context of 2-qubit gates, the matrix I denotes a 22 × 22 identity matrix. The gates
above can be indexed as well. For an n-qubit system and i, j = 1, 2, ..., n we have

RXXi,j(t) ≡ exp {−i(XiXj)t/2} = cos(t/2)I − i sin(t/2)XiXj , (2.40)

RY Yi,j(t) ≡ exp {−i(YiYj)t/2} = cos(t/2)I − i sin(t/2)YiYj , (2.41)

RZZi,j(t) ≡ exp {−i(ZiZj)t/2} = cos(t/2)I − i sin(t/2)ZiZj . (2.42)

In the above equations, we have n qubits and the indexed 2-qubit gates only act on qubits
i and j. In this case, I is a 2n × 2n identity matrix.

13

For clarity, we present an example of applying the 2-qubit gate RXX on the state |00⟩.
This example will demonstrate that 2-qubit gates can create entangled states. We have

RXX(t) |00⟩ = cos(t/2) |00⟩ − i sin(t/2)(X ⊗X) |00⟩ (2.43)

= cos(t/2) |00⟩ − i sin(t/2) |11⟩ . (2.44)

Let t = π/2, then

RXX(π/2) |00⟩ = cos(π/4) |00⟩ − i sin(π/4) |11⟩ = |00⟩ − i |11⟩√
2

. (2.45)

The resulting state is entangled, similar to the Bell state in (2.19), except that the second
term has the complex coefficient −i. It is possible to get rid of −i by multiplying the result
with the unitary eit/2RZ1(t) with t = π/2. For a moment, let us ignore the normalizing
factor 1√

2 and perform the following computation:

eit/2RZ1(t)(|00⟩ − i |11⟩) (2.46)

=
(
eit/2RZ(t)⊗ I

)
(|0⟩ ⊗ |0⟩)− i

(
eit/2RZ(t)⊗ I

)
(|1⟩ ⊗ |1⟩)

= eit/2
(
e−it/2 0

0 eit/2

)(
1
0

)
⊗
(

1
0

)
− ieit/2

(
e−it/2 0

0 eit/2

)(
0
1

)
⊗
(

0
1

)

=
(

1 0
0 eit

)(
1
0

)
⊗
(

1
0

)
− i
(

1 0
0 eit

)(
0
1

)
⊗
(

0
1

)
= |00⟩ − ieit |11⟩ .

For t = π/2 we get
|00⟩ − ieiπ/2 |11⟩ = |00⟩+ |11⟩ (2.47)

Putting back the normalizing factor 1√
2 we obtain the Bell state |Ψ⟩ in (2.19).

This example demonstrates the usage of rotation gates. We have shown that using
RXX(t) and eit/2RZ1(t) gates it is possible to construct the Bell state |Ψ⟩. We have

|Ψ⟩ = eiπ/4RZ1(π/2)RXX(π/2) |00⟩ = |00⟩+ |11⟩√
2

. (2.48)

This example also shows how cumbersome some computations might be. In the next section,
we visualize the computation above as a quantum circuit diagram. The circuit diagrams give
a simple and clear visualization of quantum algorithms.

14

2.7 The quantum circuit model

From classical computation, we know that an algorithm is a well-defined procedure, with
finite description, for implementing an information-processing task. Similarly, a quantum
algorithm is an algorithm that makes use of quantum-mechanical phenomena, such as su-
perposition and entanglement. Quantum algorithms can be described using the quantum
circuit model of computation. Quantum circuits are the generalization of classical circuits
used in computing science and engineering. Circuits are networks composed of wires that
carry information to gates that operate on the incoming information and pass it further
along the wires. The circuits are acyclic, meaning that there are no feedback loops in them.
The wires are horizontal lines, and the information (qubit’s state) propagates along each
wire from left to right in time. Quantum gates are shown as rectangular blocks. A quantum
circuit can be described by a circuit diagram similar to that shown in Fig 2.1.

When we consider classical computation, the complexity of an algorithm could be speci-
fied in terms of the amount of time (or computational steps) a machine needs to execute the
algorithm. For the circuit model of computation, one of the natural measures of a circuit’s
complexity is the depth of the circuit. We formalize the notion of depth in the following
definitions.

Definition 2.7.1 (Time step). A time step is a single application of the maximum num-
ber of gates on a state vector such that all applied gates can be executed in parallel and
simultaneously.

Definition 2.7.2 (Circuit depth). The depth of a circuit is the maximum number of con-
secutive time steps necessary to execute a circuit.

If the circuit has high depth, it is more complex and takes longer to execute. We note
that the depth of a circuit does not depend on the number of qubits but rather on the
number of consecutive gates on wires.

The circuit’s connectivity is another important notion that captures a different com-
plexity aspect. Connectivity is a quantum resource related to the circuit’s architecture and
quantum hardware architecture. To understand this concept, one must distinguish between
logical and physical qubits. A physical qubit is a physical component present on a quantum
processor. A logical qubit is used in a quantum circuit representing a quantum algorithm
and it is associated with a unitary vector state in C2. One logical qubit may be comprised
of multiple physical qubits.

Any pair of physical qubits is coupled if some device (a kind of a resonator) physically
connects them. The coupling allows qubits to “talk” to each other and become entangled if
necessary. In the current and near-future quantum hardware, physical qubits are sparsely
connected. Therefore, to make a non-coupled pair of physical qubits “talk” one needs to
“relay” information through coupled neighbouring qubits. This operation is costly in terms

15

Figure 2.1: A diagram of a quantum circuit on four wires with an input |x1x2x3x4⟩. The
circuit contains 1-qubit gates Ui and 2-qubit gates Ui,j for i, j ∈ {1, ..., 4}. The gates are
applied from left to right in time. Each column of gates is applied in a single time step. In
total, there are five sequential steps. Hence the circuit depth is 5. The connectivity is 1, as
it suffices to remove the gate U2,3 to split the circuit into two independent groups of wires.

of time and errors occurring during the relay. For example, to apply a 2-qubit gate on a
non-coupled pair of qubits, it is necessary to insert additional SWAP gates to permute the
qubits so that logically they appear coupled. These additional gates increase the depth of a
circuit and contribute to the accumulation of errors. To quantify how qubits interact with
each other in a circuit, we introduce the following definition.

Definition 2.7.3 (Circuit connectivity). The connectivity of a circuit is the minimum
number of 2-qubit gates that must be removed to separate wires in two or more independent
groups of wires.

Given the limitations of quantum hardware, quantum circuits with high connectivity
are more costly and complex than sparsely connected circuits. Therefore, algorithm cre-
ators should consider connectivity when creating quantum algorithms. Circuits whose every
qubit interacts with every other qubit through 2-qubit gates are called all-to-all connected.
Alternatively, we can define an all-to-all connected circuit as follows.

Definition 2.7.4 (All-to-all connected circuit). An n–qubit circuit is all-to-all connected
or has all-to-all connectivity if its connectivity is n− 1.

As an example, we analyze the complexity of a circuit that represents the computation
in (2.45)-(2.47). The circuit is illustrated in Fig 2.2. We note that it has two wires and
two gates: a 1-qubit gate eit/2RZ1(t) and a 2-qubit gate RXX(t). Since the gates cannot
be applied in parallel, we have two time steps. Therefore, the depth of the circuit is two.
The circuit has all-to-all connectivity because every wire is connected to all other wires by
RXX gate.

By now, it is clear that a quantum circuit is just a logical representation of a quantum
state. This means we can perform a measurement on a circuit. In Section 2.2 we defined the

16

Figure 2.2: A circuit diagram for computing the Bell state |Ψ⟩ by performing
eiπ/4RZ1(π/2)RXX(π/2) |00⟩ in (2.45)-(2.47).

Figure 2.3: Estimates of the probabilities of outcomes of the circuit in Fig 2.2 for a different
number of measurements (also called shots). As the number of shots increases, the proba-
bility estimates get closer to 1/2.

notion of sampling. Similarly, we refer to the procedure of obtaining a sample of measure-
ments from an ensemble of identical circuits as circuit sampling. For example, sampling the
circuit in Fig 2.2 results in distributions of outcomes illustrated in Fig 2.3.

2.8 Entanglement as a computational resource

Quantum speedup is the term used to describe quantum algorithms’ advantage over their
classical counterparts when processing a certain task. Multiple quantum algorithms demon-
strate a significant speedup over classical algorithms. For example, Shor’s polynomial-time
algorithm for integer factorization has an exponential speedup over its classical counterparts.
One might wonder what quantum effect must be present for the possibility of a speedup
over classical computation. An answer to this question is entanglement [26]. Entanglement
can be viewed as a particular type of superposition which cannot be expressed as a single
product state. While entanglement is necessary for a quantum speedup, it is not sufficient.
To see why it is necessary, we recall that if a quantum system’s state is not entangled, we
can express it as a product of states. This means each qubit’s state can be independently
represented with a vector in C2. Therefore, we can operate on each vector state separately
and independently by applying unitary transformations computable in polynomial time.
Moreover, due to the independence of state vectors, operations on them can be done in
parallel.

17

To show that entanglement is not sufficient for quantum speedup, one must refer to the
Gottesman-Knill theorem [45, Section 10.5.4], which is outside of the scope of this study.
In essence, the theorem states that certain quantum computations utilizing entanglement
can be efficiently simulated on a classical computer.

This discussion highlights how subtle quantum computation is. The mere presence of
quantum phenomena such as superposition and entanglement does not guarantee an ad-
vantage over classical computation. However, a significant quantum speedup is not possible
without entanglement.

2.9 The Schrödinger equation

The states of all quantum systems satisfy certain properties that are encapsulated by a linear
differential equation called the Schrödinger equation. Solutions to the Schrödinger equation
are called wave functions. Interestingly, the Schrödinger equation is partly a definition and
partly a principle of quantum mechanics. As a definition, it defines a Hamiltonian – a math-
ematical object representing the energy of a physical system. As a principle, it states that
quantum states change continuously with time such that their “unitarity” is preserved [53,
Section 4.12]. Conceptually, we can view the Schrödinger equation as a quantum mechanical
analog of Newton’s second law of motion, which determines a state of a classical object in
time. The equation is named after its discoverer Erwin Schrödinger. In 1933, Schrödinger
was awarded the Nobel Prize in Physics for his numerous contributions to quantum the-
ory. The equation turned out to be so groundbreaking that it became part of one of the
postulates of quantum mechanics.

Postulate 5 The time evolution of the state |ψ(t)⟩ of a closed quantum system with an
initial state |ψ0⟩ at time t = t0 is given by the Schrödinger equation,

iℏd |ψ(t)⟩
dt

= H(t) |ψ(t)⟩ , |ψ(t0)⟩ = |ψ0⟩ . (2.49)

In this equation, d/dt is the usual time derivative of a state vector, H(t) is a Hermitian
operator on the space (C2)⊗n known as the Hamiltonian of the closed system and ℏ is
a constant known as Planck’s constant. If the Hamiltonian is known, then we completely
understand the closed system’s dynamics. Moreover, eigenvalues of a Hamiltonian represent
the energy of a quantum system, and its eigenvectors represent eigenstates. For a time-
independent Hamiltonian H the relation between H and its energies are given by the time-
independent Schrödinger equation

H |ψk⟩ = Ek |ψk⟩ , (2.50)

18

where Ek is energy of a system associated with the kth eigenstate |ψk⟩. It is easy to see
that (2.50) is an eigenvalue equation.

Given the initial state |ψ(t0)⟩ at the evolution start time t0, we can express |ψ(t)⟩ in
terms of the initial state and the evolution operator U(t, t0),

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ . (2.51)

Therefore, (2.49) is an initial value problem where |ψ(t0)⟩ = |ψ0⟩ is the initial state. Since
the Schrödinger equation in (2.49) preserves the normalization of a state [22, Section 1.4],
solving (2.49) is equivalent to finding a unitary operator U(t, t0) which evolves the initial
state to the solution state |ψ(t)⟩.

We will see later in Section 3.3 that a CO problem can be converted into a Hamiltonian
eigenproblem. For reasons discussed therein, we see that the optimal solution of the CO
problem corresponds to the eigenstate associated with the highest energy (eigenvalue) of
the Hamiltonian. To find the desired eigenstate we solve the Schrödinger equation in (2.49).
The solution to the Schrödinger equation |ψ(t)⟩ is defined in terms of a time evolution
operator U(t, t0). The main question is: How do we find the eigenstate associated with the
highest energy of the Hamiltonian, i.e. how do we find the optimal solution? For this, we
will need the adiabatic theorem presented in the next section.

2.10 The adiabatic theorem

Before we discuss the theorem, it is useful to understand the concept of the adiabatic
process (or evolution). Suppose that we have some physical system in a particular state.
Since everything in nature tends to its lowest energy state, it is reasonable and convenient
to assume that our system is at its lowest energy state (e.g., the system is at rest). An
adiabatic process is a process of slowly (gradually) changing external conditions so that the
system preserves its state [22, Section 11.5.1]. While the concept might appear somewhat
obscure, we use the adiabatic processes regularly in our everyday lives. For example, let
the system be a cup of tea. Suppose that we prepared the tea and now we would like to
take the cup to a work desk without spilling the hot liquid. The cup’s content will remain
still (at rest) if we walk slowly enough from a kitchen to a work desk. In this example, we
gradually change the external conditions by slowly carrying the cup from the kitchen to the
work desk. By the end of the process, we have a cup of tea with the same amount of tea and
no spills. Importantly, the tea remained still (at rest) by the end of the transition process.

Before we proceed to the adiabatic process of quantum mechanics, it is helpful to give
a proper definition to a state with the lowest energy.

Definition 2.10.1 (Ground state). The ground state state of a physical system is the lowest
energy state that the system can be in.

19

Remark: The lowest eigenstate of a Hamiltonian H is also called the ground state. If
E is the lowest energy of H with the associated eigenstate |x⟩, then −E is the highest
energy of −H with the same associated eigenstate |x⟩. In other words, the ground state of
a Hamiltonian H is the highest energy eigenstate of the negated Hamiltonian H. Due to
this relation, we will use the term “ground state” to refer to a state that produces either
the lowest or the highest energy.

We now discuss the adiabatic process in the context of quantum mechanics. If we take
a quantum system whose Hamiltonian slowly changes from H1 to H2, then, under certain
conditions, the ground state of H1 is transformed into the ground state of H2 [2]. Or in
other words, the system remains at its lowest energy state if its Hamiltonian changes slowly
enough. We present the above claim more formally in the following paragraph.

Let |ϕ(t)⟩ be an eigenstate of a time-dependent Hamiltonian H(t) with an eigenvalue
E(t). When we say that we apply the adiabatic evolution given by H and |ϕ⟩ we mean that
we initialize a system in the state |ψ(0)⟩ = |ϕ(0)⟩ and then apply the continuously varying
Hamiltonian H(t) with t gradually varying from 0 to T . During the evolution process the
state |ψ(0)⟩ evolves according to the Schrödinger equation in (2.49) and by the end of the
evolution at time t = T we expect the state |ψ(T)⟩ to be the eigenstate |ϕ(T)⟩ of the final
Hamiltonian H(T). We formalize the above discussion in the adiabatic theorem presented
in [2].

Theorem 1 (The adiabatic theorem). Let H(t), 0 ≤ t ≤ T , be a time dependent-Hamiltonian,
let |ψ(t)⟩ be one of its eigenstates, and let E(t) be the corresponding eigenvalue. Assume
that for any t ∈ [0, T], all other eigevalues of H(t) are either smaller than E(t) − λ or
larger then E(t) + λ (i.e. there is a spectral gap of λ > 0 around E(t)). Consider adiabatic
evolution given by H and |ψ⟩ applied for time T . Then the following condition is enough to
guarantee that the final state is at distance at most ϵ > 0 from |ψ(T)⟩:

T ≥ 105

ϵ2
·max

{
||H ′||3

λ4 ,
||H ′|| · ||H ′′||

λ3

}
, (2.52)

In the equation above we use ||H|| to denote maxt∈[0,T] ||H(t)|| where || · || is the usual
operator norm and H ′, H ′′ are the first and second order time derivatives of H(t).

Simply speaking, the theorem states that if we change the Hamiltonian from H(0) to
H(T) for long enough time, then the state |ψ(T)⟩ will be the ground state of H(T) given
that the initial state |ψ(0)⟩ is the ground state of H(0). We note that the evolution time T
depends on the spectral gap λ. The smaller the gap is, the longer the evolution time must
be.

20

2.11 Trotter formula

To implement U(T, 0) that evolves the initial state |ψ(0)⟩ to the ground state |ϕ(T)⟩ of the
Hamiltonian H(T) as a quantum circuit, we will need the following asymptotic approxima-
tion theorem:

Theorem 2 (Trotter formula). Let A and B be Hermitian operators on (C2)⊗n. Then for
any real t,

lim
n→∞

(
eiAt/neiBt/n

)n
= ei(A+B)t. (2.53)

The theorem holds even if A and B do not commute. By setting n to be finite we obtain
different order approximations of exp (i(A+B)t). For example, setting n = 1 gives the first
order Trotterization [45, Section 4.7.2]

ei(A+B)t = eiAteiBt +O(t2) as t→ 0. (2.54)

See the derivation in Appendix A. If A and B commute, then the error term is zero. However,
for our purposes, we will work with Hermitian A and B that do not commute. The idea
behind the formula is to approximate the total evolution as a sequence of simpler evolutions
up to some error. If t≪ 1, then the error in this approximation becomes negligible.

21

Chapter 3

Quantum algorithms for solving
combinatorial problems

We commence this chapter with an introduction to the class of binary CO problems suitable
for QAOA. Next, we construct a QAOA circuit by solving the Schrödinger equation in (3.6)
and then approximate the resulting unitary matrix U(t, 0) with the Trotter product formula.
Finally, we summarize the chapter with a discussion about the parametrization of a circuit.

3.1 Combinatorial optimisation problems

This section briefly introduces the mathematical formulation of a binary combinatorial
problem whose solution can be approximated by QAOA.

Binary CO problems are specified by n bits and m clauses. Each clause may represent
a constraint or some quantity we would like to optimize on a subset of the bits. Certain
combinations of bits decrease the value of a clause, whereas other combinations of bits
increase the value of a clause. The goal is to find an optimal combination of n bits that
maximizes (or minimizes) the sum of all m clauses. Mathematically, this can be formulated
as the maximization of an objective function

C(x) =
m∑

k=1
Ck(x), (3.1)

where Ck(x) ∈ R is a clause and x ∈ {0, 1}n. If the string x does not satisfy the clause k
then Ck(x) < 0 (or Ck(x) > 0 if we minimized). A negative value of Ck can be viewed as a
penalty which decreases the overall value of C(x).

Because we have n bits, there are 2n possible different strings, and our goal is to find
a string that maximizes C(x). If we were to use a linear search, it would take 2n different
string evaluations to determine the optimal x∗ such that C(x) ≤ C(x∗) for all x ∈ {0, 1}n.
While C(x) has a somewhat abstract definition, it can readily represent many combinatorial

22

problems such as MaxCut, packing, covering and partitioning problems [35]. The goal of the
QAOA is to find an approximate solution to (3.1) using far fewer than 2n string evaluations.

3.2 MaxCut problem example

This section presents an example of a CO problem called MaxCut [17]. MaxCut is a well-
known NP-complete problem in combinatorial optimization. Let G(V,E) denote an undi-
rected graph G with a vertex set V and an edge set E. Given a connected graph G(V,E),
the goal is to partition V into two subsets V0 and V1 such that the number of edges between
the two subsets is as large as possible. We refer to such edges as a cut-set. We assume that
the size of the vertex set V is n. Hence, the problem size is also n. For i = 1, . . . , n, let
xi ∈ {0, 1} denote the membership of a vertex i ∈ V . If xi = 0 then the vertex i belongs to
the subset V0, otherwise i belongs to V1. For an edge (i, j) ∈ E to be in the cut-set, i and
j must have different memberships i.e., xi ̸= xj . Therefore, we can formulate the MaxCut
problem as follows

max
x∈{0,1}n

∑
(i,j)∈E

(xi + xj − 2xixj). (3.2)

Note that if both ends of some edge (i, j) are assigned to the same subset V1 then xi, xj = 1
and (xi + xj − 2xixj) = 0. Hence, such an assignment does not contribute to the objective
function. On the other hand, if xi = 0 and xi = 1, then (xi + xj − 2xixj) = 1 and the
objective function value is increased.

Note that (3.2) is a quadratic, unconstrained problem with binary variables. Therefore it
is a QUBO problem. Often, the optimization community uses the terms QUBO and MaxCut
interchangeably. Also note that (3.2) is a particular case of the problem (3.1) where for each
edge (i, j) ∈ E we assign a positive index k and define Ck(x) := xi + xj − 2xixj − 1. Then
maximizing (3.2) is equivalent to maximizing C(x) = ∑

k Ck(x). Therefore, we can apply
QAOA to MaxCut problems.

3.3 Representing a CO problem as a Hamiltonian

We now put the Schrödinger equation in the context of CO. It is possible to represent the
objective function in (3.1) as a time-independent Hamiltonian, see the derivation example
for MaxCut in Section 3.8. Then solving the time-independent Schrödinger equation in
(2.50) would yield one of the eigenstates of the Hamiltonian. Importantly, the resulting
eigenstate corresponds to one of the solutions to the optimization problem in (3.1). The

23

Hamiltonian representing (3.1) can be written as a 2n × 2n diagonal matrix

HC =

C(0 · · · 00)

C(0 · · · 01)
. . .

C(1 · · · 11)

 . (3.3)

Let E0 ≥ E2 ≥ ... ≥ E2n−1 denote the eigenvalues of HC . We immediately see that eigen-
values of HC in (3.3) correspond to ordered (from largest to smallest) objective function
values C(x) for x ∈ {0, 1}n. Now consider the state |x∗⟩ where x∗ is the optimal solution to
the original problem in (3.1). Then

HC |x∗⟩ = C(x∗) |x∗⟩ = E0 |x∗⟩ . (3.4)

Therefore, the optimal solution to the optimization problem in (3.1) is the eigenstate asso-
ciated with the highest energy (eigenvalue) of HC .

Remark 1. It might appear to the reader that the highest energy eigenstate could be easily
computed classically because the HC is a diagonal matrix. However, we need to perform 2n

evaluations of the objective function C to build the matrix. This is the same as performing
an exhaustive search over all possible solutions. Also, we note that the dimensions of HC

are exponentially large in problem size n. Therefore, HC requires an exponential amount of
time and storage resources. As a result, it is never formulated explicitly. As we discuss next,
it is the evolution operator U(t, t0) of the resulting Schrödinger equation (recall Section 2.9)
that we would like to implement as a quantum circuit with at least n qubits.

3.4 Adiabatic theorem in the optimization context

In the previous chapter, we have seen that solutions to the time-independent Schrödinger
equation are eigenstates of HC . However, we are interested in finding a particular eigenstate
|x∗⟩ that is associated with the largest eigenvalue E0 of HC . Both |x∗⟩ and E0 are unknown.
If we were to find the eigenstate |x∗⟩ classically, we would have to find 2n eigenvectors of HC

and perform 2n evaluations of C(x). However, it is possible to find the desired eigenstate
without performing an exponential amount of computation. This is possible due to the
adiabatic theorem discussed earlier in Section 2.10

We now put Theorem 1 in the combinatorial optimization context. First, let us define a
Hamiltonian H(t). We want H(t) such that H(0) = Hinit is an initial Hamiltonian whose
ground eigenstate is known and can be prepared in constant time and H(T) = HC . We do
this by defining H(t) as follows:

H(t) = (1− s(t))Hinit + s(t)HC , (3.5)

24

where s(t) ∈ [0, 1] is a monotonically increasing continuous function such that s(0) = 0 and
s(T) = 1. The function s(t) is often called the adiabatic schedule. Let |ψ(0)⟩ be the ground
state of H(0) with the associated largest eigenvalue E(0). Suppose that all assumptions in
Theorem 1 hold. Then the adiabatic theorem guarantees that the ground state |ψ(0)⟩ of
Hinit will evolve to the ground state |ψ(T)⟩ of HC given that the transition from Hinit to
HC is slow enough.

Following the discussion in Section 2.9, in order to find an optimal solution to (3.1)
we would like to find the unitary operator U(t, 0) that satisfies the following Schrödinger
equation

iℏ d
dt
U(t, 0) |ψ(0)⟩ = H(t)U(t, 0) |ψ(0)⟩ , (3.6)

where |ψ(0)⟩ is the highest energy eigenstate of Hinit = H(0) and t ∈ [0, T]. Given that
the conditions of Theorem 1 are satisfied, the unitary matrix U(T, 0) will evolve the initial
state |ψ(0)⟩ into the highest energy eigenstate |ψ(T)⟩ of HC = H(T). Therefore, final state
|ψ(T)⟩ is an optimal solution to a CO problem.

3.5 Building the QAOA circuit

In this section, we construct a QAOA circuit by finding the evolution operator U(t, 0) and
then approximating it by discretizing the evolution time T and applying the first order
Trotter approximation. We assume that HC represents C(x) in (3.1) and Hinit represents
a Hamiltonian whose ground state is known and easily preparable. We also assume that
HC and Hinit do not commute. We will discuss the structure of HC and Hinit and their
non-commutativity in Section 3.8.1 and Section 3.8.2 respectively.

To this end, we would like to solve (3.6) for U(t, 0). Performing the calculation steps
outlined in Appendix B we find that

U(t, 0) = lim
p→∞

p∏
k=0

exp
{
− i∆t

ℏ
H(k∆t)

}
(3.7)

≡ lim
p→∞

exp
{
− i∆t

ℏ
H(p∆t)

}
exp

{
− i∆t

ℏ
H((p− 1)∆t)

}
· · · exp

{
− i∆t

ℏ
H(0)

}
,

where ∆t = t/p. In order to approximate (3.7) we choose p to be finite and apply the first
order Trotterization presented in (2.54). For k = 0, ..., p the Trotterization yields

exp
{
− i∆t

ℏ
H(k∆t)

}
= exp

{
− i∆t

ℏ

[
(1− s(k∆t))Hinit + s(k∆t)HC

]}
= exp

{
− i∆t

ℏ
(1− s(k∆t))Hinit

}
exp

{
− i∆t

ℏ
s(k∆t)HC

}
+O(∆t2).

(3.8)

25

Next, we set t = T . Since 1/ℏ in (3.7) just scales the Hamiltonian H(t) we can drop it or
absorb into H(t). The Trotterization with finite p and k = 1 yields a p-layerd circuit

Û(T, 0) =
p∏

k=1
exp {−ickHinit} exp {−ibkHC} (3.9)

≡ exp {−icpHinit} exp {−ibpHC} · · · exp {−ic1Hinit} exp {−ib1HC}

with ck, bk defined as

ck = (1− s(k∆t)) ∆t, (3.10)

bk = s(k∆t)∆t.

In the equations above, we have ∆t = T/p. Note that we dropped the k = 0 layer in
(3.9). This is possible, since exp{−ib0HC} is the identity (as b0 = 0) and exp{−ic0Hinit}
does nothing but change the global phase of the initial state. The unitary matrix Û(T, 0) is
the QAOA circuit with p layers. The kth layer of a circuit is given by the unitary matrix
exp {−ickHinit} exp {−ibkHC} – see Fig. 3.1. If the conditions in Theorem 1 hold and the
evolution time is slow enough (i.e. T is sufficiently large), the theorem guarantees that by
the end of the evolution described by Û(T, 0) the initial ground state |ψ(0)⟩ of Hinit will
approximately evolve into the ground state of HC i.e.

|x∗⟩ ≈ Û(T, 0) |ψ(0)⟩ . (3.11)

We note that the number of circuit layers does not depend on a combinatorial problem size
but only on the approximation parameter p. As p and T approach infinity (3.11) becomes
exact. The coefficients ck and bk in (3.10) are defined in terms of the adiabatic schedule
function s(t) and should be viewed as parameters of a circuit. This means the QAOA
circuit parametrization is completely described by the values of p, T and the function s(t).
Alternatively, the coefficients can be viewed as free variables and determined by means of
classical variational techniques in classical continuous optimization [19, 36, 50] discussed in
Section 3.6.

We complete this section by briefly outlining the main ideas used in the derivation
QAOA. The QAOA circuit can be viewed as a Trotterized version of the solution to the
Schrödinger equation. Given that the evolution time T is long enough the adiabatic theorem
guarantees that by the end of the evolution the system will be in the ground state of the
problem Hamiltonian. The circuit complexity depends on the number of sub-intervals p and
the evolution time T . It is straightforward to see that a p-layered circuit has a total of 2p
parameters, see Figure 3.1.

26

Figure 3.1: The general structure of the p-layered QAOA circuit. We can see the alternating
application of unitary matrices associated with HC and Hinit. Each layer consists of the
unitary matrices exp{−bkHC} and exp{−ckHinit} where (bk, ck) is a pair of parameters for
k = 1, ..., p.

3.6 Determining parameters of a circuit with a variational
approach

In the previous section, we derived a general structure of the QAOA circuit. We showed
that the circuit has p layers that are parameterized by 2p parameters given by the sequence
θ = {bk, ck}pk=1 defined in (3.10). In this section we discuss how to estimate θ given p. In
other words, we discuss how to find the best parameterization of a circuit given the fixed
number of layers p. Since p is given, it is considered to be a hyperparameter. Usually, the
value of p is limited by quantum resources. For example, larger values of p require almost
error-free quantum computation, whereas smaller values of p are suitable for current and
near-term quantum devices which do not have error correction. Recall that p ≫ 1 yields
deep circuits. If a quantum device does not have error correction, the errors accumulate
through layers. This results in a corrupted computation. Therefore, the value of p controls
the trade-off between the accuracy of the approximation and the amount of errors we are
ready to tolerate.

Given that the current and near-term devices do not have error correction, it is safe to
assume that practical values of p are almost always insufficient for a good approximation
of the evolution process. Hence, there is a need to compensate for errors and small values
of p. This is achieved with the variational approach introduced in the 2014 landmark paper
[46]. The proposed approach and its improvements are currently used in almost all practical
applications. The idea behind the variational approach is to determine a circuit’s parame-
terization through a mix of classical and quantum computation and applying the variational
principles [5] widely used in physics and chemistry. There are two important reasons to use
the proposed approach. First, it finds the best parameterization of a circuit for a given value

27

of p. Second, the variational nature of the method allows one to find a parameterization
that adapts to certain errors that occur in a given quantum hardware [39].

3.6.1 The variational approach as optimization of expected energy

Suppose we want to minimize C(x) given in (3.1). As stated before, this is equivalent to
finding the ground eigenstate of the Hamiltonian HC . With the variational approach, instead
of finding the ground state, we attempt to find a state that minimizes the average energy
(also called the expected energy) of HC . In what follows, we will define the notion of the
expected energy and discuss why it makes sense to minimize it.

Let |ψ(θ)⟩ denote the state modeled by a QAOA circuit parameterized by θ. We will
write |ψ(θ)⟩ in the basis given by the eigenstates of HC

|ψ(θ)⟩ =
2n−1∑
k=0

ak(θ) |k⟩

such that HC |k⟩ = Ek |k⟩ and k is an integer representation of a binary string of length
n that also corresponds to the kth canonical basis vector. Then the expected energy of the
Hamiltonian HC with respect to |ψ(θ)⟩ is given by

⟨HC⟩θ := ⟨ψ(θ)|HC |ψ(θ)⟩ =
2n−1∑
k=0
|ak(θ)|2Ek =

2n−1∑
k=0

Pr(|k⟩ | θ)Ek.

The variational theorem of quantum mechanics states that

Emin ≤ ⟨HC⟩θ (3.12)

where Emin = E2n−1 is the lowest energy (eigenvalue) of the Hamiltonian HC . As a result
the best choice of θ to approximate a ground eigenstate is the choice which minimizes ⟨HC⟩θ.
If Emin = ⟨HC⟩θ then we measure an optimal solution with certainty.

3.6.2 The variational algorithm step by step

The mechanics of the variational approach can be described as follows:

1. Randomly initialize θ = {bk, ck}pk=1 (classical computation).

2. Estimate the expected energy ⟨HC⟩θ of the problem Hamiltonian HC by repetitively
sampling the circuit with parameters θ (quantum computation).

3. Using the estimated expected energy ⟨ĤC⟩θ update θ (classical computation).

4. Repeat Steps 2, 3 until some stopping criterion is met.

28

5. Sample the parametrized circuit to obtain a set of candidate solutions (quantum
computation).

The process above is called the feedback loop. The name stems from the fact that classical
computation provides the “feedback” for a quantum computer based on its estimate of the
expected energy. A simplified diagram of the process is illustrated in Fig 3.2.

Remark 2. Note that obtaining a single sample of the energy of HC takes one execution of a
circuit with a subsequent measurement. The process of measurement destroys the quantum
state |ψ(θ)⟩ and returns a single probabilistic outcome of energy |Ek⟩. Therefore, repetitive
circuit executions are needed to estimate the expected energy of HC with respect to |ψ(θ)⟩.
The procedure of repetitive sampling can be very costly.

3.6.3 Methods for variational parameter update

The parameter update can be accomplished with gradient-based or gradient-free optimiza-
tion methods. For example, the most naive update rule may rely on the finite difference
method. Let θi denote the ith component of θ ∈ R2p. Then the update has the following
form

θk ← θk − β ·
⟨ĤC⟩θ+h − ⟨ĤC⟩θ−h

2hk
, (3.13)

where ⟨ĤC⟩θ denotes the estimated energy at θ, h ∈ R2p is proportional to the kth standard
basis vector and β > 0 is the step size.

Figure 3.2: The quantum-classical feedback loop for finding the best parameters θ.

29

While the variational approach allows for shallower circuits and can adapt the param-
eters to compensate for some errors, it suffers from several issues. First, the parameter
update rule, which relies on gradient-like methods, requires many iterations. Let a single
run (also called a shot) of a quantum computer refer to a quantum computation necessary
to produce one sample of energy (eigenvalue Ek) of HC with the QAOA circuit. Suppose
that N1 runs are used to estimate ⟨HC⟩θ. If N1 is small, then the estimator of the expected
energy with respect to |ψ(θ)⟩, which we denote as ⟨ĤC⟩θ will have a high variance. As a
result, the gradient update will have high variance as well. The variance of the estimator
⟨ĤC⟩θ is O(1/N1) [12, Section 5.4]. Therefore, to bound the variance by a positive ϵvar, we
need N1 = O(1/ϵvar) runs. Since θ ∈ R2p, each exact or approximate gradient requires at
least 2p · 2N1 runs of a quantum computer. If there are N2 iterations (parameter updates),
it takes at least 2p · 2N1 ·N2 total runs. For example, assume we have access to ⟨HC⟩θ and
the exact gradients with respect to θ. Then to converge to a local minimum with an error
ϵgrad > 0 we have N2 = O(1/ϵ2grad) [6, Section 4.7.3]. The above discussion suggests that
even in the idealized scenario where we have access to the true expected energy and exact
gradients, the variational approach may be quite costly and only provide locally optimal
parameter vector θ.

3.7 Determining parameters of a circuit with a discretized
adiabatic process

It is common to use the aforementioned variational approach to find suitable parametriza-
tion of a circuit. We have seen that such an approach is fairly expensive because finding
locally optimal parameters requires many iterations and circuit reruns. This is further ex-
acerbated by barren plateaus – a phenomenon of exponentially vanishing gradients [54].
Another serious disadvantage is that the variationally determined parameters do not nec-
essarily generalize to similar problem instances. Hence, every problem instance requires
determining a new parametrization. Finally, variational approaches do not explicitly opti-
mize for the probability of sampling the optimal solution but rather optimize for the highest
expected energy. Therefore, maximizing the expected energy does not guarantee improve-
ment in the probability of the optimal solution. Extensive numerical studies highlighting
these issues are presented in [50].

This section presents an alternative approach for finding suitable parametrization that
does not require the iterative feedback loop. An alternative approach is called the Dis-
cretized Adiabatic Quantum Computation (DAQC). DAQC determines the parameters
θ = {bk, ck}pk=1 according to the adiabatic schedule. Specifically, we compute θ using (3.10)
which requires a monotonically increasing function s(t) such that s(0) = 0 and s(T) = 1
and discretized time T (hence the name DAQC). The DAQC approach is defined by the
following steps.

30

1. Given T and p, discretize T to get a sequence {k∆t}pk=1 where ∆t = T/p (classical
computation).

2. Choose a suitable s(t). The most trivial choice is s(t) = t/T for t ∈ [0, T] (classical
computation).

3. For k = 1, ..., p compute ck = (1− s(k∆t)) ∆t and bk = s(k∆t)∆t (classical computa-
tion).

4. Sample the parametrized circuit to obtain a set of candidate solutions (quantum
computation).

Note that unlike the variational approach, the DAQC does not have a feedback loop, nor
does it require any iterations. The use of a quantum computer happens only to sample the
circuit. We will discuss how many times the circuit must be sampled to observe the optimal
solution with high probability in Chapter 5.

3.7.1 Minimum eigengap and circuit’s depth

Recall that the adiabatic theorem requires the transition time from the initial Hamilto-
nian to the problem Hamiltonian to be sufficiently slow. Specifically, (2.52) suggests that
the transition time T depends on the spectral gap λ. In what follows, we discuss how λ

contributes to the circuit complexity if the DAQC approach is used.
Since we are interested in the ground state, we will consider the spectral gap between

the ground state and the closest higher energy state. This spectral gap is known as the
minimum eigengap gmin – the smallest difference between the two lowest eigenvalues of
H(t) [14]. Let E1(t) < E2(t) denote the lowest eigenvalues of H(t). Then the minimum
eigengap is given by

gmin := min
0≤t≤T

{E2(t)− E1(t)} .

According to the adiabatic theorem, if the eigengap gmin between the two lowest eigenvalues
strictly greater than zero then the final eigenstate can be made arbitrarily close to the ground
state of the final Hamiltonian.

We note that if the eigengap is arbitrarily small, it will take arbitrarily long to com-
plete the evolution process. Recalling that the error of the Trotter approximation in (3.8)
depends on ∆t = T/p, we deduce that smaller values of p produce larger Trotterization
errors. Therefore, a long evolution time T requires larger values of p to keep the approx-
imation errors small. This results in larger circuits. Interestingly, it has been argued [40]
that the eigengap decreases exponentially with the problem size n. Therefore, some large
combinatorial problems, in theory, may require exponentially many layers in the QAOA
circuit.

31

In practice, computing a lower bound on T is extremely hard. Usually, the values
of T and p are chosen to be hyperparameters of an algorithm and determined through
hyperparameter-tuning.

3.7.2 DAQC scheduling

In this section, we give an explicit description of the adiabatic schedule s(t) used in this
thesis. We would like to have a single adiabatic schedule that maximizes the probability
of observing optimal solutions to multiple problem instances of the same problem class.
A problem class can be, for example, an n–variable MaxCut problem or an n–variable
travelling salesman problem.

We adapt the QA scheduling presented in [47]. For better control of the curvature of the
schedule function, we use a cubic polynomial approximation proposed in [50]. The general
form is given as follows

s(t; a, T) = t

T
+ a · t

T

(
t

T
− 1

2

)(
t

T
− 1

)
. (3.14)

The parameters a and T define the slope and the evolution time respectively. The goal
is to determine optimal parameters a∗ and T ∗ that maximize the probability of observing
an optimal solution for similar problem instance of the same size. This is usually achieved
by using a “training” set of problem instances of size n and performing a Random Search
optimization [7] on a and T to directly minimize the median of Time To Solution (TTS) for
all problems in the “training” set. Once a∗ and T ∗ are determined, we can reuse s(t; a∗, T ∗)
across all similar problem instances of size n and achieve high probability of success. The
graphs of several functions s(t; a, T) for different values of a are illustrated in Fig 3.3 (a).
Fig 3.3(b) illustrates how the coefficients bk and ck defined in (3.10) relate to s(t; a, T).
Essentially, each coefficient approximates the area under or above s(t; a, T) on a segment of
length ∆t.

3.8 The QAOA for MaxCut problems

In the previous sections, we derived the quantum circuit for QAOA in the general case and
discussed how to select parameters and the schedule function. In this section, we discuss
QAOA for the MaxCut problem presented in Section 3.2. In particular, we will convert the
objective function of the MaxCut problem presented in Section 3.2 into the Hamiltonian
HC and present a problem-independent initial Hamiltonian Hinit. We have seen that the
Hamiltonian HC represents an objective function of a combinatorial problem. This means
the structure of HC is problem-dependent. This further implies that the unitary matrices
exp {−ibkHC} for k = 1, ..., p are also problem-dependent.

32

Figure 3.3: (a) The adiabatic schedule function s(t; a, T) for a = 1, 2, 4 The parameter a
determines the rate of transition. For a linear transition we set a = 0. For a transition whose
rate of change is zero at t = T/2 we set a = 4. The best parameters T and a are found
through hyperparamter tuning. (b) The curve s(t; a = 4, T) together with a 5-layer circuit’s
coefficients ck, bk for k = 1, . . . , 5.

3.8.1 The problem Hamiltonian HC

We now cast the combinatorial problem in (3.2) into the problem of finding the high-
est energy eigenstate of the problem Hamiltonian HC . In order to construct the problem
Hamiltonian HC , we first obtain an equivalent representation of (3.2) by substituting binary
variables xi with the spin variables si ∈ {−1, 1} using the following relation:

xi = 1− si

2 for i = 1, . . . , n. (3.15)

This substitution relates abstract values 0 and 1 with subatomic particle spins which are
observable (or measurable) quantum mechanical values. The substitution yields:

∑
(i,j)∈E

(xi + xj − 2xixj) =
∑

(i,j)∈E

(1
2(1− si) + 1

2(1− sj)− 2
4(1− si)(1− sj)

)
(3.16)

=
∑

(i,j)∈E

1
2 (2− si − sj − (1− sj − si + sisj))

=
∑

(i,j)∈E

1
2(1− sisj).

Therefore an equivalent MaxCut formulation in terms of the spin variables is

max
s∈{−1,1}n

∑
(i,j)∈E

1
2(1− sisj). (3.17)

33

It is easy to verify that if si and sj get distinct spin assignments for some vertex pair
(i, j) ∈ E then the contribution to the objective function is 1. Otherwise, the contribution
is 0. Therefore, the new formulation is equivalent to the previous formulation.

The next step is to represent the objective function in (3.17) as a problem Hamiltonian.
Again, this is done to represent the objective function in (3.17) as an observable quantum
mechanical quantity. Specifically, we associate the values of the objective functions with
observable energy levels of a Hamiltonian. To this end we need to establish the equivalence
relation between the spin variable si and Pauli Z operator Zi defined in (2.11) and (2.23).

Note that |x⟩ = |x1 . . . xn⟩ is an eigenvector of Pauli Z operators Zi and ZiZj defined
in (2.11) and (2.25) with possible eigenvalues −1,+1. These eigenvalues are also observable
quantum mechanical quantities and they represent the spin variable si. The relation between
Zi, |x⟩ and si is given by the following eigenvalue equation:

Zi |x⟩ = (I ⊗ · · · ⊗ Z ⊗ · · · I) |x1 . . . xn⟩

= I |x1⟩ ⊗ · · · ⊗ Z |xi⟩ ⊗ · · · ⊗ I |xn⟩

= |x1⟩ ⊗ · · · ⊗ (−1)xi |xi⟩ ⊗ · · · ⊗ |xn⟩

= (−1)xi |x⟩

= si |x⟩ .

Similarly, we have

ZiZj |x⟩ = (−1)xi(−1)xj |x⟩ = sisj |x⟩ .

Therefore, the relation is:

Zi |x⟩ = si |x⟩ and ZiZj |x⟩ = sisj |x⟩ . (3.18)

This relation allows us to obtain the problem Hamiltonian HC by simply multiplying the
objective value in (3.17) by |x⟩.

∑
(i,j)∈E

1
2(1− sisj) |x⟩ =

∑
(i,j)∈E

1
2(|x⟩ − sisj |x⟩) =

∑
(i,j)∈E

1
2(I |x⟩ − ZiZj |x⟩). (3.19)

Hence, the problem Hamiltonian HC is as follows:

HC =
∑

(i,j)∈E

1
2(I − ZiZj). (3.20)

Since Zi for i = 1, .., n is a diagonal matrix of size 2n×2n, the product ZiZj is also a diagonal
matrix of size 2n× 2n. It follows that HC is a diagonal Hamiltonian. The eigenvalues of HC

34

are the objective function values. To see this, we write:

HC |x1 . . . xn⟩ =
∑

(i,j)∈E

1
2(I − ZiZj) |x1 . . . xn⟩

=
∑

(i,j)∈E

1
2 (1− sisj) |x1 . . . xn⟩ .

Given the relation between xi and si in (3.15) we can further write:

HC |x1 . . . xn⟩ =
∑

(i,j)∈E

1
2 (1− sisj) |x1 . . . xn⟩

=
∑

(i,j)∈E

(xi + xj − 2xixj) |x1 . . . xn⟩

= C(x) |x1 . . . xn⟩ .

where C(x) = ∑
(i,j)∈E(xi + xj − 2xixj) is the objective function of the MaxCut problem

(3.2).

3.8.2 An initial Hamiltonian Hinit

We now discuss the initial Hamiltonian Hinit. Recall that Hinit must be chosen such that its
highest energy state is easily preparable (can be prepared in a constant time). Another core
requirement is that Hinit does not commute with HC (see Appendix C). This is a necessary
condition for the adiabatic theorem to hold. Recall that Theorem 1 requires the eigenvalues
of the Hamiltonian H(t) to be separated by a positive spectral gap λ for all t ∈ [0, T] and
from Section 3.7 we know that the evolution time T is inversely proportional to a cubic or
quadratic polynomial in gmin – see Theorem 1. As shown in Appendix C, if Hinit commutes
with HC then gmin = 0. In this case, the entire process fails. A customary choice of Hinit is
the transverse field Hamiltonian [14] given below

Hinit =
n∑

i=1
Xi (3.21)

where Xi previously defined in (2.11) and (2.23). Hinit does not commute with HC . To see
this, let us define the commutator of two squared matrices A, B to be [A,B] = AB −BA.
Clearly, A and B commute if and only if [A,B] = 0. We now compute the commutator of

35

Hinit and HC and show that it is non-zero.

[Hinit, HC] =

 n∑
k=1

Xk,
∑

(i,j)∈E

1
2(I − ZiZj)

 = 1
2

n∑
k=1

∑
(i,j)∈E

[Xk, (I − ZiZj)]

= 1
2

n∑
k=1

∑
(i,j)∈E

([Xk, I]− [Xk, ZiZj]) = −1
2

n∑
k=1

∑
(i,j)∈E

[Xk, ZiZj].

If k ̸= i, j then [Xk, ZiZj] = 0. For k = i (or k = j) we have:

[Xk, ZiZj] = [Xi, ZiZj] = (XZ)iZj − (ZX)iZj = (XZ − ZX)iZj = [X,Z]iZj = −2iYiZj .

Therefore, we can write:

[Hinit, HC] = −1
2

n∑
k=1

∑
(i,j)∈E

[Xk, ZiZj] =
n∑

k=1

∑
(i,j)∈E

iYiZj (δk,i + δk,j) ̸= 0.

where δk,i = 1 if i = k, and δk,i = 0 otherwise.
Since |+⟩ is the eigenvector of X with the eigenvalue +1, it is straightforward to see

that |+⟩⊗n is the highest energy eigenstate of Hinit,

Hinit |+⟩⊗n =
n∑

i=1
Xi |+⟩⊗n = n |+⟩⊗n . (3.22)

Since Hinit in (3.21) does not commute with HC and it has an easily preparable highest
energy eigenstate |+⟩⊗n it is a suitable candidate for the initial Hamiltonian. Therefore, the
total time-dependent Hamiltonian H(t) for the MaxCut problem is

H(t) = (1− s(t))
n∑

i=1
Xi + s(t)

∑
(i,j)∈E

1
2(I − ZiZj). (3.23)

3.8.3 QAOA circuit for a MaxCut problem

In Section 3.5 we have constructed a general QAOA circuit which consists of p layers of
alternating unitary matrices exp {−ickHinit} and exp {−ibkHC} for k = 1, ..., p. We now
give an explicit description of a QAOA circuit for a MaxCut problem.

First, consider the unitary matrix exp {−ickHinit}. Recall that Hinit = ∑n
i=1Xi. Then

exp {−ickHinit} = exp
{
−ick

n∑
i=1

Xi

}
.

36

Since Xi and Xj commute for i, j = 1, ..., n, we can rewrite the above as

exp
{
−ick

n∑
i=1

Xi

}
=

n∏
i=1

exp {−ickXi} . (3.24)

Recalling the definition of the RX(t) gate in (2.32) we can write exp {−ickXi} = RXi(2ck).
The subindex i indicates that RXi(2ck) acts on the ith qubit. Therefore, the unitary matrix
exp {−ickHinit} can be easily implemented with a product of RXi(2ck).

We now consider the unitary matrix exp {−ibkHC}. Since all terms in HC commute we
can write

exp {−ibkHC} = exp

−ibk

∑
(i,j)∈E

1
2(I − ZiZj)

 (3.25)

=
∏

(i,j)∈E

exp{−ibk
1
2I} exp

{
ibk

1
2ZiZj

}

⊜
∏

(i,j)∈E

exp
{

ibk
1
2ZiZj

}

where ⊜ denotes equality up to a global phase. Recalling the definition of the RZZi,j(θ)
gate in (2.40) we can write exp

{
i bk

2 ZiZj

}
= RZZi,j(−bk).

Therefore, combining the results in (3.24)-(3.25) the MaxCut QAOA circuit can be
implemented using only 1-qubit RX and 2-qubit RZZ gates. The final p-layered circuit is

Û(T, 0) =
n∏

i=1
RXi(2cp)

∏
(i,j)∈E

RZZi,j(−bp) · · ·
n∏

i=1
RXi(2c1)

∏
(i,j)∈E

RZZi,j(−b1), (3.26)

and the initial state is given by |ψ0⟩ = |+⟩⊗n. Note that the circuit in (3.26) is just a
particular case of the general circuit given in (3.9).

In view of the circuit construction process given by (3.16), (3.20) and (3.25) we finalize
this section by stating a trivial but important observation:

Observation 1 If an objective function contains a term of the form xixj then a problem
Hamiltonian will contain a term of the form ZiZj , and the kth layer of a QAOA circuit will
contain a corresponding 2-qubit RZZi,j gate.

3.9 MaxCut QAOA circuit’s structure

We now discuss the structure of the obtained circuit and how it is related to quantum hard-
ware. First, note that the structure of the circuit in (3.26) is consistent with the structure
illustrated in Fig 3.1. The graph G in a MaxCut problem has n vertices. This results in a
circuit with n qubits and each layer having a product of n RX gates. Since the graph G

37

has |E| edges, each layer has |E| 2-qubit RZZ gates. We immediately deduce that the size
of a MaxCut problem (the number of vertices in G) affects the circuit width – a number of
qubits in a circuit, and the density of the graph (the number of edges in G) affects the con-
nectivity of a circuit. Therefore, a quantum computer must have at least n qubits, and these
qubits must be interconnected so that RZZ gates can be realized. For example, a complete
graph on n vertices will require all-to-all connectivity in the circuit. That is, each layer will
have n(n − 1)/2 RZZ gates that act on each possible pair of qubits. Due to the current
and near-term quantum hardware limitations, all-to-all connectivity introduces overheads
in the form of additional gates that may significantly increase the size of a circuit. This
means that large dense graphs require much more resources.

The number of layers of a circuit is given by the parameter p. A larger p means a deeper
circuit. Recall that p is an approximation parameter. Larger values of p yield a circuit that
better approximates the true unitary operator U(T, 0) where the evolution time T depends
on the minimum eigengap gmin. Therefore, unlike the width of a circuit which entirely
depends on the structure of the graph G, the depth of a circuit implicitly depends on the
eigenspectrum of a Hamiltonian H(t). Due to the short coherence time of the current and
near-term quantum hardware, the practical realization of deep circuits (p > 1) is also a
challenge.

3.10 Conclusion

In this chapter, we covered QAOA - a quantum algorithm for solving binary combinatorial
problems. The algorithm relies on the Schrödinger equation and the adiabatic theorem.
The adiabatic theorems states that if the evolution of a quantum system is governed by a
Hamiltonian H(t) that varies slowly enough, then the system will stay near its instantaneous
ground state. This means the adiabatic evolution can be used to switch gradually from an
initial Hamiltonian, whose ground state is known, to a final Hamiltonian, whose ground
state encodes the solution to a problem we would like to solve. Due to the theorem, the
final eigenstate at time T is guaranteed to be sufficiently close to the solution. To obtain
the QAOA circuit, the evolution time is first discretized into p sub-intervals, and then the
first-order Trotterization is applied to the solution of the Schrödinger equation. This yields
a p-layered QAOA circuit. The time T necessary for an adiabatic evolution is inversely
proportional to a polynomial of the minimum eigengap of H(t). This means the smaller the
gap is, the longer the evolution time must be. In order to keep the Trotterization error small,
larger values of T require larger values of p. It is widely believed that the eigengap decreases
exponentially with the problem size. Therefore, the QAOA circuit may need exponentially
many layers for a good approximation of the optimal solution.

38

Chapter 4

Combinatorial problems with
constraints

So far, we introduced QAOA for solving combinatorial optimization problems. Starting
from the postulates of quantum mechanics and principles of adiabatic evolution we gave a
complete construction of QAOA and applied it to the MaxCut problem. Recall that QAOA
attempts to find a solution to a binary problem presented in (3.1) where a problem’s con-
straints are integrated into an objective function C(x). This suggests that any constraints
present in an optimization problem must be included in the objective function. This re-
quirement creates a number of issues which we will discuss in this chapter.

4.1 Quadratic Unconstrained Binary Optimization

In the previous chapter, we saw how to build a QAOA circuit for a MaxCut problem. Our
choice of the MaxCut problem was deliberate for one crucial reason – a wide range of integer
CO problems with linear constraints can be reformulated as a MaxCut type problem. It
turns out that MaxCut is a particular case of a more general optimization model called
QUBO. The QUBO model is expressed by the optimization problem:

min
x∈{0,1}n

xTQx = min
x∈{0,1}n

n∑
i=1

n∑
j=i+1

xiQi,jxj +
n∑

i=1
Qi,ixi (4.1)

where x is a vector of binary decision variables and Q is n × n upper triangular matrix of
problem coefficients. It is straightforward to see that (4.1) is a generalization of the MaxCut
formulation in (3.2). If C(x) in (3.1) is a quadratic or linear function then it can be described
by the QUBO formulation in (4.1). Also note that, since the variables are binary, we have
x2

i = xi. Therefore, we can also write the QUBO problem as follows:

min
x∈{0,1}n

xTQx = min
x∈{0,1}n

∑
i≤j

xiQi,jxj .

39

4.2 QUBO issues with constrained problems

Many real-world optimization problems include constraints. The most common approach
to solving constrained CO problems with QAOA is by reformulating them into QUBO,
followed by recasting the QUBO formulation as the problem of finding the ground state of
the corresponding problem Hamiltonian.

QUBO is incredibly successful and popular in quantum and quantum-inspired opti-
mization. QUBO is the go-to model for many classical and quantum optimization hardware
producers. Almost all cutting-edge optimization hardware is designed to solve QUBO prob-
lems. For example, optimization devices such as D-Wave’s quantum annealer [9], NTT’s
Coherent Ising Machine [25], Fujitsu’s Digital Annealer [4] and Toshiba’s Simulated Quan-
tum Bifurcation Machine [21] are designed to solve QUBO problems. This popularity can
be explained by QUBO’s equivalence to the Ising model [10] often used in adiabatic com-
putation. Platform-agnostic quantum algorithms like QAOA also require a problem to be
reformulated as QUBO or as a more general PUBO – Polynomial Unconstrained Binary
Optimization [20].

While QUBO is a prevalent model used in quantum or quantum-inspired optimization,
it has several shortcomings. Reformulation of constrained problems into QUBO often results
in a QAOA circuit with increased circuit depth, width and connectivity. For example, all in-
equality constraints must be incorporated into an objective function as quadratic penalties.
Such quadratic penalties may require many additional auxiliary binary variables that sig-
nificantly increase the search space of a problem and make the optimization landscape more
rugged. Also, converting constraints into squared penalty terms often results in all-to-all
interaction between a problem’s variables and hence qubits representing the variables.

We demonstrate these issues on widely used and studied integer programs called binary
linear problems with inequality constraints. The canonical formulation of such problems is:

min
x
qT

0 x (4.2)

qT
i x ≥ ci for i = 1, ...,m

x ∈ {0, 1}n,

where q0 ∈ Rn, qi ∈ Zn and ci ∈ Z for i = 1, ...,m. To use QAOA, we convert (4.2) into a
QUBO problem by incorporating all constraints as quadratic penalties with slack variables

40

as follows:

min qT
0 x+

m∑
i=1

γi

(
qT

i x− ci −Wi

)2
(4.3)

such that

Wi =
⌊log2(cmax

i)⌋−1∑
k=0

2ky
(i)
k + (cmax

i + 1− 2⌊log2(cmax
i)⌋)y(i)

⌊log2(cmax
i)⌋, for i = 1, . . . ,m

y(i) ∈ {0, 1}log2(cmax
i)+1, for i = 1, . . . ,m

x ∈ {0, 1}n.

In this problem, we minimize over binary vectors x and y(i) for i = 1, . . . ,m. The scalar
γi > 0 is a penalty coefficient and 0 ≤ Wi ≤ cmax

i := maxx{qT
i x − ci} is an integer slack

variable given by a binary expansion of Mi = ⌊log2(cmax
i)⌋ + 1 additional auxiliary bi-

nary variables y(i)
k ∈ {0, 1}. Note that (4.3) is a quadratic polynomial over binary variables

xj for j = 1, . . . n and y
(i)
k for k = 0, . . . , ⌊log2(cmax

i)⌋ and i = 1, . . . ,m. If a constraint
is satisfied, qT

i x ≥ ci, then the quadratic penalty is zero, γi

(
qT

i x− ci −Wi

)2
= 0. How-

ever, if a constraint is violated, qT
i x < ci, then we have a non-zero quadratic penalty,

γi

(
qT

i x− ci −Wi

)2
> 0, because 0 ≤Wi. In the following subsections we will highlight the

issues of the QUBO formulation.

4.2.1 Issue with additional auxiliary qubits

From (4.3) it is clear that the QUBO formulation has significantly more additional binary
variables. Specifically, the new problem has n + ∑m

i=1Mi variables instead of n variables
in the canonical formulation (4.2). The search space of the new problem is 2n+

∑m

i=1 Mi .
Also, the resulting QAOA circuit will have ∑m

i=1Mi additional auxiliary qubits. Recall that
Mi = ⌊log(cmax

i)⌋+ 1. If cmax
i is large, the number of auxiliary qubits may overshadow the

number of problem qubits n. It follows that even relatively small problems in n may become
much more challenging when converted to QUBO.

4.2.2 Issues with circuit connectivity

We now discuss how the QUBO formulation in (4.3) may affect a circuit’s connectivity. Sup-
pose that for some i0 ∈ {1, . . . ,m} we have a vector qi0 with no zero components, i.e. qi0,j ̸= 0
for j = 1, . . . , n. Then the quadratic penalty γi0(qT

i0x−ci−Wi0)2 has
(n+Mi0

2
)

quadratic terms
of the form xjxv, xjy

(i0)
k and y(i0)

k y
(i0)
u for j, v = 1, . . . , n and k, u = 0, . . . , ⌊log2(cmax

i0)⌋. That
is, every variable “interacts” with every other variable. From the QAOA circuit derivation in
Section (3.8.3) and Observation 1 we deduce that every layer of a circuit will have

(n+Mi0
2
)

2-qubit RZZ gates that act on each possible pair of qubits. Therefore, each layer of a cir-

41

cuit is all-to-all connected. This makes the QAOA circuit an extremely computationally
demanding circuit.

Moreover, if each layer is all-to-all connected, the circuit depth depends on the parameter
p and the QUBO problem size N = n+∑m

i=1Mi. In this case, the circuit depth is O(Np) –
for a more detailed discussion on this point, see Appendix E. The QUBO circuit structure
is illustrated in Fig 4.1.

Figure 4.1: The k-th layer of the 4-qubit QUBO circuit. Rotation angles are not displayed
for clarity. The circuit is all-to-all connected since each qubit interacts with every other
qubit through RZZ gates. The dashed wires plotted over some RZZ gates denote wires
that are not affected by the gate.

4.2.3 Issues from classical optimization perspective

From the optimization perspective, each additional variable y(i)
k doubles the problem search

space. Hence, the search space increases exponentially with respect to the number of addi-
tional variables. Moreover, the energy landscape becomes fairly rugged as flipping the value
of xj or y(i)

k may lead to high peaks of energy. For example, consider a feasible solution
vector (x∗, y∗) ∈ {0, 1}n+

∑m

i=1 Mi such that all penalty terms are zero. If we now flip a single
bit y∗(i)

k for k ≥ 1, then penalty term becomes γi

(
qT

i x
∗ − ci −Wi

)2
= γi

(
2k
)2

. This implies
that solutions that are one-bit flip away yield exponentially high peaks of energy making
the energy landscape rugged.

4.2.4 Concluding remarks about QUBO

In this section, we have seen that some CO problems, when converted to QUBO, may
require significantly more quantum resources. Problems with inequality constraints require
additional auxiliary binary variables, and the number of such variables grows logarithmically
with the maximum constraints’ value. Quadratic penalties create additional interactions
between variables, giving rise to additional 2-qubit RZZ gates. From the optimization
perspective, the QUBO formulation has a larger search space, and this makes the problem
difficult for any type of algorithm. Moreover, solutions that are one-bit flip away from the
current feasible solution are often infeasible and yield exponentially large penalties.

42

4.3 The novel approach and its advantages

This study departs from the conventional QUBO and investigates the implementation of
constrained problems using Lagrangian duality theory. We demonstrate the superiority of
the proposed approach by comparing it with the QUBO-based approach in the setting of
DAQC (discussed in Section 3.7). The contributions of this study were already listed in
Chapter 1. We now repeat them for convenience:

• Quadratic improvement in a circuit complexity and evolution time over the QUBO-
based approach for problems with linear inequality constraints.

• Highly parallelizable circuit with problem’s size-independent circuit depth.

• Analysis of QUBO- and Lagrangian-based formulations and corresponding circuits on
the example of the NP-hard binary Knapsack Problem (KP).

• Numerical benchmark study of QUBO-based and Lagrangian-based DAQC.

4.4 Lagrangian duality

We propose a Lagrangian DAQC protocol for solving binary combinatorial problems with
inequality constraints of the form given in (4.2).

We also note that the proposed approach easily generalizes to binary quadratic problems
with quadratic inequality constraints of the following form:

min
x
xTQ0x

xTQix ≥ ci for i = 1, . . . ,m

x ∈ {0, 1}n, (4.4)

where Qi ∈ Rn×n is a symmetric matrix for i = 0, . . . ,m. The applicability of Lagrangian
duality for such problems is investigated in [27]. If Qi is diagonal for i = 0, . . . ,m then (4.4) is
equivalent to (4.2) due the relation x2

i = xi. Therefore, the formulation in (4.4) covers a wide
range of linear and quadratically constrained and unconstrained combinatorial problems.

We address the QUBO issues discussed in previous sections by using Lagrangian re-
laxation which is often used in classical optimization. The Lagrangian dual problem corre-
sponding to the primal constrained problem (4.2) is

max
λ∈Rm

+
min

x∈{0,1}n
qt

0x+
m∑

i=1
λi

(
ci − qT

i x
)
, (4.5)

where λi ≥ 0 for i = 1, ...,m are non-negative Lagrange multipliers. Generally, weak duality
holds. That is, if (x∗, λ∗) is an optimal dual pair and D∗ is the corresponding objective

43

function value of (4.5), then D∗ ≤ P ∗ where P ∗ is the optimal value of the primal problem
(4.2). For x∗ to be an optimal solution to the primal problem in (4.2) it must be feasible and
satisfy the complementary slackness condition ∑m

i=1 λ
∗
i (ci − qT

i x
∗) = 0 [18]. Whenever this

condition holds, the duality gap is zero, that is D∗ = P ∗ and x∗ is an optimal solution to
the primal problem. In the case when x∗ is feasible but the complementary slackness is not
satisfied, then ∑m

i=1 λ
∗
i (qT

i x
∗ − ci) > 0 and we call x∗ an ϵ–optimal solution to the primal

problem with ϵ = ∑m
i=1 λi(qT

i x
∗−ci) [18]. The value of ϵ tell us how far away x∗ is from being

the optimal solution to the primal problem. Therefore, the Lagrangian relaxation can yield
optimal or near-optimal solutions to the primal problem. Unlike QUBO the formulation
(4.5) does not require auxiliary variables and squared penalties. As a result, it allows for
significantly more efficient quantum circuits (see Section 4.6).

In the context of quantum optimization, the Lagrangian relaxation allows finding the op-
timal or ϵ-optimal solution to the primal problem through the process of repeated measure-
ments of the specially prepared Lagrangian circuit (Section 4.6). The numerical experiments
in Section 5.2.4 suggest that the optimal solution is often contained in the measured sample.
Indeed, the optimal solution is measured frequently enough to outperform the traditional
QUBO-based approaches.

Since our approach is based on adiabatic evolution in time, we may generalize the
Lagrange multipliers λi to time-dependent functions λi(t) ≥ 0 for for i = 1, ...,m and
t ∈ [0, T]. This allows enhanced control over the constraint terms during the adiabatic
evolution. Hence, we now define the generalized time-dependent Lagrangian dual by

min
x∈{0,1}n

xTQ0x+
m∑

i=1
λi(t)

(
ci − xTQix

)
. (4.6)

4.5 The algorithm

In this section, we use the Lagrangian relaxation in (4.5) or the time-dependent Lagrangian
dual function (4.6) to construct an efficient Lagrangian DAQC circuit. As in Section 3.8.1,
we recast (4.6) as a problem of finding the ground state of a Hamiltonian. The formulation
in (4.6) can be readily represented as a Hamiltonian by substituting each variable xj with
a spin variable sj using the following identity xj = (1 − sj)/2. Finally, each variables sj

is substituted with the Pauli-Z operator Zj which has eigenvalues +1 and −1. This turns
the function in (4.6) into a Hamiltonian which we denote as HC(t). Here, the problem
Hamiltonian depends on time because λi(t) depends on time.

We use DAQC to find the ground state of the HC(t). For this, we need an initial
Hamiltonian Hinit whose ground state is known and can be prepared in constant time.
A typical example of Hinit is the transverse-field operator introduced in (3.21). However,
this time, the operator is multiplied by a negative one because we minimize, i.e. Hinit =
−
∑n

i=1Xi. The adiabatic evolution is achieved by gradually mixing the initial and problem

44

Hamiltonians according to the relation

H(t) = (1− s(t))Hinit + s(t)HC(t). (4.7)

In this equation, s(t) ∈ [0, 1] for t ∈ [0, T] is an adiabatic schedule with the requirements
s(0) = 0 and s(T) = 1. According to Theorem 1 the gradual transition from Hinit to HC(t)
guarantees that the system evolves arbitrarily close to the ground state of HC at t = T if
the transition is long enough.

It is important to note that whenever (4.6) is linear, the objective function does not
have quadratic terms of the form xixj . From Observation 1 we deduce that the resulting
circuit will not have 2-qubit gates RZZ and, consequently, it will not be able to create
entanglement. From the discussion in Section 2.8 we know that entanglement is a necessary
resource for quantum speedup. To introduce entanglement, we need to add some quadratic
terms without modifying the formulation of the optimization problem. Clearly, any addition
of variables xixj to (4.6) will change the optimization problem to another optimization
problem that we are not interested in. Similarly, any addition of operators ZiZj to HC(t)
will change the problem Hamiltonian that is not equivalent to the problem in (4.6). Our
solution is to use a different initial Hamiltonian with quadratic terms that do not commute
with the Zi or ZiZj terms in HC(t). Specifically, we consider a 2-local Hamiltonian – a
Hamiltonian that can be written as a finite sum of terms acting upon at most two qubits
each. In this study, we choose the 2-local ZZXX universal Hamiltonian [8] which has the
form:

HZZXX =
∑

i

hiXi +
∑

i

∆iZi

+
∑
i,j

Ki,jXiXj +
∑
i,j

Ji,jZiZj . (4.8)

We identify the terms ∑i hiXi and ∑i,j Ji,jXiXj with the new initial Hamiltonian whereas
the rest of the terms are used to represent the problem Hamiltonian. Therefore, 2-qubit
interactions are introduced through the use of the terms in ∑

i,j Ki,jXiXj of the 2-local
ZZXX Hamiltonian. We hypothesize that a particular choice of the coefficients Ki,j can
introduce necessary correlations between qubits which could potentially yield better results.
We choose a coupling strength coefficient Ki,j such that the terms form a chain with a
periodic boundary condition. Specifically, we let

Hinit = −
n∑

i=1
Xi −

n∑
i=1

XiXi+1 (4.9)

where we define n + 1 := 1. As we will see later (Section 4.6) such a choice gives a highly
parallelizable circuit with circuit depth independent of problem size n.

45

Note that if the problem in (4.6) is linear, the Lagrangian dual is also linear. It follows
that HC is a 1-local Hamiltonian and Hinit in (4.9) is a 2-local Hamiltonian with a user
provided qubit coupling. It is also possible to set Ki,j = 0 for all i, j. Then the Hamiltonian
H(t) becomes a 1-local Hamiltonian because both Hinit and HC are 1-local Hamiltonians. In
this case, optimization of H(t) is in the complexity class P . Therefore, our DAQC approach
allows for efficient approximation of NP-complete linear programs and a user-controlled
entanglement. Importantly, this allows one to build DAQC circuits which are extremely
parallelizable. That is, the number of time steps is independent of the problem size n. We
further investigate the structure of the DAQC circuit and its parallelizability in the following
sections.

4.6 Lagrangian DAQC for linear problems

In this section, we construct an efficient quantum circuit which is unlike QUBO-derived cir-
cuits is substantially more parallelizable, does not require auxiliary qubits and only requires
nearest neighbour qubit connectivity. Throughout this study, we will refer to the circuit as
Lagrangian circuit.

Suppose we want to find the optimal solution to (4.2). We start the development of
our circuit by approximating the problem in (4.2) using the time-dependent Lagrangian
relaxation.

min
x∈{0,1}n

qt
0x+

m∑
i=1

λi(t)
(
ci − qT

i x
)

(4.10)

If we let λi(t) ≡ λi to be independent of time, then the function (4.10) is convex in λi. The
optimal λ∗

i for a Lagrangian dual problem in (4.5) can be estimated to an arbitrary error
ϵ > 0 in O(ϵ−2) iterations using the subgradient method [52].

Next, we recast (4.10) as a problem of finding the ground state of a Hamiltonian. By
substituting binary variables xj with spin variables sj and introducing Pauli-Z operators
Zj we obtain the problem Hamiltonian HC(t) which is linear in Zj . Dropping all constant
terms in HC(t) yields

HC(t) =
n∑

j=1

(
−q0,j +

m∑
i=1

λi(t)qi,j

)
Zj . (4.11)

46

Combining HC(t) with the Hinit in (4.9) yields the total Hamiltonian

H(t) = (1− s(t))

− n∑
j=1

Xi −
n∑

j=1
XjXj+1

+ s(t)

n∑
j=1

(
−q0,j +

m∑
i=1

λi(t)qi,j

)
Zj , t ∈ [0, T], (4.12)

where s(t) is an adiabatic schedule. Let |ψ(t)⟩ = U(t, 0) |ψ(0)⟩ denote a wavefunction at
time t, such that |ψ(0)⟩ = |+⟩⊗n is the ground state of Hinit. From Section 3.5, we know
that the wavefunction |ψ(t)⟩ is evolved according to the Schrödinger equation

i
dU(t, 0)
dt

= H(t)U(t, 0). (4.13)

In order to construct the Lagrangian circuit, we follow the process outlined in Section 3.5.
We subdivide the time interval [0, T] into p subintervals of length ∆t = T/p. Then the
evolution operator satisfying (4.13) is given by

U(T, 0) = lim
p→∞

p∏
k=0

exp {−i∆tH(∆tk)} . (4.14)

To approximate (4.14), we choose p to be finite and apply the first order Trotterization.
This yields a p-layered Lagrangian circuit

Û(T, 0) =
p∏

k=1
exp {−ickHinit} exp {−ibkHC(∆tk)} . (4.15)

with Hinit and HC(t) given in (4.9) and (4.11) respectively and ck, bk defined as in (3.10).
It was suggested in [50] to normalize the Hamiltonians Hinit and HC by their corre-

sponding Frobenius norms. Therefore, we substitute ck and bk defined in (3.10) with

γk = ck

||Hinit||
, (4.16)

βk = bk

||HC ||
. (4.17)

Empirically, we verified that Frobenius normalization yields a well-performing schedule.
However, the theoretical basis for this is not understood.

We now examine the structure of the resulting circuit Û(T, 0) given in (4.15). For any
layer k ∈ {1, ..., p} consider the unitary matrix given by the initial Hamiltonian. Due to

47

Figure 4.2: The k-th layer of the 4-qubit Lagrangian circuit. Rotation angles are not
displayed for clarity.

commutativity of Xi and XiXj the matrix can be written as

exp {−iγkHinit} =
n∏

j=1
exp {iγkXjXj+1}

n∏
j=1

exp {iγkXj} . (4.18)

The unitary matrix given by the problem Hamiltonian can be written as

exp {−iβkHC(∆tk)} =
n∏

j=1
exp

{
−iβk

(
−q0,j +

m∑
i=1

λi(∆tk)qi,j

)
Zj

}
. (4.19)

We note that the Lagrange multiplier λi(∆tk) in (4.19) contributes to the angle of the
rotation and depends on the time step ∆tk. We now recall the definitions of the 1-qubit
and 2-qubit rotation gates in (2.32) and (2.40) respectively. Then, for any k, the unitary
matrices in (4.19) can be represented by 1-qubit gates RZ. Conversly, the unitary matrices
given in (4.18) can be represented by 1-qubit and 2-qubit gates RX and RXX respectively.
The final Lagrangian circuit is as follows:

Û(T, 0) =
p∏

k=1

n∏
j=1

RXXj,j+1(−2γk)
n∏

j=1
RXj(−2γk)

n∏
j=1

RZj

(
2βk

(
−q0,j +

m∑
i=1

λi(∆tk)qi,j

))
.

(4.20)
The structure of the kth layer of the Û(T, 0) is illustrated in Fig. 4.2. The resulting circuit
is extremely parallelizable and hence has a short circuit depth. All RZ gates can be applied
in a single time step. Similarly, all RX gates can be applied in a single time step. All RXX
gates can be applied in 2 time steps if n is even and 3 time steps if n is odd. Hence, the
circuit depth complexity is O(p) – for further discussion see Appendix E. That is, the circuit
depth depends on the parameter p and does not depend on the problem size. Importantly,
due to the choice of the coefficients Ki,j in Hinit (4.9), the resulting circuit only requires
the nearest neighbour qubit connectivity. Finally, we note that both the formulation and
the circuit construction did not involve any extra variables and auxiliary qubits.

48

4.6.1 Lagrangian multiplier scheduling

In this section we discuss the generalized Lagrange multipliers λi(t) for i = 1, ...,m and
t ∈ [0, T]. First, we note that constant λi is a particular case of λi(t). Most combinatorial
problems have no notion of time. That is, the problem formulation and its solution are
time-independent. Therefore, it makes sense to use Lagrangian multipliers that are also
constant. However, when using the DAQC approach, the solution to a problem is gradually
obtained during the adiabatic evolution. The inherent time-dependence of the adiabatic
process can be used to control the strength of the Lagrange multipliers. For example, it is
possible to delay the introduction of some difficult constraints allowing the process to start
with an easier problem. Alternatively, the constraints whose violation is not critical can
also be scheduled to appear towards the end of the evolution. In this study, we define the
time-dependent Lagrangian multipliers in terms of the modified schedule in (3.14),

λi(t; oi, γi) := γi · s(t− oi; a, T) · 1oi<t(t) for i = 1, ...,m. (4.21)

In the equation above, γi > 0 is the weight of the schedule, oi ∈ [−T, T] is the time offset, and
1oi<t(t) is an indicator function such that 1oi<t(t) = 1 for oi < t and 1oi<t(t) = 0 otherwise.
Setting oi = T/2 introduces the constraint i in the middle of the adiabatic process. Whereas
oi = T is equivalent to ignoring the constraint completely as λi(t; oi, γi) = 0 for all t ∈ [0, T].

4.7 Conclusion

In this chapter, we argue that the traditional approach of casting a constrained problem into
a QUBO form is highly inefficient. We address this issue by introducing Lagrangian duality
from classical optimization. The Lagrangian dual may not yield optimal solutions if solved
classically. However, in the quantum optimization setting, the proximity of attained solution
to the optimal solution allows sampling of the optimal solution with a high probability.
Through the derivation process of the Lagrangian DAQC we demonstrate that the resulting
circuit has problem-independent circuit depth, does not require auxiliary qubits and has
favourable sparse connectivity that an end-user can control.

49

Chapter 5

Numerical experiments

This chapter presents a well-known linear problem similar to the general formulation in
(4.2) and compares numerical results given by QUBO-based and Lagrangian circuits for
that problem. We will see that the proposed Lagrangian circuit significantly outperforms
the canonical QUBO-based circuit.

5.1 Knapsack problem

We will use a well-known 1D 0-1 Knapsack problem (KP) [30]. KP is an NP-hard linear
problem with similar formulation as in (4.2) with m = 1. In combinatorial optimization,
KP is a problem in which one must pack the most valuable items into a knapsack so that
the total weight is less than or equal to the knapsack’s capacity. The KP can be applied
to a number of different industrial situations, such as resource allocation, scheduling, and
inventory management.

We derive a KP from the general canonical formulation given in (4.2). Suppose we have
a KP with n items. Let vj , wj ∈ N denote jth item value and weight respectively and c ∈ N

is a knapsack weight bound. By setting the entries q0,j = −vj , q1,j = −wj for all j = 1, . . . , n
and c1 = −c we obtain the canonical formulation of the n-variable KP

max
n∑

j=1
vjxj (5.1)

n∑
j=1

wjxj ≤ c

x ∈ {0, 1}n.

Our choice of the problem is based on several considerations. First, the KP is a typical
representative of constrained binary linear programs that belong to the intersection NP-
hard and NP-complete classes. Second, as we will show below, trying to solve the KP in the
quantum setting by the means of adiabatic computation with the canonical QUBO reformu-

50

lation (4.3) results in a prohibitively costly circuit which requires all-to-all connectivity and
additional auxiliary qubits whose number grows logarithmically with the constraint bound
c. Therefore, the KP is a good representative of CO problems that challenge currently avail-
able quantum optimization approaches. Developing a quantum protocol that successfully
solves the KP means that the majority of other binary linear programs with inequality and
equality constraints can also be successfully solved by the same protocol.

5.1.1 Lagrangian circuit

We start the development of our Lagrangian circuit by approximating the problem in (5.1)
using the Lagrangian dual given below:

min
x∈{0,1}n

−
n∑

j=1
vjxj + λ(t)

 n∑
j=1

wjxj − c

 . (5.2)

As before, if we let λ(t) ≡ λ to be independent of time, then the problem (4.10) is convex
in λ. Note that (5.2) is a particular case of the general formulation in (4.10).

From the general Lagrangian circuit given in (4.20) it is straightforward to deduce the
structure of the Lagrangian circuit for the KP; we set m = 1, q0,j = −vj and q1,j = wj .
This gives the Lagrangian circuit for the KP.

5.1.2 QUBO circuit

To derive a QUBO circuit for KP, we first reformulate the KP in (5.1) as a QUBO problem.
For this we use the general QUBO formulation given in (4.3). In this case, we get:

min
x,y
−

n∑
j=1

vjxj + γ

 n∑
j=1

wjxj −W

2

(5.3)

such that (5.4)

W =
⌊log2(c)⌋−1∑

k=0
2kyk + (c+ 1− 2⌊log2(c)⌋)y⌊log2(c)⌋

y ∈ {0, 1}⌊log2(c)⌋+1

x ∈ {0, 1}n,

where γ is a penalty multiplier and c is the constraint inequality bound. We note that the
number of additional auxiliary binary variables yk grows as O(log2(c)). Since wj > 0 for
j = 1, . . . , n, from the discussion in Section 4.2.2, it immediately becomes clear that the
squared penalty term introduces

(n+log2(c)+1
2

)
pairwise interactions between every qubit in

each layer of a circuit. That is, each layer of the circuit will have
(n+log2(c)+1

2
)

2-qubit RZZ
gates. Therefore, each layer of a circuit is all-to-all connected. Due to this, the circuit is

51

poorly parallelizable and has circuit depth O (p(n+ log2(c))) – for further information see
Appendix E. Therefore, the circuit depth depends on the problem size n, the value of the
constraint bound c and the number of layers p. For example, if the constraint bound c ≥ e2n,
then the number of auxiliary qubits is at least double of the problem size n. This means
even relatively small knapsack problems may be very challenging for quantum optimization.

One might attempt to decrease the number of auxiliary qubits by scaling down the
coefficients wj and the constraint bound c by dividing both sides of the inequality con-
straint in (5.1) by some constant z ∈ N. However, this often leads to fractional values, i.e.∑n

j=1wjxj/z ∈ Q \ N for some x ∈ {0, 1}n. This implies that the slack variable W must
be able to approximate the rational ∑n

j=1wjxj/z for all feasible x. Hence, the binary ex-
pansion of W must include additional auxiliary binary variables that represent a fractional
part. Therefore, in the presence of inequality constraints, it is practically impossible not to
have auxiliary qubits.

5.2 Experimental setup

In this section, we discuss the computational setup used in the experiment, present pro-
cedures used to generate multiple KP datasets and various metrics used for analysis. We
compare the performance of QUBO and Lagrangian circuits and demonstrate the superior-
ity of the latter.

5.2.1 Hardware setup

The experiment features Lagrangian- and QUBO-based circuits, some of which have 100
layers, 20 qubits and all-to-all connectivity. Since there does not exist a quantum computer
that can successfully execute such circuits, all quantum computation was simulated on
classical hardware. This is a large-scale experiment which pushes quantum simulation to
its limits. To compute the experimental results presented in this chapter, we used over
240 hours of 64-core, 32-core and 16-core CPUs and over 200 GB of RAM on the Google
Compute Platform (GCP). Particularly demanding QUBO-based quantum circuits whose
single execution required at least two weeks of CPU time on the GCP were executed on the
Nvidia’s A100 High-Performance Computing server. Interestingly, Nvidia A100, reduced the
computation time from weeks to several hours.

In this experiment, more than 2000 optimization problems were specifically generated
and solved using quantum simulation. The correctness of simulation results was verified with
Google’s classical optimization solvers: OR-Tools Linear Optimization Solver and OR-Tools
Brute Force Solver.

5.2.2 Generation of random instances

We create two different types of test supersets of KPs:

52

1. The purpose of the Superset 1 is to examine performance scaling with respect to the
problem size n. Thus, for each n = 5, 6, . . . , 15 we generate 100 KP instances with
integer coefficients vi, wi distributed according to the uniform probability distribution
with bounds 1 and 10. That is vi, wi ∼ U(1, 10). The capacity bound c is a function
of random variables wi and it is defined as c = ⌊1/2∑iwi⌋.

2. The purpose of the Superset 2 is to examine performance scaling with respect to
the scale of the coefficients vi and wi while n is fixed. For a fixed n = 11 and each
C = 10, 20, 30, . . . , 100 we generate 100 problem instances such that vi, wi ∼ U(1, C).
Hence, there are 10 datasets each containing instances of size n = 11 but with coeffi-
cients vi, wi whose range is incremented by 10 units in each dataset.

Two additional training supersets of data were also created with the same setup as above.
The training supersets were only used for finding the best hyperparameters p, T and a in
(3.14). Training supersets were not used for producing any of the experimental results in
following sections.

5.2.3 Performance Metrics

In order to gauge the performance of QUBO and Lagrangian circuits on the test datasets
we will use the R99 and Time-To-Solution (TTS) metrics. Let a parameter sequence θ =
{(γk, βk)}pk=1 defined in (4.16) be given. Then R99(θ) is the number of shots (circuit mea-
surements) that must be performed to ensure a 99% probability of observing the ground
state of HC under the parametrization θ - for further details see Appendix D. It is defined
as

R99(θ) := log(0.01)
log(1− P (θ)) , (5.5)

where P (θ) is the probability of measuring the optimal solution under parametrization θ.
The TTS denotes the expected computation time required to find an optimal solution for
a particular problem instance with 99% confidence. It is defined via

TTS(θ) = R99(θ) · tss (5.6)

with tss denoting the necessary runtime for a single shot. In order to approximate tss, we
assume the following holds:

1. A quantum processor performs any single-qubit and two-qubit gate operations in 10
and 20 nanoseconds, respectively.

2. Gate operations may be performed simultaneously if they do not act on the same
qubit.

53

3. All components of the circuit are noise-free and there is no overhead for quantum
error correction or fault-tolerant quantum computation.

Then the p-layered Lagrangian circuit has the following runtime dependence on p (Ap-
pendix E):

tss =

50p n is even,

70p n is odd.
(5.7)

The p-layered QUBO circuit has the runtime dependence on p, problem size n and the
constraint bound c (Appendix E)

tss =

20p (n+ log2(c)) n+ log2(c) is even,

20p (n+ log2(c) + 1) n+ log2(c) is odd.
(5.8)

5.2.4 Experiment results

This section presents TTS scaling results for the Lagrangian and QUBO circuits. For the
test Superset 1 the performance advantage of the Lagrangian circuit increases with the size
of the problem (number of items). For each problem size varying from 5 to 15 items, Fig 5.1
shows the plot of median TTS, suggesting that the Lagrangian circuit has significantly
better scaling.

Additionally, we examine the amount of optimal resources required for both circuit types
to have comparable R99 across all problem sizes. The numerical experiments demonstrate
that the Lagrangian circuit requires quadratically fewer resources to have a comparable R99

with the QUBO circuit. Fig 5.2 demonstrates the scaling of the optimal mean number of
layers p and evolution time T with respect to the problem size. From the figure, it is clear
that the Lagrangian circuit has a linear scaling, whereas the QUBO circuit has quadratic
scaling in both p and T . This difference becomes even more critical if we take into account
the overhead costs associated with Quantum Error Correction (QEC) and the realization
of Fault-Tolerant Quantum Computation (FTQC) schemes that become necessary for noisy
circuits. Deeper circuits are much more vulnerable to noise necessitating greater QEC and
FTQC overhead costs, which have been neglected in our analysis since our aim is to compare
optimistic lower bounds for the two approaches.

Recall that whenever a combinatorial problem has inequality coefficients, additional
qubits are necessary in order to account for slack variables. We stated that the number of
additional qubits grows logarithmically with respect to a constraint bound. Using Superset
2, we demonstrate the performance scaling on fixed size KP datasets (n = 11) but with an
increasing range of coefficients vi, wi. Fig 5.3 shows R99 scaling for both types of circuits
with each having a fixed parametrization and number of layers across all datasets. It is
clear that the Lagrangian circuit’s R99 is not affected by the coefficient values and remains

54

Figure 5.1: Scaling of the Lagrangian and QUBO circuit with respect to the size of a KP
problem. For each dataset of size n a single pre-tuned scheduling function is used.

constant across all datasets of the Superset 2. The QUBO circuit’s R99 has quadratically
logarithmic growth. The scaling behaviour can be explained by the logarithmic increase in
qubits for the QUBO circuit.

This brings us to an important point about the TTS scaling of QUBO and Lagrangian
circuits. One might note that the TTS difference in Fig 5.1 is only of one order of magnitude
at n = 15. While the difference is expected to get larger as n increases, because of the
quadratically logarithmic scaling of R99 with the size of wi presented in Fig 5.3 we can
conclude that the TTS difference can be made arbitrarily large by simply choosing KP
problems with larger weights wi. For example, if we were to compute the TTS difference
at n = 15 and a slightly more practical item’s weight distribution wi ∼ U(1, 1000), then
the median TTS difference would be at least two orders of magnitude. However, even with
n = 15 and wi ∼ U(1, 10) we already encounter computational limits of simulating the
results for the QUBO-based circuits.

55

5.3 Conclusion

In this chapter, we performed a numerical benchmark study that suggests that the proposed
Lagrangian circuits have a quadratic improvement over QUBO-based circuits in terms of
evolution time and circuit depth. In addition to the economic structure, the Lagrangian
approach has an order of magnitude better TTS for larger-size problems. The difference in
TTS can be drastically amplified if the problem size and constraint bounds become larger.

56

Figure 5.2: Scaling of the resources of the Lagrangian and QUBO circuits with respect to
a problem size. (a) The optimal mean depth p scales linearly for the Lagrangian circuit,
whereas the QUBO circuit has a quadratic growth. (b) Optimal mean evolution time T
also scales linearly for the Lagrangian circuit. The QUBO circuit has quadratic growth.
(c) R99 of both circuits under their respective optimal parameters p and T . Given optimal
parameters, both circuits have a comparable R99 with exponential scaling.

57

Figure 5.3: Scaling of the Lagrangian and QUBO circuits with respect to the coefficients
of a KP problem. For all datasets, each circuit has a single fixed parametrization, that is p,
T and s(t) are fixed across all datasets.

58

Chapter 6

Conclusions and future work

In this thesis, we introduced fundamental concepts of quantum mechanics and presented
the complete mathematical construction of QAOA accompanied by a detailed example of
a QAOA circuit for the MaxCut problem. Additionally, we discussed possible parametriza-
tion techniques such as the variational principle and the principle of discretized adiabatic
quantum computation. Later on, we introduced optimization concepts such as linear inte-
ger programs and their reformulation into QUBO problems. We argued that the traditional
method of converting linear integer programs into QUBO caused many issues from optimiza-
tion and quantum resource efficiency perspectives. Finally, we proposed a novel approach
based on the theory of Lagrangian duality. We analytically demonstrated that the result-
ing quantum algorithm was significantly more efficient than the traditional QUBO-based
QAOA. Finally, we performed a large-scale quantum simulation experiment where we nu-
merically verified that the proposed approach was notably superior in terms of time to
solution and quantum resource requirements.

In future work, we plan to investigate the behaviour of the proposed initial Hamiltonian
with quadratic terms XiXj under different parametrization of the coefficients Ki,j in (4.8). It
is also interesting to understand and quantify the amount of entanglement introduced by the
exponential of the new initial Hamiltonian and how it affects the time to solution. Another
aspect we aim to investigate is the performance of the proposed method in the presence
of quantum decoherence (which is also called noise) caused by an external environment.
Additionally, in this thesis, we examined the applicability of the DAQC with Lagrangian
duality theory to linear integer programs. However, the approach generalizes to integer
programs with a quadratic objective function and linear inequality constraints. Therefore, it
is interesting to see how the proposed algorithm will fair with the aforementioned problems.

59

Bibliography

[1] T. Albash and D Lidar. Adiabatic quantum computation. RMP, 90(1):015002, 2018.

[2] A. Ambainis and O. Regev. An elementary proof of the quantum adiabatic theorem.
arXiv preprint quant-ph/0411152, 2004.

[3] B. Apolloni, C. Carvalho, and D. De Falco. Quantum stochastic optimization. Stoch.
Process. their Appl., 33(2):233–244, 1989.

[4] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura, and H. Katzgraber.
Physics-inspired optimization for quadratic unconstrained problems using a digital an-
nealer. Front. Phys., 7:48, 2019.

[5] J. Basdevant. Variational Principles in Physics. Springer Science & Business Media,
2006.

[6] A. Beck. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications
with MATLAB. SIAM, 2014.

[7] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. JMLR,
13(2), 2012.

[8] J. Biamonte and P. Love. Realizable Hamiltonians for universal adiabatic quantum
computers. Phys. Rev. A, 78(1):012352, 2008.

[9] S. Boixo, T. Rønnow, S. Isakov, Z. Wang, D. Wecker, D. Lidar, J. Martinis, and
M. Troyer. Evidence for quantum annealing with more than one hundred qubits.
Nat. Phys., 10(3):218–224, 2014.

[10] S. Brush. History of the Lenz-Ising model. RMP, 39(4):883, 1967.

[11] J. Cui, Y. Xiong, S. Ng, and L. Hanzo. Quantum approximate optimization algorithm
based maximum likelihood detection. IEEE Trans Commun, 2022.

[12] J. Devore. Probability and Statistics for Engineering and the Sciences. Cengage learn-
ing, 2011.

[13] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algo-
rithm. arXiv preprint arXiv:1411.4028, 2014.

[14] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic
evolution. arXiv preprint quant-ph/0001106, 2000.

60

[15] R. Feynman et al. Simulating physics with computers. Int. J. Theor. Phys., 21(6/7),
1982.

[16] O. Galindo and V. Kreinovich. What is the optimal annealing schedule in quantum
annealing. In 2020 IEEE Symposium Series On Computational Intelligence (SSCI),
pages 963–967. IEEE, 2020.

[17] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete problems. In
Proceedings of the sixth annual ACM symposium on Theory of computing, pages 47–63,
1974.

[18] A. Geoffrion. Lagrangean relaxation for integer programming. In Approaches to integer
programming, pages 82–114. Springer, 1974.

[19] A. Gilyén, S. Arunachalam, and N. Wiebe. Optimizing quantum optimization algo-
rithms via faster quantum gradient computation. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1425–1444. SIAM, 2019.

[20] F. Glover, J.K. Hao, and G. Kochenberger. Polynomial unconstrained binary
optimisation-part 2. Int. J. Metaheuristics, 1(4):317–354, 2011.

[21] H. Goto, K. Tatsumura, and A. Dixon. Combinatorial optimization by simulating
adiabatic bifurcations in nonlinear Hamiltonian systems. Sci. Adv., 5(4):eaav2372,
2019.

[22] D. Griffiths. Introduction to Quantum Mechanics. Pearson International Edition (Pear-
son Prentice Hall, Upper Saddle River, 2005), 1962.

[23] H. Haber. The time evolution operator as a time-ordered exponential. 2018.

[24] I. Hen and F. Spedalieri. Quantum annealing for constrained optimization. Phys. Rev.
Applied, 5(3):034007, 2016.

[25] T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi,
P. McMahon, T. Umeki, K. Enbutsu, et al. A coherent Ising machine for 2000-node
optimization problems. Science, 354(6312):603–606, 2016.

[26] R. Jozsa. Entanglement and quantum computation. arXiv preprint quant-ph/9707034,
1997.

[27] S. Karimi and P. Ronagh. A subgradient approach for constrained binary optimization
via quantum adiabatic evolution. Quantum Inf. Process., 16(8):1–21, 2017.

[28] T. Kato. On the adiabatic theorem of quantum mechanics. JPSJ, 5(6):435–439, 1950.

[29] P. Kaye, R. Laflamme, and M. Mosca. An Introduction to Quantum Computing. OUP
Oxford, 2006.

[30] H. Kellerer, U. Pferschy, and D. Pisinger. Introduction to NP-Completeness of knapsack
problems. In Knapsack problems, pages 483–493. Springer, 2004.

[31] G. Kluber. Trotterization in QM Theory. https://web.ma.utexas.edu, 2020.

61

https://web.ma.utexas.edu

[32] M. Laforest. The Mathematics of Quantum Mechanics. 2015.

[33] M. Lewis and F. Glover. Quadratic unconstrained binary optimization problem pre-
processing: Theory and empirical analysis. Networks, 70(2):79–97, 2017.

[34] L. Li, M. Fan, M. Coram, P. Riley, S. Leichenauer, et al. Quantum optimization with
a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Res.,
2(2):023074, 2020.

[35] A. Lucas. Ising formulations of many NP problems. Front. Phys., page 5, 2014.

[36] S. Matsuura, S. Buck, V. Senicourt, and A. Zaribafiyan. Variationally scheduled quan-
tum simulation. Phys. Rev. A, 103(5):052435, 2021.

[37] S. Matsuura, T. Yamazaki, V. Senicourt, L. Huntington, and A. Zaribafiyan. Van-
qver: the variational and adiabatically navigated quantum eigensolver. New J. Phys.,
22(5):053023, 2020.

[38] G. B. Mbeng, R. Fazio, and G. Santoro. Quantum annealing: A journey through
digitalization, control, and hybrid quantum variational schemes. arXiv preprint
arXiv:1906.08948, 2019.

[39] J. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik. The theory of variational
hybrid quantum-classical algorithms. New J. Phys., 18(2):023023, 2016.

[40] A. Mishra, T. Albash, and D. Lidar. Finite temperature quantum annealing solving ex-
ponentially small gap problem with non-monotonic success probability. Nat. Commun.,
9(1):1–8, 2018.

[41] A. Montanaro. Quantum algorithms: an overview. Npj Quantum Inf., 2(1):1–8, 2016.

[42] G. Moore et al. Cramming more components onto integrated circuits, 1965.

[43] S. Morita and H. Nishimori. Mathematical foundation of quantum annealing. J. Math.
Phys., 49(12):125210, 2008.

[44] H. Neidhardt, A. Stephan, and V. Zagrebnov. Operator-norm convergence of the Trot-
ter product formula on Hilbert and Banach spaces: A short survey. In Current Research
in Nonlinear Analysis, pages 229–247. Springer, 2018.

[45] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Amer-
ican Association of Physics Teachers, 2002.

[46] A. Peruzzo, J. McClean, P. Shadbolt, M. Yung, X. Zhou, P. Love, and Jeremy L.
Aspuru-Guzik, A. A variational eigenvalue solver on a photonic quantum processor.
Nat. Commun., 5(1):1–7, 2014.

[47] J. Roland and N. Cerf. Quantum search by local adiabatic evolution. Phys. Rev. A,
65(4):042308, 2002.

[48] P. Ronagh, B. Woods, and E. Iranmanesh. Solving constrained quadratic binary prob-
lems via quantum adiabatic evolution. Quantum Inf. Comput., 16(11-12):1029–1047,
2016.

62

[49] W. Rudin et al. Principles of Mathematical Analysis, volume 3. McGraw-hill New
York, 1976.

[50] K. Sankar, A. Scherer, S. Kako, S. Reifenstein, N. Ghadermarzy, W. Krayenhoff,
Y. Inui, E. Ng, T. Onodera, P. Ronagh, et al. Benchmark study of quantum al-
gorithms for combinatorial optimization: unitary versus dissipative. arXiv preprint
arXiv:2105.03528, 2021.

[51] Y. Seki and H. Nishimori. Quantum annealing with antiferromagnetic fluctuations.
Phys. Rev. E, 85(5):051112, 2012.

[52] N. Z. Shor. Minimization methods for non-differentiable functions, volume 3. Springer
Science & Business Media, 2012.

[53] L. Susskind and A. Friedman. Quantum Mechanics: The Theoretical Minimum. Basic
Books, 2014.

[54] A. Uvarov and J. Biamonte. On barren plateaus and cost function locality in variational
quantum algorithms. J. Phys. A Math., 54(24):245301, 2021.

[55] R. Wiersema, C. Zhou, Y. de Sereville, J. F. Carrasquilla, Y. B. Kim, and H. Yuen.
Exploring entanglement and optimization within the Hamiltonian variational ansatz.
PRX Quantum, 1(2):020319, 2020.

63

Appendix A

Trotter approximation

Whenever Hermitian matrices A and B do not commute, the first order Trotter approxima-
tion of exp{i(A+B)t} is obtained by setting n = 1 in the Trotter product formula (2.53).
We will show that when n = 1, the error grows as O(t2) for small t. We will also show that
the error term is zero when A and B commute.

Let A and B non-commutative Hermitian matrices in Cn×n. We first approximate all three
exponential matrices.

ei(A+B)t = I + i(A+B)t+O(t2), (A.1)
eiAt = I + iAt+O(t2), (A.2)
eiBt = I + iBt+O(t2). (A.3)

Then multiplying (A.2) and (A.3) yields

eiAteiBt =
(
I + iAt+O(t2)

) (
I + iBt+O(t2)

)
= I + i(A+B)t+O(t2). (A.4)

Subtracting (A.4) from (A.1) gives the result

ei(A+B)t = eiAteiBt +O(t2). (A.5)

We now show that the error term is zero when A and B commute. We give a derivation
similar to the derivation in [31]. Using the binomial theorem we can write

ei(A+B)t =
∞∑

n=0

(i(A+B)t)n

n! (A.6)

=
∞∑

n=0

1
n!

n∑
k=0

(
n

k

)
(iAt)n−k(iBt)k (A.7)

=
∞∑

n=0

n∑
k=0

1
n!

n!
k!(n− k)! (iAt)

n−k(iBt)k. (A.8)

64

Since ||(A+B)n|| ≤ ||A+B||n the series (A.6)-(A.8) are absolutely convergent, and every
rearrangement of (A.8) converges to the same limit [49, Chapter 3]. Therefore, we can
rearrange the terms containing (iAt)n−k(iBt)k such that they appear in the sum according
to their exponent value. Thus we can write

∞∑
n=0

n∑
k=0

1
k!(n− k)! (iAt)

n−k(iBt)k =
∞∑

p=0

∞∑
m=0

1
p!m! (iAt)

m(iBt)p (A.9)

=
(∞∑

m=0

(iAt)m

m!

) ∞∑
p=0

(iBt)p

p!

 (A.10)

= eiAteiBt. (A.11)

Therefore,
ei(A+B)t = eiAteiBt. (A.12)

This shows that the error term is zero whenever A and B commute.

65

Appendix B

Derivation of the solution to the
time dependent Schrödinger
equation

The time evolution of a state vector in the (C2)⊗n is governed by the Schrodinger equation,

iℏ d
dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ , (B.1)

where H(t) is the Hamiltonian operator on (C2)⊗n and ℏ is a real constant. The solution
to the Schrödinger equation can be written in terms of evolution matrix U(t, t0)

|ψ(t)⟩ = U(t, t0) |ψ(t0)⟩ , (B.2)

where |ψ(t0)⟩ is the initial condition for the time evolution of |ψ(t)⟩. Given H(t) our goal is
to find U(t, t0) that evolves |ψ(t0)⟩ into |ψ(t)⟩. In order to derive U(t, t0) we use the lecture
notes from Santa Cruz Institute of Particle Physics [23].

Since |ψ(t0)⟩ is arbitrary, it follows that U(t, t0) must satisfy,

iℏ d
dt
U(t, t0) = H(t)U(t, t0), (B.3)

subject to the initial condition, U(t0, t0) = I. The goal is to solve (B.3) for U(t, t0). Using
Taylor expansion we can write

U(t+ ∆t, t0) = U(t, t0) + ∆tdU
dt

(t, t0) +O(∆t2). (B.4)

Using (B.3), it follows

U(t+ ∆t, t0) = U(t, t0)− i
ℏ
H(t)U(t, t0)∆t+O(∆t2). (B.5)

66

Set t0 = t. Since U(t, t) = I we obtain

U(t+ ∆t, t) = I − i
ℏ
H(t)∆t+O(∆t2). (B.6)

The above is the Taylor expansion of exp{iH(t)∆t/ℏ}. Hence,

U(t+ ∆t, t) = e−iH(t)∆t/ℏ +O(∆t2). (B.7)

To obtain the explicit formula for U(t, t0) we divide the time interval [t0, t] into p equal
subintervals of length

∆t = t− t0
p

. (B.8)

Noting that for t0 < t1 < t2 we have U(t2, t0) = U(t2, t1)U(t1, t0), we can express U(t, t0)
as follows.

U(t, t0) =
p∏

k=1
U(t0 + k∆t, t0 + (k − 1)∆t). (B.9)

For each k = 1, 2, ..., p we use (B.7)

U (t0 + k∆t, t0 + (k − 1)∆t) = exp {−iH(t0 + (k − 1)∆t)∆t/ℏ}+O(∆t2). (B.10)

Therefore, if we take the limit of p→∞ and set t0 = 0 we get

U(t, 0) = lim
p→∞

p∏
k=1

exp {−iH((k − 1)∆t)∆t/ℏ} (B.11)

= lim
p→∞

p∏
k=0

exp {−iH(k∆t)∆t/ℏ} . (B.12)

67

Appendix C

On commutativity of an initial and
problem Hamiltonians

We claimed that non-commutativity of the initial Hamiltonian Hinit and the problem Hamil-
tonian HC is a necessary condition for the algorithm to not fail. We now give a mathematical
treatment of this claim.

Recall that Hinit and HC are 2n × 2n Hermitian matrices and hence diagonalizable. Since
Hinit and HC commute, they are simultaneously diagonalizable. That is, there exists an
invertable matrix Q s.t.

Hinit = QDinitQ
∗ and HC = QDCQ

∗, (C.1)

where Dinit and DC are diagonal matrices. Since HC is a diagonal matrix we conclude that
Q is an identity matrix Q = I. Hence, Dinit = Hinit.

Without loss of generality let einit = (1, ..., 0)T ∈ R2n be the ground state of Hinit with an
associated lowest eigenvalue a0 and let e∗ = (0, 1, ..., 0)T ∈ R2n be the ground state of HC

with an associated lowest eigenvalue b0. We assume that the initial state einit is not the
ground state of HC , otherwise the optimization problem is solved. Hence HCe

init = b1e
init

such that b1 > b0.

From (4.14) we know that the unitary matrix that evolves the initial ground state of Hinit

to the ground state of HC has the following form

U(t, 0) = lim
p→∞

p∏
k=1

exp
{
− i∆t

ℏ
H(k∆t)

}
(C.2)

= lim
p→∞

p∏
k=1

exp
{
− i∆t

ℏ
[(1− s(k∆t))Hinit + s(k∆t)HC]

}
. (C.3)

Since Hinit and HC commute we can write

U(t, 0) = lim
p→∞

p∏
k=0

exp
{
− i∆t

ℏ
(1− s(k∆t))Hinit

}
exp

{
− i∆t

ℏ
s(k∆t)HC

}
. (C.4)

68

We recall that the exponent of a diagonal matrix is a diagonal matrix and the product of
diagonal matrices is diagonal. Therefore U(t, 0) is a diagonal matrix. It follows that

U(t, 0)einit = zeinit ⊜ einit, (C.5)

where z ∈ C is a global phase which we can ignore. We could stop here as it is clear that
U(t, 0) fails to evolve einit to e∗ for all t ∈ R+. However, we would like to put the above in
the context of the minimum eigengap gmin which we claimed to be zero. For clarity, let us
denote the adiabatic schedule s(t) as s. Recalling that Hinit and HC are diagonal we can
write

H(t)U(t, 0)einit ⊜ H(t)einit = ((1− s)Hinit + sHC) einit (C.6)

=

(1− s)a0 + sb1
(1− s)a1 + sb0

. . .

 einit (C.7)

= ((1− s)a0 + sb1)einit. (C.8)

Note that if s = 0 we get the ground energy a0 of Hinit. When s = 1 we get b1 which is
greater than the ground energy b0 of HC . Since a0 < a1 and b0 < b1 the following equation
has a solution for some s ∈ (0, 1)

(1− s)a0 + sb1 = (1− s)a1 + sb0. (C.9)

This means that the spectral gap λ between eigenvalues (1− s)a0 + sb1 and (1− s)a1 + sb0
of H(s) is zero for some s ∈ (0, 1). Therefore, we conclude that gmin is zero. The evolution
of energy levels of the Hamiltonian H(s) is illustrated in Fig C.1.

Figure C.1: The values of two eigenvalues (red and green lines) of H(s) for all s ∈ [0, 1].
Since Hinit commutes with HC we see that the spectral gap closes during the transition
from Hinit to HC .

69

Appendix D

Time to solution

The objective of numerical benchmarking is to quantify how the computational effort of
finding a solution to a problem scales with the size of the problem. Since DAQC is stochastic,
a common approach to analyze the scaling is to measure the total time required for the
algorithm to find the optimal solution at least once with a probability of 0.99. Measuring
the total time for different size problems gives understanding of performance scaling. To
compute TTS we first discuss R99. As it was stated before, R99 is the number of runs that
must be performed to ensure a 0.99 probability of observing the ground state of a problem
Hamiltonian. To derive the R99 formula (5.5), we consider each run as a trail. The success
of measuring the optimal state after each run is given by the probability p. Since trials
are identical and independent with only two possible outcomes we conclude that it is a
binomial experiment. Hence, the number of successful trials is a random variable X that
has a binomial distribution. We would like to know how many trials (R99) it takes so that

Pr(X ≥ 1) = 0.99. (D.1)

Equivalently we can write

Pr(X ≥ 1) = 1− Pr(X = 0) (D.2)

= 1−
(
R99
0

)
p0(1− p)R99 (D.3)

= 1−R99(1− p)R99 . (D.4)

Solving for R99 yields

R99 = log (0.01)
log (1− p) . (D.5)

In the case when p = 1, we set R99 = 1. Consequently TTS is given by

TTS = tss ·R99. (D.6)

where tss is the runtime of a single trial.

70

Appendix E

DAQC circuit runtime complexities

Recall that one-qubit gates acting on different qubits can be executed in parallel, whereas
any pair of two-qubit gates sharing at least one qubit can only be executed sequentially. As a
result, highly parallelizable circuits have shorter runtime and are less prone to accumulation
of errors. This section demonstrates the runtime complexity of the Lagrangian- and QUBO-
based circuits for a KP. In Section 5.2.3 we stated that the Lagrangian circuit’s runtime tss

is O(p) where p is the number of layers. In contrast, QUBO circuit has runtime complexity
O ((n+ log2(c))p) where n is the number of variables in a KP and c is the constraint bound.

Let us first look at the Lagrangian circuit given in (4.15)-(4.19). To show that the runtime
tss is O(p) it is sufficient to examine any single layer of the circuit illustrated in Fig 4.2.
The kth layer has the following form.

n∏
j=1

exp {iγkXjXj+1}
n∏

j=1
exp {iγkXj}

n∏
j=1

exp {−iβk (vj − λ(∆tk)wj)Zj} . (E.1)

We claim that the runtime of a single layer k is constant. Intuitively, we can rearrange the
gates of the kth layer into at most five sublayers such that gates belonging to a sublayer
can be applied in parallel. Each sublayer has the runtime O(1). Fig E.1 illustrates a 4-qubit
kth layer of a Lagrangian circuit and its equivalent rearrangement into four sublayers that
can be applied consecutively. For all j = 1, . . . , n the unitary matrix exp {iγkXj} represents
a one-qubit RXj gate acting on the qubit j. Therefore, their product can be applied in
parallel in one step. Similarly, the matrix exp {−iβk (vj − λ(∆tk)wj)Zj} represents a one-
qubit RZj gate acting on the qubit j. Hence, the product of all RZ gates can be applied
in parallel in one step. We conclude the number of steps required to apply all RX and RZ
gates is independent of n i.e. it is constant per layer k.

We now examine two-qubit gates RXXj,j+1 given by exp {iγkXjXj+1}. We note that their
product forms a closed chain where the qubit j is connected to the qubit j+1 with n+1 := 1.
Since for any i and j the matrices exp {iγkXjXj+1} and exp {iγkXiXi+1} commute we can
rearrange their order into several sublayers so that each layer could be applied in parallel.
Suppose we have an even number of qubits, i.e. n = 2m for some m ∈ N. Then the first
sublayer will contain m gates that do not share any qubits and the second sublayer will
contain the other half of m gates that do not share any qubits. Hence, the two sublayers of

71

RXX gates can be executed in 2 steps. If n is odd, then we get a third sublayer containing
a single RXX gate. Hence, the three sublayers of RXX gates can be executed in 3 steps.
It follows that regardless of the value of n it takes at most 3 steps to apply all RXX gates.
Therefore, in total it takes at most 5 steps to apply RX,RZ and RXX gates. Hence each
DAQC layer k in (E.1) can be applied in constant time. Since there are p layers the runtime
tss is O(p).

For the QUBO circuit, on the other hand, the runtime depends on the bound c, the number
of KP variables n and number of layers p. Due to the quadratic penalty in the objective
function (5.3) the kth DAQC layer has

(n+⌊log2(c)⌋
2

)
two-qubit gates RZZ. Since RZZ gates

commute the best arrangement of the RZZ gates yields at least n+ ⌊log2(c)⌋− 1 sublayers
that can be executed consecutively. To see this, we note that each sublayer can accommodate
at most (n+ ⌊log2(c)⌋)/2 two-qubit gates such that no qubit is shared between all the gates
in the sublayer. Therefore it takes at least n+ ⌊log2(c)⌋ − 1 sublayers to place all the RZZ
gates. This gives (n + ⌊log2(c)⌋ − 1)(n + ⌊log2(c)⌋)/2 =

(n+⌊log2(c)⌋
2

)
. Since the sublayers

containing RZ and RX can be applied in constant time, the runtime of a kth layer is of order
O(n+⌊log2(c)⌋). Since the QUBO circuit has p layers, its runtime tss = O(p(n+⌊log2(c)⌋)).

Figure E.1: (a) The kth layer of the Lagrangian circuit. By the choice of the coefficients
Ki,j in (4.8) we get the initial Hamiltonian (4.9), which in turn yields RXX gates with
a closed chain-like connectivity. (b) Equivalent rearrangement of the kth layer. Gates are
partitioned into four sublayers (coloured rectangles). Gates belonging to the same sublayer
do not share qubits and can be applied in parallel in a single step. In total it takes four
consecutive executions to apply the kth layer for any even n.

72

	Declaration of Committee
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	Introduction
	Quantum computing
	Quantum computation for combinatorial optimization problems
	Contributions
	Previous work
	Thesis outline

	Mathematical and physical background
	Qubits and Dirac notation
	Measurement
	Evolution operators
	Multiple qubits
	Operations on multiple qubits
	Parameterized operations on multiple qubits
	The quantum circuit model
	Entanglement as a computational resource
	The Schrödinger equation
	The adiabatic theorem
	Trotter formula

	Quantum algorithms for solving combinatorial problems
	Combinatorial optimisation problems
	MaxCut problem example
	Representing a CO problem as a Hamiltonian
	Adiabatic theorem in the optimization context
	Building the QAOA circuit
	Determining parameters of a circuit with a variational approach
	The variational approach as optimization of expected energy
	The variational algorithm step by step
	Methods for variational parameter update

	Determining parameters of a circuit with a discretized adiabatic process
	Minimum eigengap and circuit's depth
	DAQC scheduling

	The QAOA for MaxCut problems
	The problem Hamiltonian HC
	An initial Hamiltonian Hinit
	QAOA circuit for a MaxCut problem

	MaxCut QAOA circuit's structure
	Conclusion

	Combinatorial problems with constraints
	Quadratic Unconstrained Binary Optimization
	QUBO issues with constrained problems
	Issue with additional auxiliary qubits
	Issues with circuit connectivity
	Issues from classical optimization perspective
	Concluding remarks about QUBO

	The novel approach and its advantages
	Lagrangian duality
	The algorithm
	Lagrangian DAQC for linear problems
	Lagrangian multiplier scheduling

	Conclusion

	Numerical experiments
	Knapsack problem
	Lagrangian circuit
	QUBO circuit

	Experimental setup
	Hardware setup
	Generation of random instances
	Performance Metrics
	 Experiment results

	Conclusion

	Conclusions and future work
	Bibliography
	Appendix Trotter approximation
	Appendix Derivation of the solution to the time dependent Schrödinger equation
	Appendix On commutativity of an initial and problem Hamiltonians
	Appendix Time to solution
	Appendix DAQC circuit runtime complexities

