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Abstract

Flow cytometry (FCM) is a high-throughput single-cell biotechnology commonly used to
study the immune system in clinical and research settings. We present solutions to two
problems in an FCM data analysis pipeline. The first problem is to identify cell populations
within FCM samples. The second problem is to pinpoint the biomarkers or cell populations
that can be used to help classify FCM samples (e.g. diseased vs healthy).

This thesis covers topics in computational biology and is intended for readers with basic
knowledge in the field.
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Chapter 1

Introduction

Cytometry is a biotechnology that analyzes single cells and is routinely used in the research
and diagnosis of diseases of the immune system, such as leukemia and lymphoma [366]. As
such, we will discuss cytometry in the context of the immune system (i.e. biological samples
we use will contain immune cells from organs such as the spleen, bone marrow, and blood
[169]).

In this thesis, we present solutions to two problems in the analysis of cytometry data: 1)
identify cell populations within cytometry samples and 2) find biomarkers or cell populations
that can be used to help classify cytometry samples (e.g. diseased vs healthy).

1.1 Cytometer

A cytometer is a high-throughput apparatus capable of simultaneously measuring multiple
cell characteristics or features per single cell for all cells in a given biological sample [57, 58].
Users of cytometry harness this single-cell data to sort cells [86] into their respective cell
type or cell population based on the proteins each cell contains. The assumption is that
we can identify the cells in each cell population by the presence or absence of a unique
combination of proteins. The end goal of cell sorting is to evaluate the immune condition
of the subject by analyzing the cell population composition of their cytometry sample.

1.1.1 Flow Cytometry (FCM)

Flow cytometry (FCM) is a high throughput technology that uses the flow cytometer ma-
chine to measure cell features as the intensity of fluorescence (light of a certain wavelength
or colour) emitted by the fluorochromes in the markers on the cells in a given processed
sample. To prepare this sample, users first combine the sample with a cocktail of markers.
Markers contain antibodies that attach to a certain target protein on the cells in the sample.
These markers also contain fluorochromes that emit fluorescence upon stimulation. Hence,
the different markers, or coloured light, present on a cell represent the types of proteins
the cell contains. Once in the flow cytometer, the cells in this processed sample are aligned
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Figure 1.1: FCM machinery and how it analyzes biological samples. The data used to create
the scatterplot in this figure is from [2].

into a single file stream by sheath fluid in a component of the machine called the flow cell.
After the cells are focused, they are passed through a laser one at a time. Stimulated by the
laser, the fluorochrome on the markers on each cell emits fluorescence. This fluorescence is
filtered by filters and then detected by an array of photo multiplying tubes (PMT) — each
measuring light of a certain range of wavelength.

For a given sample, the flow cytometer outputs the brightness of detected fluorescence
as continuous fluorescence intensity (FI) values. In addition to markers, flow cytometers
also detect a cell’s physical characteristics including its size or forward scatter (SS) and
granularity or side scatter (SS). These, together with the FI values, are given to the user as
a file in the Flow Cytometry Standard (FCS) format [335]. This file includes a R×L matrix
where R is the number of cells, L is the number of markers and physical characteristics. We
will refer to the latter dimension as markers for brevity. Usually, a biologist would analyze
a single biological sample using different panels, or sets of markers. This would result in
multiple matrices per sample, one per panel. Currently, a flow cytometer is capable of
measuring 10,000 cells per second and can handle 40 marker panels [274]. However, 12-15
marker panels are still most commonly used [250].

We also acknowledge that FCM can be used to analyze non-cellular particles such as
individual proteins, and RNA (when no available marker attaches to a protein target of
interest but fluorescent in situ hybridization can be conducted with a corresponding RNA
transcript) [250].
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First commercialized in 2009, DVS Sciences marketed another variation of the FCM
called mass spectrometry. While FCM detects the FI, mass spectrometry uses a mass spec-
trometer to detect the mass-to-charge ratio of ionized chemical species on markers. Theo-
retically, mass spectrometry is more precise because a single chemical species can only be
detected as a single mass-to-charge ratio value. In contrast, fluorescence emitted by a single
type of fluorochrome can be detected on a range of wavelengths. Another advantage of mass
spectrometry over FCM is the availability of commercial solutions that can measure larger
panels (40+ markers) than FCM [337, 250]. However, the drawback of mass spectrometry
is that it can only analyze up to 1,000 cells per second [256].

In 2012, Sony commercially released another variant of the flow cytometer called the
spectral flow cytometer [100]. While conventional flow cytometers use optical filters to filter
light into desired ranges of wavelength, spectral flow cytometers use a prism to fragment
light across the full emission spectrum. This means that the former requires an array of
PMTs to detect each range of wavelength as opposed to being able to use a single detector.
This also means that the user would not have to manually configure PMTs based on the
markers they are using.

The mass, spectral, and conventional flow cytometer all output their data in the FCS
format. As FCS data can be analyzed the same way, we will refer to FCS data produced by
any cytometer as FCM samples.

1.1.2 FCM sample considerations

While we assume that the information in any given FCM sample to be our ground truth (e.g.
contains the correct count of cells in the actual biological samples and the FI value always
correlate with the number of a certain protein on a cell), in reality, they are approximations
of and can deviate from the ground truth or what is actually in the biological sample. We
discuss these nuances in the context of the traditional flow cytometer.

Before biological samples can be put into the flow cytometer, the machine needs to
be calibrated on a monthly to annual basis to ensure accurate markers [250]. One type of
calibration is to use calibration and size reference beads, for which we know the true size and
granularity. After putting these beads into the flow cytometer, the machine’s parameters
are calibrated until the output FS and SS are what we know the beads to be.

While we mention in our experiments that cell counts are given, during an experiment,
additional steps need to be taken to measure absolute cell count. One example is to use
cell counting beads. These are given as a suspension of microspheres (i.e. the “beads”) at a
known concentration. These microspheres emulate cells (e.g. lymphocytes), have a known
FS and SS, and emit known fluorescence. This suspension is added to a biological sample
such that the ratio of microspheres to sample volume is known. This way, we can calculate
cell concentration by inferring the sample volume from the number of microspheres analyzed
by the flow cytometer [75, 271]. More specifically, the concentration of cells per µL Z in a
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biological sample can be calculated as:

Z = AC

BD

where A is the number of beads added to the sample and B is the total volume of the
sample. In addition, C and D are the cell count and the bead count given by the flow
cytometer output respectively.

Upon obtaining the raw FCM sample, another variable we have to control for is the FI
values. For every experiment, the FI value at which it is considered ‘bright’ or ‘positive’
may be different and need to be determined by the user. This is a non-trivial problem.
Antibodies on the markers should bind to proteins on a cell in a desired ‘specific’ manner
via its antigen-binding site. However, they can also bind to a cell’s endogenous Fc receptors
(a type of protein present on e.g. macrophages and neutrophils) or bind ‘nonspecifically’ via
ionic and hydrophobic interactions. The latter two bindings result in false-positive signals
and need to be excluded. To do so, one can use FMO (fluorescence minus one) control
samples. These samples contain all markers except for the one being controlled for such that
they serve as true negative samples [300]. For example, if we want to find a threshold for
three markers, we need to prepare three biological FMO samples where the first, second, and
third samples contain all markers except the first, second, and third markers respectively.
Plotting the cells from the first sample on the first marker, we take the 99th percentile FI
value as the threshold that separates cells associated with FI values that are positive and
negative for the first marker. The same can be done for the other two markers. Another
solution is to use biological controls; for example, one type of biological negative control
is a sample whose cells do not contain the protein of interest. An alternative negative
control is a sample where the desired binding site of its cells is blocked by the same marker
without fluorescence. Another method to reduce undesired bindings is by finding the right
concentration of markers to mix in with a sample. Determining the right concentration of
markers is also key for increasing the signal-to-noise ratio, reducing costs (by not overusing
markers), and producing more true positive signals [75]. For any marker, we can find the best
concentration via titration. This process starts by mixing multiple samples with different
concentrations of the marker of interest. All samples contain cells that are positive and cells
that are negative for the said marker. For each sample, we calculate how well separated the
two groups of cells are from each other in terms of their FI. This quality is quantified using
the stain index:

MFIp −MFIn

2SD
where MFIp and MFIn are the mean FI of the cells that are positive and negative for
the marker, respectively. SD is the standard deviation of FI values for the cells that are
negative for the marker. The chosen concentration would have the highest stain index.
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1.2 FCM Bioinformatics

FCM bioinformatics appeared as a new sub-field of bioinformatics in the early 2000s [308,
267], focused on computationally storing, organizing, and analyzing high-dimensional FCM
samples. Manual analysis is currently the norm leaving room for human errors, subjectivity,
and variability [49, 308, 105, 166, 267, 237]. These, and recent advances in FCM sample
standards [335], dissemination routes [334], analytical platforms [333, 65], and benchmark
data sets [5, 6, 124], have driven scientists to develop an increasing amount of computational
tools to complement and possibly replace manual FCM sample analysis.

1.3 Data analysis pipeline, motivations, and contributions

Taking an FCM sample as input, we put it through the data analysis pipeline outlined
below.

1. Preprocess data: Clean and transform data for downstream analysis (see Section 2.1).

2. Problem 1: Cell population identification: Classify the cells in each sample into their
respective cell populations.

3. Problem 2: Biomarker identification: Identify cell populations that can act as biomark-
ers that help classify samples (e.g. from healthy vs diseased subjects).

This thesis addresses Problems 2 and 1 in that order. As an overview of this thesis:

1. Chapter 2 details each step of the FCM data analysis pipeline and how it incorporates
the problems and methods we developed — which will be described in subsequent
chapters.

(a) Chapter 3 is a comprehensive depth review of clustering-based methods for FCM
and sc/RNAseq data sets (towards Problem 1).

(b) Chapter 4 presents a method and a novel numerical metric to address Problem
2.

(c) Chapter 5 addresses Problem 1 by proposing a new method for cell population
identification. This method will show that it is possible to identify cell popula-
tions such that the results are visually interpretable.

(d) Chapter 6 proposes a second method for Problem 1. Chronologically, this method
is the most recent method being developed during the writing of this thesis.

2. Chapter 7 provides conclusive remarks and future work.

This work furthers our capacity to analyze single-cell FCM samples and creates oppor-
tunities to investigate problems such as identifying human immunodeficiency diseases of
unknown origin.
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Chapter 2

Data analysis pipeline and
background

2.1 Preprocessing

Given an FCM sample (i.e. its R×L (cell × marker) matrix with FI values), we apply the
following preprocessing protocols. We refer readers to [290] for more details.

Compensation is a first step that aims to reclassify FI values that were assigned to the in-
correct marker. This error arises because fluorescence is detected on a range of wavelengths.
For example, a yellow coloured fluorescence on marker A could be detected as a light or
dark yellow with an orange hue. If the same FCM detects an orange coloured fluorescence
on marker B as a light yellowish-orange, then the FCM could misclassify these FI values to
the wrong marker. Continuing our example, the dark yellow and light orange FI could be
misclassified as fluorescence from markers B and A respectively.

After compensation, we clean the data by removing cells with maximum or negative FS
and SS values. This is because ‘cells’ with abnormally small or large FS and SS values may
be debris or large non-biological particles.

Next we transform our FI values to amplify signals in our data for downstream analysis.
We use the logicle transform [275] which is the parametrized biexponential function:

S(x; a, b, c, d, f) = a · exp(bx)− c · exp(−dx) + f

which is a generalization of the hyperbolic sine function:

sinh = exp(x)− exp(−x)
2

where x is the FI value to be transformed. We chose logicle transform because it spreads
data out like a log transform to amplify smaller signals which may otherwise be missed.
However, unlike log, logicle transform maintains near-linear scales around 0 such that those
signals remain detectable [275].
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Figure 2.1: FCM data preprocessing steps visualized: quality control, transformation, and
compensation. The data used to create the scatterplot in this figure is from [2].

For quality control, we use flowClean [108], a freely available tool that deletes anomalies
in our FCM samples. Anomalies occur when the flow of cells through the cytometer is inter-
rupted by clogging, back-pressure, and other machine-related issues. During these periods,
there would either be a lack of data or particles would be clumped together and cannot be
separated for downstream single-cell analysis.

2.2 Problem 1: Cell population identification

After obtaining a preprocessed FCM sample, we can proceed to solve Problem 1. A cell
population is a group of cells that have similar FI values for the same group of markers.
Accurate identification of cell populations in FCM is imperative for information discovery
in real-world applications. For Chapter 4, we use the method specified at the end of this
section for cell population identification; later, we introduce alternative ways to do so in
Chapters 5 and 6.

2.2.1 Manual Gating

Gating is the process of drawing gates or borders around cells of the same cell population
on 2D scatterplots. Each point on these plots represents a cell plotted on two markers.
Threshold (1D) gates specify a FI threshold value that classifies cells as having an FI that is
greater than, or, less than or equal to this threshold. Polygon (2D) gates are polygons on the
scatterplot that enclose a group of cells of the same cell population. An upside to manually

7



Figure 2.2: A toy example of a gating strategy which gates cell populations A-F from a
given preprocessed FCM sample. This gating strategy contains two scatterplots, on which
there are two elliptical polygon gates, and two threshold gates.

identifying cell populations is that the user has full control over which cell populations
they are trying to find. The user is also able to interpret the results by incorporating their
experience and knowledge schema into their gating. After a cell population is gated on a
scatterplot, the cells in this cell population can be isolated and further plotted on another
marker pair to be further gated. The instruction manual that specifies which marker pairs
each cell population should be plotted on and how each scatterplot should be gated is
called a gating strategy (Figure 2.2). Everything on this gating strategy is specified by an
experienced human expert determined by domain knowledge. Therefore, in this thesis, when
we conduct gating, we assume that all marker pairs and gates are given by a human expert
via the gating strategy and that all cell populations found are known cell populations.

Gating produces interpretable results that aid users in drawing biological conclusions.
We say that the results of cell population identification are interpretable if:

1. Cell clusters are presented in a way that has already been or allows humans to easily
label a group of cells as a known cell population and

2. Results are presented such that the motivation for the resulting cell grouping is clear;
this way, the user can determine whether or not they want to keep or discard the
results.

For example, manual gating satisfies these two requirements because I) humans define the
gates according to their experience on where cell populations should be positioned on a
scatterplot and II) the gates are displayed on 2D scatterplots, as opposed to being in
high-dimensional space. For II), we acknowledge that there are dimensionality reduction
algorithms but their results reflect only limited aspects of the original data. For example, a
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t-SNE (t-distributed stochastic neighbour embedding) [229] plot only preserves the distance
between points and not the actual values of the points.

2.2.2 Related works

Given how interpretable manual gating results are, it has not been replaced by the over
50 more efficient computational cell population identification algorithms that have been
developed [201, 383]. We list these methods in Table 2.1.

Unsupervised clustering methods

Unsupervised clustering methods cluster or group cells with similar FI for similar groups
of markers, usually directly in high-dimensional space. These methods are ‘unsupervised’
because they do not require the user to provide training or reference samples whose cell
populations have already been identified by a human expert. These methods are great for
discovering cell population clusters that satisfy some criteria for natural cluster structure in
FI space. Examples of cluster structure criteria are that the clusters need to be convex, have
high-density centres, or conform to a certain statistical distribution. A pro of using clustering
is that almost everything is automated and there is a chance that the algorithm can isolate
new unknown cell populations. However, one issue is that some desired cell populations may
not conform to the defined criteria and therefore cannot be found. Another issue is that with
fully automated methods, its results cannot be easily incorporated into the user’s knowledge
schema. For example, the user may not be able to interpret which cluster comprises cells
that belong to a certain cell population of interest. Researchers have attempted to resolve
this by adding extra post-processing steps. For example, clusters can then be manually
validated and re-gated onto 2D scatterplots one cell population at a time using tools such as
GateFinder [9] (for polygon gates), HyperGate [34] (for rectangular gates), and C2G (cluster
to gate) [395]. By replicating the manual gating retrospectively, and providing local low-
dimensional visualizations of clusters, human experts can more easily interpret and provide
semantics for each cluster. Other post-processing procedures include dimension reduction
for visualizing all clusters (i.e. global high-dimensional visualization) and matching clusters
between FCM samples such that the shared clusters can inherit some human given semantic
(e.g. a common cell population label). While these workarounds improve interpretability,
having to use multiple tools together poses accessibility challenges. Furthermore, the more
steps there are, the higher the risk of errors, as small errors at each step can be propagated
to downstream analysis (i.e. increased degrees of freedom). See a comprehensive review of
clustering methods in Chapter 3

Supervised classification and automated gating methods

Most supervised classification methods also directly classify cells in high-dimensional space.
These methods are called ‘supervised’ because they require and use training samples to
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Table 2.1: Methods for cell population identification in FCM.

Tool Type
ACDC [206]
CytOpT [114]
DeepCyTOF [211]
Deep learning with transformers [388]
flowLearn [227]
Linear discriminant analysis [1]
Multi-layer perceptron [111, 386]

Supervised Classification

Discriminative gate learning [171]
FlowDensity [240]
Mondrian process [170]
OpenCyto [104]

Supervised learning to automate gating

bayesFlow [177]
CCAST [16]
CytometricFingerprinting [301]
FLAME [284]
FlowClust [223, 103]
FlowGM [66]
flowMatch [27]
flowMeans [4] ImmunoCLUST [332]
phenoGMM [306]
Sequential Dirichlet process mixtures [148]
SWIFT [265]

Unsupervised Clustering (Mixed-model-based)

ACCENSE [320]
ClusterX [63]
DensVM [33]
FLOCK [285]
auto/FlowGrid [96]
floptics [338]
FlowPeaks [121]
Misty Mountain [342]

Unsupervised Clustering (Density-based)

CLARA [336]
SamSPECTRAL [404]
PhenoGraph [209]
X-shift [310]

Unsupervised Clustering (Graph-based)

ASPIRE [89]
BayesFlow [177] Unsupervised Clustering (Bayesian-based)
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train a classifier that learns to take a new unlabelled testing FCM sample as input and
outputs the cell population label of each cell in the sample. A challenge with these methods
is to simultaneously obtain high accuracy results, use only one or few training samples, and
maintain interpretability of results. Early methods of supervised learning methods are neural
networks that take the FI values of a single cell as input and output how likely it belongs
to each of the pre-specified cell populations. For example, [111] used 2 layer Kohonen maps,
[386] used a 3 layer multi-layer perceptron, and, more recently, [211] experimented using a 5
layer neural network. While the first two methods require abundant training samples, [211],
[388], and [114] mitigates this requirement by aligning training sample data distributions to
those of the training samples. This strategy is called domain adaptation. One downside of
this strategy is that it assumes that the relative abundance of cells in each cell population
is consistent across samples — this is not always the case. ACDC [206], however, does not
have this con, but assumes and requires the user to provide information on whether their
desired cell populations have a high or low FI value for each marker — it assumes that
all cell populations can be segmented using threshold gates, which is also not always the
case. Conversely, the CyTOF linear classifier [1] assumes that all cell populations are convex
clusters. It models the FI values of cells in the same cell population as a normal distribution
and uses a nearest median classifier to assign cells to their corresponding cell population.

While manual gating is labour intensive, its results are visually interpretable and give
users control over which cell populations are identified — exemplifying these as drawbacks
of existing computational methods for cell population identification [308]. In response, [240]
and [104] proposed to computationally replicate the process of manual gating. Subsequently,
[227] and [171] further automated this process by using supervised methods to gate cells
with threshold gates in 1D.

Supervised vs. unsupervised cell population identification

In this thesis, we explore two automated gating methods to identify cell populations in a
supervised manner. The reason for this is that in FCM, gating strategies are well-established
and cell populations of interest are already known. Flow cytometry was first invented in
the 1960s and formally described in 1972 [47]. While clustering methods were proposed by
the 1950s for applications such as protein, RNA, DNA, and phylogeny analysis [328], com-
putational biology only started taking off in the 80s [119] when desktop computers became
prominent. However, outside of a few exceptions [111], we only started seeing computational
flow cytometry papers being published after a dramatic increase in the number of markers
that can be measured simultaneously (up to 18) in the 2000s [267]. By then, human ex-
perts have already amassed a repeatedly tested, and widely recognized knowledge base of
how specific cell populations should be gated and how gating strategies should be designed
[366]. This is in contrast to cell population identification in scRNAseq (single-cell RNA
sequencing) data which predominantly uses unsupervised bi/clustering methods or proba-
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bilistic methods that refer to databases that know how much of each transcript is present
in a specific set of cell types [403, 20]. See examples of scRNAseq clustering methods and
their commonalities/differences with flow cytometry clustering methods for cell population
identification in our depth survey Chapter 3.

2.3 Cell hierarchy

Figure 2.3: An example of a cell population hierarchy representation of an FCM sample and
its cell populations defined by markers A, B, and C.

After obtaining the cell populations, we visualize the relationships amongst cell pop-
ulations using the cell population hierarchy. A cell population hierarchy, or cell hierarchy
for short, is a directed acyclic graph where nodes represent cell populations and edges rep-
resent the relationship between cell populations (Figure 2.3). In the cell hierarchy, a cell
population is a set of cells with similar FI values for a set of 0 ≤ ℓ ≤ L markers. We define
a marker condition as a combination of a marker and a positive+ or negative− expression
indicator. For example, A+B− contains two marker conditions, A+ and B−, and represents
a cell population whose cells have FI greater and less than the given thresholds for markers
A and B respectively. We define the ℓ’th layer of the cell hierarchy as the set of all nodes
whose label contains exactly ℓ unique marker conditions. It follows that a cell hierarchy has
L + 1 possible layers with the 0th layer containing the root cell population comprising all
cells.

In the cell hierarchy, each edge points from a ‘parent’ cell population to its ‘child’
sub-population defined by the addition of one marker condition. For example, if there are
three markers A, B, C, then there are edges from the node representing the cell population
labelled A+ to the nodes labelled A+B+, A+B−, A+C+, and A+C−.
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2.4 Problem 2: Biomarker identification

In clinical environments, a typical use case for FCM samples is to differentiate whether they
came from a healthy or diseased person. The problem of making a diagnosis is categorized
as a supervised classification problem because we know what classes we are looking for:
healthy vs diseased. We will refer to these sample groups as classes containing the binary
classes ‘control’ and ‘experiment(s)’ (e.g. healthy vs diseased) with the latter containing
one or more classes based on the number of experiments done.

In exploratory research, we often do not know what effects the experiment has on im-
mune cell populations; therefore, we need to conduct biologically meaningful unsupervised
clustering of FCM samples. Sorting samples into naturally occurring groups helps us deter-
mine whether our experiments had: 1) no effect (are the same as control FCM samples),
2) significant effect(s), or 3) significant effect(s) that are similar or different from other
experiments. More details can be found in [399].

Once we have solved Problem 1 and labelling of FCM samples, we need to identify
biomarkers, driver cell populations whose features differentiate between the identified sample
classes. For example, a biomarker could be the cell population that has significantly more
cells in the FCM sample from a diseased patient than one from a healthy individual. We
can then use that cell population as a biomarker to indicate whether or not a person is
diseased. We propose a method to do this in Chapter 4.
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Chapter 3

Clustering in flow cytometry and
sc/RNAseq

This chapter is a comprehensive review of clustering methods for cell population identifi-
cation. On top of FCM, we will also focus on clustering methods in sc/RNAseq data to
identify cell populations (scRNAseq) and group samples (RNAseq). For sc/RNAseq, our
input is a matrix with cells (scRNAseq) or samples (RNAseq) on the rows. On the col-
umn, we have the genes. Inside the matrix are the expression of, abundance, or read count
of RNA transcripts associated with each gene. Since the features for sc/RNAseq are both
transcripts, the clustering methods used in RNAseq can and have been adapted for cell
population identification in scRNAseq. The reason we chose these two data types is that
they are major contributors to big data in bioinformatics [244]. As the rows and columns
in FCM and sc/RNAseq samples are different, we will refer to them as biological objects
(or cells for FCM and scRNAseq, and samples for RNAseq) and features respectively. We
also use the term point interchangeably with object to fit with the context of the methods
described.

We organize the contents of this review as follows. First, this section briefly introduces
the concepts of clustering, common clusering algorithms, and how data is preprocessed in
preparation for clustering. Next, we split off into two sections, one for each data type. In
each of these chapters, we talk about the strategies different methods use to cluster these
data sets.

3.1 Preliminaries

Clustering is the process of grouping similar objects such that the objects in the same group
or cluster have similar feature values and those in different clusters have dissimilar feature.
More formally, clustering clusters biological object vectors, each referred to as xi ∈m where
i ∈ {1, ..., n}. Another way to represent clustering is through C, a function that maps each
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xi to a cluster
C : xi → {w ∈ R|0 ≤ w ≤ 1}K∑
{w ∈ R|0 ≤ w ≤ 1}K = 1

where K is the number of clusters, with each cluster labelled with an index 1, .., k, ...,K.
If each object belongs to one cluster, we call this hard clustering and C(xi) = {w ∈ R|0 ≤
w ≤ 1}K would contain one 1 and K−1 0’s. The position of 1 represents the cluster index k
that xi belongs to i.e. C(xi)k. Another category of clustering is fuzzy clustering, where {w ∈
R|0 ≤ w ≤ 1}K may contain multiple values greater than 0 representing the probability of
an item belonging to a cluster rather than a definitive single cluster assignment. However,
we will also talk about a subcategory of clustering where we find clusters one at a time.
Here, an object may belong to no clusters, in which case the summation to 1 will not hold.

The most common input into a clustering algorithm is as a matrix n ×m matrix D, a
collation of xi objects on the rows and m features on the column — here we refer to each
feature column as yj ∈ Rn j ∈ {1, ...,m} and an element in D as Dij . Clustering algorithms
can also go through the process of converting this D into a distance matrix A′ and/or
similarity matrix A. These are n × n matrices where each value is a result of comparing
two objects i.e. a value describing how distant or similar two objects are from each other.
This comparison is done using a distance or similarity metric, some of which are described
in section 3.2.

A can also be used to initialize an alternative representation called a graph. A graph
G = (V,E) is an abstract data structure that contains a set of nodes V connected together
by a set of edges E. The edges are represented as a |V | × |V | adjacency matrix where the
contents of this matrix contain the value associated with the edges connecting any two
unique nodes. If this matrix is binary, a 1/0 would indicate that there is/no edge between
two nodes. If this matrix contains positive continuous values, the edges would be weighted.
Typically, each node would represent an object, in which case the adjacency matrix would be
analogous to a similarity matrix. One example of finding clusters in a graph is to start with
a complete graph and iteratively remove edges that have small similarity values until only K
connected components are left. A connected component is a cluster of nodes connected via
one or more edges but do not have edges connecting it to other connected components. To
complete the notation, we define the |V | × |V | degree matrix R as a matrix whose diagonal
consists of the degree of a node, or Rii =

∑
j Aij . The degree of a node when A is binary is

the number of edges connected to that node.

15



3.2 Distance & similarity metrics

A distance metric or function d describes how distant two objects or value sets (xi and xi′)
are from each other in the form of a single numerical value. A distance metric follows a set
of rules:

1. Distance values must be positive: d(xi, xi′) = 0 if the two objects are identical, and
> 0 otherwise

2. Distance values are symmetric: d(xi, xi′) = d(xi′ , xi)

3. Distance values should respect triangular inequality: d(xi, xi′) ≤ d(xi, xi′′)d(xi′ , xi′′)

Some of the most common distance metrics for comparison of any two object vectors
include the Euclidean and Manhattan distance, also known as the L2 and L1 norms, re-
spectively.

dL2(xi, xi′) = ||xi − xi′ ||2 =
√∑

j

(Dij −Di′j)2

dL1(xi, xi′) = |xi − xi′ | =
∑

j

|Dij −Di′j |

If we are comparing two clusters of objects, the distance function d would be referred
to as a link. Some common link functions include the complete, single, and unweighted
average links. These are the maximum, minimum, and mean pairwise distances between all
points in one cluster and all points in the second cluster, where the distance metric can
be Euclidean, Manhattan, or any other function provided by the user. We can also use the
link to calculate the distance between a pair of centroids — a centroid being a single point
representation of a cluster.

If a method needs to use, instead, a similarity matrix, common ways to convert A′ into
A is to inverse A′ or get the exponent A = exp(− A′

max(A′)).
Clustering methods can also directly use correlation metrics, a flexible definition of

similarity. Pearson correlation is a metric that evaluates how two vectors or value sets
compare with each other in terms of their covariance cov and standard deviation δ from their
mean; so instead of directly comparing the magnitude of two sets of values, it emphasizes
the similarity in their trajectory. Using this, it can evaluate how correlated or proportional
two value sets are with each other.

corrP earson(xi, xi′) = cov(xi, xi′)
δxiδxi′

cov(xi, xi′) = E(xixi′)− E(xi)E(xi′)

var(xi) = cov(xi, xi)

δ =
√
var(xi)
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where E as a function is the expected value or the mean. The output of the Pearson cor-
relation metric ranges from −1 (negatively correlated) and 1 (positively correlated) with 0
being not correlated at all. The Spearman correlation, on the other hand, is defined as the
Pearson correlation of xi and xi′ after their values have been converted to ranks. Disregard-
ing the original values mean that Spearman finds the monotonic relationship between two
sets of values.

Another term used to describe similarity metrics is a kernel function. A common kernel
function is the Gaussian or radial basis function kernel

dGauss(xi, xi′) = exp

(
−||xi − xi′ ||2

2δ2

)

where δ is a given parameter. The motivation of this separate branch of similarity metric
development is to transform data into another often nonlinear space where clusters of points
can be separated linearly. Other examples of kernels include the linear, polynomial, and
Laplacian kernels.

3.3 Dimensionality reduction

Given an input mtrix, any methods opt to reduce the dimensionality or the number of
features in this matrix. Dimentionality reduction is useful as many methods have a hard
time dealing with high dimensional data, a phenomenon coined as ‘the curse of dimension-
ality’ [35]. Though having lots of features mean there is more data, there could be features
introducing noisy uninformative signals and the data space becomes more sparse. As di-
mensionality m increases, the difference between the maximum and minimum distance d
over the minimum distance between a set of random points and a fixed point in space be-
comes indistinguishable. This is because, distance metrics, such as the Euclidean, and their
calculated value becomes more influenced by m than the magnitude of difference between
values in objects xi and xi′ [40].

lim
x→∞

E

(
dmax − dmin

dmin

)
→ 0

As all objects become a similar distance apart, clustering methods become unable to identify
any distinct clusters. We cover a few popular dimensionality reduction methods here. For a
more comprehensive review, please refer to surveys [330, 373, 54].

Principal component analysis (PCA) was formulated in 1901 [278] and has since become
one of the most common method for linear dimensionality reduction. PCA takes a matrix
as input and uses an orthogonal transformation to transform the features into a new set of
principal components (PC). Each PC can be treated as a new feature that is composed of a
linear combination of the original features. The first PC represents the maximum amount of
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variance in the data. The second PC represents the highest variance in the data while being
constrained to be orthogonal to the first PC, and so on. By extracting the first few PCs,
PCA not only allows users to obtain a matrix with a smaller feature space, but the lower-
dimensionality also allows for visualization on a 2-3D plane. PCA scales well with large data
sets and preserves the close and long distances between points in high-dimensional space.
Most methods apply it to data that has been scaled such that PCA is not biased towards any
one feature with larger values. However, PCA assumes that the data set follows a normal
distribution, which can be restrictive for data sets that follow other statistical distributions
or separates in nonlinear space.

The t-distributed stochastic neighbour embedding (t-SNE) [229], on the other hand, is
a nonlinear method to reduce dimensionality. Thought-SNE only preserves local distances,
this makes it an ideal tool for visualization. It first calculates a distance matrix (usually
via a Gaussian kernel) A′ and then it aims to learn a user-specified m′ < m dimensional
D′ such that its distance matrix A′′ is similar to A′. This is equivalent to minimizing the
Kullback-Leibler divergence (KLD) of the distributions A′ and A′′ via gradient descent:

KL(A′||A′′) =
∑
i ̸=i′

A′
ii′ log A

′
ii′

A′′
ii′

Gradient descent works by adjusting parameter values or ‘walking’ a certain step per iter-
ation towards the gradient or derivative of the KLD to minimize this objective function.
The number of steps and step size are user given parameters. The location in solution space
or the parameter values at initialization is random. Depending on what implementation
of gradient descent one is using and its initialization, t-SNE may output different locally
optimal results.

Another popular method to reduce dimensionality and conduct clustering simultane-
ously is spectral clustering [59, 102]. Spectral clustering is a collection of methods that
use the spectrum or eigenvalues of a similarity matrix A of D to perform clustering. The
spectrum or the dimensionality reduced features here are the eigenvectors for the K largest
eigenvalues of the normalized Laplacian matrix of A, L = R− 1

2AR− 1
2 . Like PCs, spectrums

have a closed-form solution which makes it simple to implement. As well, these are features
created from a similarity matrix and not directly from the original matrix D. Much like in
t-SNE, an advantage to this is that one can use nonlinear similarity metrics, such as the
Gaussian kernel, to bring the data into nonlinear space. This way, the spectrums would
describe the objects based on their relationship with each other in that nonlinear space
where the data may be more easily separated.
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3.4 Clustering methods

In this section, we go over the major types of clustering methods: hierarchical, segmen-
tation, model-based, density-based, graph-based, and self-supervised deep learning-based
clustering. The first three types of clustering are cluster points around a centroid and can
also be categorized as centroid-based clustering. Hence they tend to find convex clusters.

3.4.1 Hierarchical clustering

Hierarchical Clustering [176] is a hard clustering method and one of the most commonly
adopted methods in bioinformatics [387] due to its intuitive algorithm and interpretable
results. Given a xi, its C outputs a length K vector that contains one 1 and K−1 0’s where
the placement of 1 represents which cluster xi belongs to. Hierarchical clustering can be
split into two types: agglomerative and divisive.

Agglomerative clustering is where it initializes with n clusters, each containing one
point. Given a link function (see examples in section 3.2), it calculates the pairwise distance
between all the clusters and merges a pair of the closest clusters. If K is not/given, this
merging procedure is done over and over until there is only one/K cluster/s left. Agglomer-
ative clustering has a computation complexity of O(n3) given that it needs to compute the
pairwise link between clusters in each iteration. However, depending on the link function,
this complexity can be decreased. For example, [323, 81] uses the heap data structure to
reduce run time down to O(n2 log n).

Divisive clustering, on the other hand, does the opposite. It initializes with one cluster
containing all points and then splits this cluster into two subclusters based on the weakest
or most distant link. If K is not/given, then it repeats this split on each of the resulting
clusters until it ends up with n/K total clusters. As there are O(2n) ways to split a cluster
of n objects, many methods resort to heuristics to reduce the complexity. For example, when
DIANA [182] splits a cluster Q into two smaller clusters A and B, it starts with A = Q

and an empty B. It initializes B by putting in the object A that has the maximum total
distance from all other objects in A. DIANA proceeds to move object i from A into B one
at a time such that i maximizes

maxid
′(i, A\i)− d′(i, B)

where d′ is a user-given link function. When the maximum value of this criterion becomes
< 0 or when there is only one object left in A, it stops moving objects and the split is
complete. Depending on the heuristic used, divisive clustering can be more computationally
complex, but it has been shown to produce better clusters as it considers global as opposed
to local distributions as in agglomerative clustering [181].
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These methods are called hierarchical because the agglomerating and division process
can be illustrated as a binary tree. A binary tree is defined as a type of graph where all nodes
(except for the root node) has one parent node and two child nodes (except the leaf nodes).
The root and leaf nodes are the starting and resulting clusters for divisive clustering, and
the reverse for agglomerative clustering. Each node represents a cluster and its two child
nodes represent the clusters it split into or is merged from. The binary tree visualization
allows the user to interpret how the clusters came to be, hence making it a popular option
for bioinformatics [204]. However, a limitation to this method is that once clusters are split
or merged, these actions cannot be fixed at a later time. As well, the shape of the clusters is
dependent on d′. For example, if the link is the mean pairwise Euclidean distance between
every pair of points in two clusters, the clusters will end up being convex in Euclidean space.

3.4.2 Segmentation-based clustering

Also, a hard clustering method, one of the most popular Kmeans [263]. Kmeans is a seg-
mentation clustering method where object clusters are ‘segmented’ apart from each other.
It was formally described in 1955 and is still being used regularly today [167]. Its objective
function is

min
∑

k

∑
C(xi)k=1

d′(xi, µk)

where d′ is a link function and µk is the centroid of cluster k. Originally, µk was defined
as an mD mean of feature values of all points in cluster k, and d′ is the squared error
of the Euclidean distance between xi and muk. Other variations of Kmeans give different
definitions for the centroid and distance function. For example, Kmedoid uses the median
as the centroid, instead of the mean, to account for the fact that means are easily skewed
by outlier points. Another example is kernel Kmeans [83] who makes use of nonlinear link
distance functions to find clusters formed in nonlinear space. Regardless, the objective
functions all serve to minimize within-cluster variation, thus suitable for finding convex
clusters in their respective space.

The optimization of this objective function, however, even with K = 2, is an NP-hard
problem. The most well-known algorithm to optimize this objective function begins by 1)
randomly selecting K points as the cluster centres, and then 2) assigning each point to the
cluster centre it is closest to. 3) Once these clusters are formed, it finds the centroid of each
newly formed cluster. 2) and 3) are repeated iteratively until convergence i.e. no objects
are assigned to a different cluster compared to the previous iteration of the algorithm.
This procedure allows Kmeans to be computed very efficiently in O(nKmr) where r is
the number of iterations, which in the worst case is 2Ω(

√
n). Outcome-wise, the resulting

clusters are heavily influenced by the initially chosen cluster centroids. We will see how
some methods try to overcome this by choosing better initial centroids or by refining the
cluster results post-clustering.
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3.4.3 Model-based fuzzy clustering

A popular method for fuzzy clustering is mixed model clustering. This method assumes that
data is generated using a mixture of K individual statistical distributions each contain-
ing point belonging to a cluster. In the Gaussian finite mixture model (GMM)’s case, it
assumes that the points in each cluster can be fit or modelled as a Gaussian distribution

N (xi|µk, δk) =
exp

(
(xi−µk)2

2δ

)
√

2πδ
represented by parameters: an mD mean of the features in

cluster k as the centroid µk and the standard deviation of the points in cluster k, δk. De-
pending on where each point is located relative to these K clusters, the points are assigned
to each cluster with a weighted 0 ≤ wk ≤ 1 probability of:

P (xi) =
K∑

k=1
wkN (xi|µk, δk)

To infer the parameters for each cluster, GMM can use expectation maximization (EM)
[294]. It first initializes with K random sets of distribution parameters in D space. Using
the Bayes rule, it determines how likely these distributions generated D — this is the
expectation we want to maximize:

∑
k

P (k|xi) = P (xi|k)P (k)∑K
k′=1 P (xi|k′)P (k′)

where P (xi|k) = N (xi|µk, δk) and P (k) = N (µk, δk). In other words, this step evaluates
for each point, its C(xi)k based on how well it fits into each cluster k. This is analogous to
the cluster reassignment step in Kmeans. Finally, these probabilities are used to adjust the
cluster distribution parameters such that they best represent the current cluster assignment.
For GMMs, this would involve recalculating the µks and δks based on the updated cluster
assignment. Its run time is analogous to that of Kmeans as these two steps are repeated
until convergence.

To overcome the issue of needing to know K beforehand, many methods use an infinite
mixture model instead. For simplicity, we will assume that our distributions are Gaussians,
though this can be changed based on user need. One popular tool to facilitate the dynamic
changes in K is the Dirichlet process (DP). DP (T, α) is a distribution of distributions
commonly used to generate parameters. The T is a base distribution and α is a user given
parameter specifying how different the distributions T ′ generated by the DP should be
from the original T . α is set with the property such that as α → ∞, T ′ = T . Using a
stick-breaking analogy, the DP process generates distributions T ′ via

T ′ =
∞∑

k=1
βℓδzk

(z)
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where βℓ is a weight drawn from a beta distribution beta(1, α) and δzk
(z) is 1 if z = zk. Note

that the expectation of a value being drawn from the distributions T and T ′ is always the
same. Since the DP has an unbounded k, we can theoretically generate an infinite amount
of distributions or clusters to evaluate. This way, we can thoroughly inspect what K is
optimal. In the context of producing clusters, another way to look at the posterior of a
DP is via the Chinese restaurant analogy. Assuming each cluster is a Gaussian, it would
have a mean and covariance. In the analogy, each cluster k is thought of to be a table at
a restaurant with Pk number of people sitting at it, each person being a data point. Each
table also contains the parameters required for a specified statistical distribution. In the
Gaussian distribution, this would be the mean and covariance. When a new person enters
the restaurant, he/she has a probability of γ to sit at a new table (produce a new cluster)
or a probability of Pk to join table k. A common way to conduct this seating assignment
is, like in GMM, via sampling — Gibbs sampling, a Markov chain Monte Carlo (MCMC)
algorithm and specialization of the Metropolis-Hastings algorithm. Given a multivariate
distribution, it initializes by randomly guessing several tables, their parameters, and the
people or points who are assigned to them. The assignment of each point w′

i (not to be
confused with the final wk vector) is determined by the conditional probability

P (w′
i = k|w−i, γ, xi, θk, D) = P (w′

i = k|w′
−i, γ)P (xi|θk, D)

where θk are parameters for distribution k. w′
−i here is simply the assignment of all points

other than i. The sampling process continues to refine these parameters until convergence.
In theory, unlike Kmeans, this process does not require a good initialization, but to speed
things up, a good initialization or even a hypothesized prior as to what parameters the
model could have is desirable.

Although model-based fuzzy clustering has sound statistical grounds to incorporate
and infer lots of parameters, it is slower than hard clustering methods such as Kmeans or
hierarchical clustering. As well, it requires robust assumptions on what type of distribution
best represent the data.

3.4.4 Density-based clustering

In contrast with previously mentioned centroid-based clustering methods, density-based
clustering methods emphasize finding connected groups of points regardless of their shape.
An example method in this category is DBSCAN (density-based spatial clustering of appli-
cations with noise) [95]. DBSCAN starts by calculating which point contains a minimum
amount of points within its neighbourhood. A neighbourhood refers to a certain number
of points within a certain distance radius of the said point in D space. Both the number
of points threshold and radius parameter are given by the user. Points that contain more
than the number of points within the given radius are assumed to belong to dense areas of
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the data space. Since it also assumes cluster borders should be sparse while cluster innards
should be dense, these points are also assumed to be on the inner non-border areas of clus-
ters. Points that do not meet this criterion are either outlying or lie on cluster borders —
depending on whether they are or are not a part of the neighbourhood of a point that does
meet the criteria. This assumption intrinsically defines the structure of a cluster allowing
DBSCAN to function without needing the user to input K. However, DBSCAN does not
respond well to situations where different clusters have different densities — because it has
a global threshold for density. As well, this category of methods tends to be computationally
expensive. For example, DBSCAN requires one to compare each pair of points to confirm
all neighbourhoods hence a O(n2) runtime. To speed things up, DENCLUE (density clus-
tering) [154] uses a grid-based approach by binning or cutting up the space of D into mD
‘cubes’. It first gets rid of outlying cubes that contain a low number of points and then
conducts DBSCAN with the remaining cubes as the pseudo-points (one or more points that
collectively act as a single point). Prototype DBSCAN [92] uses the same strategy but takes
as input, the result of any clustering algorithm. This way, it already has an initial parame-
ter K and many prototype clusters to act as pseudo-points. The final clusters obtained are
the meta-clusters made up of groups of initial prototype clusters. Although density-based
methods are good for finding arbitrarily shaped clusters, the original algorithm and the up-
dated versions do not deal well with high-dimensionality. Like the other distance-dependent
algorithms, points become sparse as dimensionality increases, making the clusters harder
to separate based on density.

3.4.5 Graph-based clustering

Graph-based clustering is a broad categorization of clustering methods that use the graph
representation to depict data. Most commonly, these algorithms start with a graph G by
representing a point or a group of points as a node. Then they connect these nodes using
edges whose weights are based on some similarity or distance metric.

Creating a minimum spanning tree (MST) is one way to remove edges between nodes
and segment the data. An example of a method that creates and uses the MST is MOCK
(multi-object optimization clustering) [141]. It first calculates a distance matrix off of which
it creates a fully connected graph where the nodes are the points and the edges between
nodes are weighted by the distances. On this graph, Prim’s algorithm [130] finds the MST
in linear time and it drops edges that represent the longest distance between points. Edges
are dropped until K clusters of interconnected points remain or no more edges represent
distances farther than a given threshold.

Many variations of edge trimming exist, but more often than not, instead of making
an MST, one can use other more simple heuristics. For example, whether or not the edge
weights are under or over a threshold. One can also specify to leave on a maximum number
of edges connected to each point. The latter creates a K-nearest neighbour (KNN) graph
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where K represents the degree or the maximum number of edges that connect each point
to its neighbourhood of the K closest nodes.

Taking the KNN graph as input, the Louvain algorithm [45] incorporates this data
structure with agglomerative hierarchical clustering. Louvain uses a greedy iterative two
step procedure to cluster the cell objects. Much like in hierarchical clustering, each node
starts out as its own cluster. In the first phase, a metric is calculated for each cluster to
evaluate how much modularity Q the cluster would gain by merging with any one of its
neighbouring clusters. Modularity change by adding node v to cluster u here is defined as

Q =
[∑

in +2ev,in

2e′ −
(∑

tot +ev

2e′

)2]
−
[∑

in

2e′ −
(∑

tot

2e′

)2
−
(
ev

2e′

)2
]

where
∑

in,
∑

tot, ev, ev,in, and e′ are the sum of edge weights inside u, incident to all points
in u, incident to point v, between point v & points in u, and between all nodes in the
graph respectively. Looking at the merge that would cause a maximum modularity gain, if
this gain is a positive value, then the merge is conducted. This is repeated until no more
merges occur. In other words, the second step repeats the first step on a new graph where
the merged clusters are treated as starting nodes and the edge weight is the total sum of
distance between the old nodes in the merged clusters. Louvain is a popular graph-based
clustering method as it not only refines its results, it also runs efficiency in O(n log n) time.

While spectral clustering is mainly associated with its unique method to reduce dimen-
sionality, the spectrums found can also be used to find connected component clusters within
the original similarity matrix or adjacency matrix A of graph G. The Fiedler eigenvalue [101]
of a graph corresponding to A is defined as the second smallest eigenvalue of L. This value
is 0 if G is a connected graph i.e. all nodes are connected to all other nodes through an edge
or a collection of connected edges, a path. The larger this value though, the more connected
the graph is (more edges present), so it can also be used as a graph evaluation metric.
However, in clustering, it can also partition a graph. The eigenvector corresponding to the
Fiedler eigenvalue is the Fiedler eigenvector. As this vector has a value associated with each
node, it can indicate how well connected each node is with the other nodes in the graph.
A smaller/larger or negative/positive number means that the node is not/well connected
or does/not have many edges connecting it to other nodes. One strategy is to segment the
nodes into clusters via the sign of their associated values in the Fiedler eigenvector.

3.5 Cluster evaluation

While model-based clustering can use expectation to pick out the best set of clusters, other
methods, such as Kmeans and hierarchical clustering, also require a way to evaluate their
clustering results. As there is no ground truth in unsupervised clustering, evaluation of
results is done using internal evaluation. For example, given distance metrics, the Dunn
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index is formulated as the minimum inter-cluster distance over the maximum intra-cluster
distance. minimizing this means that one would have tight dense convex clusters that are
far from other clusters. Another metric commonly used to evaluate the intra-cluster ho-
mogeneity and inter-cluster heterogeneity is the silhouette index. The silhouette index is a
value assigned to each point i

silhouette(xi) =


1− a(xi)

b(xi) if a(xi) < b(xi)

0 if a(xi) = b(xi)
b(xi)
a(xi) if a(xi) > b(xi)

a(xi) =
∑

i ̸=i′,i′∈Ci′ d(xi, xi′)
|Ci′ | − 1

b(xi) = mini ̸=i′

∑
i′∈Ci′ d(xi, xi′)
|Ci′ |

where Ci′ is the cluster object i′ is in and d is a user given distance metric. Given that
each point has a numeric value indicating its quality, the silhouette index makes for good
visualizations for interpretation.

Going back to model-based clustering, common cluster evaluation metrics other than its
objective include the Bayesian information criteria [314] BIC = |θ| log(n)−2 log(ℓ) and the
Akaike information criteria AIC = 2|θ| − 2ln(ℓ). ℓ is the likelihood of the model evaluated
and θ is the set of all parameters in the model. The first term in both metrics attempts to
regularize the number of parameters or degree of freedom the model allows for to prevent
overfitting i.e. we do not want a better score simply because there are more parameters.
The second term is then there to ensure that the clustering model appropriately fits the
data in the form of a likelihood function with respect to the data and parameters tuned.

3.6 Clustering in cytometry

FCM samples usually contain relatively few (around 10) features or markers and a large
amount (thousands) of objects or cells. However, the clustering methods used also need
to account for when there are up to 50 markers following the capacity of FCM [319]. The
goal of clustering cells in FCM samples is to identify previously known and unknown cell
populations based on the FCM sample’s data structure.

As many methods consist of the steps, preprocessing, clustering, and postprocessing,
we organize this section so that each method is discussed in the context of these steps. An
overarching theme we focus on is the challenges each procedure aims to overcome.

(a) A common challenge is the need to find biologically relevant non/convex clusters.
While traditional clustering methods, such as Kmeans and GMM, focus on finding
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convex clusters, cell populations could be of 1a) arbitrary shape, and even
1b) multimodal. However, traditional methods have survived due to being compu-
tationally efficient and statistically sound. Therefore, many authors tend toward these
methods and try to circumvent their disadvantages by adding engineering tweaks to
their methodology.

(b) Similarly, another challenge is the need to find rare cell populations. As these
populations can be small and overlapped by larger populations, traditional methods
would merge them into those large populations. Hence, there is a need to effectively
identify when rare cell populations exist and maintain them as result.

(c) While clustering methods need less user input than other types of methods, they still
require parameters such as the number of clusters K desired. Unless the user has a
particular set of cells he/she is looking for, K is difficult to define. Therefore, many
methods resort to automatically finding such parameters to reduce decision fatigue
on the user.

(d) Outside of finding particular populations, methods also need to adapt to circumstances
when D consists of a high-dimensionality m. Many classical methods depend on
the distance metric employed to understand the relationship between points. However,
in high dimensions, these distances become sparse and uninformative. As well, higher
dimensions can result in unmanageable computational complexity.

(e) In addition, since clustering methods do not incorporate user knowledge, clusters in
different samples are unmatched i.e. we do not know which clusters represent which
cell populations that may exist across multiple samples. To this end, many clustering
methods add a step to match clusters across samples or directly build this into
the clustering procedure.

(f) Finally, it is desirable to make the results more interpretable. This may be solved
via extra visualizations, or even to make the clustering process more similar to manual
cell population identification.

3.6.1 Preprocessing

We focus on two preprocessing procedures that many methods utilize to contort their data
in preparation for the actual clustering step. These two types of preprocessing include
changing how data is represented and automatically defining parameters needed by the
clustering algorithm.

Data representation

While most methods use D directly, many choose to transform D to facilitate its clustering
process, usually to mitigate challenges (a) and (b).
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Challenge (b) is especially problematic when it comes to decreasing the computational
complexity when clustering high-dimensional data. Therefore another way to prepare D is
to first reduce its dimensionality. ACCENSE [320], and ClusterX [63] apply a 2D t-SNE
(t-Distributed Stochastic Neighbor Embedding) [229] to get a projection of the original
data. Although t-SNE is stochastic and not ideal for conducting dimensionality reduction
representative of the original data [269], it works and is practical on specific data sets [383].
One of the reasons for this is because t-SNE transforms D nonlinearly such that downstream
algorithms can find clusters that separate in nonlinear space, whereas if the original D is
used, these algorithms would only find clusters that separate in linear space. While t-SNE
accomplishes this while reducing dimensionality, methods can also simply resort to data
transformation. For example, flowClust [223] uses Box-Cox [309] to transform the data such
that it has an approximately normal distribution, before initializing and modelling it using
GMM.

Another alternative representation of D is a graph. Each cluster or point can be sum-
marized as a node in a graph connected using edges whose weights are defined by a dis-
tance/similarity metric. In SamSPECTRAL’s case [404], it uses the heat kernel similarity
metric between the FI values of each point [193] — scaling D into negative exponential
space. Directly using the original graph is convenient for algorithms that require graph in-
puts. However, having a fully connected graph (where all nodes are connected to all other
nodes) can result in high computational complexity. Therefore, X-shift [310] also represents
D in graph form with edge weights defined by the Mahalanobis distance; but before clus-
tering, it opts to shed some of its edges by converting this fully connected graph into a
KNN graph, where K is user-defined. On top of shedding edges, one can also refine the
edge weights using uniquely graph-based heuristics. For example, after obtaining the KNN
graph where edge weights are based on the Euclidean distance, PhenoGraph [209] redefines
its edge weights as a graph heuristic that involves the Jaccard metric which measures how
many shared neighbours two connected points have. Since this method is focused on finding
rare cell populations for the Challenge (b), the refinement allows PhenoGraph to embed the
notion of density into the edge weights. This way, if a large less dense population is masked
on top of a smaller denser population, they can be differentiated.

Defining the number of clusters

After obtaining the original or alternative representation of D, another concern one might
have is how to define any required clustering parameter(s) for Challenge (c). A common
parameter is K or the number of clusters one would expect to get as a result. While earlier
methods such as [263] maintain this requirement, later methods attempt to mitigate this
need. Aside from pure density-based and infinite mixture model-based methods, many other
clustering methods treat the process of finding K as a preprocessing procedure. While we
include examples of cluster evaluation in section 3.5
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flowMeans, an extension of flowMerge [8], finds K by detecting the amount of modes or
peaks in every eigenvector of D using [91]. If the same clusters are projected onto multiple
eigenvectors (i.e. overlaps), these clusters are merged via agglomerative hierarchical clus-
tering. The link between clusters used for merging is the modified symmetric version of the
Mahalanobis distance between points of two clusters

d(X1, X2) = min

(√
(X1 −X2)δ−1

X1
(X1 −X2)⊤,

√
(X1 −X2)δ−1

X2
(X1 −X2)⊤

)
where X1 is the collection of xi objects in cluster 1, X1 is the mean of X1, and δX1 is the
covariance matrix of X1. Agglomerative hierarchical clustering continues to merge clusters
until the distances between all clusters abruptly changes from very far to very near. Sim-
ilarly, SamSPECTRAL [404] directly estimates K as the number of maximum value (=1)
eigenvalues of A before the eigenvalues abruptly start decreasing.

flowPeaks [121] uses an adhoc way to find K = median(Kj) where Kj is the number of
clusters found for each dimension j of D using the Freedman Diaconis formula [112]

K = medianj=1,...,m

(
(max(xj)−min(xj))
{2 · IQR(xj) · n− 1

3 }

)

where IQR is the interquartile range or the difference between the 75th and 25th percentile
of the data.

On the other hand, many mixture model-based methods test a range of K to find the one
that produces a result with the maximum likelihood. FLAME is one of the earlier methods to
implement this strategy for FCM. It first clusters D using the skewed t-distribution mixture
model on a range of Ks via EM [218]. It then finds the best clustering for each sample that
minimizes the scale-free weighted ratio (SWR). This is a weighted ratio of the average intra-
cluster and inter-cluster scale-free Mahalanobis distance normalized for variance in shape,
dispersion, and orientation to minimize the influence of outliers. Other metrics that evaluate
clusterings include the BIC (used in flowClust [223] and flowGM [66]) and the integrated
classification likelihood (ICL) score [42] (used in immunoClust [332]). While the former is a
common metric, it often overestimates the number of clusters. Therefore, immunoClust uses
a normalized ICL such that it is only slightly biased towards results with fewer clusters.

Finally, it is also possible to find K first by using a clustering method that does not
require K and then using the result of that clustering as a springboard for another clustering
algorithm. FLOCK (FLOw Clustering without K) [285] initializes its clusters by using
DENCLUE [154]. It uses the grid-based approach to conduct density-based clustering and
then merges the grids that contain more points than a user-given threshold. Finally, K is
defined as the resulting number of clusters found.
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3.6.2 Clustering

The first published example of applying clustering on FCM data uses Kmeans. However,
well-established traditional methods have a con in that it does not consider the unique
challenges in FCM. For example, Kmeans and fuzzy model-based clustering methods meet
a wall with Challenge (a) and (b). They usually find large convex clusters (or whatever
distribution is used in the mixture model) depending on a user given K, unideal for Chal-
lenge (c). Nevertheless, it is desirable to exploit the fact that these methods are efficient and
statistically sound. On the other hand, density-based clustering can find arbitrarily shaped
clusters but they are inefficient when used on high-dimensional data as in Challenge (d).
Extra postprocessing steps also need to be taken to satisfy challenges (e) and (f).

Finding convex clusters

In this section, we introduce methods that use a centroid-based clustering algorithm to
initialize or find clusters. Although we do hope to mitigate Challenge (a), many methods
resort to using classical algorithms to quickly initialize clusters before evaluating whether
or not these clusters are valid or would need further refinement. In addition, most cell
populations do conform well to convex clusters, therefore there is still a good market for
these methods.

flowMeans [8] and flowPeaks [121], for example, uses Kmeans++ [22]. Given K, Kmeans++
is the same as Kmeans except it uses a different approach when initializing the cluster cen-
troids and choosing new centroids with each iteration. It attempts to mitigate situations
where a random initialization may affect the clustering outcome. When Kmeans++ is find-
ing its initial cluster centroids, it repeatedly selects K random points. The final K centroids
are chosen according to how close they are to the previously chosen random centroids, close
being good. This ensures that the final starting centroids are in a densely populated area
likely to be a cluster centre. After assigning each point to a cluster centroid, it defines a
cluster by overlaying it with a Gaussian distribution who is represented by its parameters:
cluster assignment wk, mean µk, and smoothed covariance matrix δk (whose density distri-
bution is binned based on a user given parameter). Assuming that a cluster is a dense patch
of points, it proceeds to use the hill-climbing search algorithm [194] to approximate a point
of largest density in each cluster to act as the new cluster centroids. The maximum step size
used in the algorithm is based on the cluster size as specified by θk = mini=1,...,m

√
δk. This

way, the algorithm will not take too long, or miss any peaks if the step size is too small or
large respectively.

Likewise, FLOCK [285] also uses a centroid-based method, but it initializes its clusters
by using DENCLUE [154] as mentioned in section 3.6.1. Taking the initial clustering re-
sults from DENCLUE, it initializes the Kmeans algorithm by assigning the mean for each
DENCLUE cluster as cluster centroids. Points are then assigned to a cluster centroid to
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whom it is closest in Euclidean space. Thereon after, it proceeds with Kmeans to get the
final clusters.

A third example of a method that directly uses a traditional convex clustering algorithm
is X-shift [310]. X-Shift uses its KNN graph, like in Kmeans, to cluster around centroids.
These are points of maximum local density or ‘hubness’ i.e. it is amongst the KNN of a large
amount of its KNN. Each non-maxima point is then connected to one of these centroids via
a density-ascending path in the graph. Connected points are then shown as clusters.

Finding arbitrarily shaped clusters

While some methods adapt density-based methods directly (e.g. auto/FlowGrid [96] and
floptics [338]) to find multi/unimodal clusters, other methods, such as Misty Mountain [342]
and ACCENSE [320], assume that clusters should be unimodal but not necessarily convex
clusters. These methods first represent the data using a kernel density estimate. One can
imagine the kernel density estimate or histograms as an additional dimension. To find the
density peaks, Misty Mountain starts from the maximum value of this density dimension
and slowly descends to 0. On the way, density peaks will slowly emerge. When any two peaks
start to merge, these two peaks would be recorded as separate clusters. If there are peaks that
remain independent, then, in the end, these peaks would also be recorded as their clusters.
In the context of previous methods, Misty Mountain assumes a cluster can be represented
by a density peak or centroid and splits the clusters at the density valleys. Conversely,
ACCENSE finds the peaks via a traditional metric from [168]. Apart from the peak finding
methodology, the difference between Misty Mountain and ACCENSE is two-fold. First,
Misty Mountain does not require the user to specify a bin width to create the kernel density
estimate. It does so by using [191], a probabilistic approach, to determine the best number of
bins for discretization in each dimension with which it builds the multidimensional density
histogram. Another difference is that ACCENSE uses the kernel density estimate of a 2D
representation of D created with t-SNE. Lowering the dimensionality makes the clustering
more efficient in compliance to Challenge (d).

Also engineered to find arbitrarily shaped clusters for Challenge (a), FLAME [284] is
an example of a method that adapts the classical GMM algorithm. Given the K found in
section 3.6.1, it assumes that the cell populations represent a skewed multivariate probability
distribution in Box-Cox transformed space i.e. it uses the skewed t-distribution instead of
the convex Gaussian distribution in GMM on Box-Cox [309] transformed D.

Finding rare cell populations & matching cell populations across samples

A way to isolate rare cell population clusters for Challenge (b) is by first eliminating outliers
and noise to make rarer cell populations easier to detect [31, 369]. flowGM [66] does this
using expert knowledge by applying two rounds of default filters. These filter out uninter-
esting objects such as debris and dead cells. The filter here refers to a series of points in
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D space that encircles a set of target points. In between filtering, flowGM conducts mul-
tiple iterations of GMM clustering on the refined D based on a given K and chooses the
clustering with the highest likelihood.

A second strategy is to find cell populations simultaneously across all samples, hence
also mitigating Challenge (e). This way, if a cell population is rare in one sample but em-
phasized in another, it would not be missed in the former sample. The H part of HDPGMM
(hierarchical Dirichlet process GMM) [76] represents that this method does just that. It
shares information and finds the same clusters (i.e. same Gaussian distribution parame-
ter sets) across all samples. More specifically, it generates GMM clusters that are different
across samples only in its w, or the number of objects in each cluster. To achieve this, it
adds a layer of parameterization for wk

wk = w′
k

k−1∏
ℓ=1

(1− w′
ℓ) for k = 2, ...,K − 1

where w′
k ∼ β(1, α), and α is given by the user. Hence, the priors, or the given variables,

here are the α’s, µ’s, and δ’s. Once the model is defined, HDPGMM uses [351] with the
Metropolis within the Gibbs approach to calculate the posterior and account for the non-
conjugate conditional distributions of w′ and α [123].

Putting all of these together, BayesFlow [177] builds on HDPGMM to simultaneously
cluster across samples and eliminate outliers at the same time — all this done via a few
more parameters. First, to account for outliers, it adds a component

P (xih) =
K∑

k=1
wkhN (xih|µkh, δkh) + w0hN (xih|µ0h, δ0h)

for each sample h, where subscript 0 represents outlier points and their distribution pa-
rameters which are the same across samples. The clusters, however, are different across
samples but are connected via a latent layer of variables. This is based on the assumption
that for each cluster k, its parameters µkh and δkh are generated by the same normal and
inverse Wishart distribution respectively. The parameters for these distributions are hyper-
parameters that can be tuned by the user. The sampling of latent variables here is done via
MCMC.

Like BayesFlow, ASPIRE [89] accounts for outliers, over-clusters cells with HDPGMM,
and then merges those clusters to mitigate challenges (a), (b), and (e). However, it builds
all of these into a single statistical model using a non-parametric approach by adding two
more components. The first additional component is random effects, to account for variation
between samples. The second additional component is a layer of GMM which assumes that a
cell population is a meta-cluster composed of a potentially infinite mixture of clusters from
each sample. This accounts for the fact that a meta-cluster may be skewed or multi-modal.
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More precisely, ASPIRE first models each point using a GMM to find the same clusters
across samples. Up until this point, ASPIRE is equivalent to HDPGMM [76]. To account for
outliers, the parameters of this GMM are generated by a discrete distribution modelled by a
DP like in HDPGMM-RE [185]. In HDPGMM-RE, this DP would be directly parameterized
by α and a base Gaussian distribution. However, ASPIRE replaces this base distribution
with another discrete distribution that represents a meta-cluster. The parameter of this
distribution, in turn, is generated by an overarching base distribution modelled by a second
DP parameterized by γ and a Gaussian distribution.

Another common strategy is to incorporate the framework of agglomerative or divisive
hierarchical clustering. Both of these methods can find rare clusters (resolving Challenge
(b)), multimodal clusters, and depending on the link, arbitrarily shaped clusters (resolving,
in part, Challenge (a)). Phenograph [209] employs the Louvain method to incorporate the
graph representation into a hierarchical framework, while SWIFT (scalable weighted iter-
ative flow clustering technique) [265] and immunoClust [332] incorporate hierarchical clus-
tering with model-based clustering. Expanding on immunoClust, it performs over-clustering
via divisive hierarchical clustering; but at every step, one cluster can be split into multiple
clusters via GMM and the EM algorithm [110, 109]. In each split, immunoClust uses GMM
to separately cluster for K = 1, ...,K ′ and chooses the one clustering with the best ICL
score [42] as described in section 3.6.1. The algorithm stops when it deduces that all the
clusters should no longer be split. Another example of a method that uses divisive hierar-
chical clustering is cytometree [72]. cytometree incorporates ideas from manual threshold
gating by assuming each cell is either positive/negative or have/not each marker. It creates
the hierarchy by starting with a root node representing all cells. For each marker, it models
the cells on this node as a mixture of two Gaussian distributions i.e. a GMM with K = 2:

P
(v)
j (xi) = wN (xi|µ1, δ1) + (1− w)N (xi|µ2, δ2)

where v is the node or the current cell population. Sticking with a criterion that does
not depend on nv (the number of cells in population v), cytometree uses the normalized
difference between the Akaike criterion (AIC) [73] for the two clusters:

s
(v)
j = AIC1 −AIC2

n(v)

This gauges whether or not it is appropriate to accept the two cluster GMM result. The
marker with maximum s

(v)
j is chosen, and if it is above a user-given threshold, the node v is

split according to the two clusters at the said marker. Otherwise, if the threshold is not met
or there are too few cells in v (e.g. less than 50 cells may cause s(v)

j to be invalid), the splitting
is terminated at that particular cell population node i.e. a leaf node. Once the binary tree
of cell populations is built, the leaf nodes are treated as the final cell populations. The same
procedure can be done to split each population, for a marker, into three subpopulations.
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3.6.3 Postprocessing

After clustering the cells together, methods can opt to incorporate several postprocessing
steps to refine the clusters and interpret them. Generally, the three types of postprocessing
done are evaluation and refinement of clusters, cell population matching and labelling across
samples, and visualization or communication of results.

Finding multimodal and arbitrarily shaped clusters

Rather than embedding it into the clustering process, the refinement and merging of clusters
can also be done as a postprocessing step after initial clustering is completed. Merging
convex clusters allow methods to come up with multimodal arbitrarily shaped clusters.

X-shift [310], for example, overcomes the original clustering algorithms’ tendency to find
convex clusters by merging two clusters whose inter-cluster distance is below a user-given
threshold. While X-shift defines this distance as the inter-centroid Mahalanobis distance,
the Kmeans++ method, used in flowMeans [8], uses the Euclidean distance. In contrast,
SamSPECTRAL [404] assumes that clusters should have one highest density point that
phases off smoothly toward the edge of a cluster. Hence, after conducting spectral clustering
on a KNN graph of D, SamSPECTRAL proceeds to merge two clusters if the ratio between
the maximum edge weight within the clusters and the sum of all pairwise edge weights
between the points in two clusters is greater than a user-specified threshold. This method
finds semi-multimodal clusters with the potential to be arbitrarily shaped. However, no two
clusters with equally large density peak centroids would be merged.

In addition to using cluster centroids, BayesFlow uses the Bhattacharyya distance [116]
between Gaussian distribution clusters to also incorporate covariance. This allows it to
recognize that a denser cluster within a large sparse cluster should be kept separate. Two
thresholds are used to determine whether or not to merge clusters. If the distance is over the
larger threshold or lower than the smaller threshold, the two clusters are not/merged. If two
clusters are separated by a distance that falls between the two thresholds, then Hartigan’s
dip test for unimodality [145] must also be satisfied. In other words, if two clusters are not
sufficiently far apart, then they would need to have sufficiently different centroids to be
determined as separate clusters.

Cell population matching and labelling

While methods like HDPGMM, Bayesflow, and ASPIRE match clusters across samples
while clustering, many methods choose to add this as a separate step post-clustering.

After clustering all the samples with its mixture model, FLAME [284] proceeds to iden-
tify modes in each population based on the µ’s in the mixed model parameters found. These
means or cluster centroids are pooled from across all the samples and then clustered using
Kmeans. The centroid used in this Kmeans is the median. The optimal number of meta-
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clusters is measured by the resulting average silhouette index [305]. Once the meta-cluster
centroids are identified, the cluster centroids found for each sample is individually matched
to the closest meta-cluster centroid as defined by the scale-free Mahalanobis distance via
imperfect bipartite matching i.e. one or more original cluster can be assigned to the same
meta-clusters, resulting in them merging.

MetaCyto [160], on the other hand, is a tool made exclusively for identifying common
labels across studies and samples. It first clusters all the samples using a standard clustering
method. Like in cytometree [72], each marker is subsequently split into two regions by using
a threshold. It tests multiple thresholds and uses the one that splits up the cells most
appropriately as defined by the silhouette index [305]. As in manual gating, each cluster
is then labelled based on which of the two regions it is in for each marker, Hence, the cell
population labels are consistent across samples.

Visualization

After obtaining the cell population clusters, one can mitigate Challenge (f) by obtaining
interpretable visualizations that can communicate the results.

As it is difficult for users to comprehend cell population identification in high-dimensional
space, methods resort to dimensionality reduction techniques to display the cell/populations
on a 2D surface [229]. Traditional dimensionality reduction methods include self-organizing
maps (as used in flowSOM [367]), PCA [389] and t-SNE [229] (as a part of viSNE [14],
one-SENSE [68], and PhenoGraph [209]). In addition, CLARA [336] also tries to propor-
tionally represent edge weights or distance in mD space on a 2D surface. It shows each cell
as a point or node whose distance to other nodes is dictated by a force-directed weighted
graph. The original edge weights on this graph are based on the cosine distances between
the median FI of cells.

On a cell population level, SPADE [286] uses agglomerative hierarchical clustering on
a down-sampled set of cells and then organizes and colours them as grouped on an MST.
Emphasizing the notion of cell populations, cytometree [72] directly shows the users its
divisive hierarchical binary tree. This not only shows users its clustering process, but it also
does so without loss in performance and accuracy [383].

Within an application context, tools such as RchyOptimyx [268], gEM/GANN [359] and
FloReMi [368] use already labelled clusters and samples. This is so that they can further
mark and display cell populations that discriminate between different classes of samples to
help with understanding the validity of found clusters [5]. These visualizations help transfer
knowledge obtained from clustering to a downstream research application. A review of the
available visualization software is covered in [239].
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3.6.4 Alternative solutions

Clustering methods suffer from the curse of dimensionality. [269] corroborates this statement
empirically by testing some common methods such as Phenograph, X-shift, and flowMeans,
on a simulated 20 marker data set. The same is done for visualization tools such as t-
SNE. Although strategies, such as over-clustering and refinement, can help to mitigate
some issues [307], if one has prior knowledge of what cell populations one wants to find,
automated gating and supervised methodologies can be good alternatives. In addition to the
alternatives mentioned in Section 2.2.2, Tools that make their own gating strategy include
FAUST [131], and cytometree [72]. While gates can be of any shape, they are typically
marker thresholds that separate cells with high or low FI (i.e. have/not a marker). While
FAUST also defines gates, it uses a rule-based gating strategy as opposed to a human-
defined one. FAUST defines up to four gates by identifying the valleys along with their
taunt string density estimation for each marker that passes a unimodal dip test for p values
< .25. It then repeats this process on subpopulations of cells split up by these initial gates.
Gating strategies are terminated if there are too few cells, the process is done up to three
times, or if no markers satisfy the dip test. The cytometree method uses the same recursive
method and termination conditions but uses different ways to define its gate and quality
score. It defines a single gate for each marker by modelling each marker’s FI values as a
mixture of two Gaussian distributions. Instead of the dip test, it accepts the marker’s gate
with the highest normalized difference between Akaike criterion (AIC) score above a user-
given threshold. Unsupervised gate search requires that these methods also attach a gate
unification step across samples. flowType [268], on the other hand, uses user-given gates
already unified across samples to create an exhaustive cell population hierarchy that would
contain all possible gating strategies and cell populations for cell population discovery and
analysis.

3.6.5 Remarks

Clustering of cell populations in FCM bioinformatics is focused on finding and discovering
various naturally occurring cell populations in terms of data distribution. However, for these
methods to be useful, they should find cell populations that allow the user to understand
the condition of the subject whose sample is being analyzed. To this end, efficient ways
of purpose-driven cell population comparison across samples need to take place. For this
purpose, unsupervised methods that use existing packages, such as Voom, EdgeR, Limma
[381], and flowGraph (SpecEnr) [400] exist to identify M/DCPs.

3.7 Clustering in sc/RNAseq

Clustering in sc/RNAseq is done to analyze the abundance of various RNA strands to
understand what genes are being expressed in a biological sample. In contrast with the pre-
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vious section, this section focuses on a data matrix where the number of features (columns)
greatly outnumbers that of objects (rows) [74]. This phenomenon is common in bioinfor-
matics given the relatively high cost to analyze a sample versus the ever-growing amount
of throughput per sample [296]. Unlike in FCM where manual gating is still the dominant
way to identify cell populations, automated methods, including clustering, are almost al-
ways used over manual analysis in sc/RNAseq analysis [390]. Like the previous chapter, we
will first go into the technology that produces sc/RNAseq data, how preprocessing, clus-
tering and postprocessing procedures are performed on this data, and finally mention some
alternative solutions and remarks.

3.7.1 RNAseq

When it comes to human identity, our genome, or our DNA (deoxyribonucleic acid), lies
at the heart of who we are. To function, different sections of the DNA are copied inside
of the cell nucleus and released into the cell plasma to be translated into proteins that
would execute functions within our body. These short copies of the DNA are called RNA
(ribonucleic acid). RNAseq data, in turn, represents what RNA sequences or sections of the
genome are being used by a cell at a snapshot in time within a given sample. In the previous
section, we talked about how FCM can identify cells using the proteins they contain. In this
section, we focus on how these cells and cells’ activities can be analyzed by understanding
what sections of the genome are being expressed via RNA.

sc/RNAseq, or single-cell / whole transcriptome shotgun sequencing, is a protocol that
produces data to analyze the RNA of any eukaryotic cell. Many papers also refer to this type
of data as transcriptomics. This encompasses any protocol that analyzes the RNA or the
transcriptome, including RNAseq’s predecessor, the microarray. Microarray also analyzes
the transcriptome but was made obsolete because it is not as good at quantifying very low
and highly expressed genes. It also requires researchers to know precisely what sequences
they are looking for beforehand. Nevertheless, the same algorithms used on microarray data
can be and have been used effectively on RNAseq data [199]. Also, since the same methods
can also be used across scRNAseq and RNAseq data sets, we refer to all of these methods
as clustering methods for RNAseq.

Sample preparation contains three steps [74]. The first step is to 1) isolate desired RNA
segments from a tissue. Usually, this includes filtering the nucleic acids and using an enzyme
called deoxyribonuclease (DNase) to remove DNA from the sample. Once we are left with
the RNA, the next step is to 2) isolate a specific type of RNA, mRNA. While 90% of the
RNA in the cell is ribosomal or rRNA, we are interested in the 1-2% of RNA called messenger
or mRNA which contains the final sequences that are to be translated into proteins. These
are extracted using one of two methods: enrichment and depletion. Enrichment picks out
mRNA by exploiting the fact that, unlike rRNA, most mRNA contain at the end of their
sequences, a poly(A) tail which can be selected for using poly(T) oligomers. However, for
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enrichment to be successful, it requires large amounts of mRNA with high RIN (RNA
integrity number) i.e. there should be a minimum amount of degradation at sequence ends
and lots of mRNA strands from known exon sequence regions. Exons here refer to regions
of a genome that remains on an RNA after intron regions are removed by RNA splicing —
note that this means intron regions are ignored in enrichment. However, some tissues may
not meet these quality requirements (e.g. biopsy samples) and some organisms simply do
not produce polyadenylated mRNAs with poly(A) tails (e.g. bacteria). Therefore, another
viable option is to remove the rRNAs using compounds such as specific locked nucleic acid
(LNA). 3) Finally, once mRNAs are isolated, these are reverse transcribed into optionally
labelled complementary or cDNA. Then, these are amplified and fragmented with enzymes
into appropriate amounts and lengths to be analyzed as reads. Note though there are newer
protocols, such as third-generation sequencing tools (e.g. PACBIO and Oxford Nanopore)
that provide longer read sequences. Since the output of these technologies once prepared
can be analyzed by similar tools, we will not differentiate between them in this review.

scRNAseq and depth

When one conducts an experiment, they need to choose what they want to analyze as their
objects [254] and the resolution or depth of their features [254, 349].

Object-wise, in RNAseq, the object is a biological sample such that all the cells within
a tissue are ruptured and the RNA materials are pooled, processed, and then analyzed;
recently, scientists have developed a more granular option to analyze a single cell as an
object in scRNAseq. In scRNAseq, each cell is unruptured and kept intact before being put
through an extra preprocessing step. The cells are isolated into tubes, wells or droplets via
manual or microfluid separated fluorescence-activated cell sorting (FACS). These cells are
individually lysed and their mRNAs are reverse transcribed. Depending on the protocol
used, the resulting cDNA (complementary DNA) may be already attached to cell-specific
identification barcodes or these barcodes can be attached after amplification and fragmen-
tation of the cDNA. Afterwards, the cDNA are pooled and analyzed as with any other
RNAseq experiment.

The other dimension, depth, affects the quality of the features we are to analyze on our
objects. Depth is the average number of times any original mRNA nucleotide is sequenced
and amplified. More depth means that any sequence is more abundant and therefore the
chance of it being picked up accurately over noise during the analysis is higher. Although
it would be ideal to have infinite depth, there is a limited monetary budget. For highly
expressed sequences in most eukaryotic cells, 5 million reads will usually suffice, while up to
around 100 million reads have been used for detecting lowly expressed sequences [326]. In the
case of scRNAseq, costs are further amplified as even smaller numbers of mRNA sequences
per cell need to be amplified. In this case, researchers need to balance an additional trade-off
between cell count and read depth. Usually, droplet-based scRNAseq scans 20,000 cells at
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a sequencing depth of 10,000 reads [64]. If depth is of importance, some studies have set
their depth to 50 million while analyzing less than a few hundred to a thousand cells [210].

Data acquisition

Regardless of the object of analysis and depth, RNAseq outputs a n×m matrix consisting
of the object (sample or cell) on the rows and the sequence features on the columns. The
content of this matrix is a count proportional to how many mRNA strands contain a certain
sequence. We acknowledge that in RNAseq papers, this matrix is referred to as a m × n
matrix where the features and objects are on the row and column of this matrix respectively.
However, we transpose this matrix to keep it consistent with the input matrix of FCM.

When the raw data comes out, the original features are simply the read fragments
we talked about earlier. To extract the meaning behind these reads, some preprocessing
procedures need to be done. The first step is to control for quality. To account for duplicated
reads, sequencing error, contamination, and other issues, researchers use standard tools
such as FastQC (popular on the Illumina company platform) [97], NGSQC [79], FASTX-
Toolkit [142], and Trimmomatic [46]. Some things they look out for include degradation in
read quality going towards the 3’ end of reads while temporarily or permanently removing
artifacts and labels such as adaptor sequences and barcodes for collective analysis. After
obtaining the quality-controlled version of the reads, these can either be used directly for
analysis. In this case, the sequence features would simply be unique reads [384]. Most
of the time, they are further annotated by being aligned to a corresponding genome or
transcriptome using aligners such as RSeQC [377] and Qualimap [117]. Taking the human
genome as an example, they can be mapped to databases such as Ensembl [161] or USCS
[180]. By aligning reads to these data sets, we would know which genes or transcripts the
reads belong to. This informs the users on which genes are being expressed in the sample
or cell, and this allows for features to have annotated meaning. Other forms of annotation
include linking or assembling all the reads via overlapping sequence bits. Tools that do so
include SOAPdenovo-Trans [391] and Trinity [129] (and for longer reads [129]). In summary,
each feature can correspond to a certain nucleotide base [70], read, a certain sequence,
transcript, or most commonly, a longer sequence annotated as a gene. For simplicity, when
we refer to our features, we will refer to features as if the reads were aligned and annotated
at the level of a gene.

Now that the features are set for the n × m matrix, many methods would assume
that further data preprocessing be done. The first one of those is normalization for RNAseq
samples. One example of this is to adjust the count values such that the increase or decrease
in count between objects is comparable [137]. When different samples have different cell
counts, we may be misled to believe more of a certain gene is translated in one sample than
in another when in reality, that sample just has more cells expressing the gene. One solution
can be to simply use scRNAseq. However, a more economical solution is to use methods
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such as the TMM (trimmed mean) from the edgeR package [298]. By assuming that most
counts do not change, it takes the normalized mean ratio of all counts in one object over a
reference object. This ratio is then multiplied with all counts in the non-reference object to
get the normalized counts. Other tools that accomplish a similar purpose include the relative
log expression (RLE) from the DESeq2 package [224], median ratio normalization (MRN)
[247], PoissonSeq [213], and for certain cases, quantile normalization [153]. Additionally,
one can choose to rid of small technical or external confounding factors using tools such
as Rhcpp [261], RUV [295], COMBAT [340], and PEER [339]. Most of these tools model
the normalized data as a linear combination of true expression counts, confounding factors,
and an irreducible error term. These can be estimated by statistical sampling and other
optimization algorithms. Finally, the count values are typically logged during preprocessing,
or methods can specify otherwise.

We refer to this preprocessed n×m matrix as our input data set. The rows can either
represent samples or cells and the columns we will refer to as features or genes.

3.7.2 Motivation, application, & problem

Through clustering scRNAseq cells, we can understand the cell type composition in a sample
as we have done in FCM — but this time, instead of identifying cells using markers, we
do so with gene sequence counts [254, 322, 362, 405]. On the traditional RNAseq side, we
can compare how different experimental conditions relate to each other by clustering the
RNAseq samples they affect.

Given that we know what clusters the objects belong to, one task thereon after is to
interpret which features are DCPs and differentiate between these clusters (analogous to
Problem 1). A more formal term for this research problem is differential expression (DE)
analysis. The first DE metrics compared features based on pairwise object clusters to see
whether the features’ distribution is bimodal or unimodal. In this category, methods have
explored metrics such as the p-value on t-statistics and chi-square tests for binary data.
Other examples of these metrics include kurtosis and bimodality index (BI). Kurtosis here is
the fourth standardized moment which tests the heaviness of tails in a distribution [29], used
in methods such as PACK [354]. Meanwhile, BI, an alternative to the popular BIC metric has
risen in popularity because it can also rank genes according to their bimodality as opposed
to only indicating whether they are bimodal or not, as in kurtosis. However, these statistical
distribution based tests require that the assumption on the data distribution to accurate
and is not robust when there is too much noise [94, 149]. Another common way to tackle this
problem is via multiple/linear regression. This method is still used to this day, commonly
via package limma [327]. With the addition of significance testing, limma typically provides
a good list of features that researchers may be interested in. Other packages incorporate
statistical models, such as using the Poisson or its generalization, the negative binomial
distribution to represent feature counts and evaluate their significance for DE [297, 17, 143].
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These packages assume that for each feature, its counts should form separate distributions
under different object clusters. The parameters of these distributions are often estimated
using a sampling approach based on Bayesian principles, with hyperparameters that can be
optionally tweaked by the user [348]. While there is no consensus on how to best estimate
DE, researchers usually use many packages together to interpret and communicate the
clustering results they desire [317, 293, 329]. Another way to perform DE is to incorporate
it into the clustering process by clustering both dimensions at the same time. We will dive
into methods that perform this later in the chapter.

Knowing what features correspond with what object clusters have significant impli-
cations in biological systems analysis. One way to utilize the object and feature clus-
ters is to use the found features as biomarkers as we have done for FCM in Chapter 4
[189, 136, 135, 352]. When given a new object, one can use biomarkers to identify what
cluster, condition, or tissue the new object may belong to. Biomarker discovery and verifi-
cation have significant implications — one of which is that it may guide protocols on what
to test for in clinical diagnosis [390]. Systems analysis also implicates what biological path-
ways are affected/s by these features or object clusters. One way to do so is via enrichment
analysis e.g. hypergeometric tests [56] on existing databases. Enrichment can also be seen
as a query to a database to see what processes the biomarkers are involved in and see if
features affecting the same cluster are involved in a similar process(es). Existing databases
include interaction networks KEGG [179], the gene ontology [23], DAVID [321], Babelomics
[251], protein sequence dataset, Swissprot [28], conserved protein domain PFAM [107], In-
terPro [162], and RNA sequence repositories Rfam [118], and mirBase [195]. Knowing what
pathways these features are involved in gives meaning to the state of a cell population or
sample cluster. In addition, these states can also help researchers predict what shape and
even function(s) the translated proteins may perform. For example, if they are involved in
communication between cells then perhaps these genes are involved in changing the state
of a cell. In addition, if the protein associated with our biomarker is similar to another
protein involved in a particular pathway, we could deduce that the former protein may also
be involved in that pathway [126, 51]. If hierarchical clustering is performed on the features,
researchers could even assume an inter-gene hierarchical functional relationship [346]. One
can also use the feature clusters to simplify existing knowledge bases. As well, if a tempo-
ral aspect is measured, the cell and sample states can also be analyzed on a timeline to
understand the progression of expression in the observed system [236].

To put the clustering and DE to use, a popular application of these results is in precision
medicine. The goal of precision medicine is to improve patient outcomes by applying precise
treatment based on a person’s phenotype. However, to create a custom treatment for every
person is expensive, and it is difficult to show that a treatment’s success is statistically sig-
nificant when testing a medical hypothesis for approval. On the other hand, for diseases such
as cancer, treating the entire population the same way may not be viable i.e. one treatment
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may not be effective on patients whose cancer cells express different gene sequences or muta-
tions. One of the first examples of precision medicine that expanded the field attempted to
group cancer patients into subtypes based on gene dysregulation [358, 233]. Therefore, clus-
tering patients into small groups and developing treatments for those individual groups has
become a suitable compromise [273, 71, 62, 151, 222, 78]. Amongst the precision medicine-
related papers released to date, transcriptomics makes up the second-largest set of data
used in their methodology, after genomics data [273]. With most of the researchers using
clustering as their main methodology for this application, a growing number of papers are
starting to use these results to inform treatment decisions directly, especially in the domain
of cancer — breast cancer in particular [208, 245].

On the topic of treatment, another major player interested in the clustering of RNAseq
data is pharmaceutical companies. One purpose here is to hypothesize what compounds
might react to what drugs i.e. trug-target interaction. RNAseq clustering allows one to
understand what patient group expresses which genes and therefore what compounds may
exist in that patient group’s biological system. These compounds can then be queried to see
which drugs may be effective in those particular patient groups. Given biomarkers of patient
clusters on whom a drug has been effective on, researchers can match their biomarkers to
that of new patients and see if the same drug can be applied. Furthermore, assuming that
similar compounds have similar effects, companies can use clustering to see if they can
repurpose existing drugs to target new compounds for involvement in treatment. RNAseq
clustering also proves to be useful during the drug testing phase. Here, by experimenting
with different drugs, and analyzing the effects of those drugs on gene expression, we can
evaluate the drugs’ efficacy.

To impact these application contexts, one needs to start with clustering of RNAseq data,
whose methods we will go through in the following section.

Given a large number of features, a challenge in RNAseq clustering is the need to
understand exactly which features are significantly associated with which cell populations
or sample clusters. Having mainly looked at 1D clustering methods in the previous section,
in this section, we also discuss the different multidimensional clustering techniques that
have emerged. These are not only the object dimension but also the feature dimension. We
maintain the organization of clustering techniques by their phases: preprocessing, clustering,
and postprocessing. Given the dimensionality differences, RNAseq clustering methods have
different challenges they face. Therefore, the tasks in each step may differ from that of FCM
clustering methods. More specifically, some challenges RNAseq clustering methods face are
as follows.

(a) In contrast with FCM, there is little emphasis on finding a particular type of cluster
of interest; instead, we aim to find robust clusters. RNAseq is prone to noise, outliers,
and missing values amongst batch effects [53, 188, 48]. This issue is magnified by the
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fact that there are few objects to cluster and depth or feature quality decisions vary
across the experiment.

(b) Another challenge is the emphasis put on multidimensional clustering. Since under-
standing what features contribute to the object clusters is important, RNAseq mo-
tivated the creation of a specific type of subspace clustering, biclustering, and more
recently triclustering. Although one can put aside DE analysis until after object clus-
tering, simultaneously clustering all provided dimensions is becoming more and more
popular. However, the imbalance of dimensions (small n, large m) and different di-
mensional domains (e.g. temporal, context, gene, object) poses a challenge to finding
multidimensional clusters that make sense (e.g. temporal dimension should be order-
preserving) [238].

(c) As with any task is desirable to be able to have methods automatically specify param-
eters, especially K [52, 355, 364, 262, 187]. For this, a variety of quality metrics are
put in place to guide methods on how many clusters are a good amount to go with.
We will see that similar tactics used in FCM are also used in RNAseq, so we go over
this challenge briefly while describing the methods.

(d) Finally, the clustering results should be interpretable to the user. In this section, we
not only focus on visualization but also on how methods try to integrate other data
types to interpret the context for why the clustering results turn out the way they
did. For example, what do the features that differentiated the object clusters have in
common in the context of a biological system.

3.7.3 Preprocessing and imputing missing data

Before clustering, many methods choose to prepare the data such that it becomes suitable
for analysis. Many preprocessing steps are there to deal with the missing data, noise, and
outliers that are common in RNAseq data. As well, to deal with high-dimensionality, some
methods choose to conduct an extra step of feature selection (filtering in good features),
dimension reduction (representing features in alternative space) and use alternative data
representation techniques to summarize the data. While many of the latter two strategies
overlap with that of FCM, all of these become more important due to the much larger
features space in RNAseq data — reminding us that many clustering methods do not scale
well in high-dimensional space and the need to mitigate Challenge (a) for finding robust
clusters. As many RNAseq methods opt to merge the process of finding K for Challenge (c)
with its clustering algorithm, we will defer then to when we describe the clustering solutions
themselves.

To mitigate Challenge (a) for finding robust clusters, the amount of missing data in
D should be minimized. Traditional methods of dealing with this include imputation or
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the process of filling in counts for missing genes. One way to impute missing values is
via a probabilistic model. Given a data set from the general population, if the counts of
known genes are of the observed value for a specific object, one can find the most probable
expression value for the missing gene [147]. Other methods for dealing with missing data
include network smoothing [302], using an autoencoder [345], and matrix factorization [413].

Data representation

Methods can use either a matrix D or a graph as input. In matrix form, methods can
choose to directly use the original matrix, transform the values in the matrix, or they can
opt to downsize the matrix as in the following sections. Transformation allows one to bring
D into nonlinear space. As in FCM, it is also common in RNAseq to use log or Box-Cox
transform [360]. If one chooses to use a graph as input, methods often face the issue of
having to decide on an appropriate metric to accurately calculate a distance or similarity
between objects. We saw that in FCM, many methods opted for traditional distance metrics
such as Euclidean and Manhattan. These metrics assume that each feature is independent
and can be biased toward highly expressed genes. Therefore, RNAseq clustering methods
often opt for scale-invariant methods such as the cosine [188, 156], Pearson correlation, and
Spearman’s correlation distance metrics [406] — which fortunately have shown empirically
better results for RNAseq [173, 344], especially when used on stochastic clustering methods
such as Kmeans (or Kmedoid, where the cluster centre is the median) [132].

Feature selection

Feature selection is the process of picking out good features while removing noisy or low-
quality ones. Because there are no standards on what should be and should not be removed,
many tools resort to heuristics to conduct this step. For example, it is still common for one
to simply delete 10% of the lowest average expressed genes in a scRNAseq experiment [90].
Seurat [311] and [48] use a more heuristic assumption in that they assumes it is okay to
remove genes yj with low variance. Hence, the highest quality genes are those ranked with
a high coefficient of variation. They assume that genes with a homogeneous count across all
objects are unlikely to differentiate between objects of different clusters. Instead, these genes
may simply be noise if, their counts are low, or housekeeping genes that are used as a control
for experiments that want to identify highly variable genes. A term to describe these kinds
of assumptions is the highly variable genes (HVG) method of gene filtering. Furthermore,
M3Drop [18] focuses on dropping low-quality genes, or genes that have too many missing
values. This situation may happen when there is a failure in reverse transcription or enzyme
reactions. It assumes that the number of missing values, or dropout rate dropoutj , a gene
has should conform to the Michaelis-Mentin function of that gene’s average log expression
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µj

dropoutj = µj

µj +M

where M is the Michaelis constant. This means that the lower the µj , the more dropouts
a gene should have since rarer genes are harder to detect. More specifically, the dropout
should fit onto a Michaelis-Mentin equation as a logistic curve, and those genes that deviate
away from this curve should be removed. Note that if having values of 0 is equivalent to
having missing values, deviation from this rule on the opposite side of the curve can also
mean a DE gene. In a similar respect, [192] rank genes by how far they are from a moving
median while also deleting low-quality genes that have a mean count under 10 million reads.
After log transforming the count values, the moving median here is the fitted line between
the mean gene counts and the MCCVj mean-corrected coefficient of variation (CVj). Hence
the distance from this median is:

DMj = MCCVj −MEDj

MCCVj = log10CV
2

j −MCRj

where MCRj is the mean corrected residual of CV 2
j and MEDj is the residual produced

upon fitting MCCVj on the log transformed gene length of gene j. The length of each gene
here is calculated as the union of all of its exons according to the Ensembl database.

One can also get rid of low-quality data by identifying outliers. An example of this is
DensityCut [85]. DensityCut uses random walks, a process that walks through the edges
of a graph with a probability proportional to the weight on each edge. Through several
iterations of such walks, one can determine the proportion of times each node has been
passed through. The ones that have been passed through rarely can then be labelled as
outliers.

Dimensionality reduction

Another way to reduce the number of features of a data set is via dimensionality reduction.
One way to do so is through PCA. PCA scales well with large data sets, however, it assumes
that the data is distributed as a Gaussian in linear space. With or without modifications,
PCA is the most commonly used dimensionality reduction method in RNAseq to date [19]. It
is used in methods such as PCA-based Seurat [311], Ascend [316], CIDR with zero-imputed
similarities [217], [397], SC3 [189], TSCAN [172], and iWGCNA [254]. Another common
method to conduct dimensionality reduction is t-SNE. Since t-SNE preserves distances
between points at a local level, it is a popular choice as a visualization tool. Nevertheless,
it still proves practical for dimensionality reduction as it is used in many state-of-the-art
tools, such as Monocole [287]. Like t-SNE, diffusion maps [288] are also able to represent
data in nonlinear space. However, in contrast to t-SNE, it preserves both local and long-
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distance relationships between points. Nevertheless, it has a strong assumption that the
data presented is smooth in low dimensions so it is more suitable to be used on data with
more than 1000 objects that can be clustered into a few distinct clusters — a viable choice
for some large scale experiments and scRNAseq [288]. Finally, and more recently, methods
have opted to use autoencoders to learn a non-linear embedding of the original data. For
example, scCCESS [122], randomly splits up the input, column-wise, into N matrices and
trains N autoencoders to produce a lower-dimensional embedding of the original data.

Deep learning-based imputation

Starting in 2018, we saw a profound increase in the application of deep learning; imputation
was no exception [374]. The most commonly used architecture for self-learning deep learning
models is the autoencoder. The autoencoder is a multi-layer network that contains an input
layer, one or more fully connected encoding layers, an embedding layer, one or more fully
connected decoding layers, and an output layer. The input and output layers are of size
m, and the encoding, embedding, and decoding layers are of size < m with the embedding
layer being the smallest layer. AutoImpute [345] was amongst the earliest methods to use
the autoencoder for imputation. As done traditionally with autoencoders, they train the
autoencoder with the original input data and force it to reproduce the input at the output
layer. The assumption is that if a smaller embedding layer can be used to produce the origi-
nal input, then the embedding layer should be a sufficient lower-dimensional representation
of the input. Since we train the autoencoder on many objects, then the embedding layer
should be a representation that can reproduce a version of the original input that is free
of noise, batch effect, and missing data. Though later methods also used the autoencoder,
the main differences between these methods are either that they use different types of regu-
larization layers to optimize for some objective, or that their method has a post-processing
step where they feed the encoding of their encoder into an extraneous neural network to
attain desired results. Other methods that use the autoencoder for imputation are SAUCIE
[15], scScope [82], and scGNN [376] which embed this step with clustering.

Later on, DCA [93] also came up with an autoencoder imputation method but it assumed
that scRNAseq, unlike RNAseq, does not conform with the ZINB (zero-inflation negative
binomial) distribution but instead that counts produced based on UMI (unique molecular
identifiers) follow a negative binomial distribution. Therefore, it added a layer to regularize
or force the model to fit the input data onto this distribution. GraphSCI [292], on the
other hand, assumed that they could obtain better imputations by accounting for gene-
gene interaction by inputting an existing gene-gene interaction graph along with the given
RNAseq transcript counts into a graph convolutional neural network. The vector embedding
given by this network is then put into an autoencoder to obtain the final imputed data set.
scIGANs [393], on the other hand, experimented with using a GAN (generative adversarial
network), a popular network used to generate images. Its generative model generated a 100-
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gene matrix or image-shaped output containing random values for each cell type. This model
is trained until the discriminative model cannot tell the difference between the generated
data and the original input data. Imputation of the input data is done based on the generated
data. An issue with this approach is that it requires preliminary knowledge of the cell
populations first or generates it through KNN.

Although scGNN and scIGANs significantly outperform other methods, they are sig-
nificantly slower than the alternatives (hundreds of seconds for 50 cells) [374]. To improve
efficiency, DeepImpute [21] separated the input data set column-wise groups and trained
each group on their autoencoder such that the number of nodes in each layer of the au-
toencoder can be reduced. DeepMc [259] Also tried to reduce the number of features by
performing matrix factorization and selecting only the 1,000 top features to train a 4-layer
neural network shaped like an autoencoder but without the embedding layer. While faster
than the alternative, even the fastest of these deep learning imputation methods still per-
form significantly slower than the alternatives [374].

3.7.4 Clustering

Traditional clustering methods

Motivated to analyze heterogeneity among cancer patients, many homegrown statistical
tests to find DE genes [277, 145, 260] and clustering methods have been created. The earliest
of those were created to find bimodal clusters. Setting K = 2 by default, methods like PACK
(profile analysis using clustering and kurtosis) [354] and its predecessor [353] runs several
instances of GMM. However, high dimensionality means that the data tend to be sparse, so
if the data has a heavy tail or has extreme values, these basic procedures may result in false-
positive results. However, it is effective if the assumption that the data distribution is normal
holds. To understand how the data might fit on other distributions, SIBER [360] applies
three types of distribution for its mixture model on Box-Cox transformed D: Gaussian,
Poisson, and negative binomial distributions (and in some cases the t-distribution [39]). The
Gaussian distribution is used for continuous data, while the Poisson and negative binomial
distribution are specialized for binary or count data — with the latter being popular due
to its ability to model overdispersion, where genes with small counts have especially high
variance and uncertainty. Model-based clustering algorithms would eventually go on to find
multiple clusters as in [214] with GMM, and TSCAN [172].

Hence, this brings us back to the importance of being able to find robust clusters as
in Challenge (a). One approach in this step is to use consensus clustering. This approach
combines many clustering instances of single or multiple clustering methods to remove
inconsistencies and keep reliable clusters. Examples of this types of method include MetaCell
[30], SC3 [189], and PCAReduce [397, 134, 217]. As in PhenoGraph, MetaCell [30] takes
as input a similarity matrix A, creates a KNN graph, and makes a new similarity matrix
where the similarity between objects is based on how many shared neighbours they had
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in the KNN graph. It then samples a subset of objects several times, each time applying
Kmeans clustering. Using these Kmeans results, a final similarity metric is generated based
on how many times each object was clustered together in the sampling process. It then
applies another round of Kmeans to this final similarity matrix and outputs this as the final
result. Aside from clustering several times on subsets of data, one can also choose to cluster
several times on the whole data. SC3 and PCAReduce start from a PCA dimensionality
reduced matrix of D or the eigenvectors of the D’s graph Laplacian whose distance between
nodes is defined by the Euclidean, Pearson, or Spearman distance metrics. From there, they
over-clustering with Kmeans several times to understand which objects are always clustered
together. Again, the number of times an object is clustered together is then treated as the
new similarity matrix between objects. Finally, they use this matrix to conduct hierarchical
agglomerative clustering to obtain the final results. SAFE [396] and Clust [3] are examples
of methods that combine or ensemble together results from multiple clustering algorithms.
SAFE merges these results by first using cluster validation indices, such as the Jaccard,
to find the best overlapping clusters. It then creates a distance matrix that contains the
distance between all pairwise clusters. This matrix is converted into a graph on which it
partitions to create meta-clusters i.e. the final clustering result. Consensus clustering is
especially beneficial for stochastic algorithms that have random initialization or can easily
fall into a local, not global optima. Ensembling together multiple results also help get rid of
noisy inconsistent results — which have been shown to occur consistently for all methods
[254]. Consensus clustering can also help to aggregate clustering results that have used
different K values to pick out which K provides the most consistent results to mitigate
Challenge (c) [52, 355, 364, 262, 187].

A clustering method that does not require an explicit K to initialize is hierarchical
clustering. Given its natural ability to help users visualize its results via a dendrogram, it is
the most used clustering algorithm for RNAseq, in particular for the patient stratification
application [273]. Dendrosplit [406] opts to test each iteration of hierarchical clustering
with a quality statistic to understand what K to finish off clustering at. It starts with a
similarity matrix A made via Pearson or Spearman correlation. Using this, Dendrosplit
performs agglomerative hierarchical clustering with the complete link — the maximum of
pairwise distances between the points of two clusters. It stops merging any two clusters
if − logminjp(DI1j , DI2j)) become lower than a threshold. p here is the p-value from the
Welch’s T-test for the jth gene of clusters containing object indices from subscript indicated
clusters 1 and 2, I1 and I2. Finally, it is also worth mentioning other distance-dependent
method groups including density-based and graph-based clustering. Like in FCM, density-
based clustering is popular for clustering scRNAseq data because it can find arbitrarily
shaped clusters [234, 55, 174, 312, 312]. An example of a method that uses density metrics
in conjunction with hierarchical clustering is DensityCut [85]. DensityCut initializes by over-
clustering. Using the random walk results found previously, it creates a density estimate
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from the number of times each object is walked over during a random walk. It assigns
the objects closest to the density peaks as cluster centroids. Using these centroids, objects
are moved along their gradient directions toward each centroid. Whichever centroid they
move towards defines the cluster they are assigned. This is done via the hill-climbing search
algorithm [194]. It then takes these clusters and applies hierarchical agglomerative clustering
to see which clusters should be merged. The link here is defined on the density distribution
previously created where for every two clusters, the lowest point or density valley between
the two clusters is compared with the lesser of the two centroids or the height of the lower
density peak from the two clusters. If this ratio is above a certain threshold, the two clusters
are merged. On the other hand, graph-based algorithms have also taken off with notable
packages such as Seurat [311] which successfully applied Louvain onto PCA reduced RNAseq
data. Note that again, since many hierarchical methods use some form of a distance metric,
they can be sensitive to noise and outliers in a large feature space [405].

Multidimensional clustering

Challenge (b) represents a unique problem in data sets with a large or multiple feature
space(s). In precision medicine, for example, it is more informative to simultaneously select
for and understand what features contribute to making a patient group unique. These fea-
tures can inform downstream decisions such as etiology and treatment [242]. Up until now,
we have been clustering in a single object dimension. Multidimensional clustering, on the
other hand, clusters multiple dimensions at once. The terms, biclustering and triclustering,
were first coined in the bioinformatics field to define methods that cluster two and three
dimensions simultaneously respectively. Their ability to help users interpret results allowed
them to grow in popularity and enter mainstream use today [152]. In triclustering, the
additional dimension would often represent a context such as time, location, and condition.

In this section, We start by discussing the general heuristics and statistical tests used to
define a good multidimensional cluster, whether that be a bicluster or tricluster. We then go
into some of the algorithms used to find clusters that satisfy these criteria. Hence, the goal
of multidimensional clustering is to find a subspace in D that satisfies some homogeneity
criteria at a specified quality or statistical significance. Note that most of the methods
mentioned are designed specifically for biclustering but many of them can be extended for
use in triclustering.

Formally, each cluster k here is a subspace of D with indices Ik ⊆ {1, ..., n} and
Jk ⊆ {1, ...,m} for biclustering, and additionally the third dimension Hk ⊆ {1, ..., s} for
triclustering. For convenience, we call the first dimension objects, the second dimension
features, and the third dimension slices. As we refer to rows as xi and columns as yj , in the
triclustering, we refer to a matrix slice in the third dimension as zh. As well, we stick with
our notation of having Dijh represent a subspace or element of D. Finally, we represent the
mean of a subset of D via µ. For example, if we say µiJH , this represents the mean of xi.
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Heuristics Usually an element in D can be modelled as a constant c ∈ R that is effected
by an irreduceable error term e ∈ R and its cluster Θijh = in some combination of αk, βk,
γk, where αik = DiJkHk

, βjk = DIkjHk
, γhk = DIkJkh.

Dijh = c+ Θijh + eijh

We assume element Dijh is a part of none or one to few cluster(s) k which consists of indices
(Ik, Jk, Hk).

One of the most common objective function is the mean squared error (MSE)

MSE = 1
|D|

∑
i,j,h

(Dijh − f(i, j, h))2

where f(i, j, h) is the algorithm modelled Dijh after applying effects of the found clusters.
The main goal of this objective function is to understand how well a methods’ model reflects
that of the real data. Another set of objective functions are standards of quality that a cluster
needs to meet at a threshold or maximize.

In either case, what these objective functions help to achieve is homogeneous quality.
Homogeneity is a heuristic that defines the assumptions a method has about a good clus-
ter. These assumptions can pertain to several aspects of a bicluster or tricluster and can
vary depending on user needs. Some of these assumptions can be structural aspects of a
cluster, such as shape, size, overlap, and position of the cluster. These are usually defined
intrinsically based on how an algorithm is designed. For example, most algorithms require
clusters to be maximal. A maximal cluster, is a cluster that meets a homogeneity criteria
and at the same time does not wholly contain a smaller cluster that does so as well i.e.
cluster Q = (I, J,H) is maximal if there is no (I ′, J ′, H ′) s.t. I ⊆ I ′ ∧ J ⊆ J ′ ∧ H ⊆ H ′.
Algorithms that stick to this criterion include hierarchical clustering. It implicitly requires
clusters to be convex with high density. Since it iteratively merges clusters according to this
criterion, it would not output a result that has two clusters where one is wholly contained
in another. Other criteria include sensitivity to distribution of noise [164, 324], missing data
(an ongoing challenge [414], and different data types (continuous, discretized [325, 392], or
symbolic data [150]). These can be controlled by error terms added to a homogeneity crite-
rion modelled by, for example, a Gaussian distribution. Meanwhile, the handling of different
data types can also be handled by having multiple objective functions. However, putting
aside extraneous requirements, the crux of a homogeneity criterion can be categorized as
those trying to find clusters with values that are:

• Constant: all elements in a cluster have similar values i.e. Θijh = 0; or all elements in
a row/column have similar values.
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• Additive: all elements in a cluster is effected similarly by a summation unique to a
cluster e.g. Θijh = αik + βjk + γhk.

• Multiplicative: all elements in a cluster is effected similarly by a product unique to a
cluster e.g. Θijh = αikβjkγhk.

• Order preserving: elements in each row/column increase or decrease in additively/multiplicatively
in a way that is consistent between each row/column — essential for when there is,
for example, a temporal dimension to the data.

The earliest model looked for constant clusters given a binary matrix D. For example,
[197] evaluates biclusters with the maximum fraction of 1’s inside in the maximum size
subspace of D. This can be generalized to tolerate noise [402] according to how homogeneous
one desires the clusters to be [24]. In real valued matrices, the clusters would have a similar
value across the board. For this, [164] tests the biclusters for unexpectedly low variance and
unique mean compared to that of the whole D — usually when modelling a clusters’ values
as a Gaussian. [235], on the other hand, loosens this definition such that a constant cluster
can simply be the same across rows, as in Dij = cj + αi + eij where αi = 0, or columns.

Additive clusters follow a model called plaid [407]. Here we speak to it as if it is defined as
a biclustering method, but it can be generalized to any dimension. Regardless of the effects
of the objects and features, plaid assumes that each cluster has an overarching additive
effect on its values. A value is therefore defined as the ‘layers’ of these effects added onto
it. With this assumption, plaid allows for overlapping clusters in the case that the effect of
the two clusters is additive. As such, within our notation, Θk can be defined as follows.

Θk =
∑

k

Θijkρikκjk

ρik =

1 if i ∈ Ik

0 otherwise

κjk =

1 if j ∈ Jk

0 otherwise

where Θijk = µk + αik + βjk (µk is the mean or simply a base value of cluster k) such
that the latter two terms are optional. Including the latter two terms will allow users to
find biclusters where different rows/columns of a single cluster can have its own effects.
This additive model allows users to find objects or genes where their values are either over
or underexpressed. Users can also choose to find only either one of those by adding on a
constraint such that Θijk always has the same sign, either positive or negative. Given its
model, this heuristic then lends itself well to be converted into an objective function based
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on MSE:
min

∑
i,j

(Dij −
∑

k

Θijkρikκjk)2

Multiplicative models are where Θk = αiβjγh. Like additive models, it assumes values
are effected by a multitude of cluster-based factors, but as a product rather than a sum.
Hence, this assumption lends itself well to matrix factorization. Matrix factorization takes
as input an n × m matrix and splits it up into a product of an n × m′ and an n′ × m

matrix where n′ < n and m′ < m. The new dimension of the these two matrices are
termed factors. As a dimensionality reduction tool, these factors can then be used as new
features to cluster the objects or features respectively. In the multidimensional clustering
case, each factor can represent a fuzzy cluster label of the rows and columns. Since matrix
factorization methods are flexible in the terms that it can include in its objective function,
one can consider many aspects of what they want to focus on. For example, one can put in a
term to help simultaneously rid of confounding factors. In this case, D would be represented
as a sum of factor products: (known sample covariates: object factors (n×M)×(M×m)) +
(known gene covariates if available: object factors (n×L)× (L×m)) + (unobserved effects:
(n × N) × (N ×m)). Under this assumption, the mean expression of row i and column j

can be written as
ln(µij) = E(Dij |bij = 0, B,C,D)

and the probability of dropouts as

logit(πij) = P (bij = 1|B,C,D)

where Dij is the value in the count matrix, bij =

1, if Dij is a dropout

0, otherwise
. As with other

model-based methods, the parameters here can be estimated using optimization procedures
such as sampling. Though similar, note that this model is different from remove unwanted
variation (RUV) [295] for eliminating confounding factors — because here, the unobserved
effects may not necessarily be but can be unwanted confounders.

Order preserving homogeneity assumes that each row/column has the same relative pat-
tern of the increase or decrease of values [235]. The order is important if there is a dimension
that makes sense to have order consistency [392], for example, a temporal dimension — as
one may be interested in how the expression of cells or patient samples change over time.
One possible way this change could occur is through partial orthonormality. Partial or-
thonormality is when the shift in the scale of values is correlated between time segments in
a cluster. For example, if one gene increases in expression over time, the other genes should
too. One of the earlier attempts to model this is by [392]. Given an ordered triplet of times
π(zj) = zh1 ≺ zh2 ≺ zh3 , [392] selects for objects and features such that the S2 score is
lower than a user-specified threshold. It samples for feature triplets many times and tests
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each one until this requirement is satisfied.

S2(I, J, {h1, h2, h3}) = maxi∈I,π(yj)⊆J
Dijh2 −Dijh1

Dijh3 −Dijh1

−mini∈I,π(yj)⊆J
Dijh2 −Dijh1

Dijh3 −Dijh1

As one of the earlier methods to explore this field, it does successfully reach its goal of
finding ordered clusters. One reason for this is that the time dimension is usually very
small, given the cost of producing the data. The difference in the size of each dimension also
means that the larger (e.g. feature) dimensions can heavily influence the results. Therefore,
enforcing small triplet-based clusters is a good idea to overcome Challenge (a), but this
makes the method difficult to extend to other situations. Therefore, other methods use
more generalizable metrics to test the quality of the cluster e.g. pairwise row/column/slice
Pearson correlation and later the Spearman rank correlation for its trait of being shift and
scale-invariant [173].

Nevertheless, this idea to treat different dimensions differently opened a new path in
triclustering in that it does not have to follow a single homogeneity criterion for all di-
mensions. Many methods choose to first find good biclusters on all individual slices, and
then connect them using a separate inter-slice homogeneity criterion [392] e.g. Pearson or
Spearman correlation [11, 411], or cosine distance [156]. Meanwhile, [158] evaluates whether
the difference between the average values of each slice in a tricluster is coherent ensuring
that the rate of increase or decrease between slices is consistent. To the same end, another
example of an inter-slice homogeneity criterion is a thresholded PMRS (planar mean residue
similarity) [11]. Given two biclusters on separate slices (I, J, h1) and (I, J, h2),

PMRS =
∑

i∈I,j∈J |(Dijh1 − µIJh1)− (Dijh2 − µIJh2)|
2max(

∑
i∈I,j∈J |Dijh1 − µIJh1 | −

∑
i∈I,j∈J |Dijh2 − µIJh2 |)

. Not only is this tactic good for when the third dimension is smaller in size, but it also
customizes the homogeneity criteria for the different domains the dimensions are in. For
example, correlation metrics are good for finding order-preserving relationships (e.g. in a
temporal domain) while other metrics may be more suited for finding constant, additive,
or multiplicative clusters (e.g. in an object vs feature domain). That said, note that the
inter-slice homogeneity criteria need not always be order-preserving.

Other triclustering methods attempt to get rid of the third dimension altogether by
collapsing the third dimension using some statistics. However, this means that all the tri-
clusters found would contain all the indices from the collapsed dimension. This is viable for
some situations, mostly when the collapsed dimension is small [325].

Algorithms Previously, We talked about different types of heuristics that pertain to
different assumptions people have about a good cluster. Now, we go into the algorithms
that can find clusters based on the heuristics described.
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Considerations one would have when designing these algorithms is the structure of the
cluster one is looking for. For example, whether one wants hard or fuzzy clusters [370] and
non/overlapping clusters. Non-overlapping clusters are easy to visualize as one would simply
need to reorder the indices in each dimension to obtain a good heatmap approximating
the clusters on a matrix [313]. However, overlapping clusters are often more flexible and
suitable for real-life scenarios. In the latter case may involve algorithms that simultaneously
find multiple clusters. Whereas the former case, algorithms tend to remove already found
clusters from D before moving on to find new clusters.

This procedure of finding one cluster at a time represents many of the early algorithms
made for finding multidimensional clusters: iterative. Iterative algorithms aim to maximize
or minimize a heuristic objective function according to an optional threshold. It does so by
repeatedly adding or deleting rows/columns/slices to a cluster. A classic example of this is
the iterative signature algorithm (ISA) [37, 165] on which many later methods expanded on
[36, 25, 401, 12]. ISA is a biclustering algorithm that starts out with a binary matrix. This
could be a matrix where a gene is represented as 1 if it is DE in a sample, or 0 otherwise.
It then builds a directed graph where the nodes i ∈ U and j ∈ V are objects and features
within their respective clusters (note, we exclude cluster indices for clarity). ISA ensures
that the nodes included in a bicluster keep the variance of values in the bicluster to a
minimum i.e. it finds a constant cluster. More specifically:

ISA(V ′) = {i ∈ U |
∑

j∈V ′

Dij > tV δV ′}

ISA(U ′) = {j ∈ V |
∑
i∈U ′

Dij > tUδU ′}

where δ is the standard deviation of the new subsets U ′, V ′, and tU , tV are user specified
thresholds. In this case, a perfect bicluster would be where ISA(U ′) = V ′ and vice versa.
The algorithm initializes J ′ as a random or known feature set and U ′ as an empty object
set. It then iteratively goes through each feature j and calculates

I ′ = {i ∈ I|µiJ ′ >
TJ√
|J ′|
}

For all the i’s that do meet the criteria, an edge is placed between them and the said
feature. ISA does the same for all is that were included above and commences to add
another set of directed edges if any are found. Here, TI and TJ represent object and feature
z-score thresholds based on intra-cluster variance. An edge is added between these nodes
if, considering the size of the bicluster, |J ′ J ′′|

|J ′∪J ′′| < ϵ where J ′′ is the old J ′ from the previous
iteration and ϵ is a user given threshold. Finally, ISA finds communities of nodes that
are interconnected with each other. For this, one can simply do a breadth or depth-first
search to exhaustively find all communities or more sophisticated processes can be used.
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For example, an extensions of ISA, Metafac [219, ] finds these communities using non-
negative multi-tensor factorization. [165] also extends ISA by initializing only maximal
objects and feature sets via a heuristic-based greedy algorithm. [253], on the other hand, uses
a sliding window to ensure inter-feature contiguity and uses enrichment constraints to get a
biologically significant initial set of features. [178] Also uses enrichment databases on top of
customizing the algorithm for use on parallel systems. This process of parallel processing can
also be called hierarchical or divide and conquer; where the same iterative method of adding
and deleting objects into clusters can simultaneously occur on all objects. Since simultaneous
processing means multiple sets are created, Bimax [324], for example, deals with this by
merging relevant subsets according to how highly correlated they are. Another extension of
iterative methods is one where repeat additions or deletions of objects/features/slices are
allowed, as in Cheng and Church [69], BackSPIN [405], along with many more that followed
[220, 361, 299, 163, 231].

Additive plaid models [407] were also first optimized using a greedy iterative model. It
takes as input, a log-transformed D, such that the Gaussian error term can be a robust
distribution for noise [60]. It iteratively adds one layer of the parameters onto the model
at a time to create something close to D i.e. minimize MSE. Eventually, methods got
around to using a multitude of methods to optimize plaid. For example, [415] uses low-rank
factorization optimized via coordinate descent, while [347], again, uses tensor factorization
to reduce computational complexity. Other extensions include FLOC [394], which assumes
no background layer and enforces that α, β, and γ cannot be 0 such that all elements in
D must be clustered. xMotif [363], on the other hand, enforces β = 0 to find clusters one
dimension at a time. Meanwhile, plaid can also be optimized by regressing D as the sum
of plaid layers on a two-way ANOVA. Assuming that the MSE error term is a Gaussian
distribution, it can also be optimized using the EM algorithm i.e. by optimizing for one of
Θ, ρik, and κjk at a time while keeping the other two fixed.

Though a bit more computationally expensive, model-based methods are flexible in that
users can integrate prior knowledge into the clustering process to mitigate Challenge (d).
Gibbs-plaid [61] is a variant of a model-based algorithm for plaid optimized via Gibbs sam-
pling using the Wang-Landau algorithm. It incorporates a Gibbs field regularizer in the
objective function. This Gibbs field comes in the form of a similarity matrix between genes
based on the gene ontology such that the resulting clusters are encouraged to contain similar
genes. This ability for users to optionally incorporate a prior makes model-based clustering
a powerful and flexible tool for multidimensional clustering. These priors can also be for
disease progression or subtype of patients [304], survival time [10], drug response, or exper-
imental settings. One can also capture noise with local, as opposed to global, distribution
parameters for each cluster. The parameters can even be specified such that certain shapes,
sizes, and structures need to be respected.
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In addition to data integration, model-based approaches can also incorporate an ad-
vantage to Challenge (c). Assuming that each cluster layer in plaid is a distribution, these
distributions can be generated, potentially infinitely, by a DP to automatically find the
best K. An example of a model-based clustering method that fits within all of these moulds
is B2PS [183] and its extension SUBSTRA (supervised Bayesian patient stratification), a
method that uses kernelized Bayesian matrix factorization [184]. It allows for the incorpora-
tion of prior knowledge on all dimensions and uses DP so that K is not required from users.
It also controls for the shape of its biclusters by specifying that all elements in D must be a
part of a matrix or have a cluster index latent parameter, making it exhaustive. At the same
time, each element on a dimension can only belong to one cluster within that dimension,
making the method inclusive. However, unlike many methods, since it separates feature
cluster labels from object cluster labels, several object dimension clusters may contain the
same features and vice versa. More specifically, SUBSTRA uses the Bernoulli distribution,
a common distribution for binary data, to model expression values in D. The parameters
of this distribution are then modelled by a Beta distribution.

Dij ∼ Bern(θgp
i ,gq

j
)

θk,l ∼ beta(G = 1)

gp
i ∼ CRP (αp = 1) gq

j ∼ CRP (αq = 1)

where gp
i and gq

j represent the cluster indices of the i’th item in the p object dimension
and j’th item in the q feature dimension respectively. CRP is the chinese restaurant rep-
resentation of DP and the two α’s are defined by a user reflecting the amount of clusters
the method should tend to output. It also incorporates an optional feature weight vector
w whose values reflect how many times each feature should be considered for input into
a cluster. Such a prior can also be included for the objects f . Hence the full probabilistic
model amounts to

P (e, w, f, gp, gq|αp, αq, β,G) = P (gp|αp)P (gq|αq)P (a|θ, gp, gq)P (θ|G)P (f |σ, gp)P (σ|β)

whose conditional probabilities of the latent variables (the clusters we are trying to infer),
according to the Bayesian rule, is

P (pi = k|αp, θ, gp
−i, g

q, w, fi, σ)

which is proportional to

P (gp
i = k|αp, gp

−i)P (ai|θ, gp
i = k, gq, w)P (fi|gp

i = kσ) = CRP (αp)×σk(fi)×
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j=1
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j
(aij))wj
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CRP (αp) =


αp

n−1+αp if x is empty cluster
|{d|gp

d
=k ∧ d ̸=i}|

n−1+αp otherwise

σk(fi) =

σk = number of ppl in cluster k with phenotype 1+β/2
number of ppl in cluster k+β if fi = 1

1− σk if fi = 0

θgp
i ,gq

j
(aij) =


θgp

i ,gq
j

= no of 1’s in cluster (gp
i ,gq

j )+ 1
2 G

no of 1’s in cluster (gp
i ,gq

j )+G
if aij = 1

1− θgp
i ,gq

j
otherwise

Finally, SUBSTRA moves onto its inference phase where it initializes random clusters ac-
cording to the optional priors, and then uses gibbs sampling to infer the latent variables.
As seen in plaid, it iteratively infers each of the above latent variables while holding the
other two fixed.

Model-based algorithms also lend well to triclustering. For example, [13] first finds biclus-
ters in the object and feature dimensions. These are also represented using the Bernoulli
distribution (alternatively, one can use a Gaussian distribution to represent real values).
While finding these biclusters, they are simultaneously improved during Gibbs sampling
based on how the Gaussian distributed biclusters in one slice correlate with those of another
slice. This allows for triclusters that contain a collection of similar biclusters in the third
dimension — much like what HDPGMM did for FCM. Meanwhile, [125] uses a three-level
hierarchical DP optimized with MCMC such that the same heuristics hold for all dimen-
sions. Therefore, though computationally expensive, model-based algorithms are powerful
tools that can incorporate an array of parameters. It is also statistically reliable as long as
assumptions on data distributions hold.

Though fundamentally, graphs simply represent distance or similarity matrices, rep-
resenting data as graphs make it convenient to use already established definitions and
algorithms based on the graph literature. For example, maximal cliques are analogous to
maximal biclusters. Using this definition, triclustering algorithm [411], later improved by
[173], first finds biclusters by taking a Pearson and Spearman similarity matrix based graph
as input. It then applies multiple iterations of depth-first searches to find several candidate
maximal clique biclusters for each slice. Finally, biclusters are merged between slices if they
have a Pearson and Spearman similarity above a certain threshold. Another graph defini-
tion one can exploit is based on the graph structure. [133] represents 3D data (or 2D) as a
tripartite (or bipartite) graph. Here, each index in each dimension represents a node which
connects to all indices in the other dimensions. When it looks for connected components or
densely connected nodes representing clusters in this graph, the tripartite graph definition
guarantees that it will include elements from all dimensions.

More recently, evolutionary algorithms have taken off due to their ability to refine clus-
ters within each iteration [80, 87, 26, 230, 255]. Based on evolutionary terminologies, it is
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like iterative clustering, except each iteration would be analogous to a ‘generation’. In each
generation, it performs a series of ‘selection’, ‘crossovers’, ‘mutations’, and ‘replacements’
to build and refine clusters until a stopping criterion is met. As it is modelled after popu-
lation biology, it is efficient and effective for exploring large data sets [283, 87, 230]. More
specifically, the generic framework for evolutionary algorithms is as follows for biclustering
— note that the same process simply needs to be repeated for a third dimension to adapt
itself to triclustering.

1. Initialize ‘populations’ Q or biclusters randomly or via an existing bi/triclustering
algorithm. For easy visualization, we call these populations.

2. For each iteration, conduct ‘selection’, ‘crossovers’, ‘mutations’, and ‘replacements’
until a stopping criterion is met, usually a user-specified maximum number of itera-
tions. Afterwards, the final clusters are returned as the results.

• Selection: this is where low-quality clusters are eliminated. A measure for quality
here can be a thresholded heuristic objective function.

• Crossover: from the remaining clusters, combine them and reproduce new ones.
For example, [230] opts to merge two close clusters by their rows and columns.
Then, for each feature in this new cluster, it selects which objects, if added to
this cluster, will decrease the cluster’s standard deviation. Starting from here, it
re-evaluates all of its cluster assignments. If two objects are often added to the
same clusters, they would be put together as a new cluster.

• Mutation: these newly reproduced offspring clusters are mutated or modified.
This can be done by deleting and adding random elements of D into any cluster.
Another option would be to pick elements to add to biclusters if they improve a
heuristic objective e.g. the correlation of all pairwise objects in a cluster.

• Replacement: lastly, these new clusters are filtered yet again, such that low-
quality clusters are deleted.

With its pros, evolutionary algorithms require that the user has a clear assumption on
cluster quality, as its refinement procedure is highly heuristic.

Integrative clustering

Multidimensional clustering also fits well into situations when we want to incorporate other
data into the clustering process, to mitigate Challenge (d). As we have seen before in
Gibbs-plaid [127] and other forms of GRNMF (graph-regularized non-negative matrix fac-
torization) [127], data integration may involve incorporating the gene ontology such that
we can influence clustering via structural relationships between features. Other data sets
that lend well to such regularization methods include drug-target/compound interaction
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(to understand how gene expression may affect treatment), or even protein-gene interaction
data (to see how downstream effects might change clustering results).

In the case that external data sets have a common dimension to that of the given RNAseq
data, one can even incorporate these data sets into D as a third dimension and input the
combined data set into a triclustering algorithm.

The authors of [127] combines these strategies by conducting matrix tri-factorization on
two data sets ((patient sample×gene), (drug×target)) regularized by a gene-target/protein
interaction network to connect the two data sets. Trifactorization breaks up a matrix into
three factors indicative of what clusters the samples, genes and target compounds belong
to.

While simultaneously clustering everything by triclustering is ideal, this can be computa-
tionally expensive. As well, the data sets might be imbalanced in terms of size. For example,
RNAseq usually has a large feature space compared to metabolomics where researchers may
only test for a few metabolites. Therefore, first biclustering and then connecting biclusters
using inter-slice metrics become a more common strategy. One can also settle with only clus-
tering the object dimension over multiple feature sets by using multiple competing objective
functions [41, 140, 221] or a single objective function made up of a linear combination of
individual weighted objective functions i.e. a linear combination of different objective func-
tions. Taking this further, another approach is to cluster the same objects individually in
each data set and then merge the clusters via consensus clustering. Another strategy is to
create a distance matrix from each data set and then merge those distance matrices as in-
put into a clustering algorithm [276, 203]. For example, [84] first creates individual distance
matrices via the heat kernel. For each distance matrix, it creates a KNN graph Laplacian.
Each of these graphs can be embedded into a subspace of graphs U and then merged onto
a Grassman manifold. The goal here is to obtain a merged graph on which one can obtain
a Laplacian over to create a new balanced feature space for the original objects. This way,
the effect of each data sets is balanced and we obtain a single input matrix that can be
used with any clustering algorithm. Another simpler strategy would be to simply combine
the first few eigenvectors of graph laplacians from the individual data set. [371] employs a
different strategy for merging distance matrices. Also modelling these matrices as graphs,
it uses the message passing algorithm to iteratively update each network with information
from other networks such that each distance matrix slowly becomes more similar to each
other. Finally, it conducts spectral clustering on the final distance matrix. In all cases, it is
important to ensure that the influence of each data set on the clustering result is balanced in
terms of the number of features and their values. Also, note that the same data set merging
tactic can be applied to align networks [128] before they are used to regularize a clustering
method [155].
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Deep learning-based clustering

Deep learning-based “clustering” methods, like their imputation counterparts, are not un-
supervised but self-supervised methods that are trained through self-learning. Again, these
methods almost exclusively use the autoencoder architecture. For example, for scRNAseq
data, scDeepCluster [356], DESC [215], and SAUCIE [15] uses an autoencoder with an ob-
jective function that uses KLD to ensure that the output, or the reconstructed input, has a
similar distribution across samples. scDeepCluster assumes that its input data conforms to
the ZINB distribution and so it uses regularization layers to fit its input on this distribu-
tion. In addition, SAUCIE also adds two regularization layers to ensure that the embedding
contains near binary values and to minimize the Euclidean intra-cluster distance between
points. Knowing their objective functions, these methods only work if the same cell pop-
ulations exist across all samples, which is not necessarily always the case. However, these
methods show that if this assumption holds, they can also handle the denoising, batch ef-
fect correction, and imputation in one network. scScope [82] and scGNN [376] also combines
these steps together with cell population identification. However, scScope opts to use recur-
rent network layers in their autoencoder to account for dependency between genes. On the
other hand, scGNN assumes that it is important to integrate the cell-cell interaction graph
to account for systems biology signals such as cell type-specific regulation. It does so by
using three neural networks. The first neural network takes as input the original data and
outputs a cell-cell interaction graph. This graph is given to the second autoencoder network
which, like SAUCIE, produces a cluster embedding. The reconstructed output is finally
given as input into an autoencoder specific to its cluster. The output of these autoencoders
is, again, given to the first neural network. This process is repeated until convergence and
produces outputs: imputed data, cell-cell graph, and cell clusters.

Despite the creative application of deep learning, these methods are, again, very ineffi-
cient. To circumvent this issue, GOAEGONN [280], uses the gene ontology, or the known
hierarchical relationship between genes, to reduce the number of connections between fully
connected layers in its autoencoder (for dimensionality reduction) and neural network (for
clustering). Nevertheless, even the fasted deep learning methods run for tens or hundreds of
times longer than classical clustering algorithms such as Louvain. And while none of them
outperform classical clustering on all cluster evaluation metrics, they each excel in specific
metrics [374, 198] corroborating their immense potential.

3.7.5 Postprocessing

Postprocessing usually consists of checking the quality of clusters to see if any should be
deleted. Unlike FCM, RNAseq usually has a small object dimension, therefore, there is not
as big of a need to look out for rare clusters. Even if there is, many of the iterative refinement
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processes are embedded into the clustering method itself e.g. iterative, evolutionary, and
consensus clustering.

In model-based clustering, PACK uses BIC and kurtosis to identify which clustering
result out of the multiple rounds of clustering it did, bringing about the best results. Mean-
while, SIBER opts to use the bimodality index (BI) [375] to evaluate pairwise clusters.

BI =
√
π(1− π) |µ1 − µ2|√

(1− π)δ2
1 + πδ2

2

where it compares the mean and variance of the two clusters as marked in the subscript.
BI became an ideal choice for its ability to produce a gene ranking — in that, if each
feature is tested individually, one can determine which genes separate the two clusters the
best. Though BI makes it easier to interpret the results, it can still be influenced by low
confidence genes.

One can also opt to directly use their assumption or heuristics to see if a cluster is
appropriate. Using statistical distribution tests is applicable for testing constant, additive,
and in some cases, multiplicative clusters, and the results can be numeric or visualized via
a QQplot. For example, one can test whether the variance is reduced between the whole
data set versus the individual variance of the found clusters [149]. Using a more statistical
approach, [257, 350] evaluates constant clusters by comparing the values in the cluster to a
null Gaussian distribution. Assuming that a unique cluster is different from the rest of D,
it can be deemed significant if it deviates from that null distribution. To conduct a valid
statistical test, they make sure that the number of objects in a cluster is larger than a
threshold |I| before testing the cluster Q: P (Q ∼ Binomial(1/n!, |H|)) ≤ p) < α/n! where
α is a threshold. Also using a statistical test, [243] ensures that its null distribution is robust
by basing it on multiple resampling of D.

Meanwhile, statistics like TRIQ [138] have also emerged to evaluate RNAseq-specific
triclustering results. TRIQ uses a weighted sum of four terms that reflect on 1) how deep and
coregulated each feature in a cluster is according to the gene ontology (see the table of values
in [138]), and 2,3,4) correlation between values with the multislope measure (MSL) [139],
Pearson, and Spearman correlation metrics. Since these test for scale and shift-invariant
correlation between all dimensions, they can evaluate constant, order-preserving, and some
additive and multiplicative triclusters. TRIQ’s strength lies in the fact that it brings domain
knowledge into the picture. This way, it can ask the question of whether the clusters make
sense in terms of the relationship between genes. Other ways of utilizing domain knowledge
are by enriching the genes from each cluster to see if they have any common downstream
effects. One can even test to see if similar results occur in other comparable species for
cross-species consistency [175]. However, one needs to take caution when using such metrics,
because methods that integrate the same domain knowledge while clustering would naturally
yield good results. As well, external data sets are usually compiled through a community
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effort. While they include information from lots of experiments, they tend to have a positive
bias — in that, a lack of an interaction or a negative result is usually not reported for
publication and therefore not easily confirmed.

3.7.6 Interpretation

On top of a numeric statistic for evaluating clusters and their DE, visualization is also key to
understanding what the clustering results mean. While one can use classic methods such as
PCA, t-SNE, and Umap [249], customized methods for RNAseq have also popped into the
scene. Aimed at maximizing inter-cluster distances, [372] attempts to visualize the distance
between cells by learning the weights in a linear combination of an optional user-defined set
of kernel distance metrics (Gaussian by default).

Other than visualization, it is also important to annotate the results. For example,
using multidimensional clustering and integrated data sets can help verify or even discover
new interactions between genes/proteins. A common assumption is that if a gene/protein
strongly interacts with a group of genes/proteins that affect the same disease, this gene in
question may also affect that disease in some way. [270, 315, 264] are a few methods that
take the clustered genes and query them on these interaction networks to graph out and
find such linkages.

3.7.7 Alternative solutions

In contrast to FCM, clustering is the solution one would look to when grouping RNAseq
objects since it is difficult for a person to manually analyze such a high-dimensional data
set. On the other hand, if one does have a prior for how the objects or features can relate to
each other, integrating these data types, with methods such as Gibbs-plaid, can be seen as
a semi-supervised method and therefore often called an alternative to purely unsupervised
clustering methods.

On the other end of the spectrum, it is noteworthy to mention that supervised classifi-
cation methods are used commonly in patient stratification or drug-target interaction. For
example, when trying to re-purpose drugs, one might learn what patient group a drug is
effective for already. Then, when given a new patient, one can evaluate whether this patient
is similar enough to the learned patients per their transcriptomic profile. If they are simi-
lar, researchers can hypothesize that the drug may affect the new patient in a similar way
[266, 379, 409, 98]. Nevertheless, the same problem can also be solved using clustering-based
methods. While researchers have done many experiments to confirm whether drugs affect
a multitude of targets, compounds, or patient groups, there are still experiments that have
yet to be done. Hence, drug-target interaction data sets are very sparse. To fill these gaps,
[413] uses MSCMF (multiple similarities collaborative matrix factorization). This is a semi-
supervised approach where it regularizes the drug dimensions with a drug-drug interaction
matrix and then factorizes the drug-target similarity matrix using alternating least squares.
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It then multiplies these factors back together to create an ideally dense matrix to fill in
those gaps. In other words, it finds the clusters each drug and target belong to and then
assumes that those in the same cluster should be similar. If any point lacks a value, it fills
in those values based on those of its neighbours.

Remarks
Clustering has become one of the most popular methods to analyze RNAseq data. Al-

though many methods started out as being designed for microarray experiments, they have
been successfully applied to RNAseq. However, RNAseq data presents new problems such
as sparsity. With imputation and data integration, researchers have started to try to mit-
igate this issue, but it is still one of the largest bottlenecks in information recovery from
RNAseq [390]. Another prospect for these methods is how they can be further customized
for application to similar data from other sequencing technologies such as ChIPseq and
DNAseq, along with the third-generation long-read sequencing technologies PACBIO and
Oxford Nanopore. Though scRNAseq took a similar path as RNAseq in terms of clustering,
it also presents an opportunity, much like in FCM, on how different samples of cells can
be compared with each other post cell population identification. While the samples in scR-
NAseq can be incorporated as a third dimension, so can many other aspects of an RNAseq
experiment. While the most popular additional dimension is time, there are opportunities
for further methodology refinement in incorporating spatial data such as RNA and protein
structure [258, 272, 157, 232, 225].

Although methodology development is important, another aspect to them is how much
impact they are having. With the increase in the number of technologies that can utilize clus-
tering methods, the ratio of application studies to novel methodology papers has increased
from 1/9 to 2/3 — with patient stratification and drug re-purposing or drug-target inter-
action applications in the forefront of this need [390]. Many of these papers start by using
classic dimensionality reduction and clustering methods to reach their goals. Fortunately,
these methods are still very effective. In fact, using Kmeans on t-SNE processed scRNAseq
data has been shown to yield better results than many more sophisticated methods [90].
However, more work is required in making the customized RNAseq clustering methods more
accessible to the general user.
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Chapter 4

Identifying differential cell
populations in flow cytometry data
accounting for marker frequency

The contents of this chapter address Problem 2 and have is published in [400]. The method
described in this chapter is freely available on Github (https://github.com/aya49/flowGraph)
and Bioconductor (https://bioconductor.org/packages/flowGraph).

4.1 Introduction

The last goal (Problem 2) in the FCM analysis pipeline (but first chronologically in this
thesis) is the identification of biomarker candidates. One group of candidates is the differ-
ential cell populations (DCPs). These are cell populations whose proportional abundances
(i.e., the relative quantity of cells in a cell population) differ significantly between samples
of different classes (e.g. disease vs healthy). Commonly used metrics for proportional abun-
dance are cells per µL of blood and proportion (i.e. the ratio between the count of cells in
a population and some parent population).

We propose the concept of maximal differential cell populations (MDCPs). MDCPs are
DCPs whose change in proportional abundance is only significantly associated with its
sample class and not a result of proportional abundance change in a related DCP. For
example, if there is a significant decrease in the proportion of helper T-cells in samples from
diseased individuals, then helper T-cells is a DCP. However, if the proportion of all types
of T-cells decreases at a similar rate, then we can hypothesize that the disease reduces the
proportion of all T-cells. It follows that T-cells and all of its child populations, including
helper T-cells, are DCPs but only T-cells is an MDCP. MDCPs are preferable candidate
biomarkers because their proportion change is only driven by their association with a sample
class. We refer to such cell populations as driver cell populations. To our knowledge, many
methods find biomarker candidates by identifying DCPs, but there are no methods that do
so by isolating the MDCPs among those DCPs.
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Current methods identify DCPs either as a byproduct of another procedure [27, 67,
404, 359, 50] (e.g., CytoDX [159] main goal is to classify FCM samples, but it also tries
to find DCPs as a postprocessing step) or compare a limited amount of known prespec-
ified cell populations identified in human-created gating strategies by evaluating whether
there is a significant difference in their proportional abundance across samples using some
statistical significance test [368, 268, 216]. A summary of related methods can be found
in [75, 6]. Though there are methods that attempt to find MDCPs by expanding their
DCP candidates to cell populations that are dependent on each other, the statistical tests
they use assume independence between cell populations. For example, Cydar [226] uses
the spatial false discovery rate, and diffcyt [382] applies statistical tests traditionally used
for differential analysis in bulk RNAseq data sets where the transcripts/genes are assumed
to be independent of each other. Such statistical tests would only find DCPs despite the
large MDCP candidate pool because they do not account for the relationships between cell
populations.

To address these shortcomings, we describe a method that identifies MDCPs by compar-
ing the SpecEnr of all possible cell populations across samples modelled on a cell hierarchy
taking into account all possible relationship between cell populations. Specifically:

1. To enable analyzing all possible cell populations and their relationship with each other,
we use SpecEnr, a novel cell population score (a numerical metric) derived from the
proportional abundance metric, proportion.

(a) Our method considers all possible previously known and new cell populations in
each FCM sample as candidates for MDCPs. In contrast:

• Identifying DCPs manually via a gating strategy means that our candidates
would be limited to only those cell populations that are already known to
human experts.

• Identifying DCPs from cell populations found through single-cell clustering
(Chapter 3) means that we would only analyze cell populations from a single
layer in the cell hierarchy that do not overlap with each other (i.e. all cells
are assigned only one cell population label).

(b) Analyzing all possible cell populations also implies that we consider all possible
relationships between cell populations. Each cell population may have several
parent and child cell populations. We show the significance and importance of
taking these factors into account in our results at the end of this chapter and
from the extensive experiments we performed in [398]. In contrast:

• Cell populations found through manual gating only have zero to one parent
cell population greatly limiting the number of relationships tested for finding
MDCPs.
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• Cell populations found through single-cell clustering have no such parent
and child relationships. In this case, one would use traditional statistical
tests that assume independence between cell populations. However, this as-
sumption does not allow us to test whether a cell population is a MDCP
given its ancestors because they are not identified.

2. Finally, modelling cell populations and their relationship on a cell hierarchy allows us
to semantically label cell populations with marker conditions and visualize MDCPs
to aid the interpretation of results.

Therefore, we hypothesize that identifying MDCPs will aid the understanding of disease
etiology.

In this chapter, we:

1. Define and formulate the problem of finding driver cell populations by identifying
MDCPs.

2. Introduce a cell population score SpecEnr (specific enrichment) that accounts for
dependencies between parent and child cell populations.

3. Describe a method that harnesses SpecEnr properties to find robust, accurate, and
easily interpretable driver cell populations.

4.2 Methods

4.2.1 Preprocessing and cell population identification

To calculate SpecEnr, we can take as input, a vector of cell population proportions for
each FCM sample generated using any suitable manual or automated approach. In our
experiments, given a preprocessed FCM sample, we identify the cell populations in this
sample via flowDensity [240]. When completed, this step outputs L marker thresholds, one
for each marker. These thresholds may differ slightly between samples. After obtaining
the thresholds, we enumerate all possible cell populations using flowType [268]. flowType
takes as input, the L thresholds and the preprocessed FCM sample’s R × L matrix, and
enumerates all possible cell populations and their cell count into a length m = 3L vector.
Next, we normalize cell counts relative to the total cell count in each sample. We do so by
converting counts into proportions by taking the cell count of each cell population over the
total number of cells in the sample.

Users can also choose to identify cell populations via methods other than flowType.
Given an FCM sample’s cell hierarchy (see Section 2.3), the requirement for calculating the
SpecEnr of a cell population in this cell hierarchy is that its and all of its parents’ and
grandparents’ proportions should be available. For example, if the we choose to identify
cell populations via clustering, we can treat each cluster as a unique gate; this way, a cell
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population’s parent cell populations would include all possible pairwise combinations of it
and all other cell populations. Its grandparent cell populations would be all possible mergers
of it and any two other cell populations.

4.2.2 Notations

To visualize the relationship between cell populations, we use the cell population hierarchy
of a sample as described in Section 2.3.

We denote the actual proportion P of any node v1:ℓ in layer ℓ by P (v1:ℓ) such that 1:ℓ
(1, 2, ..., ℓ) are the indices of the marker conditions its label contains.

We show in Section A.2 that we can derive our method’s scores for all cell populations
just from those cell populations whose labels only contain positive conditions. Following
this reasoning, and to simplify our notation, we assume that the marker conditions used
to label our cell populations are all positive. This implies that the markers used must be
unique, as they always should be. For example, cell population A+B+C+ has three positive
marker conditions and can therefore be denoted as v1:3; subsequently, we can denote its
parents A+C+ and A+B+ as v{1:3}\2 and v{1:3}\3 by excluding the second and third marker
conditions.

4.2.3 Cell population score: SpecEnr

The assumptions we will introduce for SpecEnr are based on well-established concepts in
probability theory [115]. marker conditions are random events and the proportion of each
cell population is the probability of jointly occurring random events.

To obtain SpecEnr, we compare the actual proportion of a cell population with its
expected proportion: the proportion we expect a cell population to have given the proportion
of its ancestors. By doing so, we can evaluate its proportion changes independent of the
effects incurred by its ancestors.

Expected proportion

The SpenEnr null hypothesis imagines that each cell population has at least two marker
conditions that are independent given the others. Specifically, under the null hypothesis, for
a cell population v1:ℓ with proportion P (v1:ℓ), the following holds. Without loss of generality,
let us assume that P (v1) (e.g. A+) and P (v2) (e.g. B+) are independent given P (v3:ℓ) (e.g.
C+ ).

P (v1|v2:ℓ) = P (v1|v3:ℓ) (4.1)

P (v1:ℓ) = P (v2:ℓ)P (v1, v3:ℓ)
P (v3:ℓ) (4.2)
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where P (v1|v3:ℓ) indicates the conditional proportion of v1 given v3:ℓ.
Generalizing this assumption to any p, q pair, p ∈ 1:ℓ and q ∈ 1:ℓ \ p, we get

P (v1:ℓ) = P (v1:ℓ\p) P (v1:ℓ\q)
P (v1:ℓ\{p,q})

(4.3)

While this assumption may be applied to most cell populations, there are edge cases. Our
assumption requires P (v1:ℓ\{p,q}) to exist. Therefore, expected proportion is only calculated
for cell populations in layers ℓ ≥ 2. For the root node, we initialize its expected proportion to
1. For the nodes in layer one, we initialize their expected proportions to 0.5. By initializing
their expected proportion to 0.5, we maintain the sum-to-1 rule in probability where, for
example, P (A+) + P (A−) = 1.

To identify differential cell populations, we compare their expected and actual propor-
tion. In Equation 4.3, we assumed all marker condition pairs, with indices {q, p}, P (vp)
and P (vq) to be independent give P (v1:ℓ\{p,q}). Now let us assume that this does not hold
for A+B+C+’s parent cell population A+C+. While A+ and C+ are dependent on each
other, B+ is independent of both A+ and C+. In this case, the assumption we made in
Equation 4.2 only holds for cell population A+B+C+ when q ∈ {1, 2} and p = 3. We do
not want to flag A+B+C+ as maximally differential as its proportion change is completely
dependent on cell populations A+C+ and B+. Therefore, we relax our assumption in Equa-
tion 4.3 to: there must be some index pair {p, q} such that P (vp) is independent of P (vq)
given P (v1:ℓ\{p,q}). Then P (v1:ℓ) can be calculated as follows.

P (v1:ℓ) = P (v1:ℓ\p) P (v1:ℓ\q)
P (v1:ℓ\{p,q})

(4.4)

p = arg max
p∈1:ℓ

P (v1:ℓ\p)

q = arg min
q∈1:ℓ\p

P (v1:ℓ\q)
P (v1:ℓ\{p,q})

Otherwise, if there is no p, q pair such that P (vp) is independent of P (vq), then Equa-
tion 4.4 does not hold and P (v)’s abundance change cannot be attributed to any of its
ancestors’ abundance change.

Additional details on proof of correctness for our assumption are in Section A.1.

SpecEnr

In this section, we explain how we calculate our proposed SpecEnr score. Given the expected
proportion of cell population v calculated using Equation 4.4, SpecEnr is the natural log of
v’s actual proportion over its expected proportion calculated using Equation 4.4 which we
denote here as E(v).
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SpecEnr(v) = ln P (v)
E(v) (4.5)

p = arg max
p∈1:ℓ

P (v1:ℓ\p)

q = arg min
q∈1:ℓ\p

P (v1:ℓ\q)
P (v1:ℓ\{p,q})

SpecEnr accounts for the dependency of a cell population on its ancestors. For example,
if a cell population has a SpecEnr value of 0, then its proportional abundance is completely
dependent on that of its ancestors. Otherwise, it contains marker conditions that are all
dependent on each other, where P (vp) is dependent on P (vq) for all {p, q} ∈ 1:ℓ (i.e.
Equation 4.3 does not hold for any p, q).

The asymptotic runtime and actual runtime to calculate SpecEnr are provided in the
Section A.2 and A.7.

Maximal differential cell population (MDCP)

A maximal differential cell population (MDCP) is a cell population that has significantly
different abundance across sample groups. In this respect, an MDCP is similar to a differen-
tial cell population (DCP). However, in addition to this, MDCP has an additional property
where its abundance difference cannot solely be attributed to the abundance difference in
its ancestor cell populations. Therefore, an MDCP’s abundance change is unique and can
help users confirm or reject hypotheses in biological experiments.

SpecEnr is an example of log-probability ratios, which are commonly used in Bayesian
hypothesis testing [38]. Following a similar framework, a cell population is not an MDCP
if its SpecEnr values across classes are not significantly different. Conversely, in order for a
cell population to be an MDCP v1:ℓ, it must satisfy two conditions.

1. A MDCP SpecEnr must be significantly different between samples according to a
filtered adjusted T-test we describe in the next section.

2. A MDCP must be maximal, in that it must not have any direct descendants who meet
the first condition above.

The second condition is required because our first is also satisfied by direct ancestors
of an MDCP as its ancestor cell populations are defined by a subset of marker conditions
defining the MDCP.

Relating our definition back to the difference between MDCP and DCP: if there exists
one MDCP in our data set (e.g. A+B+ ), then the DCPs would be the MDCP’s ancestors
(e.g. A+ and B+ ) and descendants (e.g. A+B+C+ and A+B+C− ), and all cell populations
that share at least one marker condition with the MDCP (e.g. B+C+ and A+C− ). This
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further demonstrates the difficulty of identifying MDCPs among DCPs; as all DCPs would
be a candidate MDCP.

4.2.4 Testing whether the cell population SpecEnr values across sample
classes are significantly different

To test if a cell population satisfies our first condition for MDCPs (i.e. its SpecEnr is
significantly different across samples), we apply the T-test on SpecEnr values for each cell
population across two sets of samples (e.g. a control group and an experiment group). We
show that the raw SpecEnr T-test p-values are statistically sound in Section A.5

Given that we are testing multiple hypotheses, we adjust the p-values ρv for each cell
population v using layer-stratified Bonferroni correction [44] to obtain our final adjusted
p-values ρ′

v. We do so by multiplying our p-values with the number of cell populations in the
layer on which cell population v resides mℓ and the total number of layers L+ 1 (including
the layer 0; see Section A.3 for additional details). We use a q-value (i.e., the adjusted p-
value) threshold < .05 to determine if a cell population q-value is significant and potentially
maximally differential.

Avoiding falsely significant q-values with filters

In some cases, the p-value obtained by evaluating SpecEnr may be falsely significant when
dealing with small or noisy data sets. As a cell population’s proportion gets close to 0,
the actual versus expected proportion ratio used to calculate SpecEnr becomes inflated.
As well, if we are conducting significance tests on cell populations with SpecEnr values of
0 (i.e. actual and expected proportions are the same) model-based significance tests (e.g.
T-test) are highly influenced by outliers and rank-based significant tests (e.g. Wilcoxon)
are influenced by the random ordering of 0’s. To ensure our SpecEnr p-values are valid, we
mark cell populations as insignificant if any of the following apply.

1. They do not have a mean count of a user-specified threshold of events (we use > 50
for our data sets) to prevent inflated ratios,

2. They do not have significantly different actual versus expected proportions for at least
one of the sample classes, and

3. They have actual and expected proportions that are significantly different across both
sample classes.

In our experiments, we use a standard significance threshold of < .05 for all T-test
p-values on filter-related significance tests. We show an example of these filters in the
Section A.4.

For brevity, we call the p- and q-values obtained using SpecEnr and proportion, SpecEnr
p- and q-values, and proportion p- and q-values respectively.
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4.2.5 Experiment

To confirm that flowGraph is able to identify known MDCPs we prepared synthetic negative
and positive control data sets and used two previously published biological data sets.

Synthetic data

• neg1 (Negative control): For each cell, we assigned it to be positive+ for each marker
with a 50% probability.

– Samples: 10 control vs 10 experiment (300,000 cells/sample).

– markers: A, B, C, and D.

• pos1 (Positive control 1): Same as neg1, except in the experiment samples, cell popu-
lation A+ is increased by 50%. More specifically, in each R×L matrix, we duplicated
a random sample of half the cells in A+.

• pos2 (Positive control 2): Same as pos1, except instead of A+, A+B+C+ is increased
by 50%.

• pos3 (Positive control 3): Same as pos1, except instead of A+, a random sample of half
of all cells that belong to at least one of A+B+ and D+ are duplicated (i.e. increased
by 50%), indirectly causing a unique increase in cell population A+B+D+. Note that
cells that belong to both A+B+ and D+ are duplicated once instead of twice to ensure
both cell populations increase by 50%.

Real data sets

• flowcap (FlowCAP-II AML data set): This data set is from the FlowCAP-II [6], AML
challenge, panel 6. It is known that AML samples have a larger CD34+ population
[6].

– Samples: 316 healthy vs 43 AML positive subject’s blood or bone marrow tissue
samples (60,000 cells/sample).

– markers: HLA-DR, CD117, CD45, CD34, and CD38.

• pregnancy (Immune clock of pregnancy data set): While the previous two data sets
are flow cytometry data sets, this is a CyTOF data set. Nevertheless, our method
can be used on either type of data set. So far, there have been no experiments that
identified ground truth driver cell populations for the pregnancy data set [7]. However,
the original authors were able to train classifiers on the same patients using FCM and
multi-omics data [281]. Therefore, we hypothesize that we will be able to find MDCPs
in this data set that are associated with the sample classes listed below.
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– Samples: 28 late-term pregnancy vs 28 6-weeks postpartum human maternal
whole-blood samples (approximately 300,000 cells/sample); Samples are taken
from each of the 18 and 10 women of the training and validation cohort during
late-term pregnancy and 6 weeks postpartum.

– markers: CD123, CD14, CD16, CD3, CD4, CD45, CD45RA, CD56, CD66, CD7,
CD8, Tbet, and TCRgd.

– To account for possible batch effects associated with the subjects who provided
the FCM samples, we used the paired T-test where samples were paired with
respect to subject.

4.3 Results

SpecEnr p-values are robust. We hypothesized that theoretically similar data sets
yield similar unadjusted p-values across all cell populations. To test this, we split up the
samples in data set pos1 in half and compare the samples across these two halves or “the-
oretically similar data sets”. When we compared the unadjusted SpecEnr p-values across
these theoretically similar data sets using the Spearman correlation, we obtained a perfect
score of 1. We saw the same result with metrics recall, precision, and F measure over the
first set. These results indicate that significant cell populations in the first set also show up
as significant in the second set. We also show that unadjusted SpecEnr p-values are sta-
tistically sound with the following experimental results [380]. Using SpecEnr, we were able
to generate a random uniform distribution of unadjusted p-values on our negative control
data set neg1. It follows that 5% of the SpecEnr p-values were below our .05 threshold (See
Section A.6 for added detail).

SpecEnr q-values help identify accurate driver cell populations in synthetic data
sets. flowGraph accurately identified that pos1 and pos2 driver cell populations were A+

and A+B+C+ (Figure 4.1). While both SpecEnr and proportion q-values flagged these
cell populations, when we observed SpecEnr q-values, the descendants of these driver cell
populations were not flagged as significant. This was also true when multiple driver cell
populations were present in lower layers of the cell hierarchy. In pos3, where both A+B+

and D+ were increased to cause a unique change in A+B+D+; we saw that SpecEnr q-values
were only significant for these three cell populations and their ancestors. Results from our
positive control data sets were also similar when the same cell populations decreased instead
of increased in proportional abundance (Section A.6).

SpecEnr q-values flag known and novel driver cell populations in real data sets.
For the flowcap data set, SpecEnr directs users down a branch of the cell hierarchy from
physical properties SS+ and FS− to FS−SS+CD117+45+ and HLA+CD117−CD45+CD34+.
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While HLA and CD117 are variably expressed on cells in FCM samples from subjects with
AML [385, 282], CD34 and CD45 are expressed on blast cells [289, 144]. This is important
as the abundance of blast cells aid in diagnosis of AML [6].

In the pregnancy data set, the top most significant cell populations displayed by our
statistical significance test showed an up-regulation in cell populations containing CD3,
CD45, and CD45RA (e.g. CD3+CD45RA+CD56−Tbet−). SpecEnr q-values also indicate
that cell populations containing markers CD8 and CD16 are significantly down-regulated.
Meanwhile, proportion q-values flag all DCPs in the cell hierarchy as significant.

4.4 Discussion

In this chapter, we introduced a new cell population score, SpecEnr, and a method, flow-
Graph, that integrates SpecEnr to identify MDCPs. We showed that the results of flowGraph
are statistically sound, accurate, and easily interpretable via the cell hierarchy.

In the FlowCAP-II challenge, the AML data set was used to evaluate how well meth-
ods are able to classify samples belonging to healthy and AML-positive subjects. Among
the competing methods, those that used cell population proportions for classification were
DREAM–D, flowPeakssvm, Kmeanssvm, flowType, FeaLect, PBSC, BCB/SPADE, SWIFT
[6]. All of these methods assume that cell count and proportion may be used to differentiate
between the two classes of samples. However, cell count and proportion do not account
for relations between cell populations, making it difficult to isolate the MDCPs among the
DCPs (Figure 4.1). To account for these relationships, one can manually analyze the ratio
of the count of cells in a population over all of its direct parent populations. However, given
L markers, there are 3L · 2L

3 such relationships not including the relationship between a
cell population and its indirect ancestors [268]. In contrast to comparing 3L cell population
scores, directly comparing cell population relations becomes computationally impractical.
SpecEnr mitigates both problems as it is a cell population score that accounts for rela-
tions between cell populations. q-values obtained from computed SpecEnr scores isolated
only the few ground truth driver cell populations (MDCP e.g. SS−CD34+). Our results
not only reveal known driver cell population CD34+ but also provide visualizations signify-
ing that their change was caused by a change in its descendants exposing novel driver cell
populations.

We also observed this contrast in behaviour between SpecEnr and proportion q-values
in the pregnancy data set. We hypothesized that flowGraph would be able to find MD-
CPs because [7] were able to use L1, L2, and cell signal pathway regularized regression to
classify samples taken from women at different stages of pregnancy. The original authors
also assumed that there exist MDCPs in the pregnancy data set [159]. However, because
these methods find candidate biomarkers as a byproduct of a sample classification method,
there was no way of verifying whether the candidate biomarkers they inferred are simply
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Figure 4.1: Cell hierarchy plots for synthetic data sets pos1-3 and real data sets flowcap
and pregnancy show that SpecEnr q-values accurately identify MDCPs while proportion
q-values flag all DCPs but do not highlight which of the DCPs are MDCPs.
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DCPs or are also MDCPs. FlowGraph answers this question by providing users with a way
to differentiate between the two while verifying our hypothesis validating the existence of
MDCPs in the pregnancy data set.

Since SpecEnr is calculated using proportions, it is prone to the same issue that occurs
when using proportions directly. That is, changes in the proportion of cell populations must
sum to 0. For example, in pos1, A+ abundance doubled, so its proportion increased from .5
to .66; but A− proportion decreased from .5 to .33. More generally, if a cell population is
differential, it will induce a change in the proportion of all cell populations that are labelled
using the same set of markers as it; because these cell populations are mutually exclusive.
Another example of this are the {A{+,−}B{+,−}C{+,−}} cell populations from pos2. If the
driver cell population resides in layers > 1, then it is easily identifiable as the cell population
with the largest magnitude of change. In the future, we would like to improve on our method
such that we only flag the driver cell populations and not the cell populations it affects in
the context of proportions.

Finally, we showed that an adjusted and filtered T-test on SpecEnr will yield a signif-
icant q-value on driver cell populations and their ancestors. While this makes driver cell
populations intuitive to find on a cell hierarchy plot, ideally, we should only flag the driver
cell populations as significant and not their ancestors. By preventing excessive flagging of
ancestor populations, we enable more expressive and detailed insights into results interpre-
tation.
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Chapter 5

Automated 2D gating via motif
matching for cell population
identification

5.1 Introduction

This chapter aims to identify cell populations in FCM samples in a supervised manner by
projecting expert created gates onto ungated samples. We refer readers to Section 2.2 for a
primer on manual gating and related work, and Chapter 3 for cell population identification
methods via clustering. Provided that current un/supervised cell population identification
methods produce results that lack interpretability, we are motivated to explore the following
hypothesis: a supervised method that uses 2D visual scatterplot features a human uses while
gating should produce accurate and more interpretable results than a method that only uses
FI values. Our hypothesis extends that of previous methods [227, 171] which automatically
gates in 1D.

To verify this hypothesis, in this chapter we:

1. Describe and extract visual features from each scatterplot.

2. Implement our first method for cell population identification. This method harnesses
the above visual features to learn a 2D gate from at least one gated scatterplot and
project this gate onto a set of ungated scatterplots.

3. Present results that directly motivate the development of our second method for cell
population identification in the next Chapter 6.

Since our method mimics manual gating, our method inherits the two interpretability traits
we defined in Section 2.2: 1) we project human-created gates along with their cell population
labels and 2) our gates are projected on 2D scatterplots whose dimensions are specified by
the user and so these plots can be easily analyzed by the user.
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Figure 5.1: The aim of our method is to gate ungated testing FCM samples by projecting
the ground truth gate from one or few training samples.

We do not perform an exhaustive evaluation of the method in this chapter in favour of
the method in Chapter 6, which also uses visual features. We expect the latter to perform
better because instead of manually assigning parameters for extracting visual features, it
uses a deep neural network that learns and refines these parameters based on existing data
sets.

5.2 Method

To verify whether our visual features can help to gate FCM samples, we describe a method
that uses these features to project 2D polygon gates from one or few gated ‘training’ samples
onto ungated ‘testing’ samples. All of these samples plot cells from the same cell population
on scatterplots with the same two markers as the two dimensions. We say these samples
are plotted on the same ‘scatterplot’ for the same ‘unique marker pair’ for brevity. In this
chapter, we assume there is one gate per scatterplot. However, if there are multiple gates
on the same scatterplot, we can repeat the procedure in our method for each gate. We also
use the terms ‘learn’ and ‘train’ as more generic terms to describe the process of projecting
gates.

5.2.1 Feature engineering

For all all sample (training and testing), we extract their numeric visual features that will be
used in later stages of our method. The signals exposed by these features should correspond
with what a human observes from a scatterplot to guide manual gating. Given a preprocessed
FCM sample, we extract its scatterplot for a unique marker pair as a scatterplot image. This
image is a 400× 400 matrix where each of its values represent an image pixel. A scatterplot
image’s ‘image-based’ visual features are a set of 400×400 matrices. We say a visual feature
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type is ‘local’ if each value in its matrix summarizes not only a pixel but a voxel of the
image. A voxel is the set of pixels surrounding a pixel of interest. For example, if our voxel
size is 3, the value at coordinate (10, 10) represents the set of 3× 3 pixels centered around
coordinate (10, 10), its ‘center pixel’. In other words, this voxel contains pixels with coor-
dinates (9, 9), (9, 10), (9, 11), (10, 9), (10, 10), (10, 11), (11, 9), (11, 10), (11, 11) and its center
pixel has the coordinate (10, 10). This voxel is not to be confused with the acronym ‘voxels’
used in medical imaging. In our experiment, the values for each feature type are normalized
to the range [0, 1]. When we conduct cell population identification on a scatterplot image,
we assign each pixel of this image, a cell population label. The label on each pixel is also
assigned to all the cells that are plotted on that pixel. The final F1 score we calculate to
determine the accuracy of our method is calculated based on the number of cells we labelled
correctly.

To summarize, for each FCM sample’s 400 × 400 scatterplot image, we obtain the fol-
lowing additional visual feature matrices of the same resolution that we will be using down-
stream in our method:

• Image-based visual features:

– Original density scatterplot image

– Binned density contour image

• Local visual features:

– Edge detection filtered image (as calculated by the Scharr filter [88])

– Edge detection filtered image (as calculated by the Sobel filter [190])

– Orientation filtered image (as calculated by HOG (histogram of oriented gradi-
ents) [113])

– Orientation filtered image (as calculated by Gabor [252])

Image-based visual features

We take as input, a scatterplot image which is also our first image-based visual feature. The
feature or the numeric value assigned to each pixel in this image is the Gaussian kernel 2D
density estimation of cells on each pixel. These are numbered from 1 to 0 based on high to
low density. Finally, we tighten the axes such that there is no arbitrary white space on the
edges of our scatterplot image. To do this, we set the borders at the maximum second-order
derivative of the kernel density estimate curve on each axis. The resulting image is also the
image that humans use to perform gating.

Our second image-based visual feature takes the scatterplot image as input and is binned,
then smoothed. We use the bivariate normal density kernel, and plot these as density contour
images. The reason we include the density contours as an input to our method is because we
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Figure 5.2: A), B), and C) are the images of three training samples. The top row consists
of their original density scatterplot image with the vertices of their ground truth gate and
the bottom row consists of their binned density contour image.

deduce that these contours guide the users when they manually draw polygon and elliptical
gates.

Local visual features

After we obtain our images, we extract additional features that amplify signals of edges and
edge orientation on the image. An ‘edge’ in image processing is a section of the image where
there is an abrupt change or, more formally, a discontinuity in the image brightness. First, we
reduce noise by applying a Gaussian filter to blur our scatterplot image. In our experiment,
we chose the commonly used filter voxel sizes 10, 25, and 40 pixels. This blurred image and
the binned density contour image are taken as input to create the features described in the
rest of this section. A toy example of these are shown in Figure 5.3.

To detect edges, we apply filters Scharr and Sobel [88, 190]. These approximate the
Gussian derivative of our input values resulting in large numbers at places where colours
change abruptly and small numbers elsewhere.

We also apply standard orientation feature extraction techniques Gabor [252] and HOG
[113] to detect the orientation of pixels (e.g. whether a voxel contains horizontal or vertical
lines). HOG calculates a gradient and then bins these gradients into a certain number of
directions. Its final output is a histogram of these directions for each voxel. Gabor is a set of
predefined filters consisting of a Gaussian multiplied by a sinusoidal wave. For both HOG
and Gabor, we use the same voxel sizes we use for the other filters and we set the number
of orientations to the default of 6.
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Figure 5.3: Toy example image and a visual representation of its visual features. A) is the
original image, B) is the image after an edge detection filter has been applied, C) is a visual
representation of the Gabor filter applied on a voxel (sub-image) from B), and D) is a HOG
(histogram of gradient orientation) of the same voxel (sub-image) from B).

5.2.2 Gate representation

We represent a polygon gate g as a set of three or more x, y pixel coordinates gi =
{gx

i , g
y
i }, gi ∈ g corresponding to its vertices on the scatterplot image. Our representa-

tion of the gate handles arbitrarily shaped convex and, in the rare case, non-convex gates.
In the latter case, g is an ordered list of three or more coordinates.

We call the set of pixels surrounding each vertex pixel as a ‘vertex voxel’. The size s of
these vertex voxels is given by the user. For both the training and testing set, we set this
value to

s = 0.5
√
fa(g)
ng

where fa is the function that, given a gate, outputs the continuous geometric area of the
gate. g is the training gate and ng is the number of vertices in g. For our experiments, this
covered a sufficient amount of pixels for gate projection.

5.2.3 Workflow

Our method takes as input, a training sample and its gate, and a testing sample on which
we want to project the gate. If not given, the first step in our method is to choose this
training sample. After identifying the training sample, we proceed to project its gate onto the
testing sample. We summarize this workflow pseudocode in Algorithm 1 and then describe
it verbosely below. Its notations are as follows. Tr and Te are the set of training and testing
samples respectively. Each sample t ∈ Tr∪Te, contains the values from its images and visual
features. In addition to these, each sample tr ∈ Tr contains a gate. d is the distance function
used to create our distance matrix earlier in this section. θ is a user-specified distance. In
our experiment, we use k′ = 3. If any of the three training samples was an original training
sample (i.e., the testing sample is similar to some original training sample), we set k′ = 1

79



Figure 5.4: t-SNE plot representing the distance between all samples. Axis do not represent
meaningful variables, t-SNE only ensures that the Euclidean distance between points on
this 2D layout represents those in the given distance matrix.

and only use the closest original training sample. Finally, fgp is a gate projection function
that projects the gate from input training sample t′′r to testing sample t′e and outputs this
gate as gt′

e .

Algorithm 1 Pseudocode summarizing the overarching workflow of our method for cell
population identification: 1) Training sample selection and embedded in it, 2) gate projection
as fgp. The inputs are the training samples Tr and testing samples Te. The output is the
set of all gates we projected for the given testing samples gt′

e .
Require: |Tr| = k

while |Tr| < |Tr ∪ Te| do
t′e ← arg mint′

e∈Te
d(t′e, tr)∀tr ∈ Tr.

tr s.t. trTr and |tr| = k′ and arg mintr∈tr d(t′e, tr)
w← {}
for t′r ∈ tr do

w′ ← 1
d(t′

e,t′
r)

w← w ∪ {w′}
end for
w← w

max(w)
t′′r ← {

∑
w′∈w,t′

r∈tr w
′t′r, }

gt′
e
← fgp(t′′r , t′e)

Tr ← Tr ∪ {t′e,gt′
e}

Te ← Te \ t′e
end while

1. Calculate a pair-wise Euclidean distance matrix between samples.

This distance is calculated using the flattened vectorized visual features for each sample.
We also considered using distance metrics, Manhattan and Normalized Cross-Correlation
(NCC), but these methods produced similar (insignificantly different) results and were com-
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putationally slower to calculate, respectively. From this step, we obtain a sample× sample
distance matrix. Using this distance matrix, we create a t-SNE plot as illustrated in Fig-
ure 5.4.

2. Find the training samples

that we request the ground truth gates for from a human expert. We pick the original
training samples by conducting agglomerative clustering using the complete link. If k, the
number of training samples desired, is not provided, we conduct a post-processing step. We
calculate a median silhouette index for each k < kmax cluster where kmax is a user-specified
maximum number of samples they were willing to gate manually. We then choose the k

that yields the highest median silhouette index. Finally, We then select the medoid sample
of each of the k clusters and ask the user to provide the ground truth gates for them. These
would be our training samples and gates. We set k = 3 based on the clustering that obtained
the highest median silhouette index.

3. Find the most similar (least distant) training sample for each testing sample
to project the gate from.

If there is no original training sample that is similar to our testing sample (see criteria in
Algorithm 1), we create a ‘hybrid training sample’. This is created by taking the weighted
(by distance) mean of the visual features and gate vertex coordinates belonging to the three
gated testing samples most similar to our testing sample. We deduce that projecting a gate
from a gated testing sample similar to our testing sample would produce more accurate
results than projecting a gate from a training sample that is very dissimilar to our testing
sample. In other words, we assume that the distance (see Section 5.2.3) between samples is
positively correlated with some distance between their associated ground truth gates. This
also mitigates situations when k may be too small to handle the heterogeneity between
samples. We refer to this procedure as adding gated testing samples to our training sample
set to make our training sample set larger.

4. Project the training sample’s gate onto the testing sample as an optimization
problem

We formally describe the gate projection method fgp by reducing it to a minimum-cost
node and edge clique problem. We do so by constructing the following undirected graph
G = V,E. See Figure 5.5 for an example.

Node Recall that for each training gate vertex (e.g. bottom left vertex of training gate),
we want to select the best pixel on the testing sample as the corresponding testing gate
vertex (e.g. bottom left vertex of projected gate). As described in Section 5.2.1, each pixel
coordinate on a sample can be represented by its surrounding voxel and the corresponding

81



Figure 5.5: An example of a constructed graph constructed.

visual features. Therefore, we refer to gate vertices as the voxels that describe them. For
brevity, we shorten the terms: training gate vertex voxels to training voxels and candidate
gate vertex voxels to candidate voxels. To increase efficiency, for each training voxel, we
limit the search space or the number of candidate voxels to those whose center pixel is
within a s×s pixel grid centred around the training voxel coordinate on the testing sample.
s is defined in Section 5.2.2. The center pixel of this grid share the same coordinate as the
center pixel of the training voxel.

We define each node vi ∈ V as a unique pairing between a training voxel and a candidate
voxel from the testing sample. Each node vi is also assigned a cost ci representing the visually
dissimilar between its training and candidate voxel pair:

ci = 2ai + pi

where ai and pi are the Euclidean distance between sample features and coordinate position
of the training and testing candidate voxel, respectively. This follows our assumption that
gates across samples are positioned in relatively similar areas of the scatterplot (e.g. bottom
right corner).

Edge Each edge connects two nodes i, j that can feasibly occur together. Two nodes can
feasibly occur together iff the following are true (i.e. edge constraints):

1. The two nodes (i.e. two pairs of vertex voxels) combined represent exactly four unique
vertex voxels.

2. The angle between the two candidate voxels across the two nodes cannot be greater
than λ degrees off from the angle between the two training voxels.
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1) ensures that each training voxel must be paired with a unique candidate voxel. 2) fol-
lows our assumption that each vertex voxel should be in the same relative orientation as
each other. For example, the upper-right and bottom-left training voxels should correspond
to the upper-right and bottom-left candidate voxels, not the bottom-left and upper-right
candidate voxels. Another example is if we have a horizontal edge on our training gate,
the corresponding edge should not be vertical on the gate of our testing sample. We set λ
to 75◦. However, if this is a desired trait, the user should set λ to 90◦or more. One of the
gates we tested our method on is a perfect rectangle. If we assume we know this, we can
set λ = 0. However, we assume that we do not have this information to account for cases
when polygon angles are flexible.

We also assign a cost cij to the edge connecting nodes vi and vj .

cij = qij + ρij

The variables above represent the difference in Euclidean distance (qij) and angle (ρij)
between the two training voxels and the two candidate voxels.

5.2.4 Optimization

We aim to find a unique one-to-one pairing of a candidate voxel to each training voxel. We do
this by finding the minimum-cost node and edge clique inside the graph constructed in the
previous section. A clique is a subgraph where each of its nodes are adjacent or connected
by an edge to every other node in the clique. The node and edge cost of a clique is the sum
of weights over all of its nodes and edges. It follows that a minimum-cost node and edge
clique is the clique with the lowest cost. Notice that any clique in our graph contains at
most h nodes and is a valid gate given our edge constraints. h is also the number of vertices
in our polygon, and these nodes represent the best set of candidate voxels.

The minimum-cost node and edge clique problem is NP-complete [248]. Since this
method verifies the effectiveness of our visual features and since the number of vertices
we used is relatively small, we can practically use grid search to find the solution. How-
ever, we acknowledge that there are existing more efficient mature solutions that provide
approximate solutions [200, 331] which should be applied as the number of vertices increase.

5.3 Experiment data and accuracy metric

We applied our method on a data set containing 3 training and 133 testing samples cour-
tesy of Jessi Tuengel from the BC Children’s Hospital and Sybil Drissler from BC Cancer
Research Centre [365]. The ground truth gates were created manually and further refined
using flowDensity [240], flowPeaks [121], and SamSpectral [404] by a human expert. We
experimented on four scatterplots from the B-cell panel. In the context of gates, an ‘arbi-
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trarily shaped’ polygon gate is a gate where the angle between vertices is arbitrary, instead
of being the same. For example, every angle in a rectangle is 90 degrees. The gates on
scatterplots plotting All cells are arbitrarily shaped polygons with four vertices, the gates
on scatterplots plotting Singlets are rectangles, and the gates on scatterplots plotting Live
cells and B-cells are arbitrarily shaped polygons with seven and five vertices respectively.

We show the original training samples used, their images, and their gates in Figure 5.2.
We also plot these training samples relative to the testing samples in a t-SNE plot created
according to the distance matrix described in Section 5.2.3 in Figure 5.4.

We used the F1 score to measure how accurately we gated the cell population of interest.
The F1 score is the standard accuracy metric in cell identification papers in FCM. We
calculate the F1 score using the ground truth cell population labels versus those produced
by the gate our method projected. If we classify each pixel perfectly, we obtain near perfect
(> 0.99) F1 scores at an even lower 256× 256 pixel resolution (see Figure C.1).

We compare our F1 scores against those produced by flowSOM, a state of the art method
for cell population identification. In our data set, there is one gate on each scatterplot that
separates the cells into two cell populations (them being inside or outside the gate). Since
flowSOM is an unsupervised clustering method, we set the number of meta-clusters in
flowSOM to be five and pick the best one-to-one or one-to-many matching between clusters
and cell population to get the final F1 score for each sample. The higher the number of
meta-clusters, the easier it is to find a more accurate cluster to cell population matching.
We choose to be more lenient because our cell population of interest does not naturally
separate base on the data distribution in every sample (e.g. see Figure 5.8).

5.4 Results and discussion

In this section, we show that our method was able to obtain higher accuracy than flowSOM.
We also show samples where our method scored high and low for to facilitate our discussion
on why there is a large variance in our methods’ F1 scores.

Our method uses visual features to accurately label cell populations identified
by arbitrarily shaped polygon gates. Figure 5.6 shows that our method obtained
higher mean F1 scores than flowSOM [367], a state-of-the-art method for cell population
identification. This applied across all gates regardless of their shape. Although our method
obtained lower scores for a few outlying samples, we observed that the gates obtained were
visually reasonable. The term ‘outlying’ describes samples that have a long distance from
the original three training samples we used based on the distance matrix from Section 5.2.3.
We will expand on our interpretation of ‘visually reasonable’ with examples in the following
sections.
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Figure 5.6: Boxplot comparison of our method’s F1 accuracy scores for each testing sample
and their gated cell population versus those of flowSOM [196] across all gates. F1 scores are
calculated based on the cell population labelling we obtained with our method’s gate and
flowSOM’s clustering versus that of the ground truth flowDensity gates.

85



Figure 5.7: The testing sample gating for which we obtained the highest F1 score for the
scatterplot plotting Singlets containing a CD21+FVD− Lymphocyte gate; also included are
the original training sample and gate used.

Visual features allow our method to project gates such that our training and
chosen candidate voxels are on visually similar regions of the scatterplot, regard-
less of F1 score. Our method mimics the way humans would project gates on visually
similar regions between training and testing samples. Therefore, we can easily interpret why
our method projected the gates to where it did by looking directly at the plots. Figure 5.7
and 5.8 show the gating for the testing samples with the best and worst F1 scores for the
Singlets scatterplot.

The former obtained the highest score as the original scatterplot image is almost visually
identical between the training and testing samples. This is verified by analyzing the top 30%
candidate voxels with the smallest ai highlighted in the figure. Our method favoured the top
scoring candidate voxels tightly wrapped around the cell population of interest. In addition
to the local visual features, we also acknowledge the importance of isolating candidate
voxels that are on coordinates close to the training voxels. On the scatterplot, there were
many regions that were visually similar to each other. For example, the top-left candidate
voxels contained visual features that were also similar to those in the top-left corner and
central-left region of the scatterplot.

We observed the same behaviour in the testing sample with the lowest F1 score. Our
projected gate closely aligned with the ground truth gate. However, its left side was on a
dense region of the scatterplot. A slight difference in the positioning of our chosen candidate
voxels would cause a large F1 score decrease. This also occurs in other low scoring samples.
See Section B.1 for example plots and discussion around results for other scatterplots.

Using gated testing samples may propagate gating error. We also analyzed one
testing sample that obtained a median F1 score in Figure 5.9. The gate projected onto
this testing sample was from a hybrid training sample. While the spatial position of the
gate vertices differed from the ground truth, the visual features in the local area around
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Figure 5.8: The testing sample gating for which we obtained the highest F1 score for the
scatterplot plotting Singlets containing a CD21+FVD− Lymphocyte gate; also included are
the original training sample and gate used.

Figure 5.9: An example of gating where we used multiple gated testing samples to create
a hybrid training sample that is used to gate a testing sample that obtained a median F1
score.
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our vertex voxels remained consistent between training and testing samples. One concern
was that our strategy to increase our training set by creating ‘hybrid’ training samples
would propagate errors. In this case, the shape of our polygon was not rectangular as it was
in the original training samples. This observation motivates us to examine what happens
when we only use original training samples in the next chapter. Alternatively, if we assume
that we knew that our gate should be rectangular, we could have set our λ to 0 to enforce
rectangular gates; see Section 5.2.3.

5.5 Conclusion

We showed that our method that uses visual features produced interpretable results. As we
opted to mimic the gating procedure, we can project a manually created gate onto a testing
sample in a visually motivated way.

We also showed that supplementing visual features with spatial constraints ensured gates
stayed in relatively similar locations across samples. Efficiency-wise, the optimization step of
our method takes one to a few seconds per sample. The mean runtime for the optimization
step projecting 4, 5, and 7 vertices polygon gates take 0.7, 0.9, and 10 seconds per sample,
respectively, on a single CPU core. While our method is not significantly faster than an
experienced human, it is an accurate alternative and can save human labour costs. Even for
outlying samples where we obtained a low F1 score, our projected gate is a good starting
point for manual modification if any is required. It also serves as a second automated opinion
on how to gate outlying samples as this is not a trivial problem even for a human.

Bringing the above ideas into the next chapter, we develop a method that we think can
be potentially more accurate. We also experiment on additional data sets to understand the
effectiveness of using visual features to gate a larger variety of scatterplots.
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Chapter 6

Automated 2D gating via few-shot
image segmentation for cell
population identification

In continuation of the previous chapter, we solve the same problem (Problem 1) of gating
FCM samples on 2D scatterplot images. We develop a method that uses transfer learning and
few-shot image segmentation. We harness a large database of human-gated FCM samples
to pre-train our model. We propose and validate a training procedure that can directly
use (“transfer”) this trained model for gating (“segmenting”) scatterplot images from FCM
samples.

The work presented in this chapter is a work in progress in that our results currently do
not yield higher accuracy than all of the state-of-the-art methods. In deep learning experi-
ments, there are many engineering changes we can use to tune and refine our model. While
these exemplify the immense potential of deep learning, a trade-off of such experiments
is that they can be time-intensive. We believe our approach can yield higher accuracies.
However, we also believe that at this stage, we can report its results and our observations
as scientific contributions and lessons learned to help inform further method refinements.

6.1 Background: Few-shot image segmentation and meta-
learning

Few-shot image segmentation is where we train an image segmentation model using one or
‘few’ training image ‘shots’ and their segmentation (e.g. gate) and then we use the trained
model to segment previously unseen testing images. We refer to the scatterplot images used
for training as few-shot-training samples. This is unlike regular image segmentation where
we can train our model on hundreds of thousands of training images and their segmentation
then test it on a few testing images.
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Starting from [318], earlier models for few-shot segmentation contain variations of a
support and query branch [291, 410, 99]. Each branch is a deep learning model. The support
branch takes as input, the ‘supporting’ few-shot-training samples and the query branch takes
as input the ‘query’ testing image we want to segment. The segmentation mask proposed
for the testing image is a merger of the results from these two branches. These models are
flexible in that they can project any segmentation from the supporting image onto the query
image. However, this model requires extensive training using a large database of supporting
and query images.

The MAML (model agnostic meta-learning) [106] is a type of transfer learning approach
that can be applied to any image segmentation model but requires that the user knows how
to add custom auxilliary nodes to augment the model. MAML first trains this augmented
model on a large data set for varying tasks (e.g. to segment birds, cars, and humans). It then
performs few-shot-training where the model is trained on few-shot-training samples for one
specific task (e.g. to segment monkeys only). This two-step process is unlike regular training
procedures where one creates and trains a custom image segmentation model for each task in
one step [106]. Additional engineering strategies MAML employs are 1) augmenting training
data by transforming the training set, 2) limiting hypothesis space by sharing parameters
in multitask models (e.g. adding task-specific/invariant feature embedding parameters to
the model) , and 3) modifying search strategy via algorithm changes [378]. 2) is the main
selling point of MAML and what makes it unique from other transfer learning strategies
[343]. However, model augmentation makes the training process less memory efficient and
accessible for non-technical users.

In comparison, traditional transfer learning approaches do not require 2). Generic trans-
fer learning also performs the two-step process in MAML but the second step still requires
abundant training samples and is not suitable for few-shot training. We retain the same two-
step training procedure but, unlike in traditional transfer learning, we do few-shot training
in the second step. In addition, unlike in MAML, we do not modify the original segmenta-
tion model. Instead, we only perform few-shot training on a few layers in our network. Our
training methodology is inspired by [357] who applied this on the simpler problem of image
classification.

6.2 Method

6.2.1 Workflow

This section describes the overall workflow of our method including how we preprocess our
data sets and perform our two-step transfer learning workflow of pre-training and few-shot-
training.
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Figure 6.1: Our FCM scatterplot image segmentation workflow.

Preparing FCM data sets. Taking a preprocessed FCM sample as input (see Sec-
tion 2.1), for a scatterplot or a unique user specified marker pair, we create a 256 × 256
pixel scatterplot image (see Section 5.4 and Figure C.1 for on image resolution experiments).
This image has four channels (i.e. image-based visual features):

1. Density: The first channel contains values from 0 to 100 in each pixel based on a
Gaussian kernel 2D density estimation of the density of cells on the pixel.

2. Contours and density thresholds: The second channel is a black and white image
where the white pixels represent the background and the black pixels represent the
lines of all naturally occurring 1) 2D density contours based on the density distribution
estimated in the first channel and 2) 1D thresholds for both markers identified by
flowDensity [240] i.e. horizontal and vertical lines at the density valleys, peaks, and
inflection points.

3. Row-wise position: In this channel, the values in each row is the row number on
which they reside (e.g. all values in row 1 is 1, all values in row 25 is 25). The reason
for adding this channel is that purely convolution neural networks value local visual
features over position-wise proximity of particular feature types to each other. This
channel is used because cell population clusters in scatterplots often look alike. FI is
what ultimately decides which cell population a cell belongs to and the location on
the scatterplot where a cell population lies.

4. Column-wise position: This channel contains data just like the previous channel
but for columns.
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Unlike in the previous chapter, we represent each gate as a mask. A mask is a matrix
whose dimensions are the same as its corresponding scatterplot image. Its background pixels
contain the value 0 and the pixels inside of a gate has the value 1. If there are multiple gates
per image, then, for example, the pixels inside the first, second, and third gates contain the
values 1, 2, and 3 respectively. See Section 5.3 for how we prepared the ground truth gatings.

Pre-training the image segmentation model on a database of scatterplots. In
the pre-training phase, we train our entire image segmentation model on large, highly het-
erogeneous data sets such that our model learns to effectively encode visual features from
input and decode the segmentation into a gating mask. As an analogy, in the last chap-
ter, we manually set the parameters for our visual feature filters. The parameters we used
were standard for any image. Conversely, this pre-training step refines these parameters
specifically scatterplot images.

To prevent over-fitting, we randomly transformed our data sets with cropping (to 80%-
100% of the original size) and rotations (from -45 to 45 degrees). For our model, we used a 5
layer encoder and decoder Unet architecture [303] with ResNet18 layers [146]. We trained the
model with a batch size of 32, optimized using Adam gradient descent [186], on 100 epochs.
Because we have a different number of samples for each data set and their scatterplots, we
sample the same number of images from each unique scatterplot i.e. we over-sampled from
data sets that have fewer samples. We used the Lovász-Softmax loss which is known to work
well for segmentation tasks [228].

Few-shot-training the image segmentation model on one scatterplot. In the few-
shot-training phase, we take our pre-trained model and train it further to gate samples
plotted on the same scatterplot. The few-shot-training samples used for each scatterplot
are selected the same way as in the previous chapter (see Section 5.2.3; we do not use
hybrid training samples in this chapter). We take the pre-trained model and we freeze all
layers except for the centre-most two layers which are trained using the few-shot training
samples. Our few-shot-training specifications follow those of the pre-training phase. We do
not manually adjust optimization parameters, such as step size, because Adam gradient
descent automatically adjusts those during training. From a use case perspective, end-users
are directly given the pre-trained model from the previous step and only need to perform
this few-shot-training step for the scatterplot they are interested in gating. Pre-training
only needs to be done once while few-shot training needs to be done for each scatterplot.

6.2.2 Experiment data and accuracy

We increased our data set size to accommodate for the massive increase in parameters in
deep learning models compared to our method in the previous chapter. We used 4 freely
available data sets (see Table C.1) for our experiments.
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Typically, for training and testing models, one would conduct k-fold cross-validation
[43]. In the context of this chapter, k = 10-fold cross-validation would entail combining all
the 46 scatterplots and then randomly splitting them up into ten evenly sized sets. A first
experiment would be done where we few-shot train and test on the first set using a model
pre-trained on the last nine sets of scatterplots. Similarly, this would be done nine more
times with few-shot training and testing over each set on models pre-trained using the rest
of the nine sets of scatterplots. We can assume that since we are randomly selecting the pre-
training and few-shot training scatterplots over a larger set of scatterplots, the heterogeneity
within the pre-training and few-shot training scatterplots should be similar (i.e. our model
would be able to learn how to encode scatterplots in the few-shot training set because it
has seen similar scatterplots in the pre-training set). This statement holds as the number
of scatterplots available to us nears infinity [43].

However, in flow cytometry, we deal with sets of scatterplots given to us in gating strate-
gies. In total, we used four sets of scatterplots from four gating strategies, so it would be
more realistic to pre-train on three sets of scatterplots and few-shot train on the last set.
This is effectively a 4-fold cross-validation except that the scatterplot sets were not selected
randomly but via their gating strategies. Since our selection was not random, our assump-
tion that our model would have learned to encode scatterplots in the few-shot training
set from scatterplots seen in the pre-training set may not hold. We perform one of those
cross-validation experiments by pre-training our model on three freely available data sets:
‘sangerP2’, ‘HIPCB-cell’, and ‘HIPCMyeloid’. The sangerP2 data set contains 2,328 sam-
ples, each plotted on 12 scatterplots from panel 2 of [2]. The HIPCB-cell and HIPCmyeloid
data sets (from the Human Immunology Project Consortium [105]) contain 1,350 samples
plotted on 12 and 11 scatterplots from the B cell and myeloid panels respectively. Finally,
we few-shot-trained and tested on the ‘pregnancy’ data set [7] which contains 112 samples,
each plotted on 10 scatterplots. See Table C.1 complete description of these data sets.

We compared our F1 scores obtained using 10 few-shot-training samples with those of
peer-reviewed, state-of-the-art methods in Table 6.1. For unsupervised clustering, we used
the gigaSOM implementation of flowSOM [196, 367]. For gigaSOM, we set the number
of desired meta-clusters to 6, one more than the maximum number of cell populations in
all scatterplots. We then take the F1 score for the best one-to-one or one-to-many cluster
to cell population matching. Again, the more meta-clusters specified, the higher gigaSOM
should score. We did not use the exact number of cell populations to account for when
cell populations do not separate naturally based on their data distribution. For supervised
methods, we used deepCyTof [212] and flowLearn [227]. For deepCyTOF, we also used 10
training samples. As a comparison, we circumvent the lack of training samples by pre-
training an effective visual feature encoder while deepCyTOF uses a separate autoencoder
model to transform the data distribution in testing samples to match with that of the
few-shot-training samples. Though we use much more data in the pre-training step, we
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consider these strategies as preprocessing steps. Our approaches are comparable because
the number of samples we use in the few-shot-training step is the same. For flowLearn,
scores are calculated for scatterplots that contain only threshold gates.

We calculated all the F1 scores based on gold standard ground truth gating for each
sample created using flowDensity [240] guided by manually prepared gates. These scores
are averaged across cell populations for each scatterplot and their respective samples. For
flowLearn and deepCyTOF, we also used 10 few-shot-training samples.

6.3 Results and discussion
Table 6.1: F1 scores of our method and three other state-of-the-art methods in cell popula-
tion identification for the pregnancy data set. Scatterplot labels indicate: the cell population
being gated (marker pair the scatterplot was plotted on).
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deepCyTOF 0.76 0.62 0.98 0.77 0.96 0.86 0.88 0.87 0.91 0.81 3.4
gigaSOM 0.93 0.60 0.99 0.49 0.73 0.96 0.74 0.98 0.97 0.71 2.9
flowLearn 0.88 0.92 0.95 0.99 0.92 0.99 0.92 2.8
Our method 0.92 0.76 0.98 0.81 0.95 0.90 0.68 0.81 0.94 0.85 3.1
Our method
(without
pre-training)

0.97 0.71 0.97 0.84 0.98 0.94 0.73 0.80 0.95 0.80 2.8

Averaging the ranking of the score for each method and scatterplot, our method ranked
first (without pre-training), tied with flowLearn, and third. From the scores, we can see
that each state-of-the-art method had its own advantages. deepCyTOF is a supervised
method based on FI values. It performed best for scatterplots where the FI values of cells
from the same cell population across samples did not have large changes. Meanwhile, the
gigaSOM implementation of flowSOM obtained high F1 scores for scatterplots where cell
populations were well separated in their data distribution. flowLearn was exceptionally
accurate for learning threshold gates but it cannot learn polygon gates. Scatterplots that
require polygon gates exist in almost, if not all, data sets (hence the missing F1 score).
Our method could gate both polygon and threshold gates while accounting for both feature
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types: spatial features (FI) and visual features that represent the data distribution. We also
acknowledge and investigate further the two scatterplots where our method did worse than
the competitors later in this section.

6.3.1 Pre- vs few-shot-training

In the last line of Table 6.1, we show that our training framework produced results com-
parable to the baseline where we do not pre-train and directly trained on the 10 few-shot
training samples. This baseline ranked second overall. If we do not include this result, our
method also ranks second compared to the competitors.

While this draws the question of whether we should exclude the pre-training step, we
need to verify this further by testing on additional data sets to analyze whether there is a
significant increase in accuracy that warrants the longer training time. We hypothesized that
pre-training our model allows it to learn encoding for more heterogeneous visual features.
This should allow us to use fewer few-shot-train samples to get good few-shot-testing results.
However, we did not see this in the pregnancy data set. Regardless of whether or not pre-
training makes a difference, this is a positive sign that the heterogeneity within our data set
does not cause as many problems for image segmentation models as it does for methods that
only take FI as input. Conversely, a pro of pre-training is that the few-shot-training phase
converges within 100 epochs across all scatterplots whereas doing it without pre-training
takes within 300 epochs; this makes for more time-efficient training.

6.3.2 Few-shot-training samples

To understand how the number of few-shot-training samples affects our results, we exper-
imented with 1, 5, 10, 15, and 20 few-shot-training samples. The mean F1 score obtained
across cell populations for each scatterplot is shown in Figure 6.2. F1 scores significantly
increased after increasing the few-shot-training set size from 1 to 5; beyond that, the F1
score converged as the few-shot-training sample size continued to increase. This may be
because 5 few-shot-training samples were sufficiently representative of the full sample set.
However, we acknowledge that our full sample set (112 samples) is much larger than that of
a typical FCM experiment (10-20 samples). In the typical case, a few-shot-training sample
size under 5 should be sufficient for highly heterogeneous sample sets.

6.3.3 Gate, sample, and feature heterogeneity

In this section, we show and discuss the most representative sample(s) and the samples with
the highest and lowest F1 scores from each scatterplot in Figures 6.3 to 6.12. We go over
what the model may be doing to learn gates and possible ways to improve our results.

In summary, the main advantage of methods that use visual features is their ability to
deal with heterogeneous data while using a small amount of few-shot-train samples. As we
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Figure 6.2: Mean F1 score when few-shot-training is done on 1, 5, 10, 15 samples (shots)
across cell populations for each scatterplot.

can supply abundant feature types to the more flexible deep learning model, it can take
into account features outside of just FI values. The heterogeneity in gates, however, posed
a problem. We discuss this in detail below.

Figure 6.3: Sample scatterplot result for Leukocyte (CD66, CD45) cells from the pregnancy
data set. A), B), C) are the original density scatterplot image, density contour and thresh-
olds, and gating result for the FCM sample.

Our method scores well if the ground truth gate aligns with a density contour or
a threshold. Our model yields a higher F1 score when gates conform to density contours
in channels 1 and 2. See Figures 6.3 and 6.10. In both cases, there was some indication
that they were an isolated group of cells in channel 1 and strong contours for their gates
in channel 2. Given the encoder-decoder nature of segmentation models, we also know that
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Figure 6.4: Sample scatterplots result for Mononuclear (CD3, CD19) cells from the preg-
nancy data set. A/D), B/E), C/F) are the original density scatterplot image, density contour
and thresholds, and gating result for the FCM sample. Top and bottom rows show an FCM
sample with the best and worst F1 score respectively.

Figure 6.5: Sample scatterplot result for NKLin- (CD14, CD7) cells from the pregnancy
data set. A/D), B/E), C/F) are the original density scatterplot image, density contour and
thresholds, and gating result for the FCM sample. Top and bottom rows show an FCM
sample with the best and worst F1 score respectively.

the gates they produce were smooth and would not have sharp edges. This is advantageous
for gating round gates.

Our model learned to align gate borders with threshold lines from channel 2 of
the given scatterplot image. This is a trend we noticed in particular with scatterplots
that have gates made of threshold lines. See Figures 6.4, 6.5, 6.8, 6.11, and 6.12. This
behaviour also leads to the lower accuracy results because the model followed the lines that
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Figure 6.6: Sample scatterplot result for Lin- (CD14, CD16) cells from the pregnancy data
set. A/D), B/E), C/F) are the original density scatterplot image, density contour and
thresholds, and gating result for the FCM sample. Top and bottom rows show an FCM
sample with the best and worst F1 score respectively.

Figure 6.7: Sample scatterplot result for Tcell (CD4, CD8) from the pregnancy data set.
A), B), C) are the original density scatterplot image, density contour and thresholds, and
gating result for the FCM sample.

Figure 6.8: Sample scatterplot result for Tcell (CD4, CD45RA) from the pregnancy data
set. A), B), C) are the original density scatterplot image, density contour and thresholds,
and gating result for the FCM sample.

do not align with the ground truth gate in scatterplots, as shown in Figures 6.4, 6.5, 6.9
and 6.12. This may be because our model was not penalized heavily when gate borders do
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Figure 6.9: Sample scatterplot result for CD4+Tcell (FoxP3, CD25) from the pregnancy data
set. A), B), C) are the original density scatterplot image, density contour and thresholds,
and gating result for the FCM sample.

Figure 6.10: Sample scatterplot result for CD4+Tcell (TCRgd, CD3) from the pregnancy
data set. A), B), C) are the original density scatterplot image, density contour and thresh-
olds, and gating result for the FCM sample.

Figure 6.11: Sample scatterplot result for NotCD4+CD8+Tcell (CD8, CD45RA) from the
pregnancy data set. A), B), C) are the original density scatterplot image, density contour
and thresholds, and gating result for the FCM sample.

not match with the ground truth exactly. A possible future experiment is to use the Dice
coefficient [341] as the loss function as it is calculated based on the distance between actual
and predicted gate borders, serving as a penalization [77].

Our method does not score well if 1) the ground truth gate does not align with
density contours and thresholds or 2) is on a low-density area of the scatterplot.
Another possible reason for the mentioned gating errors is that the ground truth gates do
not align with any given density contours and thresholds.
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Figure 6.12: Sample scatterplot result for CD8+Tcell (Tbet, CD45RA) from the pregnancy
data set. A/D), B/E), C/F) are the original density scatterplot image, density contour and
thresholds, and gating result for the FCM sample. Top and bottom rows show an FCM
sample with the best and worst F1 score respectively.

While straight gates help immensely, the model still needs the help of density-based
visual cues from channel 1 to affirm its straight gates. This can be seen in the scatterplots
of Figure 6.6, 6.7 where our cell population of interest resides on pixels with near 0 low-
density values and no density contour. Though the scatterplot in Figure 6.9 did the opposite
of what was expected, it too lacked the density-based visual cues required. Without visual
density cues or contour/lines to guide its gate, the most valuable information we gave the
model to gate this scatterplot in Figure 6.9 were the row- and column-wise position values
in channels 3 and 4. We also know that it is a V-shaped gate, but there was no indication
as to where this V-shape should reside.

One possible solution is to see if we can reveal more signals in the density channel. To do
this, one future experiment will be where we transform our kernel density estimate values
with log transform to ensure our data is spread out.

6.3.4 Pre-training data set selection

Another question we want to discuss is: how many pre-training scatterplots are required to
train an encoder that can effectively encode images from the few-shot training scatterplot
set for few-shot segmentation? The answer to this depends on the complexity of the problem
and its corresponding model, and the heterogeneity of the few-shot training and testing data
set the model will be used for [43]. In terms of complexity, models such as deep convolutional
or transformer neural networks have high complexity because they have a relatively high
number of parameters. A large number of parameters require more data to train with. For
heterogeneity, each gating strategy typically has around ten scatterplots (as do our data
sets). So as long as the pre-training data set contains scatterplots with similar visual features
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and segmentation as those in the ten scatterplots. Since we assume that we do not know
what few-shot training scatterplots our model will have to train on in the future, we assume
that the more heterogeneous our pre-training data set, the better.

Heterogeneity is subjective, however, so the most effective way to evaluate this is through
empirically evaluating 1) the use of 1, 2, and 3 data sets in the pre-training set and 2) differ-
ent levels of heterogeneity in the pre-training set, and then comparing the resulting few-shot
testing F1 scores. For 2), ideally, we would pre-train with all possible combinations of scat-
terplots in the three pre-training data sets, measure the heterogeneity in each combination
using a heterogeneity metric (e.g. [246]), and then plot the F1 scores for each scatterplot
in the fourth few-shot training data set to see how F1 scores scale with heterogeneity. The
same relationship can be plotted for 1) but instead of having heterogeneity on one axis, we
have the number of scatterplots in the pre-training data set. As each pre-training takes a
substantial amount of time, we move these outside the scope of this thesis. However, it is
worth examining in the future.

6.4 Conclusion

In this chapter, we presented a work-in-progress method to gate FCM samples using visual
features, with only a few training samples. Our method is a few-shot segmentation trained
using a unique but simple transfer learning procedure that does not require the user to
modify the original image segmentation model architecture. Our approach requires human
experts to create gating strategies giving the user more control in exchange for less automa-
tion. However, with efforts to standardize gating strategies and gates [105] combined with
our approach, we believe a fully automated 2D gating pipeline is possible.

In the future, we want to engineer the ability to recognize and apply standard gating
strategies to our framework; but in the near future, we want to continue to improve our
method through additional experiments and modifications. These include expanding our ex-
periments to additional data sets and a larger variety of scatterplot types to verify how well
our training procedure can generalize to even more heterogeneous data sets. We learned in
Chapter 5 that spatial features assist with finding gates in similar regions of the scatterplot.
Therefore, on top of inputting spatial data, we want to try our approach on different mod-
els. Specifically, models that account for global visual features. An example of this type of
model uses visual transformers encoders, a global feature extraction encoder that has been
gaining traction in the neural network community [412]. We also mentioned future work
to amplify signals in our kernel density estimate feature by performing log transform and
using the Dice coefficient loss function to increase the accuracy of gates along its borders.

In summary, for publication, we plan to add to our current contents: 1) engineering
refinements to the method to improve accuracy especially for the the scatterplots all methods
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perform poorly on and 2) extend current experiments on the additional data sets. For 1),
we aim to gain a top mean ranking over the state-of-the-art methods.
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Chapter 7

Conclusion and future work

The field of cytometry bioinformatics will continue to grow given the high usage of cytometry
in biology. In this thesis, we presented solutions to two of the most common problems in the
cytometry data analysis pipeline. With more solutions being created, we hope to increase
their accessibility to push them into industrialized environments. In this chapter, we discuss
future work that tackle this in two ways: 1) fill in gaps in the data analysis pipelines to make
it fully automated and easy to use, and 2) maintaining interpretability of results allowing
users to retain control.

7.1 High-dimensional single-cell data registration

On the experiment level, one of the biggest challenges in single-cell data analysis is the lack
of comparability between samples and data modalities produced in different experiments
and institutions. Here, we define data modalities as data coming from different biotech-
nologies. For example, we can analyze the same blood sample using FCM and scRNAseq,
these are two data modalities. We experienced the challenge of analyzing data from differ-
ent institutions in our master’s thesis working with IMPC data [398]. Although the data
set from multiple institutions were available, we were unable to make valid comparisons
between these samples. While aligning protocols is one solution, putting all this data to-
gether, standardizing meta-data, and making them readily available for public use requires
extensive efforts [6]. This process of processing and analyzing data from various sources is
called meta-analysis.

Current meta-analysis tools available for single-cell level analysis are directly adapted
from bulk data analysis tools [205, 279]. These tools bring with them the assumption that
the same cell population exists and can be compared across samples. However, these assump-
tions are not always true. Extending our current work, we want to explore ways to register
single-cell data from different experiments and data modalities into a larger database whose
data is readily available for meta-analysis.
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Our vision for sample registration is two-fold. First, it allows for standardized cell pop-
ulation identification across experiments and data modalities — while accounting for the
fact that cell populations may not match perfectly across samples. Second, our tool should
help us visualize and interpret this standardized matching at a granular single-cell level.

Aim 1: Unified cell population identification across data modalities While single-
cell data comes naturally from FCM, recent advances in genomics have led to additional
single-cell data modalities, such as scRNAseq. Analyzing and integrating multiple data
modalities has the potential to explain holistic biological systems. One way to integrate
single-cell data is to find common cell populations across data modalities while accounting
for possible heterogeneity between samples. We will focus on discrete cell population and
cell state modelling in this section.

Like threshold gating on markers in FCM, classification of discrete cell populations in
scRNAseq, scATACseq, and other forms of omics data are currently done exclusively via
thresholding on a limited set of user-specified genes. This is where certain cell populations
express either positively or negatively for some set of genes [207]. However, we know from
our work in FCM that not all cell populations conform to strict thresholding. Not only do we
have positive and negative marker conditions, we also leave open the option of not including
a marker condition altogether (i.e. +, −, no condition). We also know that cell populations
can be enclosed in polygons made up of edges that may not be orthogonal to any dimension.
We extend these assumptions to omics data. We propose an automated way to classify cell
populations while maintaining the act of thresholding that is common across FCM and
other single-cell data modalities. This unifies the definition of cell population across single-
cell data modalities making their cell population and motivating features (protein and genes)
comparable with each other.

One way to do this is space partitioning, one of the oldest forms of classification. Binary
space partitioning (BSP) partitions space using planes and density contours. BSP is more
flexible than the Mondrian process as it does not restrict its hyperplanes to be orthogo-
nal to a particular dimension. It is also more efficient and interpretable than the random
tessellation process as users can restrict the hyperplanes to be orthogonal to all but two
dimensions. Optimization algorithms, however, are extremely slow. This is especially true
in high dimensions due to the large search space [120]. This search space can be limited
by our assumption that hyperplanes should land on areas with certain density motifs. This
not only increases efficiency but ensures our hyperplanes conform with our assumptions for
threshold gates.

Aim 2: Single-cell data registration via domain adaptation With a unified defini-
tion of cell populations as the unit of analysis, we need to ensure that they are comparable
samples of different experiments. In our case, we can easily compare cell populations across
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samples by using the cell population hierarchy representation used in this thesis. The label
of each cell population would be a combination of marker (or gene) conditions. Currently,
researchers have combined the process of cell population identification and cell population
matching across samples by developing complex neural networks; but again, these are made
based on the assumption that the same cell populations exist across all samples [215, 202].
However, due to their unified approach, they can visualize these results at a single-cell level.
Our approach, so far, does not support single-cell level matching. Though our cell popu-
lation hierarchy provides clear visualizations, we acknowledge that it is also important to
show results on a single-cell level.

Domain adaptation provides single-cell level matching across samples of different ex-
periments and data modalities. We show an example of a way we can do this below. The
advantage of this strategy is that it is model agnostic; as such, changes in one model can
be directly propagated and applied to new data sets. This is an important consideration
given the heterogeneity in our data. More specifically, consider the following scenario. Given
a gold standard and a new cell × feature matrix, XT and XS respectively, their cell pop-
ulation labels YT and YS ; there is a function ϕ that transforms our sample such that
ψT (ϕ(XS)) = ψS(XS) where ψT and ψS are their ground truth cell population classification
functions. If we assume ψT can be represented as a set of point clouds (e.g. of a set of convex
hulls) enclosing cell populations Y ′

T , then ϕ−1(Y ′
T ) = Y ′

S . Naively, our goal is to find ϕ such
that

arg min
ϕ

dY(ψT (ϕ(XS)), ψS(XS)) (7.1)

where dY is some distance metric in Y space.
However, we cannot directly solve for this problem. ϕ needs to be a nonlinear transfor-

mation that preserve order among cells. As well, we cannot assume that we have a ground
truth YS . Therefore, we can re-frame our problem as:

arg min
ϕ

dX (φ(ϕ(XS)), φ(XT )) (7.2)

where dX is some distance metric in dX space.

7.2 Comprehensive reasoning framework for identifying and
interpreting biomarkers in multi-modal hierarchical data
sets

We showed the importance of incorporating the hierarchical relationship between cell popu-
lations when identifying driver cell populations as biomarkers. We want to make this frame-
work of biomarkers identification more accessible in the context of multi-modal data sets.
Overly complex models made specifically for a single task lose their utility beyond their first
publication because of their inability to generalize to other variations of the task. There-
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fore, we aim to compartmentalize this task into two simpler tasks: 1) map out important
dependencies between cell population features, and 2) create an interface for interpreting
the results.

Aim 3: Dependency-aware feature integration and interpretation Like the way
we created the cell population hierarchy, we want to create something similar for cell popu-
lations in multi-modal data. Given the increase in data, we want to do this more efficiently.
Instead of accounting for all possible relationships between cell populations, we create a
dependency network where we only keep significantly dependent relationships. Note that
we do assume we can build a strictly causal relationship network. Building a causal relation-
ship network requires us to assume that we have accounted for all possible batch effects and
confounding variables. We do not make this assumption. Given the cell population hierar-
chy for each data modality, we can create this network by iteratively removing independent
relationships between cell populations. Then for each outcome variable, we map out the
relationship between cell populations of different modalities given an outcome variable. It-
eratively adding on only important connections create sparse networks which are easy to
interpret. If only a few features are directly related to the outcome variable, we can explain
how those features can then affect other features to create a propagated effect via message
passing [241, 32, 408].

Aside from the accuracy and interpretability of our results, we want to make our meth-
ods accessible to users. The solutions implemented in our thesis require knowledge of com-
puter programming to use — even if usage consists of a one-line command on a terminal.
Conversely, everyone who uses a computer is familiar with the visual user interface. Visu-
alizations are often made for specific data formats without the original biological anecdote
in mind. For example, networks lend well to visualizations, but the context of these net-
works and how they connect to other data modalities are not always incorporated. Even
when user interfaces and visualizations are created, they are difficult to maintain and are
discarded when new methods are created. However, effective interfaces and visualizations
take effort to create and verify. These require a combined knowledge of user interface design
with user studies, visual arts, and visualization design. Therefore, we see opportunities to
create an accessible unified front-end interface for the data analysis pipeline. To make the
interface easy to maintain and not a one-time throw-away project, we need to make it easy
for researchers to build modules for it. For example, if a new method comes out for the
cell population identification step of the pipeline, then it should be easy for the method to
accept and give inputs and outputs, respectively, (and specific visualizations if available) to
the interface. We see interface and visualization development as an ongoing process done in
parallel across projects.
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Appendix A

Identifying differential cell
populations in flow cytometry data
accounting for marker frequency

A.1 Proof of correctness for Equation 4.

In this section, we work under the assumption that there exists some pair of marker condi-
tions that are independent of each other.

Theorem A.1.1. Assuming that there exists some pair of marker condition indices {p, q}
s.t. P (vp) and P (vq) are independent given P (v1:ℓ\{p,q}):

P (v1:ℓ) = P (v1:ℓ\p) P (v1:ℓ\q)
P (v1:ℓ\{p,q})

where P is the actual proportion of cell population v defined by ℓ marker conditions, then
we can identify such an index pair using the following.

p = arg max
p∈1:ℓ

P (v1:ℓ\p)

q = arg min
q∈1:ℓ\p

P (v1:ℓ\q)
P (v1:ℓ\{p,q})

Proof. In our method, we derived equation 4 by assuming there is some {p, q} index pair
s.t. P (vp) is independent of P (vq) given P (v1:ℓ\{p,q}). For purposes of this proof, we will use
an alternative set of notations:∑

z

p(z) = P (v1:ℓ\{p,q}) + (1− P (v1:ℓ\{p,q})) = 1

∑
x

p(x) = P (v1:ℓ\p) + (1− P (v1:ℓ\p)) = 1
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∑
y

p(y) = P (v1:ℓ\q) + (1− P (v1:ℓ\q)) = 1

where p is the discrete probability mass function. In our application, each cell is either a
part of the our cell population v, or it is not. This means that our probability distributions
p are all binary and add up to 1.

First we show the relationship between conditional mutual information and Equation 4.

I(X;Y |Z) =
∑
x,y,z

p(x, y, z) log p(x, y|z)
p(x|z)p(y|z)

=
∑
x,y,z

p(x, y, z) log p(x, y, z)p(z)
p(x, z)p(y, z)

=
∑
x,y,z

p(x, y, z)
(

log p(x, y, z) + log p(z)
p(x, z)p(y, z)

)

=
∑
x,y,z

p(x, y, z) log p(x, y, z) +
∑
x,y,z

p(x, y, z) log p(z)
p(x, z)p(y, z)

Conditional mutual information I(X;Y |Z) = 0 iff X is independent of Y given Z. We
assumed such a pair exists. However, even if we are not able to find such X and Y , we also
know that conditional mutual information must always non-negative I(x;Y |Z) ≥ 0. Given
these two properties, the following is true.

0 ≤
∑
x,y,z

p(x, y, z) log p(x, y, z) +
∑
x,y,z

p(x, y, z) log p(z)
p(x, z)p(y, z)

−
∑
x,y,z

p(x, y, z) log p(x, y, z) ≥
∑
x,y,z

p(x, y, z) log p(z)
p(x, z)p(y, z)∑

x,y,z

p(x, y, z) log p(x, y, z) ≤
∑
x,y,z

p(x, y, z) log p(x, z)p(y, z)
p(z)

In order to find a X and Y such that they are independent given Z, we must minimize
the difference, to 0, between two sides of this inequality. In order to do so, we must choose
{p,q} according to Equation 4, concluding our proof.
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A.2 Algorithm: calculating SpecEnr values for each cell pop-
ulation given proportions.

To reduce runtime, we only directly calculate this expected proportion for cell populations
with only positive marker conditions (e.g. A+B+, C+D+); the expected proportion for
the rest of the cell populations can be directly inferred from these cell populations in a
later step. This runtime includes operations to first calculate all the arc values in our cell
hierarchy. Arc values can be interpreted as the proportion of the cell population an arc
points to over the proportion of the cell population an arc originates from. Since there

are
∑L

ℓ=0

{
l ·
(
L
ℓ

)}
= 2L−1L edges, this step takes O(2L) operations. Next, to find the

maximum parent proportion and minimum value on edges pointing to the non-maximum
parent, we do ℓ and ℓ(ℓ − 1) operations for each cell population. Given that there are(
L
l

)
cell populations with only positive marker conditions on each layer, this part requires

∑L
ℓ=2 ℓ

2
(
L
l

)
or O(ℓ3) operations. If we were to calculate the above for all cell populations,

the first part would require O(3L) as opposed to O(2L) operations and we would have to

consider 2ℓ

(
L
l

)
instead of

(
L
l

)
cell populations per layer for the second part.

To follow up on all other cell populations, we observe that the score values for these cell
populations collectively implicitly contain information about all nodes in the full hierarchy.
As such, we can deduce the expected proportion of all other cell populations with at least
one negative marker condition. For example, the first layer of a cell hierarchy can be specified
with L cell populations. The count of these cell populations with a negative marker condition
(e.g. A−) can be deduced by the difference between the total proportion and the proportion
of the corresponding cell population expressing positively for that marker (e.g. P (A−) =
P (root) − P (A+)). The L’th layer can be specified with one cell population i.e. a cell
population with all markers. The total number of cell populations needed to specify all cell
populations is 2L or the number of cell populations with only positive marker conditions.

Algorithm 2 Calculating the expected proportion of cell populations with negative marker
conditions
V ← cell populations with all positive marker conditions whose expected proportion is
already calculated. V − ← all cell populations with ≥ 1 negative marker condition(s).
for ℓ := 2→ L do vℓ ← {v|v ∈ V, |v| = ℓ}

while vℓ ̸= {} do v∗
ℓ ← {}

for vℓ := vℓ do
for p+ := a marker in vℓ with a positive+ condition do P (vp−,1:ℓ\p+) =

P (v1:ℓ\p+)− P ′(vℓ)
v∗

ℓ ← {v∗
ℓ , v

p−,1:ℓ\p+}
V = {V, vp−,1:ℓ\p+}
V − = {V − \ vp−,1:ℓ\p+} vℓ = v∗

ℓ
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From this, we use Algorithm 2 to infer the expected proportion of all other cell populations
with at least one negative marker condition. This algorithm takes one difference operation
per cell population amounting to O(3L) operations total. Since we only calculate expected
proportions for O(2L) cell populations and since the total number of other cell populations
far out-scales O(2L), we achieve an overall runtime of O(3L).

In the case that there is more than one threshold per marker (e.g. on top of A− and A−,
there also exists A++, A+++, and so on), the proof of correctness for expected proportions
still holds as a cell population in layer ℓ must have ℓ parent nodes. The correctness of
Algorithm 2 also still holds except the proportions represented by index p+ is now not
a single proportion value but a sum of all proportions with a positive marker condition
for the marker on index p. Note that this is contingent on a characteristic of flowType
which labels markers with additional thresholds as positive marker conditions. Conversely,
there can be only one negative marker condition per marker (i.e. there can be no A−−). As
we still only calculate the expected proportion for cell populations containing exclusively
positive marker conditions, the runtime of expected proportion calculation increases with
the number of thresholds. If each marker is assigned k ≥ 1 thresholds, then the number of
cell population containing only positive marker conditions is O((k + 1)L) while the total
number of cell populations is O((k + 2)L). The overall runtime then becomes O((k + 2)L).
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A.3 Layer-stratified Bonferroni correction

We define layer-stratified Bonferroni correction as follows. Let p1:m be p-values associated
with a set of hypotheses H1:m. For ℓ ∈ 1 . . . L, let σℓ be a subset of hypotheses {1 . . .m}
(e.g. cell populations in particular layer of a hierarchy). For i ∈ σℓ, we define the adjusted
p-value p′

i = pi|σℓ|L. We accept a hypothesis Hi if p′
i < α.

Theorem A.3.1. The layer-stratified Bonferroni correction has a family-wise error rate
(FWER) of at most α.

Proof.

P

(
m⋃

i=1
(p′

i ≤ α)
)

= P

(
m⋃

i=1
(pi|σℓ|L ≤ α

)

= P

 L⋃
ℓ=1

⋃
i∈σℓ

(pi|σℓ|L ≤ α)


≤

L∑
ℓ=1

P

⋃
i∈σℓ

(pi|σℓ|L ≤ α)


≤

L∑
ℓ=1

∑
i∈σℓ

P (pi|σℓ|L ≤ α)

≤
L∑

ℓ=1

∑
i∈σℓ

α/|σℓ|L

= α

When there is a single layer, or when all layers have the same size, the layer-stratified
Bonferroni correction is identical to a standard Bonferroni correction.
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A.4 An example of the filters used to determine whether
a cell population has a true positive significant p-value
based on SpecEnr

A significant cell population should: 1) have a mean count of > 50 events to prevent inflated
ratios (this threshold can be adjusted based on data set; empirically, this value worked well
for our experiments), 2) have significantly different actual vs expected proportions for at
least one of the sample classes. (if both classes contain actual vs expected proportions that
are significantly different, then SpecEnr can be used without filtering), and 3) contains
actual and expected proportions that are different at the same rate across both sample
classes. For filter 1), we tested thresholds 25, 50, 100, and 200. 50 worked well in practice
as we ended up with just as many MDCPs as when we used higher thresholds. However,
this threshold may differ based on the data set. For example, if one hypothesizes that their
MDCP may be a rare cell population with cell counts of < 50 events, then this threshold
should be decreased. Note we used a significance threshold of < .05 for all T-test p-values.

An example of Filter 2 is shown in Figure A.1B where samples of both classes of the flowcap
data set have similar actual vs expected proportion values. However, the proportion values
from the control class are relatively smaller compare to those of samples from the AML class.
To prevent this , we have filter 3), illustrated in Figure A.1C. We take the difference between
the actual proportion of a random set of 43 control samples and all 43 AML samples. We
do the same for expected proportions and we compare these two sets of differences using a
T-test.

In Figure A.1, cell population SS−CD45−CD34+ from the flowcap data set has 1) a mean
cell count > 50, 2) is significant for the second condition (Figure A.1B shows the significant
and insignificant difference between actual and expected proportions in the control and
AML class respectively), and 3) is insignificant for the third condition (Figure A.1C shows
that the difference between actual and expected proportions across sample classes are not
significantly different). Therefore, it is insignificant overall.
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Figure A.1: Filters applied to SpecEnr p-values shown on the flowcap data set’s
SS−CD45−CD34+ cell population. A) compares the SpecEnr values between the two
classes. B) compares the difference between the actual and expected proportions within
sample classes, and C) compares the difference between the actual and expected propor-
tions across sample classes. The comparisons in B) and C) correspond to our three filters.
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A.5 SpecEnr produces robust p-values and q-values

Figure A.2 shows that SpecEnr is just as robust as other cell population scores because
A) F-measure, recall, precision, and Spearman correlation scores measure high consistency
between two theoretically identical positive control data sets (pos1) and for the negative
control data set (neg1), B) the proportion of cell populations with significant (< .05) p-
values is the expected .05, and C) the QQ-plot shows that unadjusted T-test p-values for all
scores align well with a theoretically uniform distribution indicative of our SpecEnr score’s
statistical robustness.

Figure A.2: A) F-measure, recall, precision, and Spearman correlation scores for two the-
oretically identical positive control data sets (pos1) and for the negative control data set
(neg1), B) proportion of cell populations with significant (< .05) p-values, and C) -plot for
unadjusted T-test p-values for all scores. .
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A.6 Proportion vs SpecEnr plots for data sets pos1-3 where
the abundances of the same cell populations are de-
creased by 50%.

Figure A.3 shows cell hierarchy plots and cell populations with significant flowGraph SpecEnr
q-values for the data sets pos1-3, where cell population abundances are decreased instead of
increased. SpecEnr highlights only the MDCPs and their ancestors as opposed to all DCPs
as with prop q-values.

Figure A.3: Cell hierarchy plots showing cell populations with significant flowGraph SpecEnr
q-values for the data sets pos1-3, where cell population abundances are decreased instead
of increased.
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A.7 Runtime experiments

Table A.1 shows the runtime in seconds (hours and minutes if the time surpasses a minute)
of flowGraph for calculating the edge list of the cell population hierarchy, SpecEnr scores,
and T-test p-values (including the filters). We also show runtimes when we use 15 cores vs
just 1 core for the pregnancy data set to gauge potential runtime decreases with hardware
improvements. Note that we did not do this for the other data sets as setting up the workers
for parallel processing would take a few seconds, which would already surpass the runtime
for the actual SpecEnr calculation.
Table A.1: flowGraph runtime in seconds for calculating the edge list of the cell population
hierarchy, SpecEnr scores, and T-test.

data set
flowGraph

(1 core)
(seconds)

flowGraph
(15 cores)
(seconds)

no. of markers no. of cell populations

pos1 0.318 NA 3 27
pos2 0.353 NA 3 27
pos3 0.296 NA 3 27

flowcap 12.659 NA 7 2,193
pregnancy 7,978 2,307 13 109,192

To see if we can decrease runtime, we also list runtimes for flowGraphSubset in Table A.2.
flowGraphSubset is an alternative mode of flowGraph that calculates the edge list, SpecEnr,
and T-test q-values (including the filters) for only the cell populations that have a parent
population with a significant SpecEnr q-value. This way, we skip calculating everything
for cell populations that do not meet this criterion, thereby saving runtime. The assump-
tion that important MDCPs always have at least one parent population with a significant
SpecEnr q-value applies to almost all cases. However, if the user wants to test multiple class
label sets on the same samples (e.g. control vs experiment, age, etc.), we still recommend
users to use the basic flowGraph constructor to calculate the SpecEnr score for all cell
populations. So, we recommend users to only use flowGraphSubset IF: 1) the user’s data
set has more than 10,000 cell populations and you want to speed up your calculation time
AND 2) you only have one set of classes you want to test on the same set of samples (e.g.
control vs experiment).
Table A.2: flowGraphSubset runtime in seconds for calculating the edge list of the cell
population hierarchy, SpecEnr scores, and T-test.

data set
flowGraphSubset

(1 core)
(seconds)

flowGraphSubset
(15 cores)
(seconds)

no. of markers no. of cell populations

pos1 0.135 NA 3 27
pos2 0.155 NA 3 27
pos3 0.154 NA 3 27

flowcap 11.371 NA 7 688
pregnancy 6,190 958 13 17,991
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Appendix B

Automated 2D gating via motif
matching for cell population
identification

B.1 Example scatterplots

This section lists example plots for all the scatterplots whose F1 scores are plotted in Fig-
ure 5.6 except for the Singlet cells scatterplot — which is shown in Section 5.4. These
examples serve to support our statement: Our method uses visual features to accurately
identify cell populations with arbitrarily shaped polygon gates. Since our method projects
gates on visually similar regions of the scatterplot as that of the training sample, the result-
ing is easy to interpret — users can easily understand why our method projected its gate
where it did based on visual cues from the scatterplot. We will not repeat this statement
below as it applies to all scatterplots.

B.1.1 Scatterplot: All cells

To extract the Singlets from All cells, we projected a five vertices polygon gate from three
training samples onto the rest of our testing samples. This gate is an example of an arbi-
trarily shaped polygon with four vertices and we hypothesize that this is an easy gate to
project as it isolates a naturally formed cluster of cells. From Figure 5.6, we see that this
was indeed the case. Our method obtained the highest F1 scores for this scatterplot.

While we obtained lower scores on a few samples, our previous statement still holds. No
matter the F1 score, the polygon gate our method projected was in visually similar regions
as that of the training sample, making it easier to understand why our method projected the
gate where it did. In Figure B.1, we obtained the lowest accuracy when the ground truth
testing sample gate was on visually dissimilar regions compared to that of the training
sample. In this case, the ground truth gate of the testing sample included additional cells
plotted towards the bottom right region of the scatterplot.
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Figure B.1: The testing sample gatings for which we obtained the lowest and highest F1
scores for the scatterplot plotting All cells containing a Singlets gate; also included are the
original training sample and gate used.

B.1.2 Scatterplot: B-cells

We separately projected two gates (gating CD24−CD8− B-cells and Naive B-cells) from the
scatterplot containing B-cells. Both gates had five vertices. We chose to experiment on these
gates because they gated cells that do not separate well from other cells. The vertices also
belonged on areas of the scatterplot that were not necessarily visually distinct from other
areas. In addition, for the CD24−CD8− B-cells gate, there were relatively fewer cells inside
these gates so a small error in gating would cause a large drop in the F1 score.

In the end, our method still obtained higher mean F1 scores than flowSOM, we obtained
relatively low scores for the CD24−CD8− B-cells gate, and we surprisingly got the third-
highest F1 score on the Memory B-cells gate.

As shown in Figures B.2,B.3, the testing samples corresponding to the lowest F1 scores
were outlying samples that look distinct from the chosen training samples. However, the
vertices that our method chose for its polygon gates still resided on visually similar areas
as those in the training sample. Ironically, the testing samples with the highest F1 scores
also looked distinct from the training sample; but our methods’ strategy luckily obtained
an appropriate gate that largely overlaps with the ground truth gate. These examples show
a problem that our method and all supervised methods — the inability to project gates
onto testing samples that do not look similar to any training sample.

B.1.3 Scatterplot: Live cells

The scatterplot plotting Live cells contained a non-convex arbitrarily shaped seven vertices
polygon B-cell gate. Given that this gate required that we accurately project seven vertices
as opposed to five (i.e. larger degree of freedom), we hypothesized that we would obtain
lower F1 scores. This proved to be true. We also hypothesized that flowSOM would receive
higher F1 scores than our method since the gate isolates a cell population whose data
distribution was naturally separated from the other cells. Fortunately, we obtained a higher
mean F1 score. Another observation is that for our method, this scatterplot obtained the
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Figure B.2: The testing sample gatings for which we obtained the lowest and highest F1
scores for the scatterplot plotting B-cells containing a CD24−CD8− B-cells gate; also in-
cluded are the original training sample and gate used.

Figure B.3: The testing sample gatings for which we obtained the lowest and highest F1
scores for the scatterplot plotting B-cells containing a Naive B-cells gate; also included are
the original training sample and gate used.

second-lowest mean F1 score out of all the scatterplots i.e. it was a difficult scatterplot to
gate.

In Figure B.4, the gate we obtained in the testing sample that corresponded to the lowest
F1 score included cells from the bottom left cluster of cells. While not dramatically different
from the original ground truth gate, this was an example of when our method chose vertices
that were in similar coordinates as that of the training sample over similar visual regions.
This occurs when cells in a scatterplot are significantly shifted. This issue can be solved
by increasing weights for visual similarity (ai) over coordinate similarity (pi) in the node
objective function (Section 5.2.3). In addition, one can also increase the number of candidate
voxels for each vertex. This will increase computational complexity in favour of accuracy.

Interestingly, we also see that the testing sample corresponding to the highest F1 score
contains a gate that does not have a perfect area overlap with the gate our method obtained.
However, since the area that did not overlap did not contain many cells, this did not affect
accuracy.
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Figure B.4: The testing sample gatings for which we obtained the lowest and highest F1
scores for the scatterplot plotting Live cells containing a B-cell gate; also included are the
original training sample and gate used.
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Appendix C

Automated 2D gating via few-shot
image segmentation for cell
population identification
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Table C.1: We used 4 freely available data sets, each with samples plotted on several pairs
of markers to create our input scatterplot images. Sample size within each data set varies
based on the ground truth gates available.

Data set Samples Cells
per
sample

Scatterplot name: cell population gated
(plotted marker pair)

Cell populations contained

HIPCB-cell 1,349 4,000 CD19+CD20+ (CD10, CD27) 2: CD10+, CD10-
HIPCB-cell 1,344 4,000 IGM (CD10, CD38) 1+: immature transition B-cell, other
HIPCB-cell 1,350 4,000 CD19+B-cell (CD19, CD20) 2: CD19+CD20+, CD19+CD20-
HIPCB-cell 1,350 50,000 Not granulocyte (CD19, SSCa) 1+: CD19+B-cell, other
HIPCB-cell 1,350 4,000 CD10- (CD27, IgD) 4: atypical B-cell, unswitched memory B-cell, naïve

B-cell, switched memory B-cell
HIPCB-cell 1,328 100,000 Live cell (CD34, SSCa) 1+: blast, other
HIPCB-cell 1,350 4,000 CD19+B-cell (CD38, CD138) 1+: plasma cell, other
HIPCB-cell 1,337 4,000 CD19+B-cell (CD38, CD27) 1+: plasmablast, other
HIPCB-cell 1,350 100,000 Live cell (CD66, CD14) 2: granulocyte, not granulocyte
HIPCB-cell 1,350 200,000 Singlets (FSCa, SSCa) 2+: beads, cells, other
HIPCB-cell 1,350 4,000 CD19+B-cell (IgD, IgM) 4: IGD-IGM- B-cell, IGD+IGM- B-cell, IGD-IGM+

B-cell, IGD+IGM+ B-cell
HIPCB-cell 1,342 125,000 All cells (viability dye, SSCA) 1+: live cell, other
HIPCmyeloid 1,379 50,000 Granulocytes (CD11b, CD16.FITCA) 4: CD11b+CD16+ mature neutrophil, CD11b-

CD16- immature neutrophil 1, CD11b+CD16- gran-
ulocyte, CD11b-CD16+ immature neutrophil

HIPCmyeloid 1,379 5,000 HLADR+CD14- (CD123, CD11c) 3: mDC, pDC, B-cell
HIPCmyeloid 1,379 2,500 CD56-CD16-cells (CD123, HLADR) 1+: basophil, other
HIPCmyeloid 1,379 8,000 HLADR+CD14+ Monocytes (CD14,

CD16.FTICA)
2: Non/classical monocyte

HIPCmyeloid 1,379 5,000 CD3- (CD16.FITCA, CD56) 5: CD56Hi NK, CD56-CD16-, CD56-CD16+ NK,
CD56dimCD16- NK, CD56dimCD16+ NK

HIPCmyeloid 1,379 20,000 CD3+ Tcells (CD16.FITCA, CD56) 1+: CD56+CD16+ NK Tcell, other
HIPCmyeloid 1,379 23,000 CD3+Tcells (CD3, gd) 2: gd Tcell, gd- Tcell
HIPCmyeloid 1,379 28,000 HLADR-CD14- (CD3, SSCa) 2: CD3+ Tcell, CD3-
HIPCmyeloid 1,379 40,000 CD11b+CD16+ Mature neutrophils

(CD64, CD11b)
2: CD64+, CD64-

HIPCmyeloid 1,379 100,000 Live cells (CD66, CD16) 2+: granulocyte, CD45+CD66- not granulocyte,
other

HIPCmyeloid 1,379 60,000 CD45+CD66- Not granulocyte
(HLADR, CD14)

3+: HLADR+CD14+ Monocyte, HLADR+CD14-,
HLADR-CD14-, other

pregnancy 112 300,000 Leukocyte (CD66, CD45) 2+: granulocyte, mononuclear
pregnancy 112 75,000 Mononuclear (CD3, CD19) 3+: B-cell, Tcell, NK lin-, other
pregnancy 112 15,000 NKLin- (CD14, CD7) 2: lin-, NK
pregnancy 112 12,000 Lin- (CD14, CD16) 4: cMC, ncMC, intMC, not MC
pregnancy 112 50,000 Tcell (CD4, CD8) 4: CD4+ Tcell, CD8+ Tcell, CD4-CD8- Tcell,

CD4+CD8+ Tcell
pregnancy 112 30,000 Tcell (CD4, CD45RA) 2: CD4+ naïve Tcell, CD4+ memory Tcell
pregnancy 112 13,000 CD4+Tcell (FoxP3, CD25) 1+: Tregs naïve Tcell, CD4+ naïve Tcell other
pregnancy 112 3,000 CD4+Tcell (TCRgd, CD3) 1+: gamma-delta Tcell, CD4-CD8- Tcell other
pregnancy 112 17,000 NotCD4+CD8+Tcell (CD8, CD45RA) 2: CD8+ naïve Tcell, CD8+ memory Tcell
pregnancy 112 17,000 CD8+Tcell (Tbet, CD45RA) 2+: CD25+CD8+ naïve Tcell, CD25+CD8+ mem-

ory Tcell, CD25+CD8+ Tcell other
sangerP2 2,348 11,000 CD11b+lymphocyte (CD5, CD11b) 2: granulocyte, not granulocyte
sangerP2 2,341 200,000 Not granulocyte (Ly6C, CD11b) 2: monocyte, not monocyte
sangerP2 2,329 200,000 Not monocyte (CD11b, SSCh) 2: eosinophil, not eosinophil
sangerP2 2,328 200,000 Not eosinophils (CD161, CD19) 2: CD161+, CD161-
sangerP2 2,328 10,000 CD161+ (CD5, CD11b) 2: NKT, NK
sangerP2 2,328 7,000 NK (CD11b, Ly6C) 4: NK immature Ly6C+, NK mature Ly6C+, NK

immature Ly6C-, NK mature Ly6C-
sangerP2 2,328 3,000 NKTcell (CD11b, Ly6C) 4: NKT CD11b-Ly6C+, NKT CD11b+Ly6C+, NKT

CD11b-Ly6C-, NKT CD11b+Ly6C-
sangerP2 2,328 200,000 CD161- (MHCII, CD5) 2: Tcell, not Tcell
sangerP2 2,328 134,000 Not Tcell (CD19 , CD11c) 2: B-cell, not B-cell
sangerP2 2,328 3,600 cDC (CD11b, MHCII) 3: cDC CD8+, cDC CD11b+, cDC
sangerP2 2,328 117,000 B-cell (CD5, CD21) 2: B1B-cell, B2B-cell
sangerP2 2,328 115,000 B2B-cell (CD23, CD21) 3+: preB, MZB, folB, other
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Figure C.1: F1 scores for each cell population if all pixels are classified correctly at resolution 256 × 256 pixels. See data sets used to
create this figure in Table C.1
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