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Abstract

In the first chapter of the thesis, we propose a new estimator for the slope parameter of
the endogenous variable of interest in a partially linear conditional moment model, which
combines a Robinson transformation (Robinson (1988)), to partial out the non-linear part
of the model with a smooth minimum distance (SMD) approach (Lavergne and Patilea
(2013)), to exploit all the information of the conditional mean independence restriction.
Our estimator only depends on one tuning parameter, is easy to compute, consistent and
v/n-asymptotically normal under standard regularity conditions. Simulations show that our
estimator is competitive with GMM-type estimators, and often displays a smaller bias and
variance, as well as better coverage rates for confidence intervals. We revisit and extend
some of the empirical results in Dinkelman (2011) who estimates the impact of electrification
on employment growth in South Africa. Overall, we obtain estimates that are smaller in

magnitude, more precise, and still economically relevant.

In the second chapter, we develop a new estimator for heterogeneous treatment effects in
a partially linear model (PLM) with endogenous treatment. The PLM has a parametric
part that includes the treatment and the interactions between the treatment and exogenous
characteristics, and a nonparametric part that contains those characteristics and many other
covariates. The new estimator is a combination of the estimator proposed in the first chapter
and a Neyman-Orthogonalized first-order condition (NOFOC). Our estimator, using only
one valid binary instrument, identifies both parameters. With the sparsity assumption,
using regularised machine learning methods (i.e., the Lasso method) allows us to choose
a relatively small number of polynomials of covariates. Our new estimator is less biased,
consistent, and y/n-asymptotically normal under standard regularity conditions. Simulations
show that our estimator behaves well with different sets of instruments, but the GMM-type
estimators do not. We use the Card application to show the differences between estimators
using various sets of instruments. It shows that our new method generates more precise

estimates in comparison to GMM.

In the third chapter, we estimate the heterogeneous treatment effects of Medicaid on indi-
vidual outcome variables from the Oregon Health Insurance Experiment. In this experiment,
our method from the previous chapter produces more significant and more reliable results

for heterogeneous effects of health coverage on economic outcomes.
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Chapter 1

Partially Linear Models with
Endogeneity: a conditional moment
based approach

1 Introduction

Many empirical studies focus on estimating the causal or structural effect of some variable
on an outcome of interest: for example, Dinkelman (2011) is interested in estimating the
impact of electrification on employment growth in South Africa. Since policies and many
other variables of interest are not exogenous, researchers often rely on an instrumental
variable - assumed to be valid and relevant - after controlling for a sufficient set of other
factors or covariates. More specifically, these studies are often based on a first stage linear
in the instrument and on a second stage linear in the covariates. Using only linear first
and second stages may miss important information about effect heterogeneity as well as
instrument and covariate validity.

We provide a framework that extends the above-mentioned standard linear setup in two
main directions: (i) we consider a partially linear model to allow (exogenous) covariates
Z to enter non-parametrically in the second stage; (ii) we bypass the parametrization of
the first stage and directly rely on the informational content of the maintained conditional
mean independence of the instrument W to estimate the parameters of the parametric
part of the model (e.g. the slope parameter of the endogenous variable). More specifically,
our estimation procedure combines Robinson’s transformation (Robinson (1988)) with a
smooth minimum distance approach (SMD, Lavergne and Patilea (2013)). The Robinson’s
transformation partials out the non-parametric part of the model which is seen as a nui-
sance parameter, while the SMD estimation conveniently exploits all the information of
the conditional mean independence restriction without having to parametrically model or
estimate the first stage. Our estimator only depends on one tuning parameter, is easy to
compute and available in closed form in our partially linear framework. It is consistent and

/n-asymptotically normal under standard regularity conditions. Simulations show that our



estimator is competitive with various GMM-type estimators, and often displays a smaller
bias and variance, as well as better coverage rates for confidence intervals. To illustrate the
performance of our estimator in practice, we revisit and extend some of the empirical results
in Dinkelman (2011) who estimates the impact of electrification on employment growth in
South Africa: overall, we obtain estimates that are smaller in magnitude, but more precise.
In particular, we report statistically and economically significant effect of electrification on
all measures of household energy sources and household services, on population growth, and
on the change in fraction of women that have a completed high school education, but no
effect on employment rate.

Our work contributes to the literature on partially linear models which has a long tra-
dition in economics and statistics: see Engle et al. (1986) for an early application and the
monograph by Héardle et al. (2000). More broadly, our model belongs to the general class of
conditional moment restriction models with unknown functions considered by Ai and Chen
(2003) which allows for the presence of endogeneity in the parametric and nonparametric
parts of the model. As an alternative to the estimation strategy proposed in this paper, one
may consider combining K (unconditional) moments derived from the conditional mean
independence using a criterion function like the generalized method of moments (GMM)
after approximating the nonparametric part of the model through L basis functions like
power series or splines. For example, Ai and Chen (2003) rely on a sieve minimum distance
(which can be interpreted as GMM-type procedure), while Otsu (2011) puts forward a sieve
conditional empirical likelihood approach. Alternative asymptotics may require L and K to
grow with the sample size: see Cattaneo et al. (2018a) and references therein for results ob-
tained with "many covariates"; see Bekker (1994), Chao et al. (2012), Hausman et al. (2012)
for results obtained with "many instruments". In this context, it is important to work with
an increasing number K of (unconditional) moments to obtain an equivalent information
set; see e.g. Dominguez and Lobato (2004) for some examples and related discussion. Fur-
ther, for consistency, K cannot grow too fast with respect to the sample size. Therefore,
in applications, the chosen number of instruments is likely to influence empirical results,
and its selection appears to be an important, but delicate task. By directly exploiting the
informational content of the conditional mean independence (without having to estimate
it), we do not need to choose the number of instruments, or a smoothing parameter associ-
ated with first-stage estimation! that may affect consistency. Our estimation procedure also
avoids having to choose how the instruments enter the selected (unconditional) moments
(say h(W) with h(.) chosen vector of K measurable functions), which has been shown to

affect the reliability of the estimator; see e.g. Jun and Pinkse (2012).

!These properties are shared by the estimators proposed by Dominguez and Lobato (2004) and Lavergne
and Patilea (2013). Neither consider partially linear models.



In order to partial out the non-parametric part of the model by applying Robinson’s
transformation, we do need consistent estimation of conditional expectations (taken with
respect to the exogenous covariates Z, say F(.|Z)). Accordingly, our procedure depends
on one tuning parameter: specifically, the bandwidth value for the associated Nadaraya-
Watson estimator, which is straightforward to choose in practice (for example, using cross-
validation). As already mentioned, other non-parametric methods could be considered in-
stead, and would then depend on choosing L (e.g. the number of neighbors when using
nearest-neighbors, or the number of terms when using series-based estimation): it is less
clear in practice how to choose such a tuning parameter?.

One may be able to do without such a consistent (kernel-based) estimator, or, at least,
mitigate its impact by exploiting recent results obtained by Cattaneo et al. (2018b) with
series-based estimation, or by Chernozhukov et al. (2018) with (double) machine-learning.
We leave these investigations for future work.

Finally, our work contributes to a recent literature that highlights some shortcomings of
the traditional two-stage least squares procedure that relies on a linear first stage obtained
by regressing the endogenous variable on the instrument: see e.g. Xu (2019) and references
therein with a binary (endogenous) variable. Our framework allows for a fully flexible first
stage without having to parametrically model or estimate it, but maintains a (standard)
strong identification assumption: for extensions beyond strong identification, see Antoine
and Lavergne (2020) who link identification issues to a (linear) first stage that does not
appropriately capture the variation of the endogenous variable.

Our paper is organized as follows. In section 2, we introduce our framework and motivate
our estimation strategy. The asymptotic properties of our estimator are derived in section
3. We illustrate its finite sample properties through a Monte-Carlo study in section 4 and
by revisiting some of the empirical results in Dinkelman (2011) in section 5. The graphs and
tables of Monte-Carlo and empirical results are collected in the Appendix. The proofs of
our theoretical results, as well as additional theoretical and empirical results, are presented

in the supplementary Appendix.

2 Framework and Motivation

We consider partially linear models with endogeneity in the parametric part,
yi = Xifo +9(Z) +ei (2.1)

where the dependent variable y; is scalar, X; is the vector of p explanatory variables, S

is the unknown vector of p parameters of interest, and g(.) is an unknown (sufficiently

*Recent results in Breunig and Chen (2020) may alleviate some of these concerns.



smooth) function of ¢, exogenous variables Z;. We are interested in estimating 3y - but not
necessarily ¢(.). In order to do so, we rely on a vector W; of ¢, > p instruments that may
include components of X; (when their exogeneity is maintained), Z;, and some additional

variables, such that
E(ei|lW;) =0 a.s. (2.2)

The data is assumed to be i.i.d. and we allow for a conditionally heteroskedastic error
process of unknown form, E(e?|w) = o?(w).

Since e; depends on the unknown function g(.), we cannot directly use the conditional
moment restriction (2.2): to circumvent this difficulty, we first apply a Robinson’s transfor-
mation (Robinson (1988)) to the original model. Under the maintained exogeneity assump-
tion of Z;, this amounts to subtracting the conditional expectation of y; with respect to Z;
from (2.1) to get

yi — E(yil Zi) = (Xi — BE(Xi]Z:)) Bo+e;  with  E(e;|W;) =0 a.s.
and W; includes Z;. Using obvious notations, this can be rewritten as
Ji = X!Bo+e  where  E(§; — X!Bo|Wi) =0 a.s. (2.3)

In the traditional GMM setting, a finite number of unconditional moments is then ex-
tracted from (2.3) by considering instruments taken as (measurable) functions of W;: e.g.
simply W; in the traditional 2SLS approach. A large amount of information is discarded
by doing so as explained in Dominguez and Lobato (2004), but different functions of the
instrument will only affect efficiency, as they should all identify the same population param-
eter under the classic framework of "homogeneous effect". Since there is often little to no
information on the relationship between endogenous variable and instrument, an estimation
strategy that leaves the functional form of the first stage equation unspecified should be
valuable for empirical analysis. To directly use the informational content of the conditional
moment restriction (2.3) without having to rely on its parametrization, we follow an origi-
nal idea by Bierens (1982) and rewrite (2.3) as an (equivalent) continuum of unconditional

moment restrictions:

E (5 - XjBo)e"™7| =0 vt e R (2.4)

3Sensitivity to the first stage - e.g. as documented in Dieterle and Snell (2016) - signals an invalid
instrument, or unmodeled heterogeneity in the sense that different first stages identify different weighted
averages of underlying responses; see e.g. Angrist et al. (2000) and Heckman et al. (2006).



The main idea is thus to build a theoretical criterion that combines the above continuum
of restrictions into a single criterion, uniquely minimized at 8y. The Integrated Conditional
Moment (ICM) principle (Bierens (1982)) replaces conditional moment restrictions by a
continuum of unconditional moments such as (2.4). Other functions have been used beyond
the complex exponential, see Bierens (1990) and Bierens and Ploberger (1997). Stinchcombe
and White (1998) give a characterization of a large class of functions that could generate
an equivalent set of unconditional moments. As detailed by Lavergne and Patilea (2013),
this yields a full collection of potential estimators such as the ones developed by Dominguez
and Lobato (2004), Antoine and Lavergne (2014), or Escanciano (2018) among others. We
focus here on a particular application of the ICM suitable for theoretical investigation and
practical implementation, and we leave for future work the investigation of the relative
merits of these different ICM-type estimators.

For a given strictly positive measure p on R%, our theoretical objective function is
defined as

Mu®) = [ 1B (8)e ™) Pt (25)
where  e;(8) = y; — E(y;|Z;) - (X; — E(X;1Z;))'8

The minimization of the objective function defined in (2.5) can only be solved numeri-
cally. We consider instead the following population objective function after introducing the

Fourier transform k(.) of the density induced by g,

Mso(8) = Elej(B)e(B)r;] (2.6)

where kg = k(W; —W)) = /wa Wi Wi qu(t) Vi #£1
and (y;, X;, W) an independent copy of (y;, X;, W;). The definitions of M (.) in (2.5) and
(2.6) are the same*. With the alternative population objective function (2.6), we avoid calcu-
lating the derivative of the norm of a complex function. In addition, we show in Proposition
1 below that (2.6) is uniquely minimized at 5y (under some regularity conditions) and derive

a closed-form expression for fy. Our first set of regularity assumptions is presented next.

Assumption 1. (Regularity assumptions)

(i) E(e;|W;) =0 and W; includes Z;.

(ii) E(X;|W;) # 0 a.s. (with probability 1) with X; = X; — E(X,|Z;).

(iii) E(Xj)?j") is nonsingular.

(iv) Let fw (.) denote the density function of W;. We assume that E(X;|W; =) fw(.) is Lq
for some 1 < q < 2.

(v) (y1, X1, Wy) is an independent copy of (yj, X;, Wj).

“See the Supplementary Appendix for a formal proof that (2.5) and (2.6) coincide.

5



(vi) Let u be a given strictly positive measure on R9. Let k(.) be the Fourier transform
induced by p, k(W; — Wi) = [pew €¥ Wi=Wdu(t). We assume that k(.) is a symmetric

bounded density function on R and that its Fourier transform is strictly positive.

Assumption 1(7) maintains the validity of the instruments W} and the exogeneity of Z;,
while Assumption 1(7/) maintains the relevance (and strength) of W; needed to identify
Bo. Tt also implies that there exists a measurable function f(.) such that E(X;f(W;)) #
0. Specifically, there exists ¢ such that E(X;e'Vs) # 0. Assumption 1(4ii) is the same
identification assumption as the one maintained by Robinson (1988) (see his condition
(3.5)). Assumption 1(7v) is mild and sufficient to ensure existence of the corresponding
Fourier transform. Assumption 1(vi) is not too restrictive on the measure p (and associated
k(.)). Examples of suitable densities include products of triangular, normal, logistic (see
Johnson et al. (1995), Section 23.3), Student® (including Cauchy, see Hurst (1995)), or

Laplace densities.

Proposition 1. (Identification of fy)
Under Assumption 1, By is the unique minimizer of (2.6) with M (o) = 0 and

- o 1—1 -
Bo = [Bleu X, XD)] BlryuXm)
where §; = y; — E(y;|Z;) and Xj = X, — E(X;|Z;).

A natural estimator of 5y minimizes a sample analog of (2.6) obtained after replacing

the expectation by a double average. Therefore, an (infeasible) estimator of Sy is defined as

ﬁn = argrﬂneiIB}Mn(B) (27)
with  My(B) = s S e (Bl DOV, ~ W) (2.8)
=11

This is a special case of the Smooth Minimum Distance (SMD) estimator introduced
by Lavergne and Patilea (2013) when a fixed bandwidth (equal to 1) is used: they show
that it is consistent and asymptotically normally distributed in a framework with general

conditional estimating equations. In our linear framework, it is available in closed-form,

5Student density should be chosen with enough degrees of freedom to ensure other regularity conditions
are satisfied.



with § the (n,1)-vector with elements §;, X the (n,p)-matrix with rows X]’-, and & the
(n,n)-matrix with (j,) element r;; (when j # () and 0 on the main diagonal®.
In the next section, we present the asymptotic properties of B, and introduce our

feasible estimator that shares its asymptotic properties.

3 Large sample theory of R-SMD

In this section, we first present the asymptotic properties of 5y, the infeasible SMD estimator
of By. Then, we introduce our Robinson-SMD (R-SMD hereafter) estimator, as a feasible

estimator that shares the same asymptotic properties as f3,.

3.1 Asymptotic properties of the infeasible estimator 3,

The infeasible estimator 3, is a special case of the SMD estimator introduced by Lavergne
and Patilea (2013), and its asymptotic properties are known (see their Theorems 2.1 and

2.2). We present these results in our simpler linear framework with a fixed bandwidth.

Assumption 2. (Regularity assumptions)

(i) We consider a sample of n iid observations (yj, X;, W;) for j=1,--- ,n.

(it) Let fw(.) denote the density function of Wj. Let Xj,,ﬂ denote the r-th component of
X; with 1 < r < p. We assume that E(e§|W‘ = Vfw(), BE(Xjre;|W; = )fw(.), and
E(X;,X;s|W; =.)fw(.) are Lq for some 1 < q <2 for any r and s such that 1 <r,s < p.

Assumption 2(74) maintains sufficient conditions to ensure the applicability of central

limit theorems for appropriate U-statistics.

Proposition 2. (Consistency and Asymptotic normality of Bp)

Our infeasible estimator f3, is defined as
By = argmﬁinMn(,B) = [X'&X]| X'k

Under Assumptions 1 and 2, By is consistent for By, that is 3, LN Bo, and asymptotically

normally distributed,

V(o = o) 5 N (0. [Bss, X50] " var (G580, W) (Bl %,%0)] )

with Var [hl(Xj,ej(ﬁo),Wj)} = Var

[ e (a0 Bl K du)

5The computation of the matrix & simplifies greatly for convenient choices of u such as the standard
normal; see the supplementary Appendix for additional results.



Our infeasible estimator relies on n(n — 1) pairs of observations, and its asymptotic
properties will be derived using U-statistics: under Assumption 2, LLN and CLT hold for
the appropriate U-statistics. The asymptotic variance of our infeasible estimator B, has a
(traditional) sandwich form, but it is not efficient since we consider a fixed bandwidth; for
a thorough discussion of the efficient SMD estimator, we refer the reader to section 2.5 in
Lavergne and Patilea (2013) as well as to section 3.3 below. Note also that the asymptotic
variance involves a complex integral in the middle term. However, it is important to mention
that its imaginary part will vanish thanks to Assumption 1(vi): since k(W; — W}) is a
symmetric density function on R% 1 is symmetric as well; see also (3.10) below for a

consistent estimator.

3.2 Feasible estimator of j,

As already explained, the estimator B, depends on 7 and X that are unknown in practice
due to the presence of the following conditional expectations E(y;|Z;) and E(X;|Z;). In
order to propose a feasible estimator, these conditional expectations are replaced by their
Nadaraya—Watson kernel estimators, respectively denoted g,(Z;) and gx(Z;). Our feasible
R-SMD estimator Bn minimizes the feasible counterpart of M, () obtained after replac-
ing the above-mentioned conditional expectations with their kernel estimators. We show
that, under some regularity assumptions, our feasible R-SMD estimator Bn shares the same
asymptotic properties as the infeasible SMD estimator 3.
Our feasible R-SMD estimator Bn is defined as

~ . 1 ~ = o~ = Rt BN
Bn = afgglelgm[y—Xﬂ]/ﬁ[y—Xﬁ] = [X #X]"'X &y (3.9)
~ ~ n g (%2
with g the (n,1)-vector with elements 7, = y; — §,(Z;) = y; — ’nl Y (Zl—hZ ),
i=1 K(=57)
2 L 3/ . n XK (B
X the (n, p)-matrix with rows X; = X} — g (Z;) = X} — == nl [Z((ngj) ,
i=1 D

K the (n,n)-matrix with (j,1) element x;; (when j # [) and 0 on the main diagonal, and
K(.) a second-order product kernel and h a vanishing bandwidth as defined in Assumption
3 below.

In order to derive the asymptotic properties of Bn, we need additional regularity as-

sumptions.

Assumption 3. (Regularity of g(.) and of the kernel estimator)
(i) The function g(.) in our main model (2.1) is sufficiently smooth to be partialled out by

the Robinson’s tranformation.



(i) K(.) is a product kernel based on a second-order univariate kernel k(.) such that

Z— 7, 7,
k(224 - e g (ZiZ
( ) ) 1’“( s )

. I 1
with — h =M% hs and ﬁ(éh& e = o(1)

Assumption 3(7) maintains similar regularity conditions on ¢(.) as done in Robinson

(1988) on p939. Assumption 3(#i) is used to control the bias of the non-parametric ker-
nel estimator of g,(.) and gx(.). We usually assume that the bandwidth h converges to
0: under Assumption 3, h actually converges to 0 faster to ensure that the bias of the
Nadaraya—Watson estimator converges to 0 as n increases. It is well-known (see e.g. Li and

Racine (2007)) that, for Nadaraya—Watson kernel estimator, we have:
9y(Zi) — E(yil Zi) = (9,, (vn) and  gx(Zi) — E(XilZi) = Op(vn)
0.5
>ne [t
nh1 hy,

Our next result presents the asymptotic properties of our R-SMD estimator.

with v,

Theorem 3.1. (Consistency and Asymptotic normality of Ba )
Under Assumptions 1, 2, and 3, the R-SMD estimator Bn defined in (3.9) is consistent for
Bo, that is ﬁn 2 8y, and asymptotically normally distributed,

Vi, — o) % A7 (0. [BGeia 0] Var [ (e 60 )] [Bls %, 50] )

with Var [hl(Xj,ej(ﬁo),Wj)} = Var [/Rq e Wie, (/BO)E[eithle]du(t)}

Theorem 3.1 shows that our feasible R-SMD estimator Bn shares the same asymptotic
properties as the infeasible estimator f3,. This follows, in part, from Assumption 3 which
ensures that the mean squared error of the kernel estimation converges uniformly to zero at
a rate faster than y/n. This result generalizes Robinson’s approach to a conditional moment
framework & la Bierens (1982).

The chosen measure 4(.) does not affect the consistency or the rate of convergence of the
R-SMD estimator, but it does affect its asymptotic variance. However, no measure p(.) can
be expected to deliver a better estimator (that is, an estimator with a smaller asymptotic
variance) for every single underlying DGP. In our simulation study in section 4, we verify
that the chosen u(.) does not affect the performance of the R-SMD estimator much. It is also

important to mention that the combination of the continuum of moments in our theoretical



objective function, as well as in our estimator, is not optimal in general. Such an optimal
combination is a difficult issue which is informally discussed in the next subsection.
The R-SMD estimator’s asymptotic variance can be estimated in a standard hetero-

skedastic-robust way using an Ficker-White type approach,

~ o~

n n ~ o~y -1 n ~1 L S
ZZ“J’JXJXI Z l(Z ﬁlel> (Z K,j’le> 1 ZZK
J=11#] Jj=1 =1 J=11#j

’ -1 ’

- {X HX} X RO EX [X HX] B (3.10)

with €, the conventional diagonal matrix with elements taken as the squared residuals
-~ =/ A

(yi - X zﬁn)z

3.3 Semi-parametric efficiency

In order to achieve semi-parametric efficiency, Lavergne and Patilea (2013) extend the ob-
jective function (2.8) by considering a vanishing bandwidth associated with k(.) and intro-
ducing a weighting matrix. Their efficient estimator is then obtained in two steps by using
a consistent (first-step) estimator to consistently estimate the efficient weighting matrix.
It does not seem however possible to design such a two-step procedure that would yield
a semi-parametrically efficient R-SMD estimator. This is due to the Nadaraya-Watson es-
timator used in the Robinson’s transformation to partial out the non-linear part of the
model: the associated estimation error interacts with the efficient weighting matrix, result-
ing in a U-statistic with a non-zero mean that generates a bias. Such a bias involves first-
and second-order derivatives of conditional expectations, and a bias-correction approach
does not appear feasible either. Technical derivations can be found in the Supplementary
Appendix.

Such an issue is not specific to our framework and appears more generally when a (first-
step) nonparametric estimator is plugged into a moment function. The concern is then
about local robustness with respect to the first step. To achieve semi-parametric efficiency,

we suggest instead the following three-step approach:
1. compute the consistent R-SMD estimator 3, of By defined in (3.9);

2. compute a nonparametric estimator for g(.) using observations on y and Z; with
y;'k =Y — X{Bn?

3. compute the SMD estimator for By using the locally robust moment function con-
structed by adding the influence function adjustment for the first-step estimator as
shown in Chernozhukov et al. (2018)7.

"We thank Chris Muris for bringing this work to our attention.
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The detailed study of the properties of this three-step estimator is beyond the scope
of our paper and is left for future research. Of course, efficient estimation of By could be
achieved by implementing the sieve minimum distance estimation procedure of Ai and Chen

(2003) through a (sieve) approximation of the (unknown) g(.) function in (2.1).

4 Simulation study

We investigate the small sample properties of our R-SMD estimator of 5y in the following

partially linear model,
yi = Xifo+9(Zi)+e and X; = f(Wi,Z;)+v; (4.11)

where Z;, X;, and W; are all univariate®. Our benchmark model labelled N-N model displays
nonlinear first and second stages?, respectively with nonlinear f(.) and nonlinear g(.) - e.g.
cubic polynomial functions. The true unknown parameter of interest is 8y and set at 5y = 2
throughout. The instrument and covariate (W;, Z;) and the errors (e;,v;) are generated
independently (for each ¢ and from one another) according to two independent bivariate

normal distributions with mean 0 and covariance matrix »; and Y9 respectively, with

21:< 1 5/9) nd 22:< 1 4/9>
5/9 1 4/9 1

This ensures that W, and Z; are exogenous, while X; is endogenous. Our benchmark
N-N model corresponds to the partially linear model (4.11) where

g(Zz) = -+ "}/Ozl -+ ’}/123 and f(WZ, Zl) = C2 -+ 7T0WZ‘ -+ 7T1Wi2 -+ a()Zi -+ alZf + CYQZ,?

When the parameters v;, 71, a1, and as are all set to 0, we have a L-L model. Otherwise,
we have a N-N model when both ¢(.) and f(.) are non-linear, that is when ~; is non-zero
and at least one non-zero parameter among 7, a1, and as.

We consider a sample of n i.i.d. observations on (y;, X;, Z;, W;). Our R-SMD estimator
is computed using ju(.) chosen as the CDF of a standard Gaussian distribution!®. The

bandwidth of the Nadaraya—Watson estimation of the conditional expectations with respect

8We normalize X; to ensure that its variance remains unchanged throughout the designs.

9In the supplementary appendix, a fully linear model with both first and second stages linear is also
considered.

10Recall that the Fourier transform of a Gaussian function is also Gaussian, which is always greater than
0, symmetric, and available in closed-form. This implies that x;; (see (2.6)) is a real number; its expression
is provided in the Supplementary Appendix. Other measures are also considered as a robustness check.
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to Z; is chosen according to the rule-of-thumb!! (see Li and Racine (2007)), that is o,n 02
with univariate Z;. We compare the performance of our R-SMD estimator to three GMM-

type estimators:

(i) the efficient GMM assumes that g(.) is linear and relies either on one moment condition

using W; as the instrument, or two using W; and VVZ»2 as instruments;

(ii) the Sieves-GMM approximates ¢(.) as a polynomial function in Z; with its degree
chosen by cross-validation; it relies either on one moment condition using W;, or two

using W; and W7 as instruments;

(iii) the R-GMM corresponds to the efficient GMM after a Robinson transformation; the
same bandwidth is used for the Nadaraya-Watson estimation of the conditional ex-
pectation as for the R-SMD; it relies either on one moment condition using W;, or

two using W; and W7 as instruments.

The performance of these estimators is summarized by reporting the bias, standard
error, and empirical rejection rates for a t-test of the null hypothesis Hy : 8 = 5y at 5%
nominal level computed over 5,000 Monte-Carlo replications. The benchmark N-N model is

generated as follows,

with X} = W;+4W2+ Z,+4Z2 +v; and X; = S8scale(X})

In Table 1.1, we report the Monte-Carlo bias and Monte-Carlo standard error (SE),
as well as the average of the asymptotic SE assuming either homoskedasticity (Asympt.
Homosk. SE) or heteroskedasticity (Asympt. Heterosk. SE), and the empirical rejection
rates for a t-test at 5% nominal level of R-SMD and the 6 GMM-type estimators described
above. We consider a sample of size n = 200 in Panel A and n = 2,000 in Panel B and
5,000 Monte-Carlo replications. The bandwidth for the Nadaraya-Watson kernel estimators
needed to compute R-SMD and R-GMM is set according to the rule-of-thumb, at 0.347 when
n = 200 and at 0.219 when n = 2,000.

When the GMM-type estimators are computed using one moment (with instrument W)
as is standard in practice, R-SMD outperforms them all and displays much smaller bias
and standard errors both with small and large sample sizes. This is not surprising since
important non-linearities are ignored by these GMM estimators. In Figures 1.1, we display
the histograms of the Monte-Carlo distributions of these four estimators, as well as the
distribution of their Monte-Carlo standard errors; for GMM, Sieves-GMM and R-GMM we

consider either one moment using W or two moments using (W, W2). In order to show the

11 Alternative bandwidths were also considered as a robustness check: see the next subsection.
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PANEL A: sample size n = 200
R-SMD R-GMM Sieves-GMM GMM

Estimator Gaussian p(.) Cauchy p(.) sinc? u(.) w (W, W?) w (W, W?2) w (W, W?)
Bias 0.011 0.009 0.003 0.095 -0.011 0.031 -0.007 0.404 -0.508
SE 0.036 0.038 0.041 3.031 0.033 3.129 0.067 16.812 0.444
Asympt. Homosk. SE 0.058 0.057 0.052 18.811 0.034 65.052 0.032 406.312 0.182
Asympt. Heterosk. SE 0.058 0.057 0.052 36.331 0.032 87.935 0.032 554.408 0.294
Rej. rate for Homosk. SE 0.004 0.006 0.013 0.007 0.046 0.006 0.072 0.010 0.924
Rej. rate for Heterosk. SE 0.004 0.006 0.016 0.000 0.072 0.002 0.087 0.007 0.763
PANEL B: sample size n = 2,000
Estimator R-SMD R-GMM Sieves-GMM GMM

Gaussian p(.) Cauchy u(.) sinc? u(.) w (W, W?) w (W, W?) w (W, W?)
Bias 0.005 0.005 0.002 0.033 -0.006 0.052 0.000 0.006 -0.505
SE 0.010 0.011 0.012 0.069 0.009 0.167 0.009 0.832 0.093
Asympt. Homosk. SE 0.017 0.017 0.016 0.073 0.010 0.209 0.009 1.173 0.042
Asympt. Heterosk. SE 0.017 0.017 0.016 0.080 0.010 0.229 0.009 1.434 0.074
Rej. rate for Homosk. SE 0.004 0.005 0.010 0.038 0.068 0.022 0.048 0.021 1.000
Rej. rate for Heterosk. SE 0.004 0.005 0.010 0.008 0.074 0.009 0.049 0.011 0.999

Table 1.1: N-N model with n = 200 or 2,000, and M = 5,000

We report the Monte-Carlo bias and Monte-Carlo standard error (SE), as well as the aver-
age of the asymptotic SE assuming either homoskedasticity or heteroskedasticity, and the
empirical rejection rates of the null Hy : 3 = 3y using a 5% t-test for the R-SMD, R-GMM,
Sieves-GMM and GMM estimators. R-SMD is computed with p(.) chosen as the CDF of
a standard Gaussian, Cauchy, or sinc? distribution. GMM, Sieves-GMM, and R-GMM are
computed using either one moment with instrument W or two moments with instruments

W and W2,

magnitude and distribution of standard errors for different estimators, the histograms are
drawn over the same range.

When considering two moments for the GMM-type estimators, their performances im-
prove significantly. R-SMD still remains competitive with small bias, but its standard error
is now slightly larger than R-GMM. Once again, this result is not surprising, and in line
with our theoretical results. It is important to point out that the differences in standard
deviations are quite small, both in small and large sample.

Finally, it is worth pointing out that R-SMD appears to be conservative with a rejection
frequency under the null well below the nominal level equal to 5% - while other estimators
appear slightly oversized. However, this under-rejection does not seem to be associated
with poor power properties for R-SMD. In Figure 1.2, we display the power curves when
testing the null Hy : = * (and * # [y) with t-tests using the different estimators
at 5% nominal level. R-SMD remains competitive when compared to the most powerful

procedures, R-GMM and Sieves-GMM using two moments.

e Bandwidth selection:
Next, we investigate the sensitivity of our results to the choice of the bandwidth. The
results are displayed in Table 1.2 where we report the bias, standard error, and empirical

rejection rates for a t-test at 5% nominal level as a function of the bandwidth that ranges
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from 0.087 to 0.347. The performance of our R-SMD estimator is remarkably stable: we
only notice a small increase in the bias and a small decrease in the standard deviation
as the bandwidth increases. We also report the results for a bandwidth selected by cross-

2 as well as the frequency with which each candidate bandwidth is selected: the

validation?
rule-of-thumb bandwidth is selected most frequently, just under 80% of the time, and the

associated performance results are quite similar to the previously reported ones.

Bandwidth Frequency | Bias SE  Asymp. Heterosk. SE  Rej. rate
0.08705506 0.159 -0.002 0.040 0.066 0.002
0.1519344 0.045 0.000 0.038 0.062 0.001
0.2168137 0.023 0.003  0.037 0.060 0.001
0.2816931 0.010 0.006 0.036 0.059 0.002
0.3465724 0.763 0.010 0.036 0.058 0.004
Cross-validation 0.010 0.037 0.060 0.003

Table 1.2: Simulation results for the N-N model with n = 200, M = 5,000

We report the Monte-Carlo bias and Monte-Carlo standard error (SE), the average of the
asymptotic heteroskedasticity-robust SE, and the empirical rejection rates of the null hy-
pothesis Hy : 3 = By using a 5% t-test for the R-SMD as a function of the bandwidth used
in the Nadaraya-Watson estimate.

e Selection of the measure u(.) and associated k(.):
Last, we investigate the sensitivity of our results to the choice of the measure p(.). As
explained in section 3, the chosen measure ;(.) does not affect the consistency or the rate of
convergence of the R-SMD estimator, but it may affect its asymptotic variance. The results
are displayed in Table 1.1, where we report the performance of three R-SMD estimators
obtained respectively with x(.) chosen as the CDF of: (i) a standard Gaussian distribution
and k(.) Gaussian, (ii) a Cauchy distribution and k(.) Laplace, and (iii) a sinc? distribution
and k(.) triangular.

Overall, the choice of the measure p(.) does not seem to affect the performance of the
R-SMD estimator much. In particular, the standard errors are quite similar across the three

chosen measures, and even more so for the larger sample size n = 2,000.

e Results for the L-L model:

These results are reported in the Supplementary appendix. They show that the performance

12We select the bandwidth that produces the smallest Mean Squared Error (MSE). After splitting the
sample into the training sample and the testing one, we compute the R-SMD estimate for a given bandwidth
candidate, as well as the key parameters and the estimated g(Z) function using a polynomial approximation.
Then, we use these estimates to compute the MSE over the testing part of the sample.
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of all considered estimators is quite similar with respect to bias, standard deviations and

rejection rates.

5 Empirical application

To illustrate the applicability of our R-SMD estimator, we revisit and extend some of the
empirical results in Dinkelman (2011) who estimates the impact of electrification on em-
ployment growth in South Africa. Because of measurement error and omitted variables
concerns, the author adopts an instrumental variable empirical strategy based on the aver-
age community land gradient. Higher gradient raises the average cost of a household con-
nection, making gradient an important factor in prioritizing areas for electrification. More
specifically, the identification assumption is that conditional on baseline community char-
acteristics, proximity to local economic centers and grid infrastructure, and district fixed
effects, land gradient does not affect employment growth independently of being assigned
an electrification project!3.

We focus on various outcome variables of interest that capture the effects of electri-
fication on employment, household services, population growth, and skill composition of
the labor force. Let y; be the outcome variable of interest for community ¢, X; the Eskom
project variable which measures electrification, Z; a vector of covariates!®, and W; the land

gradient instrumental variable. We consider the partially linear IV model,
yi = XiB+ 9(Z) + e where  FE(e;|Zi, Wi) =0 (5.12)

We compare three estimation strategies:

(i) The empirical strategy in Dinkelman (2011) which relies on the standard IV method
(labeled hereafter IV-L-L): it is based on a first stage linear in W and Z, and a linear

second stage. In other words, model (5.12) is re-written as

yi = Xif+Zy+ei  where  Ele|Zi, Wi) =0
X, = 7aWi+ Zi6+v; where E(vi| Z;, WZ) =0

133ee sections 3 and 4 in Dinkelman (2011) for a detailed description of the data and the identification
strategy.

1 Covariates include household density, fraction of households living below a poverty line, distances to the
grid, road, and town, fraction of adults that are white or Indian to proxy for local employers, fraction of men
and women with a completed high school certificate, and two standard proxies for community poverty, the
share of female-headed households and the female/male sex ratio (Guy Standing, John Sender, and Jeremy
Weeks 1996). A set of ten district fixed effects are also included to ensure that all comparisons across project
and non-project areas occur for areas in the same local labor markets. See Table 3 in Dinkelman (2011). For
results obtained with an alternative set of control variables, see Supplementary Appendix.
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(ii) The empirical strategy in Dieterle and Snell (2016) which relies on the IV method
(labeled hereafter IV-Q-L): it is based on a first stage quadratic in W, linear in the

controls, and as a linear second stage. In other words, model (5.12) is re-written as

yi = XiB+Ziy+e where  E(e;|Wi, Zi) = 0
X, = WIWi+7T2Wi2+ZZ{5+vi where E(U,"WZ‘,WE,ZZ') =0

(iii) The R-SMD method proposed in this paper is based on model (5.12). Note that to
handle the large number of covariates, we consider instead their first two principal

components. 15

In Table 1.3, we report the effect of electrification on employment (in Panel A) and on
household energy sources and other household services (in Panel B); see also Tables 4, 5, and
8 in Dinkelman (2011)6. In Table 1.4, we report the effect of electrification on population
growth, skill composition of labor force, and employment of incumbents; see also Table
10 in Dinkelman (2011). Overall, our R-SMD estimates tend to be smaller in magnitude
and more precise (with smaller standard errors) than the ones obtained using IV-L-L and
somewhat similar to the ones obtained using IV-Q-L with slightly larger standard errors.
Specifically, we find no significant effect of electrification on employment (with or without
in-migrants), but statistically and economically significant effect on all household energy
sources and households services, on population growth (with and without in-migrants), as
well as on the change in fraction of women (but not men) that have a completed high school
education. Even if we cannot rule out that our R-SMD estimates are statistically different
from those obtained using IV-L-L or IV-Q-L, there are some key differences that are worth
highlighting.

First, in panel A of Table 1.3, we do not find any significant effect of electrification on
employment rate'”. Similar results are also obtained when considering the set of incum-
bents that excludes in-migrants (see panel B of Table 1.4). Our results are in line with
those obtained using IV-Q-L while imposing a quadratic first stage, and suggest that there
are important non-linearities in the model that need to be taken into account for reliable

inference. That being said, it is important to distinguish electrification effect on female and

15The results for IV-L-L and IV-Q-L were obtained using the first two principal components. Also, the
results for IV-L-L and IV-Q-L were compared between the two principal components and all controls. The
results are very similar.

16T address concerns about "overoptimistic inference with a possibly weak instrument", Dinkelman (2011)
also reports in her Tables 4 and 5 identification-robust confidence intervals for the main Eskom project
parameter estimate. We did not find much evidence of the presence of weak identification. Nonetheless, we
report in the Supplementary Appendix corresponding identification-robust confidence intervals.

'"The dependent variables represent the change in female (or male) employment rate between 1996 and
2001. Dinkelman (2011) found a significant effect on Female employment rate.
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Panel A: Effects on employment

Outcome is Ay in IV (L-L) IV (Q-L) R-SMD (NL-NL)
Female employment rate 0.090% 0.053 0.045
(0.050) (0.043) (0.043)
[-0.008,0.188] | [-0.031,0.137] [-0.039,0.129]
Male employment rate 0.033 ~0.013 0.061
(0.062) (0.057) (0.059)
[-0.089,0.155] | [-0.125,0.099] [-0.055,0.177]
Panel B: Effects on Household energy sources & other household services
Outcome is Ay in IV (L-L) IV (Q-L) R-SMD (NL-NL)
FHK FHK %
Lighting with electricity 0('3‘4127 6) 0('3‘6181 2) (203?25)
0.297,0.987] | [0.145,0.591] [0.075,0.643)]
. . -0.282%* -0.221°%* -0.202%*
Cooking with wood (0.125) (0.097) (0.123)
[:0.527,-0.037] | [-0.411,-0.031] [:0.441,0.037]
FHE FHE %
Cooking with electricity 0('3?098 0) 0('3%015 2) (20133 2)
0.082,0.396] | [0.035,0.247] [0.007,0.297]
Water nearby -0.372%* -0.363%* -0.626%*
(0.197) (0.167) (0.246)
[:0.758,0.014] | [-0.690,-0.036] [-1.108,-0.144]
. 0.067 0.069 0.104*
Flush toilet (0.055) (0.052) (0.060)
[-0.041,0.175] | [-0.033,0.171] [-0.014,0.222]

Table 1.3: Impact of electrification on Employment (Panel A) and on Household energy
sources & other household services (Panel B)

Note: *** Significant at 1%, ** at 5%, * at 10%. Each cell in the table presents estimates of
the Eskom project variable coefficient, robust standard error, and 95% confidence interval
from an IV regression of the dependent variable on the Eskom project indicator and control
variables (that include baseline controls and district fixed effects; see Table 3 in Dinkelman
(2011)). In Panel A, the dependent variable is the change in female (or male) employment
rate between 1996 and 2001; in Panel B, the outcome variables measure the change in
fraction of households using different energy sources or with access to basic services. Each
regression contains N = 1, 816 except for change in fraction of households using wood which
contains N = 1,807 due to missing data on this variable.

male employment rate. For female employment rate, our estimate and standard error are
very similar to the IV-Q-L ones, suggesting that non-linearities are mainly present in the
first stage and adequately captured by a quadratic function. However, the picture is quite
different when considering male employment rate where our estimate, while insignificant,
has the expected positive sign unlike the IV-Q-L’s; such a positive estimate is also obtained

on the sample that excludes in-migrants, both using R-SMD and IV-Q-L. These differences
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suggest that a quadratic first stage is inappropriate. Additional estimates'® obtained using
R-GMM (with up to 3 powers of W as instruments) are also positive and insignificant,
except when W is used alone. Even if it remains unclear whether the negative estimate
obtained using IV-Q-L is driven by missed nonlinearities in the first or second stage, our
results highlight the convenience of our R-SMD estimation strategy and suggest that it
delivers reliable and precise estimates regardless'®.

Second, in panel B of Table 1.3, we find significant effect of electrification on all five
measures of household energy sources and other household services?’. Specifically, for the
first three household energy sources, we report important shifts towards using electricity
for home production (increase of 35.9%) and for cooking (increase of 15.2%), and a drop of
20.2% in relying on wood for cooking. Our estimates are smaller in magnitude than those
obtained by Dinkelman (2011), but they are still statistically significant and economically
meaningful. In addition, and unlike Dinkelman (2011), we find evidence that electrified
regions also experience differential changes in the last two (basic) household services, namely
access to piped water close to home and access to a flush toilet at home. Our estimates are
larger in magnitude than both IV-L-L and IV-Q-L estimates and statistically significant.
These differences suggest once again important nonlinearities that are not appropriately
accounted for by either IV-L-L or IV-Q-L.

Third, in Table 1.4, we find significant effect of electrification on population growth
(with and without in-migrants). The estimates obtained by all three methods may appear
surprisingly large: even after accounting for in-migrants, electrified areas are found to have
significantly higher population growth?! (of the order of 300 percent!). We also find signifi-
cant effect of electrification on the change in fraction of women that have a completed high
school education, but not in fraction of men. Our results are in-line with those obtained
using IV-Q-L, but not using IV-L-L. where significant effects on both women and men are
reported. However, the significance of the IV-L-L estimate reported for men is fragile and
disappear when considering a slightly different set of controls whereas all other results re-

main stable (see Supplementary Appendix). In addition, it is important to highlight that

18See Supplementary Appendix.

9Differences between R-SMD and TSLS estimates could also result from using the wrong functional form
of the structural equation or heterogeneous effects. As a result, our interpretations should be taken with a
grain of salt without further investigation.

29The outcome variables measure the change in the fraction of households using different energy sources
or with access to basic services.

21As explained in Dinkelman (2011) on p3103, "in small communities, numerically small increases in
population can translate into large percentage changes. The average number of females (males) in these
communities in 1996 is 356 (274). This rises to 446 (319) by 2001. Just considering the raw changes in
number of adults over time, electrified areas grow at about 6% per year while non-electrified areas grow at
about 3%."
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Panel A

Ay log population At Females with High School A Males with High School
1V (L-L) IV (Q-L) R-SMD (NL-NL) 1V (L-L) IV (Q-L) R-SMD (NL-NL) vV (L-L) IV (Q-L) R-SMD (NL-NL)
3.820%%* 3.101%F%* 2.949%** 0.128%%* 0.102%** 0.195%* 0.076* 0.047 0.089
(0.987) (0.710) (0.841) (0.048) (0.039) (0.082) (0.043) (0.037) (0.057)
[0.885,5.755]  [1.710,4.493] [1.301,4.597] [0.034,0.222]  [0.026,0.178] [0.034,0.356] [-0.008,0.160]  [-0.026,0.120] [-0.023,0.201]
Panel B
A log non in-migrant population A; Females empl. excl. in-migrants At Males empl. excl. in-migrants
IV (L-L) IV (Q-L) R-SMD (NL-NL) IV (L-L) IV (Q-L) R-SMD (NL-NL) vV (L-L) IV (Q-L) R-SMD (NL-NL)
4.275%%* 3.348%** 3.215%%* 0.113%* 0.074* 0.046 0.087 0.026 0.093
(1.092) (0.753) (0.908) (0.051) (0.042) (0.041) (0.063) (0.054) (0.060)
[2.135,6.415]  [1.872,4.824] [1.435,4.995] [0.013,0.213]  [-0.008,0.156] [-0.034,0.126] [-0.036,0.210]  [-0.080,0.132] [-0.025,0.211]

Table 1.4: Impact of electrification on Population growth, skill composition of labor force
and employment of incumbents

Note: *** Significant at 1%, ** at 5%, * at 10%. Each cell in the table presents estimates of
the Eskom project variable coefficient, robust standard error, and 95% confidence interval
from an IV regression of the dependent variable on the Eskom project indicator and control
variables (that include baseline controls and district fixed effects; see Table 3 in Dinkelman
(2011)). Dependent variable in panel A, column 1, is change in log African population;
in columns 2-3 it is the change in fraction of women or men that have a completed high
school education. Dependent variable in panel B, column 1, is the change in log African
non—in-migrant population where in-migrants have been subtracted from the total number
of adults in the community in each year. In columns 2-3 of panel B, the outcomes are change
in female and male employment rates where the employment variables exclude the number
of in-migrants to each community in each year. Each regression contains N = 1, 816.

in both cases, R-SMD estimates are actually larger in magnitude than the ones obtained
using IV-L-L and IV-Q-L. Larger estimates are also reported using R-GMM (with up to 3
powers of W as instruments), suggesting the presence of nonlinearities in the model that
need to be taken into account for reliable inference.

Overall, our empirical results highlight the importance of using a flexible and user-
friendly estimation strategy such as R-SMD to deliver reliable inference without having to
rely on a potentially problematic and misleading parametrization of the first stage, or the

second stage with respect to the controls.
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Figure 1.1: Simulation Results for the N-N model using n = 200 and M = 5,000

We display the Monte-Carlo distribution of the following estimates (top 2 rows) and of their standard
deviations (rows 3 and 4): from left to right, top row, GMM with 1 and 2 moments and Sieves-GMM
with 1 and 2 moments; bottom row, R-GMM with 1 and 2 moments and R-SMD. On the bottom row,
we display the Monte-Carlo distribution of the R-SMD estimates and of their standard deviations.
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Figure 1.2: Power curves for the N-N model with n = 200, M = 5,000

GMM, Sieves-GMM and R-GMM with 1 and 2 moments, and R-SMD.
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Chapter 2

Estimation of Heterogeneous
Treatment Effects Using a
Conditional Moment Based
Approach

1 Introduction

Heterogeneous treatment effects have been a focus in literature since Imbens and Angrist
(1994). Heterogeneous treatment effects models are those where the treatment effects of
policies, programs, or other variables on some outcome of interest may vary across individ-
uals with different characteristics. To measure heterogeneous treatment effects, many papers
add interaction terms between the treatment variable and some covariates to the standard
linear model (see Wooldridge (2010) and Imbens and Rubin (2015)). The basic linear model
becomes linear in the treatment, the interaction term, and the covariates. The parameters
of interest are the parameter for the treatment and that for the interaction term.

Unfortunately, the true model is unknown. If the model is nonlinear in the covariates,
OLS, 2SLS, or GMM with a linear form will suffer from model misspecification, and esti-
mates will not be consistent and normally distributed. With the correct model form, the
OLS, 2SLS, or GMM will work. However, if the nonlinear part of the model is unknown, we
will need to use other methods to estimate the parameters. There are at least three chal-
lenges associated with the estimation of both parameters in the model with a parametric
part and unknown nonlinear part, i.e., the partially linear model (PLM).

One challenge happens when the treatment variable is endogenous, we need to use valid
instruments to estimate parameters for the treatment and for the interaction term. The
usual approach would be to partial out the unknown and nonlinear part of the model via
a Robinson (Robinson (1988)) transformation and then use the GMM estimator with one
instrument and the interaction term between the instrument and the covariate to estimate

both parameters. When we only have one valid instrument and the covariate inside the
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interaction term has little variation or is not very informative, e.g., rare program participa-
tion, the GMM estimator will not be consistent and its variance will have a large magnitude.
This is similar to a weak identification problem. Additionally, the selection of instruments
will affect the interpretation of the treatment (see Dieterle and Snell (2016) for related
discussions).

A second challenge is that traditional estimation methods do not work when the number
of covariates is possibly larger than the number of observations. This challenge exists if
there are a large number of covariates in the structural model or if many covariates must
be included to ensure that the instrument is valid.

The third challenge is that if the covariates enter the model in an unknown (and possibly
nonlinear) way, estimation methods assuming linearity will suffer from specification bias.

Our new estimator solves the first challenge by using only the valid instrument (e.g., the
random assignment) to estimate both parameters. Our method does not use the interaction
term between the instrument and the covariate to identify model parameters. We do this
by first applying the Robinson transformation to remove the nonlinear and unknown part,
and then transforming the conditional moment restriction: E(€;|Z;) = 0 where ¢; is the
error term inside the model and Z; is the instrument. Usually, GMM uses the unconditional
moments generated by E(¢;|Z;) = 0 to construct objective functions. But, with the i.i.d
assumption we can also generate objective function as E(e;|Z;)E(ej|Z;). As written, this
type of objective function is hard to use. To make it tractable, we apply both the i.i.d.
assumption and the Fourier transform to obtain a new objective function related with
E(ei|Z;)E(€j|Z;). This is tractable. In technical terms, the Fourier transform and the new
objective function are based on the Smooth Minimum Distance (SMD) approach (Lavergne
and Patilea (2013)). The SMD-based approach exploits all the information of the conditional
mean independence restriction without having to specify the first stage, or to select a finite
number of unconditional moments (e.g., using transformations of Z;).

To tackle the last two challenges, our new estimator uses regularized Machine Learning
(i.e., the Lasso method) to estimate the nuisance parameters generated by Robinson trans-
formation (Robinson (1988)) and a Neyman-Orthogonalized (Chernozhukov et al. (2018))
First-Order Condition (FOC). With the Robinson transformation, we do not need to specify
how these covariates enter the model; it partials out the unknown (and nonlinear) part of
the partially linear model, but it also introduces nuisance parameters which need to be esti-
mated. The Neyman-Orthogonalized FOC reduces the effect of the bias associated with the
estimation of these nuisance parameters. When there are many covariates, assuming spar-
sity and using regularized machine learning methods, such as the Lasso method, allows us
to choose a relatively small number of covariates for the estimation of nuisance parameters.
Thus, our new estimator is the D-RSMD estimator (Debiased Robinson-SMD).

To apply the new estimator we only need one tuning parameter. If we are using the

Lasso method, the tuning parameter is inside the penalty term for the estimation of the
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nuisance parameter. In practice, choosing Lasso tuning parameters is well-understood (see
van de Geer (2016)) and we use cross-validation (Chernozhukov et al. (2018)). When there
are few covariates (and the model is sparse by design), the Nadaraya—Watson estimator
is an alternative method to estimate the nuisance parameter. This estimation procedure
also needs one tuning parameter, that is, the bandwidth. The bandwidth can be chosen
by the rule of thumb or cross-validation in practice. We show that our D-RSMD estimator
is consistent and /n asymptotically normal under mild regularity conditions. Monte-Carlo
simulations show that the D-RSMD estimator outperforms the R-SMD and GMM-type
estimators in terms of much smaller bias and lower standard errors.

To illustrate the value of our method, we estimate both parameters inside the heteroge-
neous treatment effects to extend the estimation results in Card (1993). We use the Card
application to show the differences of estimators using various sets of instruments. It shows
that our new method generates more precise estimates in comparison to GMM.

Our work is an extension of Antoine and Sun (2021) who propose the R-SMD estimator
which combines a Robinson transformation and a smooth minimum distance estimator in a
partially linear model'. However, when we use the Nadaraya-Watson estimator to estimate
the conditional means, the dimension of covariates has to be less than four (see chapter 7 of
Li and Racine (2007)). To extend the R-SMD estimator to the big data setting and relax the
restriction on the dimensions of covariates, our work applies machine learning methods, such
as the Lasso. To reduce the effect of bias introduced by Lasso, our work employs the Neyman-
orthogonal first-order condition. The method also extends the Neyman-orthogonal estimator
(Chernozhukov et al. (2018)) to the U-statistic setting. Our new estimator contributes to
the literature on the partially linear model and conditional moment restriction models in
the same way as the R-SMD estimator does. Both the partially linear model and conditional
moment restriction model involve the problem of choosing the model form. For a partially
linear model, some researchers use sieves for the nonlinear part. For conditional moment
restriction models, some generate a finite number of unconditional moments. In comparison,
our method does not need to choose the number of polynomials for the sieve method or the
number of unconditional moments. Our method only needs to choose one tuning parameter.

The paper is organized as follows. Section 2 introduces our framework, motivation, and
our estimator. Section 3 states the large sample properties for our estimator. Section 4
presents the simulation results for finite samples with and without a large number of covari-
ates. Section 5 uses the D-RSMD estimator to estimate the effects of education on earnings.
The additional application results and proofs are in the Appendix and Supplementary Ap-

pendix.

!See Robinson (1988) and Li and Racine (2007) for combining Robinson transformation and 2SLS esti-
mators.

24



2 Framework and Motivation

Our framework is based on a partially linear model with a treatment variable W; which
is binary. The heterogeneous treatment effects enter the model through the linear term on
W; and some interaction terms between W; and X;, a vector of P covariates with X; =

[X/;, X),]'. The other part of the model is an unknown function of Xj.
Yi = OwoWi + Wi - X1 0us0 + fo,1(Xi) + e (2.1)

The treatment is not always exogenous. For example, in the Oregon Medicaid health exper-
iment, the treatment is the enrollment in Medicaid. Enrollment in Medicaid is endogenous
because it is based on the choices of the lottery winners. Only a fraction of lottery winners
decided to enroll in Medicaid.

W, - X;1 is the interaction term. The formal definition for W; - X/;60y,50 is

P1

Z Wi X1k X Owao

k=1
where X;1 ;, is a k-th element inside the vector Xj;. The treatment part of interest is W; +
W; - X;1. The parameters that measure heterogeneous treatment effects, i.e. 6,0 and 6,,.0,
are our key parameters. The control vector X; in our setting is exogenous and appears in
an unknown function fo1(X;). fo,1(.) is a nuisance parameter that we are not interested in.

X1 is a subvector of X; of dimension p; with p; < P. We can have X;; = X; if the
dimension of Xjo, po, is zero. That is, W; - X;; can be the interaction term using only a
small set of covariates, while fj 1(X;) is the unknown function of the whole set of exogenous
controls. The dimension of X; is not restricted and can be either high or low-dimensional.
However, we restrict the dimension of X;;. And we also maintain the exogeneity of all
the controls X;. The outcome variable y; is not necessarily binary. For a binary outcome
variable, a large number of covariates, and similar restricted dimension setting on estimating
heterogeneous treatment effects, see Nekipelov et al. (2018).

The fop1(X;) is unknown allowing X; to enter the model in a flexible way. To avoid
estimating the nuisance parameter fp1(X;), a Robinson transformation is introduced to
eliminate the unknown fj1(X;). The Robinson transformation consists in subtracting the
conditional expectation of y; with respect to the controls X;. After such a Robinson transfor-
mation, fo 1(X;) will disappear. In this case, we do not need to assume the form of fy 1(X;).
It can be sparse and may be nonlinear. Under Robinson transformation and the exogenous

assumption on X;, Equation 2.1 becomes
yi — E(yilX;) = (P, — E(Pi|X;))'00 + &
where P; = [W;, W; - X/;]" and 0y = [00, 0.,50]"-
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Denote
¢; (0, 90) = 7j; — ;0 (2.2)

where §; = y; — F(y;|X;) and P; = P; — E(P;|X;). go stands for all of the unknown real
values of nuisance parameters. go is a vector of gg,(X;) (or E(y;|X;)) and go,p(X;) (or
E(P;|X;)) at this stage.

As in the previous discussion, W; and the interaction term between W; and X;; are all
endogenous. Following the classic endogenous variable estimation, a vector of instruments,
including the random assignment Z;, is introduced. For instance, in the Oregon Medicaid
health experiment, the instrument is the lottery outcome?. We maintain the conditional
mean independence assumption for the random assignment. With valid instrument and

exogenous control variables, the conditional moment restriction is
E(E¢|Xi, Zz) =0 a.s. (23)

In our setting, we look at the single treatment case where the controls may be correlated
with the instruments. With traditional estimators such as GMM or 2SLS, 1+p; instruments
are needed to identify (and estimate) the slope parameters associated with W; and the
interaction terms W; - X;1. GMM will use Z; (the random assignment) and the interaction
terms Z; - X;1 to estimate the key parameters.

However, if there is little variation in X;1, the Z; - X;1 is less informative, or if we use a
second instrument that is (highly) correlated with the valid Z;, the GMM method will fail to
provide reliable estimates: intuitively, it is similar to a weak instrument problem. With only
one valid instrument, GMM encounters the problem of how to generate new moments when
we need to estimate more than one parameter. With only one valid instrument and two
parameters to estimate, there is under-identification, and GMM cannot be implemented.
We will show that our estimation strategy, which only relies on using one valid instrument
(e.g. the random assignment Z;), delivers reliable inference on both parameters.

Further, when it comes to the interpretation of the heterogeneous treatment effects, when
using two or more instruments, additional assumptions are needed because the traditional
monotonicity assumption (as in Imbens and Angrist (1994)) is only for one instrument. For
our setting, in the simplest case where X;; is one dimensional (with values -1 or 1), if we
use instruments Z; (with values 0 or 1) and Z; - X;1, then there are two types of compliers.
The first kind of compliers are the individuals who will accept the treatment if and only if
Z; is one regardless of the values of X;1. The second kind of compliers are the individuals

who will accept the treatment if and only if Z; is one and Xj; is positive.

2In the experiment, the lottery winners are allowed to enroll in the Medicaid program. Not every lottery
winner enrolled. The treatment variable is the actual enrollment status.
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Hence, if we want to use LATE interpretation as in Imbens and Angrist (1994) then we
cannot include the interaction term to measure the heterogeneous treatment effects. If we
need to estimate the interaction term, then we need to use the interaction term between the
instrument and covariates as extra instruments. As a consequence, the types of compliers
will affect the interpretation of LATE. This interpretation problem is discussed further after
our formal Assumption 4(v) is introduced.

This dilemma can be solved by employing the conditional moment restriction directly.
The conditional moment restriction contains all of the information no matter the number
of instruments inside. Hence, the conditional moment based approach enables us to use one
instrument Z; (e.g. the random assignment) only to identify and estimate slope parameters
associated with both W; and W, - X;;. The Bierens type estimator is a conditional moment
based approach which transforms the conditional moment into an infinite number of un-
conditional moments using complex exponential functions. See Bierens (1982), Antoine and
Lavergne (2014), and Antoine and Sun (2021).

Elej (6o, g0)e’ %] = 0Vt € R% — E(¢j (60, 90)|Z;) = 0 a.s. (2.4)

The population objective function defined in Equation (2.5) below is based on the previous
equation. Inside the objective function, u(t) is a strictly positive measure on the vector ¢.

Z; stands for the vector of instruments. 3

Maclt,9) = [ 1Ble;(0,9)e" %) Pdu(t) (25

The objective function involves the norm of a complex function. To estimate 6y we need to
find the derivative of the norm of the complex function, which is difficult to compute. Under
the independent assumption for the population, the objective function has an alternative

expression.

Vi #1,

M (0,9) = Elej(0,9)e(8, 9)k;,;] with w;; = - ' (Zi=20) qu(t) (2.6)

The objective function defined in Equation (2.6) is a function of the parameters 6 we

are interested in and the nuisance parameters g as in the Equation (2.2) after the Robinson

transformation. With Regularity Assumptions provided in the following, 6y is the unique

minimizer of the objective function M (0, go) where go is a vector of go, (X;) (or E(y;]X;))
and go,p(X;) (or E(P;|X;)) at this stage.

37, denotes the general vector of instruments. If we only use one instrument, Z; will be the random
assignment. If we use a vector of instruments, Z; will be the random assignment and the interaction term
between random assignment and covariates.
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Assumption 4. (Regularity assumptions)

(i) E(ei| X, Z;) = 0.

(ii) E(P}|Z;) # 0 a.s. (with probability 1) with P; = P; — BE(P;|X;).

(iii) E(P;P}) is nonsingular.

(iv) Let fz(.) denote the density function of Z;. We assume that E(Pj|Z; = )fz(.) is Ly
for some 1 < ¢q < 2.

(v) for all possible z1, z2, either E(W;|Z; = z1) > E(W;|Z; = z2) for all i, or E(W;|Z; =
z21) < E(W;|Z; = z9) for alli.

(vi) (y1, Wi, X1, Z;) is an independent and identical copy of (y;, W;, X;, Z;).

(vii) Let p be a given strictly positive measure on R%. Let k(.) be the Fourier transform
induced by p, k(Zj—2)) = [gq. €' %=2)du(t). We assume that k(.) is a symmetric bounded

density function on R% and that its Fourier transform is strictly positive.

Assumption 4(7) is the exogeneity assumption for the controls and instruments. In the
potential outcomes setting, Assumption 4(7) is also the Random Assignment Assumption.
The model form implies the Exclusion Restriction Assumption as in Imbens and Rubin
(2015), that is, the value of the instrument does not affect the potential outcomes directly.
Assumption 4(7) is the relevant instrument assumption. Assumption 4(#4) and 4(iv) guar-
antee the identification of the parameters that we are interested in. Robinson (1988) also
imposes the same assumption as Assumption 4(7). Assumption 4(wvii) is for the measure
1(.). These conditions in Assumption 4(wvii) are not very restrictive. There are many dif-
ferent available measures. We use the CDF of Gaussian distribution in simulations and
applications.

The Monotonicity Assumption (or Assumption 4(v)) needs more investigation. Assump-
tion 4(v) is a multivariate extension of the Monotonicity Assumption from Imbens and
Angrist (1994). It is a condition that assumes all individuals make the same choice if they
are given the same options. That is, even if there are two types of compliers in reality, As-
sumption 4(v) assumes that only one type exists. Recall that when individuals accept the
treatment based on the value of the covariate inside the interaction term, they are different
compliers. If we only use one instrument, Assumption 4(v) will simply be the Monotonicity
Assumption. The interpretation of the parameters 6,0 and 6,0 are associated with the
average treatment effect of the compliers who make their choices based on the result of
the random assignment. If Z; is a vector of instruments, Assumption 4(v) still ensures that
there is only one type of compliers. The interpretation of the parameters 0,0 and 0,0 is
connected with the average treatment effect of that kind of compliers. We will show that
our estimator can be reliably implemented with only one instrument. In our simulations and
applications, we will provide results using one and multiple instruments for comparison.

Under Assumption 4, 8y is the unique minimizer of
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when g = go, because F(¢;|Z;) = 0 with probability 1. Without replacing the nuisance
parameter g with its true value gg the First Order Condition of My, (0, g) is

E((PJ - gP(Xj)) i — gy(Xl) — (P - QP(Xl))/e]lijJ) =0 (2.7)

When g = go, gp(X;) becomes go p(X;) or E(F;|X;) and gy(Xi) is goy(Xi) or E(y|Xy),
the FOC becomes:

E[P;(5 — P/0)rj)) = 0 (2.8)

0y is identified under a strong identification assumption and Assumption 4. We leave
the formal discussion to Proposition 3. The FOC defined in Equation (2.8) provides an
explicit form for #y. The sample analog of the explicit form for 6y under Equation (2.8)
is a direct extension from Antoine and Sun (2021) by allowing interaction term inside the
parametric part of the model and the expression for g is provided in the Appendix Section
3. Antoine and Sun (2021) provide the estimator for the parameter in front of the treatment.
It is a special case of Lavergne and Patilea (2013) when the bandwidth inside &;; is fixed.
Lavergne and Patilea (2013) show that such an estimator is consistent and asymptotically
normal. However, since the nuisance parameter gy is unknown, the estimator based on the
sample analogue of Equation (2.8) is infeasible and denoted as én,w To obtain the feasible
estimator, we need to estimate the nuisance parameters in the first step. Antoine and Sun
(2021) replace their nuisance parameters with Nadaraya-Watson estimators, and show that
with proper assumption on the bandwidth, the infeasible and feasible estimators share the
same asymptotic properties. To satisfy the assumption on bandwidth, the Nadaraya-Watson
estimator imposes one constraint on the number of covariates. We will discuss this constraint
in the later sections about feasible estimators. Using Nadaraya-Watson estimators or other
non-parametric estimators, with regularized conditions, such as the Lasso method, the bias
introduced in estimating the nuisance parameters may cause bias in the second stage where
we estimate the key parameters.

We propose a new FOC to estimate the 6y, which extends the Neyman-orthogonal
estimator (Chernozhukov et al. (2018)) to the U-statistic setting. Our original FOC defined
in Equation (2.7) is not orthogonal to the nuisance parameter, so the bias in the first
step will affect the estimate of the key parameter. This is shown in the Appendix. The
Neyman-orthogonal method is constructing a new FOC which is orthogonal to the nuisance
parameters introduced in the first step. The new FOC has all partial derivatives with respect
to the nuisance parameters equal to zero, in this way it is orthogonal to the bias of the
nuisance parameter (or function). The definition of the partial derivative with respect to a
function is provided in Chernozhukov et al. (2018). A similar method is used in Nekipelov
et al. (2018).
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After Neyman-orthogonalization, the new FOC for 6y becomes insensitive to the bias
of the estimator for nuisance parameters. It is sensitive to the square of the bias. As long
as the bias is op(n_l/ 4), we still have a y/n-asymptotically normally distributed estimator
for the key parameter. This order for the bias is not an issue, because there are still many
estimation methods to choose from, for instance, the Lasso, Sieves, Random forest, and so

on.
The new FOC for 6, corresponding to Equation (2.7) is in the following.

5 (X
E[V(D;0,90)] = E |:<Pj — 90,p(Xj) — m> Wi — 90,y(X1) — (P — go,p(X1))' 0],

=0 (2.9)

with gq g (X1) = E[(Pm — go,p(Xm))km| Xi] and gox,,  (X1) = Elkp ] Xi].

9.5, (Xi) and go,,, ,(X1) are two additional parameters inside the nuisance parameter
vector. At this stage, there are four nuisance parameters inside the vector. With extra two
nuisance parameters, the FOC defined in Equation (2.9) has a partial derivative with respect
to all nuisance parameters equal to zero. This is shown in the Appendix.

Equation (2.9) gives us the identification of the true key parameter and the forms of the

infeasible and feasible estimators.

Proposition 3. (Identification of 6y using the orthogonalized FOC)
Under Assumption 4 and FOC defined in Equation (2.9)

-1
0y =E lﬁj’l (15] _ gOJsm(Xl)) ]3/] E [/ij,l (13] _ W) ﬂl]
90,5, (X1) 90,k (X1)

If we plug Equation (2.2) into the formula for 6§ with error term ¢;, we will have 6§ = 6.
The sample analog of 6§ under Equation (2.9) (in Proposition 3) delivers an estimator for
6. Because we have two distinct individuals inside the expectation (e.g., j and 1), we need
to replace the expectation by the average of a double summation to obtain the infeasible
estimator under Equation (2.9). The closed-form expression for the infeasible estimator,

On.0, is:

1
5 90, By (X1)
o= [y S Sl e (s — 225 ]
1 r 90,5, (X1) ~
|:n(n—1) 2?21 Z?;é] Ry (PJ - goo,:;,l(Xl)) yl]

To distinguish the infeasible estimators under two different FOCs, the infeasible esti-
mator under orthogonal FOC (Equation (2.9)) is denoted as 6, ,. Recall that the infeasible
estimator under Equation (2.8) (from Antoine and Sun (2021)) is 6y, and the expression

is shown in the Appendix Section 3.
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3 Large Sample Theory

In this section, we show the asymptotic properties of the infeasible estimators under the
Neyman-Orthogonalized FOC. Then, we introduce the D-RSMD estimator (Debiased Robinson-
SMD) as the feasible estimator under the Neyman-Orthogonalized FOC, which shares the
same asymptotic properties as the infeasible estimator. The asymptotic properties of the
infeasible and feasible estimators under non-orthogonal FOC from Antoine and Sun (2021)

are in the Appendix.

3.1 Asymptotic Properties of the Infeasible Estimators

The infeasible estimators under both FOCs have explicit forms and are linear in ¢;. The SMD
estimator introduced in Lavergne and Patilea (2013) has a general form for the asymptotic
properties even if there are no explicit forms for these infeasible estimators. Our work here
extends Lavergne and Patilea (2013) to allow for nuisance parameters and introduces the

debiased method to limit the impact of their estimation.

Proposition 4. (Consistency and Asymptotic normality of én,o)
Under Assumption 4 and iid assumption for the sample, 9~n70 s consistent for 0y, that is

én,o 2 0y, and asymptotically normally distributed,

\/ﬁ(emo - 90) i) N <0, A_IVCLT[hl (pl, €1, Zl, Xl)] (A_l)/>

. = 90, By (X1)
with A=FE |:I€j7l (Pj - fm> PZI}

90,5, (X;)

and Var [h(Pj, €5, Z;, X;)| = Var [/R o (Xj)E[e“/Zl]> d/l,(t):|

e—it'zjej (E[eit/zlpl] _

Var stands for the variance-covariance matrix for the vector h; (]51,61, Z1,X1), which
is a conditional mean function defined in Hoeffding (1948b). The expression of hy(Py, €1,
Z1,X1) is shown in the proof section of the Appendix. The asymptotic properties of émo
are based on the corresponding properties of U-statistics introduced by Hoeffding (1948b).
See Theorem 7.1. The expression for the middle term of the asymptotic variance looks
complicated because the x;; is expressed explicitly. If we show the asymptotic variance
with k;;, the form will be simple. The form for the asymptotic variance is shown in the
Appendix.

Additionally, we show the similar consistency and asymptotic normality properties of
én,u in the Appendix. Because 9~n7u is a direct extension from Antoine and Sun (2021),
we only list the expressions and theorems. The detailed proofs for the properties of énu
are shown in the Appendix of Antoine and Sun (2021). The comparison between Neyman

orthogonal estimators and non-orthogonal estimators is discussed in the next section.
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3.2 Feasible Estimator

The infeasible estimator 9~n70 depends on unknown nuisance parameters: 90.5,, (X1), 90,km 1 (X1),
E(y| X)), and E(P|X;). All of the nuisance parameters are conditional expectation func-
tions on covariates. Hence, in practice, we need to find estimators for these conditional
expectation functions to obtain the feasible estimator. Replacing every nuisance parameter
go with estimators § such that § converges to gg at a rate of op(nfl/ 4) will deliver the
feasible estimator on 6y with \/n asymptotic normality.

In this section, we are concerned with models with P variables inside X; where P can
be large. If P is large, we need to assume sparsity for the nuisance parameters, that is, the
conditional means can be described with only a few non-zero parameters in front of Xj.
The number of non-zero parameters, s, is allowed to grow at the rate of 0,(n'/2/log(P)).
Under the assumed rate for sg, the Lasso estimation has the following property (see van de

Geer (2016)) on the order of mean square error

I1X(3 - o)/ = 0, (2220)

where 3 is the Lasso estimator (Chernozhukov et al. (2018) and van de Geer (2016)) and
[|.]l2 is the £3 norm. When 3 < P < n, we can still use the Lasso method with a higher
assumed rate for sg to select variables. If P < 3, we can use Nadaraya—Watson estimator to
estimate the nuisance parameter with a second degree kernel. P < 3 is a constraint which
is unlikely to hold in practice. Our estimation procedure allows us to handle larger values
of P unlike previous literature: for instance, Li and Racine (2007), Robinson (1988), and

Antoine and Sun (2021).
After replacing every nuisance parameter with its estimate, we have the feasible estima-

tor émo, that is, D-RSMD estimator:

n n —_— 71 n n Go. b
N 1 s 90,5, (X)) \ 37 1 B J0.p, (X0 \ 2
Ono=|——= ki1 | Pj — —=——%~ | P, n(n —1) i\ e ) !
o [ ST (- E2R) | [ S (- 22 )
Py s =1 l#j5 '

(3.10)
G0 X0\ B i
0,7 (K1) P, ] is invertible.
gO,ﬁm’l(Xl)

This leads to the algorithm of our D-RSMD estimation procedure.

since E[k; (]Sj -

Algorithm 3.2. (Implementation of the D-RSMD estimation procedure)

(i) conduct Robinson transformation. This step is to estimate the conditional means inside
Pj and ﬁl. Any estimators § with § converges to gg at a rate ofop(n_1/4) can be applied,

for instance, the Lasso method.

(it) calculate the r;;. Inside kj;, pu(.) is the CDF of the Gaussian distribution. Because

the Fourier transform of the Gaussian is still Gaussian, k;; is easy to compute.

32



iii) estimate the nuisance parameters g, 5 (X;) and go . (X;) inside the orthogonal FOC.
0 Pm sFm,l
The orthogonal FOC is also orthogonal to the nuisance parameters, so we use the Lasso

method to estimate these parameters.
(iv) calculate the estimate based on Equation (3.10) for 6, ,.

In the approach from the algorithm, all of the nuisance parameters for D-RSMD esti-
mators in the later sections are estimated by the Lasso method with cross validation. The
maximum degree of polynomial for the nuisance parameters is 5, which guarantees that the
nuisance parameters can be approximated by 5 degree polynomials in all controls and Lasso

with cross validation helps us select the controls and their polynomials.

Assumption 5. § converges to gg at a rate of op(n_1/4). For the Lasso method, the number
of non-zero parameters sy grows at the rate of o,(n'/?/log(P)). For the Nadaraya-Watson
estimator, \/ﬁ( %= hi+ [WD = o(1) where h is the bandwidth.

Theorem 3.3. (Consistency and Asymptotic normality of the D-RSMD estimator: én,o)
Under Assumptions 4 - 3 and iid assumption for the sample, 01,170 is consistent, and has an

asymptotically normal distribution, that is,
\/ﬁ(én,o — (90) i) N <0, A_1Var[h1 (]51, €1, Zl, Xl)] (A_1>,>

From Theorem 3.3, the feasible and infeasible estimators share the same asymptotic
distribution and are consistent. It is because under Assumption 5, the bias introduced in
the first step will not affect the second step substantially. This is the same convergence rate
assumption used in Chernozhukov et al. (2018). We expand these properties to the Bierens
type estimators.

The asymptotic properties for the feasible version of énu or the R-SMD estimator from
Antoine and Sun (2021) are in the Appendix Section 3.

The asymptotic distributions of the D-RSMD and R-SMD estimators are not the same.
When there are many covariates, the D-RSMD estimator using the Lasso for the nuisance
parameters works. R-SMD is generated under the condition that the number of covariates
(P) is small. When P is small, the D-RSMD estimator is less biased than the R-SMD
estimator if they both estimate the nuisance parameters using the same Nadaraya-Watson
estimator. There are no analytical results for comparing the asymptotic distributions. In
Chernozhukov et al. (2018), the comparison between Neyman orthogonal estimators and
non-orthogonal estimators is shown with simulations. We also present the results on bias in

Section 4, i.e., the simulation section.
Under heteroskedasticity, the estimator for the variance of the D-RSMD estimator is

OP 0, P, X ' 2 /1—1
n(n—1)C Z ZKJZ<P1 0.2 (X5) ) ZW(PZ gognl((X)l)>)gj)[n(n—1)cn] (3.11)

=1 gOnmj
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. _ 1 n n = g/’Tn(Xl) =/
Wlth Cn = m j=1 Zl;ﬁj K:j,l (Pj — m) Pl
4 Simulation Study

In this section, we conduct 5000 Monte-Carlo replications for two types of Data Generating
Process (DGP) to investigate the properties of our D-RSMD estimators for the parameters
in the heterogeneous treatment effects of a partially linear model when the number of
controls in X; is greater than or equal to 1. Recall that the partially linear model with

heterogeneous treatment effects is in the following.

vi = OuwoWi+ Wi X40u0 + fo1(Xi) + € (4.12)
Wi = I(fo2(Xi, Z;) > v;)

W; - X;1 is the interaction term between the treatment and a subvector of covariates.
The benchmark model has a nonlinear fp1(X;) and a nonlinear function fy2(X;, Z;). I(.)
is the indicator function. It will take the value one if the statement inside is true and zero
otherwise. In all of the simulations, the key parameters 6,0 and 8,,,0 are 2 and 3 respectively,
and we use the same benchmark model.

With the chosen parameter values, the benchmark model is in the following.

X; = X;+4047

.

P P
= I(BZ;+4Z} + > o1gXgi+ Y asg X3 > —vi)
q=1 q=1

P P
yi = 2Wi43WiXu+ Y BigXyi+ Y Bag Xy + €

=1 q=1
where agy = 2, B2 = =3, a1g = P14 = 1 for ¢ < S with S the number of non-zero parameters
and P the number of covariates. Because there are nonlinear terms in the model, S is chosen
to be a half of sg, the sparsity level. azq = fB24 = a1y = B1g = 0 when ¢ > §.

If Boq is O for all g, y; is linear in X;. Otherwise, the model is partially linear, because

X; enters nonlinearly. The covariate X; is the sum of random variables X generated by a
standard normal distribution (or multivariate standard normal distribution) and a fraction
of the instrument because our model allows for the correlation between covariate X; and Z;.

In the benchmark model, we choose the fraction level to be 0.4. The errors (e, v) are bivariate

1 4/9
normal distributed with mean 0 and covariance matrix 1 such that ¥ = ( 4/9 { >

The correlation between € and v makes the treatment W; an endogenous variable. In the

DGP, y; is not dependent on Z; directly. The exclusion restrictions assumption is satisfied.
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Also, we generate X and Z; separately and independently because X is continuous and
Z; is categorical.
When there is only one control variable X;, the two nuisance parameters are in the

following.

for1(Xi) = BuX;+ BuX?
foo(Xi, Z)) = 3Zi+4Z + anXi + an X}

We consider two types of DGPs which mainly differ in how the treatment variable is gen-
erated, e.g. using either a categorical instrument with three values, or a binary instrument.
Both are motivated by our applications. The first kind of DGP uses a categorical instrument
to generate a treatment variable. Specifically, the instrument variable has three values, 0,
1, and 2, and can be interpreted as the sum of two binary variables. This is motivated by
our application based on Card (1993) where we construct a similar instrument by adding
the indicator of approximation to a four-year college to the indicator for two-year college.

The second type of DGP employs a binary instrument to generate a treatment vari-
able. Correspondingly in Card (1993), this is the indicator of approximation to a four-year
college . We generate the binary instrument based on the distribution of the indicator of
approximation to a four-year college.

For each DGP, the benchmark case considers 3000 observations and 30 control variables.
This is once again in line with both applications. For instance, in Card (1993), there are
3010 valid observations and 27 covariates®. We will also consider different sample sizes and
a small number of controls.

We report and compare the simulation results for the following estimators.
(i) the D-RSMD estimator proposed in this paper.

(ii) the R-SMD estimator (from Antoine and Sun (2021)) when the number of controls is
less than 3.

(iii) the R-GMM estimator which combines Robinson Transformation with GMM. In the
Application section, it is called GMM-Lasso, where we use the Lasso method to esti-

mate the nuisance parameters after the Robinson transformation.
(iv) the GMM estimator that treats fo1(X;) as a linear function in Xj.

(v) the GMM (Oracle) estimator that uses the true fo1(X;).

“In the Oregon Health Insurance experiment the lottery variable is also a binary instrument.

® Analyzing the Oregon Health insurance experiment, we split the data set into three groups based on
age. Each group has about 6000 observations and 21 covariates.
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The nuisance parameters in the first step of the Algorithm for the D-RSMD estimator are
estimated by the Lasso method because we will use the same estimator when the number of
controls is 30. The tuning parameter of the Lasso method (e.g. the penalty term) is selected
by cross-validation (see e.g. van de Geer (2016) and Chernozhukov et al. (2018)).

The R-SMD estimator can only be implemented in the first simulation design when the
number of control variables is small (e.g. equal to 1). We apply the Nadaraya-Watson esti-
mator, with the rule of thumb bandwidth h = 0,772 to estimate the nuisance parameters
in the first step of the R-SMD estimator. D-RSMD and R-SMD estimators both use the
CDF of a standard Gaussian distribution as u(.) inside x(Z; — Z;) = [pa- et (Zi=20) duu(t).
The choice of yu(.) satisfies Assumption 4(vi7).

For each DGP, we report the results for the D-RSMD estimator using only one instru-
ment and two instruments in the following subsection. For the R-SMD estimator, we also
report the results for both cases. For GMM type estimators, to estimate two parameters,
we need to use at least two instruments. The following is the list of available instrument

sets we use for estimators.

(i) Zi: the binary instrument.

(ii) Za: the sum of Z; and another binary variable. There are three values in Zs.
(iii) (Z1,Z1X1): Z1 and the interaction term between Z; and the covariate.
(iv) (Za,Z2X1): Z3 and the interaction term between Zs and the covariate.

(V) (Z1,Z2): Z1 and Zs. The correlation between Z; and Z3 is around 0.7.

In all simulation designs, we report the Monte-Carlo Median Bias (Med.Bias), Median
Absolute Deviation (MAD), the median of asymptotic standard error under heteroskedas-
ticity (Med.SE), and the Rejection Rate (RR).

4.1 Results for the Model with a Categorical Instrument

In this section, instrument Z is a categorical instrument with three values. That is, for
the benchmark model, we generate the treatment by using Zs. In the simulation, we set
the same probability distribution for the instrument Z5 as that in the data set from Card
(1993) to provide insights for the empirical results. Additionally, our notations are consistent
throughout the simulation and application parts.

In Table 2.1, we report the simulation results of four D-RSMD, four R-SMD, and six
GMM type estimators for 6,0 and 6,,,0. The sample size is 3,000 and there are 5,000
replications with only one control, that is, P = 1. The table contains the results for D-
RSMD and R-SMD estimators using one instrument, that is, Z; or Zs, or two instruments,
ie., (Z1,21X1) or (Za,Z2X1). Zs is the instrument used in the DGP, so R-SMD using Z,
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or (Zs, Z»X1) will produce better results than it with Z; or (Z1, Z1X;). This is also shown
in the table. The Nadaraya-Watson estimators for nuisance parameters inside R-SMD and
R-GMM estimators when n = 3000 and P = 1 use a bandwidth of 0.2026,. GMM type

estimators are generated using two instruments (21, Z1X1) or (Z2, Z2X1).

911;0 0wz0

Estimator Instrument | Med.Bias MAD Med.SE RR | Med.Bias MAD Med.SE RR

D-RSMD 7 -0.007 0.069 0.103  0.047 0.019 0.036 0.052  0.067
D-RSMD Zy -0.017 0.129 0.211 0.035 0.034 0.313 0.523  0.035
D-RSMD (Z1,21X1) 0.002 0.077 0.112  0.050 -0.008 0.089 0.130  0.044
D-RSMD (Za, Z2X1) 0.001 0.045 0.065  0.048 -0.006 0.055 0.077  0.054
R-SMD 7 -0.207 0.072 0.236  0.007 0.424 0.065 0.449  0.000
R-SMD Zy 0.027 0.172 0.280  0.022 -0.060 0.416 0.693  0.018
R-SMD (Z1,21X1) 0.064 0.077 0.127  0.052 -0.112 0.083 0.220  0.003
R-SMD (Z2, Z2X1) 0.028 0.039 0.072  0.031 -0.053 0.048 0.076  0.079
R-GMM (Z1,7Z1X1) -0.044 0.076 0.182  0.003 -0.239 0.089 0.245  0.026
R-GMM (Za, Z2X1) -0.015 0.042 0.105  0.001 -0.172 0.053 0.156  0.043
GMM (Z1,72:1X1) 2.571 0.318 0.472 1.000 -6.003 0.415 0.618 1.000
GMM (Za, Z2X1) 2.176 0.231 0.322 1.000 -5.233 0.319 0.454 1.000
GMM (Oracle) (Z1,71X1) 0.000 0.076 0.113  0.048 -0.003 0.093 0.137  0.045
GMM (Oracle) (Za, Z2X1) 0.000 0.042 0.061 0.049 0.000 0.053 0.078  0.057

Table 2.1: Categorical instrument when P =1 (n=3000)

Note: Simulation Results for 6,0 and 6,0 in the benchmark model using D-RSMD es-
timator 5000 replications. We report the Monte-Carlo Median Bias (Med.Bias), Median
Absolute Deviation (MAD), the median of asymptotic standard error under heteroskedas-
ticity (Med.SE), and Rejection Rate (RR) using a 5% t-test.

Recall that Z, is the instrument generating the treatment variable. Intuitively, estima-
tors applying Zs or (Z2, Z2X1) will produce better results than those using Z; or (Z1, Z1X1)
do. Indeed, this is the case for D-RSMD with (Zs, Z2X;), R-SMD, R-GMM, GMM, and
GMM (Oracle). From Table 2.1, comparing D-RSMD using (Z2, Z2X;) and GMM (Oracle),
we find that all results are close. It suggests that D-RSMD with (Z3, Z5X1) is as good
as GMM (Oracle). D-RSMD with (Z3, Z2X;) has a lower median bias than R-SMD with
(Za, Z3X1), which means that the Debiased part in D-RSMD works. Applying the debiased
procedure reduces the effect of bias on the estimate introduced by the nuisance parameters.
In the table, D-RSMD and R-SMD with Zs also work. MAD and Med.SE for D-RSMD are
smaller than those for R-SMD. RR for D-RSMD is closer to 5% than R-SMD. The Med.Bias
is higher for D-RSMD with Z5 suggests that the bias introduced by the new nuisance pa-
rameters in the debiased procedure has higher effects on the estimate than D-RSMD with
(Za, Z2X1). It is reasonable because the new nuisance parameters in the debiased process
inside D-RSMD are the conditional expectations of the x(Z; — Z;) where instruments are.

When we use the sets of instruments not in the DGP, e.g., D-RSMD with valid Z; or
(Z1,Z1X1), the D-RSMD type estimators still work. Some of the results are better than the
D-RSMD with Z3 or (Z2, Z2X1). For instance, The MAD and Med.SE for D-RSMD with Z;
are smaller than those for D-RSMD with Zs for both parameters. This property disappears
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in the later sections, so it can be case-specific. This also implies that D-RSMD works with
various instruments. With valid Z; or (7, Z1X1), R-SMD or GMM type estimators for
fwo and 0,0 have much higher median biases than the same estimators with valid Zy or
(Za, Z5X1). It suggests that choosing the instrument outside of the DGP will cause problems
for R-SMD or GMM type estimators.

In the empirical application, there are more than 20 control variables. Hence, the bench-
mark model in the simulation considers 30 controls to mimic the situation. When there are
30 controls, the controls are generated by a multivariate normal distribution with mean
0 and identity matrix as a covariance matrix. Following the sparsity assumption in As-
sumption 5, when P = 30, we choose sparsity level to be 10, that is, azq = 2, f2q = —3,
a1q = P1g = 1 when ¢ is less than or equal to 5. We still use the benchmark model in the
DGP.

We report the table of robustness check when the model is not sparse, that is, all 5o,
are not zero, in Supplementary Appendix.

Table 2.2 reports the simulation results of D-RSMD, RSMD, and GMM type estimators
for the key parameters 6,0 and 6,0 when the sample sizes are 2,000, 3000, or 5000. All of
the simulation studies have 5000 replications. The table contains the results for D-RSMD
estimators using one instrument Z; or Zs or two instruments, i.e., (Z1, Z1X1), (Z2, Z2X1),
and (Z1, Zs). For the GMM type estimators, we report the results using two instruments,
that is, (Zo, ZoX1) or (Z1, Z2).

When relying on one instrument (e.g., the categorical instrument) in the estimation
procedure, only D-RSMD type estimators work. We expect that estimators using Zy will
have generally better performance than the same estimators using Z; in terms of smaller
Med.Bias, MAD and Med.SE. RR should be closer to 5% for estimators using Zs. Indeed,
for 6,0, D-RSMD with Zs follows this expectation. Although for 6,0, D-RSMD using Z;
has lower Med.Bias, MAD and Med.SE, the RR is downward bias and not that close to 5%.

When we work with two instruments, i.e., (Z1,21X1), (Z2, ZoX1), or (Z1,Z3), results
for D-RSMD and GMM type estimators are in the 3000 observations panels of Table 2.2.
The GMM (Oracle) estimator is a GMM estimator using the correct second degree polyno-
mial for the nonlinear fj 1(X;). Thus, it has relatively better performance with instrument
(Za,Z5X1), in terms of much smaller bias, lower standard errors and higher t-statistic. It
is also shown in the table. However, RR is slightly higher. This higher RR disappears when
we have a larger number of observations. See the panel with n = 5000.

It is no surprise to see that using another set of instruments (Z, Z3), the GMM (Oracle)
estimator does not work so well. It is because the instruments in (Z;, Z2) have a higher
correlation. If we check the raw estimation results generated by GMM (Oracle) with (Z1, Z2),
we will see many extreme cases. The same issue happens to GMM as well. However, it is
not a big problem for the D-RSMD estimator. D-RSMD estimators using any instrument

has relatively stable performance. The only problem with the instrument selection problem
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Instrument with 3 values (P = 30)

Estimator Ins Med.Bias MAD Med.SE RR
D-RSMD Zo -0.041 0.115 0.146  0.064
n=2000 6,0 D-RSMD (Za, Z2X1) -0.059 0.119 0.144  0.072
GMM (Oracle) (Z2, Z2X7) -0.006 0.110 0.160  0.050
D-RSMD Zy -0.019 0.106 0.158  0.064
n=2000 60,0 D-RSMD (Z2, Z2X1) -0.033 0.079 0.101  0.064
GMM (Oracle) (Z2, Z2X1) 0.001 0.059 0.087  0.053
D-RSMD Z1 0.139 0.765 1.140 0.012
D-RSMD Zy -0.018 0.119 0.158  0.044
D-RSMD (Z1,21X1) -0.115 0.557 0.843  0.025
n=3000 #,, D-RSMD (Za, Z2X1) -0.028 0.100 0.118  0.055
D-RSMD (Z1, Z2) -0.019 0.189 0.267  0.036
RSMD A -0.476 0.773 1.173  0.024
RSMD Zo -0.134 0.178 0.313  0.083
RSMD (Z1,7Z1X1) 0.082 0.790 1.158  0.015
RSMD (Z2, Z2X1) -0.202 0.111 0.190  0.157
RSMD (Z1, Z2) -0.128 0.267 0.411  0.073
GMM (Za, Z2X1) 3.379 0.897 1.354  0.715
GMM (Z1, Z2) 12.082 4.798 7.355  0.230
GMM (Oracle) (Z2, Z2X7) 0.000 0.089 0.130  0.056
GMM (Oracle) (Z1, Z9) 0.003 0.506 0.802  0.004
D-RSMD 1 -0.013 0.091 0.158  0.020
D-RSMD Zo -0.019 0.145 0.236  0.048
D-RSMD (Z1,721X4) -0.015 0.105 0.154  0.037
n =3000 6Ou,0 D-RSMD (Za, Z2X1) -0.023 0.068 0.083  0.059
D-RSMD (Z1, Z9) -0.018 0.274 0.435  0.034
RSMD 7 -0.049 0.101 0.161  0.052
RSMD Zo -0.052 0.231 0.421  0.058
RSMD (Z1,7:1X4) -0.279 0.135 0.260  0.071
RSMD (Za, Z2X1) -0.074 0.054 0.085  0.129
RSMD (Z1, Z9) -0.058 0.374 0.602  0.045
GMM (Za, Z2X1) -5.957 0.509 0.726  1.000
GMM (24, Z5) -26.653  9.961  15.090 0.312
GMM (Oracle) (Z2, Z2X1) 0.000 0.048 0.071 0.052
GMM (Oracle) (Z1, Z2) 0.015 1.065 1.712  0.002
D-RSMD Zo -0.005 0.397 0.694  0.021
n=>5000 6,0 D-RSMD (Z2, Z2X1) -0.016 0.082 0.096  0.053
GMM (Oracle) (Z2, Z2X1) -0.001 0.068 0.101  0.050
D-RSMD Zy -0.028 0.714 1.267 0.022
n =>5000 6Ou,0 D-RSMD (Za, Z2X1) -0.013 0.054 0.066  0.056
GMM (Oracle) (Z2,Z2X1) -0.001 0.037 0.055  0.049

Table 2.2: Instruments with 3 values
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Note: Simulation Results for 6,,0 and 0,,, in the benchmark model using D-RSMD estimator
5000 replications. We report the Monte-Carlo Median Bias (Med.Bias), Median Absolute
Deviation (MAD), median of asymptotic standard error under heteroskedasticity (Med.SE),
and Rejection Rate (RR) using a 5% t-test.

happens to the (Z2, Z9X7) where the RR is higher than 5%. This rejection rate decreases
when we have a bigger dataset. See the last six rows with n = 5000 in Table 2.2.
With a categorical instrument in the DGP, the D-RSMD estimators have the proper

size, much smaller bias than GMM estimators. As the sample size grows, the size distortions



decrease for (Zs, Z2X1). D-RSMD allows us to use any possible instrument sets to estimate
heterogeneous treatment effects. When the correlation between the instruments inside the

instrument vector is high, D-RSMD still works, while GMM generates extreme results.

4.2 Results for the Model with a Binary Instrument

The DGP in this section also follows the benchmark model for the categorical instrument
variable. The only difference is that when we generate the treatment variable, Z; is a bi-
nary instrument instead of a categorical instrument. Hence, in this section, Z; is the true
instrument variable. Instrument sets (71, Z1X1) and (Z1, Z3) contain the true instrument.
We report results in Table 2.3.

The first two panels of Table 2.3 contain the preliminary results when P = 3. D-RSMD
using 77 has the lowest MAD and Med.SE among all of the estimators. Its RR are close to
5% for 6,0 and slightly oversized for 6y,,0. Using the instrument Z (not in the DGP) for
D-RSMD will generate higher MAD and Med.SE than utilizing the correct instrument. D-
RSMD estimator also works when employing (Z1, Z1 X;) and (Z2, ZoX;1). When comparing
D-RSMD estimators, we see that using the instrument from the DGP or the instrument set
including the instrument will generate results with lower MADs and Med.SEs. It is reason-
able because working with the correct variable will increase the precision of the estimate.
The Med.Bias column shows that for 6, the D-RSMD estimators using (Z1, Z1X;) and
(Za, Z5X1) have a higher bias than the other D-RSMD estimators. It suggests that using
the instrument from the DGP directly will generate a lower bias. This property of D-RSMD
also shows in the case where we have 30 controls in the model.

In the simulation, when P = 30, we see similar results as the case with a categorical
instrument inside DGP. For D-RSMD estimators, using Z; or Zy already provides close
or better results than the GMM (Oracle) in terms of lower MAD and Med.SE. Because
the DGP in this section uses the binary instrument, the D-RSMD results with Z; should
be better than the other D-RSMD estimators in terms of the magnitude of the Med.Bias,
MAD, Med.SE. Indeed this is the case. For the RR column, if we compare the Z; results
with Zs ones, we see that the RR is higher in Z;. It is reasonable because the instrument
Z1 has only two values and Z, has three values and Zs is the sum of Z; and another binary
instrument. Zs contains more information. The size distortion problem decreases when we
generate 5000 observations for each replication.

Comparing the results for instrument sets (71, Z1X;) and (Z1, Zs), we see that there
are similar stories as before. For GMM type estimators, (Z1,Z1X1) is the better choice.
For instance, the GMM (Oracle) using (Z1, Z1X1) is the best results for both 6,0 and 6,0
with lowest Med.Bias. GMM type estimators using (Z;, Z2) still generate scattered results
and many extreme cases. The RR for GMM and GMM (Oracle) with (Z;, Z5) is close to 0
for Oz0. Even with the GMM (Oracle) estimator, the correlation between the instruments

inside (Z1, Z2) still causes GMM estimators a big problem.
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If we compare D-RSMD results with GMM (Oracle) estimator, we find that D-RSMD
results with Z7 are close to the Oracle ones for 6,9 in terms of MAD, Med.SE, and RR, that
suggests that with Z; D-RSMD is good enough. For 0,,,¢ estimation, D-RSMD results with
Z is better than the GMM (Oracle) using (Z1, Z1X1) in terms of lower MAD and Med.SE.
It is reasonable, because we use all of the information from the conditional moment, while
GMM (Oracle) only uses two unconditional moments.

Using one binary instrument for D-RSMD generates better results than using two instru-
ments for D-RSMD estimators. It suggests that for D-RSMD, the number of instruments is

not a big problem.

5 Empirical Application
5.1 Estimating the Returns of Education on Wages

To illustrate the proposed process, we use the data set from Card (1993) to estimate the
heterogeneous returns to education. Many works have used the same data set, for instance,
Yanagi (2019), Kitagawa (2015), and Ashenfelter and Rouse (1998). The data is from the
National Longitudinal Survey for young men. The detailed information for the variables is
in Card (1993). In this paper, we use the same dependent variable, log hourly wages and
the same covariates in the baseline model. The education variable in the original work is the
years of education. To investigate the treatment effect of college education, we construct
the college indicator based on whether the years of education are higher than 14 years.
The treatment can be considered as a two-year college degree or higher. It is used in Yanagi
(2019) as well. We also conduct the same analysis for years of education. In Kitagawa (2015)
the author also treats the education variable as an indicator.

The instrument variable used in Card (1993) is a dummy for growing up near a local
four-year college (Z). It is used as an instrument because it is not correlated with the
individual’s ability and increases the probability of attending college. From Kitagawa (2015),
the validity of the instrument is not rejected once the covariates are in the estimation. In
our models and estimators, all of the covariates are included.

We use the covariates in the original study by Card, for instance, experience, experi-
ence squared, age, and so on. In Card (1993), the variables on the family background are
an important group of control variables, including the parents’ years of education, classes
of education, and two indicators for family structure. We incorporate those variables in
the analysis. To illustrate the heterogeneous treatment effects of interest, we use the par-
ents’ education to generate the interaction term. The parents’ education is the average of
father’s and mother’s years of education. A similar control variable is in Ashenfelter and
Rouse (1998). The minimum of parents’ education is 0. Three individuals’ parents have
no education. Twenty-four fathers and fifteen mothers have zero years of education. The

average value of parents’ education is 10.16.
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Binary instrument

FEstimator Ins Med.Bias MAD Med.SE RR
D-RSMD 71 -0.006 0.146 0.215  0.048
D-RSMD Zy -0.004 0.212 0.314  0.043
n =3000 B0 D-RSMD (Z1,Z:1X1) -0.026 0.164 0.247 0.048
P=3 D-RSMD (Za, Z2X1) -0.035 0.230 0.340  0.049
GMM (Oracle) (Z1,7Z1X1) -0.004 0.164 0.250  0.048
D-RSMD 7 -0.005 0.039 0.057  0.052
D-RSMD Zy -0.004 0.110 0.182  0.050
n=3000 6,0 D-RSMD (Z1,Z1X1) -0.004 0.124 0.186 0.047
P=3 D-RSMD (Za, Z2X1) -0.001 0.200 0.301  0.040
GMM (Oracle) (Z1,Z1X1) -0.001 0.126 0.191  0.047
D-RSMD A 0.028 0.288 0.427  0.045
D-RSMD Zy 0.033 0.524 0.773  0.030
n = 3000 6Ou0 D-RSMD (Z1, 21 X1) -0.259 0.291 0.431 0.082
P =30 D-RSMD (Z1, Z9) 0.041 0.333 0.493  0.041
RSMD 71 0.128 0.408 0.563  0.072
RSMD Zy 0.154 0.555 0.790  0.039
RSMD (Z1,Z:1X1) 0.230 0.463 0.572  0.110
RSMD (Z1, Z9) 0.140 0.438 0.605  0.060
GMM (Z1,Z1X1) 7.471 2.968 4.368  0.356
GMM (Z1, Z9) 6.857 5.691 11.948  0.043
GMM (Oracle) (Z1,Z1X1) 0.007 0.266 0.392  0.048
GMM (Oracle) (Z1, Z2) -0.011 0.635 1.424  0.003
D-RSMD A -0.012 0.045 0.059  0.064
D-RSMD Zy -0.012 0.126 0.206  0.037
n=3000 60,0 D-RSMD (Z1, 21 X1) 0.005 0.111 0.163  0.049
P =30 D-RSMD (Z1, Z2) -0.013 0.181 0.287  0.039
RSMD 7 -0.020 0.053 0.065  0.105
RSMD Zy -0.024 0.147 0.302  0.018
RSMD (Z1, Z1X1) -0.337 0.137 0.273 0.144
RSMD (Z1, Z9) -0.020 0.195 0.328  0.033
GMM (Z1, 21 X1) -6.735 0.953 1.430  0.999
GMM (Z1, Z2) -4.444 21.525  47.007  0.000
GMM (Oracle) (Z1,Z1X1) -0.004 0.107 0.157  0.049
GMM (Oracle) (Z1, Z9) 0.114 2.502 5.548  0.000
D-RSMD 7 0.003 0.209 0.314  0.052
n=>5000 6,  D-RSMD (Z1,21X1) -0.158 0.210 0.308  0.083
P =30 GMM (Oracle) (Z1,Z1X1) 0.001 0.203 0.304  0.051
D-RSMD A -0.005 0.029 0.040  0.062
n =>5000 04,0 D-RSMD (Z1, 21 X1) 0.006 0.078 0.120  0.045
P =30 GMM (Oracle) (Z1,21X1) 0.002 0.080 0.121  0.045

Table 2.3: Binary Instrument
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Note: Simulation Results for 6,,0 and 0,,, in the benchmark model using D-RSMD estimator
5000 replications. We report the Monte-Carlo Median Bias (Med.Bias), Median Absolute
Deviation (MAD), median of asymptotic standard error under heteroskedasticity (Med.SE),
and Rejection Rate (RR) using a 5% t-test.

To investigate the properties of different instrument sets, we construct five instrument
sets. In three of them, we utilize the information from the dummy of approximation to a
two-year college. For instance, Zs is the sum of two dummies: growing up near a four-year

college and a two-year college. Z5 generally implies that the more local colleges are, the



higher the value is. There are three values, 0, 1, and 2, in Zs. There are two reasons why Zs
is generated. The first is that we will use a categorical instrument Z3 to demonstrate the
properties of the new estimator. We also use Z; and Z5 as an instrument set to show that
the new method works well with highly correlated instruments. The sets of instruments we

considered in this subsection are as follows:

(i) Zi: the indicator of approximation to a four-year college.

(ii) Z: the sum of the indicator of approximation to a two-year college and Z;. There are

3 values in Zs.
(iii) (Z1,Z1X1): Z1 and the interaction term between parents’ education and Z.

(iv) (Z1,%2): Z1 and Zs. The correlation between Z; and Zs is around 0.729.

We examine four models in the following. Because we have two types of D-RSMD esti-
mators in this section, we denote the one used in simulations as DRSMD-Lasso. The other
one is DRSMD-2SOLS.

(i) DRSMD-Lasso estimators:

Yi = OuwoWi+ Wi X[10uz0 + fo1(Xi) + €
Wi = I(fo2(Xi, Z;) > v;)

(i) DRSMD-2SOLS estimators:

27
yi = OuwoWi+ Wi X[10ue0 + > BpXi+ €
p=1
Wi = I(fo2(Xi, Z;) > v;)
(iii) GMM estimators:
27
Y, = ngVVi + W;- X{lgwxﬂ + Z /Bsz + €
p=1
27
Wi = I(azZi + Z Othi > U,‘)
p=1

(iv) GMM-Lasso estimators:

Yi = OuwoWi+ Wi XH0uw0 + fo1(Xi) + €
27
Wi = I(:Zi+ Y opXi > vy)

p=1
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Our new method, the DRSMD-Lasso method allows the covariates X; to enter the
model through an unknown function fo1(.) and fo2(.). Because the true function form is
unknown, our method will generate more reliable results. The DRSMD-2SOLS estimator
allows a nonlinear and unknown fy2(.), but fp1(.) needs to be linear. GMM estimator
assumes both fo1(.) and fp2(.) to be linear in X;. GMM-Lasso estimator imposes that
fo,2(.) is linear. All of the results in the subsection are generated with the college indicator
as treatment. ©

Table 2.4 reports the results for heterogeneous treatment effects of college (W;). X1 is
the parents’ education. If we use GMM estimates with (Z1, Z1X1) and (Z1, Z2), no results
are statistically significant. The GMM results for (Z;, Z) have a large magnitude. There
are two moments in (Z;, Z2) including the valid instrument. It suggests that using the extra
moment is not a good idea. In Table 2.3 of Section 4, the GMM estimators with and without
the oracle features using (71, Z2) also generate unreliable results. In this application, the
results for GMM and GMM-Lasso using (Z7, Z1 X1) show that the heterogeneous treatment
effects are not statistically significant at 5% level. The results from GMM are affected by
instruments.

For DRSMD-Lasso estimators, we have obtained different results. DRSMD-Lasso and
DRSMD-2SOLS methods with (Z1, Z2) as instruments generate more reliable results. Using
(Z1,Z1X1) the DRSMD-Lasso and DRSMD-2SOLS produce similar statistically significant
results for 0,0 and 0,0 at 5% level. The estimate changes across different sets of instru-
ments, but the magnitude does not change too much. It is reasonable because different
instruments imply distinct local average treatment effects on the corresponding groups of
compliers. When we compare all of the estimates for the overall treatment effect, in Table
2.5, we see that for DRSMD type estimators, the treatment effects are higher than those
estimated by GMM type estimators. This difference suggests that the nonlinear part in the
fo2(.) is responsible for the gap between DRSMD and GMM type estimators.

The interpretation of estimates of the parameter 6,0 and 60, is straightforward. Recall
that three individuals’ parents have no education. For DRSMD-Lasso with (Z1, Z1 X1), when
the parents’ education is 0, having a college degree increases the average hourly earnings
by 299 log points holding other variables constant. When parents’ education is 10, having a
college degree increases the average hourly earnings by 108 log points. It is not surprising.
It means that before 1981, having a college degree or higher almost doubled the average
hourly wage (e!*%8 —1). It is also rare that parents’ education is 0 and the child has a college
degree. If that is the case, having a college degree helps find a job with higher payments

significantly. When we compare the overall effects of heterogeneous treatment effect with

5The treatment effects of years of education are reported in Table B.1 in Appendix A. The estimation
results for 2SLS from Card (1993) are around 0.132 to 0.140. The DRSMD-Lasso estimator produces similar
results. Table B.3 in Appendix A reports heterogeneous treatment effects of years of education.
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parents’ education being the mean with the homogeneous treatment effect in Appendix

B, we find that they are very close, which means that the new method generates reliable

results.

Heterogeneous treatment effects

Estimator for 0.0 Z1 2y (21, 2:X0) (%1, 2)
GMM @IZ?& (iiggﬁ)
GMM-Lasso (-10_ '52251) (51(?;19751)
*ok *ok
DRSMD-Lasso (8?13:13) (gggg) 2(19224) (20623)
DRSMD-250LS (8(2)22) (Sggg) 2(16?5143; ((?20533)
Estimator for 0.0 Zy 2y (21, 21X1) (%, Zo)
GMM (_(?_ ggg ) (11i ?28828)
GMM-Laso 0188 (w70)
5 _ * 5
DRSMDLasso (o) (0173  (0009) (0052
DRSMD-2S0LS (8212;1),) (8j§§§> ?01572;)* (8213(1])

Table 2.4: Heterogeneous Treatment Effects of college education on the log wage

Note: *** Significant at 1%, ** at 5%, * at 10%. 0,0 is the parameter in front of the
treatment and 60,0 is the parameter for College x Parents’education. Each row shows the
estimates and robust standard errors for the same type of estimator. In the columns, we
present the instruments these estimators used. Every regression contains 3010 observations.

Average Treatment Effects

DRSMD-2SOLS (1.45)  (2.998)

Estimator for Oy + OwaoFE(X) A Zy (21,2, X1) (21, 25)
G 035 (2685
GMM-Lasso (83?1) (_:?10;;)
DRSMD-Lasso &1331) (iggi) (16%422; (16.27929793
1.698 2.560 1.150 1.384%*

(0.749)  (0.828)

Table 2.5: Average Treatment Effects of college education on the log wage

Note: Each row shows the estimates and robust standard errors for the same type of esti-
mator. In the columns, we present the instruments these estimators used. Every regression
contains 3010 observations.
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Chapter 3

Estimation of Heterogeneous
Treatment Effects: Oregon Health
Insurance Experiment

1 Introduction

In early 2008, Oregon used a lottery to select low-income uninsured adults to expand Med-
icaid enrollment (health coverage). In this process, low-income uninsured adults first regis-
ter for the waiting list. Then, from the waiting list, the names will be drawn by a lottery.
The draw (or the lottery) was random. The randomness provided by the lottery allows re-
searchers to analyze the effects of health insurance on medical, financial, and labour market
outcomes. This experiment is a well-known Randomized Control Trial and is studied in
many articles, for instance, Baicker et al. (2014) and Finkelstein et al. (2012).

Many studies focus on the treatment effects of health insurance (Medicaid) on health
care, employment, debt for health, and many other outcome variables. In those works, the
treatment effects are assumed to be homogeneous. In Finkelstein et al. (2012), authors con-
duct their analysis assuming homogeneity and also use regression analysis to check whether
there are heterogeneous treatment effects. They are unable to make precise inferences using
traditional estimators like GMM or 2SLS. Studying the heterogeneous treatment effects
using only one valid instrument variable needs a more advanced method.

In Chapter 2, the new estimator, the D-RSMD estimator, is generated to estimate the
heterogeneous treatment effects using a conditional moment restriction directly. With an
instrument variable that satisfies the conditional moment restriction, the estimator uses all
of the information from the restriction to allow us to estimate more than one key parameter
inside the model. The new estimator is designed for a partially linear model—that is, a
model that contains a linear part and a nonparametric part. The key parameters are the
parameter in front of the treatment and the parameters in front of the interaction terms

inside the linear part of the model. The asymptotic properties of the new estimator are
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provided in Chapter 2. Also, Chapter 2 includes the simulation results and analysis of the
differences between the new estimator and other types of estimators.

In this empirical study, we include the interaction terms inside the model to account for
heterogeneity. The new estimator provided in Chapter 2 is used to estimate both param-
eters within the heterogeneous treatment effects using the only valid instrument variable
without generating new variables. The traditional estimation procedure, such as GMM or
2SLS, needs two moments to estimate both parameters within the heterogeneous treatment
effects. Without the generated instrument variable, the traditional estimator will face an
under-identification problem; that is, one of the key parameters will not be identified. The
new estimator with the only valid instrument can identify both. With the new estimation
method, we compare the results between the new and traditional estimation methods using
or not using the generated instrument variable with reliable inference.

To illustrate the existence of heterogeneous treatment effects in some studies, we re-
visit the Oregon Health Insurance Experiment and estimate both parameters within the
heterogeneous treatment effects to check the impacts of Medicaid from the Oregon Health
Insurance Experiment. The public website for this Oregon Medicaid Health Experiment
contains all of the related work, data sets, and data descriptions. ! The original data sets
contain several files. In this paper, we use the data set derived from the original data sets.
2

In the Oregon Health Insurance Experiment, using our estimator with only one valid
instrument produces statistically significant results for heterogeneous treatment effects when
the GMM estimator does not. Also, if the generated instrument variable is not reliable, using
our estimator with only one valid instrument generates more reliable results, and the GMM
estimator cannot.

The chapter contributes another empirical study for the new D-RSMD estimator and
provides a clear illustration of the advantages of the new estimator in estimates and standard
errors. It also contributes to the literature on the Oregon Health Insurance Experiment.
With a new estimation procedure, we identify both parameters inside the heterogeneous
treatment effects and verify that there are heterogeneous treatment effects, while the tra-
ditional estimation method does not.

The paper is organized as follows. Section 2 introduces our data briefly. Section 3 states
the framework, motivation, and our estimator and its large sample properties. Section 4
shows the main empirical results for estimating heterogeneous treatment effects. Section 5
contains information on other empirical results. The additional application results are in

the Appendix.

!See https://www.nber.org/research/data/oregon-health-insurance-experiment-data

%I would like to thank A. Colin Cameron for the data set and for bringing the Oregon Health Insurance
Experiment to my attention.
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2 Data

The original data sets are available on the public website, and the detailed description is
on the website and in Finkelstein et al. (2012). There are 18572 observations in the dataset
we use. Using the dataset, we want to estimate the effects of Medicaid (health coverage)
on various outcomes. Because the health conditions, employment, and other outcomes are
closely related to the age of the individuals, we believe that age is one of the sources of
heterogeneity. We generate the age group variable from the year of the birth variable. First,
we calculate the age of each individual. The range of ages is from 21 to 64. Second, we split
the original dataset into three or five subsets based on age to create an age group variable.
After the split, there are around 5900 to 6900 observations in each subsample. Individuals
in the same age group have more similarities. In Section 4, we report the results under three
age groups (e.g., 21 to 35, 35 to 50, and 50 to 64). 3

Additionally, because age is a source of heterogeneity, we can include the age group
variable inside the linear part of the partially linear model. The results for this regression
framework are provided in Section 5.

There are also many control variables inside the dataset. We use similar controls as
used in Baicker et al. (2014) and Finkelstein et al. (2012). These controls include household
controls, wave indicators on lottery and survey, and characteristic variables on individuals.
We are interested in the heterogeneous treatment effects from the interaction terms gener-
ated by an indicator for household income above 50% of the federal poverty line in 2008,
household income (hhincome), TANF (cash welfare assistance to low-income families), and
cigarette smoking level (smoke). The dependent variables are the current employment in-
dicator, constructed by three indicators on hours of employment (employment), the total
out-of-pocket spending on medical care (Out of Pocket Cost), and whether the individual
is currently owing money to a health care provider (Debt for Health). All of the dependent
variables are from a mail survey starting in July 2009 and ending in March 2010. They are
outcomes obtained approximately one year after the treatment. The out-of-pocket cost is

in dollars, and hhincome is the household income as a percent of the federal poverty line.

3 Estimators and Framework

Our framework and estimators are based on the estimators in the second chapter. The
D-RSMD estimator is an estimation method that combines regularized machine learning
methods, Smooth Minimum Distance (SMD) estimation, and Robinson transformation.
With the Robinson transformation, the D-RSMD estimator provides the estimation results

without assuming the function form for the nonparametric part of the partially linear model.

3See Appendix B for tables with five age groups.
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For the linear part of the model, we introduce an interaction term between the treatment
and a covariate to account for the heterogeneity of the treatment. With the SMD estimation
method, the D-RSMD estimator delivers the results of both parameters inside the hetero-
geneous treatment effects. The parameters we are interested in are the one in front of the
treatment Medicaid and the one in front of the interaction term between the treatment and
the control variable Xj.

In this model, X7 represents the vector of control variables that are the sources of the
heterogeneity. In Section 4, it is the indicator of the income level, and the estimation results
are provided. Section 5 presents the D-RSMD estimation results when X; is a vector of
control variables. The detailed information will be discussed in the later sections.

To create a better illustration, we compare the D-RSMD estimator and the traditional
estimator, for instance, the GMM estimator, in terms of framework. The D-RSMD estimator
is reliable in a nonparametric first stage and a partially linear second stage. The framework

is in the following;:

Debt;, = 60O,0Medicaid; + OyproMedicaid; x X1 + f()J(XZ') + €;
Medicaid; = I(fo2(X;, Lottery;) > v;)

For one of the traditional estimators, for example, GMM estimators, the framework for
the GMM estimator in this section is linear first stage (for the treatment: Medicaid) and
linear second stage (for the dependent variable: debt for health). The framework is shown

as follows.

Debt; = OyoMedicaid; + OwzoMedicaid; x X + X[B: + €
Medicaid; = I(a,Lottery; + Xaz > v;)

The GMM estimator is not the only estimator that we compare the D-RSMD estima-
tor to. There are other estimators. For instance, the GMM-Lasso estimator combines the
Robinson transformation, a regularized machine learning method, and the traditional GMM
method. The GMM-Lasso estimator is reliable when the first stage is linear and the second

stage is partially linear. The framework for this estimator is as follows.

Debt; = 0Oy0Medicaid; + OproMedicaid; x X;1 + fO,l(Xi) + €
Medicaid; = I(c,Lottery; + Xloz > v;)

The expression of the D-RSMD is shown in Chapter 2. Notice that this is the same

estimator as in the previous chapter. In this estimator, the regularized machine learning
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method we choose to use is still Lasso. Since the D-RSMD estimation method can utilize
many kinds of machine learning methods when the convergence rate of these methods
satisfy the assumption we provided in the previous chapter, we add "Lasso" to the name
of the estimator to indicate we use the Lasso method here. The Asymptotic Properties
of the Feasible D-RSMD Estimator have been provided, and the simulation results based
on the estimator are listed in the previous chapter. Here, we only provide the expressions
for the feasible D-RSMD estimator, the variance estimator of the feasible estimator under

heteroskedasticity, and the theorem of the asymptotic properties in Chapter 2 Section 3.

-1
) 5 G X0\ 3 1 < 3 90, (XD
en,o=lnn1 ZZ””( T M)PZ] l”("”zzﬁj’l(])j W>yl]

J=1 1#j J=1 1#j
(3.1)
. e Jo.5m (XD \ B1 . .
since Elkj; | Pj — I,y (K1), P, ] is invertible.
’ 0 nmyl(Xl)

The Asymptotic Properties of the Feasible D-RSMD Estimator are provided in Theorem
3.3. Here is the Theorem 3.3 in the previous chapter.

Theorem 3.4. (Consistency and Asymptotic normality of the D-RSMD estimator: énO)
Under Assumptions 4 - 8 and iid assumption for the sample, én,o is consistent, and has an

asymptotically normal distribution, that is,
A~ d 1 ~ _1 /
V(oo —60) & N <O,A Varlhi(Pr,e1, Z1, X1)] (A7) >

Under heteroskedasticity, the estimator for variance of the feasible D-RSMD is in the

following.

90 Pl g/o,E(Xj) ' R s 1—
[n(n —1)Cn]~ IZ( anl ( G (X)) ))(Z Kjl (Pz o () (Xj)> )éH)n(n — 1)C;) 7!

o ~ gg,;j(Xz) =/
with C,, = n(n 1)2 12[#] Kjl P m B

The expressions for the D-RSMD estimator and its variance estimator seem complicated
in math, but they are easy to compute in matrix form. With the explicit expressions, the

computing time will be decreased.

4 Results

In this section, we discuss the possible heterogeneous treatment effects of Medicaid on debt
for health when household income is the source of the heterogeneity, after splitting the

dataset in 3 subsets by age (see Page 54 for specific details). This procedure allows for
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straightforward intuition and interpretation. * The heterogeneous treatment effects inside
the model is presented by the non-zero coefficient for the interaction term between the
indicator of household income above 50% federal poverty line and Medicaid. The whole table
that contains all of the results for the effects of the treatment (with covariate household
income above 50% federal poverty line inside the interaction term) is contained at the
end of the section. The additional results for the other dependent variables (or with other
covariates inside the interaction term) are in the Appendix. Some necessary robustness
checks are contained in Section 5.

We look at two sets of instruments: the lottery (only for D-RSMD) and the lottery and
its interaction with X; (income greater than 50% of the poverty line). Because D-RSMD
is the only estimator that uses the lottery only to estimate both parameters, the D-RSMD
results will contain two parts. The first part of the results uses the lottery only, and the
second part uses the lottery and its interaction term with X;. In this way, we can compare
the results of the two different instrument sets for the D-RSMD estimation procedure. The
GMM and GMM-Lasso estimators can only use the lottery and its interaction term as
instruments, which suggests that we can compare the results from D-RSMD and GMM
estimators with the lottery and its interaction term as instruments.

Age, in this example, is also considered a source of the heterogeneity. In this section, we
split our sample by age into three age groups. In Section 5 we run the regressions for the
whole dataset for D-RSMD and GMM estimators, with the age variable agegroup serving
as a categorical variable with three values to mimic the three age groups. In this way, we
can compare the results in Section 4 and Section 5 to check the properties of estimators
with more than one interaction term inside.

The following table (Table 3.1) contains the results for individuals between 36 and 50
years old. In this age group, the total number of observations is 6693. Please keep in mind
that X7 in this table of results stands for "Income above the 50% Federal Poverty Line."
Table 3.1 is a subset of Table 3.4. Notice that DRSMD-Lasso is the D-RSMD estimator.

Debt for Health Estimator for 6,0 Estimator for 6,0
Lottery  (Lottery, LotteryxXj) | Lottery (Lottery, Lotteryx X;1)
-0.213%** 0.108
GMM (0.041) (0.085)
-0.232%** -0.232%** 0.091%** 0.088
DRSMD-Lasso | (69 (0.050) (0.031) (0.096)

Table 3.1: results for Individuals Aged 36 to 50

Note: *** Significant at 1%, ** at 5%, * at 10%.

“We also consider the full sample (not split by age) and consider possible heterogeneous treatment effects
based on income and age: see Page 56 or Section 5.2.
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We find heterogeneous treatment effects for individuals between 36 and 50. Estimates
obtained by D-RSMD (with the lottery as an instrument or the lottery and its interaction
with X as instruments) are very similar. They are also very close to the GMM estimator
(with the lottery and its interaction with X as instruments). It suggests that the interaction
between the lottery and X; is strong and reliable. One important difference between D-
RSMD and GMM is that heterogeneous effects are found to be statistically significant
only with D-RSMD estimation procedure. In Table 3.1, the age group reports statistically
significant results for both 6,0 and 6,9 when we use our new estimator with the valid
lottery instrument. It suggests the effect of Medicaid on debt for health depends on the
income level. Hence, there is heterogeneity.

The interpretation of the estimates is that for people with an income below 50% federal
poverty line, Medicaid enrollment decreases their probability of owning money to health
providers by 23.2 log points on average, ceteris paribus. For people with an income above
50% federal poverty line, Medicaid enrollment reduces their probability of owning money,
but not by that much. It is reasonable because enrollment in Medicaid is not that critical
in reducing the debt for individuals with higher incomes compared with individuals with
low incomes.

Comparing the results between the two instrument sets (the lottery as an instrument
set and the lottery and its interaction with X as the other instrument set), we find that the
estimates are close for both parameters, but the standard errors for the 6,0 using the new
method are substantially lower, suggesting that using one valid instrument works better.
Table 2.3 in the Simulation Section in Chapter 2 also shows that the standard errors of the
DRSMD-Lasso estimator for 6,0 are the lowest among all of the estimators.

Table 3.2 has the results for individuals aged 21 to 35. In this age group, the number of
observations is 5962. The covariate remains X, indicating whether income is greater than
50% of the Federal Poverty Line.

Debt for Health Estimator for 6,0 Estimator for 6,0
Lottery  (Lottery, Lotteryx X;1) | Lottery (Lottery, Lottery x X;1)

-0.069 -0.204**

GMM (0.055) (0.096)

-0.199%** -0.053 0.058 -0.252%*

DRSMD-Lasso | 177 (0.065) (0.036) (0.105)

Table 3.2: Results for Individuals Aged 21 to 35

Note: *** Significant at 1%, ** at 5%, * at 10%.

For the age group 21-35, all estimators generate similar results using the second in-
strument set, that is, the lottery and its interaction term with the indicator for household
income. The coefficients for 6,0 are not statistically significant, and the ones for 6,0 are
statistically significant. It suggests that when households’ incomes are higher than 50% fed-

eral poverty line, individuals with Medicaid will be less likely to own money to the health
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providers. It also suggests that Medicaid helps people with higher income levels more than
it helps people with lower incomes. Using only the lottery as the instrument, our new proce-
dure generates the opposite results. The interpretation is that for people with lower incomes,
Medicaid enrollment decreases their probability of owing money to health providers by 19.9
log points on average, holding other variables constant. For people with higher incomes, the
effect of Medicaid decreases.

Based on the D-RSMD results using only the lottery, we do not find support in the
data to say that there are heterogeneous treatment effects for individuals between 21 and
35 years old. Furthermore, we discover that the results for individuals aged 21-35 differ
significantly between the two instrument sets. It suggests that the generated interaction
Lottery x X, is invalid.

Next, we re-estimate a homogeneous model. In a homogeneous model, because we only
want to estimate the homogeneous treatment effects, the interaction term is not included
in the regression model. The traditional estimation method only needs one instrument to
estimate one parameter. When we look at the homogeneous treatment effects using both
instrument sets in Table 3.3, all estimators generate similar results as the DRSMD-Lasso
using only the lottery as the instrument in the heterogeneous treatment effects panel. It also
suggests that using a valid instrument to estimate both parameters provides a more reliable
outcome. DRSMD-Lasso is reliable under both heterogeneous and homogeneous conditions.
Since it is unclear in practice whether the model is homogeneous or not, DRSMD-Lasso

appears to be extremely valuable.

Homogeneous Treatment Effects of Medicaid on Debt for Health (Age: 21 - 35)

Estimator for 6,0 GMM DRSMD-Lasso
Lotter -0.161%%* -0.172%%*
ottety (0.049) (0.063)

Table 3.3: Homogeneous Treatment Effects of Medicaid (Age: 21 - 35)

Note: *** Significant at 1%, ** at 5%, * at 10%.

Table 3.1-3.3 are subsets of Table 3.4. Table 3.4 is provided later. The estimates and

standard errors of average treatment effects in Table 3.5 are calculated based on Table 3.4.

5 Robustness Check

In this section, we look into the two different kinds of variations of the previous estimation. In
Section 4, the covariate inside the interaction term is the indicator of whether the household
income is higher than 50% Federal Poverty Line. To provide more information about these
regression results in Section 4, we need to conduct several different robustness checks. In
the first subsection, we check the estimation results when the covariate is a dummy. The

dummy has a value of 1 when the household income is higher than 100% or 150% Federal
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Panel A: Heterogeneous treatment effects

Debt for Health Age: 21 - 35 Age: 36 - 50 Age: 51 - 64
Estimator for 0,0 VAl (ZthXl) VAl (ZLZle) VAl (Zl,Zle)
-0.069 -0.213%%* 20.103%%*
GMM (0.055) (0.041) (0.046)
, -0.091 -0.250%%* ~0.245%%*
GMM-Lasso (0.093) (0.078) (0.090)

, 0.199%FF  L0.053 | -0.232%%F  0.232%%F | _0.182%F  0.190%**
DRSMD-Lasso (0.071) (0.065) | (0.062)  (0.050) (0.072)  (0.056)
FEstimator for 6.0 Zy (Z1,Z1X1) Zy (21, Z21X1) Z (21, 21X1)

20.204% 0.108 0.069
GMM (0.096) (0.085) (0.094)
e -0.184 0.008 -0.081
GMM-Lasso (0.131) (0.128) (0.153)
0.058  -0.252%% | 0.091%**  0.088 0.076* 0.096
DRSMD-Lasso (0.036) (0.105) | (0.031)  (0.096) (0.040)  (0.103)
Panel B: Homogeneous treatment effects
MM C0I61%% 0.130%%F | 0.170%%F  0.180%%F | -0.164%%F  0.177%*
(0.049) (0.046) | (0.040)  (0.037) (0.044)  (0.041)
MM Lasso -0.180* 0113 | -0.256%FF  _0.260%%F | _0.279%%  _0.244%%*
- (0.104) (0.092) | (0.097)  (0.078) (0.112)  (0.089)
0.1729FF L0I8TFE | L0.198%FF  0.198%%F | L0.150%%  -0.145%*
DRSMD-Lasso (0.063) (0.066) (0.056) (0.057) (0.063) (0.064)
N 5962 6693 5917

Table 3.4: Heterogeneous Treatment Effects of Medicaid on Debt for Health

Note: *** Significant at 1%, ** at 5%, * at 10%. Each row shows the estimates and robust
standard errors for the same type of estimator. In the columns, we present the instruments
these estimators used and the age groups. The interaction term is Medicaid x Above 50%
Federal Poverty Line.

Average Treatment Effects

Debt for Health Age: 21 - 35 Age: 36 - 50 Age: 51 - 64
Estimatorfor LATE Z1 (ZLZle) Zl (Zl,Zle) Zl (Zl,Zle)
~0.190%%* ~0.150%%* ~0.149%F*
/]
GMM (0.055) (0.048) (0.055)
, -0.201* -0.255%* -0.296**
GMM-Lasso (0.112) (0.110) (0.133)
0.164%FF  L0.202%FF | L0.179%FF 0 181FFF | L0.135%F  -0.129%
DRSMD-Lasso (0.061) (0.069) (0.054) (0.067) | (0.060)  (0.075)
N 5962 6693 5917

Table 3.5: Heterogeneous Treatment Effects of Medicaid on Debt for Health

Note: *** Significant at 1%, ** at 5%, * at 10%. Each row shows the estimates and robust
standard errors for the same type of estimator. In the columns, we present the instruments
these estimators used and the age groups. The interaction term is Medicaid x Above 50%
Federal Poverty Line. The expression for LATE is 0,0 + 0yz0F (X).

Poverty Line. In the second subsection, we will not split the dataset into three groups, and
we will include the age group variable and its interaction term with the treatment in the

model directly. In the last subsection, we will briefly discuss the other robustness checks.
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5.1 Estimation Results with Other Covariates

The results are included in Table 3.6 when X is an indicator for "Income Above 100% Fed-
eral Poverty Line". Comparing Table 3.6 with Table 3.4, we find that the results are quite
similar. For individuals between 36 and 50 years old, there are heterogeneous treatment
effects. The estimates show that they benefit more from Medicaid health coverage when
they have lower incomes. We do not find support in the data to say that there are heteroge-
neous treatment effects for individuals between 21 and 35 years old, and the DRSMD-Lasso

esimator using only one valid instrument variable generates more reliable results.

Heterogeneous Treatment Effects of Medicaid on Debt for Health

Debt for Health Age: 21 - 35 Age: 36 - 50

Estimator for Oy0 Lottery  (Lottery, Lotteryx X;1) | Lottery  (Lottery, LotteryxX;i)
- 20.123% ~0.179%%*

GMM (0.048) (0.038)

, -0.178%** -0.123%* -0.202%** -0.200%**
DRSMD-Lasso (0.063) (0.061) (0.057) (0.049)
Estimator for 0,0 | Lottery  (Lottery, LotteryxX;1) | Lottery  (Lottery, LotteryxX;;)

. -0.200 0.072
GMM (0.148) (0.159)

. 0.023 -0.212 0.102%** 0.032
DRSMD-Lasso (0.033) (0.154) (0.038) (0.192)

N 5962 6693

Table 3.6: Income above 100% Federal Poverty Line

Note: *** Significant at 1%, ** at 5%, * at 10%.

Table 3.7 reports the outcomes when X is a indicator for “Income Above 150% Federal
Poverty Line”. Results in Table 3.7 and 3.6 are similar in estimates but different in standard
errors. In the table, estimation results from using a dummy for income above 150% Federal
Poverty Line show that the treatment effects of Medicaid on debt for people between 36
and 50 are not supported by the data to be heterogeneous, because the estimate for the
parameter in front of the interaction term is not statistically significant at the 5% significance
level.

The effects of Medicaid on debt for people between 21 and 35 are heterogeneous because
the estimate is statistically significant. The difference in the results using two instrument
sets for the DRSMD-Lasso estimators suggests that using only the lottery variable as an
instrument generates more reliable results. The difference between Table 3.7 and 3.6 shows
that the covariate inside the interaction is important for the estimation results. It can be
explained by the fact that there are only 808 individuals with incomes above 150% Federal
Poverty Line for people between 36 and 50, and 794 individuals for people between 21 and
35 in this data set.
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Heterogeneous Treatment Effects of Medicaid on Debt for Health

Debt for Health Age: 21 - 35 Age: 36 - 50

Estimator for Oy0 Lottery  (Lottery, Lotteryx X;;) | Lottery  (Lottery, Lotteryx X;;)
- 0,145 01797

GMM (0.048) (0.038)

, -0.181%** -0.149%* -0.207*** -0.205%**
DRSMD-Lasso (0.062) (0.062) (0.056) (0.053)
Estimator for 0,0 | Lottery  (Lottery, LotteryxX;;) | Lottery  (Lottery, LotteryxX;;)

. -0.204 0.195
GMM (0.245) (0.340)

, 0.095* -0.254 0.067 0.030
DRSMD-Lasso (0.055) (0.292) (0.061) (0.453)

N 5962 6693

Table 3.7: Income above 150% Federal Poverty Line

Note: *** Significant at 1%, ** at 5%, * at 10%.

5.2 Estimation Results Using the Whole Data Set

This subsection provides the estimation results with an age group variable included in the
model, instead of splitting the data set by the age group variable. The difference between
the framework in Section 4 and the framework in this subsection lies in the covariate X;.
In this section, X; has more than one variable inside. In Section 4, age is also a source
of heterogeneity, so the data set is split into 3 groups based on the age of the individuals
in the data. In this subsection, through an interaction term, the heterogeneity from age is
included in the framework. For the D-RSMD estimation method, including more than two
interactions will still work.

The framework in this section also means that we move the X; from the nonparametric
part of the model to the linear part. Hence, there are three kinds of coefficients in the linear
part of the model. The first type of coefficient is the coefficient in front of the treatment. The
second type of coefficients is the parameters in front of X7, such as the parameters measuring
the effects of age and income. And the third type of parameters is the parameters in front
of the interaction terms. The first and third types of parameters are our key parameters
since we want to measure the heterogeneous treatment effects of the treatment.

The lottery is still the instrument in this framework. For the traditional method, the
GMM estimators, it uses the instrument set, including lottery, income, age, the interaction
term between lottery and income, and the interaction term between lottery and age. That
is, to estimate five parameters, the GMM estimators use the instrument set, which includes
five instruments, for instance, exogenous variables, lottery, and generated instruments.

The framework for DRSMD-Lasso estimators is summarised in the following equation.
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Debt; = 0 0Medicaid; + 0ypz0Medicaid; X income; + Oz19tncome;

+ Oz20agegroup; + Oyz0Medicaid; x agegroup; + fo1(X;) + €

Medicaid; = I( fo.2(X;, Lottery;) > v;)

The framework for GMM estimators includes a linear first stage within the indicator

function, as well as a linear second stage for the dependent variable.

Debt; = O0Medicaid; + 0y00Medicaid; x income; + 0,19tncome;

+ Oz20agegroup; + O30 Medicaid; x agegroup; + X|B: + €;

Medicaid; = I(c, Lottery; + Xja, > v;)

The model for GMM-Lasso estimators includes a linear first stage for the indicator

function and a partially-linear second stage for the dependent variable.

Debt; = 0 0Medicaid; + Oz0Medicaid; x income; + Oz19tncome;

+ Oz20agegroup; + Oyz0Medicaid; x agegroup; + fo1(X;) + €

Medicaid; = I(a, Lottery; + Xjoz > v;)

In Table 3.8, we show the results for three estimators from the regressions when we
extract income outside the nonparametric part of the model. For DRSMD-Lasso estimator,
the estimates for Medicaid, the interaction between Medicaid and income are statistically
significant at 5% significance level when using only one instrument, and the estimates for
income and the interaction term between Medicaid and age are statistically significant at
15% significance level when using only one instrument. These results allow us to draw similar
conclusions as in Section 4. That is, using only the valid instrument, the model shows that
the treatment of Medicaid is heterogeneous, and the heterogeneity comes from age and
income. After analyzing the outcomes from the GMM estimator or the GMM-Lasso using
the instrument set (271, Z1X1), we would incorrectly conclude that there is no heterogeneity

in the treatment effects. This shows that the generated instruments are problematic.

5.3 Other Robustness Checks

For other robustness check, we report the results when the covariate X7 is TANF in the

appendix. TANF variable is known as a variable with little variation. For instance, there
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Heterogeneous treatment effects

Debt for Health GMM GMM-Lasso DRSMD-Lasso
Variables Zl (Z17Z1X1) Z1 (ZthXl) Zl (ZLZle)
Medicaid -0.148%** -0.206% | -0.187***  _(.178%**
(0.044) (0.115) (0.037) (0.046)
Medicaid* income 0.003 -0.045 0.074%** -0.018
(0.053) (0.068) (0.020) (0.056)
income 0.003 0.014 -0.025. 0.005
(0.020) (0.062) (0.016) (0.025)
agegroup -0.007 -0.010 -0.006 -0.007
(0.010) (0.021) (0.005) (0.009)
L -0.019 -0.016 -0.018. -0.016
Medicaid *agegroup (0.032) (0.054) (0.011) (0.028)

Table 3.8: Heterogeneous Treatment Effects for Robustness Check (5 parameters)

Note: *** Significant at 1%, ** at 5%, * at 10%, . at 15%.

are only 2% of individuals on TANF. We want to see whether this will affect our results.
Table C.5 reports the case where y; is still Debt for Health and there are five age groups.
The DRSMD-Lasso with Z; estimate for 6,9 is -0.215 and for 6,0 is 0.307. Both of them
are statistically significant at 5% level. It suggests that for an individual between 21 and 29
years old, TANF will decrease the negative effect of Medicaid on the probability of owning
money. We also see that the new method using the valid instrument Z; still generates
reliable results with the lowest standard error.

Table C.1 contains the results after splitting the sample into 5 age groups. Table C.11
and Table C.21 report the results for the effects of treatment on Employment and Out
of Pocket Cost correspondingly. Both of the two tables show that there are heterogeneous
treatment effects for young individuals (between 21 and 29 years old) when X is a dummy

for “Income Above 50% Federal Poverty Line”.
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Appendix A

Partially Linear Models with
Endogeneity: a conditional moment
based approach

1 Proofs of the main theoretical results

1.1 Equivalence between the objective functions (2.5) and (2.6)
Proof. The objective function (2.5) can be written as

Moo(B) = [ Ele;(B)e"™) B(ey(B)e™ ") du(t)

From Assumption 1(v), for all j # I, Cov(e;(8)e™Vi, e;(B)e=* ™) = 0. Thus, for all j # I,
we have:

Mo(B) = | B(ej(@)e™e(B)e " )du(t)

= | Ble(B)e(@)e i )du(t)

= E(] = ei(Be@e T ()

Thus, the objective function becomes

Moo () = E(ej(B)er(B)rj1)

where ;) = k(W; = W)) = [gaw € Wi~V dpu(t). And k(u) is the inverse Fourier transform
of du(t) with u =W; — Wj. O
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1.2 Proof of Proposition 1

Proof. From (2.5), we have: My () > 0 and Mu(Bp) = 0 since E(e;(8o)|W;) = 0 for any

J
Since (2.5) can be written as (2.6), as long as j # [, So minimizes E(e;(8)ei(B)k;,1), and
E(ej(Bo)ei(Bo)k;ji) = 0. The associated FOC write:

E(X; (i — X{B)kju + (5 — XjB) Xikj1) =0
= E(X;(@ — X|B)kj1) + E(f; — XjB)Xik50) =0
= BE(X;(m - X[B)kjy) =0

since B(X;(§ — X]B)#;,) = 0 under Assumption 1(vi). Hence we have:
E(kj X0 — kX X18) =0
and provided E(mj,l)z le/ ) is nonsingular, we have a unique minimizer,
Bo = [B(rjuX; X0)]) ™ ErjaXji)

To show that E(K,j’lXle/ ) is nonsingular, we consider the associated quadratic form, and
show that it is positive definite. For any a real vector of size p, we have:

E(a'X; X[arj;) = E(kjd E(X;|W;) E(X[a|W)))
=E(| ¢"WirMdu(tya B(X;|W;) E(X{[W))a)
Raw

= [ BTG B W) BRI Wiady(t)

= | Bl a B W) E(X{Wiae™ M dpu(t)

= | Bl VB WL BLE(K Wac  du(t)

= [ Bl B W) B W))ae™ Wi]du(r

= Raw | (/wa alelt/W]E<X]’Wj)fW(Wj)dW]> ‘Qd,u(t)

= em [ | (FIBEIW) fw (W))(0) Pdptt)
>0

with p strictly positive on R? and F[g| the Fourier transform of a well-defined function g(.)
on R formally defined as,

1

Flgl(t) = (2m)i

/expit/“g(u)du. (1.1)
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We then have:

dE(kjXjX)a=0 & Ja#0st dEX;W;)f(W;)=0a.s.

This cannot hold, since, by Assumptions 1(ii) and 1(iii), E(X;|W;) # 0 a.s. and E(X; ~]’)
is nonsingular. O

1.3 Closed-form expressions for 3, and Bn

e Closed-form expression for f3,:

Proof. From (2.7), the associated FOC write:

X'Ej—XB =0 = X'kj—X&XB=0
= X'kj=X'rXp
Since E(k(W; — W;)X,;X]) is nonsingular, X'#X is also invertible for n large enough, and
we have:

B=[X'&X]'X'ky

O
e Closed-form expression for Bn:
Proof. From (3.9), the FOC are:
=/ = A ISIPS =/ = .
XRly—Xpl=0 = Xky—XrXB=0
=/ =/ = A
= XRy=XRKXp
~ =~/ = =/ <
= B=[XkX]"'X iy
=~/ =
since E[X £X] is invertible. O

65



1.4 Proof of Proposition 2:

Proof.
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= fot R X Xi > miXie
(n j 5 n(n —1) S

Denote A, = — L

n(n—1) DY Hj,lf(jf(l’ and B, = 1

n o n
ZZH]lXXl ZZH]lXel

J=11#]

m ;L:l Z;L#] ijlXj@l. The remain-

der of the proof is organized in 3 steps: (i) we first show that A,, is a U-statistic and find
its probability limit by applying a WLLN for U-statistics; (ii) we then show that B, is
also a U-statistic and find its probability limit by applying a WLLN for U-statistics and its
asymptotic distribution by applying a CLT for U-statistics; (iii) we conclude the proof by
showing that the necessary WLLN and CLT for U-statistics apply under Assumption 2.

(i) To show that A,, is a U-statistic, notice that

1 n n
An = n(n—l)zllzjﬁj’lx X
n n n n
- 3 SN kX X] + ZZWXXZ
n— ] 1<l j 135>0
n n n n
= ZZ@,X X|+ ZZH“XZX

Hence, A, is a half of a U-statistics, and, under Assumption 2, a WLLN for U-statistics

applies to get:

A, L A with A=



since
A= LBk XX+ ry XX = S E(su XKD + 2 B, XiX0) = B(sj X, X
= S BrjuXiX) + ki X0 XG) = S Bk X X0) + 5 Bk g X X5) = Bk X;X0)
with A nonsingular under Assumption 1 (as show previously).

(ii) To show that B,, is a U-statistic, notice that:

1 n ~ ~
B, =—— ki1 Xie + ki Xe;
n n(n - 1) Z( J I jel L,j<M .7)
Jg<i
Define h(Z1,€1,wr; &2, €2, w2) = K12Z1€2 + Ko1T2€1. Since h is a symmetric function of

observations 1 and 2, a U-statistic with kernel h is defined as

2 LR _ 1
By, = nln—1) ;h(Xjaej»WﬁXl,@la W) and B, = §B;l
And we have:
E(B)) = FE(kjXje+ r1;Xie;)
= 2E(/€j’1Xj€l)
= 2 E[f(jele"tl(wfwl)]du(t)
Raw
= 2 E[Xjeit/wj ere” " Widpu(t)
Raw
= 2 [  E[X;e"YiEle;e™ 1 dpu(t)
Raw
=0 since Ele;e "] = 0.

Hence, E(B,,) = 0. According to WLLN for U-statistics, we have B, LN 0, and we conclude
that (3, is a consistent estimator of 3.

To derive the asymptotic normality, we first need to compute the asymptotic variance for
the U-statistic B],, which means that we need to find the variance for

E(h(f(l,el, Wi Xo, €9, Wg)]f(l =I1,e1 =€, W1 =wq).
Let hi(Z1,€1,w1) = E(h(f(l,el, Wl;XQ,eQ,WQ)\Xl = I1,e1 = €1, W1 = wy). We have:
h(Z1, €1, w1; T2, €2,w2) = Ki2Z1€2 + Ko 1T2€1
and

hi(Z1,e1,w1) = E| - eit/(wl_WZ)dﬂ(t)f1€2+/Rq e W)y (1) Xyey

= E[ - eiﬂ(wl*WZ)du(?ﬁ)fleQ] -l-E[/wa eit/(w27w1)du(t))~(261]
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The first element of the right hand side is
E[/ eitl(wl_WQ)d,u(t)fcleg] — / E[eit/wle_it/WZi‘leg]d,u(t)
Raw Raw
_ / 0 51 Bl Weey)du(t) = 0
Raw
The second term of the right hand side is

E[/Rq eit/(Wz—wl)d'u(t)X261] = g E[ez'tlwge—it/mX261]dﬂ(t)

_ /R et Bl Roldp)

Hence, hi(Z1,e1,w1) = [pew € a1 Bl W2 Xodu(t). Since E(hi(X1,e1, Wi)) = 0, we
have:

Var[hl(ffl, €1, Wl)]
= Elh(X1,e1, Wi)hi (X1, e1, W1)]

/Rq e " Wie B[ X dp(t) /R e "Wie B[ 2 Xg)dpu(t)

= F

which is nonsingular since Xy are not perfectly multicollinear (from Assumption 1(éi)).
Following Theorem 7.1 in Hoeffding (1948a), the asymptotic distribution for U-statistics
yields:

V(B —0) % N(0,4Var[h (X1, er, W1)])

Thus,

V(B — Bo) & N(0, [E(r;y X, X)) " Warlhy (X, e, W) Bk X, X)) 1)

(iii) We conclude the proof by showing that the above-mentioned WLLN and CLT for U-
statistics apply under Assumption 2.

- From Theorem 7.1 in Hoeffding (1948a), a CLT applies to Bj, if: for any 1 < m < p,
E[(ﬁ172X1,meg + /4}271)2277”61)2] < oo and Var[hl(XLm,el,Wl)] is positive definite. The
second condition has already been shown in step (ii). We now show that the first condition
holds under Assumption 2.

E[(k12X1me2 + ro.1X2.me1)?]
ZE[(%LzXl,m@)Q] + E[(52,1X2,m€1)2] + 2E[/€1,2X1,m62/€2,1)~(2,m61]
=11 + Iy + 213 with obvious notations.
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Notice that I} = Is. We now study I; and I3 separately.

2
I,=F l(/ eit’(W1—W2)dlu(t)) Xl%’mﬁ%]
Raw
= [ [ B R Sd()dus)
Raw J Raw
= [ [ B e%e—““s)’WZ]du(t)du(s)
o B e Bl (e du(s)
= [ BB Wi Y Bl T () dus)
Juw (/R B, Wi i (W) 11, ) Elehe 49 (1)
=y [ [ FBIREWAlw (W) ¢ 4 5) Blee Y dp()dp(s)
= (2m)% /Rq . FAE[XE WAL fr (W)}t + 8) F{E[e} W] fiv (W) }(—t — s)dp(t)dpa(s)
with F the Fourier transform as defined in (1.1). Following Champeney (1987) p48, we need
to ensure E[X{  |Wi = ]fw(.) and E[ei|W) = ]fw(.) are Ly for some ¢ € [1,2] to ensure

the existence of the corresponding Fourier transforms. These hold under Assumptions 2.
Since pu(.) is a CDF, it follows that I; < oo.

I3 = E[k12X1 meak2,1 X2 me1]

-£|(/ e“’<W1W2>dn<t>) ([ e du(s)) Ko Kamerea]
Raw Raw
:/ / WY MW X Xy merealdu(t)dp(s)

Raw J Raw

/ / ( E[Xymer [Wh] fiw (Wh)e “s)’WldWl) E[Xy mere ™ = W] dp(t)dp(s)
Raw J Raw Raw

= empe [ F B e Wil (W) 1= 9)Pdt)du(s)

/ E[X1mere’ W1 X, eae W2 dy(t)dp(s)

qw

=y
=y

/ E[£1mere =W B[Ry meae™ 05 W2l dyu()dpu(s)

qw

=]

qw

oyl

/ E[E[X1 e W1]e' W E[Xy ere™ Wi )du(t)dpu(s)

qw qw

=)
oy

Similarly, we need to ensure E[Xl’meﬂWl = .]fw(.) is L4 for some ¢ € [1,2], which holds
under Assumptions 2. And it follows that I3 < oc.

- To justify that a WLLN for U-statistics applies to A,, we follow section 1.3 in Bose
and Chatterjee (2018) and show that a CLT for U-statistics applies by showing: for any
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1 <my,mg < p, E(k12X1,mi X2,me + k2,1 X2.m, X1,m,) < 00.

E[(k1,2X1,m1 X2,my + £2,1X2,m; X1,my) 7]
E[(k1,2X1,m; X2.m2)?] + El(k21 Xom1 X1,m0)?] 4 2E[k1,2X1,my X2,m0 62,1 X2,m1 X1,ms)

= I + I} + 2I} with obvious notations.

Notice that Iy = I1. We now study I] and I5 separately.

P 2 B
I'=F [(/wa eit' (W Wz)dﬂ(t)) Xfleim}
e / E[ei(t+8)/(W1*W2)X12’mlXg’mz]du(t)d'u(s)
/R E[XT,, e MXG e O W2 dp(t)dp(s)
= Aqw ‘/R E[Ximlei(t+8)’W1]E[X227m2e*i(f#’S)’Wg]dlul(t)du(s)
/R E[E[Xlz,ml |Wl]ei(tJrS)lWl]E[Ximzeii(t+s)lwl]d,u(t)du(s)
- / / (/ E[XIQ mi |Wl}fW(W1)ei(t+s)/W1dW1) E[X% mze_i(t+8),wl]du(t)du(s)
RIw J Riw Raw ’ ,
= (2m)™ /Rq o FLE[XD WAl fir (Wi) (¢ + 8)BIXE,,e ) Wildu(t)dp(s)

= eme [ ] B WAL (W0} + ) F LB | Wil for (W)} (=t = )die(0)d(s)

Following Champeney (1987) once again, we need to ensure E[X’fmllwl = Jfw(.) and

E[X £ malW1 =] fw(.) are Ly for some ¢ € [1,2]. These hold under Assumptions 2. And it
follows that I] < oo.

I = Elk12X1,my Xom 52,1 X2,y X1,ms)
(/wa eit/(W1W2)du(t)> </wa eis/(Wng)dM(S)> X17m1X27m2X27m1X1,m2

- /RQw /wa E[ei(t_S),(Wl_WQ)Xl,leQ,szlml Xl,mz]du(t)du(s)

=B

E[XLml Xl,mz ei(t_s)/WI XZ,mQXQ,Tm e_i(t_s),wﬂdﬂ(t)dﬂ(s)

I,
/ E[Xl,rru Xl,mQ ei(t_S)lWI]E[XQ,mQXQ,m1 e_i(t_S)/WZ]dlu(t)d:u(s)
R
Ji
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We need to ensure E[X1 m, X1.m,|W1 = .]fw(.) is L, for some ¢ € [1,2], which holds under
Assumptions 2. And it follows that I < cc. O

1.5 Proof of Theorem 3.1

Proof. Recall that
Ui =i — 9y(Zi) = yi — E(il Zi) + E(y;|Z:) — 9(Zs)
For the first two terms of the right hand side, we have

vi — E(yilZi) = (Xi— E(XilZi)) Bo + e
= (Xi — 9x(Z) Bo + (9x(Zi) — E(Xi|Z:)) Bo + e

In matrix form, the feasible estimator writes:

-1
3 = (X 7X) 71X 7j = Z S kXX, ] [ I X5

) iS5 ) iS5

=~ =/
Define C),, = (n 0 To1 2w kXX . We get:
Bn = [Cul” wn 1) ZZHJZX v — E(ylZ) + E(ulZi) — §y(Z1)]]
n(n = 1) = L
1 n =
= C) ' [—= r31 X 5 1(Xi = 9x(Z1))'Bo
(A [n(n_wgg e

+(§X(Z)— (XZ\Z, )' Bo +e1+ E(yilZi) — §y(Z1)]]

Z Z KJ],ZX ;50

J=11#j
+(9x(Z1) — E(Xi|Z1)) Bo + &1 + E(yi| Z1) — §y(Z1)]]

1 n
= fo+ [Cn]_l[m

= G

<n—

— D 2”: "@jﬁl}j[@x(zl) — E(X1|Z1)) Bo
(n=1 3515

+er + E(ylZ1) — §y(Z1)]]
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Consider now,

An - Cn = ﬁZZIijJXjX{

A

Hence, we have P1imC,, = A, since we showed in the proof of Proposition 2 that P1imA, =

A.

Define now the following quantities:

Dy = 1_ Zn: 2”: ’ij,l}j[@x(zz) — E(X1|2))) Bo + e1 + E(yi| Z1) — §,(24))]
n(n —1) iy
En = $ 303w X0 ()~ BOXZ)) Bo

S
—~
S
— In—l

=

<

I

—_

¥

<

/{jJXjel

<

[
.\/M:
NE

S
—~~
S
|
—_
<
Il
—_
¥
<

3

Q

3

I
.M:

<
Il
-
o~
LS
<

ki XS Bl Z0) — §,(20)]

3
S
[

—
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We have, D,, = E,, + F,, + G,,. For consistency, we show that the probability limits for £,
F,,, and G,, are all zero.

1 nn ~ ,
B = ) 2 2R = ECGZ)) B
1 n.n _ /
= R 2 il O On(en) o
0
1 n.n B
S n(n—1),2%“]”“”019(%)]@
1 & i
T -1 Z ; rjilXjer+ Oplun)el
o

Gn = % > En: 'fj,szj (E(yi|Z1) — 6y(Z1)]
n(n —1) =i
= 1_ Zn: i k311X + Op(vn)][Op(vn)]
n(n —1) Py
£o

All in all, we have P1imD,, = Plim(E, + F,, + G,) = 0, so Bn EiN Bo.

In addition, we have:

\/E(Bn - 60) = [Cn]il\/ﬁ[En + Fy, + Gn]
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And we study each term separately:

1 nE -
VvnF, = vn ST kX + Op(vn)]er
n(n—1) oy
1 n n
= vn K1X61+/€10 U )€
TP 110y v)el]
1 LA -
= Vn ZZ%MX e+ vVn———= ZZF&]:O Up)e
nn—1) 545 (" )J 117
1 n n
J:1 I#j
1 n n ~
VnE, = vn D> wiX(9x(Z) — BE(Xi|Z))
n(n—1) J=11#j
1 n n
= Vn > > wialXj + Op(va)](Op(vn)) Bo
nn—1) 317
VG = fn(n — Z ZWX (Wl Z1) — §y(Z)]
=14
1 n n
= > Kl X + Op(0a)][Op(vn)]
n(n —1) J=11#j
Thus, if we can show that
1 2 -
\/ﬁm Z 531X Op(vn) = 0p(1)
J=11#]
then it will follow that \/nE, and \/nG,, are op(1). Indeed
\/ﬁ 71 i i Rj lX o) (Un) - [\/ﬁl i XJ ! i "ij,l]Op('Un)
nln =1 517 nG o=l
For each j,
1 n
| > kjl <
n—1lig iz

From the definition for &, |k1| = | [rew e’ Wi=Wi)dy,(t)|. From the properties of Lebesgue

integral, we have:

[ au(e) < [ e O g
Raw Raw
Since e’ Wi=Wi| = |cos(t (W; — W})) + isin(t' (W; — W;))| and Assumption 1(vi), we have

! Wi=W| — |cos(t (W; — W) < 1
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Thus,

1
|f€j,l|§/Rq du( =M wpl = ‘niZﬁ]l|<M w.p.1
w l;ﬁ

l#J
Hence,
1 n n _
\/ﬁizzﬁj,lXjO ’Un ZX O )
n(n—1) ;515

Also, /ni 27 X; = O,(1). We have \/ﬁﬁ Doi=1 2l 11X 0p(vn) = Op(vp).
Thus,

1 n n B
Z ZI{]‘JX]‘OP(’U”) and Vn———

J=11#]

ZZ/{”O Up)e

”( )iSiZ

n(n —1)

are op(1). Hence, we have:

V(B = fo) = [An + 0p(1)] " V[ Bn + 0p(1)]

and we conclude that the feasible estimator has the same asymptotic distribution as the
infeasible one. 0

1.6 Consistent estimator of the asymptotic variance (3.10)

varf,, e ejwo)E[e“'Wle]du(t)]

- Var[El(/Rw HW=Wi e, (80) Xydp(t))]

= VarlE(k(W, — szXlej(BO))] )
= E[(EkW, — W) X)) (EkW, — W;)X]])e;(Bo))’]

Under heteroskedasticity, the estimator for variance of the feasible-RSMD is

n o n n _ n o n /\,
D> wu XX DY (O 0k ngl O kX )éd ZZ lX 2N
; 4 =112

=1 [=1 =1
!/

~ =l
with 2, the conventional variance matrix of residuals from g, — X, 3,,. The following proves
that the two expressions are the same.
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~1 = ~1 2 = ~ ~ 2 =
Proof.XFaQn/?&X—X/?c[Ul 02] /%X:[Xl Xn} kor koo ... kon [01 02] %

[~ 2 n 2 0’% .. 0.2
= 2= Xk Zl:lekln] 0 o2 | BX
=[x Xikno? . Y, Xikino?] BX

- ~1
n v 2
> o1 Xkpoq

- _Z?:l Xlkllo'% Z?:l Xlklno}ﬂ -
_Z?ﬂ Xlkln(f%
_ =

~ ~ i1 Xikn
= [Sr Rikno? . i Kiko?] |

-
_Z?:l Xlkln

= =~/
= 2io1 (00 Xokiy) (1 X kiy)of

e Consistent estimator under homoskedasticity:
When the error term is homoskedastic, the estimator for variance of feasible-RSMD is

n o n POy n n —~ n — n o n POy
DD wuX X 1T (O kX)) O mua X DD D wu XX ]!
J=11#£j j=1 1=1 =1 =1 14j

=/ =~ =/ =

=~/ =
= X RX|T'X REX([X &

S

]—1

: ~2 1 n 2

1.7 Choosing standard normal distribution

wjg = k(W; = W) = [pa, €X' Wi=Wau(t) = e™"*/2 with u = (W; — W), when p(t) is a
standard normal distribution on ¢t and W is of dimension 1.
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Proof.

Kjl = Nors /wa et/ 2¢itugy
1 2 /24itu
= — e dt
vV 271' /wa
_ / —1/2 (12 —2itu+u?i? —u 12)dt
\/27r Raw
_ / —1/2 (t? —2itu+u?i?)+1/2u?i? dt
\/277 Raw
— / 71/21‘/ iu)? +u212/2dt
vV 271' Raw
_ —1/2(t—iu)? dte_u2/2
V2T /wa
1 2
= ——\2re v /2
V2
— 67u2/2
With [pq,, e 1/2(t=1) “dt = /27, the integral of Gaussian function. O

2 Two-step R-SMD estimator

We start this section by introducing the (infeasible) efficient SMD estimator and presenting
its asymptotic properties. We then introduce the two-step R-SMD estimator and derive its
asymptotic properties.

2.1 The infeasible efficient SMD estimator

Let us introduce the efficient weighting matrix, Var[e;(5o)|W;] f(W;), and its nonparametric

estimator
1 & A W; — Wy,
S o (M5 )
nbiw = b

O (W;, B1) =

where 3 denotes a (first-step) consistent estimator such as (3, or 3, and L(.) a second-order
product kernel with b a vanishing bandwidth as defined in Assumption 6 below.

The infeasible efficient estimator . is defined as the minimizer of M, ;. (B),

My = s S0 3 o200y a2, B - X6l - K0

Wj—Wl>
113#

h
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and is obtained in closed-form by solving the FOC as:

Beww = [D. Do AWy, Br)ay A (W, Br)k kXX !

=1 j#1

<D @ Wy, B, (W, Bk JZ;LXj?Jl] (2.2)

I=1 j#l

with Kih = h (@)

In order to derive the asymptotic properties of Bem we need additional regularity assump-
tions.

Assumption 6. (Vanishing bandwidth and Regularity of the kernel L(.))
(i) The bandwidth h > 0 is o(1) with /n(h* + [1/(nh?)]) = o(1).
(ii) L(.) is a product kernel based on a second-order univariate kernel I(.) such that

W; — W; _ G (Ws,i_Ws,j>
L( . ) e (e

Juw 1
with b=1"bs and n (Z b+ [bb =o(1)
=1 n01...0q,

Proposition 5. (Consistency and Asymptotic normality of 3en)

Under Assumptions 1 to 8 and 6, Be,n 1s consistent for By, that is Be,n 2 B, asymptotically
normally distributed, and efficient as its asymptotic variance reaches the semi-parametric
efficiency bound,

V(e = Bo) % N0, [B[Vare;(80)[W;) ™ B(X; W) B(X W) )

2.2 The two-step R-SMD estimator

Consider now the feasible counterpart of Be,n obtained as the minimizer of

o ww,
S X W ) VAW )G - X8)E - Xiplhren (S )

n(n—1) )= 1541

It is denoted Bem and obtained in closed-form as:

N n n . ~ v
Ben = ZZ 71/2W 5 (VVlvﬁl)lijJﬁXle]*l
J=11#]
X3 3w VAW, ) AW, )y X5 (2.3)
J=11#j

Theorem 2.5. (Asymptotic properties of Ben)
Under Assumptions 1 to 8 and 6, Be,n is consistent for By, that is 3e,n 2 By and

Vi(Bew — o+ Ha) % N (0, [E[Var|e; (80)|W;] L E(X; (W) E(XW;)]] )
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where Hy, = Op(vy,).

2.3 Proofs of the theoretical results
Proof of Proposition 5

e Preliminary result #1:
Under the assumptions of Proposition 5, we have:

(Wi, B1) = Var(ei(Bo)|[Wil f(W;) + Op (vy) + 0p(1)

1 0.5
b1...bg,

9y(Zi) = E(yil Zi) = Op (vn)  and  gx(Zi) — E(Xi|Z;) = Op (vn)

Gw
with v, = sz-i-

Proof. Recall that

0.5 R
with v, = 3% B2 + [ﬁ} . Hence, with 57 a consistent estimator of 5y, we have:
e(B) = yr— Bl Ze) — (X — B(XelZk)) B1 + E(yrl Zi) — §y(Zk)
+(9x (Z0) = E(Xk|Z0)) By
= yr — E(yr|Z) — (X — E(X&|Zk)) (Bo + 0p(1)) + E(yx|Zk) — Gy(Z1)

+(0x(Zk) — B(Xx|Z1)) By
= ex(Bo) + E(yk|Zk) 99(Zk) + (9x(Z1) — B(Xk| Z0))' Br + (Xi — E(Xk| Z1)) 0p(1)
= er(Bo) + Op (vn) + Op () B1 + (Xi — E(X|Z1)) 0p(1)
= er(Bo) + Op () + Op ()" (Bo + 0p(1)) + (X3 — E(Xk|Zx)) 0p(1)

ex(Bo) + Op (vn) + (Xi — BE(Xy|Zy)) 0,(1)

because (Xy — E(Xk|Z;) < oo for all k, Xy, — E(Xi|Z) < maxy (X — E(Xk|Z;) = M.
We then have:

&n(Wi, B1) = nblqw > lex(Bo) + Op (vn) + op(1)]*L (W—ka>
k=1
- nblqw Z::[ek(ﬂo) + O, (v2)]2L (Wi _b Wk)
= nblqw Z[ek(50)2 +2¢1(B0) Oy () + Oy (v2)] L (Wz ; Wk>
k=1
Ly W; — W, . S
T <bk> + [264(50)Op (1) + Op (v)]L ( b k)}

n

= g Rl (T ) ot
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The first term of the RHS is the nonparametric estimator of Varle;(8o)|W;]f(W;) and from Li and
Racine page 63,

n

nblq Z[ek(ﬁoP}L <W2Wk> = Varle:(Bo) Wil f(W;) + Oy (v.n) -

It then follows that:

&n (W, B1) = Varle:(Bo)|Wil F(W;) + Op (vi,0) + 0p(1).

e Preliminary result #2:
Let @p i1 = @n(Wj, f1). Under the assumptions of Proposition 5, we have:

n

A = SU20-1/2 o

" n(n - 1) jz:l l;ﬁj wnr.jv]- wn,lJ K/J?luh J l
P _ ~ ~

= A= E[Var(e;(0)|W;) ™ E(X;|W)) E(X}|W;)]
Proof.
A = 1 s 1/24—1)2 %%
no =T DD @ O R X X
nln =1 517
1 —1)25 I K —1y2 <
= ;an,j,lXj 1 2=“nll K1
=1 1#j

Hence, A,, is a U-statistic. When the bandwidths & and b converge to 0, the term in be-
tween the square brackets corresponds to the leave-one-out non-parametric estimator for

E(w; 2XIW)) F(W;) with w; = Varle; (50)|W;]f(W;). Tt follows that:

1 & ime . & _ -
An = =3 [wj+ Op (vnn) +0p(D] 7 2XG{——2 > [wr + Op (v5,0) + 0p (V)] /2. X7}
j=1 1#]
1& _ ~ _ ~
= = Y lwi + Oy (vh) + 0p(D] 72X (B PR IW)F(W) + O (7))
j=1
with 0.5
- 1 .
-~ p— 2
Vpp = his + {nﬁ%} .
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Under the iid assumption maintained in Assumption 2, a LLN for U-statistics applies and
the expected result follows:

Plim A, = Elw; "?X;E(w; 2XIW;) f(W))]
= Blw;" E(XI 3).f(W;)]
= E[Varle;(Bo)[W;] ™ (W) X, B(X W) f(W;)]
= E[Varle;(Bo)|W;] " X;E(X]|W;)]
= E[Varle;(8o)|Wj] ™ E(X;|W)) E(X;|W;)]
O
e We now return to the proof of Theorem 5.
Proof. From the definition of Bem and simple algebra, we have:
5 1 n n A .
66;" = [An]_l[ii Zzwn ;/120‘)77, %/12l€] IL,h (XIIBO + el)]
n(n =1 515
B 1 n n ) . n n . N
DI WL RIS A L) D SR A L
=117 =1 1
1 LSS
= (4, {— V212, XXﬁ
[ ] [n(n_l);g n,7,1 nll 5,0,k lO]
1 1 L A—1/2A—1/2
+[A,] [771(71— 0 ;;w a@n Hjth el
= Bo+[A7'By with Bn=om— ZZ Lo ks X e (2.4)
J=1 1]

From Preliminary result #2, we know that A, —P> A. Under Assumption 1(iv), A is nonsin-
gular. To show that B, is a U-statistic, notice that:

1

SRRTOE)

n

—1/2—1)2 “1/2.-1/2
Y (@i O H;th er+ Wy i1 Wy "ClgtheJ)
j<l

with Kih = h—wk (@) Define now

- . 1/2-—1/2 - —1/2.-1/2 -
h(@1, Ty, €1, w13 W, Ta, €0, w2) = @y @y TRy o pT1€2 + D) TRy TRy g 26

Since h is a symmetric function of observations 1 and 2, a U-statistic with kernel h is defined

as

S L
B;l = m Zh(wn,j,lan76j7 Wj;wnJ,l,Xl?elaw/l) and Bn - 7B;7,
i<l
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A similar U-statistic is defined as

N 2 n - - ] -
Bl = mZh(wj,Xj,ej,Wj;wl,Xl,el,VVl) with B), = B}, + 0p(1)
j<l

In addition, we have:

E(B)) = E(wil/lefl/Qﬁj,lﬁXjel +w;1/2w;1/2

J
—1/2 —1/2 >
= 2B(w; /wl //ijl;LXjel)

mwﬁXlej)

_ 9 = qu[ -1/2 l1/2X’—jeleit’(Wj—Wl)/il]dlu(t)

RIw
— 9 5 = qu[ —1/2 l—1/2 Xje it’Wj/ﬁele—it’Wl/iL]du(t)
- 9 h- qu[ —1/2 Xje it’Wj/ﬁ]E[wl—l/Qele—it’Wl/ﬁ]du(t)
Raw

=0 since Elw, L2 eje” M) = 0.

It then follows from WLLN for U statistics that B, 2 0, and we conclude that Be,n is a
consistent estimator of 3y. Before we can derive the asymptotic distribution of j. ,,, we need
to compute the variance of these U statistics. Notice first that:

- . —1/2.-1/2 - —1/2.-1/2 -
h(@1, 1, €1, w15 @a, Ta, €2, W) =@y "Wy TRy g i€ @ TRy TRy pT261

We then have:

hl(@la'i'lafl?wl)
= E(h(wl,Xl,el,Wl;CUQ,XQ,eQ,WQ)‘wl = (:11,X1 = 5‘1,61 = 61,W1 = wl)

- b qu[ *1/2 2*1/2/]1{% eit/(wlsz)/ildu( )x162—|—w 1/2 ;1/2 /wa eit’(W2fw1)/l~zd'u(t)X261]

— h QwE[ _1/2 _1/2 /wa eit/(w1*W2)/5du( )x182]+h qu[ —1/2 2—1/2 /wa eit'(Wwal)/iLdlu(t)Xbel]

— jw / wl—l/Qefit’wl/ﬁelE[wgl/Qeit’Wg/EX—Q]dlu(t)
R9w
where the last equality follows from studying each term of the RHS separately:

e Bl Y/? 271/2/ e 1= W) b (17 0]

Raw
= 0w Bloy Puwy et on/he =t Welh ool dp(t)
Raw
= R [l e )
Raw
= 0
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The second term of the RHS is:
Eiqu[a’;l/sz_l/Q /R eit,(wrwl)/ﬁdﬂ(t)xzﬁﬂ
= h I /R E[(Dl_1/2w2_1/2e”/w2/ﬁe*“/w1/B)Z’Qel]du(t)
= hT /R @1_1/26_”/“’1/i‘61E[w{lmeit/wz/ﬁ)zg]du(t)
Since E(hy(wi, X1,e1, W1)) = 0, we have:

Varlh(wn, X er, W) = Varlhoee [ or2etWlhe Bl e/ Sldu )
Raw

= Varlo; e Elwy *ky 5 Xol1]

wi L Elwy P hy 5 Ko 1 Blwy Phy X501

witedwr B W) f(Wh)wy VPE(R W) £ (W)
wy tefwi LB (X |[Wh) E(X1|Wh) f(Wh)?]

Varle[Wh] 72 f(W1) 2elE(X1|[W1) E(X{|Wh) f(W1)?]
Var[el|W1] 22 E(X,|[W1) E(X||W1)]

Varlel|[W1] 2 E(ei|Wh) E(X1|W1) E(X]|[Wh)]
Varley|W1]~ 1E(X1\W1)E(X11W1)]

= E[Varle;(Bo)|W;] E(X;|W;)E(X;|W;)]

= F

1 1 | I T |
e I I o [ o e

[
[
[
[
[
[
[
[

Following Serfling (1980) (section 5.5.1), it follows that:
V(B — 0) % N(0,4Var(h (wy, X1, e1, Wh))])

And, as a result, we have:

VABen = Bo) = N (0, [E[Vare; (80) W)~ B(X, W) E(XG W] 7).

Proof of Theorem 2.5

e Preliminary result #3:
Under the assumptions of Theorem 2.5,

Ch

Il
3
3
|
=
(]
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Proof. Recall that

We then have:

An_Cn

And the result follows from Preliminary result #2 in the previous subsection.

P
=

e We now show the consistency of Bem.

Proof. Recall that

~

Y;

‘Q>

(

Xzﬂo +

y(Z

i)

( il Zi) + E(yil Zi) — §y(Z:)

9x(Z

(9x

) Bo + (9x(Zi) —

(Z:)
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E(X;|Z;))' Bo+ei + E(yilZi) — §
— E(Xi|Z:)) Bo + ei + E(yilZi) — gy

(Z:)

vl

Xj = XJ ga:( J)
Xj E( ]’ J)+E(X ’Z) (Zj)
= )fj E( ’ J) n)
= j+0p(vn)
1 TN —1/2 4 —1/2 Sy
— Zzwn,j,l W11 “j,l,BXsz
nn—1) 545
1 N o 1/201)2 -
eSS K+ Op(0)] [0+ Op(vn)]
nin —1) ~—~
J=11#5
1 TS 124 —1)2
_ ZZ“ 1% ’%th X
n(n 1)].:“#]
1 N 1/2.1)2 S o - -
- (n—1) Zzw ,],/1 wn,l,/l K [Xj I"’Op(vn)Xl/“‘XjOp(vn)"‘Op(
T S
1 N 1/2.-1/2 S -
SO 1k 7 lOp (0n) X] + X;0p(0n) + Oy
n(n—l)j:” y
1 n n R 1 2
33wy + O (v + 0p (1) V20 Pk
n(n —1) <
J=11#j
0

y(Zi)

vn)]

[0p(vn) X + X;0p(vn) + Op(v

3]



The estimator Be,n can then be rewritten as:

~ A—1/2 A—1/2
Pen = [Cn]” ZZ n,j/l nl/l Kk [ 150
J 11#£j5
+(§X(Z) - (leZl)) o +e+ EwilZi) — 9y(Z1)]]
— Bo+I[Cn ZZ e Rk, 5 X (6x(Z0) — B(X)|Z0)) Bo
J Li#j
+e; + E(yl|Zl) — 9y(Z1)]]
with
Pe = D S0 Ay X5 (Z0) — EOXUZ0) B+ e+ E(ulZ0) - 3,(20)
J 1 1#£j

which is decomposed into D,, = E,, + F,, + G,, after introducing

—1/2—1/2
En = n(n—1) ZZ nj/l nz/1“ X 1(9x(Z1) = E(Xi|Z1))' o
] 1i#j5
—1/2..—1/2
B = e Zan/lwn/wﬂhX €l
] 11733
n—1/2 A —1/2 = o
Gn = n—l ZZ nj/lwnl/l K:thX[ (yl|Zl)7gy(Zl)]

] 1)

To obtain the consistency of Bem we show that the probability limits for F,, F,, and G,
are all zero.

n

n
—1/2 . —1/2
En - n _ 1 Z an,]/l nl/l ]th (gX(Zl) - E(Xl|Zl))/50
J=1 I#]
_ S —1/2A 1/2 %40 0 ,
= ) 2 2 P @il Kl + Op(on))(Op(va)) B
3:1 I#j
o
1 2\ = A —1/20—1/2 -
Fno = m Z an,],/ Wn,l,/l Kj,l,ﬁ[Xj + Op(vn)ler
J=11#j
1 N L S1/241)2 -
= an—-1 Z anﬂ,/ wml,/l kj, l,E[Xjel + Op(vn)el]
n(n =151
o
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since, from the proof of Proposition 5, E(w;1/2wf1/2ﬁj7l7ﬁ)2jel) =0.
— 1/2 4 —1/2 S
G = Ty 2o 2 O Pt R i XS Bl Z0) = 5y(2)
]:1 I#j
ot 1/2,-1/2 =
= D) 2 2 O Gt K Op(ea)][Op(v)]
J:1 I#5
Lo
And the consistency of Bem follows. O

e We now derive the asymptotic distribution of Be,n.

Proof. From equation (2.5) and preliminary result #3, we have:
V(Ben — Bo) = [Col Vn|En + F, +Gp]  with  PlimC,, = A.

We now study each term separately.

n
—1/2 0 —1/2 S
Vb = \/ﬁm > an,j,/l wn,l,/l 1,4l X5 + Oplvn)]er
i=1 1A
1 o 1/2 . ~1/2 1/2 . —1/2
= \/ﬁmzzw ndt @it 10 i X+ @ @ 1 7 Op (vn)ed]
i=11j
VI N 1/20-1)2 \f e 1/201)2
- — Zzwvﬂ/l "l/l KJZhX 6l+ _ Zzwn nl/l ﬂ]lho (vn)er
n(n —1) &~ <~ 1) <
J=11#j J*l I#5
1 A L 1/21/2
— \/ﬁBn+\/717n(n_1)Z @y, i @0 Ky R Op(vn)er
=112
with B, defined in equation (2.4) above
= VnBy, + Oy(vy)

which follows from a CLT applied to the 2nd term on the RHS which is a U-statistic with
mean 0.

A—1/2 0 —1/2 .
wn ”717/1 ﬁjthj(gX(Zl) _E(X1|Zl))/50+0p(1)

VnE, = Z
Treating Z; as a nonrandom vector, and following Li and Racine (page 63), we have:

nhy..hy, (9x(Z)) — E(X)|Z)) — ZhB 7)) S N(0,¢%=0%(2))] f(Z)) (2.6)

v k
where ¢ = [ k(v)2dv, Bu(2) = L8O 0 1 (2) BL(X1| 20+ (20 Eas X0\ 20} £(21), 0%(21) =
E[u%(’i|Zl] and 75(Z;) and TSS(ZZ) are the first and second order derivatives of r(Z;) with
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respect to Zy ;. It then follows that:

1
VnE, = VnOp(————==)+ vnR(n,j1) + op(1)
nhl...hqz
. ~—1/2 .—1/2 o
where R(nm]al):n( 12[;&] n,]/l nl/l jliLXj( s= 1h§B< )) 50'
a—1/2 A —1/2 = A
VnG, = ZZ n,j/1 1/1 ’szhX[ (wilZ1) = Gy(Z1))
J 11#j5

Similarly to equation (2.6) above, we have:

nhy..he (E(ulZ) — 6,(Z) +zh2B' (2) % N(0.C%=0™(2))/ f(Z1))

s=1
where By(Z) = L0 19 1 (20 Byl 20+ £ (Z0) Eas(wl 20}/ £(Z0) and o(Z) = Elud. | Z1]).
And it follows that:
\/ﬁGn = \/ﬁOp(nh;lh) — \/ﬁRl(n,j, l) + Op(l)

) =1/2 . —1/2 5 :
where R/(TL,], l) — n(n— 1) Z] 1 El;ﬁj nj/l n,l,/l H],Z,BXJ'( g:l thé(Zl))

Ultimately, we have:
Vi(Ben = Bo) = [Cal ™t [VAF, + VRE, + v/nG]

e [mn VRO )+ R(n 1)

I
nhi...hq,

+ \/ﬁ <0p(nhllhq) - Rl(”)])”) + OP(]-)

= [C] T [VnBy + Vi(op(1) + R(n, 5,1) = R'(n,j,1)) + 0p(1)]

which implies that

Vi (Bew = Bo = C EIR(n, 1) = R(n.j,0)]) = G VAB,] +0(1)  (27)

and the result follows. O
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3 Simulation study: Results for the L-L model

In this section, we consider the L-L model with a sample of size n = 200 and 5,000 Monte-
Carlo replications generated as follows,

X = 2Wi+Zi+v;
X, = 8scale(X))
yi = 2X;+3Zite

In this fully linear model, we expect all the estimators we consider to behave and perform
quite similarly. This is confirmed with the results displayed in Table A.1. The performance of
these four estimators is quite similar with respect to bias, standard deviations and rejection
rates.

In Table A.2, we display the performance of R-SMD for different bandwidths. The results
do not change much compared to those in Table A.1, where the bandwidth was chosen using
the rule of thumb. In Table A.3, we display the performance of R-SMD for different choices
of u(.) (and k(.)). Once again, the results are very similar for the different choices of u(.).
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- /l 1 -
Estimator R-SMD WR GS\QIWQ) S&eves (%TIIA/MQ) W Gl\({% W)
Bias 0.005 | 0.006  0.007 | 0.001 0.001 | 0.000 0.000
SE 0.018 | 0.016 0.016 | 0.015 0.015 |0.015 0.015
Asympt. Homosk. SE 0.021 | 0.019 0.019 |0.015 0.015 |0.015 0.015
Asympt. Heterosk. SE 0.020 | 0.018 0.018 | 0.015 0.015 |0.015 0.015
Rej. rate for Homosk. SE | 0.034 | 0.033  0.035 | 0.059  0.061 | 0.054  0.056
Rej. rate for Heteros. SE 0.036 | 0.040 0.043 0.063 0.063 0.061 0.061

Table A.1: Simulation Results for the L-L model using n = 200 and M = 5,000

We report the Monte-Carlo bias and Monte-Carlo standard error (SE), as well as the aver-
age of the asymptotic SE assuming either homoskedasticity or heteroskedasticity, and the
empirical rejection rates of the null hypothesis Hy :
SMD, R-GMM, Sieves-GMM and GMM estimators. GMM, Sieves-GMM, and R-GMM are

computed using either one moment with instrument W or two moments with instruments

B = By using a 5% t-test for the R-

W and W2.
Bandwidth Bias SE Asymp. Heterosk. SE  Rej. rate
0.08705506 | -0.002 0.019 0.022 0.025
0.1519344 | -0.001 0.018 0.021 0.025
0.2168137 0.000 0.018 0.021 0.025
0.2816931 0.002 0.018 0.021 0.028
0.3465724 0.005 0.018 0.020 0.036

Table A.2: Simulation Results for the L-L model using n = 200 and M = 5,000

We report the Monte-Carlo bias and Monte-Carlo standard error (SE), as well as the average
of the asymptotic heteroskedasticity-robust SE, and the empirical rejection rates of the null
hypothesis Hy : 8 = [y using a 5% t-test for the R-SMD as a function of the bandwidth

used in the Nadaraya-Watson estimate.
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. Gaussian p(. Cauchy (. sinc? p(.
R-SMD Estimator (Gaussian k‘gi) (Laplace k:E%) (Triangular(k:)(.))
Bias 0.005 0.005 0.005
SE 0.018 0.018 0.020
Asympt. Homosk. SE 0.021 0.021 0.023
Asympt. Heterosk. SE 0.020 0.021 0.022
Rej. rate for Homosk. SE 0.034 0.034 0.039
Rej. rate for Heterosk. SE 0.036 0.036 0.040

Table A.3: Simulation results for the L-L model with n = 200 and M = 5,000

We report the Monte-Carlo bias and Monte-Carlo standard error (SE), the average of the
asymptotic heteroskedasticity-robust SE, and the empirical rejection rates of the null hy-
pothesis Hy : 5 = [y using a 5% t-test for three R-SMD estimators associated with pu(.)
chosen as the CDF of: (i) a standard Gaussian distribution, (ii) a Cauchy distribution; (iii)
a sinc? distribution.

4 Empirical application

e Alternative set of control variables:

The following tables correspond to Tables 3 and 4 in the main paper using the full set of
control variables (see Table 3 in Dinkelman (2011)).
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Panel A: Effects on employment

Outcome is A in IV (L-L) | IV (Q-L) R-SMD (NL-NL)
Female employment rate 0.095% 0.057 0061
Doy (0.051) | (0.043) (0.044)
Male employment rate 0035 ~0.012 0.074
Py (0.062) | (0.057) (0.061)
Panel B: Effects on Household energy sources & other household services
Outcome is A¢ in IV (L-L) | IV (Q-L) R-SMD (NL-NL)
N . .. 0.635%*** | (0.358%** 0.386*+*
Lighting with electricity (0.176) (0.113) (0.146)

. . -0.275%* | -0.216** -0.191
Cooking with wood (0.123) | (0.095) (0.122)

. . .. 0.228*** | (.128%** 0.155%*
Cooking with electricity (0.077) (0.051) (0.074)
Water nearb -0.372*% | -0.363** -0.626**

Y (0.197) | (0.167) (0.246)
. 0.067 0.069 0.104*
Flush toilet (0.055) | (0.052) (0.060)

Table A.4: Impact of electrification on Employment (Panel A) and on Household energy
sources & other household services (Panel B)

Note: *** Significant at 1%, ** at 5%, * at 10%. Each cell in the table presents estimates of
the Eskom project variable coefficient (and robust standard error) from an IV regression of
the dependent variable on the Eskom project indicator and control variables (that include
baseline controls and district fixed effects, and two additional variables for access to water
and toilet, except for the last 2 rows of Panel B where these 2 controls are omitted; see
Table 3 in Dinkelman (2011)). In Panel A, the dependent variable is the change in female (or
male) employment rate between 1996 and 2001; in Panel B, the outcome variables measure
the change in fraction of households using different energy sources or with access to basic
services. Each regression contains N = 1,816 except for change in fraction of households
using wood which contains N = 1,807 due to missing data on this variable.
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e Alternative estimation strategy:

This Table corresponds to Panel A, row 2 of Table 1.3 and Panel A, columns 2 and 3 of
Table 1.4 in the main text where we report estimates of the effect of electrification on male
employment rate and on the change in fraction of women (men) that have a completed high
school education using R-GMM (with up to 3 powers of W as instruments); for comparison
purposes, we also report estimates obtained using R-SMD.

Panel A: male employment rate

R-GMM (W) | R-GMM (W, W?) | R-GMM (W, W2, W3) R-SMD
0.107* 0.057 0.048 0.061
(0.062) (0.045) (0.041) (0.059)

Panel B: fraction of women that have a completed high school education

R-GMM (W) | R-GMM (W, W?) | R-GMM (W, W?2 W?3) R-SMD

0.196%** 0.145%%* 0.144%%* 0.195%*
(0.063) (0.046) (0.047) (0.082)

Panel C: fraction of men that have a completed high school education

R-GMM (W) | R-GMM (W, W?) | R-GMM (W, W2 W3) R-SMD
0.118%** 0.076* 0.070 0.089
(0.049) (0.040) (0.039) (0.057)

Table A.6: Impact of electrification on male employment rate (Panel A) and on the change
in fraction of women (and men) that have a completed high school education (Panels B and

C)

Note: *** Significant at 1%, ** at 5%, * at 10%. Each cell in the table presents estimates of
the Eskom project variable coefficient (and robust standard error) from an IV regression of
the dependent variable on the Eskom project indicator and control variables (that include
baseline controls and district fixed effects; see Table 3 in Dinkelman (2011)). In Panel A,
the dependent variable is the change in male employment rate between 1996 and 2001; in
Panels B and C, the outcome variables measure the change in fraction of women and men
that have a completed high school education. Each regression contains N = 1,816.

e Identification-robust inference:

This Table corresponds to Panel A of Table 1.3 in the main text where we report identification-
robust 95% confidence intervals on the effect of electrification on male and female employ-
ment rate obtained with Anderson-Rubin and Conditional Likelihood Ratio, as well as the
F-test statistic which is often used as a rule-of-thumb to evaluate weak identification. We
consider both the set of controls (as in Table 3 Panel A), as well as the restricted set ob-
tained by selecting the first two PCA as explained on p12. For comparison purposes, we also
report the corresponding (non-robust) confidence intervals. We use the R package ivmodel.
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Panel A: Effects on employment (full set of controls)

Outcome is Ay in IV (L-L) IV (Q-L)
Female employment rate 0.090%* 0.053

v [-0.008,0.188] [-0.031,0.137]
AR [-0.004,0.255] [-0.025,0.185]
CLR [-0.004,0.255] [-0.032,0.199]
Male employment rate 0.033 -0.013
v [-0.089,0.155] [-0.125,0.099]
AR [-0.100,0.199] [-0.145,0.115]
CLR [-0.100,0.199] [-0.157,0.126]
F-test statistic 13.7 8.9

Panel B: Effects on employment (restricted set of controls)

Outcome is Ay in IV (L-L) IV (Q-L)
Female employment rate 0.115%* 0.039

v [0.013,0.218] -0.023,0.100]
AR [0.024,0.301] [0.012,0.087]
CLR [0.024,0.301] -0.023,0.137]
Male employment rate 0.128 0.040

v [-0.007,0.263] [-0.049,0.128]
AR [ 0.006,0.362] [-0.024,0.129]
CLR [ 0.006,0.362] [-0.046,0.161]
F-test statistic 13.3 14.1

Table A.7: Impact of electrification on Employment measured as the change in female (or
male) employment rate between 1996 and 2001

Note: *** Significant at 1%, ** at 5%, * at 10%. Each cell in the table presents estimates
of the Eskom project variable coefficient (and robust standard error) from an IV regression
of the dependent variable on the Eskom project indicator and control variables: in Panel A,
we include baseline controls and district fixed effects; in Panel B, we include the first two
PCA on the set of controls included in Panel A. Each regression contains N = 1, 816.
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Appendix B

Estimation of Heterogeneous
Treatment Effects Using a
Conditional Moment Based
Approach

1 Tables for the Returns of Education

Homogeneous treatment effects
Estimator A Zo (Z1,21X1) (21, 2Z9)
GMM 0.138%*  0.223** 0.138%* 0.144%%*
(0.055)  (0.092) (0.055) (0.055)
0.142 0.244 0.156 0.064
(0.108)  (0.207) (0.111) (0.082)
0.187* 0.574 0.128* 0.203**
(0.104)  (0.728) (0.078) (0.098)
0.214 0.738 0.137* 0.234**
(0.131)  (1.226) (0.075) (0.121)

GMM-Lasso

DRSMD-Lasso

DRSMD-2SOLS

Table B.1: Homogeneous Treatment Effects of years of education on the log wage
Note: *** Significant at 1%, ** at 5%, * at 10%. Each row shows the estimates and robust

standard errors for the same type of estimator. In the columns, we present the instruments
these estimators used. Every regression contains 3010 observations.
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Homogeneous treatment effects
FEstimator Z1 ZQ (Zl7 Zle) (Zl, ZQ)
0.788*%*%  1.025%* 0.656** 0.867**

GMM (0.349)  (0.447)  (0.309)  (0.349)
0.793  1.085 1.017 0.648
GMM-Lasso (0.676)  (0.967)  (0.715)  (0.609)
1757 2.474 0.914 1.394%
DRSMD-Lasso—  ysry (2.646)  (0.620)  (0.820)
2194 3.677 0.985 1.642

DRSMD-2SOLS (2.269) (5.765)  (0.728)  (1.084)

Table B.2: Homogeneous Treatment Effects of education on the log wage

Note: *** Significant at 1%, ** at 5%, * at 10%. Each row shows the estimates and robust
standard errors for the same type of estimator. In the columns, we present the instruments
these estimators used. Every regression contains 3010 observations.

Heterogeneous treatment effects

Estimator for .0 7 Zy (Z1,Z21X1) (Z1,2o)
. 0.137 -0.524
GMM (0.085)  (0.659)
-0.095 -0.547

GMM-Lasso (0.202) (0.732)

0.187  0.095  0.382%*  (.363**
(0.124) (0.079)  (0.167)  (0.181)
0.149%  -0.022  0.192%*  (.190%*
(0.083) (0.092)  (0.090)  (0.093)

DRSMD-Lasso

DRSMD-2SOLS

Estimator for 0.0 Z Z (Zn, 2 X,) (71, 2,)
GMM (8:882) (31823)
GMM-Lasso (828?3) (828&7%2)
DRSMD-Laso (o) (0o3s) (001 (001D

0.006  0.043 -0.007 0.004

DRSMD-2SOLS o 004)  (0.047)  (0.011)  (0.008)

Table B.3: Heterogeneous Treatment Effects of years of education on the log wage

Note: *** Significant at 1%, ** at 5%, * at 10%. Each row shows the estimates and robust
standard errors for the same type of estimator. In the columns, we present the instruments
these estimators used. Every regression contains 3010 observations.
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Heterogeneous treatment effects
FEstimator fOT 91‘,0 + Hu,w()E(X) A Zy (Zl7 Z1X1) (Zl7 Z2)
0.138** 0.129

GMM (0.055)  (0.083)
0.149 0.164

GMM-Lasso (0.116) (0.172)

0.187%  0.403 0.119  0.216**

DRSMD-Lasso (0.104) (0.349)  (0.080)  (0.107)

0.200%  0.414 0.124  0.228**

DRSMD-2SOLS (0.124) (0.388)  (0.084)  (0.112)

Table B.4: Heterogeneous Treatment Effects of years of education on the log wage

Note: Each row shows the estimates and robust standard errors for the same type of esti-
mator. In the columns, we present the instruments these estimators used. Every regression
contains 3010 observations.
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2 Proofs of the Theoretical Results

2.1 Equivalence between the Objective Functions (2.5) and (2.6)
Proof. The objective function (2.5) can be written as

M (0,9) = - Ele;(0,9)e™ %1 Ele(0, g)e™ " Z)du(t)

From Assumption 4(vi), for all j # 1, Cov(e; (0, g)et %, (0, g)e~*' %) = 0. Thus, for all
j # 1, we have:

Ma(®) = [ 090" Db, g Mdut)

= [ E(e(0.90a(0,9)¢" %) du(t
Raz
= B[ 6090690 @ du(t)
Raz

Thus, the objective function becomes

M (B) = E(¢j (0, 9)ei(0, 9)r1)

where ;) = k(Z; — Z)) = [ga. €' %7%)du(t). And k(u) is the inverse Fourier transform of
du(t) with u = Zi— 7. O

2.2 Proof of Proposition 3

The orthogonal FOC in Equation (2.9) implies that

~ 90.p, (Xl) - =/
B[P — 2L ) (5, — POk, | =0
l( J goﬁm’l(Xl)) (yl l ) Jil

= 9.5, (X)) _ 5 90.5,(X1) Y 5,
E|kjy [P — 22— ) gy —kyy | P — =222 ) BJO| =0
[] ( T g0k (X0) P\ 9o (X0) )
-1
_ gop. (X0)\ -, - Yo.p, (X0)\
Op=E |k, (P, — 2 VB B kg, (P — 22l ) g
[J < T G0 (X)) TN 90 (X0)

The proof for invertibility of {/@N ( 153 — m> ]54 follows the same steps of proofs
om,l

for identification in Antoine and Sun (2021).

2.3 Proof of Orthogonal Properties of Equation (2.7) and (2.9)

In this section, we check the orthogonal properties of the two FOCs.
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Mec(6,9) = 3 Bles (O)a(O)r] = ~3 1(G; ~ PJO) i — PO}y

where g stands for all nuisance parameters.

The FOC defined in Equation (2.7) is not orthogonal

The key parameter is 6, the true value is 6. The nuisance parameters are gp(X;) and
9y(X;). Their true values are E(FP;|X;) = go p(X;) and E(y;|X;) = go,y(Xi).

The first order condition is written as follows:
El(P; — gp(X;))(y1 — g4(X1) = [P — gp(X))]' )] = O

If P, = [W;, f(W;, X;)]" and there are only one variable in X;, dp(D; 6, g) becomes:

(Prj — 9P (X)) ly — 9y(X0) — (Pu — gp(X0))01 — (Por — gp,(X1))02]k 5,

Do D:0.9) = | (b 4 (X))ot — 99(5X0) — (Put — g (X0))61 — (P — gy (X0))Bars

Prove that 0,E[0p¢(D; 60, g0)] # 0.

Proof. The first row of dp(D; 60, go + (g9 — go)) is defined as I where

I'= " [Py —gopr(X;)—r(gr (X;) — g0,p (X;))]
[y1 = 90.y(X1) — 7(9y(X1) — go,y(X1))
= (Pu—g0,p(X1) —r(gr (X1) — go,p (X1)))01
— (P — 90, (X1) — 7(9p,(X1) — 90,P,(X1))) 02K

According to the definition for 0,F[0p¢(D; 00, go)] # 0 in Chernozhukov et al. (2018), to
show that 0,E[0p¢(D; 00, go)] # 0 we need to show 0, E[I]|;=o # 0.

O E[Ily=o=—hL —Lh+ I3+ 14

L = El(gr(X;) — g0 Pl(XJ))( = 90y(X1) — (Pu — go,p, (X1))00,1 — (Par — go,p,(X1))00,2)55.1]
= E(9pr (X;) — g0,p, (X;))eirij0] = 0

I = E[(P— g, Pl( N9y (X1) = go,y(Xi))kja] # O

Iy = E[(Pij— go,p (X)) (gp (X1) = go,p, (X1))01551] # O

Iy = E[(Pyj— g0, (X;))(9p,(X1) — go.p,(X1))02k5] # 0

Hence, 0,E[0p(D; 09, go)] # 0

The FOC defined in Equation (2.9) is orthogonal

With E[(Pim — go,p (Xm))km 1| X1] = g9 p, ,(X0), Elfm | Xi] = go,s,,,,(X1),
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¥(D;0,g)

9p, .
(Plj —gp (Xj) — ;1 (XD)
= )

) [y — 94(X3) — (Pu — 9P, (X2))01 — (Por — 9P, (X1))02] k5

= o
<P2j —9p,(X;) — 922’]()(1)) [ = 9y(X1) = (Pu = gp, (X2))01 — (Pt = gp, (X1))02] 551

Prove that 0,E[V(D; 0, go)] = 0.

Proof. The first row of ¥(D; 6,90 + (g9 — go)) is I'.

90,5, ;(XD)+rlgp, . (X)=go p, . (X1)]
I = (Plj — go,P, (X ) —7r(9p, (X ) — go,p, (X ) — 92:;71 (Xl)—&-r[gzj(xz)—g(?:;; (Xz)])
[y1 = g0.y(X1) — 7(9y(X1) — g0,4(X2))
— (Pu — go,p, (X1) — 7(gp, (X1) — g0, (X1)))01
- (P — go,p,(X1) — r(9p, (X1) — g0, (X1)))02] K,
OEI|pmo = 1) — I+ T4+ I} — Iy
I, = FE [(9P1 (X5) = 90,2 (X)) (1 — 90,y(X1) = (Pu— go,p, (X1))00,1 — (Par — 90,p,(X1))00,2) 55,
E[(Pim — 90,p, (Xm))Km,| X1]
Ié = [ Pl] g0, P1 ) - E[Iin;”Xl] )(gy(Xl) - gO7y(Xl)ﬁj,l
E[(Pim — go,p, (Xm)) ]
= E <E KPU go.p, (X;) — E[K;Z‘Xl] kg0l X1 | (9y(X1) — g0,y (X1)
E P m Xm RKm X
= B E|(Py— gor (X)) sy — DlPm = g0 X Drmal Xil e 0y g0 ox
Ekm|Xi]
because [(Plj 90,7, (X)) Kj1 — [(le_?[f;(ﬁg%)mm’l‘xd/‘fj,l|Xl} = 0.
I E[(Piy, — X)) Emal X
I = B |(Py— g () — Em =9 oot ) g0 (30))005| = 0
i E[Hm,l’Xl]
i E[(Piy, — X)) Emal X,
I = B|(Py—gon(x;) - LEm Zgen Dm0y ey g0 (300020550 = 0
_ st X
7 B [ (gplyj (X1) — 90,y (Xl)) 90,5, (X1) — (gﬁj,l (X1) — gO,Hm,l(Xl)) 90,y (X1) 0
— K| =
g (90,10 (X)) o

Since E(61|Xl, Zl) =0.
Hence, 0,E[V(D; 0y, go)] = 0.
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2.4 Proof of Proposition 4:

Proof.
-1
] 1 n n B 90,5, (X1)
On,o = {nmn j=1 2l il (Pa‘ g”m)) PI}
n n D 9 “m(X) S
ey S St s (B = a5 (B + )
-1
= gos (X)) A
= 0o+ [n(n ) D=1 2 gl (P go(f’;’l(xl)) PZ/}
1 n n D 90, B, (X1)
{n(nl) G=1 221 Rl (PJ‘ B go(“;l<xl)> El]
n n D g m(X)
Denote A4, ﬁ DYDY (Pj M) P/ and

go”{m,l
find its probability limit. Then we show that B, is also a U-statistic and find its probability
limit.
To show that A, is a U-statistic, notice that

5 90.5,,(X1) \ =
An Z Z Kj,l (P] - (X ) F)l/
] 11245 90,6, (A1

12 = 5 90.5,(X1) 5 902,55 5
- -__ = ki | Pj— = Ptk p - Zim: 2 | P!
2n(n—1) Z( . ( 90rna (X)) AT o, 06))

g<i

B, = (= 1) D=1 2 Kl (P gO’P’"(();l))) €;. We first show that A, is a U-statistic and

According to WLLN for U-statistics under Assumption 4,

. ~ 9o.5. (X1) \ -
A B A with A=FE |k | P — 22 " | P!
! [ o < ’ goﬁm,l(Xl) :

and under Assumption 4(7i), A is nonsingular.
To show that B, is also a U-statistic, notice that:

1 & = 90,5, (X1) 5 90.5,(X5)
By =——— Kig| Pj——"—=<|a+r;| Pb———"—=]¢
"on(n—-1) ; ( ” < T G0 (X0) X 90,6 (X5) )

-~ L~ o ~ ~ 9o, Pl( x2) 9o, PQ(Il)
Define h(p1, e1, 21, ¥1; P2, €2, 22, T2) = K12P1€2 + K2,1P2€1 — RL2g, L pyer ~R2lg, i ver
Since h is a symmetric function of observations 1 and 2, a U-statistic with kernel & is defined
as

P 1
B n—l ;h €5y 4. Pl,ehzl,Xl) and aniB;L

101



And we have:

_ _ 90,5, (X1) 90,5, (X;)
E(kj i Pje + ki jPej) — | B | kju—"—<~a | + B | ki j——"—==€j
Y 7 790 s (X1) ! 90 s 5 (X5)

P 5 (X
= 2B(kjPje) —2FE </<;jlgovpm(l)q>

E(By)

7 gov’/"‘m,l (Xl)
-y 5 (X L
— 9 E[Pjee %201 dp(t) — 2 E[wglelt (Zi=201qu(t)
R4z Ra= 90,51 (Xl)
~ . " 5 (X ") -y
= 2 E[Pje" Zie™ " 2| du(t) — 2 E[wezt Ziee " ) du(t)

Ra= Raz 90,6m,1 (Xl)

L . 3 oy
= 2 E[P;eZi|Elqe™ " 2 du(t) — 2 Ele® Zj]E[M
Raz R4z go;”vm,l (Xl)

=0 since Eleje” %] = 0 and E[e)|X;, 2] = 0.

e " A dp(t)

Hence, E(B,,) = 0. According to WLLN for U statistics, we have B, 20, and we conclude
that (3, is a consistent estimator of .

To derive the asymptotic normality, we first need to compute the asymptotic variance for the
U-statistic B, which means that we need to find the variance for E(h(Pl, €1, Z1, X1; Py, €9, Zo, X2) \]51 =
pr.e1 =e1,Z1 =21, X1 = 21). ) )

Let hl(ﬁl, €1, 21, 1‘1) = E(h(Pl, €1, Zl, Xl; PQ, €2, ZQ, X2)|P1 = ]51, €1 = €1, Zl = Z1, X1 =

x1). We have:

0.5, (2) 90,5, (71)

€2 — R21
90,x1,2 (z2)

h(p1,e1, 21, 1; P2, €2, 22, T2) = K12P1€2 + K2 1P2€1 — K12 ,
90,112,1(331)

€1

and

hl(ﬁlaehzhxl) = E[ g eit/(zl_Z2)d,lL(t)ﬁ1€2+ . eit/(ZQ—zﬂd,u(t)f)Zel

(g 90,5, (X2) (7 90,5, (71)
. ezt (21 Zz)dlu t Nl €9 — / e’Lt (Z2 Zl)dM t , 12 e1
/R‘IZ ( )90,51,2 (XQ) Ra= ( )90,52,1(x1) ]

= E| . eiﬂ(Zl*ZQ)d,u(t)ﬁlCQ] + E[/qu e“'(ZZ’Zl)du(t)Pgel]

5 (X o 5 (T
907131( 2) €] — E ot (ZQ_Zl)d,LL(t) gO,Pz( 1)

_ E/ eit,(zl—ZQ)d t
[ Rz ,U( )90,H1,2(X2) Rz 90,k2,1 (xl)

61]
The first element of the right hand side is
Bl e Bauipe) = [ Bl 2 peldu)
Rz Raz

_ /R Bl 2 e du(t) = 0

102



The third term is

" Xo , Xo
e B 0

90,x1 2(X2) 90,x1 2(X2)
21 ~ _ 90,5, (X2)
= ett'= Ee”ZZlie du(t) =0
| el ()
The second term of the right hand side is
E[/qu eit,(ZQ_Zl)du(t)pQQ:L] —_ /qu E[eit'&e_it’mPgel]d,u(t)

_ / e~ e Bl %2 Byldpu(t)
Raz
The fourth term is

E[/ e“'(ZTZl)du(t)Mel] - E[e“'ZQe*”’ZlMel]du(t)
Raz 90,:‘62,1($1) Ra= QO,@’l(xl)

" 9o p,\ L1 -/
= / e ' elL()E[e” Zz]du(t)
Rz 90,21 (1)

Hence, hy(p1, €1, 21,71) = Jpa. € e1 B[ 72 Py)dpu(t) — [pa- e‘it,zlelmE[eitlzz]du(t).

90,91 (1)

- it Fo 90,5, (%1)
rsersan00) = feae e rer (Ble%2 ) = 200 Bl 4] )
Since E(hl(Pl,El,Zl,Xl)) = 0, we have:

~ sl =g/ ~ D X sq !
Varlh (P, e1,21,X1)] = Var / e e, Ele" ZQPQ]—ME[(&” Z2] du(t)
R4z g0 521(X1)
il L~ 90.P (Xj) it 7
= Var / e Zic. | Bl 4 p) — 22 2L Rl 2 ) du(t
[ Ry J ( [ l] 90,6m,; (XJ) [ ] M( )

Following Hoeffding (1948b), the asymptotic distribution for U-statistics yields:

V(B = 0) % N(0,4Var[hy(Py, e1, Z1, X1)])

Thus,
\/ﬁ(émo — (90) i) N <0, A_1Var[h1 (pl, €1, Zl, Xl)] (A_1>,>
with A = B [W (1%- - W) PJ O

2.5 Proof of Theorem 3.3

Proof. Recall that

~

U; = vi — 9y(Xi) = yi — E(yi| Xi) + E(y;]1X:) — 9y(Xi)
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For the first two terms of the right hand side, we have

yi — E(yilX;) = (Pi— E(P|X3)) 00+
= (P, —gp(X3))'00 + (9p(Xi) — E(Pi| X))o + €

In matrix form, the feasible estimator writes:

-1
i 1A (2 G (X)) = N (B 905 (XD
o = | —— DD wju | Py — =22 | B T PR
n(n —1) J=11#j 90,51 (X1) ] 1i#j go”ml(Xl)

= X =/
Define Cn = m Z;'Z:l Z?;é] Rjl <P] gopml(()(ll))) Pl . We get:

90,k

A _ = 90,P, R
Ono = [Cul7l Kl S E(y| X1) + E(yl| X1) — 94(Xa
o = G )Z;j( QOWXZ) 1X0)+ Bl X1) — 3,(0)]
_ = gop
= [Ca] 7' Kl( " ) —gp(X}))'00
( ;; ! gOnlel

+(gp(X1) — (Pl|Xz)) o + e + E(yi| Xi) — 9y(X1)]]

= 90 Pm(Xl)
TrE PRI (7 go,nm,xXz))
(9P (X)) — E(P|X1)) 00 + e + E(yi| X1) — 9,(X1)]]

0o + [Cn]™

Consider now,

1 & - 90,Ppn (Xl)> -
Ap—Cp = ——— ki | Py — 22 ) B
o (-
1 b £ 90,P, (Xl)>’~"
- rig | Py - =25 B
i (P
1 & ~ 90,5 (X)> =
= — ki | Pj— —"—<< | P
o (-

_7271:%/%-[ ~»+E»_]5‘_ goﬁm(Xl) gO’Pm(Xl) — QEEJXI) B
n(n—1) 4 T 90k (X)) G0k (XD G0 (X0)

J
1 non 5 = 9m.X) G (X)) 5
= — kil Pj— P+ —= - —= b
n(n - ]') Z Z ’ [< ’ ’ gov’{nL,l (Xl) go7ﬁ’mal(Xl)

J=1 14
~ 905, (X1) =
+ | P T P+ P
< T G0 (X0) (=Pt Bl
L

Hence, we have P1imC,, = A, since we showed in the proof of Proposition 4 that P1imA4, =
A.
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Define now the following quantities:

Dy,

=

=

=

S

S 3 S 3
0 T I T (R A
= — — —

~—

.

~—

.

~—

<.

~—

<.

(= IM]= 11]= L[V]=

[y
~

RS
<.

—_

—
~

LS
<.

=
o~

RS
<.

= £0=

~

LS
[

Mz [

90 Pm
9050 Kot ( Xz

90,7, Pm

gO yKom,l Xl
90 = (X1)
gO K, 1 Xl

90 Pm
90501 Kol Xz
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E(P|X))) 00 + e + E(yl| X))

E(P]|X1)) 60

— gy(X1)]

- gy(Xl)]



We have, D,, = E,, + F,, + G,,. For consistency, we show that the probability limits for £,
F,,, and G,, are all zero.

B = : ZnJZn:m ﬁ'—m (gp(X1) — E(P]X;)) 60
n(n - 1) =1 1£] ” ! gO,Km,l(Xl)
1 no 2 =N 0. ¢ 9o.p. (X1 9o p. (X
- 33 s (P4 By By - Bl AL o T
n(n - 1) j=11#£j§ QO,Hm,z(Xl) QO,Hm,z<Xl) go,nm,l(Xl)

(9p(Xy) — E(R| X)) 00

1 n n B _ X ~ ~ B X — X
1) 4 gO,Iim,l(Xl) go,,ﬁmyl(Xl) goﬁm’l(Xl)

n(n—1) 515
(9p(X)) — E(P1X))) 6o
- - kil | P — —2——= | (gp(X1) — E(P]X})) 6o
n(nl);; ! ( T G0k (X0)
1 & = gop (X)) gop (X0)
+ ki | Pj— P+ —" e (gp(X1) — E(P]X;)) 60
n(n — );; ’ < L 90w (X)) G0 (XD)
o
1 nn - gop (X)) = - gop (X)) gop (X))
F, = ki | By — 20tV B poy J0Pn U 0B &
" n(n - 1) ; ; 7 ( ’ 90,6m,1 (Xl) ! ’ 90,km 1 (Xl) 90,6m,1 (Xl)
1 & - Y05, (X1)
f K]',l L L — 6[
o (P e
1 nn = - gop (X)) Gop (X))
+ wj (B — By 0PV b0 )
n(n — 1) 3221 g&; J ( / ! 90,1 (Xl) 90,Km 1 (Xl)
o
1 2 ~ 90.P (Xl)
G = Kil i — ————— | | E(y1| X7) — 9,(X;
n n(n—l)j;l; 4, < T g0 (X0) [E (] X1) — 3y(X0)]
1 L& = gop (X)) Gyp.(X0)
+ kil | Pj— Py + ——" - == E(ylX1) — gy(Xi
A1) 2 2™ < I i ) Gy ) E WX — 8y (X0)]
P
=0

All in all, we have P1imD,, = Plim(E, + F,, + G,) = 0, so émo i 0.

In addition, we have:

\/ﬁ(én,o - 90) = [Cn]_l\/ﬁ[En + F, + Gn]
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And we study each term separately:

iiﬁl(ﬁ_er 90,5,,(X1) gopm(Xz)>
1) D it

VnF, = v/nB,++vVn——
90,k (X1) G0 (X1)

- 5 (X
nin—1) Z Y wi | By - m> (9p(X;) — E(P| X)) 60

—

+ \/ﬁm zn:zn:/ij,z (ﬁj — P+ Y ACON %(Xl) ) (9p(X1) — E(P|X1)) 60

90,5t (X1) 905, (X0)

X
(e (Xz)> [E(yi| Xi) — 9y(X3)]

> 90,P, (Xl) Q?IS\(XI) .
T Bl E(yi| Xi) — gy (X
I e ) Gy ) F X — 8y (X0)]

b 2 2

From Assumption 5, \/n[E, + F, + G, = /nB;,, + 0p(1).

Hence,

V(b0 — 00) = [Cn] ™' VB + 0p(1)

ényo and 0~n7o share the same asymptotic distribution. O

2.6 Consistent Estimator of the Asymptotic Variance (3.11)

Raz )

govnm,j (XJ

[ it (Z)— 7 > 90,5, (X;)
= Var |E / et Zi=2Zj) e | p - DLm = I7 g ¢
_ l [ s j l o (Xj) u(t)

- 5 g, ’pm(X')
~ Var _Ez [k(Zl = Z;) (Pl N goonmg(XJJ)> EjH

- 9.5, (X)) = 95, (X))
ol ff - S o - 22 o

Under heteroskedasticity, the estimator for variance of the feasible-RSMD is

AL = gopl = gopl(X) /A '
[n(n —1)Cy) 12((2 Ky (Pl - 7 Rm](X] ) Z’igl ( W) )592)[ (n—1)C;, ]

Jj=1 I=1
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3 R-SMD Estimator and its Properties from Antoine and
Sun (2021)
Under Assumption 4 and FOC defined in Equation (2.8)

00 = [E (kPP E (k. Pyii)

-1

én,u |: (TL— ZZ’{]ZPPl

J=11#]

Z Zf@g,zpjyl]

n( J Li#j

Additionally, we show the similar consistency and Asymptotic normality for 9~n,u~ Under
Assumption 4 and iid assumption for the sample, 0, ,, is consistent for 6y, and the asymptotic
distribution is:

~ .~ ~o -1\
V(0 — 60) &N(O,E[@,ZQP/} Var[l,(e1, Z1, X1)] <E Enz ))

where R (e1, 21,21) = E[fgq. € 1" 2)dp(t)pres + [pe. € P22 dpu(t) Poey.

Replace every nuisance parameter with its estimate, we have the feasible estimator én,u, the
R-~-SMD estimator is in the following.

1 n n
EEE bty

] 1

n o n
en,u = |:7’L(7’L— ZZ#Z],{J’ZP -Pl

] 1

=~ =/
since E[r;;P;F; | is invertible.

Under Assumptions 4 - 5, énu is consistent for 6y, and the asymptotic distribution is:
« d . , A
V(O = 00) % N (0, B |k PF| Var[i(er, 21, X1)] ( B [P P

where R (e1,z1,21) = E[[gq- et (21— ZQ)du(t)jileg + JRa- e"t,(Zrzl)du(t)]Szel.

Supplementary Appendix

S1. Robustness Check: When the Model is not Sparse

All of the other simulation results are based on the sparsity assumption. In this section,
Table B.5 reports the results when the sparsity assumption is unsatisfied. We choose the
DGP where all of the 314 and 324 are not 0. When ¢ < 5, 814 = 1 and 2y = 3. When
q > 5, Big = B2q = 0.05. The D-RSMD with the Lasso method as the nuisance parameter
estimator is affected by the violation of the assumption. It is no surprise since we need the
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sparsity assumption to conduct the Lasso method. The magnitude of the Med.Bias, MAD
and Med.SE are not changing. RRs are higher.

Instrument with 3 values (P = 30)

Estimator Ins Med.Bias MAD Med.SE RR
D-RSMD Zo -0.045 0.123  0.158  0.063
n=3000 6,0 D-RSMD (Za, Z2X1) -0.019 0.102 0.119  0.057
GMM (Oracle) (Z2, Z2X1) 0.000 0.089  0.130 0.056
D-RSMD Zo -0.032 0.162 0.238  0.076
n =3000 6,z D-RSMD (Za, Z2X1) -0.053 0.069 0.084 0.094

GMM (Oracle) (Za,Z2X1)  0.000  0.048  0.071  0.052

Table B.5: Instruments with 3 values

Note: Simulation Results for 8,0 and 6,0 in the benchmark model using D-RSMD estimator
5000 replications. We report the Monte-Carlo Median Bias (Med.Bias), Median Absolute
Deviation (MAD), median of asymptotic standard error under heteroskedasticity (Med.SE),
and the Rejection Rate (RR) using a 5% t-test.

S2. Potential Outcome Framework

We have two potential outcomes under traditional potential outcome framework. They are
Yo and y1.

Yo = o + fo(X) + eo,

y1=pm + fi(X) + e

The observed outcome y is

y=0=W)-(uo+ fo(X)+eo) + W - (u1+ f1(X) +e1).

y = po + W(pr — po) + fo(X) + eo + W+ (f1(X) +e1 — fo(X) — eo)

That is,

y = po+ Wln — po) + fo(X) + W - (f1(X) = fo(X)) + eo + W(e1 — eo)

Define € = eg + W (e — ep)

y=po+W(nr—po) + W (f1(X) = fo(X)) + fo(X) + €

If we assume difference between fo(X) and f1(X) is linear in 6,,,0, the equation becomes
Y = pio + OwoW + W - X{0ua0 + fo(X) +¢.

This assumption is that fo(X) — f1(X) is - X{0wz0. Recall that we could include nonlinear
terms of X inside the interaction terms in a more general model. The assumption suggests
that after taking into consideration many complex functions of X, the difference is mainly
caused by Xj. It is reasonable. There are other works that make the same assumption, for
instance, Nekipelov et al. (2018).
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Assuming that all of the participants are compliers, their response to treatment is heteroge-
neous due to the interaction term W - X{lﬁwxo. This problem also belongs to the essential
heterogeneous problem or random coefficient problem.

S3. Illustration of Identification Issue for a Specific Model

Prove the identification for the key parameters using the RSMD method.

Proof. Consider the simplest model in the following.

yi = b1 X1 + BaXio +u;
Xi1=mW; +vi1
Xio =mW,; +v;2

We need to prove that E(x;;X;X]) is nonsingular. Because the new estimator becomes

/ —1
(21) = sl e = [ (s (320) (0] )] s

To show that E(k;;X;X]) is nonsingular, we consider the associated quadratic form, and
show that it is positive definite. For any a real vector of size p, we have:

E(dX;X[ak;;) = E(kjd E(X;|W;)E(X]a|W)))
=E([ "W dyu(t)a B(X;|W;)E(X{|Wi)a)
Raw

Raw E[e" Wi W04/ B(X;|W;) B(X][Wh)a]dp(t)

~ R Bl B(X;|W;) B(X{|W))ae™ " "]dp(t)

[ Bl B W) ELECXIWae Wi dp(t)
Raw

= | Eld'e"™ BOXGIW)EE(X]|W))ae™ i ]du(t)
Raw

= [ ([ e B IW) (W)W, ) Paute)

= @np [ (F B (W))(0) Fdut)
>0
with p strictly positive on R? and F[g| the Fourier transform of a well-defined function g(.)

on R?% formally defined as,

1
(2)qw

Flgl(t) = [ e gu)du. (3.1)
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We then have:

dE(kj i XjX)a=0 & Ja#0 st dEX;|W;)f(W;)=0 a.s.
& Ja#0st dEX;|W;) =0 a.s.

In the specific case,

< da 7’5 0 s.t. a'E(Xj|Wj) = a1mW; + aomaW; = (a17r1 + a27r2)Wi =0 a.s.

£1 and (B2 are not identified. To identify 51 and B2, the model need to have a nonlinear part
of W; or another control variable Z; inside one of the equations for X;. O
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Appendix C

Estimation of Heterogeneous
Treatment Effects: Oregon Health
Insurance Experiment

1 Results of Oregon Health Insurance Experiment
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Robustness Check: Other Results of Oregon Health Insurance Experiment

Panel A: Heterogeneous treatment effects

Employ Age: 21 - 35 Age: 36 - 50 Age: 51 - 64
Estimator for 00 Z (21,2, X1) Zy (21, 21X1) Z (21,21 X1)
0.048 ~0.001 20.029
GMM (0.053) (0.037) (0.039)
0.042 -0.030 -0.062
GMM-Lasso (0.086) (0.067) (0.075)
0.095 0.047 0.016  -0.029 0.091 0.030
DRSMD-Lasso (0.067)  (0.061) | (0.057)  (0.045) | (0.067)  (0.049)
Estimator for Oz Z (Z1,2:1X1) Zy (Z1,2:1X4) Z (Z1,2:1X1)
-0.080 0.046 0.073
GMM (0.092) (0.083) (0.090)
, -0.039 0.086 0.191
GMM-Lasso (0.123) (0.122) (0.148)
, Q014700042 | -0.027  0.092 | -0.074**  0.074
DRSMD-Lasso (0.034)  (0.099) | (0.029)  (0.092) | (0.037)  (0.100)
Panel B: Homogeneous treatment effects
VM 0.012 0.024 0.017 0.009 0.001 0.012
(0.047)  (0.045) | (0.038)  (0.034) | (0.042)  (0.036)
MM Lasso 0.022 0.037 0.006  -0.033 0.019 -0.065
‘ (0.098)  (0.086) | (0.089)  (0.067) | (0.103)  (-0.065)
0.027 0.025 0.006 0.007 0.059 0.064
DRSMD-Lasso (0.06) (0.063) | (0.052)  (0.053) | (0.059)  (0.061)
N 5962 6693 5017

Table C.9: Heterogeneous Treatment Effects of Medicaid on Employ

Note: *** Significant at 1%, ** at 5%, * at 10%. Each row shows the estimates and robust
standard errors for the same type of estimator. In the columns, we present the instruments
these estimators used and the age groups. The interaction term is Medicaid x Above 50%

Federal Poverty Line.

Average Treatment Effects

Employ Age: 21 - 35 Age: 36 - 50 Age: 51 - 64
Estimator for LATE A (Z1721X1) VA (Zl,Zle) VAl (Zl,Zle)
, 0.000 0.026 0.017
GMM (0.052) (0.047) (0.054)

0.018 0.020 0.058

GMM-Lasso (0.105) (0.103) (0.127)

0.008 0.022 0.000 0.024 0.044 0.076

DRSMD-Lasso (0.059)  (0.066) | (0.050)  (0.065) | (0.057)  (0.073)
N 5962 6693 5917

Table C.10: Heterogeneous Treatment Effects of Medicaid on Employ

Note: *** Significant at 1%, ** at 5%, * at 10%. Each row shows the estimates and robust
standard errors for the same type of estimator. In the columns, we present the instruments

these estimators used and the age groups. The interaction term is Medicaid x Above 50%
Federal Poverty Line. The expression for LATE is 0,0 + 0yz0F (X).
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