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Abstract 

The feasibility of using Multilayer Perceptron (MLP) to predict hydrogeologic units 

(HGUs) in complex glacial deposits is evaluated. The study area includes the Fraser-

Whatcom Basin. Material descriptions from boreholes logs are standardized into HGUs 

using natural language processing techniques to reduce subjectively and improve 

automation. Three data selection alternatives are considered to evaluate the training and 

prediction capabilities of MLP. Block-model representations of the subsurface are 

created and the best geologic realization is verified against predictions using the K-

nearest neighbours algorithm and geologic cross-sections from independent studies. 

Validation results show MLP predictions are typically more generalized but produce 

similar subsurface trends and can recreate confining units contributing to local artesian 

conditions. MLP appears to be a promising algorithm to solve multi-class classification 

for geologic modelling purposes. The workflow developed has the added benefit of being 

stochastic with the potential to generate multiple geologic realizations to account for 

uncertainty in geologic structure.  

 

Keywords:  lithology material standardization; glacial deposits; Lower Mainland; block 

model, artificial neural networks; multi-class classification, hydrogeologic 
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Chapter 1.  
 
Introduction 

1.1. Background 

Canada is covered by complex and heterogeneous deposits influenced by 

glaciation. These deposits contain major aquifers that are important sources of water 

that are increasingly being relied upon as water scarcity increases and surface water 

availability decreases due to human activity and climate change (Vaccaro, 1992). 

Advancements in groundwater modelling software have resulted in more effective use of 

regional groundwater flow models as tools to support sustainable groundwater 

management (Pasanen and Okkonen, 2017); however, conceptualization of geologic 

architecture still presents the greatest uncertainty, particularly for glacial deposits 

(Anderson et al., 2015; Refsgaard et al., 2012). The continuity of geological units 

influences aquifer extents, where hydraulic interactions occur along the flow path (e.g. 

recharge and discharge areas), groundwater chemistry, and the development of 

hydraulic conditions (e.g. confined aquifers, artesian wells) (Bayless et al., 2017).  

Geologic models are the backbone of every groundwater flow model and are 

critical to understanding groundwater flow within complex glacial aquifer systems 

(Pasanen and Okkonen, 2017). Traditional methods used to develop 3D geologic 

models for groundwater applications rely on manual interpretations that incorporate 

known geologic relationships (e.g. geologic cross-sections) and expert knowledge into a 

deterministic model; however, such models are typically time-consuming to create, 

difficult to update and do not adequately represent subsurface heterogeneity or account 

for uncertainty in geologic structure (Jørgensen et al., 2015; Kearsey et al., 2015). As a 

result, the end-product may have limited use or not be directly relevant to end-users like 

planners, engineers, and groundwater modellers (Kearsey et al., 2015). Geostatistical 

approaches have been applied using numerical data (e.g. geophysical surveys) to make 

spatial predictions in the subsurface but typically have limitations associated with the 

underlying assumption of stationarity (i.e., statistics used to describe data distribution 

that does not change throughout the spatial domain) and the inability to reproduce 

subsurface complexity (Bianchi et al., 2015). 
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An alternative to the methods above is to use a data-driven approach that is non-

parametric (i.e., no assumptions on data distribution). Machine learning algorithms can 

use data to learn a function that maps inputs to outputs without any prior assumption on 

the data distribution. These algorithms can be used to solve nonlinear problems or when 

the modelled phenomena are very complex (Kanevski et al., 2009). They can be used to 

solve classification problems using categorical data (e.g. lithologic units) which is 

typically the most abundant type of subsurface data for hydrogeologic applications. 

The main goal of this research is to leverage textual data from borehole lithology 

logs and apply machine learning to build a regional geologic model in an area with 

complex glacial deposits using publicly available information and open-source tools. This 

work will address the major source of uncertainty in groundwater modelling (e.g. 

geologic structure) and provide the foundation required to build future numerical models 

to better represent groundwater flow in complex glacial deposits.  

1.2. Literature Review 

1.2.1. Geologic Modelling 

The capability to effectively and intuitively analyse geologic information is an 

important part of the groundwater modelling workflow, particularly in areas with glacial 

and post-glacial deposits (Russell et al,. 2013, Jørgensen et al., 2015; Kearsey et al., 

2015; Pasanen and Okkonen, 2017). This is important because geologic structure is a 

major source of uncertainty in groundwater modelling. Bianchi et al. (2015) used an 

interpretive groundwater model (e.g. not calibrated) to investigate how uncertainty in 

lithofacies modelling impacts groundwater flux and hydraulic heads. Bianchi concluded 

that uncertainty in lithofacies modelling has a greater impact on groundwater flux 

predictions compared to simulated hydraulic heads. This highlights how the accuracy of 

geological information is important for reducing uncertainty in groundwater models that 

simulate flux-dependent processes, such as groundwater recharge to discharge 

pathways. 

There are several examples in literature that provide recommendations for 

geologic model development specific to glacial environments. Kearsey et al. (2015) 

concluded that geologic models based on stratigraphy simplify the highly heterolithic 
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nature of glacial deposits and do not account for small scale lithological variability. They 

found that lithologies in boreholes were only predicted about 50% of the time and minor 

lithologies were found to represent a significant portion of the total volume of 

stratigraphic units delineated based on dominant lithology. Therefore, a lithofacies-based 

approach was advocated instead of stratigraphic layers for geologic modelling, 

especially in complex, heterogeneous deposits where it can be difficult to locate 

stratigraphic boundaries. The use of a more regular dataset and a finer grid was also 

recommended to improve prediction performance. Similarly, the 3D geologic model 

constructed by Jørgensen et al. (2015) used a combination of manual and stochastic 

methods to represent subsurface heterogeneity. Integration of the different methods into 

one 3D geologic model was identified as a major challenge.  

While there are challenges and limitations associated with all sources of geologic 

data, the integration of spatially continuous or profile sources of information is important 

to understanding complex geologic structure (Frind et al,. 2014). Material descriptions of 

lithology (e.g. borehole log) provide the necessary vertical coverage but are likely 

insufficient for lateral characterization of important subsurface features such as buried 

bedrock valleys and buried stream channels (Cummings et al., 2012; Jørgensen et al,. 

2015). Therefore, borehole logs are increasingly being supplemented with outcrop 

information and soft data (e.g. geophysical data) to construct comprehensive 3D 

geological models for groundwater applications (Koch et al., 2014; Pirot, 2017; Meyer et 

al., 2018; Morgan, 2018). 

Borehole logs from public well records contain large amounts of textual data that 

can be used to classify similar materials and provide qualitative information about the 

subsurface. Examples in literature commonly complete this classification task using 

semi-automated methods that apply conditional rules based on expert knowledge 

(Russell et al., 1998; Allen et al., 2008; and Bayless et al., 2017). More recently, Natural 

Language Processing (NLP) techniques have been used in geoscience applications to 

explore geologic lexicon so that material classification is more automated and less 

subjective (Padarian and Fuentes, 2019; Fuentes et al., 2020). NLP is used in various 

fields of science that deal with textual descriptions of reality to provide a statistical 

approach to understanding language. Word counts and the occurrence of word 

combinations are examples of statistical outputs. These NLP techniques can be 

incorporated to provide justification where needed to reduce subjectivity. Statistical 
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results can also be used to understand uncertainty associated with the classification of 

material descriptions. Fuentes et al. (2020) provide one of the first geoscience 

applications where a numerical representation of textual data (word embedding) from 

borehole logs is used to spatially predict lithology using machine learning and 2.5D 

interpolation approach. However, the use of textual data to predict complex subsurface 

conditions directly in 3D was not found in literature.  

1.2.2. Machine Learning 

Although the popularity of machine learning is typically associated with artificial 

intelligence, it is commonly applied for hydrogeologic purposes. Nearest Neighbors and 

kriging are examples of algorithms that could be considered within the machine learning 

toolbox. While most machine learning applications in geoscience have focused on 

numerical data from geophysical methods (Cracknell and Reading, 2013; Baykan and 

Yilmaz, 2010), machine learning can also be used to solve classification problems using 

categorical data. Artificial neural network (ANN) is a widely used machine learning 

algorithm inspired by biological neural networks invented in the 1950s that can be used 

to solve classification problems. ANNs are nonparametric models trained to identify 

hidden patterns and structures without any assumptions on the data distribution. ANNs 

are suitable for geoscience applications because they can model complex nonlinear 

dependencies, are adaptive for managing nonstationary data, and allow the integration 

of contextual information (Kanevski et al., 2009). 

There are limited studies that explore the use of ANNs to solve multi-class 

classification problems related to hydrogeology applications. Multi-class classification 

is a subset of classification problems where more than two classes (e.g. labels or 

categories) exist but only one can be predicted for each instance. Rizzo and Doughtery 

(1994) use ANN to characterize the 2D distribution of hydraulic conductivity based on 

three classes (low, medium, and high). ANN also proved to be a useful methodology for 

a basin-wide study characterizing complex and heterogenous lithology with a multi-

layered aquifer system at the borehole level (Sahoo and Jha, 2017). The ANNs in the 

aforementioned studies included self-organizing map (SOM) and multilayer 

perceptron (MLP).  
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Self-Organizing Maps 

SOMs are a single-layer feedforward neural network used to produce a low 

dimensional representation of a dataset with a high dimensional space or multiple 

features (e.g. multiple inputs to describe each sample). SOMs have been combined with 

MLP to enhance pattern recognition in hydrogeologic applications (Rizzo and Doughtery, 

1994; Sahoo and Jha, 2017). The SOM architecture is a fixed 2D grid (e.g. rectangular 

or hexagonal) of neurons referred to as a Kohonen map (Figure 1.1).  

  

Figure 1.1  Self-Organizing Map (SOM) conceptual architecture showing the 
input layer and a rectangular 2D grid (Kohonen Map). Every neuron 
of the input layer is connected to the neurons of the 2D grid by a 
weight.   

Every neuron on the map is connected to each node of the input layer with an 

initial weight randomly assigned. The weight is represented as a vector with the same 

dimensionality as the feature space of the input layer. SOM uses unsupervised 

learning, meaning that no prior knowledge is used to train the network. Training occurs 

in two stages using competitive and cooperative learning processes. For each record, 

the algorithm first tries to find the neuron on the map that is closest based on distance 

(e.g. Euclidian) using the input features and the initial weights (Equation (1)). This is the 

competitive step of the algorithm where the winning neuron becomes the ‘best-matching-

unit’ (BMU). The weights of the BMU are updated to be closer to the record. Next, the 

cooperative process of the algorithm takes place where the weights of the neurons near 

the BMU (its neighborhood) are also updated using a neighborhood function (e.g. 
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Gaussian) to be closer to the record as a smoothing step. After all the records have 

been used to update the weights, the learning rate and neighborhood size are 

decreased.  

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √∑(𝑋𝑖 − 𝑊𝑖)2

𝑗

𝑖=0

  

 

(1) 

The above process for the SOM is repeated based on the specified number of 

iterations. At first, the neighborhood function is broad and self-organization takes place 

at the global scale with large adjustments in weights. At the end, the neighborhood 

function shrinks to include fewer neurons and smaller adjustments in weights. SOM is 

similar to k-means clustering but instead of centroids moving to fit the data, the data 

moves to centroids that are constrained at neuron locations on the map 

(SuperDataScience, 2018). The resultant mapping provides input data that is assigned 

to a node and the coordinates of the node are used instead of the original features to 

reduce dimensionality and cluster data.  

Multilayer perceptron (MLP) 

MLP is a traditional ANN commonly referenced in the reviewed literature and can 

be used for multi-class classification tasks. The architecture of a MLP consists of an 

input layer, an output layer, and one or more hidden layers (Figure 1-1). Data flows in a 

forward direction from input to output (e.g. feedforward neural network). Every node in 

one layer is connected to every node in the next layer, resulting in a fully connected 

network. The input layer is the first layer and the number of nodes equals the input 

features (X1 to Xj). For example, the input layer would have three nodes if the input 

features are based on geographical coordinates (e.g. northing, easting, elevation). The 

last layer is the output layer and the number of nodes equals the network outputs (Y). 

For multi-class classification, the output layer uses the softmax function to produce a 

vector of values that sum to 1.0 representing the probabilities of each label. The label 

with the highest probability is assigned as the predicted label.  
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Figure 1.2  Multilayer Perceptron (MLP) conceptual architecture showing input 
layer, hidden layer(s), and output layer. Every node in one layer is 
connected to every node in the next layer to form a fully connected 
network. The inset shows a neuron from the hidden layer and how it 
acts as a computational unit (see Equation 1).   

The layers between the input layer and output layer are known as the hidden layers. 

There can be one or multiple hidden layers that have the same or a different number of 

nodes. Each node in the hidden layer(s) is a neuron that functions as a computational 

unit. It takes the sum of the weighted input values, adds a bias (b), and passes it through 

an activation function (see inset of Figure 1.2 and Equation 2; Kanevski et al., 2009).  

𝜑 (∑ 𝜔𝑖𝑥𝑖 + 𝑏

𝑗

𝑖=1

)  

 

(2) 

where:  𝜑  is the nonlinear activation function 

 𝑤𝑖  are the weights     

 𝑥𝑖  are the inputs to the neuron  

𝑏  is the bias 
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Activation functions are assigned to the hidden and output layers. For the 

hidden layer, the activation function transforms the summation and bias term into some 

form that can be used as input for the next layer. This is needed to control the amplitude 

of the output of the neuron (Kanevski et al., 2009) and to add non-linearity (higher 

degree of complexity) to the neural network (Jain, 2019). The output layer receives the 

values from the last hidden layer and transforms them into output values. For multi-class 

classification, Softmax is used as the activation function to convert inputs from the last 

hidden layer into a vector containing the probabilities that the sample belongs to each 

class. The output is the class with the highest probability.   

The MLP must be trained before it can be used for predictions. This process 

requires data preparation (splitting, scaling), selection of hyperparameters, training, and 

testing. Data preparation first requires splitting the data into training and testing subsets. 

The training subset is used to establish the hyperparameters and weights of the MLP for 

the training model. A testing subset is withheld from training to evaluate the 

performance of the training model on predicting unseen data. MLP is sensitive to feature 

scaling (Buitinck et al., 2013), therefore input features should be scaled to have the 

same level of magnitude. The most common feature scaling techniques include 

normalization (transform data to range between 0 and 1) and standardization (transform 

data to have a zero mean and standard deviation of 1).  

Hyperparameters are parameters that must be specified to configure the MLP 

model and whose value can not be estimated by the algorithm (Brownlee, 2020b) (e.g. 

number of hidden layers and neurons, iterations). There are often general heuristics or 

rules of thumb for configuring hyperparameters. Optimization methods can also be used 

to determine the combination of hyperparameters that achieves the best performance on 

a given dataset.     

MLP uses supervised learning for training. Supervised learning means prior 

knowledge of what the network outputs should be for a given set of input features (e.g. 

existing lithology units at specific coordinates) is used to adjust weights. For multi-class 

classification tasks, this means that data points with known classes are used to establish 

the weights connecting the neurons in the network. One round of updating the weights 

using the entire training dataset is called an epoch.  
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 Backward error propagation (back-propagation) is used by MLP as the 

supervised learning method to train the network. For multi-class classification, back-

propagation is designed to iteratively minimize the error measured between the actual 

output of the neural network and the desired output. This is termed the loss function 

but can also be called cost function or error function. The initial weights are randomly 

assigned and then updated iteratively as training data is processed through the MLP. 

After each epoch, the output of the network is compared to the expected value and an 

error is calculated. This error is then propagated back through the network and the 

weights are adjusted based on the amount that they contribute to the error. Training is 

essentially adjusting weights to minimize a loss function and ‘learning’ occurs as long as 

the loss function changes.  

Log-loss or cross-entropy is the default loss function used for multi-class 

classification (Brownlee, 2020d). Log-loss is closely related to entropy but represents 

how close the probability estimate is to the predicted class. It is calculated by taking the 

negative log of the probability estimate for the predicted class. The result is a positive 

number with zero indicating the most certainty. Higher entropy values indicate more 

uncertainty and occur when probability estimates are lower. These values can be 

summed and divided by the number of observations to get the log-loss (see Equation 2; 

Buitinck et al., 2013). 

log loss =  −
1

𝑁
∑(log(𝑃𝑖))

𝑁

𝑖=1

 

 

 

(3) 

Where:  𝑖  is the label of the observation   

𝑃(𝑖)  is the probability estimate of the label (e.g. HGU)  

𝑁  number of observations 

 

Once the training model has been validated and tested, then all data is scaled 

and used to establish the final weights of the predictive model. The scaling 

transformation becomes part of the predictive model since the same data preparation 

methods are required prior to running the predictive model. Further evaluation of the 
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predictive model is not required since the generalization capability of the modelling 

approach is determined during the final evaluation of the training model with the testing 

data.  

1.2.3. Uncertainty Assessment in Geologic Models 

Recent studies have recognized the importance of using automated, stochastic 

methods to develop geologic models for glacial depositional environments to account for 

complexity and to evaluate uncertainty (Refsgaard et al., 2012; Koch et al., 2014; 

Jørgensen et al., 2015; Toth et al., 2016). Stochastic is an adjective typically associated 

with randomness or probability. Both MLP and SOM are deterministic once the weights 

and the structure are fixed, and the algorithms are used to make predictions. However, 

randomness is part of training. Examples include random initialization of weights, the 

use of a stochastic gradient descent to optimize weights, the order of observations, or 

some chaotic behaviour due to nonlinearities (Brownlee, 2019b). Randomness during 

the process of training has the effect of fitting a different training model each time the 

algorithm is run on the same data. There are tactics to control randomness when training 

ANNs, such as defining a seed number so that the same sequence of random numbers 

is generated to improve reproducibility during training. There is also potential to take 

advantage of the stochastic nature of training ANNs to generate multiple geologic 

models although this is not explicitly explored in this thesis.  

1.3. Purpose and Objectives 

There is a need to effectively reproduce subsurface geologic complexity 

associated with glacial environments that can be used in groundwater models to support 

water resource management. The main purpose of this thesis is to develop a workflow to 

evaluate the performance of MLP on predicting hydrogeologic units (HGUs) for a region 

with complex glacial deposits. HGUs are proposed instead of stratigraphic units to better 

represent subsurface heterogeneity. There are limited examples in literature that use 

MLP to solve multi-class classification for geologic modelling of complex glacial deposits; 

therefore, this study evaluates different data selection alternatives and how this impacts 

the training and prediction capabilities of MLP. Research objectives include the following 

to address the purpose of this study: 
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• Advance semi-automated methods for standardizing material descriptions 

from borehole logs into HGUs by incorporating NLP techniques to provide 

a statistical approach to understanding geologic lexicon so that 

subjectivity is reduced, and uncertainty is better understood.  

• Evaluate the feasibility of using MLP to predict HGUs using three data 

selection alternatives. This includes development of three workflows to 

process HGUs for geologic modelling purposes. Data preparation, tuning 

hyperparameters, and training/testing the MLP for each alternative is also 

required. 

• Verify results by considering alternative analytical techniques, geologic 

cross-sections from independent studies, and hydrogeologic indicators 

within the region (e.g. artesian conditions).  

This study explores the feasibility of using machine learning to interpret glacial 

deposits in the subsurface. Using MLP to create a geologic model has several 

advantages compared to more traditional interpolation methods in geoscience 

applications including the following: 

• the capability of predicting HGUs (e.g. categorical data) based on training 

data derived from borehole logs which is typically the most abundant 

source of subsurface data for water resource applications (Russell et al. 

2013);  

• a 3D block-model approach can be applied to better represent geologic 

complexity instead of presenting the subsurface as a layered system;  

• the stochastic nature of training MLP allows for multiple-geologic 

realizations that can be used to understand uncertainty; and  

• MLP can be implemented using open-source resources with output files 

compatible with groundwater modelling software (e.g. MODFLOW). 
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1.4. Study Area 

1.4.1. Location 

The regional basin containing the Fraser Lowland in the southwest corner British 

Columbia, Canada and the northeast portion of Whatcom County, Washington, United 

States (Figure 1.3) was selected as the study area (herein referred to as Fraser-

Whatcom Basin or study area). The study area was selected because aquifers exist 

within a complex sequence of glaciated materials (Halstead, 1986; Vaccaro et al., 1998). 

Recent groundwater licensing and stronger protection for ecosystems mandated under 

the Water Sustainability Act (SBC 2014, c 15) as well as more holistic approaches for 

land-use planning are also driving the need to better understand glacial aquifer systems 

within British Columbia.  

The Fraser-Whatcom Basin covers an area of approximately 670 square 

kilometres (km2). It includes gently rolling and flat-topped uplands (e.g. between 20 to 

175 metres above sea level, masl) separated by wide, flat-bottomed lowlands (below 20 

masl) bounded by mountainous terrain (e.g. greater than 175 masl) and the Strait of 

Georgia (Figure 1.3) (Halstead, 1986). Drainage is directed towards the Fraser and 

Nooksack rivers as well as local river systems (e.g. Nicomekl River, Serpentine River, 

Campbell River) that discharge directly to the sea.  

The glacial deposits within the Fraser-Whatcom Basin have been well-studied. 

Historical investigations have been completed to advance the understanding of surficial 

deposits (Armstrong, 1977, 1976; Armstrong and Hicock, 1979, 1980; Armstrong, 1984; 

Washington Division of Geology and Earth Resources 2016), stratigraphic units 

(Easterbrook, 1963; Clague, 1976, 1986, 1989, 1991; Armstrong 1981; Clague and 

Luternauer, 1983b; Easterbrook, 1986; Cameron, 1989; Hamilton and Ricketts, 1994; 

Jones, 1999; Ward and Thomson, 2004; Eungar, 2014, Riedel, 2017), and groundwater 

resources (Halstead, 1986; Vaccaro et al., 1998; Ricketts, 2000; Scibek and Allen, 2006; 

Simpson, 2012; Bayless et al., 2017; Haj et al., 2018, Yager et al., 2019). Studies have 

been completed by national, provincial and municipal levels of government as well as by 

academic institutions and consultants.  
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Figure 1.3  Fraser-Whatcom Basin location, topographical areas, and major 
drainage features. Source: Freshwater Atlas (BC) and National 
Hydrography Dataset 24k (Washington State) Digital Elevation Model 
(see Section 2.4.1). 

The complex distribution of Quaternary sediments and the discontinuous nature 

of glacial units has resulted in a complex stratigraphic pattern. Geology is well mapped 

at the land surface but is generally less understood in the subsurface. Groundwater 

models have been developed for several municipalities that include geologic 

interpretations of the subsurface (Golder, 1997, 2005; Scibek and Allen, 2006; Advisian, 

2018). Simpson (2012) developed one of the largest groundwater models for the region 

that focused on the central portion of the Fraser-Whatcom Basin. However, geology at 

the basin-scale has never been available to inform boundary conditions and to provide a 

greater understanding of groundwater flow. 

This study is not intended as an exhaustive and detailed review of glacial 

sediments in the Fraser-Whatcom Basin. Some parts of the basin have limited 

subsurface data to support interpretations. However, a basin-wide perspective was used 

to allow an initial conceptualization based on a range of data densities. This may allow 

perspective on similarities and differences in distinct parts of the study area or 

conceptualization of how smaller, local deposits fit within the greater system. 
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1.4.2. Quaternary History 

Multiple glaciations, fluctuations in sea level, and isostatic adjustments have 

contributed to the complex distribution of Quaternary deposits in the Fraser-Whatcom 

Basin. The stratigraphic framework is primarily based on Pleistocene deposits 

associated with the last glaciation (Fraser Glaciation) that started approximately 25 

thousand years before present (ka 14C BP, based on radiocarbon dating) and post-

glacial deposits from the Holocene beginning approximately 10 ka 14C BP (Figure 1.5, 

Figure 1.5). Quaternary deposits generally consist of nonglacial sediments and one to 

four regional drift sequences associated with repeated growth and decay of the 

Cordilleran ice sheet during the Fraser Glaciation as described below. 

 

Figure 1.4  Stratigraphic units for the Fraser-Whatcom Basin modified from 
Jones, 1999 (Figure 6A) and Ward and Thomson, 2004 (Fig. 2). 
Equivalent naming convention used in the United States are 
indicated in brackets.  
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Figure 1.5  Stratigraphic units within the Fraser-Whatcom Basin modified from 
surficial mapping (Armstrong, 1976; Armstrong and Hicock, 1979, 
1980; Armstrong, 1977; Washington Division of Geology and Earth 
Resources, 2016).  

During the beginning of the Fraser Glaciation (approximately 26 to 22 ka 14C BP), 

advancing outlet glaciers from the Cordilleran Ice Sheet flowing onto the coastal 

lowlands and down the Georgia Strait led to the deposition of thick, proglacial outwash 

called Quadra Sand (equivalent to Esperance Sand in the US). Quadra Sand consists of 

horizontally and cross-stratified, well sorted sand with minor silt and gravel (Clague, 

1976). It is typically underlain by fluvial and marine sediments from the preceding 

Olympia nonglacial interval and overlain by glacial sediments from the Fraser Glaciation. 

It occurs below sea level but can also be found at elevations up to 100 masl as remnants 

of a formerly more extensive deposit that has been eroded by meltwater and glacial 

scour. Based on surficial mapping, Quadra Sand has been identified along the bottom 

slope of several upland areas (e.g. Vancouver Upland, Surrey Upland, White Rock 

Upland) but it is typically not exposed at the surface.  

The Coquitlam Stade (equivalent to Evans Stade in the US) is associated with a 

climatic episode that occurred early in the Fraser Glaciation (21.3 to 18.7 ka 14C BP). 

Glaciers from the Northshore mountains to the Pitt River valley flowed towards the 
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Fraser Lowland and coalesced with ice from the Strait of Georgia (Ward and Thomson, 

2004). This early glacial advance only affected the northwest portion of the Fraser-

Whatcom Basin and did not reach the Canadian-United States border. Glaciers of the 

Coquitlam Stade retreated and a nonglacial interval called the Port Moody Interstade 

occurred between 18.7 to 17.7 ka 14C BP (Hicock and Armstrong, 1985; Hicock et al., 

1999). Known deposits from the Coquitlam Stade and Port Moody Interstade are limited 

to the Pitt River Valley, Coquitlam River Valley, and in the Port Moody area.   

By 17 ka 14C BP, the Cordilleran Ice Sheet re-advanced as part of the Vashon 

Stade. The Vashon Stade was the most extensive glacier advance of the Fraser 

Glaciation. Glaciers from the southern Coast Mountains coalesced with glaciers from the 

Vancouver Island Ranges to produce two piedmont lobes. The Juan de Fuca lobe 

flowed west terminating on the continental shelf and blocked the Strait of Juan de Fuca. 

The larger Puget lobe flowed south into the North Cascade Range or terminated against 

the Olympic Mountains along the coastal lowland. Glaciers flowed along mountain fronts, 

impounding rivers and creating lakes in many of the mountain valleys (Thorson, 1980; 

Hicock and Lian, 1999). At the Vashon stadial maximum (~14.5 ka 14C BP), the Fraser 

Lowland was completed covered by ice more than 1.5 km thick (Clague et al., 1997). 

Isostatic depression of the land mass occurred from the weight of the ice sheet. 

The climate warmed after the glacial maximum, resulting in deglaciation of the 

Cordilleran ice sheet primarily by frontal retreat and downwasting (Armstrong, 1957). 

Once the Juan de Fuca lobe retreated and the Puget lobe thinned sufficiently to the 

north, marine waters inundated the Fraser Lowland and resulted in a calving embayment 

that induced rapid ablation of the glacier. Capilano sediments were deposited along the 

northwestern Fraser-Whatcom Basin during this period. This includes glaciomarine silt 

and clay containing stones dropped from melting icebergs and fossil shells. Large sand 

and gravel deltas formed at the mouths of many mountain valleys with major rivers that 

functioned as massive outwash channels.  

Glacier retreat slowed and the ice margin stabilized in the central Fraser-

Whatcom Basin where thick glaciomarine sediments were deposited (Clague et al., 

1997). Ice from the Coast Mountains and BC interior continued to flow but was restricted 

to existing fjords and along the central Fraser Lowland. The glacier that persisted in the 

Fraser Lowland became land-based as isostatic rebound of the terrain started to occur 
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(Clague et al., 1997). This led to initial development of drainage networks on the 

emerged terrain while the sea level occupied the lower reaches of many of the 

paleovalleys (Kovanen, 2002).  

At least four advances occurred during the Sumas Stade (14.5 to 11 ka BP). The 

most significant advance extended the glacier to the southwest across the Fraser 

Lowland and into deglaciated mountain valleys, blocking natural drainages (e.g. 

Chilliwack Valley) (Kovanen and Easterbrook, 2002). Interbedded glaciomarine and 

glacial sediments deposited in the central portion of the Fraser-Whatcom Basin are 

included in the Fort Langley Formation. Sumas till was deposited on top of glaciomarine 

sediments up to an elevation of 120 masl (Mathews et al., 1970). Sumas drift includes 

morainal and glaciofluvial (raised deltas, outwash floodplains) deposits related to the ice 

front itself or from deglaciation. This includes the formation of the Campbell River delta 

and lowland meltwater channel occupied by the modern Campbell River (Armstrong, 

1981; Clague and Luternauer, 1983a).  

The glacier retreated from the area by 10 ka 14C BP (Armstrong 1981). Isostatic 

rebound of the land mass and sea level rise continued during the final retreat. Non-

glacial sediments were redistributed by marine, fluvial, mass movement and aeolian 

processes. Aggradation of the floodplains and major deltas of the Fraser and Nooksack 

occurred and continues today. Peat accumulated in poorly drained areas in surface 

depressions or valley bottoms (e.g. Burns Bog, Nooksack floodplain). By 2 ka 14C BP, 

the modern coastline position and sedimentary conditions were established (Clague, 

1998). 

1.5. Scope of Work 

The scope of work for this study is outlined in Figure 1.6. It includes development 

of a geologic database, standardization of material descriptions from borehole lithology 

logs as HGUs, and creation of a 3D mesh for the study area. The geologic database 

includes information from well records and surficial geology mapping from both Canada 

and the United States. Material descriptions from borehole lithology logs are 

standardized using soil classification guidelines and incorporating NLP techniques to 

build on the semi-automated approach previously developed for the area (Allen et al., 

2008). A mesh is required to facilitate processing of HGUs and to visualize results. It 
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provides a 3D representation of the study area, including a digital elevation model 

(DEM), that can be used to extract information (e.g. cell index, cell centroid coordinates) 

and to assign attributes.  

The geologic database, HGUs, and mesh are used to develop three data 

selection alternatives for MLP training. Geologic realizations of the Fraser-Whatcom 

Basin are created using the MLP predictive model developed from each alternative. The 

geologic realizations are compared and the best outcome verified to further evaluate the 

performance of MLP at interpreting the distribution of glacial deposits. The methodology 

for each task is described further in Chapter 2. 

 

 

 

 

 

 

 

 

 

Figure 1.6  Overview of scope of work. The first steps include development of a 
geologic database, material description standardization and mesh 
generation. This information is used to generate three data selection 
alternatives to develop the MLP algorithm with the best outcome 
verified to further evaluate MLP performance. 
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1.6. Thesis Organization 

This thesis is organized into the following chapters: 

Chapter 1: Introduction – This section presents the purpose, objectives, and 

scope of work based on a review of literature. A description of the study area and its 

glacial history is also presented.  

Chapter 2: Methodology – The methods used to complete the scope of work are 

presented including a description of software, development of the geology data, material 

description standardization, mesh generation, data selection, MLP training including 

performance metrics, and the verification approach. 

Chapter 3: Geologic Model Results – The results of the MLP modelling using the 

three data selection alternatives are presented and compared to determine the best 

geologic realization for further verification. 

Chapter 4: Verification Against Subsurface Interpretations and Hydraulic 

Indicators – The best geologic realization is verified against alternative analytical 

techniques (k-nearest neighbour), subsurface interpretations from independent studies, 

and hydraulic indicators for the region.  

Chapter 5: Conclusions and Recommendations – Conclusions related to the 

feasibility of using MLP to interpret complex glacial deposits in the subsurface are 

provided. This chapter also includes recommendations for future research. 
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Chapter 2.  
 
Methodology 

2.1. Software 

Open source resources were 

primarily used to undertake the study 

(Figure 2.1). The various packages were 

accessed in Jupyter notebooks (Kluyver et 

al. 2016) using python programming 

language with final visualization of results 

using Paraview. Jupyter notebooks 

facilitates interactive computing that 

captures development, documentation, 

execution of code, and visualization of 

results under one software platform. 

ArcGIS Desktop (Version 10.7) was also 

used to process geospatial data as 

needed.  

 

Figure 2.1 Open Source Resources. 

Python packages include a collection of related modules that contain code to 

execute computing tasks. Packages facilitate modular programming which allows 

breaking-up a large programming task into separate, smaller, more manageable 

subtasks. The packages also provide access to code that can be easily reused, thus 

reducing coding effort. Key packages used in this study include the following: 

GeoPandas (v. 0.8.1) (Jordahl, 2020), Matplotlib (v. 3.3.4) (Hunter, 2007), NLTK (v. 3.5) 

(Bird, 2009), NumPy (v. 1.19.4) (Harris et al., 2020), Pandas (v. 1.2.2) (Pandas 

Development Team, 2020), Pyvista (v. 0.27.2)) (Sullivan and Kaszynksi, 2019), Scikit 

Learn (v. 1.0.1) (Pedregosa et al., 2011; Buitinck et al., 2013), Minisom (v. 2.3.0) 

(Vettigli, 2018), and Hyperopt (v. 0.2.5) (Bergstra, 2013). These packages are used for 

data processing, graph and table preparation, mesh generation, and algorithm 

development.  
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Paraview (v. 5.9.0) (Paraview Developers, 2022) was used for analysis and 3D 

visualization of the geologic realizations. Paraview is an open-source, multi-platform 

data analysis and visualization application developed to analyze large datasets. 

2.2. Geologic Database 

2.2.1. Data Sources 

Data sources used to compile the geologic database include borehole data and 

surficial mapping. A summary of the borehole and surficial geology mapping data 

sources is provided below. 

Borehole Data 

Borehole data sources include publicly available data collections managed by 

government agencies in both British Columbia and Washington State (Table 2.1). 

Available borehole data varies in size, spatial density, completeness, accuracy and 

format. Borehole data was collected using different drilling equipment with different aims 

and objectives by individuals with various levels of geologic training.  

Canadian data sources include legacy oil and gas wells from the British 

Columbia Oil and Gas Commission (BCOGC), borehole log information collected by the 

Environmental Management Branch (EMB) of the British Columbia Ministry of 

Environment and Climate Change Strategy (BCMEC), and water well records compiled 

by BCMEC. Legacy oil and gas wells in British Columbia (BCOGC) were searched using 

the Well Authority Number to find lithology data in the BCOGC eLibrary. EMB collects a 

representative borehole (BCBH) submitted by a third party for sites that have applied for 

a regulatory instrument under the Contaminated Sites Regulation (B.C. Reg. 375/96 

O.C. 1480/96). Water well records from BCMEC include wells that have been voluntarily 

registered (wells constructed prior to 2005) and wells required to submit well reports 

under the BC Groundwater Protection Regulation (B.C. Reg. 39/2016 O.C. 113/2016). 

Water well records were accessed using the GWELLS data repository.   

American data sources include legacy oil and gas wells compiled by the Washington 

Geological Survey (WGS), a subsurface database managed by the WGS, and well 

records accessed through the Washington State Department of Ecology (WAECY). 
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Table 2.1  Borehole data sources. 

Agency Application/ 
Product 

Acronym Original file 
format of 
Well Collar 

Original file 
format of 
Lithology 

Hyperlink 

British Columbia Environmental 
Management Branch (EMB)  

Borehole Log 
Lithology  

BCBH Shapefile Shapefile https://catalogue.data.gov.bc.ca/dataset/borehole-
log-lithology-public-view accessed August 2021 

British Columbia Oil & Gas Commission 
(BCOGC)  

 

eLibrary 

 

BCOG Shapefile PDF or image https://catalogue.data.gov.bc.ca/dataset/well-
bottom-hole-event  accessed January 2019 

https://www.bcogc.ca/energy-professionals/online-
systems/elibrary/ accessed June 2021 

British Columbia Ministry of 
Environment and Climate Change 
Strategy (BCMEC) 

GWELLS BCWR Tabulated Tabulated https://apps.nrs.gov.bc.ca/gwells/ accessed April 
2021 

Washington Geological Survey (WGS) 

 

Oil and Gas 
Wells 

WSOG Shapefile PDF http://www.dnr.wa.gov/publications/ger_portal_oil_gas_w
ells.zip accessed August 2018 

Washington Geological Survey  

 

Subsurface 
Database 

WSSD Shapefile 

 

Tabulated https://www.dnr.wa.gov/programs-and-
services/geology/publications-and-data/gis-data-
and-databases accessed June 2018 

Washington State Department of 
Ecology (WAECY) 

 

Well Log 
Viewer 

WSWR Shapefile 

 

PDF or image https://appswr.ecology.wa.gov/wellconstruction/map
/WCLSWebMap/default.aspx accessed August 
2020 

 

https://catalogue.data.gov.bc.ca/dataset/borehole-log-lithology-public-view
https://catalogue.data.gov.bc.ca/dataset/borehole-log-lithology-public-view
https://catalogue.data.gov.bc.ca/dataset/well-bottom-hole-event
https://catalogue.data.gov.bc.ca/dataset/well-bottom-hole-event
https://www.bcogc.ca/energy-professionals/online-systems/elibrary/
https://www.bcogc.ca/energy-professionals/online-systems/elibrary/
https://apps.nrs.gov.bc.ca/gwells/
http://www.dnr.wa.gov/publications/ger_portal_oil_gas_wells.zip
http://www.dnr.wa.gov/publications/ger_portal_oil_gas_wells.zip
https://www.dnr.wa.gov/programs-and-services/geology/publications-and-data/gis-data-and-databases
https://www.dnr.wa.gov/programs-and-services/geology/publications-and-data/gis-data-and-databases
https://www.dnr.wa.gov/programs-and-services/geology/publications-and-data/gis-data-and-databases
https://appswr.ecology.wa.gov/wellconstruction/map/WCLSWebMap/default.aspx
https://appswr.ecology.wa.gov/wellconstruction/map/WCLSWebMap/default.aspx


23 

Legacy oil and gas well data in Washington State (WSOG) were reviewed but 

interpretations of geophysical logs were not available or the documentation on file did 

not provide lithology information. The Washington State subsurface database (WSSD) is 

a compilation of data from various agencies (e.g. Washington State Departments of 

Transportation and Health, United States Geological Survey (USGS), local county and 

city governments, geotechnical firms) with a location precision of 30 m or better 

(Eungard, 2014). WAECY provides access to well records (WSWR) via a well log viewer 

application. Well records are centred within a section of the surveyed land system and 

do not represent the physical location of the well; actual locations differ by up to 300 m 

(Eungard, 2014). As such, multiple well reports from various wells can exist at the same 

location. Each well has a unique well tag ID that was used to search for lithology logs 

that were manually entered in the subsurface database.  

Well records have been recognized as valuable data sets for regional studies 

despite their known data limitations (Russell et al., 1998; Allen et al., 2008; Arihood, 

2009; Bayless et al., 2017). An understanding of data limitations is important to extract 

and standardize data in a manner that provides meaningful information (Russell et al., 

1998). Common issues include inaccurate well locations, data duplication, variable 

sample collection methods and competency of logger that can influence the accuracy 

and detail of lithologic descriptions, vertical sampling bias (only drill until aquifer 

material/water is encountered), errors with data entry, and inconsistent geologic 

terminology. These databases are also continuously evolving with changes to format, 

reporting requirements, and/or submission methods over time.  

Surficial Geology Mapping 

Surficial geology mapping was used to improve the lateral distribution of HGUs at the 

surface where no boreholes exist and to provide additional horizontal/vertical delineation 

of bedrock where outcrops have been mapped. Digital surficial geology mapping 

published by the Geological Survey of Canada (GSC) (Dunn and Ricketts, 1994) and the 

Washington Division of Geology and Earth Resources (2016) were used. These data 

sources were converted to shapefile format and re-projected to NAD 1983 UTM zone 10. 

Manual addition of missing map unit labels was done based on comparison with original 

GSC maps. The re-projected data sources were combined and further processed to 
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remove map boundaries by merging adjacent polygons with common attributes, resulting 

in a total of approximately 1,500 polygons.  

2.2.2. Well Data 

General well details were compiled to form part of a relational database that links 

to lithology data. Data was processed to include the attributes summarized in Table 2.2 

for wells within the study area. Data formats, coordinate systems, and units of 

measurement were standardized. Wells without lithology or with lithology errors (see 

Section 2.2.3) were removed from the dataset. Screen interval data is not included given 

limited data availability.  

Table 2.2  Well attributes. 

Attribute Unit/Data Type Description 

Unique identification1 - Combination of source and original identification 

Source Categorical BCOG, BCBH, BCWR, WSSD, WSWR. See Table 
2.1 for an explanation of the source abbreviations.   

Original identification - Unique identifier in the original dataset 

Well type Categorical Other (OTHER) 

Canadian - Oil and gas (OG), environmental 
(ENV), domestic (DOM), irrigation (IRR), drinking 
water system (DWS), commercial (COM), test well 
(TST), closed-loop geoexchange (OP_LP_GEO), 
BC Observation Well (OBS) 

USA – water (W), resource protection (R), 
decommissioning (D) 

X m Easting, UTMNAD83 Zone 10                                                                     

Y m Northing, UTMNAD83 Zone 10                                                                     

Ground surface elevation masl Extracted from digital elevation model  

Construction date YYYY-MM-DD Well construction date 

Status  New, Alteration, Abandoned, Closure, Other 

Lithology depth mbgs Maximum lithology depth  

Water level mbgs Water level typically recorded after well 
construction  

Artesian conditions True/False  

Notes: 
1) Required since unique identifiers were duplicated when the data sources were merged. 
masl – metres above sea level 
mbgs – metres below ground surface 
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Additional processing of well data was required for the BCBH and WSWR 

datasets. BCBH is formatted such that well details are repeated for each interval of 

lithology data. Well details were separated from the lithology data and grouped to 

provide a unique dataset for each well. 

WSWR also required additional processing since multiple well reports from 

multiple wells can exist at a given location (Eungard, 2014). To improve efficiency, the 

well report having the deepest depth within a one (1) km grid spacing was selected for 

manual entry of lithology data. As such, the density of subsurface information in United 

States portion of the study area is much lower compared to the Canadian portion. The 

coordinates provided in the database (e.g. center coordinates of the section within the 

surveyed land system) were used instead of the physical location of the well.  

The resultant well locations are shown in Figure 2.2 with a summary of data 

counts grouped by source provided in Table 2.3. Most lithology data are provided from 

BCWR. Boxplots showing well depth (based on the maximum lithology depth) for each 

data source are shown in Figure 2.3. BCOG wells provide the deepest subsurface 

information but there are only 12 wells within the dataset. BCBH and WSSD locations 

are relatively shallow (<20 mbgs) while both BCWR and WSWR have subsurface 

information that is generally less than 100 m deep. 

Table 2.3  Well data key attribute counts. 

Data Source Well Date Water Level Artesian Well 

BCBH 780 780 460 0 

BCOG1  12 12 0 0 

BCWR 12,323 9,907 9,192 600 

WSSD 24 24 0 0 

WSWR 780 721 28 1 

Note: See Table 2.1 for an explanation of the source abbreviations. Excludes wells without lithology or flagged as 
having lithology errors. 
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Figure 2.2  Well locations based on data source. Excludes wells without 
lithology or flagged as having lithology errors. The majority of the 
artesian wells are located in the Nicomekl-Serpentine river valleys. 
See Table 2.1 for an explanation of the source abbreviations. 

 

Figure 2.3  Boxplot of well depth. See Table 2.1 for an explanation of the source 
abbreviations. 
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2.2.3. Lithology Data 

The lithology table provides interval data of material descriptions and 

hydrogeologic properties. Material descriptions describe the physical nature and state of 

the subsurface at discrete intervals during borehole drilling. Data was processed to 

include the attributes summarized in Table 2.4 for wells screened within the study area. 

Lithology processing steps included compiling lithology from different data sources, 

converting measurement units, combining data sources, cleaning interval data, and 

cleaning material descriptions (Figure 2.4). 

 

Figure 2.4  Process for lithology data-cleaning. 

Table 2.4  Lithology attributes. 

Attribute Unit/Data Type Description 

Unique identification - Combination of source and original ID 

Source - BCOG, BCBH, BCWR, WSSD, WSWR. See Table 
2.1 for an explanation of the source abbreviations.   

Original identification - Unique identifier in the original dataset 

From mbgs Start of interval relative to ground surface 

To mbgs End of interval relative to ground surface 

Description text Material description 

Hydraulic conductivity m/s Hydraulic conductivity  

Yield USGPM Well yield estimate 

 

Lithology data was compiled from various sources in different format types. 

GWELLS required additional compilation steps to avoid missing data and to remove 

problematic interval data. Firstly, categories for surficial material, bedrock material, 

colour, hardness, and water content were added in 2008 to well construction forms used 

to update GWELLS as an alternative to manual entry of material descriptions. As such, 

lithology information could be submitted by providing material descriptions or by 

selecting categorical terms. If a material description was not available, concatenated 

categorical terms were alternatively used. Secondly, it is common for older wells in 

GWELLS to have rows with intervals starting and ending in zero because of historical 

Interval Data 
Check Text Cleaning Stopword 

Removal 
Source Data 
Compilation 
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limitations on character length for data entry. Additional rows exist below the original 

interval with these zero intervals to provide a continuation of text. The zero intervals 

were removed assuming primary materials are typically described at the beginning of 

material descriptions. 

Lithology for BCOG and WSWR were manually entered since information was 

not available in an electronic format. Detailed information below the bedrock surface was 

not entered for WSWR wells. A cut-off limit was also used for very deep BCOG wells 

(>300m deep) given the lower model boundary for this study (See Section 2.4.2). For 

very deep BCOG wells, manual entry of lithology data was generally completed to the 

first low permeability unit 300 m below the surface.  

Wells with any of the following interval errors were flagged and removed from the 

dataset as part of data cleaning: 

• rows with null values for either the start or end of the interval; 

• same value for the start and end of the interval; 

• deeper start of the interval compared to the end; and 

• end of the interval does not match the start of the interval below. 

Material descriptions provide text data that require cleaning prior to use. There 

are various text cleaning methods that can be considered depending on how the data 

will be used. The primary objective of data cleaning for this study is to develop a 

meaningful geologic corpus that will inform the classification of HGUs. Text cleaning was 

completed by making all text lower case, removing text (punctuation, numbers, 

stopwords), correcting key spelling mistakes, as well as standardizing short-forms, 

abbreviations, acronyms, and regional naming conventions. Spelling corrections and 

standardization focused on words that occur the most frequently and were not intended 

to capture all occurrences. Secondary descriptors for grain size (e.g. fine, medium, 

coarse) were also removed since this level of detail was not necessary at the regional 

scale. 

Summary statistics for the processed lithology dataset are shown in Table 2.5. 

The processed lithology dataset contains approximately 87,800 rows (originally 

contained 112,913 rows) with over 20,000 unique material descriptions. The BCBH 

includes hydraulic conductivity for targeted subsurface intervals, which is particularly 
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useful for characterizing hydrogeologic properties. Yield estimates associated with 

intervals from the lithology dataset that can be used to infer hydraulic properties are also 

recorded in the GWELLS; however, these are currently limited in number but will 

become a beneficial data source in the future. 

Table 2.5.  Summary statistics for key lithology attributes. 

Data Source Material Description 
Counts 

K Count Yield Count 

BCBH 3,699 211 0 

BCOG 103 0 0 

BCWR 77,214 0 1,651 

WSSD 245 0 0 

WSWR 6,241 0 317 

Total 87,502 211 1,968 

Note: See Table 2.1 for an explanation of the source abbreviations. 

Material descriptions contain short sentences with numerous words in various 

combinations based on a specialized geological lexicon. After text cleaning, fewer than 

five words are typically used, with two or three words being the most common (Figure 

2.5). The top 20 words are shown in Figure 2.6. Further discussion is provided in  

Section 2.3. 

 

Figure 2.5  Word count histogram of the processed material descriptions. 
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Figure 2.6 Top 20 words from the processed material descriptions. 

2.2.4. Surficial Data Points 

Digital surficial geology mapping was used to recreate the geomorphologic map 

prepared by Kovanen and Slaymaker (2015) so that surficial data points could be 

extracted using a single interpretation for the entire study area. Surficial data points were 

used to supplement subsurface data, particularly in areas where no borehole information 

was available. A summary of the methodology used to recreate the geomorphologic map 

and to determine surficial data points is provided below. 

The twelve geomorphic units identified by Kovanen and Slaymaker (2015) for the 

study area were assigned based on the geologic period (Holocene or Pleistocene) and 

the sub-division of stratigraphic units contained as attributes in the surficial geology 

mapping shapefile, with some modification to match geomorphologic mapping 

particularly for Glacial Modified, Pleistocene units. All Pre-Vashon deposits were 

assigned as Glacial Modified, Pleistocene. Glaciomarine units were generally mapped 

below an elevation of 175 masl, which coincides with the marine limit inferred for the 

study area (Armstrong, 1957). The resultant geomorphology map for the study area is 
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shown in Figure 2.7. Minor differences exist primarily due to local modern drainage 

patterns/mass movement areas refined by Kovanen and Slaymaker (2015) that were not 

replicated given their limited surficial coverage and the regional focus of this study. 

HGUs (see Section 2.3), including clay, coarse, fines, till and bedrock, were 

mapped primarily based on geomorphic units (e.g. glaciofluvial assigned as coarse) with 

consideration of material descriptions of select polygons consolidated from surficial 

geology mapping (e.g. fluvial assigned as coarse or fines depending on the material 

description of the polygon). A grid spacing of 1 km was used to generate point data for 

HGUs. This spacing is consistent with borehole data in the American portion of the study 

area. The northing and easting of the point data were based on the center of the grid. 

For bedrock outcrops, additional points were added from the ground surface and then 

every 5 m to a depth of 100 m to avoid categorical imbalance. The plan view distribution 

of this additional data is shown in Figure 2.8.  

 

Figure 2.7 Geomorphologic mapping (modified from Kovanen and Slaymaker 
2015). 
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Figure 2.8.  Plan view showing the distribution of additional surficial data points. 

2.3. Material Description Standardization 

2.3.1. General Approach 

The lithology dataset contains large amounts of textual data that can be used to 

classify similar materials and provide qualitative information about the subsurface. Semi-

automated methods that include Natural Language Processing (NLP) techniques are 

used in this study to classify material descriptors to support 3D geologic model 

development.  

Classification is required to group material descriptions into HGUs for geologic 

model development. Classification schemes with detailed textural and structural 

information are not appropriate for databases when water well records are the single 

largest data source (Russel et al., 1998; Yager et al., 2018). This is because variations 

in geological lexicon can exist due to sample collection methods, material (soil) 

classification methods, experience of field personnel, drilling purpose, and local 

differences in geology; therefore, a generalized approach to classifying material 

descriptions that provides a region-wide perspective is more applicable. For the purpose 

of this study, material classification is primarily based on size and composition of grains 

using the American Association for Testing and Materials (ASTM) modified Unified Soil 
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Classification System (USCS) as a guide to lumping materials into more general 

lithologic units. Various soil classification systems exist but the ASTM USCS was chosen 

since it (or variations thereof) is commonly used in North America.  

Given there are over 20,000 unique material descriptions, a three-step process 

was used to classify material descriptions as described below and schematically shown 

in Figure 2.9: 

• The first step considers sentence structure and the relationship between 

words to identify descriptors that best describe material composition.  

• The second step aggregates single and combinations of descriptors into 

material groupings to capture the most significant variations. Multiple 

descriptors were considered to improve the geological accuracy of 

classification results which is consistent with the general approach used in 

other regional studies (Russell et al., 1998; Allen et al., 2008; Bayless et al., 

2017).  

• The last step assigns HGUs to material groups, with consideration of 

hydrogeologic properties, to reduce complexity for modelling purposes.  

 

 

Figure 2.9 Process for material classification. 

2.3.2. Descriptor Selection 

The first step of the material classification process considers sentence structure 

and the relationship between words to identify descriptors that best describe material 

composition. Under the ASTM USCS, materials can be described using nouns for 

primary components (e.g. 50% by weight or more), descriptive adjectives ending in a ‘y’ 

(e.g. sandy, clayey, gravelly) for secondary components (greater than 30% by weight), 

and nouns following minor descriptive words (e.g. ‘with’, ‘trace’, ‘some’) for minor 

components (less than 30% by weight). For example, material described as ‘silty sand 

Step1: 
Descriptor 
Selection 

Step 2: 
Material 

Grouping 

Step 3: 
Hydrogeologic Unit 

Classification 

Processed Material 
Descriptions           

(see Section 2.2.3) 
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and gravel with clay’ is interpreted to contain both ‘sand’ and ‘gravel’ as primary 

components, silt as a secondary component, and clay as a minor component. 

Minor Components – Do they impact classification? 

Based on the ASTM USCS, minor components (less than 30% by weight) are 

typically described following minor descriptive words. In this study, minor descriptive 

words found in the dataset include: few, some, trace, odd, with, minor, very little, little, 

no, and occasional. Both ‘with’ and ‘some’ frequently occur in the dataset (Figure 2.6). 

Nouns following minor descriptive words could overemphasize their importance. Minor 

components are not considered important for regional modelling purposes. In this study, 

truncating material descriptions at minor descriptors did not significantly change word 

count distributions for the study area, suggesting minimal loss of textual information. 

In addition, there are likely some records with various particle ranges following 

minor descriptors that are used to characterize diamicton (e.g. ‘silty sand and gravel with 

clay and cobbles’). These records could be interpreted as till (glacial deposit), although 

other processes that deposit diamicton exist (e.g. landslides, debris flow). Direct 

interpretations of ‘till’ are typically provided in the lithology dataset instead of multiple 

words describing diamicton. This is based on the frequency of the word ‘till’ (Figure 2.6) 

and given that material descriptions are generally very short (Figure 2.5). Given the 

above, the word ‘till’ is used to categorize till. Material descriptions that include multiple 

descriptors to characterize diamicton are not considered for this study. Further textual 

analysis may be warranted to understand how material descriptions for diamicton can be 

processed in the future.  

Based on the above, text following minor descriptive words in the processed 

material descriptions were ignored for classification purposes. The benefit of truncating 

processed material descriptions is that any remaining nouns used to describe 

composition can be considered as primary components with equal weighting. 

Alphabetical sorting can be done to reduce dimensionality (e.g. sand gravel is the same 

as gravel sand). It is interesting to note that sorting would not be required if word 

embeddings were used since the same numerical value would be obtained regardless of 

order.  
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Secondary Components – Are they important? 

Descriptive adjectives ending in a ‘y’ (e.g. sandy, clayey, gravelly) apply to 

secondary components (greater than 30% by weight) based on the ASTM USCS. ‘Silty’, 

‘sandy’, and ‘stoney’ are common secondary components in the dataset (Figure 2.6). In 

this study, a NLP technique called bigrams was used to review the significance of 

secondary components and to inform how they should be considered in the classification 

approach. Bigrams are two-word combinations that are typically more informative 

compared to individual words. The frequency of the 25 most common bigrams isolated 

from truncated material descriptions is shown in Figure 2.10.  

 

Figure 2.10 Most frequent bigrams (two word combinations) from the processed 
material descriptions. 

The most common bigrams with primary and secondary components include the 

following in descending order: silty sand, silty clay, sandy clay, gravelly till, and stoney 

clay. ‘Silty’ occurs with multiple primary components (sand, clay). ‘Silty sand’ is the 
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second most common bigram with only ‘sand gravel’ occurring more frequently in the 

dataset. Clay is most frequently associated with a secondary component (‘silty clay’, 

‘sandy clay’, ‘stoney clay’).  

There may be similar deposits with different material descriptions that are not 

grouped together by ignoring secondary components. For example, ‘stoney clay’ and 

‘gravelly till’ would be classified as clay and till, respectively, if secondary components 

are ignored. They could both be interpreted as glaciomarine or glacial deposits. Both 

‘stoney’ or ‘gravelly’ are typical characteristics of Capilano Sediments or Vashon Drift 

deposits in the study area. On the other hand, ‘silty’ and ‘sandy’ are more general and 

not associated with a specific regional deposit. 

From a hydrogeological perspective, secondary components could impact 

permeability, particularly if these components are fine grained. Both ‘stoney clay’ and 

‘gravelly till’ would be assigned low permeabilities assuming glaciomarine or glacial 

deposition. However, the permeability of ‘silty sand’ is expected to be within the lower 

range of values for clean sands although there could be considerable overlap (Freeze 

and Cherry, 1979). Conversely, the permeability of ‘silty clay’ or ‘sandy clay’ is likely to 

be in the higher range of permeability values for clay. Clay is typically associated as an 

aquitard unit that restricts vertical movement of groundwater and provides protection to 

underlying aquifers from surface contamination. 

To avoid over representing high and low permeability units, the word 

combinations of ‘silty sand’, ‘sandy clay’, and ‘silty clay’ were specifically included as part 

of the material classification approach. These word combinations frequently occur and 

have the potential to impact groundwater modelling results. Differentiation between 

‘stoney clay’ and ‘gravelly till’ is not deemed critical for this study but may warrant further 

review to better represent stratigraphy in the subsurface. 

Primary Components – Which ones are important? 

Using ASTM USCS, primary component (e.g. 50% by weight or more) are 

described using nouns typically at the beginning of the description. The most common 

primary components were identified based on a review of the 100 most common words 

from the truncated material descriptions. Primary components are presented in Table 2.6 

and include descriptors for both consolidated and unconsolidated materials. 
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Table 2.6 Most common primary components (nouns) from the processed 
material descriptions. 

Subsurface Type Primary Components 

Bedrock bedrock, coal, granite, sandstone, shale, siltstone 

Quaternary boulder, clay, cobble, fill, gravel, peat, sand, silt, till, topsoil 

 

2.3.3. Material Grouping 

Material groupings are used to aggregate single and combinations of descriptors 

to capture the most significant variations. Primary components identified in Table 2.6 

and select combinations of primary and secondary components (e.g. ‘silty sand’, ‘sandy 

clay’, and ‘silty clay’) were considered as descriptors. Regular expressions were used to 

isolate descriptors from truncated material descriptions. Duplicate descriptors were 

removed (e.g. silt, sand, sand -> silt, sand) and records with multiple descriptors were 

alphabetically sorted to further reduce dimensionality (e.g. silt, sand -> sand, silt) prior to 

manual assignment of material groupings (Figure 2.11). 

 

Figure 2.11 Process for material groupings 

The dataset contains 274 combinations, including single and multiple descriptors. 

The 45 combinations with the highest cumulative thickness were selected since they 

capture the most significant variations (top 45 combinations). As shown in Figure 2.12, 

the cumulative thickness of the top 45 combinations is not evenly distributed. The 

cumulative thickness of the top five combinations (clay, sand, gravel sand, till, and 

gravel) accounts for approximately 65% of the total thickness of the lithology interval 

data. Some descriptors (topsoil, peat, fill) are common in the dataset (Figure 2.6), but 

they have a relatively small cumulative thickness even if other variations that include 

these words are considered (e.g. fill gravel sand). Conversely, ‘bedrock’ occurs less 

frequently compared to other descriptors but has a relatively high contribution to 

cumulative thickness.  

Process 
descriptors 

(remove 
duplicates, sort) 

Identify the 
most 

significant 
combinations 

Manually 
assign material 

groupings 

Isolate 
descriptors 

from truncated 
description 



38 

 

Figure 2.12 Top 45 descriptor combinations based on cumulative thickness. 

Ten material groupings were used to aggregate the top 45 combinations as shown in 

. Material groupings are loosely based on ASTM USCS but are generally more 

simplified (e.g. one grouping for silt) and include additions such as till and bedrock as 

well as consideration of boulder and cobble grain sizes. Fill, topsoil, and peat were 

grouped as unassigned (N) given their limited cumulative thickness from a regional 

perspective, although it is recognized that peat is significant in some parts of the study 

area (e.g. Burns Bog).  

The cumulative thickness values of material groupings are shown in Figure 2.13. 

Material groupings are dominated by clay (C), sand (S), till (T), as well as sand and 

gravels (GS). Unassigned records (N) account for approximately 8% of the total 

thickness indicating most data has been captured. 
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Table 2.7 Material classification overview. Material grouping code based on 
the Unified Soil Classification System. Hydrogeologic units have 
been assigned based on a review of hydraulic data (see Section 
2.3.4). 

Step 1: Descriptor Combinations Step 2: Material 
Grouping Code 

Step 3: 
Hydrogeologic Unit 

Hydraulic 
Conductivity 

Boulder, boulder gravel, boulder gravel 
sand, cobble gravel, cobble gravel sand 

GC Coarse High 

Boulder clay, clay gravel, clay gravel sand, 
gravel sand silt, gravel sand silty, gravel silt 

GF Fines Medium 

Gravel, gravel sand GS Coarse High 

Sand  S Coarse High 

Clay sand, clay sand silt, clay sand silty, 
clay sandy, sand silt, sand silty 

SF Fines Medium 

Clay silt, clay silty, silt M Fines Medium 

Clay C Clay Low 

Boulder till, clay gravel till, clay till, cobble 
till, gravel sand till, gravel till, gravel till, 
sand till, till 

T Till Low 

Bedrock, bedrock granite, bedrock 
sandstone, bedrock shale, granite, 
sandstone, sandstone shale, shale 

B Bedrock Low 

Unassigned (includes topsoil, peat, and fill) N Not applicable Not applicable 

 

 

Figure 2.13 Cumulative thickness of material groupings based on the ASTM 
Unified Soil Classification System. See for a description of material 
grouping codes. 

  



40 

2.3.4. Hydrogeologic Unit Classification 

Material groupings were classified into HGUs to reduce complexity for modelling 

purposes (Table 2.7). Hydraulic characteristics of the material groupings were used to 

inform the assignment of HGUs. Boxplots showing hydraulic conductivity (logK) and 

yields for material groupings are shown in Figure 2.14 and Figure 2.15, respectively.  

LogK data is based on information from the BCBH database. Hydraulic 

conductivity (K) data is mostly obtained from shallow slug tests conducted during 

contaminated sites investigations rather than from pumping tests of aquifers used in 

groundwater supply. Although the data is biased towards water bearing materials, 

testing of lower permeability units to identify natural confining barriers is also included. 

For Figure 2.14, limited logK information is available for material groups GC and GF. 

There are fewer than five logK values for B and T; however, values appear to be 

consistent and within a narrow range. LogK values are generally lowest for B, C, and T 

groupings. The boxplot for M is like C but the range in values is more comparable to SF. 

GS has the highest logK mean with values varying over five orders of magnitude. The 

boxplot for S generally straddles the lower and upper boxplots of GS and SF, 

respectively.  

Yield estimates available from water well records were reviewed to address data 

gaps in LogK data (e.g. limited LogK for GF and GC). Although numerical values are 

provided for yield, they were considered qualitative since they are typically cursory 

estimates made by the driller following completion of the well. Yield values presented in 

Figure 2.15 show a distinction between higher (GC, GS, and S) and lower (B, C, GF, M, 

and SF) ranges for material groupings. The interpretation of yield values for T are limited 

given the large variability and limited number of samples.  

The following five HGUs were assigned to material groupings based on a review 

of logK and yield as shown in Table 2.7: coarse-grained materials (Coarse), fine-grained 

materials (Fine), Clay, Till, and Bedrock (capital letters used to distinguish HGU from 

primary component). GC and GF were classified as Coarse and Fine units, respectively, 

based on the yield review. Although available logK and yield values suggest similarities 

for Clay and Fines (C, M, SF), they were not lumped together to allow further spatial 

review during geologic model construction. 
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Figure 2.14 Boxplots of Hydraulic Conductivity (Log K m/s). Refer to Table 2.7 
for material group abbreviations. 

 

Figure 2.15 Boxplots of Estimated Yield (USGPM). Refer to Table 2.7 for material 
group abbreviations. 
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2.4. Mesh Generation 

A mesh is required to facilitate processing of HGUs and to visualize results. The 

mesh includes cells that represent small volumes of the subsurface that are arranged in 

XYZ grid system. Attributes can be assigned to each cell, including both categorical (e.g. 

HGU, colour) and/or numerical data (e.g. elevation). For this study, the mesh is used to 

extract information and to visualize results. The coordinates of the cell centroids are 

used as input for predictive modelling of HGUs throughout the mesh extents. 

Open source options are available to generate a mesh specific to groundwater 

modelling, such as GRIDGEN (Lien et al., 2015) and ModelMuse (Winston, 2019), both 

published by the USGS. However, Pyvista was selected because it provides coding that 

makes it relatively easy to create various types of mesh data structures, has various 

filtering methods to extract information (e.g. cell centroids, closest cell), and allows 

interactive visualization of results within notebooks. Pyvista provides a simplified 

interface to the functionality provided by Visualization Toolkit (VTK). GRIDGEN and 

ModelMuse do have the added functionality of mesh refinement which does not appear 

to be possible in Pyvista at the time it was used for this thesis but could be done directly 

using VTK (e.g. adaptive mesh refinement and level of detail rendering techniques). As 

such, mesh refinement is not considered as part of this study but may be of interest in 

future research to explore geology near areas of interest (e.g. along surface water 

features). 

This section describes the information used to generate the mesh for the study 

area including development of a DEM to represent the ground surface for the top of the 

mesh, rationale for the mesh bottom, justification for the vertical spacing of each cell, as 

well as a summary of mesh details. 

2.4.1. Top Elevation 

A digital elevation model (DEM) was generated for the study area to represent 

the ground surface for the top of the mesh. A combination of topographic and 

bathymetric data from several publicly available data sources (Table 2.8) was processed 

using ArcMap®. Bathymetric data was required since topographic data sources apply a 

flatting method to assign a flat surface elevation to water bodies (DMTI, 2002). 
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Therefore, bathymetric data was used to provide better refinement of the bottom 

elevation of drainage features such as the Fraser River. A DEM for the Lower Mainland 

that combines more recent bathymetric data collected along the lower Fraser River and 

topographic data has been prepared as part of Phase 2 Flood Strategy Projects by the 

Fraser Basin Council (https://www.fraserbasin.bc.ca/Phase_2_Projects.html#dem) but 

was not available for public use at the time of preparing this thesis.   

Table 2.8 Data sources for digital elevation model. 

Agency Application/ Product Scale 

Canadian Hydrographic 
Service 

Non-Navigational (NONNA) Bathymetric Data 100 m cell spacing 

DMTI Spatial Inc (1) DMTI DEM 30 m cell spacing 

U.S. Geological Survey National Elevation Dataset (NED) 30 m cell spacing 

Finlayson et al. (2000) Puget Sound DEM 30 m cell spacing 

(1) Accessed through SFU Library Data Services Dataverse 

The Puget Sound DEM required conversion of the ASCII grid into raster format 

(Finalyson et al., 2000) and elevation units from integer decimeters (1/10 m) to metres. 

The dataset extents were adjusted as shown in Figure 2.16. The Canadian Hydrographic 

Service (CHS) Non-Navigational (NONNA) bathymetric data includes coverage along 

portions of the Fraser River and Georgia Strait with additional coverage supplemented 

by the Puget Sound DEM along the American coastline. The topographic information is 

based on the DMTI DEM for the Canadian portion and USGS National Elevation Dataset 

(NED) for the American portion of the study area. 

All datasets were re-projected to NAD 1983 UTM Zone 10 with elevation units in metres 

above sea level and then combined using a cell spacing of 30 m and average functions 

with automatic filling of elevation voids (DEM30). DEM30 was then resampled to 

generate a DEM with 200 m cell spacing (DEM200).  

https://www.fraserbasin.bc.ca/Phase_2_Projects.html#dem
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Figure 2.16 Spatial extent of data sources used for digital elevation model. Refer 
to Table 2.8 for data source references. 

Sinks in the DEM200 were reviewed to evaluate the quality of DEM200. A sink is a cell 

or set of spatially connected cells whose surface flow direction cannot be assigned due 

to neighbouring cells with higher elevations or when two cells flow into each other 

(ArcGIS Help). Sinks in elevation data are commonly due to errors caused by sampling 

effects and the rounding of integer numbers. However, naturally occurring sinks in 

elevation can occur; therefore, an understanding of the morphology of the area is 

required to distinguish between sinks that may be naturally occurring and sinks that are 

errors in the data. 

DEM200 has over 600 sinks with a total of 270 sinks occurring within the geologic model 

boundary as shown in Figure 2.17. Most sinks were either limited in spatial extent and/or 

less than 0.2 m deep. The most significant sink occurs within the Sumas Valley, south of 

Sumas Mountain (Sumas Sink). The Sumas Sink has an area of approximately 115 km2 

and a depth of 3.6 m. The historical occurrence of Sumas Lake suggests a sink could be 

naturally occurring in Sumas Valley and it is a significant topographic low. For this study, 

sinks have not been removed but may need additional consideration if surface flows are 

considered in the future.  
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Figure 2.17 Digital elevation model (DEM200) sink locations. 

2.4.2. Bottom Elevation 

The use of a bedrock surface was initially planned as the bottom boundary of 

geologic model. The basement geology of the region has been described by Monger and 

Journeay (1994). Several bedrock surfaces have been prepared within the study area. 

Hamilton and Ricketts (1994) prepared bedrock contours for the Georgia Basin and 

Fraser Lowland using marine seismic surveys, bedrock outcrops and sparse data from 

borehole logs. The onshore portion of the map was intended as a generalized 

representation of the variable relief of the bedrock surface given data limitations. 

Scibek (2005) used well data and bedrock outcrops in Washington State to 

expand bedrock contouring by Hamilton and Ricketts (1994). Valley wall profiles and 

extrapolated cross-sections were also used to refine bedrock depth estimates within the 

narrow Sumas Valley. Bedrock was extrapolated downward from the valley walls and 

shaped parabolically at the inferred valley bottom. The parabolic shape is characteristic 

of valleys modified by glacial erosion. High angle, normal faults along both margins of 

the valley that extend to the northeast (Sumas and Vedder faults) have also modified the 

bedrock surface in this area. Movement of the faults has caused a graben structure 

several hundred metres deep between Sumas and Vedder Mountains (Mustard and 

Rouse,1994).  
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A bedrock surface for northwest Washington State based on bedrock elevations 

from geologic maps, low confidence geologic cross-sections, and borehole logs was 

published by the USGS (Eungard, 2014). No bedrock elevations from the Georgia Basin 

or Fraser Lowland were used; as such, there are significant discrepancies (over 400 m) 

between bedrock contouring noted above for the Fraser Lowland, particularly along the 

international boundary. 

The BC and Washington State oil and gas wells drilled in the 1960s include some 

of the deepest subsurface information, which has been used to interpret the bedrock 

surface by others (Ricketts et al., 1994; Scibek 2005), particularly where thick 

Quaternary deposits exist. However, the majority of oil and gas wells are limited in 

spatial extent, and available geophysical logging provides limited interpretations of 

bedrock units. Bedrock in the study area is generally correlated with the base of 

Pleistocene-aged deposits but this boundary is difficult to identify due to the rhythmic 

interbedding of strata and the general absence of horizons with distinct geophysical log 

signatures (Bustin, 1990). Although rare, there is the possibility of rafted bedrock 

interbedded with unconsolidated deposits that would make interpretations more 

complex.  

Given the lack of deep subsurface information and the disproportionally large 

number of wells with relatively shallow depths compared to previously interpreted 

bedrock surfaces noted above, a different approach was used to define the base of the 

model. The spatial and vertical distribution of Coarse and Fine units were mapped. 

Coarse units at depth likely represent aquifers. The distribution of Fine units was also 

considered since they can act as aquifer units if surrounded by units with lower 

permeability. Using this approach, the bottom elevation of the model can be rationalized 

by accounting for the deepest lithologic units that could act as aquifers.  

The spatial distributions of the deepest Coarse or Fine HGUs below -150 masl is 

shown in Figure 2.18. The lateral distribution of Coarse and Fine HGUs decreases with 

depth. Based on existing data, these HGUs are deepest in the Nicomekl-Serpentine river 

valleys where Aquifer No 58 has been mapped (see Figure 2.18). The bottom of the 

geologic model was extended to -150 masl given that limited information on Coarse and 

Fine HGUs is available beyond this elevation. This depth is similar to the deepest aquifer 

modelled by Golder in the Township of Langley area (Golder, 2005, pg 41). The 
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availability of subsurface data at this depth for basin-scale modelling purposes is limited 

outside of the Nicomekl-Serpentine river valleys which will contribute to uncertainty in 

geologic modelling results at depth.  

 

Figure 2.18 Spatial distribution of Coarse and Fine HGUs below -150 metres 
relative to sea level, N=46.  The outline of the Nicomekl-Serpentine 
Aquifer (AQ 58) is shown. 

2.4.3. Cell Height 

The vertical cell height was based on a statistical review of HGU thickness and 

depth. HGUs were aggregated based on sequential groupings prior to calculating 

statistics. As such, statistics are based on grouping of HGUs and not on individual 

interval records to better represent processed data results. An example of processed 

lithology and the resultant grouping of HGU data is provided in Table 2.9 to illustrate the 

approach used. 
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Table 2.9  Example of processed lithology and HGU grouping. Yellow 
highlights information on rows that have been grouped together 
since HGUs occur sequentially. The HGU interval is based on the 
minimum of the ‘From’ column and maximum of the ‘To’ column. 

Processed Material 
Description 

From 
mbgs 

To 
mbgs 

usgs10 HGU seq HGU From 
mbgs  

HGU To 
mbgs 

sand brown 0.0 1.2 S coarse 1 0 1.6 

sand grey brown 1.2 1.6 S coarse 

clay dark grey 1.6 3.0 C clay 2 1.6 3.0 

silt sandy grey 3.0 4.6 M fines 3 3.0 4.6 

sand dark grey black 4.6 6.1 S coarse 4 4.6 6.1 

 

HGUs have an average thickness of at least 8 m with median values of at least   

5 m as shown in Figure 2.19a. The histogram of HGU thickness shows highly skewed 

data biased towards shallow depths. The HGU thickness is commonly less than 5 m 

closer to the ground surface as shown in the 2D histogram (Figure 2.19c). The 

difference in thickness counts is less pronounced and fewer data are available with 

depth. Similarly, the most frequent information on thickness occurs between 0 to 100 

masl with less frequent occurrence above and below this range. Thus, a uniform vertical 

cell height of 5 m was used to capture lithologic variability, recognizing the greatest 

generalization will likely occur near the surface. Any lenses less than 5 m thick are not 

captured, which was deemed acceptable given the regional scale of the study. A finer 

discretization or alternate approach to assigning HGUs at the surface may be warranted 

to better reflect recharge conditions for groundwater modelling purposes.  

 

MAX MIN 
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a) b) 

  
c) d) 

  
Figure 2.19 HGU thickness shown as (a) boxplot b) histogram and c) 2D histogram of thickness relative to depth in 

metres below ground surface (mbgs), and d) 2D histogram of elevation relative to thickness. 
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2.4.4. Mesh Extents 

The mesh was generated using PyVista and python coding. The geologic model 

layout and extent of the mesh are shown in Figure 2.20. The length and width of the 

model are based on the extent of Quaternary mapping within the study area excluding 

the land north of the Burrard Inlet given this area is hydraulically separated from the rest 

of the Lower Mainland, and the intermountain valleys (e.g. Chilliwack River valley, and 

valleys containing upper tributaries of the Nooksack River) since information is not 

readily available to characterize the geologic structure in these areas. Cells outside of 

the lateral boundaries have been masked to generate a non-rectangular shape. 

Vertically, the bottom of the mesh was constrained by applying a filter to isolate cell 

centers with elevations greater than -150 masl. This did not result in a perfectly flat 

surface at the bottom of the model but is suitable for the purpose of this study.   

A uniform cell size of 200 m wide and 200 m long was used. This was initially 

based on a visual review of the spatial resolution needed to capture the variation of 

mapped surficial geology units (Section 2.2.4). This lateral cell size would allow 

representation of Holocene deposits that thin along sections of the Fraser River within 

the study area. However, this level of detail is not expected from the model given that 

surficial geology points are spaced every 1000 m so that the geologic database is not 

overrepresented by surficial data. A uniform cell height of 5 m was applied based on the 

mean thickness of HGU units (Section 2.4.3).  

Mesh details are summarized in Table 2.10. The grid is bounded along the X-axis 

between 481026 to 613026 m, the Y-axis between 5396343 to 5471743 m, and the      

Z-axis between 903 to -150 masl. This results in over three million cells covering a 

surface area of approximately 670 km2. 

Table 2.10 Mesh properties. 

Property Value 

Number of Cells 3,336,175 

X Bounds  481026, 613026 

Y Bounds 5396343,5471743 

Z Bounds -150, 903 

Surface Area 670 km2 

Notes: X and Y bounds are in UTM NAD 83 Zone 10 coordinate system. 
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Figure 2.20 Mesh layout and extents. 

2.5. Data Selection 

2.5.1. Alternatives 

Input features and targets are required for MLP training. The selection of inputs 

and targets for training purposes is an important task since MLPs learn from data with no 

prior assumption on data distribution. Three alternative methods are used for data 

selection to evaluate the impact on the training and prediction capabilities of MLP. Table 

2.11 provides an overview of each data selection alternative, including the approach for 

input features and targets as well as the resultant number of samples. Alternative 1 has 

the lowest number of samples. 

Table 2.11  Overview of data selection alternatives. 

 Input Features Target Number of Samples 

Alternative 1 Easting, northing, and elevation based on the 
borehole location and top elevation of each 
HGU interval. 

HGU  54,225 

Alternative 2 Easting, northing, and elevation based on the 
cell centroid 

HGU mode  85,063 

Alternative 3 X and Y coordinates of 2D mapping from SOM HGU mode 85,063 
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Alternative 1 involves minimal processing of available data. The coordinates of 

the borehole and top elevation of the HGU interval (e.g. three features) are used as input 

while the HGU is used as the target for training purposes.  

Alternative 2 uses the coordinates of the cell centroid (e.g. three features) and 

generalizes HGUs based on occurrence frequency (e.g. mode) within each cell. To 

determine the HGU mode, a point cloud was generated, spacing HGU data vertically 

every metre for each interval. The most frequently occurring HGU within each cell was 

then used as the target for training. This may potentially reduce noise in the data and 

change the performance of the MLP. 

Like Alternative 2, Alternative 3 uses the HGU mode as a target for training the 

MLP but the coordinates of the cell centroids are spatially clustered using a self-

organizing map (SOM). SOM maps the cell centroids onto the nodes of a 2D grid based 

on distance (e.g. Euclidian). The coordinates of the nodes (e.g. two features) are then 

used as input features for the MLP. This approach was considered to determine if spatial 

clustering enhances pattern recognition by MLP.  

A conceptualization of the neural network architecture is shown in Figure 2.21 to 

highlight input differences between Alternative 1 and 2 compared to Alternative 3. 

Further SOM details are provided in Section 2.5.2. 

2.5.2. Self-Organizing Map 

Alternative 3 uses a hybrid ANN that combines SOM with MLP (Figure 2.21), 

which has been identified by others to enhance pattern recognition in hydrogeologic 

applications (Rizzo and Doughtery, 1994; Sahoo and Jha, 2017). The SOM is trained 

using two stages as recommended by Bacao et al. (2005). For Stage 1, the elevation of 

each cell centroid is set to zero with only the easting and northing coordinates used for 

mapping. For Stage 2, cell centroids coordinates (northing, easting, elevation) are then 

used to refine mapping of the samples onto the 2D grid. SOM is an unsupervised neural 

network algorithm; therefore, testing is not required. Figure 2.22 shows an overview of 

the method used to prepare the SOM with details provided in subsequent sections for 

data preparation, hyperparameter selection, and training of the SOM. The SOM 

algorithm was implemented using Minisom (v. 2.3.0). 
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Figure 2.21  Neural network conceptualization for data selection alternatives.  

 

  

Figure 2.22  Overview of SOM methodology. 
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Data Preparation 

The coordinates of the mesh centroids were used as input for the SOM. 

However, modifications to the dataset were necessary to lower memory requirements so 

that performance metrics (e.g. quantization error) could be calculated using available 

computer resources. This includes removing cell centroids below -100 masl and 

reducing data precision (e.g. float16 instead of float35).  

Normalization was used to scale the coordinates of the cell centroids. For the first 

stage, the elevation of each cell centroid was set to zero; therefore, only the normalized 

eastings and northings were used to initially train the SOM. For the second stage, the 

normalized northing, easting, and elevation of the cell centroids were used to refine 

mapping of the samples onto the 2D grid. 

Hyperparameters 

The assignment approach for hyperparameters of the SOM algorithm are 

summarized in Table 2.12. The majority of hyperparameters were assigned using 

heuristics or default values.  

The same initial weights were used during the development of each stage of the 

SOM. For Stage 1, initial weights were randomly generated using Minisom’s random 

weight function. The weights from the trained Stage 1 SOM were then applied as initial 

weights for the Stage 2 SOM and used during Stage 2 hyperparameter optimization. 

This is important given that the performance of the SOM algorithm is dependent on the 

initial weights of the map (Vettigli, 2018). 

Hyperopt (Bergstra et al., 2013) was used for hyperparameter optimization since 

the grid functionality provided in scikit-learn could not be directly applied. 

Hyperparameters selected for optimization include sigma and learning rate. Various 

sigma and learning rate values were considered to determine the best combination that 

would result in the lowest error. 

The SOM was then configured with the optimized values for sigma and initial 

learning rate. To understand how training evolves and to establish the final number of 

iterations, the quantization error was reviewed for several iteration sizes. This was done 

to avoid overfitting the model.  
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Table 2.12  SOM Hyperparameter assignment. 

Hyperparameter Assignment Approach 

x, y  A general rule of thumb for the dimension of a grid is that it should contain 5*sqrt(N) 
neurons where N is the number of samples in the dataset to analyse (minisom.py). 
Based on the number of cell centroids (3,336,175), the recommended number of 
nodes is 9,132. Therefore, the grid dimensions were set at x = 100 and y = 90 which 
results in 9,000 nodes. 

input_len The number of features in the input data. Three was used given the use of northing, 
easting, and elevation as features. 

sigma Sigma is the initial spread of the neighborhood function that is dependent on the 
dimensions of the map. A larger sigma value was used for Stage 1 given suggestions 
by Maimon and Rokach (2010, p435) to use an initial sigma value large enough to 
cover half of the nodes. 
 
The sigma value was lowered in Stage 2 to ensure a smaller spread of the 
neighbourhood function to support refinement of mapping of samples to the SOM grid. 

learning_rate The initial learning rate can be between 0 and 1. An initial learning rate of 1.0 was 
used for Stage 1 while a lower value of 0.5 (default) was used for Stage 2. 

decay_function Function that reduces the learning rate and sigma after each iteration. The default was 
used. 

neighborhood_function The default option ‘Gaussian’ was used. 

topology Possible values include rectangular or hexagonal. The default option ‘rectangular’ was 
used. 

activation_distance The default option ‘Euclidean’ was used. 

random_seed A value of 17 was arbitrarily selected for reproducibility. 

initial_weights Randomly generated for Stage 1. The initial weights for Stage 1 were saved and used 
during optimization and training of the SOM. The final weights from Stage 1 were used 
as initial weights for Stage 2. The precision of the weights was converted to float16 to 
reduce computer memory requirements to calculate performance metrics. 

random_order True was used to allow random sample selection. 

Note: Hyperparameters highlighted in blue were considered as part of optimization. 

Training 

Once hyperparameters were selected for each stage of the SOM, training was 

completed using scaled data. Training establishes the weights between the nodes of the 

grid. Once complete, the coordinates of the winning neuron can be determined for each 

cell centroid. 

SOM results were reviewed by visualizing weights (e.g. distance map or U-

matrix), HGU assignment, and neuron activation frequencies. A distance map is used to 

display neurons as an array of cells coloured to represent the weights (based on 

Euclidian distance) between neighbouring neurons. Smaller weights indicate 

neighbouring neurons are similar while larger weights suggest greater differences. The 



56 

HGUs of samples with information are plotted on the distance map to show their 

distribution. Pie charts are also used to provide a better visualization of the frequency of 

HGUs mapped to each neuron. Lastly, a neuron activation map is plotted to show how 

often each neuron is chosen as the winning neuron. 

Performance 

For SOM to perform well, it must preserve the topology and neighborhoods of the 

input data. SOM performance metrics chosen for this study include quantization and 

topographic error (Forest et al., 2020). Quantization error (QE) is a clustering metric 

calculated based on the average distance between the data points and the map nodes 

to which they are mapped, with smaller values indicating a better fit. This is a basic 

quality measure that allows comparison between maps as part of training but is not a 

standalone assessment of quality. 

Topographic error (TE) is a topographic metric that measures how well the 

structure of the input space is modelled by the map. TE is calculated by finding the best-

matching and second-best-matching neuron on the map for each input and then 

evaluating positions. An error occurs if the input is not next to the best-matching 

neurons. The total number of errors divided by the total number of data points gives the 

topographic error of the map. A lower TE indicates a better performance of the SOM 

algorithm at preserving the topological features of the input space in the 2D grid. 

2.6. Multi-Layer Perceptron 

As described in Section 1.2.2, MLP is commonly used for classification because 

it can discover patterns in large or complex data sets. MLP is used for multi-class 

classification of HGUs at the cell centroids of the mesh to build 3D geologic realizations 

of the study area. The MLP algorithm was implemented using Scikit-Learn (v.0.24.2). 

 The MLP must be trained before it can be used for predictions. Training the MLP 

requires data preparation (splitting, scaling), selection of hyperparameters, and 

assignment of weights based on training and testing. After training, the coordinates of 

the cell centroids are scaled and passed through the MLP classifier to predict HGUs. 

The output includes predicted HGUs and probabilities throughout the study area that can 

be assigned as mesh attributes and then visualized in 3D. An overview of the method 
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used to prepare the MLP classifier is shown in Figure 2.23 with further details provided 

in subsequent sections. 

  

Figure 2.23 Overview of the MLP configuration used to investigate the impact of 
data selection alternatives on training and prediction performance. 

2.6.1. Data Preparation 

The first step in developing the MLP is data preparation (Figure 2.23). Data 

preparation includes splitting the data into training and testing subsets. Both subsets 

then need to be scaled to handle varying magnitudes.   

The data from each alternative was split into training and testing subsets using a 

80% and 20% split, respectively (Brownlee, 2020c). A stratified splitting approach was 

used to ensure each set contains approximately the same percentage of samples of 

each class (e.g., HGU) as the complete set. This means that the class ratios are 

preserved when splitting data. Datasets with a disproportionate ratio of observations in 

each class (imbalanced) can be problematic for MLP. The relative proportions of HGUs 

were reviewed for each alternative (Chapter 3) and performance metrics were selected 

to address this potential issue. 

Data must be in a numerical format and scaled prior to being used in MLP. With 

MLP, categorical targets (HGUs) are automatically transformed to one-hot vectors. 

Feature scaling methods considered for each alternative include normalization 
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(transformed to range between 0 and 1) and standardization (transformed to have a zero 

mean and standard deviation of 1). The scaling method that resulted in the best MLP 

performance was used. 

2.6.2. Hyperparameters 

The selection of hyperparameters follows data preparation (Figure 2.23). Table 

2.13 provides a summary of hyperparameters for the MLP algorithm. Four 

hyperparameters (hidden layer size, alpha, batch size, and initial learning rate) were 

selected for optimization. These hyperparameters were chosen because they appeared 

to have the greatest impact on MLP performance when using the ReLU activation 

function and Adam solver. 

Table 2.13  MLP hyperparameter assignment. 

Hyperparameter Assignment Approach 

hidden_layer_sizes An adequate solution can typically be obtained with a network size that has 
more than three layers (Kanevski et al. 2001). Three hidden layers each having 
100 neurons was initially used; resulting in a five layer network architecture. 

activation The default Rectified Linear Units (ReLU) activation function for hidden layers 
was used. It is one of the most popular activations functions, is non-linear, and is 
relativley fast for larger neural networks.  

solver Default solver Adam used for weight optimization. Softmax applied on the last 
layer by default. 

alpha  Default value of 0.0001. Alpha can be increased/decreased to correct 
overfitting/underfitting respectively. 

batch_size Default value of 200.  

learning_rate_init Default value of 0.001. 

max_iter Default value of 200.  

shuffle  Default True. 

random_state Seven (7) arbitrarily selected for reproducibility. 

tol  Default value of 0.0001. 

warm_start Default False 

early_stopping Used when optimizing hyperparameters. 

validation_fraction Used when optimizing hyperparameters. Default value of 0.1 

beta_1 Default value of 0.9. 

beta_2 Default value of 0.999. 

epsilon Default value of 1e-8. 

n_iter_no_change Default value of 10. 

Note: Hyperparameters highlighted in blue were considered as part of optimization. 
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The GridSearchCV optimizer in scikit-learn was used for hyperparameter 

optimization. GridSearchCV evaluates different combinations of hyperparameters using 

cross-validation to objectively choose a subset that achieves the best performance on 

the training data (Figure 2.24). Early stopping was applied to terminate training when 

validation scores stop improving.  

 

Figure 2.24 Data splitting approach used for hyperparameter optimization. The 
data for each alterantive was split into training and testing subsets 
using a 80% / 20% split. Three cross-validation (CV) runs (CV1, CV2, 
CV3) were conducted on the training subset as part of 
hyperparameter optimization. For each CV, training was conducted 
using two folds (blue) and validated using one fold (green). The 
hyperparameter combination of the best performing model was then 
used for training and testing of the final model. 
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Cross-validation involves dividing the training data into subsets (folds). One-fold 

is withheld from training and then used to evaluate the performance of model. This 

approach provides an indication of the models’ ability to make predictions on unseen 

data and results in less biased or more conservative estimates of model generalization 

compared to other methods (e.g. simple train/test split) (Brownlee, 2020b). For this 

study, each combination of hyperparameters was evaluated using three-fold cross-

validation. The same stratified approach for splitting data into training and testing 

subsets was used for splitting the training data into folds to ensure the relative 

proportions of HGUs were maintained (Figure 2.25).  

 

Figure 2.25  Stratified three-fold cross-validation example using Alternative 1. 
The red lines along the top blue bars represent the index value use 
to split the training data into three folds. The HGU classification for 
each index value is shown along the bottom bar (bedrock – grey, 
clay – blue, coarse – oranage, fines – yellow, till – green).   

The combination of hyperparameters with the highest average validation score 

was selected for the training model. The same stratified three-fold cross-validation 

approach was then used on the training model with the optimized hyperparameters to 

determine the optimal number of iterations. 

2.6.3. Training and Testing 

Once the hyperparameters and iterations have been selected, the development 

of the training model proceeds with training and testing (Figure 2.23) as part of the final 
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evaluation. The MLP is trained using all of the training data. Training establishes the 

weights between the nodes of the neural network by optimizing the log-loss function 

using stochastic gradient descent. The testing data is then used to evaluate the 

generalization performance of the model when making predictions on unseen data.  

2.6.4. Predictions 

Once the training model has been validated and tested, all the data is used to 

train and establish the final weights of the predictive model. Further evaluation of the 

predictive model is not required since the generalization capability was determined 

during the final evaluation of the training model (Section 2.6.3).   

The main purpose of the MLP is to take existing geologic data and make HGU 

predictions in the study area where information is not available. The coordinates of the 

cell centroids for the entire mesh are used as input into the predictive model. In the case 

of Alternative 3, the coordinates of the winning neuron mapped for each cell centroid 

using SOM are used as input instead. 

The same data preparation methods are used to transform inputs prior to running 

the predictive model. Because a fixed random state is used in the predictive model to 

ensure reproducibility, each run provides one geologic realization of the HGUs at the cell 

centroids. Alternatively, the predictive model could be trained without a fixed random 

state which would result in different weights each time training is done and different 

predictive outcomes for each trained model (Brownlee, 2019b). A random process is 

used to initialize the weights, but this was controlled in this study by fixing a random 

state. Random state was not tuned as part of developing the predictive model.  

The output from the predictive model includes HGU and probability predictions at 

each cell centroid. The output was used to calculate the probability of low permeable 

material and log-loss (e.g. entropy) at each cell. The probability of till and clay was 

added to calculate the probability of low permeable material. Areas with a high 

probability of low permeable material could act as aquitards and provide protection from 

surface contamination. The log-loss (e.g. entropy) was used to spatially quantify the 

uncertainty of the geologic realization. It was calculated by taking the negative log of 
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probability (between 0 and 1) for the predicted HGU in each cell. A lower entropy 

indicates less uncertainty while higher values suggest more uncertainty. 

The model outputs were assigned as attributes to the mesh using PyVista and 

then exported as a voxel model for more advanced 3D viewing using Paraview. Select 

model outputs (e.g. HGU predictions, coarse HGU probabilities, low permeability 

probabilities, and entropy) were visualized using ParaView to compare the geologic 

realization from each alternative. Outputs were visualized in 3D cross-sectional view 

roughly positioned near the center of Aquifer 58, in the Nicomekl-Serpentine river valley 

(Figure 2.18). 

2.6.5. Performance Metrics 

The metrics used for MLP were selected with consideration of the potential for 

imbalanced classes. They include log-loss, balanced accuracy, and confusion matrix.  

Log-loss (also called cross-entropy) is the loss function used by MLP to optimize 

results, meaning that the weights during training are adjusted with the objective of 

minimizing log-loss. To solve multiclass classification problems, the MLP algorithm 

predicts the probability of each HGU for every sample. The prediction probabilities and a 

binary representation of the target HGU are used to calculate entropy. During training, 

the weights are adjusted and the prediction probabilities change with the objective of 

minimizing log-loss. Log-loss quantifies how good or bad the prediction results are 

based on how far the predictions are from the actual values. An entropy value of 0 

indicates a model with perfect skill. Higher values indicates poorer performance.  

Balanced accuracy is the average recall obtained on each class based on the 

multiclass definition used in scikit-learn (Buitinck et al., 2013). Recall (also known as 

sensitivity) is the fraction of relevant instances that were correctly predicted (e.g. 10 

Sand HGUs were predicted out of 15 possible instances). The balance accuracy score 

ranges from 0 to 1 with values closer to 1 indicating good accuracy. 

A confusion matrix is a common technique used to summarize the performance 

of a classification algorithm. It provides a heat map of the number of correct and 

incorrect predictions for each label. It highlights the errors being made by the MLP or 

what is making the MLP ‘confused’ when making predictions.  
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2.7. Verification 

Verification is the last step in the workflow to further evaluate the performance of 

MLP at predicting HGUs in the study area (Figure 2.23). The geologic realization of the 

alternative with the best prediction results was visually compared to prediction results 

using k-nearest neighbours (KNN), published interpretations of the subsurface, and 

hydrogeologic indicators within the region (e.g. artesian conditions).  

KNN is an algorithm commonly used for classification. Predictions are made 

based on the most common HGU among its ‘k’ nearest neighbours. The KNN algorithm 

was implemented using Sklearn. Default hyperparameters were used except for setting 

the weight function to use distance. Inputs were normalized to avoid scale bias in the 

predicted results. 

Cross-sectional views of subsurface interpretations provided by Golder (2005) for 

the Township of Langley were compared to predictions using MLP. In addition, the 

predicted geology within the Surrey area focusing on the Serpentine-Nicomekl river 

valley where Aquifer 58 is mapped was also reviewed to determine if confining units are 

represented by the geologic realization for artesian conditions to occur. Both of these 

locations correspond to areas with a relatively high density of well records.  
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Chapter 3.  
 
Results 

3.1. Data Selection Alternatives 

3.1.1. Input Features and Targets 

As discussed in Section 2.5, three data selection alternatives were developed by 

processing data from the geology database and mesh. Alternative 1 consists of HGUs 

spatially represented using well coordinates and the elevation at the top of each interval 

from the geology database. Alternative 2 uses the HGU mode within each cell of the 

mesh based on point cloud data and the coordinates of the cell centroid. Similar to 

Alternative 2, Alternative 3 uses the HGU mode within each cell but takes the 

coordinates of the winning neuron from mapping each cell centroid onto a 2D grid using 

SOM. SOM results are provided in Section 3.1.2 

Normalized histograms showing the distribution of HGUs are shown in Figure 

3.1. The histogram for Alternative 3 is not shown but is similar to Alternative 2. Coarse 

occurs as the most frequent HGU for all alternatives which may be reflective of a higher 

density of data where permeable deposits exist. For Alternative 2 and 3, the distribution 

of bedrock and clay increases after the interval data from Alternative 1 is processed to 

take the most common HGU in each mesh cell. The increase in bedrock and clay is 

partially attributed to typically thick intervals that are then represented in 5 m increments 

in those alternatives. The frequency of till is relatively low compared to the other 

unconsolidated HGUs (clay, coarse, fines) which may be attributed to till not being 

recognized as till during logging (e.g. logged as clay instead of till) or it has been 

substantially eroded within the study area during deglaciation.   
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Figure 3.1  Normalized histograms showing HGU frequency for a) Alternative 1 
and b) Alternative 2.  

All three alternatives have imbalanced HGU distributions, meaning that the 

HGUs are not represented equally. Imbalance is common in classification datasets and 

ratios are typically used to quantify the degree of imbalance (Brownlee, 2020a). The 

greatest imbalance ratio is 1:5 for Alternative 1 (coarse compared to bedrock) and 1:3 

for Alternative 2 and Alternative 3 (coarse compared to till). The imbalance in the HGU 

distribution is not considered extreme (e.g. 1:100) but may result in some bias predictive 

performance of the machine learning algorithm. 

The spatial distribution of samples for each alternative is different (Figure 3.2). 

Alternative 2 has fewer lateral locations compared to Alternative 1 because cell centroids 

are used instead of well locations. However, there are more samples for Alternative 2 in 

the vertical direction since intermediate points are added to intervals greater than 5 m 

thick. For Alternative 3, the spatial distribution HGUs is now assigned using coordinates 

from 2D mapping. Data is grouped as clusters with multiple HGUs assigned to the same 

2D coordinates.  

  

a) b) 



66 

a) b) c) 

 
  

 

Figure 3.2  Spatial difference in point data distribution between a) Alternative 1, 
b) Alternative 2, and c) Alternative 3. HGUs are shown for Alternative 
1 and 2. Spatial clusters are shown for Alternative 3 to show 
grouping of data. Surficial geology points, including bedrock 
outcrops to depths of 50 m, are included for each alternative.  

3.1.2. SOM Training 

As discussed in Section 2.5.2, hyperparameters selected for SOM optimization 

included sigma and learning rate. The search space, which represents the range of 

values considered, is shown in Table 3.1 for both stages. The search space for Stage 1 

includes larger sigma and initial learning values compared to Stage 2. Smaller values 

are used in Stage 2 to limit the neighborhood distance and slow the learning rate to 

refine clustering from Stage 1. Optimized hyperparameters were selected based on the 

combination that resulted in the lowest QE. As shown in Table 3.1, the best 

hyperparameters include a sigma of 40 and learning rate of 0.75 for Stage 1 and a 

sigma of 2 and learning rate of 0.05 for Stage 2.  
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Table 3.1  Search space for SOM hyperparameter optimization. 

Parameter Search Space 

Stage 1 

Sigma 40 35 30 

Learning Rate 1.0 0.75 0.5 

Stage 2 

Sigma 10 5 2 

Learning Rate 0.5 0.1 0.05 

Notes: Optimized hyperparameters are highlighted in blue. 

To establish the number of iterations, the QE was reviewed for iterations equal to 

10,000, 15,000, 20,000, and the number of samples (85,063). For both SOM stages, the 

QE stopped decreasing after 15,000 iterations; therefore; the number of iterations was 

set at 15,000 for both SOM stages. 

For each stage, the SOM was configured using the optimized hyperparameters 

and trained using the scaled data from Alternative 2. The QE and TE results for each 

stage are summarized in Table 3.2. The QE increased while the TE decreased from 

Stage 1 to Stage 2. TE is more representative of the performance of the SOM at 

preserving the topological features of the input space in the 2D grid. 

Table 3.2  SOM Quantization and Topographic Error Results. 

 SOM Stage 1 SOM Stage 2 

Quantization Error 0.12 0.24 

Topographic Error 0.14 0.06 

 

The training results for both stages are visualized in Figure 3.3 to 

 

Figure 3.5. Figure 3.3 shows the distance map (U-Matrix) where the neurons are 

represented as a grid cell and the greytone represents the weighted distance from the 

neighbouring neurons. If the distance is high, a darker colour is assigned to show the 

surrounding weights are very different. A lighter colour is assigned when the distance is 

low. The lighter portions typically represent clusters while the black portions represent 

the division between clusters.  
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Figure 3.3  Distance map (U-matrix) for Stage 1 SOM (left) and Stage 2 SOM 
(right). 

Figure 3.4 shows how often the neurons of the map were assigned as the 

winning neuron (e.g. activated). Initially, boundary effects are noted in the Stage 1 SOM 

based on the high number of neurons activated along the edges of the map. The final 

Stage 2 SOM shows a smoother distribution of activation throughout the map and less 

boundary effects. 

 

Figure 3.4  Neuron activation map for Stage 1 SOM (left) and Stage 2 SOM 
(right). 

The proportion of HGUs at each neuron are shown in Figure 3.5. Each neuron 

typically has more than one HGU. This reflects the variability of HGUs at each cluster 

location. The potential impact of SOM architecture on MLP performance is further 

discussed in Section 3.2.4. 
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Figure 3.5  Pie plots showing the proportion of HGUs at each neuron for Stage 1 
SOM (left) and Stage 2 SOM (right). 

The trained SOM was used to map the co-ordinates of the cell centroids once 

they were transformed using the same standardization completed on the Alternative 3 

dataset. This means that every cell centroid (over 3 million) was mapped to a neuron 

(7,578) on the 2D grid. Multiple centroids are mapped to the same neuron, resulting in 

spatial clusters when the data is viewed in 3D (Figure 3.2). 

3.2. MLP 

3.2.1. Data Preparation 

Training and testing subsets were generated using 80% / 20% split of the data 

and a stratified sampling approach to ensure a consistent distribution of HGUs. 

Coordinates (northing, easting, and elevation for Alternative 1 and Alternative 2, X and Y 

for Alternative 3) were used as feature inputs, while the HGUs were assigned as targets 

to develop the MLP.  

Standardization (-1 to 1) and normalization (0 to 1) was used to transform the 

training data which was then fit to a baseline MLP classifier to compare performance. 

The resultant balanced accuracy scores are shown in Table 3.3. The standardized input 
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data consistently resulted in better model performance; therefore, standardization was 

used to scale coordinates for all alternatives. 

Table 3.3  MLP feature scaling balanced accuracy scores. 

 Alternative 1 Alternative 2 Alternative 3 

No Scaling 29 26 13 

Standardized (-1 to 1) 39 46 42 

Normalized (0 to 1) 35 43 36 

3.2.2. Hyperparameter Optimization 

Hyperparameters were optimized using a stratified 3-fold cross-validation grid 

search that considers all combinations of predefined hyperparameter values. 

Hyperparameters selected for optimization include hidden layer size, alpha, batch size, 

and initial learning rate as discussed in Section 2.6.2. The hyperparameter default 

values were used and modified by an order of magnitude to establish upper and lower 

limits of the search space as shown in Table 3.4. The best hyperparameters for each 

alternative based on grid search results are shown in Table 3.5. 

Table 3.4  Search space for MLP hyperparameter optimization. 

Parameter Search Space 

Hidden Layer Size 100x3 100x4 100x5 

Alpha 0.00001 0.0001 0.001 

Batch Size 20 200 2000 

Initial Learning Rate 0.0001 0.001 0.01 

 

Table 3.5  Optimized hyperparameters for each MLP training model. 

Hyperparameter Alternative 1 Alternative 1 Alternative 3 

Hidden Layer size 100x5 100x5 100x5 

Alpha 0.0001 0.0001 0.0001 

Batch Size 2000 200 200 

Initial Learning Rate 0.01 0.001 0.001 

Epochs    
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a) 

 
b) 

 
c) 

 

Figure 3.6  Balanced accuracy versus number of epochs for a) Alternative 1, b) 
Alternative 2, and c) Alternative 3. 



72 

Balanced accuracy scores for various iterations are shown in Figure 3.6. Each 

epoch (X-axis) is equal to one pass of the entire data set through the algorithm. In 

general, balanced accuracy increases for both the training and validation datasets as the 

number of epochs increases, indicating an improvement in model performance and 

lower model bias. Balanced accuracy typically plateaus after 200 to 500 epochs 

depending on the alternative. Model variance (gap between training and validation 

scores) also increases as the number of epochs increases, indicating a trade-off with 

improvements in model bias. The number of epochs in the training model was updated 

from the default value of 200 to 500 for Alternative 2 and was not modified for Alternative 

1 and Alternative 3 based on Figure 3.6.  

3.2.3. Training and Testing 

The model was configured using the optimized hyperparameters and iterations 

and then trained using the training data. The generalization performance of the model 

was then evaluated by using the testing data. Performance metrics (log-loss, learning 

curve, balanced accuracy, confusion matrix) were reviewed to evaluate model 

performance.  

The log-loss curves from training are shown in Figure 3.7. This shows the 

performance of the MLP during training as the number of epochs increase. MLP tries to 

minimize log-loss using stochastic gradient descent by adjusting weights during training. 

At the end of training, Alternative 2 has the lowest log-loss at 0.8, followed by Alternative 

3 at 1.10 and Alternative 1 at 1.15. For a naïve classification model, which assumes the 

same probability for each HGU, the log-loss score would be 1.3 (e.g. -log(0.2)). Using 

this as a baseline score, the MLP models for all three alternatives achieve a lower log-

loss. 
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a) 

 
b) 

 
c) 

 

Figure 3.7  Training model log-loss curves for a) Alternative 1, b) Alternative 2, 
and c) Alternative 3. 
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Learning curves are shown in Figure 3.8. They show the training and validation 

scores for different training set sizes for each alternative. For Alternative 1 and 

Alternative 2, the training score is the highest with smaller number of samples and 

corresponds to the lowest validation scores because the model does a poor job 

predicting unseen data. As the number of training samples increases, the training score 

decreases but the model does a better job predicting unseen data based on higher 

validation scores. This is the normal behaviour for a learning curve (Yang, 2018). For 

Alternative 3, the balanced accuracy increases for both training and validation  

a) 

 
b) 

 
c) 

 

Figure 3.8  Training model learning curve, scalability based on the number of 
training examples, and model performance relative to run time for a) 
Alternative 1, b) Alternative 2, and c) Alternative 3. 
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scores as the number of samples increases. This may be attributed to multiple HGUs 

being assigned to the same winning neuron. As more samples are used for training, the 

model does a better job predicting the most frequently mapped HGU at each neuron.  

Learning curves indicate models that show relatively high bias (based on 

relatively low balanced accuracy) and low variance (given the relatively small gap 

between training and validation scores). The models appear to be underfitting the 

training data. Adding more training examples is unlikely to lead to better training based 

on training curves that generally appear to plateau. This could be attributed to the 

variability in HGU distribution and the limitations of the algorithm in reproducing this level 

of subsurface complexity. Additional data may improve validation scores given that 

validation curves do not appear to have plateaued. The runtimes generally increase 

linearly as the number of training examples increase. Runtimes for Alternative 2 and 

Alternative 3 are similar and are generally an order of magnitude higher compared to 

Alternative 1. Model performance appears to plateau as runtimes increase.  

Table 3.6 provides the balanced accuracy scores for training and testing of each 

MLP model. MLP tuning (e.g. hyperparameter optimization, number of epochs) improved 

training performance compared to the use of default MLP values for all alternatives. 

Tuning improved balanced accuracy scores by 9 to 17%. The alternatives for data 

selection used in the modelling also impacted scoring. Alternative 2 had the highest 

training and testing scores. Model variance (difference between training and testing 

score) is lowest for Alternative 3 and highest for Alternative 2 with values below 5%. The 

balanced accuracy scores indicate modelling results with a high bias and low variance. 

Typically, training and testing accuracy scores above 80% indicate good performance for 

other machine learning applications (machinelearningmastery.com accessed on April 11, 

2022); however, this may not be achievable given the multi-class classification problem 

and variability in subsurface data for this study. 

Table 3.6  Balanced accuracy scores for MLP training models developed using 
the data selection alternatives. 

 Alternative 1 Alternative 2 Alternative 3 

Training (default) 39 48 42 

Training (tuned) 48 65 51 

Testing 44 60 49 
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The confusion matrix from the testing results is shown in Figure 3.9 for each 

alternative. The scoring has been normalized to show the precision accuracy of the 

predicted HGUs for each alternative. For all alternatives, the MLP predicts bedrock the 

most accurately despite bedrock samples occurring less frequently in the datasets 

(Figure 3.1). This could be attributed to the continuity of bedrock once it is encountered. 

The prediction performance for unconsolidated HGUs follows the same trend for all 

alternatives where Coarse has the second highest precision with lower precision in 

descending order for Clay, Fines, and Till. This may be attributed to the distribution of 

unconsolidated HGUs (Figure 3.1) or could be associated with discontinuity of 

unconsolidated HGUs in the subsurface and the underfitting of the model to capture this 

level of complexity. From Figure 3.9, Clay and Till are most often confused with each 

other while Coarse seems to be confused most often with Till and Fines. Fines are 

commonly confused with Till and Clay. 

Several ideas were considered to improve model performance but others exist 

that were not explored (Brownlee, 2019a). The regularization term for MLP (e.g. alpha) 

was reduced to address high bias and low variance with minimal success. Alternative 2 

and Alternative 3 make changes to the original dataset and result in better model 

performance but the model still appears to underfit the data. Algorithm tuning (e.g. 

hyperparameter optimization, number of epochs) improved model performance but 

model bias remains relatively high based on performance metric standards for other 

machine learning applications. A literature search was conducted to compare 

performance metrics of MLP results for other geoscience applications, but none were 

found. 
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a) 

 

b) 

 

c) 

 

Figure 3.9  Normalized confusion matrix over the predicted HGU based on 
testing results for a) Alternative 1, b) Alternative 2, and c) Alternative 
3. The values along the diagonal represent the percentage of 
correctly classified samples. The percentage values off the diagonal 
show what the true HGU was confused with (e.g. 18% of the sample 
predicted as till should have been fines).  
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3.2.4. Predictions 

Before making predictions, all features for each alternative were scaled and used 

to train the MLP. Scaling was based on the coefficients calculated from the training data. 

Once trained, the MLP was used to predict HGUs at scaled coordinates representing the 

entire study area for each alternative. Cell centroid coordinates from the mesh were 

used for Alternative 1 and Alternative 2 while the coordinates from 2D SOM mapping 

were used for Alternative 3. This resulted in the prediction of HGUs at a total of 

3,336,175 unique cell centroids and 7,578 unique SOM neurons.  

Select model outputs (e.g. HGU predictions, coarse HGU probabilities, low 

permeability probabilities, and entropy) were visualized using ParaView to compare MLP 

results. Outputs were visualized in 3D cross-sectional view roughly positioned near the 

center of Aquifer 58 with additional 3D visualization of probabilities greater than 75%.  

The cross-sectional view of predicted HGUs for each alternative is shown in 

Figure 3.10. Alternative 1 appears to be the most underfit which is expected given it has 

lowest balanced accuracy score. Alternative 2 shows more complexity in the subsurface 

compared to Alternative 1 and Alternative 2. Alternative 3 is more comparable to 

Alternative 2 but is more generalized. This suggests the dimensions of the 2D SOM 

could be inadequate to represent the subsurface complexity. 

Figure 3.11 shows the probability distribution of the Coarse HGU for each 

alternative. Additional 3D visualization showing the distribution of Coarse probabilities 

above 75% is shown in Figure 3.12. Alternative 2 appears to have a larger coverage and 

higher probability values for Coarse HGU compared to the other alternatives. 
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a) 

 
b) 

 
c) 

 
 

 

Figure 3.10  Cross-sectional view of HGUs from the MLP predictive model 
developed using a) Alternative 1, b) Alternative 2, and c) Alternative 
3. 
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a) 

 
b) 

 
c) 

 
 

 

Figure 3.11  Cross-sectional view of probability for Coarse HGU from the MLP 
predictive model developed using a) Alternative 1, b) Alternative 2, 
and c) Alternative 3. 

  

0.0 1.0 
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a) 

 
b) 

 
c) 

 

Figure 3.12  Cross-sectional view of probability above 75% for Coarse HGU from 
the MLP predictive model developed using a) Alternative 1, b) 
Alternative 2, and c) Alternative 3. 

 

The probability distribution of low permeable material is shown in Figure 3.13. 

The probabilities of both Till and Clay HGUs were added to calculate the probability of 

low permeable material. Additional 3D visualization showing the probabilities above 75% 

for this material is shown in Figure 3.14. Similar to the Coarse HGU, Alternative 2 has 

the largest coverage of low permeability areas with relatively high probabilities. 
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a) 

 
b) 

 
c) 

 
 

 

Figure 3.13  Cross-sectional view of probability for low permeability material (Till 
and Clay HGUs) from the MLP predictive model developed using a) 
Alternative 1, b) Alternative 2, and c) Alternative 3. 

  

0.0 1.0 
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a) 

 
b) 

 
c) 

 

Figure 3.14  Cross-sectional view of probability above 75% for low permeability 
material (Till and Clay HGUs) from the MLP predictive model 
developed using a) Alternative 1, b) Alternative 2, and c) Alternative 
3. 

The last classification output is shown in Figure 3.15 and visualizes entropy for 

the three alternatives. A lower entropy value indicates more confidence in the predictions 

while higher values reflect greater uncertainty. The spatial coverage of higher entropy 

values is generally greater for Alternative 1 and Alternative 3 compared to Alternative 2. 

The average entropy values of 0.72, 0.28, and 0.64 for Alternatives 1, 2, and 3, 

respectively, indicate the most confidence in Alternative 2 results. The relatively small 

distribution of samples within the study area (e.g. less than 5% of the mesh cells have 

data), particularly at deeper elevations within the model, also contributes to uncertainty 

which does not appear to be reflected in entropy values. Extrapolation was required to 

make predictions given the distribution of available data for the region. 
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a) 

 
b) 

 
c) 

 
 

 

Figure 3.15  Cross-sectional view of entropy calculated based on the MLP 
predictive model developed using a) Alternative 1, b) Alternative 2, 
and c) Alternative 3. 

Compared to Alternative 1 and Alternative 3, Alternative 2 had the lowest log-loss 

(Figure 3.7), highest balanced accuracy scores for both training and testing (Table 3.6), 

and highest precision for all HGUs (Figure 3.9). Based on the cross-sectional reviews, 

Alternative 2 shows more complexity in the subsurface compared to Alternative 1 and 

Alternative 3. Alternative 2 may have performed better because HGUs were averaged 

based on the cell mode which may have reduced some noise associated with the 

variability of HGU distribution for Alternative 1. The size of the 2D SOM for Alternative 3 

may have been inadequate to represent the subsurface complexity. As a result, 

0.0 1.6 
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Alternative 2 was selected as the preferred alternative based on better performance 

metrics and cross-sectional reviews that indicated more complexity in the subsurface 

compared to the other alternatives. Further verification of this geologic model is 

discussed in Chapter 4.  
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Chapter 4.  
 
Verification against subsurface interpretations and 
hydrogeologic indicators 

The geologic model results from MLP using Alternative 2 data were compared to 

interpolation using k-nearest neighbours (KNN) as well as published interpretations of 

the subsurface and hydrogeologic indicators within the region (e.g. artesian conditions). 

This verification is intended to determine how representative the predictive results are by 

considering alternative analytical techniques, independent studies, and additional 

hydrogeologic information.  

4.1. K-Nearest Neighbours 

KNN and MLP predictions of HGUs using Alternative 2 data were compared for 

verification purposes. This included a review of predicted HGU frequencies and geologic 

model outputs (e.g. HGU predictions, coarse HGU probabilities, low permeability 

probabilities, and entropy). The KNN algorithm was selected as an alternative analytical 

technique since it is commonly used to interpret categorical data (Fuentes et al. 2020). 

In general, the frequency of predicted HGUs is comparable between MLP and 

KNN. As shown in Figure 4.1, both algorithms have a high percentage of cells predicted 

as bedrock, clay, coarse, and fines while the lowest percentage is till. There are some 

differences in HGU frequencies between the two interpolation methods but they are 

typically less than 5%.  

Plan views of the predicted surficial results shown in Figure 4.2 are comparable 

to the distribution of surficial geology point data (Section 2.2.4). Both algorithms 

generally reproduce the spatial distribution of HGUs from surficial mapping. KNN is able 

to reproduce HGUs that are more localized and results in a more heterogeneous 

distribution overall. 
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a) b) 

  

Figure 4.1  Normalized frequencies of HGUs using Alternative 2 data and 
predictive models for a) MLP and b) KNN. 

a) 

 
b) 

 
 

 

Figure 4.2  Plan view of predicted HGUs based on a) MLP or b) KNN predictive 
models developed using Alternative 2 data. 
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A cross-sectional view of predicted HGUs for each algorithm is shown in Figure 

4.3. The HGU predictions made by KNN show more variation and are generally more 

discretized. The MLP predictions are more generalized but, as noted above, still have a 

similar frequency distribution and recreate the general subsurface trends throughout the 

study area similar to KNN. Both algorithms predict unconsolidated material below 

bedrock sections outside of the cross-section view; therefore, it may be best to 

incorporate bedrock directly into the geologic model and make predictions only on 

unconsolidated material. 

a) 

 
b) 

 
 

 

Figure 4.3  Cross-sectional view of predicted HGUs based on a) MLP or b) KNN 
predictive models developed using Alternative 2 data. 

The probability distribution of Coarse HGU and low permeability material 

(combined probabilities of Till and Clay HGUs) for each algorithm are shown in Figure 

4.4 and Figure 4.6, respectively, with additional 3D visualization of probabilities above 

75% shown in Figure 4.5 and Figure 4.7. There are spatial similarities between the 

predictions from the two algorithms with a more generalized interpolation from MLP.  
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a) 

 
 

 
b) 

 

Figure 4.4  Cross-sectional view of probability for Coarse HGU based on 
a) MLP or b) KNN predictive models developed using 
Alternative 2 data. 

a) 

 
b) 

 

Figure 4.5  Cross-sectional view of probability above 75% for Coarse HGU 
based on a) MLP or b) KNN predictive models developed using 
Alternative 2 data. 

0.0 1.0 
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a) 

 
 

 
b) 

 

Figure 4.6  Cross-sectional view of probability for low permeability material 
(Clay and Till HGUs( based on a) MLP or b) KNN predictive models 
developed using Alternative 2 data. 

a) 

 
b) 

 

Figure 4.7  Cross-sectional view of probability above 75% for low permeability 
materail (Clay and Till HGUs) based on a) MLP or b) KNN predictive 
models developed using Alternative 2 data. 

  

0.0 1.0 



91 

Entropy values for HGU predictions from MLP and KNN are shown in Figure 4.8. 

Similar to the other modelling outcomes, entropy values generally have a smoother 

presentation and appear less blocky for MLP compared to KNN. MLP results in higher 

localized values of entropy but the overall average entropies are similar (0.28 for MLP 

versus 0.30 for KNN). The uncertainty associated with HGUs predicted at deeper 

elevations for both algorithms is likely underestimated using entropy given the limited 

distribution of subsurface data and extrapolation required to interpret the entire study 

area.  

a) 

 
 

 
b) 

 

Figure 4.8  Cross-sectional view of calculated entropy based on a) MLP or b) 
KNN predictive models developed using Alternative 2 data. 

Based on the above, predictions using MLP and KNN have comparable results. 

MLP provides a more generalized interpolation of outputs while the KNN appears to be 

more discretized and blocky in appearance. 

0.0 1.6 
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4.2. Township of Langley 

Geologic interpretations within the Township of Langley (TOL) published by 

Golder (2005) were reviewed to verify MLP predictions. This includes comparison of two 

geologic cross-sections and a 3D representation of major aquifers. 

The representative geologic cross-sections include A-A’ and B-B’ aligned south-

north and east-west, respectively, within the Langley Uplands (Figure 4.9). Cross-section 

A-A’ is parallel to 240th Street beginning at 24th Avenue to 64th Avenue for 8.5 km. Cross-

section B-B’ is parallel to 31B Avenue and 31A Avenue starting at 260th Street to 

Lefeuvre Road for a distance of 4 km.  

 

Figure 4.9  Approximate locations of Golder (2005) geologic cross-sections (A-
A’ and B-B’) and provincial mapped aquifers of interest within the 
Township of Langley area. 

Figure 4.10 and Figure 4.11 present cross-sections A-A’ and B-B’, respectively, 

for both interpretations from Golder and MLP. The MLP cross-section locations were 

prepared with a vertical exaggeration of 22 to be consistent with scaling used by Golder. 

MLP cross-sections include Alternative 2 point data (HGU mode at the cell centroid) 
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whereas the Golder cross-sections show borehole lithology but the well tag numbers are 

not included to identify the well.  

 

 

 

 

 

 

 

Figure 4.10  Geologic cross-section A-A’ a) modified from Golder (2005) and b) 
from MLP predictions using Alternative 2 data. Provincial aquifers 
AQ1144, AQ33 and AQ35 are labeled and shaded grey in a. Pink 
arrows are possible tie lines.  

Cross-section A-A’ from the MLP geologic model shows AQ35 separately from 

AQ33 and AQ1144 consistent with the interpretation by Golder (2005). The distribution 

of Coarse HGU lumps AQ33 and AQ1144 into one aquifer unit which may be reasonable 

given arbitrary cut-offs were used by Golder to establish aquifer extents. Provincial 

mapping of AQ33 overlies AQ1144 although this is not shown on the Golder cross-

section. There are interconnected areas between the three aquifers elsewhere in the 

AQ1144 

AQ33 

AQ35 

AQ1144 
AQ35 

ARBITRARY CUT-OFF 

AQ33 

a) 

b) 
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TOL area (Golder 2005). The Coarse HGU from MLP is interpolated at the surface 

where AQ1144 (confined aquifer) has been mapped and extends to deeper depths 

compared to interpretations by Golder. In general, the geologic model performs well at 

representing the subsurface in this area with the potential issue of extrapolation at depth.   

Geologic cross-section B-B’ showing interpretations from Golder (2005) and the 

MLP predictions are shown in Figure 4.11. There is more uncertainty in the alignment of 

this cross-section given the differences in subsurface data. Despite this, it appears AQ27 

and AQ35 are lumped in the same Coarse HGU instead of being separate as interpreted 

by Golder. The original cross-section B-B’ from Golder shows the aquifer material for 

AQ32 as sand and gravel but is described as ‘a body of fine sands, sand and locally 

gravel and till’ in the report. The MLP geologic model shows a relatively large Fines HGU 

approximately 40 m thick in this area. AQ33 and AQ1193 are lumped in the Coarse HGU 

from MLP predictions and have a larger extent compared to interpretations by Golder. 

The description for AQ1193 in Golder (2005) indicates the aquifer is located between 

+20 and -20 masl; therefore, it may be reasonable for the Coarse HGU to extend below 

0 masl in this area. In general, the MLP cross-sections show a more generalized 

representation of aquifers and greater connectivity of permeable units compared to the 

Golder cross-sections. 

Golder identified 18 major aquifers based on hydrostratgraphic interpretation of 

geologic units. For these major aquifers, permeable units that overlap by at least 10 

percent and any aquitard between overlapping units less than 10 m thick were 

considered by Golder as ‘well-connected hydraulically’. The 3D representation of the 18 

major aquifers from Golder (Figure 4.12) was compared to MLP predictions (Figure 

4.13). Coarse HGUs with a probability above 50% (50% Coarse) fom MLP modelling 

were arbitrarily selected and grouped by connectivity to represent geologic areas that 

are ‘well-connected hydraulically’. This includes lithologic materials described as sand, 

sand and gravel, and gravel, but does not include fines such as ‘silty sand’ which may be 

important to this local area for deeper aquifer characterization purposes (Section 4.3). 

Grouping by connectivity assigns a connectivity zone for each group of connected cells. 

The elevation and connectivty of 50% Coarse from MLP modelling are shown in Figure 

4.13 to provide a comparison to the 3D representation of major aquifers from Golder 

(2005). 
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Figure 4.11  Geologic cross-section B-B’ a) modified from Golder (2005) and b) 
from MLP predictions using Alternative 2 data. Provincial aquifers 
AQ33, AQ1193, AQ27, AQ35 and AQ32 (possibly) are labeled and 
shaded grey in a. Pink arrows are possible tie lines.  
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AQ35? 

AQ32 AQ1193 AQ33 

AQ33 AQ32? 
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Figure 4.12  3D representation of major aquifers from Golder (2005). 

The unconfined aquifers including the Brookswood Aquifer (AQ41), Fort Langley 

Aquifer (AQ41), Hopington AB Aquifer (AQ35), and Abbotsford A (AQ15) are 

represented in Figure 4.13; however, some of the linear features, interpreted as 

metlwater channels, extending from the main volume of the Brookswood (AQ41) and 

Abbotsford A (AQ15) aquifers by Golder (2005) are not reproduced using MLP. A finer 

mesh resolution and additional surficial data points could potentially be used to model 

this connection.  

Figure 4.13b shows a large connected volume that consolidates several of the 

mapped aquifers in the area. This consolidated representation of aquifers may be 

plausible given the potential for interconnection noted by Golder (2005); however, the 

use of a higher probability as a cut-off limit may be more representative of aquifer 

extents which would be more conservative for water exploration but less conservative for 

water management purposes. Some of the deeper aquifers in Golder (2005) are only 

partially represented or not reproduced in Figure 4.13 likely due to aquifer materials with 

a greater fines content (e.g. silty sand) not being captured in the Coarse HGU but that 
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are locally significant as an aquifer unit. A more detailed review of data within this area is 

required to support conceptualization of intertill aquifers given the limited frequency of 

data points categorized as Till.  

  

 

 

    

Figure 4.13  3D Representation of probability above 50% for Coarse HGU (50% 
Coarse HGU) showing a) elevation and b) connectivity zones. 
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4.3. Nicomekl-Serpentine Valley 

Most flowing artesian wells within the study area are in the Surrey-Langley area, 

including the Nicomekl-Serpentine valley (Figure 4.14). Flowing artesian wells can occur 

when the aquifer is confined by low permeability materials or where there are large 

upward hydraulic gradients if the aquifer is unconfined. There are several provincially 

mapped aquifers within the area as shown in Figure 4.14. A well drilling advisory 

currently exists for Aquifer 58 (Nicomekl-Serpentine) due to the potential for flowing 

artesian conditions (FLNRORD, 2018). A recommendation to include a well drilling 

advisory for the western portion of Aquifer 33 (West of Aldergrove) has been made by 

Johnson et al. (2022).   

 

Figure 4.14  Location map of cross-section D-D’ and C-C’, flowing artesian wells 
in GWELLS, and Provincial mapped aquifers of interest within the 
Surrey-Langley area. Aquifer 58 and Aquifer 33 are outlined in black 
and labelled. 

Aquifer 58 (Nicomekl-Serpentine) includes two permeable units consisting of a 

shallower unit generally occurring between -60 and -90 masl in the Clayton Upland area 

(Figure 4.14) and a deeper unit up to 20 m thick generally occurring between -120 and    

-150 masl that underlies the Clayton Upland but also extends along the northern portion 
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of TOL (Province of BC, 2016b). Aquifer 33 (West of Aldergrove) is described as an 

intertill aquifer consisting of two permeable units including a shallower unit between 5 to 

15 m thick and a deeper unit up to 20 m thick, both sloping westward and merging along 

the western extent of the aquifer (Province of BC, 2016a).  

Geologic cross-sections that intersect Aquifer 58 and Aquifer 33 are shown in 

Figure 4.15 based on MLP predictions trained using Alternative 2 data. The MLP 

predictions show upper and lower permeable units consistent with the description 

provided for Aquifer 58 and Aquifer 33. The continuity of the lower permeable unit for 

AQ58 is typically associated with the Fines HGU which includes subsurface materials 

described as silty sand. There are several overlapping confined aquifers in the Surrey-

Langley area that were difficult to distinguish based on the MLP geologic model. Most 

flowing artesian wells appear to be screened in confined aquifers; however, several may 

be screened in unconfined Aquifer 35. The northward and westward sloping topography 

around unconfined Aquifer 35 likely contributes to flowing artesian conditions. A 

combination of topography and confining conditions along the western limit of Aquifer 33 

may contribute to flowing artesian wells. The majority of flowing artesian conditions 

appear to be attributed to low permeability material overlying aquifer material and the 

topographical transition from upland to lowland as discussed below. 

The distribution of clay in relation to flowing artesian wells in the Surrey-Langley 

area is shown in Figure 4.16. Till is not shown since the interpolated spatial extent is 

limited. Connectivity zones are assigned where clay cells are adjacent to each other. 

The majority of clay cells are connected in one zone (dark blue) that covers the majority 

of the area of interest with variability in both the vertical and horizontal directions. The 

rest of the connectivity zones for clay consist of a much smaller number of cells. 
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Figure 4.15  Geologic cross-section C-C’ and D-D’ showing predicted HGUs 
based on Alternative 2 data and MLP interpolation algorithm, 
artesian well locations (red tubes), and inferred provincial mapped 
aquifers. The lines of cross section are shown in Figure 4.14. 

The top view in Figure 4.16 shows the clay connectivity zones intersecting the 

tops of most flowing artesian wells. The bottom view shows the bottom of most flowing 

wells extending through the clay. This suggests the model adequately represents the 

confining unit that contributes to flowing artesian conditions in the Surrey-Langley area. 

Aquifer material confined by the clay unit includes sand and gravel (e.g. standardized as 

Coarse HGU) but also includes finer grained material like silty sand (e.g. standardized 

as Fines HGU).   
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Figure 4.16  Clay HGU connectivity zones (connectivity ID) and flowing artesian 
wells (red tubes) for a) top view and b) bottom view of the geologic 
model. 

a) 

b) 
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Chapter 5.  
 
Conclusions and Recommendations 

5.1. Conclusions 

The feasibility of using Multilayer Perceptron (MLP) to interpret glacial deposits in 

the subsurface of the Fraser-Whatcom basin was explored in this study. Three-

dimensional block-model representations of the subsurface were constructed using three 

data processing methods to train MLP. This required development of a geologic 

database, standardization of geologic material descriptions, and creation of a 3D mesh. 

The performance of MLP at producing a geologic realization for each data selection 

alternative was compared and the best outcome verified to further evaluate the suitability 

of MLP predictions. 

A geologic database was developed based on borehole data and surficial 

mapping. Borehole data sources include publicly available data collections managed by 

government agencies in both British Columbia and Washington State. This data source 

included approximately 13,900 wells, 87,500 material descriptions, 210 hydraulic 

conductivity values, and 2,000 well yield estimates. Several data processing steps were 

required to clean and standardize available data. Borehole data was augmented with 

approximately 40,000 data points based on surficial mapping. This point data was 

extracted using a grid spacing of one (1) km to improve the lateral distribution surficial 

information where no boreholes exist. Additional delineation of bedrock, both horizontally 

and vertically, was also provided where outcrops have been mapped. 

Material descriptions from borehole data contain the largest source of subsurface 

information for the study area. Semi-automated methods were used to standardize 

material descriptions into hydrogeological units (HGUs) for geologic model development. 

A facies approach was used (instead of stratigraphic layers) to better capture the 

heterolithic nature and variability of glacial deposits. The ASTM USCS provided a guide 

to classify material descriptions into material groupings primarily based on grain size. 

Material groupings were then classified into HGUs based on hydraulic characteristics to 

reduce complexity for modelling purposes. The standardization method included Natural 

Language Processing (NLP) techniques to explore the geologic lexicon so that material 
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classification was more automated, less subjective, and the associated uncertainty 

better understood. The original 20,000 unique material descriptions were consolidated 

into the top 45 descriptor combinations and then grouped into 10 categories, capturing 

92% of the total thickness from the processed borehole logs.  

A mesh was created providing a 3D representation of the study area. It was used 

to extract information (e.g. cell index, cell centroid coordinates), to assign attributes, and 

to visualize results. The lateral boundaries of the mesh were based on the extent of 

Quaternary mapping, excluding the land north of Burrard Inlet and intermountain valleys. 

The areas outside of these lateral boundaries were masked to generate a non-

rectangular shape. A cell size of 200 m wide by 200 m long and 5 m high was used to 

capture the major variability in HGUs for regional modelling purposes. A uniform vertical 

cell height of 5 m was established based on a statistical review of HGU thickness and 

depth. The greatest generalization using this approach occurs near the surface where 

HGUs tend to be less than 5 m thick. The top of the mesh was generated based on a 

digital elevation model (DEM) that combined topographic and bathymetric data. The 

bottom of the mesh was established at an elevation of -150 masl given the vertical 

extent of HGUs that could act as aquifers, which also corresponds to the deepest extent 

considered in groundwater modelling studies within the region (Golder 2005). However, 

there is a disproportionally large number of wells with relatively shallow depths and the 

deepest wells are generally located in the Nicomekl-Serpentine valleys; as such, the 

availability of deep subsurface information is limited. The resultant mesh has over 3.3 

million cells with a surface area of approximately 670 km2. 

Three data selection alternatives were considered to evaluate the training and 

prediction capabilities of MLP. Alternative 1 consists of HGUs spatially represented 

using coordinates from the geologic database. Alternative 2 considers a 3D mesh and 

uses the cell centroid coordinates and the HGU mode within each cell to provide a more 

regularly spaced dataset. Like Alternative 2, Alternative 3 uses the HGU mode within 

each cell but takes the coordinates of the cell centroid and maps them on a 2D grid 

using Self-Organizing Map (SOM) before being used in the MLP algorithm. The main 

differences between the datasets includes level of effort to process data, number of 

samples, frequency distribution of HGUs, and spatial distribution of data. Alternative 1 

involved the least amount of processing and has the lowest number of samples (approx. 

53,800 samples) that typically under-represent bedrock and clay (due to thick intervals 
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indicated in the borehole logs) and are more irregularly spaced. Alternative 2 required 

more data processing effort but resulted in a larger dataset (approx. 85,000 samples) 

that was more regularly spaced. This dataset has fewer lateral locations but more 

samples in the vertical direction with a generalized representation of HGUs based on the 

mode. For Alternative 3, the dataset from Alternative 2 was lumped into spatial clusters 

with consideration of the entire mesh domain. The greatest amount of effort for data 

processing was required for Alternative 3 because of hyperparameter tuning and training 

with SOM prior to using MLP. 

MLP was used to make predictions throughout the mesh representing the study 

area using each data selection alternative. Data preparation (splitting, scaling), 

hyperparameter tuning, and training was required prior to predictive modelling. A 

stratified three-fold cross-validation approach was used for hyperparameter tuning to 

reduce model bias. Once the hyperparameters were established, the MLP was trained 

using all the training data. The testing data was then used to evaluate the generalization 

performance of the model (e.g. MLP with optimized hyperparameters and weights) when 

making predictions on unseen data. The performance metrics used to evaluate the 

models include log-loss (aka cross-entropy), balanced accuracy, and the confusion 

matrix.  

MLP tries to minimize log-loss using stochastic gradient descent by adjusting 

weights during training. At the end of training, Alternative 2 has the lowest log-loss at 

0.8, followed by Alternative 3 at 1.10 and Alternative 1 at 1.15. The MLP models for all 

three alternatives achieve a lower log-loss compared to a naïve classification model 

which assumes the same probability for each HGU (1.3). Learning curves indicate all 

models have a relatively high bias (based on relatively low balanced accuracy scores 

ranging from 48% to 65% for training) and low variance (given the relatively small gap 

between training and validation scores). The models appear to be underfitting the 

training data. Adding more examples is unlikely to lead to better training scores. For 

Alternative 1 and Alternative 2, additional data may improve validation scores given that 

validation curves did not plateau. Runtimes for Alternative 2 and Alternative 3 are similar 

and generally an order of magnitude higher compared to Alternative 1.  

MLP tuning (e.g. hyperparameter optimization, number of epochs) improved 

training performance compared to the use of default MLP values for all alternatives. 
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Tuning improved balanced accuracy scores by 9 to 17%. The alternatives for data 

selection used in by MLP also impacted scoring. Alternative 2 had the highest training 

and testing scores (65% and 60%, respectively) generally by 10% to 15% more 

compared to the other alternatives. Model variance (difference between training and 

testing score) is low, below 5% for all alternatives. In general, the balanced accuracy 

scores indicate modelling results with a high bias and low variance. Typically training 

and testing accuracy scores above 80% indicate good performance for other machine 

learning applications; however, this may not be achievable given the multi-class 

classification problem and variability in subsurface data for this study. 

Based on the confusion matrix results, MLP predicts bedrock the most accurately 

despite bedrock samples occurring less frequently in the datasets for all alternatives. A 

high precision for bedrock may be associated with the continuity of bedrock once it is 

encountered. The prediction performance for unconsolidated HGUs follows the same 

trend for all alternatives where Coarse has the second highest precision with lower 

precision in descending order for Clay, Fines, and Till. This may be attributed to the 

distribution of unconsolidated HGUs or could be associated with discontinuity in the 

subsurface and the underfitting of the model to capture this complexity. Clay and Till are 

most often confused with each other while Coarse seems to be confused mainly with Till 

and Fines. Fines are most confused with Till and Clay. 

Once trained, the MLP was used to predict HGUs at scaled coordinates 

representing the entire study area for each alternative. Cell centroid coordinates from the 

mesh were used for Alternative 1 and Alternative 2 while the coordinates from 2D SOM 

mapping were used for Alternative 3. This resulted in the prediction of HGUs at a total of 

3,336,175 unique cell centroids and 7,578 unique SOM neurons. Select model outputs 

(e.g. HGU predictions, coarse HGU probabilities, low permeability probabilities, and 

entropy) were visualized is cross-sectional view to compare MLP results.  

Based on cross-sectional reviews, Alternative 2 shows more complexity in the 

subsurface compared to Alternative 1 and Alternative 3. Alternative 3 is more 

comparable to Alternative 2 but is more generalized. This suggests the size of the 2D 

SOM could be inadequate to represent the subsurface complexity. Generally, Alternative 

2 has the largest coverage of Coarse HGU and low permeability (Clay and Till HGUs) 

areas with probabilities above 75%. Entropy values are generally greater for Alternative 
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1 and Alternative 3 compared to Alternative 2. Alternative 2 data resulted in the best 

MLP performance based on better performance metrics and cross-sectional reviews that 

indicated more complexity in the subsurface.  

Verification of MLP predictions using Alternative 2 data was completed by 

comparing results from other analytical techniques (k-nearest neighbours, KNN) as well 

as published interpretations of the subsurface and hydrogeologic indicators within the 

region (e.g. artesian conditions). Predictions using MLP and KNN have comparable 

results; however, MLP has the added benefit of being stochastic with the potential of 

generating multiple geologic realizations. The frequency of predicted HGUs is 

comparable between the two algorithms with differences typically less than 5%. Both 

algorithms generally reproduce the spatial distribution of HGUs from surficial mapping. 

KNN can reproduce HGUs that are more localized and results in a more heterogeneous 

distribution overall. Cross-sectional reviews indicate HGU predictions made by KNN 

show more variation and are generally more discretized, but MLP predictions recreate 

the general subsurface trends. MLP results in higher localized values of entropy, but the 

overall average entropies are similar (0.28 for MLP versus 0.30 for KNN). The 

uncertainty associated with HGUs predicted at deeper depths for both algorithms are 

likely underestimated using entropy given the limited distribution of deep subsurface 

data. In general, both algorithms reproduce similar subsurface trends, but MLP provides 

a more generalized interpolation while KNN appears to be more discretized and blockier 

in appearance. 

Geologic interpretations within the Township of Langley published by Golder 

(2005) were also reviewed to verify MLP predictions. This includes comparison of two 

geologic cross-sections and a 3D representation of major aquifers in the Township of 

Langley. In general, MLP performs well at representing the subsurface in the areas of 

the cross-sections with the potential issue of extrapolation at depth. MLP interpolations 

show more generalized representations of aquifers and greater connectivity of 

permeable units compared to the Golder cross-sections. The 3D representation of the 18 

major aquifers from Golder (2005) was compared to the distribution of Coarse HGU with 

probabilities above 50% from MLP predictions (50% Coarse HGU). The unconfined 

aquifers (Brookswood Aquifer [AQ41], Fort Langley Aquifer [AQ41], Hopington AB 

Aquifer [AQ35], and Abbotsford A [AQ15]) are represented by 50% Coarse HGU; 

however, some of the linear features extending from the main volume of the Brookswood 
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[AQ41] and Abbotsford A [AQ15] aquifers interpreted by Golder (2005) are not 

reproduced. The 50% Coarse HGU mapping shows a more consolidated representation 

of aquifers that may be plausible given the potential for interconnection noted by Golder 

(2005). A higher cut-off limit for the probability of Coarse HGU would reduce the extent 

and hydraulic connectivity of aquifers. Some of the deeper aquifers in Golder (2005) are 

only partially represented or not reproduced because these aquifer materials have a 

greater fines content (e.g. silty sand) that are not captured in the Coarse HGU but are 

locally significant as aquifer materials. The use of a more refined grid and additional 

surficial geology points may improve MLP performance in reproducing meltwater 

channels and subsurface complexity. A more detailed review of data within this area 

would be required to support conceptualization of intertill aquifers given the limited 

frequency of data points categorized as Till.  

The last verification approach focused on the Nicomekl-Serpentine valley to 

determine if geologic interpretations support the development of known artesian 

conditions within this area. Geologic cross-sections show upper and lower permeable 

units consistent with the description provided for local confined aquifers (AQ58 and 

AQ33). The continuity of the lower permeable unit for AQ58 is typically associated with 

the Fines HGU which includes subsurface materials described as silty sand. Most 

flowing wells appear to be screened in confined aquifers; however, several may be 

screened in unconfined AQ35. The northward and westward sloping topography likely 

contributes to flowing artesian conditions around unconfined AQ35. A combination of 

topography and confining conditions may contribute to flowing artesian wells along the 

western limit of AQ33. Flowing artesian conditions for wells in the lowlands appears to 

occur because aquifer units are in valley bottoms surrounded by uplands and overlain by 

low permeability material. The geologic model shows a large clay unit in the Nicomekl-

Serpentine valley with variability in both the vertical and horizontal directions. This clay 

unit intersects the top and bottom of most artesian wells. This suggests MLP predictions 

adequately represent the confining unit that contributes to flowing artesian conditions in 

the Nicomekl-Serpentine valley. Aquifer material confined by the clay unit includes sand 

and gravel (e.g. standardized as Coarse HGU) but also includes finer grained material 

like silty sand (e.g. standardized as Fines HGU).   

Based on the results of this study, MLP appears to be a promising algorithm to 

solve multi-class classification problems related to modelling complex glacial deposits in 
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the subsurface. This has the benefit of interpreting subsurface conditions using 

categorical data instead of numerical information which is typically more readily available 

in the Fraser-Whatcom basin. This study showed additional processing effort to create a 

more regular dataset using the HGU mode (Alternative 2) produced better results 

compared to directly using borehole intervals (Alternative 1). The combination of SOM 

and MLP (Alternative 3) did not perform the best despite the enhanced pattern 

recognition anticipated using this approach. Heuristics used to size the SOM grid may 

have been insufficient to spatially cluster data in a manner to reproduce subsurface 

complexity.  

5.2. Recommendations 

Based on the results of this study, the following recommendations are provided: 

• Bedrock should be interpreted separately from Quaternary sediments. An 

updated bedrock contour map for the Fraser-Whatcom Basin would be 

required, potentially building on work done by Hamilton and Ricketts 

(1994), Scibek (2005) and the USGS (Eungard 2014). Alternatively, a 

block-model of bedrock where it exists to a predefined depth (e.g. -100 

masl) would be beneficial since insufficient data is available to interpret 

subsurface conditions overlying bedrock in most locations of the study 

area.   

• This study provides an initial conceptualization of glacial sediments in the 

subsurface of the Fraser-Whatcom Basin. Additional Quaternary 

information could be incorporated into the geologic database that may 

improve predictions. This could include geologic cross-section 

interpretations from existing surficial mapping, fence diagrams in 

Halstead (1986), subsurface information from Ricketts (2000), and/or 

geologic interpretations from local studies. This would be particularly 

beneficial to constrain interpretations of the deeper units. 

• Calculated entropy values likely underestimate the uncertainty of 

predictions where limited data is available (e.g. bottom of geologic 

realization). It may be beneficial to combine entropy with another metric 
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based on data density or proximity to a cell with data to better reflect 

extrapolation.  

• A 3D groundwater numerical model could be developed using geologic 

realizations from MLP predictions to explore groundwater movement in 

the Fraser-Whatcom basin. Results could be compared with 3D 

groundwater numerical modelling results from Simpson (2012). Cross-

sectional models could also be used to test concepts of vertical water 

movement and the hydrogeologic controls on that movement. This could 

facilitate development of a conceptual groundwater flow model for the 

region to support water management and to inform boundary conditions 

of smaller numerical models.  

• Groundwater modelling using multiple geologic models is recommended 

to quantify the sensitivity of groundwater flow to geologic architecture 

(Poeter et al., 2005; Refsgaard et al., 2012; He et al., 2013, Lukjan, 

2016); however the use of multiple geologic models is still not common 

practice due to a number of technical and economic challenges 

associated with current workflows (MacMillan, 2017). The suitability of 

MLP to generate multiple geologic models could be further explored.  

• The workflow presented in this study may provide the opportunity to 

expand on the stratigraphic and geomorphologic understanding of the 

region by reviewing 3D representation of facies in the subsurface. This 

could focus on understanding the deposits in the Fraser River valley, 

extent of thick glaciomarine sediments associated with the Fort Langley 

Formation, deltas formed at the mouths of mountain valleys, or 

paleovalleys that have been filled and buried by periods of aggradation. 

• Hydrochemical data can be an effective tool to improve the understanding 

of groundwater flow and possible hydraulic connections resulting from 

subsurface heterogeneity (Raiber et al., 2012). Cavalcanti de 

Albuquerque (2011) studied the hydrochemical evolution of groundwater 

in the Lower Fraser Valley, Canada. Chemistry data (e.g. major ion 

chemistry, arsenic, isotopes) could be used to fingerprint groundwater 
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flow systems or to identify where potential connections exist. This could 

be an additional input for MLP training which may reduce model bias and 

improve performance.  

• Smaller scale studies within the Fraser-Whatcom basin could be used to 

further evaluate the performance of MLP. This may also help further 

refine the understanding of geological architecture and the subsequent 

hydrogeologic framework. The visualization methods used in this study 

could be used to define aquifer extents (e.g. cut-off limit for probability of 

HGU), provide scenarios to evaluate uncertainty for sustainable 

groundwater management (e.g. upper and lower limits for probability of 

aquifer units based on multimodels), or inform vulnerability mapping (e.g. 

distribution of low permeability units). Areas with the highest borehole 

density and supplemental studies to infer continuity in the subsurface 

would be the best candidates for this (e.g. TOL, Abbotsford). 
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