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Abstract 

Sedentary benthic species such as Alcyonacea corals form critical habitat for fishes and 

invertebrates, that are vulnerable to anthropogenic activities. Assessing risks to these 

organisms requires unbiased, quantitative species distribution models (SDMs); however, 

the accuracy of SDM methods is largely unknown. Here I investigated how data and 

model types affect SDM predictions of Alcyonacea probability of presence. I compared 

predictions from generalized additive models (GAMs) fitted to presence-absence 

observations over a stratified-random survey design with predictions from Maxent 

maximum entropy models fitted to presence-only bycatch records from commercial 

fisheries. I developed a simulation algorithm to evaluate the direction and magnitude of 

bias in each model type. I show that presence-only Maxent predictions are overly 

optimistic based on commonly used diagnostic measures calculated using cross-

validation, and produce biased estimates of species distribution. This study 

demonstrates a need for robust presence-absence SDMs that will better inform 

management strategies to maximize conservation measures while minimizing economic 

losses. 

Keywords:  Presence-only; Bias; Species Distribution Models; Sensitive Benthic 

Habitats 
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1. Introduction 

Assessing risks to sedentary benthic species requires unbiased, quantitative 

species distribution models (SDMs) to infer species geographic and environmental range 

where direct observation is not possible (e.g., at inaccessible locations, over a wide 

spatial range, and where it is not financially feasible) and to predict the probability of 

occurrence in areas outside a particular study region. Sedentary benthic species such as 

cold-water corals and sponges exist throughout the world's oceans, and some are 

vulnerable to anthropogenic activities such as offshore industrial activity and commercial 

fishing (Lagasse et al., 2015; Rooper et al., 2014; Scanes et al., 2018; Williams et al., 

2010). Bottom contact fishing with trawls, longlines, or traps occurs at depths of a few 

hundred to 1,500 m (Clarke et al., 2015) which makes observing the effects of fishing 

gear on sensitive benthic species expensive and logistically difficult. For many fisheries, 

the degree of risk posed by bottom contact remains uncertain because there is a great 

deal of uncertainty about the amount of overlap of fishing gear and sensitive benthic 

species.  

Marine management strategies, such as marine protected areas (MPAs), can 

protect sensitive species from anthropogenic activities if placed in areas where sensitive 

species occur. MPAs are highly dependent on SDM predictions and accurate species 

distribution predictions depend on high quality data (Fei & Yu, 2016). Obtaining high 

quality data for sedentary benthic species that occur in the deep sea, however, often 

requires expensive equipment such as remotely operated vehicles (ROVs) and 

chartered ships, trained professionals to operate the equipment and many hours to 

collect and process the data. Although numerous SDM approaches exist depending on 

available data and modelling objectives, it is not always clear how data and model 

choices interact to affect the bias and precision of SDMs.  

The type of data available is typically a limiting factor in SDM choices and, 

therefore, can limit the quality and relevance of conclusions. Presence-only data are 

more readily available because they can be obtained opportunistically at low expense 

and often cover large spatial extents (Vierod et al., 2014; Winship et al., 2020). In 

particular, presence-only bycatch data collected during commercial fishing activity often 

covers the large spatial and temporal scales needed for SDMs (Finney & Boutillier, 
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2010; Rooper et al., 2014, Welsford et al., 2013). On the other hand, presence-only data 

collected opportunistically lack robust survey sampling designs and typically involve 

sampling biases, which could lead to SDMs predicting patterns in the data collection 

methods rather than of habitat associations with species presence (Araújo et al. 2019). 

SDMs predicting fisheries bycatch is one example where fishing in areas of high habitat 

suitability where species density is high leads to the assumption that avoided areas 

represent true absences (Vignaux et al., 1998). Additionally, presence-only data 

collected opportunistically cannot be easily extrapolated to unsampled areas and, 

therefore, are not the preferred data type for species distribution modelling (Hastie & 

Fithian, 2013; Sit et al., 1998; Winship et al., 2020).  

Presence and absence data collected following a robust survey sampling design 

represent the ideal data for species distribution modelling (Hastie & Fithian, 2013; Sit et 

al., 1998; Winship et al., 2020). Presence-absence data, however, are more difficult to 

obtain and typically require complex systems such as ROVs or autonomous cameras 

(Doherty et al., 2018). ROVs are highly maneuverable and collect high quality images of 

benthic species, but are also expensive, time consuming, require specialized 

professionals and support vessels to operate the vehicles, and ultimately cover only a 

small sample area which raises concerns about extrapolation to unsurveyed regions (Sit 

et al., 1998). Autonomous camera systems operate at a fraction of the cost and can 

cover a larger total spatial area than ROVs typically used in deep sea surveys. In 

addition, autonomous systems including cameras, accelerometers, and depth sensors 

can also be deployed in either opportunistic or systematic survey designs (Doherty et al., 

2018). Autonomous systems sit stationary on the seafloor and therefore only collect 

images for a small area during each deployment; however, if deployed at a large enough 

number of locations following a statistically-robust survey design, SDMs can be applied 

to data to infer species presence in unsampled areas.  

SDMs infer the probability that a species occurs in a particular location given 

local environmental conditions (e.g., bottom type, depth, slope, temperature). Functional 

relationships between the probability of presence and environmental variables that 

represent the core of SDMs are estimated via statistical models fitted to observations of 

presence or presence and absence for the species. The type of statistical model used 

depends on the available data. For example, presence-only SDMs are most commonly 

developed via Maxent maximum entropy methods (Phillips et al., 2006) that are 
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designed to make predictions from presence-only data. Maximum entropy methods 

typically outperform other presence-only approaches based on predictive accuracy 

(Phillips et al., 2017). However, presence-only data can have large sampling bias that 

can, in turn, generate biases in SDM model estimates and predictions. For example, 

higher commercial fishing intensity occurs in areas where targeted species density is 

high, which can result in a higher probability of some members of the intended 

population being sampled than others (i.e., sampling bias). As a consequence of 

sampling bias, where more frequent sampling occurs in areas of observed presence, 

maximum entropy models may overestimate the probability of occurrence in highly 

sampled areas while underestimating presence in areas outside of the species’ known 

extent of occurrence or in areas with less frequent sampling (Fitzpatrick et al., 2013). 

Additionally, the type of fishing gear can affect coral presence observations, for example, 

corals are more easily tangled in trawl gear than trap or longline gear. Other conditions 

can also affect presence observations, such as depth or current speed. Greater depths 

and current speeds increase gear retrieval distance and time, which decreases the 

chance of retaining corals. Finally, maximum entropy models estimate relative 

occurrence rate (ROR; Fithian & Hastie 2012) (i.e., the relative probability that a location 

is contained in a collection of presence samples) that can be difficult to interpret and 

validate (Merow et al., 2013). Maxent’s raw ROR output can be transformed to predict 

probability of presence (known as Maxent’s logistic output [Phillips and Dudik 2008]), 

however this transformation relies on the assumption that a parameter 𝜏 = 0.5 (more 

details in section 2.4) and has been criticized (Royle et al., 2012).  

SDMs are more reliable when based on presence-absence data sampled in a 

statistically robust way (Hastie & Fithian, 2013, Winship et al., 2020). Some SDMs 

incorporate presence-absence data to address the sample bias and interpretability 

challenges of presence-only data (Hastie and Fithian, 2013; Lagasse et al., 2015). 

Generalized additive models (GAMs) are widely used in SDMs involving presence-

absence data (Winship et al., 2020) because they can represent the usual non-linear 

and non-monotonic relationships between species presence/absence and environmental 

variables that are often observed in nature. GAMs can estimate probability of presence 

directly without relying on dubious transformation assumptions (Royle et al., 2012). 

Although presence-absence SDMs avoid some of the challenges that presence-only 
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SDMs encounter, obtaining quality absence data can be expensive and time consuming, 

leading to smaller sample sizes and lower model precision.  

In this paper, I investigated how data type and model choice affects species 

distribution model predictions of cold-water coral (order Alcyonacea) probability of 

presence over the continental shelf and slope off British Columbia. Cold-water corals 

may support some commercially valuable fish and invertebrate species by providing 

critical 3-dimensional habitat (Stone et al., 2014; Krieger & Wing, 2002; Buhl-Mortensen 

et al., 2010). Additionally, these organisms are slow-growing, long-lived, and typically 

occur in isolated populations with limited larval dispersal and sporadic recruitment 

(Andrews et al., 2002, 2009; Mercier & Hamel 2011; Waller et al. 2014) which makes 

them vulnerable to contact by fishing gear (Auster et al., 1996; Bavestrello et al., 1998; 

Williams et al., 2010).  

I compared predictions from GAMs fitted to presence-absence video 

observations collected via autonomous camera systems (Doherty et al., 2018) over a 

stratified-random survey design with predictions from maximum entropy models 

(Maxent) fitted to Alcyonacean presence-only bycatch records from large-scale 

commercial fisheries over the same area. I calculated Spearman’s correlation coefficient 

and the “I” similarity statistic between predictions to compare the results of each data 

type. I then developed a simulation algorithm to evaluate the direction and magnitude of 

bias in each model type. I show that Maxent predictions from presence-only data were 

negatively correlated with predictions from GAMs based on presence-absence data, with 

Maxent predicting much lower probability of coral presence where the GAM presence-

absence model predicted higher probability of presence and vice versa. Simulations 

show that such a negative correlation is expected because the Maxent model is biased 

and overestimates probability of presence in areas of observed presence (i.e., on the 

continental shelf) and underestimates probability of presence in areas with few or no 

observed presences (i.e., on the continental slope).   
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2. Methods 

In this section I describe the study area and sampling design for presence-

absence and presence-only data collection followed by a section describing the 

response variables, predictor variables, and how the predictor variables were converted 

into raster layers. I then present the generalized additive model (GAM) for the presence-

absence data along with specific model choices such as the weighted effective degrees 

of freedom and model smoothing method followed by a similar section for Maxent 

maximum entropy models for the presence-only data and choices about the number of 

background sample points, feature classes, regularization, how I accounted for sample 

bias, and the output metrics. Finally, I present the model evaluation methods for both the 

GAM and Maxent models and the model comparisons. 

2.1. Study area and sampling design 

Fisheries and Oceans Canada annually conducts a stratified random survey 

(StRS; Lacko et al., 2020) that spans the continental shelf and slope along the west 

coast of Canada from the Alaskan border to Washington State in a southeast-northwest 

orientation (Figure 1). The StRS is a trap survey that targets sablefish to use as a 

fishery-independent index of abundance in their stock assessment. The survey is 

partitioned into 5 spatial and 3 depth strata (ranges are 183-457 m, 457-823 m, and 823-

1372 m). Between 2013 and 2017, autonomous camera systems (Nyutco Ltd, North 

Vancouver, B.C.), accelerometers (HOBO Pendant G, Actilife wGT3x-BT monitors), and 

depth-temperature sensors (Sea-Bird SBE 39) were deployed on Korean conical traps 

aimed at surveying Sablefish (Anoplopoma fimbria) on bottom longline sets with 23-27 

traps per set (Lacko et al., 2019).  

Presence-absence data, used to fit GAMs in this study, was collected during the 

StRS. Autonomous camera systems described in Doherty et al. (2019) were programed 

to record 1-minute video clips every 2 hours when stationary on the seafloor and also 

when triggered (via the accelerometer) by gear movement along the bottom during 

retrieval. All epifauna observed was identified to the lowest distinguishable taxonomic 

rank possible, which was often the Order or Family level (see Doherty and Cox, 2017 

and Doherty et al., 2018 for detailed species identification and images).  



6 

Presence-only data, used to fit Maxent models in this study, were collected 

through at-sea observations by fishery observers during commercial trawl, trap, and 

longline fishing sets (DFO’s Pacific Region PacHarv [1995-2007] and Fishery Operating 

System [FOS; 2007-2020]; Chris Rooper, personal communication, April 23, 2021). The 

At-Sea Observer Program provides third-party verification of harvesting activities, and 

scientific catch and sampling data. Presence-only data was provided on a 2 km by 2 km 

resolution for privacy reasons. Trawl sets had a 70-meter door width and averaged 6.42 

km in length. Trap sets typically included 65 traps per set and averaged 2.9 km in length, 

with each trap estimated to laterally impact 0.0011 m of seafloor (Doherty et al. 2014). 

Longline sets laterally impacted 0.006-0.01 km of the sea floor (Welsford et al., 2014b) 

and averaged 2.9 km in length. I included presence observations from commercial 

bycatch collected from 1995 through 2020 within the stratified random survey area. 

2.2. Response variable 

Species distribution models, such as GAMs and Maxent maximum entropy 

models, relate a univariate response variable (presence or absence) to some predictor 

variables using a link function (e.g., logit, log, identity). I used observed presence or 

absence of Alcyonacea order corals because it was often not possible to distinguish 

corals to lower taxonomic levels. The Alcyonacea order was the second most abundant 

order of corals observed in both the StRS video and commercial bycatch records. 

Families within Alcyonacea observed include Alcyoniidae, Isididae, Nephtheidae, 

Paragorgiidae, Plexauridae and Primnoidae, most of which are known to provide habitat 

structure for marine organisms (Krieger & Wing 2002, Etnoyer 2008). The Alcyoniidae 

family, however, includes the Heteropolypus genus whose corals are smaller in size and 

commonly referred to as soft corals due to their non-rigid structure (Wing & Barnard 

2004, Molodtsova 2013). Corals in the Alcyoniidae family are commonly found in close 

proximity to habitat structure forming corals (Doherty et al., 2021) and were therefore 

included in the response variable grouping.  

2.3. Predictor variables 

I considered 16 predictor variables based on data derived from two bathymetric 

digital elevation models (DEMs) for bathymetric predictor variables depth, bathymetric 
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position index (BPI), rugosity, and slope, the MODIS moderate resolution imaging 

spectroradiometer (MODIS) for the chlorophyll predictor variable chlorophyll a 

concentration, the Regional Ocean Modelling System (ROMS; Masson and Fine 2012) 

for oceanographic predictor variables circulation current speed, tidal current speed, 

temperature, and salinity, output from a categorical substrate model for substrate 

predictor variables mixed, muddy, rocky, and sandy substrate, and historical fishing 

effort for fishing impact predictor variables trawl, trap, and longline to model coral 

distribution (Table 1).  I visually inspected pairs plots of all predictor variables and 

calculated the variance inflation factor (VIF) to check for collinearity and multicollinearity 

between variables (Zuur et al. 2009). I removed predictor variables with high collinearity 

(VIF>10) and the remaining variables were converted to raster layers with a 100 m by 

100 m resolution and were cropped to the extent of the study area using the raster 

package in R software version 4.0.5 (Hijmans, 2020, R core team, 2021). All 

environmental (i.e., bathymetric, chlorophyll, oceanographic, and substrate) predictor 

variable data, in the B.C. Albers projection (EPSG:3005), and fishing impact predictor 

variable data was provided by Fisheries and Oceans Canada (Cole Fields and Jessica 

Finney, personal communication, August 31, 2020; Chris Rooper, personal 

communication, April 23, 2021).  

2.3.1. Depth and derivatives 

Depth was derived from a British Columbia 3 arc-second DEM (Carignan et al. 

2013) and a 100 m DEM (Gregr 2012; Table 1), resampled and mosaiced using ArcGIS 

10.4 to produce a depth raster layer. I considered bathymetric derivatives, slope, 

rugosity and BPI, as predictors for coral distribution because they are sometimes 

associated with hard substrate and suitable coral habitat (Masuda & Stone 2015). Slope, 

the maximum rate of change of depth, was calculated in degrees. Rugosity, a measure 

of surface roughness used as an index of structural complexity, was calculated via the 

arc-cord ratio (ARC) rugosity method (Du Preez et al., 2015; Du Preez et al., 2016) 

because it decouples rugosity from slope. BPI can be positive (e.g., ridges or crests) or 

negative (e.g., valley bottoms) and was calculated using a neighbourhood distance of 

2,500-25,000 m.  
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2.3.2. Chlorophyll 

Mean surface chlorophyll-a concentration, which is a proxy for primary 

productivity, from MODIS L2 was calculated from reflectance using the OC4 and Cl 

algorithms (Hu et al., 2012). Daily swath data between March and October from 2012-

2015 were mosaiced by month and averaged over the 4-year period. Months with 

persistent cloud cover were excluded (i.e., November to February).  

2.3.3. Oceanographic 

Current speed was derived from ROMS (Masson and Fine 2012) and calculated 

from mean zonal (u) and meridional (v) velocities using a root mean square method after 

the velocities were spatially aligned by shifting them horizontally via linear interpolation. 

Circulation current speed, temperature, and salinity were calculated from a 15 day mean 

resolution, and tidal current speed was calculated from a 3 hour mean resolution, 

effectively distinguishing tidal from non-tidal ocean circulation current. I removed salinity 

because it was highly collinear with temperature and to lower the VIF values for all 

predictor variables to be below 10. Salinity was removed instead of temperature 

because corals tolerate a wide range of salinity and it is not a limiting factor for coral 

growth like temperature (Dullo et al., 2008).   

2.3.4. Substrate 

Substrate layers (rocky, mixed, sandy, muddy) were derived from a categorical 

substrate model that predicts four categories: rock, mixed, sand, and mud (Haggarty et 

al., 2018). Binary layers were created for each substrate category (where 1 = the 

substrate type for each layer). A focal sum was applied to each binary layer, taking the 

total number of cells classified as the substrate type (for each layer). These layers were 

then normalized to a 0-1 scale with 0 indicating no cells in the neighbourhood were the 

substrate type, and 1 indicating all surrounding cells were the substrate type. I only 

included rocky substrate here because muddy and sandy substrate layers were highly 

collinear and Alcyonacean corals are known to inhabit areas with rocky substrate 

(Masuda & Stone 2015). 
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2.3.5. Fishing 

Finally, fishing impact on the sea floor was calculated for all bottom contact 

commercial fishing events within the study area to assess its potential effect on coral 

presence. Commercial fishing sets from 1995-2020 were used to calculate towlines 

following Welsford et al., (2014b) for longline, Doherty et al., (2018) for trap, and using a 

door width of 70 m for trawl (DFO’s Pacific Region PacHarv [1995-2007] and Fishery 

Operating System [FOS; 2007-2020]; Chris Rooper, personal communication, April 23, 

2021). The study area was first divided into 100 m by 100 m grid cells and then further 

divided into 25 sub grids, each with sub-cells of 20 m by 20 m. Each towline was 

buffered by half its estimated impact width plus 10 m on each side to ensure that all tows 

passing through a grid cell would be counted as occurring in that cell. Overlap of 

towlines with grid cells was calculated using the fasterize function from the raster R 

packaged which only recognizes overlap between a polygon (e.g., a buffered towline) 

and grid cell if the polygon passes through the mid-point of the cell. The 20 m by 20 m 

sub-cells were then reclassified as 1 if any towline passed through them and aggregated 

to the 100 m by 100 m cells using the sum (i.e., how many 20 m by 20 m sub-cells were 

impacted) divided by 25. This created a raster layer for each gear type (i.e., trawl, trap, 

and longline) showing the cumulative proportion of impacted area in each 100 m by 100 

m grid cell. For example, a 100 m by 100 m grid cell that had five 20 m by 20 m sub-cells 

impacted by trawl would have a value of 0.2 (5 sub-cells/25 total cells). 

2.4. Model selection and performance 

2.4.1. Generalized additive models for coral presence-absence – 
GAMs 

I fit a generalized additive model (GAM) with a binomial distribution and logit link 

function to estimate the probability of coral presence in the study area (Doherty et al., 

2021) i.e., 

 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = log (
𝜋𝑖

1 − 𝜋𝑖
) = 𝛼 + ∑ 𝑠𝑗(𝑥𝑗,𝑖)

𝑝

𝑗=1

+ 𝜖𝑖                                       (1)    
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where 𝜋𝑖 is the probability of coral presence in each grid cell (𝑖), 𝛼 is an intercept, 𝑠𝑗 is a 

thin plate regression spline smoothing function (Wood, 2003) for predictor variable 𝑥𝑗,𝑖 

for each grid cell (𝑖), and the error 𝜖𝑖 is assumed to follow a normal distribution (𝜖𝑖 ∼

𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2)). Models were fit to presence-absence observations of Alcyonacean 

corals (n=209) using all possible combinations of predictor variables. I estimated bottom 

locations of presence and absence observations as the GPS coordinates for the middle 

of the set if cameras were mounted on trap numbers 13-15 and as the GPS coordinates 

for the end of the set if cameras were mounted on trap number 25. The majority of sets 

had 26 traps and the majority of cameras were mounted on trap number 13 to 15, except 

for 3 sets in which cameras were mounted on trap number 25. I used the mgcv R 

package (Wood, 2017) for GAM model fitting and the MuMIn R package (Bartón, 2020) 

for model selection. I weighted effective degrees of freedom by  = 1.4 to correct for 

overfitting without compromising the model fit (Kim and Gu, 2004), used the restricted 

maximum likelihood (REML) model smoothing method, and limited degrees of freedom 

for the smoothing function (k ≤ 4; Wilborn et al., 2018). I then ranked the models based 

on the Akaike information criteria value corrected for small sample size (AICc; Burnham 

& Anderson, 2002) and used the top model to predict Alcyonacea probability of presence 

for the entire study area. All model fitting was conducted in R software (R Core Team, 

2021). 

2.4.2. Maximum entropy model for coral presence-only – Maxent 

I fit Maxent models using the maxent function in the dismo package in R 

(Hijmans et al., 2017) to estimate the probability of Alcyonacean coral presence in the 

study area. Maxent transforms the original predictor variables, called feature classes 

(FC), to linear, product, quadratic, hinge, threshold and categorical feature classes (Elith 

et al., 2011). I limited FC to linear, quadratic and a hybrid because the other 

relationships were not biologically plausible (Austin 2007; Merow et al., 2013). Maxent 

also uses a regularization multiplier (RM) to penalize feature classes that produce small 

improvements in the model and to avoid overfitting (Merow et al., 2013). Higher RM 

values reduce flexibility in the relationship between the species presence and predictor 

variables. Default Maxent values can create poor preforming models (Radosavljevic and 
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Anderson, 2014) especially when focusing on one or a few species (Phillips and Dudik 

2008, Anderson and Gonzalez 2011). I used the ENMevaluate function in the R package 

ENMeval (Kass et al., 2021) to select the optimal values for FC and RM. Models were 

fitted using spatial block cross validation with 4 bins. In preliminary analyses I fit 3 

Maxent models using presence observations from commercial fishing sets, research 

survey fishing sets, and both commercial and survey sets; however, here used 

commercial sets only because of sampling design differences between commercial and 

survey data and because the model predictions were dominated by the commercial data 

anyway due to the large difference in the number of data points (Figure A1). Finally, I 

removed all fishing impact predictor variables because the predicted probability of 

presence and the sampling method were confounded.  

Sampling effort for commercial fishing sets within the study area was high in 

some areas and low or non-existent in others, which could indicate sampling bias. 

Sampling bias can cause SDMs to predict patterns in the sampling method rather than 

the relationship of species occurrence with predictor variables. One way to reduce the 

effect of potential sampling bias is to choose background data with the same bias as the 

sampling effort (Phillips et al., 2009; Fourcade et al., 2014). I used target-group sampling 

(Elith et al., 2011; Merow et al., 2013) to generate 10,000 background points with the 

same bias as the sampling effort. Target group sampling fits a kernel density estimate 

(KDE) to the locations of the occurrence data to estimate the density of samples in each 

cell.  

I used the logistic output from Maxent to obtain predicted probabilities of 

presence; however, this option involves an arbitrary choice of 0.5 for the parameter 𝜏, 

which is the implied probability of presence at sites with “typical” conditions for the 

species. The true value of 𝜏 is unknown, so this arbitrary value has been criticized for its 

effects on the predicted probabilities assigned to each location (Royle et al., 2012). To 

test the sensitivity of my Maxent model predictions to the value of 𝜏, I varied 𝜏 values 

between 0.2 and 0.8 and, as a result, I was comfortable using Maxents logistic output as 

the probability of coral presence because predictive maps did not change with varying 𝜏 

values (Figure A2).  
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2.4.3. Model evaluation 

I evaluated model performance based on their ability to predict subsets of data 

that were withheld during model fitting (specifically, spatial block cross validation 

[SBCV], but referred to as cross validation hereafter) using four metrics: area under the 

receiver operating characteristic curve (AUC), mean squared prediction error (MSPE), 

true skill statistic (TSS), and symmetric extremal dependence index (SEDI; Ferro & 

Stephenson, 2011; Wunderlich et al., 2019). The AUC determines how well the model 

can distinguish between presence and absence or presence and background points. 

Higher AUC values indicate that the model is better at predicting true presences as 

presences and true absences/background points as absences/background points. An 

AUC value from 0.50-0.69 indicates poor discrimination or only marginally better than 

chance, from 0.70-0.79 indicates acceptable discrimination, from 0.80-0.89 indicates 

excellent discrimination and >= 0.90 indicates outstanding discrimination (Hosmer & 

Lemeshow 2000). Although AUC is a widely used metric to evaluate SDM performance, 

it does not measure goodness of fit (Lobo et al., 2008). I used MSPE to evaluate 

goodness of fit while minimizing spatial autocorrelation effects. Values of MSPE closer to 

0 indicate better predictive performance. Spatial autocorrelation in the data can lead to 

autocorrelated model residuals that violate the assumption of error independence and 

result in biased model parameter estimates (Dormann 2007), confound model validation 

(Roberts et al., 2017), and overestimate model predictive power (Ploton et al., 2020). 

The SBCV I used separated the data into training and testing datasets using their spatial 

coordinates to ensure the datasets were far apart to reduce spatial autocorrelation, 

which was likely prevalent in this data because points close together have more similar 

characteristics. TSS compares the number of correct predictions, minus predictions 

attributable to random guessing, to a hypothetical set of perfect predictions. It is a 

reliable indicator of goodness-of-fit because it is insensitive to class imbalances of the 

magnitude I observed (i.e., a greater number of absences than presences), and is not 

dependent on prevalence, the proportion of sites where the species was present. TSS 

ranges from -1 to +1 with a score of +1 indicating perfect agreement and scores below 0 

indicating performance no better than chance (Allouche et al., 2006). SEDI is a 

normalized version of the log odd ratio and ranges from -1 to 1 (Ferro & Stephenson, 

2011). I calculated both TSS and SEDI values using a fixed threshold that maximized 

the sum of sensitivity and specificity (Cantor et al., 1999; Manel et al., 2001), which is 
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equivalent to minimizing the sum of false absence/background and false presence 

misclassification likelihoods. SEDI values are analogous to TSS values but perform 

better with presence-only SDMs (Wunderlich et al., 2019).  

2.5. Comparing GAM and Maxent model performance and 
predictions 

2.5.1. Best-fitting model performance and predictions 

I evaluated GAM and Maxent model performance based on AUC, MSPE, TSS 

and SEDI values. Additionally, I used the raster.overlap function from the ENMTools R 

package (Warren & Dinnage, 2021) to calculate Spearman’s rank correlation coefficient 

and the “I” similarity statistic and compare model predictions. Spearman’s rank 

correlation coefficient is a nonparametric approach that measures the monotonic 

association of two variables and ranges from -1 (perfect negative association of ranks) to 

+1 (perfect association of ranks). Benchmark values indicate zero (0), weak (0 to 0.4 and 

0 to -0.4), moderate (0.4 to 0.7 and -0.4 to -0.7), strong (0.7 to 1 and -0.7 to -1) and 

perfect (1 and -1) association of ranks (Dancey & Reidy 2007). The “I” similarity statistic 

(Warren et al., 2008) is based on Hellinger Distances (Van der Vaart, 2000) and ranges 

from 0 (no overlap of predicted distributions) to 1 (the predicted distributions are 

identical). I used a difference map to show the degree of similarity between the model 

and data type predictions. Finally, I calculated the percent of suitable coral habitat in 2 

proposed longline closures, the Cape St. James Site and the Offshore NW Dixon Site 

(DFO, personal communication, February 25, 2022), under each modelling scenario. 

The Cape St. James Site covers a 712 km2 area, divided into two sections with 563 and 

149 km2 areas, at the Southern tip of Haida Gwaii, and the Offshore NW Dixon Site 

covers a 228 km2 area at the Northern tip of Haida Gwaii. 

2.5.2. Simulated model performance and predictions 

Direct comparisons between GAM and Maxent model performance are invalid 

when each method uses different datasets. Assessing model performance using a 

common simulated dataset enables comparisons between modelling methods, therefore, 

I used the following simulation algorithm to evaluate the direction and magnitude of bias 

in each model type (i.e., GAM and Maxent model; Figure 2). 
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1. Generate a best estimate of the true underlying Alcyonacean 
probability of presence  

a. Fit a GAM to real presence-absence data (i.e., StRS video 
observations)  

b. Use the GAM from (a) to generate true probability of presence 𝑝𝑖 
at each grid location 𝑖 

2. Generate 2 sets of 100 test data sets (i.e., one short and one long) to 
evaluate the performance of each model type in multiple scenarios 

a. Long data set: select a random sample of grid locations (n=5,000) 
from the true probability of presence from (1b). For each sampled 
grid location, draw a presence (1) or absence (0) Alcyonacea 
point from a Bernoulli distribution with probability 𝑝𝑖 

b. Short data set: select a random sample of grid locations (n=42) 
from the true probability of presence from (1b). For each sampled 
grid location, draw a presence (1) or absence (0) Alcyonacea 
point from a Bernoulli distribution with probability 𝑝𝑖 

3. Simulate sample collection, presence-absence points, and estimation 
for GAM (hereafter referred to as GAM_0; Table 5) 

a. Select a stratified-random sample of grid locations (n=209) 
weighted by StRS sampling effort. For each sampled grid location, 
draw a presence (1) or absence (0) Alcyonacea point from a 
Bernoulli distribution with probability 𝑝𝑖 

b. Use the all-subsets GAM selection procedure (described above) 
to fit and select a top GAM for the sampled presence-absence 
points 

c. Compute diagnostics for the top GAM on a random test dataset 
generated from the procedure in step (2a; i.e., the long test 
dataset) 

4. Simulate sample collection, presence-absence points, and estimation 
for GAM (hereafter referred to as GAM_noModSel; Table 5) 

a. Select a stratified-random sample of grid locations (n=209) 
weighted by StRS sampling effort. For each sampled grid location, 
draw a presence (1) or absence (0) Alcyonacea point from a 
Bernoulli distribution with probability 𝑝𝑖 

b. Use the same model structure as the best-fitting GAM to fit a GAM 
for the sampled presence-absence points 
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c. Compute diagnostics for the fitted GAM on a random test dataset 
generated from the procedure in step (2a; i.e., the long test 
dataset) 

5. Simulate sample collection, presence-absence points, and estimation 
for GAM (hereafter referred to as GAM_short; Table 5) 

a. Select a stratified-random sample of grid locations (n=209) 
weighted by StRS sampling effort. For each sampled grid location, 
draw a presence (1) or absence (0) Alcyonacea point from a 
Bernoulli distribution with probability 𝑝𝑖 

b. Use the all-subsets GAM selection procedure (described above) 
to fit and select a top GAM for the sampled presence-absence 
points 

c. Compute diagnostics for the top GAM on a random test dataset 
generated from the procedure in step (2b; i.e., the short test 
dataset) 

6. Simulate sample collection, presence-only points, and estimation for 
Maxent model (hereafter referred to as Maxent_0; Table 5) 

a. Select a random sample of grid locations (n=11,917) weighted by 
commercial fishing effort. For each sampled grid location, draw a 
presence (1) or absence (0) Alcyonacea point from a Bernoulli 
distribution with probability 𝑝𝑖 

b. Keep the presence points (n~593) and discard the absence points 

c. Generate 10,000 background points weighted by commercial 
fishing effort 

d. Use a regularization multiplier of 3 and hybrid (linear, quadratic) 
feature class to fit a Maxent model for the sampled presence-
background points 

e. Compute diagnostics for the Maxent model on a random test 
dataset generated from the procedure in step (2a; i.e., the long 
test dataset) 

7. Repeat steps 3, 4, 5 and 6 for 100 trials  

I used the predicted probability of presence from step (1) (i.e., from the best-

fitting GAM) for comparisons because models using presence-absence data are 

expected to outperform those using presence-only data (Hastie and Fithian, 2012), the 

StRS video observations followed a standardized survey method that can be 

extrapolated to the entire study area (Sit et al., 1998), and, therefore, these results 

provided the most realistic representation of Alcyonacea probability of presence. I 
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weighted presence observations by commercial fishing effort in step (6a) to ensure the 

randomly selected presence points would follow a similar distribution to the data used to 

fit the best-fitting Maxent model. The random sample of grid locations in step (6a) 

resulted in a different number of presence points for each trial of the simulation, but I 

accepted this level of variability because it was more computationally efficient. I did not 

run model tuning for the Maxent model because tuning on a subset of the simulation 

trials resulted in the same choice for FC values each time and all RM values had tying or 

similar AICc scores indicating there wasn’t a benefit to choosing one RM value over 

another. I evaluated the simulated models using AUC because all the diagnostic metrics 

were highly correlated (Figure 3; Figure A3). The Maxent model diagnostics had weaker 

correlations, however, Maxent also had weaker “out-of-sample” predictive performance, 

which lead to higher variance in the diagnostic values and caused the weaker 

correlations. Additionally, AUC is the most frequently used diagnostic measure for SDMs 

and is used for both presence-absence and presence-only models (Allouche et al., 2006; 

Chu et al., 2019; Doherty et al., 2021; Liu et al., 2013; Warren et al., 2018). See table 5 

for details of each model scenario. 
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3. Results 

3.1. In situ observations of corals and sponges  

Alcyonacean corals were the second most abundant taxonomic coral group I 

observed from the autonomous camera video within the study area, occurring in 31 

(11%) of all camera sets (Table 2). They were also the most diverse with at least 7 

distinct taxa, including Alcyoniidae, Heteropolypus sp., Isidella sp., Paragorgia spp., 

Parastenella sp., and Swiftia simplex (Table 3). Corals in the Unidentified Family group 

occurred at depths ranging from 517 m to 1,387 m and sometimes at high density with 

up to 24 distinct colonies observed at a single location (Table 3). I also observed 

Sponges (Phylum Porifera), Sea Whips (Order Pennatulacea), Hydrocorals (Order 

Anthoathecata), Black Corals (Order Antipatharia), Sea Lillies (Order Isocrinida) and 

Stony corals (Order Scleractinia) in the study area.  

3.2. GAM and Maxent estimates of predictor importance  

The best-fitting GAM from initial model fitting included circulation current speed, 

rocky substrate, rugosity, slope, and temperature as predictor variables, however, there 

was no clear relationship of rugosity or circulation on the probability of presence so they 

were removed from the analysis. The final best-fitting GAM included depth, BPI, tidal 

current speed, and slope as predictor variables. Depth, BPI, tidal current speed, and 

slope were the most important predictor variables and were retained in all of the best 

fitting models, with chlorophyll a concentration, longline impact and temperature 

occasionally included as well. Conditional relationships of the different predictors on the 

probability of Alcyonacean coral presence indicate that the probability of Alcyonacean 

coral presence was continuously increasing for all predictors in the best-fitting GAM 

(Figure 4). 

The predictor variables with the greatest contribution to the best-fitting Maxent 

model were depth (68%), temperature (22%), rocky substrate (4%), and slope (4%). The 

predictor variables with the greatest permutation importance for the best-fitting Maxent 

model were depth (70%), temperature (23%), slope (3%), and rocky substrate (2%). 

Conditional relationships of the different predictors on the probability of Alcyonacean 
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coral presence indicate that the probability of presence was continuously decreasing for 

depth, temperature and rocky substrate and followed a dome shaped response with high 

probabilities (>0.5) between 10-40% for slope (Figure 5).  

3.3. Model performance 

3.3.1. Generalized additive model 

The best-fitting GAM had a mean AUC of 0.77, MSPE value of 0.07, TSS value 

of 0.31 and SEDI value of 0.44 (Table 4). The AUC value for the best-fitting GAM was 

within the range of acceptable discrimination (Hosmer & Lemeshow, 2000).  

3.3.2. Maxent model 

The best-fitting Maxent model had a mean AUC of 0.81, MSPE value of 0.13, 

TSS value of 0.53 and SEDI value of 0.71 (Table 4). The AUC value for the best-fitting 

Maxent model was within the range of excellent discrimination (Hosmer & Lemeshow, 

2000).  

3.4. Predicted distribution of Alcyonacean corals  

The best-fitting GAM and best-fitting Maxent model predicted different 

distributions for coral presence throughout the study area (Figure 6A & C). The best-

fitting GAM predicted higher probability of presence at deeper depths along the 

continental slope with the greatest concentration in the northern region of the study area 

(Figure 6A), whereas the best-fitting Maxent model predicted lower probability of 

presence at deeper depths along the continental slope (Figure 6C). Additionally, the 

best-fitting Maxent model predicted higher probability of Alcyonacean coral presence at 

locations with higher concentrations of “true” presence observations and lower 

probability of presence at locations with fewer or no “true” presence observations (Figure 

1A & 6C).  
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3.5. Degree of similarity between data types  

There was a moderate negative correlation between the predictions from the 

best-fitting GAM and the best-fitting Maxent model (rho=-0.56, p<0.001). This means 

that as the predicted probability of presence from the best-fitting Maxent model 

increased the probability of presence from the best-fitting GAM decreased (Figure 7A). 

The predicted distributions for the best-fitting GAM and best-fitting Maxent model had an 

“I” similarity statistic value of 0.47, indicating moderate similarity between the 

distributions. 

The Maxent model predicted 27.2% and 18.0% of the larger and smaller Cape 

St. James Site sections respectively contained suitable coral habitat (Figure 8B).  The 

GAM predicted 20.8% and 16.5% of the larger and smaller Cape St. James Site sections 

respectively contained suitable coral habitat (Figure 8A). The Maxent model predicted 

46.6% of the Offshore NW Dixon Site contained suitable coral habitat and the GAM 

predicted 1.6% of the site contained suitable coral habitat (Figure 8). 

3.6. Simulated model performance and uncertainty in 
model selection  

When I compared the simulated model’s performance I found that simulated 

GAMs with model selection and a large test dataset (GAM_0) had a mean AUC value of 

0.76 with a mode between 0.75 and 0.80 (Figure 9), while simulated GAMs without 

model selection and with a large test dataset (GAM_noModSel) had a mean AUC value 

of 0.82 with a mode between 0.80 and 0.85 (Figure 9). Additionally, GAM_noModSel 

had less uncertainty in predicted probability of presence compared to GAM_0 (Figure 

10). Simulated GAMs with model selection and a small test dataset (GAM_small) had a 

mean AUC value of 0.77 with a mode between 0.80 and 0.90 (Figure 9). Finally, 

simulated Maxent models with a large test dataset (Maxent_0) had a mean AUC value of 

0.65 with a mode between 0.64 and 0.66 (Figure 9). Maxent_0 had the narrowest 

distribution of AUC values, which didn’t overlap with the best-fitting GAM or best-fitting 

Maxent model AUC values. 
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4. Discussion 

Different data types provide varying degrees of information about the estimated 

spatial distribution of Alcyonacean corals. In this study, I compared the predictions of 

GAMs using presence-absence data and Maxent models using presence-only data, and 

simulation tested each method for bias. I found bias in the Maxent method, which 

resulted in overly optimistic diagnostic values. Additionally, the Maxent model predicted 

high probability of coral presence in areas where the GAM predicted low probability of 

coral presence and vice versa. Depth was an influential predictor variable in both the 

GAM and Maxent models; however, GAMs predicted increased probability of presence 

with increasing depths, while Maxent predicted decreasing probability of presence with 

increasing depth. The inverse relationships for depth may explain the large differences 

between each methods predictions.  

4.1. Model performance 

It is possible that evaluation scores for the best-fitting Maxent model in this study 

are artificially inflated. The best-fitting Maxent model performed well in all quantitative 

evaluations (i.e., AUC, TSS, SEDI, and MSPE); however, the validity of evaluating 

models based on cross validation (i.e., a model’s ability to predict subsets of left out 

data) has been questioned (Jimenez‐Valverde, Acevedo, Barbosa, Lobo, & Real, 2013; 

Reineking 2006). Presence-only models evaluated using cross validation could produce 

invalid results because they lack true absence data. Presence-only models use 

artificially generated background points chosen by the user based on a number of 

assumptions about the location and number of background points selected. Background 

point location and number choices are somewhat arbitrary and likely result in some 

background points being generated in areas of potential coral presence. Altering the 

number of background points can increase or decrease the contribution of various 

predictor variables to the model and, therefore, change the predicted probability of 

presence distribution (Acevedo et al., 2012). Altering the location of background points 

can affect some model evaluation metrics by assigning false negatives as true negatives 

and, therefore, erroneously improving the model evaluation scores (Acevedo et al, 2012; 

Hijmans, 2012; Jimenez-Valverde et al., 2013).  
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The results of the simulation procedure suggest that quantitative evaluations 

based on cross-validation are not valid measures of model performance for Maxent 

models, but are reasonable measures of model performance for GAMs, mainly because 

the presence-only data used for Maxent is biased in the first place. Maxent models 

performed poorly in the simulation procedure, which generated diagnostics by 

comparing model outputs to a random test dataset generated from the procedure in step 

(2) of section 2.5 and not using cross-validation. By simulating data from the “true” 

probability of presence and using this data to fit a model and make predictions I revealed 

a more realistic performance of the modelling method. Diagnostics for the Maxent 

method using cross-validation on the original data were substantially better (e.g., 

AUC=0.81) than to the average performance demonstrated in the simulation (e.g., mean 

AUC=0.65) suggesting that evaluating the Maxent model using cross-validation 

produced inflated values. In contrast, the GAM performed similarly in both quantitative 

evaluation methods (e.g., GAM using cross validation AUC=0.77 and mean simulated 

GAM AUC=0.76) suggesting that evaluating the GAM using cross-validation produced 

accurate values for this modelling method.  

The Maxent modelling method not only provided an overly optimistic picture of 

model performance, it was also not a reliable predictor of the spatial distribution of 

Alcyonacean corals. For instance, compared to the GAM with presence-absence data, 

the Maxent approach misrepresented the distribution of Alcyonacean corals by 

producing biased estimates of probability of presence (i.e., poor functional accuracy), 

and predicted higher probability of presence around randomly selected presence points. 

Additionally, neither the diagnostic AUC value from the best-fitting GAM (i.e., the “true” 

value) or the best-fitting Maxent model overlapped with the distribution of AUC values 

produced by Maxent in the simulation. This complete separation of AUC values further 

suggests strong bias in the Maxent modelling method and diagnostics. Maxent is known 

to overestimate probability of occurrence in sampled areas, underestimate occurrence in 

unsampled areas, and predict patterns in the data collection method rather than that of 

species distribution (Araújo et al. 2019; Fitzpatrick et al., 2013), therefore, it is not 

surprising that the simulated Maxent model predicted, on average, much lower 

probability of coral presence in areas of true high probability of presence and vice versa. 

Depth had the greatest contribution to the best-fitting Maxent model (68%) and it’s 
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decreasing trend, compared to an increasing trend seen in the best-fitting GAM, is likely 

the reason for the large differences in model predictions. 

In contrast to the Maxent method applied to presence-only data, the GAM 

approach with presence-absence data demonstrated acceptable functional accuracy. 

For instance, the simulated GAM, on average, predicted the true spatial distribution of 

Alcyonacean corals. GAM predictions resembled, on average, the true probability of 

presence distribution with weaker probability of presence values. These weaker values, 

however, are not an issue if functional accuracy is the goal as both the simulated GAM 

and the best-fitting GAM (i.e., the true GAM) predicted the highest probability of 

presence in the same areas. Additionally, the diagnostic AUC values from the best-fitting 

GAM (i.e., the “true” value) were within the distribution of AUC values produced by the 

simulated GAM, indicating that bias in not affecting this model type.  

Most applications in generalized additive modelling involve some form of model 

selection; however, the uncertainty in this procedure is rarely represented. In this study, I 

found that model selection increased the uncertainty in probability of presence 

estimates. Overall, simulated GAMs without model selection produced higher AUC 

values because the model structure was the same as the “true” model (i.e., the same 

predictor variables were used each time), thus producing more similar predictions and 

decreasing uncertainty when applied to the test data set. In other words, model selection 

increased uncertainty by introducing more variability in the model structure through 

changing combinations of predictor variables. 

The limited sample size of the presence-absence data (n=209) is one possible 

reason that the simulated GAM resulted in different model structures in each iteration. A 

larger sample size is more likely to reveal the true relationship between predictor 

variables and probability of presence, therefore decreasing model structure uncertainty 

by selecting the same predictor variables more frequently. This implies that the GAM 

can’t consistently fit the underlying truth without a larger sample size. Additionally, the 

mean diagnostic values from the simulated GAM with a test dataset the same size as 

the best-fitting GAMs test dataset, was closer to the “true” value suggesting that the 

diagnostic values are sensitive to the size of the test dataset. Future research could 

estimate the sample size needed to consistently fit the underlying model structure and 

focus sampling efforts to achieve this number of samples.  
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Finally, my presence-absence data is not standardized by the area sampled by 

the cameras, which could be affected by, inter alia, camera angle or orientation, bottom 

complexity, and visibility. I controlled for the latter by discarding videos with obviously 

poor visibility; however, variation in visibility in the remaining videos could introduce 

sampling bias or additional sampling noise in the data. In such cases, coral presences 

are more likely to be counted as absences as visibility decreases, thereby under-

estimating true coral presence. 

 

4.2. Importance of accurate SDMs for conservation 
planning  

Currently, the majority of SDMs for cold-water corals are fit using presence-only 

data (Guinotte & Davies, 2014; Lagasse et al., 2015; Rooper et al., 2014; Sundahl et al., 

2020) and these SDM predictions are used to guide management practices such as 

MPA placement for sensitive benthic species. The results of this study show that 

management strategies informed by two different modelling scenarios (i.e., the best-

fitting Maxent model predictions and the best-fitting GAM predictions) would result in 

different MPA location placement. Currently proposed closures in British Columbia 

intended to protect corals within the study area cover a 712 km2 area, divided into two 

sections with 563 and 149 km2 areas, at the Southern tip of Haida Gwaii (i.e., the Cape 

St. James Site) and a 228 km2 area at the Northern tip of Haida Gwaii (i.e., the Offshore 

NW Dixon Site) (DFO, personal communication, February 25, 2022). Under the Maxent 

model scenario 27.2% and 18.0% of the larger and smaller Cape St. James Site 

sections respectively contained suitable coral habitat.  Under the GAM scenario 20.8% 

and 16.5% of the larger and smaller Cape St. James Site sections respectively 

contained suitable coral habitat. The values for each model scenario at the Cape St. 

James Site were comparable, which demonstrates that not all areas are biased under 

the Maxent model scenario; however, part of the proposed closure was outside of the 

study area. In contrast, the Offshore NW Dixon Site was almost entirely contained in the 

study area, and 46.6% of the site contained suitable coral habitat under the Maxent 

model scenario while only 1.6% of the site contained suitable coral habitat under the 

GAM scenario. Both the Cape St. James Site and the Offshore NW Dixon Site locations 

were selected based on bycatch records of corals, however, the Offshore NW Dixon Site 
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is located in a heavily fished area. The higher percentages of suitable coral habitat at the 

Offshore NW Dixon Site under the Maxent scenario are consistent with the expected 

bias in this modelling method. Maxent is likely predicting the distribution of samples, not 

coral habitat and, therefore, these sites may only be protecting a fraction of the coral 

habitat they were intended to.  

As part of Canada’s marine conservation target, commonly referred to as Aichi 

Target 11, Canada aims to protect 30% of marine and coastal areas by 2030 using 

MPAs and other effective area-based conservation measures (OECMs).  Sedentary 

benthic species, such as cold-water corals, form 3-dimensional habitat (Stone et al., 

2014; Krieger & Wing, 2002; Buhl-Mortensen et al., 2010), which supports various fish 

species, some commercially valuable. Misplaced MPAs can move fishing effort to more 

vulnerable locations, create unnecessary economic losses and increase fishing costs 

(Lagasse et al., 2015). Species distribution maps based on presence-only data can 

exacerbate these losses. Although this study used presence-absence video 

observations collected via autonomous camera systems (Doherty et al., 2018) over a 

stratified-random survey design, the survey was stratified for sablefish, not Alcyonacean 

corals. Although not ideal, the results of the models using this survey data are still 

applicable because model-estimated relationships are based on a randomized sampling 

design and, therefore, not specific to particular locations. Additionally, depth was an 

important predictor of coral presence and, therefore, the depth stratification of the StRS 

was likely appropriate. Depth is associated with other important environmental variables 

for corals such as oxygen and temperature (Georgian et al. 2014; Thresher et al. 2011; 

Woodby et al. 2009). The presence-only data collected opportunistically during 

commercial fishing occurred mostly in depths of 200-400 m and did not evenly sample 

the full range of depths in the study area. It is possible that this over representation of 

the 200-400 m depth range resulted in the Maxent model predicting higher probability of 

presence in areas occurring within this depth range. Additionally, corals are more likely 

to fall off of fishing gear with greater depths and retrieval times, which could cause 

Maxent to under-estimate coral presence at deeper depths.  
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4.3. Future research opportunities for benthic habitat 
management 

Most existing coral datasets are from bycatch data collected during commercial 

fishing, which lack important information for species distribution modeling such as true 

absence data, and physical attributes of coral colonies and the surrounding environment 

(Doherty et al., 2018; Hastie and Fithian, 2013). Future studies could use the 

relationships estimated using presence-absence data in this study to design a specific 

presence-absence survey stratified by variation in expected coral habitat to inform 

species distribution with less bias. Presence-absence data can be analysed using well 

known statistical approaches and avoids models that rely on dubious transformation 

assumptions, such as those required by Maxent. Presence-absence data collection 

could be as simple and cost effective as deploying autonomous camera gear on any of 

Canada’s currently operating surveys, or could involve deploying ROVs as a more 

expensive option that may provide more detailed data.  

Presence-only datasets collected during commercial fishing often suffer from 

sampling bias and other unknown biases, and this in turn creates biased species 

distribution model predictions, however, the relative influence of data and model 

structure on resulting species distribution has not been assessed (Fitzpatrick et al., 

2013). Fitting each modeling method with different data types (e.g., presence-only and 

presence-absence) would allow us to identify whether bias exists in the data or the 

modeling method. Future modeling efforts could fit GAMs using the presence-only 

bycatch records and background data, and fit Maxent models using the StRS presence-

absence data. This would remove any structural differences between the models and 

help to better understand the effects of generating background data. 

4.4. Conclusions 

In conclusion, this research confirms that inferences about species distributions 

from presence-only data can be overly optimistic based on commonly used diagnostic 

measures such as AUC calculated using cross-validation. Current species distribution 

modeling practices combining presence-only data with cross validation are of limited use 

for their intended applications in management (Bowden et al., 2021). The stark 

difference between the predicted probability of Alcyonacean coral presence produced 
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from the best-fitting GAM and best-fitting Maxent model demonstrates a need for more 

robust presence-absence data to support Canada’s strategy to protect sensitive benthic 

areas.  

A survey designed specifically for corals, with an appropriately large sample size, 

would yield the best results, and would likely only need to be done once as corals are 

sedentary organisms. Additionally, information on coral density and size, and sea floor 

attributes is not available in presence-only data, and spatial clustering and colony size 

are important in conservation planning (Doherty et al., 2018). For example, fishing gear 

such as bottom longline hook and trap gear are more likely to impact larger free-standing 

corals in areas with steep bathymetry or high rugosity (Doherty et al., 2018). More robust 

SDMs created using presence-absence data could improve our understanding of coral 

distribution and, therefore, better inform management practices for coral protection, 

reduce economic losses from misplaced fishery closures, and ultimately improve coral 

and ocean health. Regardless of the desired objectives (e.g., informing management 

practices, coral conservation, minimizing economic losses, etc.) this research generates 

a more accurate and informative picture of Alcyonacean coral distribution and the 

limitations of data and model choices, which can be used to make better informed 

decisions. 
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5. Tables 

Table 1. Predictor variables considered in modelling probability of presence and habitat suitability for Alcyonacean 
corals.  

 Predictor 
layer(s) 

Definition Method Native 
resolution(s) 

Years Source(s)  

Bathymetry  

Depth (m) 

 

Distance from sea 
surface to the sea 
floor 

 

3 arc seconds 
and 100 m 

 

British Columbia 3 arc-
second Bathymetric DEM 
(Carignan et al. 2013) 
and a 100 m DEM (Gregr 
2012)  

BPI  Where a referenced 
location is relative to 
surrounding locations 

Neighbourhood distance: 
300-2,500 m 

Rugosity A measure of surface 
roughness 

Calculated using arc-cord ratio 
(ACR) method (Du Preez et al., 
2016)  

Slope 
(degrees) 

The maximum rate of 
change of depth 

Maximum rate of change in 
depth between a cell and its 
neighbouring eight grid cells 

Chlorophyll 

Mean 
chlorophyll a 
concentration 
(mg/m3)  

Milligrams of 
chlorophyll a per 
cubic meter 

Calculated from reflectance 
using the OC4 and Cl algorithms 
(Hu et al., 2012), mosaiced by 
month and averaged over years  

1 km 

2012-2015 

(March to 
October) 

MODIS L2 product 
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 Predictor 
layer(s) 

Definition Method Native 
resolution(s) 

Years Source(s)  

Oceanographic 

Mean summer 
circulation 
current speed 
(m/s)  

Continuous and 
directed movement of 
ocean water 
calculated using a 15 
day mean resolution 

Calculated from mean zonal (u) 
and meridional (v) velocities 
using a root mean square 
method after the velocities were 
spatially aligned by shifting them 
horizontally with linear 
interpolation  

3 km 

1998-2007  

(April to 
September) 

Regional Ocean 
Modelling System 
(ROMS) (Masson and 
Fine 2012) 

Mean summer 
tidal current 
speed (m/s)  

Continuous and 
directed movement of 
ocean water 
calculated using a 3 
hour mean resolution 

Mean bottom 
temperature 

(C) 

Temperature at the 
sea floor averaged by 
year 

Bottom layer was represented 
by the deepest of 30 sigma (a 
fractional vertical stretching 
coordinate) levels (followed 
bottom depth) 

Mean summer 
bottom salinity 
(PSU) 

Salt concentration at 
the sea floor in 
Practical Salinity 
Units averaged by 
year 

Substrate 

Mixed substrate A measure of mixed 
substrate density  

Derived from a categorical 
substrate model that predicts 4 
categories: rock, mixed, mud 
and sand 

100 m 1984-2018 
Categorical substrate 
model (Haggarty et al., 
2018) 

Muddy 
substrate 

A measure of muddy 
substrate density 

Rocky 
substrate 

A measure of rocky 
substrate density 

Sandy 
substrate 

A measure of sandy 
substrate density 
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 Predictor 
layer(s) 

Definition Method Native 
resolution(s) 

Years Source(s)  

Commercial 
Fishing Impact 

Trawl  Cumulative area of 
the seafloor impacted 
by trawl over the time 
period 

Cumulative impacted area 
calculated using a door width of 
70 m.  

100 m 1995-2020 

DFO’s Pacific region 
PacHarv (1995-2007) 
and Fishery Operating 
system (FOS; 2007-
2020) (Chris Rooper, 
personal communication, 
April 23, 2021) 

Trap Cumulative area of 
the seafloor impacted 
by trap gear over the 
time period 

Cumulative impacted area 
calculated following the 
methodology of Doherty et al., 
2018 

Longline Cumulative area of 
the seafloor impacted 
by longline gear over 
the time period 

Cumulative impacted area 
calculated following the 
methodology of Welsford et al., 
2014b 
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Table 2. Presence (P) and absence (A) frequencies by sampling year and 
cumulative frequencies and percentages over 2013-2017 from 282 
video samples obtained from sablefish stratified-random surveys. 

  2013 2014 2015 2016 2017 2013-2017 

 P-A P-A P-A P-A P-A P-A %P %A 

Gorgonian corals 
(Order Alcyonacea) 5-55 0-50 4-57 17-45 5-44 31-251 11% 89% 

Sponges (Phylum 
Porifera) 17-43 3-47 16-45 23-39 5-44 64-218 23% 77% 

Sea Whips (Order 
Pennatulacea) 5-55 11-39 17-44 12-50 7-42 52-230 18% 82% 

Hydrocorals (Order 
Anthoathecata) 3-57 2-48 5-56 13-49 6-43 29-253 10% 90% 

Black corals (Order 
Antipatharia) 0-60 0-50 0-61 0-62 6-43 6-276 2% 98% 

Sea Lillies (Order 
Isocrinida) 0-60 0-50 1-60 0-62 0-49 1-281 0% 100% 

Stony corals (Order 
Scleractinia) 0-60 0-50 0-61 1-61 0-49 1-281 0% 100% 
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Table 3. Summary of Alcyonacean corals (Order Alcyonacea) observed 
during sablefish stratified-random surveys from 2013 to 2017. 

Family 
Lowest Taxon 

Identified 
Locations 
Observed 

Distinct 
Colonies 

Counts per 
video sample 

(range) 

Depth range 
(m) 

Alcyoniidae Alcyoniidae 2 3 1 - 2 1067 
 Heteropolypus sp. 1 1 1 567 

Isididae Isidella sp. 4 4 1 645 - 660 

Paragorgiidae Paragorgia spp. 4 7 1 - 3 219 - 707 

Primnoidae Parastenella sp. 1 5 1 1296 
 Primnoidae 1 1 1 370 

Plexauridae Swiftia simplex 2 4 1 - 3 761 - 1133 

Unidentified 
Family 

Alcyonacea 16 40 1 - 24 517 - 1387 
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Table 4. Performance diagnostics for the best-fitting Maxent model, fitted 
with presence-only observations from commercial fishing, and the 
best-fitting GAM, fitted with presence-absence observations from a 
stratified random survey (StRS). AUC and MSPE were calculated 
using 5-fold cross-validation for the Maxent model and 5-fold spatial 
block cross-validation for the GAM.  

Diagnostic measure 

 

Maxent GAM 

Area under the receiver operating 
curve (AUC, [SD]) 

0.81 (0.015) 0.77 (0.162) 

Feature classes Linear, quadratic and hybrid na 

Predictor variables Depth, temperature, rocky 
substrate, slope 

Depth, BPI, tidal speed, slope 

Regularization multiplier 3 na 

Mean squared prediction error 
(SD) 

0.13 (0.003) 0.07 (0.021) 

True skill statistic (SD) 0.53 (0.017) 0.31 (0.178) 

Symmetric extremal dependence 
index (SD) 

0.71 (0.012) 0.44 (0.228) 

 

  



33 

Table 5. Details of 2 estimated model scenarios, the best-fitting Maxent 
model, fitted with presence-only observations from commercial 
fishing, and the best-fitting GAM, fitted with presence-absence 
observations from a stratified random survey (StRS), and 4 
simulated model scenarios.  

 Scenario 
Model 
type 

Model selection/ 

model tuning 

Test dataset 
size 

Sample size  

Estimated 
Best-fitting GAM GAM Yes 42 209 

Best-fitting Maxent Maxent Yes 119 593 

Simulated 

GAM_0 GAM Yes 5,000 209 

GAM_noModSel GAM No 5,000 209 

GAM_short GAM Yes 42 209 

Maxent_0 Maxent No 5,000 ~593 
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Table 6. Closures intended to protect coral habitat and the percent of 
overlapping coral habitat predicted by the best-fitting GAM, fitted 
with presence-absence observations from a stratified random 
survey (StRS), and best-fitting Maxent model, fitted with presence-
only observations from commercial fishing.  

Closure type Site name Area (km2) 
Percent coral habitat (%) 

GAM Maxent 

Longline 
closures 

Cape St. James Site                    563 20.8 27.2 

Cape St. James Site 149 16.5 18.0 

Offshore NW Dixon Site                 228 1.6 46.6 
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6. Figures 

 

Figure 1. Offshore stratified random survey areas (outlined in blue) off the 
coast of British Columbia, Canada. Depth strata, not shown, are 
100–250 fathoms, 250–450 fathoms, 450–750 fathoms. Distribution of 
(A) opportunistic Alcyonacean coral occurrence observations from 
commercial fishing and (B) presence-absence observations from a 
stratified random survey (StRS). 
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Figure 2.  Flow diagram of the simulation algorithm used to evaluate the 
direction and magnitude of bias in each model type (i.e., GAM and 
Maxent model). GAM_0 included model selection and a large test 
dataset (n=5,000), Maxent_0 excluded model selection and included 
a large test dataset (n=5,000), GAM_noModSel excluded model 
selection and included a large test dataset (N=5 000), and 
GAM_short included model selection and a small test dataset (n=42). 
All steps in the orange box were repeated 100 times using the long 
test dataset, and all steps in the yellow box were repeated 100 times 
using the short test dataset. 

Fit GAM to StRS video data

Use GAM to generate coast wide species 

probability of presence

Generate 100 long test data sets from coast 
wide species probability of presence 

(n=5,000)

Test GAM_0 performance Test Maxent_0 model performance

Generate sample presence-absence points 
weighted by StRS sampling effort

Generate sample presence points 
weighted by commercial fishing effort

Select top model using all 

subsets selection and AICc
and fit using sample 

presence-absence points

Fit model using sample presence 

points 

Calculate diagnostic values compared 
against long test data set 

Repeat 100 times 

Generate 100 short test data sets from coast 
wide species probability of presence (n=42)

Test GAM_noModSel
performance

Test GAM_short performance

Fit model using sample 

presence-absence points 

Generate sample presence-absence points 
weighted by StRS sampling effort

Select top model using all subsets 
selection and AICc and fit using 

sample presence-absence points

Calculate diagnostic values compared 

against short test data set 
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Figure 3.  Pearson correlation values, histograms, and scatterplots showing 
simulated diagnostic value distributions for a GAM without model 
selection and with a large test dataset (n=5,000). 
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Figure 4.  Conditional relationships of predictor variables on the probability of 
Alcyonacean coral presence for the best fitting GAM, fitted with 
presence-absence observations from a stratified random survey 
(StRS), generated by varying the predictor variable of interest while 
keeping all other predictors at their average values. The thick black 
line shows the mean predictions and the grey polygons show the 
95% confidence intervals. 
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Figure 5.  Conditional relationships of the greatest contributing predictor 
variables on the probability of Alcyonacean coral presence for the 
best fitting Maxent model, fitted with presence-only observations 
from commercial fishing, by varying the predictor variable of 
interest while keeping all other predictors at their average values. 
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Figure 6. Predicted probability of Alcyonacean coral presence for the (A) best-
fitting GAM, fitted with presence-absence observations from a 
stratified random survey (StRS), (B) mean of the simulated GAMs 
(i.e., GAM_0), (C) best-fitting Maxent model, fitted with presence-only 
observations from commercial fishing, and (D) mean of the 
simulated Maxent models (i.e., Maxent_0).  
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Figure 7.  Difference in Alcyonacean coral predicted probability of presence 
between (A) the best-fitting GAM, fitted with presence-absence 
observations from a stratified random survey (StRS), and best-fitting 
Maxent model, fitted with presence-only observations from 
commercial fishing, (B) the best-fitting GAM and mean of the 
simulated GAMs (i.e., GAM_0), and (C) the best-fitting GAM and 
mean of the simulated Maxent models (i.e., Maxent_0). Red coloring 
indicates areas where the best-fitting GAM predicted higher 
probability of presence than the model(s) it was compared against 
and blue coloring indicates areas where the comparison model(s) 
predicted higher probability of presence than the best-fitting GAM.  
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Figure 8.  Predicted probability of Alcyonacean coral presence for the (A) best-
fitting GAM, fitted with presence-absence observations from a 
stratified random survey (StRS), and (B) best-fitting Maxent model, 
fitted with presence-only observations from commercial fishing. 
Polygons show areas closed to longline fishing to protect bottom 
habitat in the Northern Shelf Bioregion with the percent of suitable 
coral habitat labeled. 
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Figure 9.  Distribution of AUC values from a simulated (A) GAM that included 
model selection and a large test dataset (n=5,000), (B) Maxent model 
with a large test dataset (n=5,000), (C) GAM without model selection 
and a large test dataset (N=5 000), and (D) GAM that included model 
selection and a small test dataset (n=42).Vertical lines display AUC 
values based on cross validation for the best-fitting Maxent model 
(grey, dotted) and best-fitting GAM (blue, dashed), and mean AUC 
values of each simulated model (red, solid). 
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Figure 10.  (A) Mean predicted probability of Alcyonacea coral presence, (B) 
lower and (C) upper 95% confidence intervals for a simulated GAM 
(i.e., GAM_0) with model selection and a large test dataset (n=5,000) 
and mean (D) predicted probability of Alcyonacea coral presence, 
(E) lower and (F) upper 95% confidence intervals for a simulated 
GAM (i.e., GAM_noModSel) without model selection and a large test 
dataset (n=5,000). 
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Appendix: Supplemental Figures 

 

Figure A1.  Predicted probability of Alcyonacea presence for Maxent models 
fitted using (A) commercial bycatch records, (B) survey bycatch 
records, and (C) both commercial and survey bycatch records. 
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Figure A2.  Maxent predicted Alcyonacean coral probability of presence, fitted 
with presence-only observations from commercial fishing, with tau 
values of (A) 0.2, (B) 0.4, (C) 0.5, (D) 0.6, and (E) 0.8. 
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Figure A3.  Pearson correlation values, histograms, and scatterplots showing 
simulated diagnostic value distributions for (A) a GAM with model 
selection and a large test dataset (n=5,000), (B) a GAM with model 
selection and a small test dataset (n=42), and (C) a Maxent model 
without model selection and a large test dataset (n=5,000). 

A

B

C


