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Abstract

Social environments play a critical function in how humans express themselves in non-verbal
communication with other humans and robots. For instance, culture may change how one
expresses emotions on their face, while ambiance may change how they express themselves
vocally. Little research has been done in affective computing to take into account such social
environments when building affective systems. The current thesis aims to investigate these
two sources of influence. In study 1, a support vector machine was leveraged to classify
three negative emotions across three different cultures using a curated dataset compiled
from YouTube videos. In addition, a one-way ANOVA was used to analyze the differences
that exist between each culture in terms of the level of activation of underlying social signals.
In study 2, we investigate modifications to a robot’s speech, using various speech genera-
tion tools, to maximize acceptability in various social and acoustic contexts, starting with
a use case for service robots in varying restaurants. An original dataset was collected over
Zoom with participants conversing in scripted and unscripted tasks given seven different
ambient sounds and images. Voice conversion, and altered Text-to-Speech that matched am-
bient specific data, were implemented for speech generation tasks. A subjective perception
study showed that humans favour generated speech that matches the ambient environment,
ultimately preferring more human-like voices. This work provides three important contri-
butions to culture-specific emotion expression recognition, as well as ambient appropriate
generated voices: (1) understand how different cultures express themselves through their
facial expressions, (2) understand how humans adapt their voices to different ambiences,
and (3) taking data-driven approaches to perform classification and generation tasks using
context-sensitive machine learning methods and novel data collection protocols.

Keywords: affective computing, human-robot interaction, emotion expression recognition,
social signals, voice adaptation, voice signal processing, voice generation, classification
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Chapter 1

Introduction

1.1 Overview

There are a variety of different social environments that guide the way humans communicate.
Context, according to Merriam-Webster, is "the interrelated conditions in which something
exists or occurs" [2]. A social environment is a subset of context that includes non-linguistic
social contextual influences that impact the meaning of linguistic communication and facial
expressions. For example, one study done by [28] found that the social environment of a
social interaction, whether it be imagined or "real", was more indicative of facial displays
of happiness than the emotion itself. In addition, the display of a given emotion is more
intense and changes more frequently when one imagines social interactions within a social
environment compared to when they imagine being alone [29]. Given this implicit influence
on human communication, two unique social environments will be discussed in this thesis:
(1) culture and (2) ambience.

Whether it be by vocal or facial signals, humans have the innate capability to commu-
nicate thoughts with high fidelity. This natural ability can be deliberate, but more-often
it is done automatically. More specifically, gestures, speech features (e.g., pitch), facial ex-
pressions (e.g., facial landmarks), gaze, and much more, are all used simultaneously to
communicate our thoughts and our feelings instinctively [79]. These social signals can be
displayed differently from person to person for a given emotion. For example, one person
may display disgust by wrinkling their noise at a terrible smell, while another may show no
reaction at all. In addition, humans adapt these social signals to a variety of different envi-
ronments [9, 75, 33]. By way of explanation, specific social signals, such as speech features
and/or facial landmarks, may change depending on what environment you are placed in.
How these social signals change also depend on how one has been taught to act in certain
environments. Culture is one way knowledge is handed down and guides ones’ emotional
expression in different environments [19, 14]. Researchers call this concept "social learning",
and it is driven by experiences and interaction within a individual’s culture [71].
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Knowledge, handed down through cultural experiences, plays a large role in how one
expresses themselves and perceives the world around them. Psychological studies [20, 19],
have established a strong case that different countries express emotions differently, due in
part to how members of a given culture are exposed to, and taught, to display their own
emotions. It is expected that different rules are applied in different ambiences; this may or
may not depend on ones culture. Ambience is the "feeling" or "atmosphere" of a physical
surrounding, such as a restaurant [1]. One may not express themselves the same way when
placed in a loud, noisy upbeat restaurant versus a quiet, empty library. This also depends
on how we are taught what are or are not appropriate social signals to display in certain
ambient environments [65, 9, 82, 19, 71].

Given the variety of social signals used to communicate in different contexts, it is impor-
tant that robots follow the same set of rules provided by cultural and ambient surroundings.
This innate capability of seamlessly adapting to culture and ambiences that humans pos-
sess is something that is, currently, difficult for robots to reproduce. Not only is it crucial
that robots perceive emotions accurately across multiple different contexts (e.g., culture),
it is also important that robots generate realistic expressions that match that of the cur-
rent environment (e.g., ambience). In this way, human-robot interaction will become more
harmonious as it will allow for correct responses by the robot. In other words, robot’s will
be able to accurately perceive and display appropriate social signals cross-culturally in a
variety of ambient contexts. As such, in the scope of this thesis, I focus on facial expression
recognition and speech generation across different cultures and ambiences. The goals of the
current thesis are to:

• Understand how different cultures express themselves through their facial expressions.

• Understand how humans adapt their voices to different ambiences.

• Taking data-driven approaches to perform classification and generation tasks using
context-sensitive machine learning methods and novel data collection protocols.

1.2 Emotion Expression Recognition

Understanding how humans have the ability to move their face to communicate has seen a
good deal of discussion in the psychological community [20, 19, 86, 81, 62, 65, 9, 82, 19, 71].
In affective computing, classifiers have been used to "recognize" basic emotions, with little
insight into how specific facial movements allow one to express their thoughts and feelings,
non-verbally [94, 76, 67, 103, 87]. Some forms of emotion expression recognition rely on a
coded system that maps facial landmarks with facial movements. One such coding system
is called Facial Action Coding System (FACS) consisting of Action Units (AUs) (Figure
2.2), ranging from 1 to 64, that is commonly used to map facial landmarks to emotions

2



[99]. For example, [58] used FACS to code the expression of pain for the use of frame-by-
frame automatic detection in video. Using a similar idea other emotions, such as anger and
happiness, can also be coded on a frame-by-frame basis. Commonly used machine learning
models, such as convolutional neural networks (CNN), have been used to extract AUs, using
popular image datasets containing human faces, such as AffectNet or FER+ [67, 103, 87].
Using these extracted AUs we can then start to classify an emotion.

Traditionally in psychology understanding how certain AUs are activated for a given
emotion in order to categorize extracted AUs with an emotion label is normally done [58,
106, 86, 81, 62]. Another approach, commonly seen in affective computing would be to
provide an emotion label first for image data based off how human annotators perceive
them and then extract AUs [67, 103, 87]. Combining these two approaches opens the door
to allow us to use human perception at the forefront of data collection by understanding
how one expresses themselves in a given image and how one perceives an expression to
provide an emotion label. In addition, most studies centered around AU activation and
emotion expression take on a basic emotion approach, which establishes that all emotions
are expressed similarly across cultures. Yet, the basic emotion approach is outdated and will
be discussed further in chapter 2 [20, 19, 37]. This puts forward the issue of how appropriate
it is to collect data without considering who is in the image. For example, is it preferable
to collect data by understanding how one’s cultural background could impact how they
display emotions in a given image? Furthermore, is training emotion expression recognition
systems by feeding data in without considering culture the best method?

1.3 Speech Generation

Gaining insight into how the human voice changes in different ambient settings has also
seen little exploration in affective computing, in particular in the area of speech generation.
Speech generation has seen steady advancements in recent years and involves a computer
synthesizing a voice that sounds human-like [8]. There are several techniques used to conduct
such speech synthesis, for example, voice conversion [88] or style transfer [18] to name a few.
Many implementations use deep learning models and will be discussed further in Chapter
3.

One example of a readily available and easy to use speech generation system is text-
to-speech (TTS), where a user inputs text and a computer synthesizes voice features to
generate speech. TTS was first developed in 1939, with the invention of Voder [83], since
then TTS has seen significant developments. Currently, many TTS systems use Speech
Synthesis Markup Language (SSML) to manipulate how generated voices should sound.
For example, to increase loudness of a voice a SSML "volume" element can be used to
increase the loudness, or to make pitch higher a SSML "pitch" element can be used to
raise the pitch. SSML is simple to use and TTS have also been developed to be expressive
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[17, 55]. However, off-the-shelf TTS systems have a limited set of SSML parameters and,
like other speech generation implementations, have not investigated ambience adaptation.
As such, another issue raised, in addition to those mentioned in section 1.2, is should a data-
driven approach be taken to investigate how speech generation should adapt to different
ambiences? More specifically, should we understand how humans adapt their voices to a
wide range of ambiences first to improve robot speech? In addition, are speech generation
systems that adapt to different ambiences considered more socially acceptable versus ones
that do not?

1.4 Thesis Outline

As we have seen, culture and ambience provide nuanced social environments for affective
computing. Culture and ambience may also prove important when improving classification
performance for emotion expression recognition and creating more realistic generated voices
that adapt to ambient specific surroundings. As such, addressing culture and ambience
as social environments (or context) for machine learning may improve everyday human
experiences with affective computing technologies.

In chapter 2, I focus on emotion classification which incorporates a variety of different
cultures into emotion expression recognition using a traditionally seen machine learning
model. More specifically, chapter 2 investigates how culture influences negative emotion
expression for North American (Canadian and American), Persian, and Filipino data in the
wild using machine learning.

In chapter 3, I focus on speech generation, more specifically, the use of voice conversion
and TTS pitch adaptation. Furthermore, a perception study of different generated voices
to use human perception for evaluating speech generative models was conducted.
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Chapter 2

Culture and Negative Emotion
Expression Recognition

Culture has been identified to play a significant role in our upbringing, influencing the
perception and expression of emotional experiences [65, 9, 82]. Culture embeds in humans
an innate set of rules to help select the appropriate display of emotions to navigate so-
cial environments in one’s culture [19]. In the area of affective computing, culture has had
some exploration investigating emotion expression recognition technologies role in mental
health cross-culturally [77, 78]. Nevertheless, there is still a large body of research regard-
ing emotion expression recognition technologies that treats all cultures equally using a
basic emotion, or common view, approach. This approach emphasizes a common underly-
ing structure for each emotion expressed cross-culturally [9]. On the other hand, a social
constructivist approach emphasizes individuality of social influence on humans emotion ex-
pression and perception [27]. Furthermore, researchers, such as [43], have illustrated that
different cultures demonstrate emotions differently. Taking on a basic-emotion approach
could impact the performance of emotion expression recognition technologies by treating
training data that originates from different cultures, equally. Furthermore, current datasets
primarily contain Caucasian and North American training samples or do not categorize by
culture by incorporating culture tags during dataset generation [24]. Therefore, these avail-
able datasets potentially increase algorithm bias, hindering the inclusion of all cultures [85].
In this chapter, we aim to address the literary gap regarding culture and current emotion
expression recognition technologies by:

1. Collecting a novel dataset of negative emotions across 3 different cultures.

2. Using a data-driven analysis of different AUs and their level of activation to investigate
culture’s influence on social signals associated with negative emotion expression.

3. Evaluating a traditional machine learning algorithm on the aforementioned dataset
to understand if adding cultural categories to our data could increase model perfor-
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mance, providing a more versatile and culturally-aware emotion expression recognition
system.

2.0.1 Cultural Insights into Emotion Mapping

Historically, researchers have found an implicit ability in humans to detect emotions with
higher accuracy when interacting with someone who is in their cultural group (in-group
advantage)[22, 20]. For example, [22] conducted a meta-analysis that reviewed 87 articles
investigating performance of cross-culture vs within-culture emotion expression recognition
in humans. They found that although there seemed to be a universal biological core to
each emotion, within-group accuracy was slightly higher. Culture can be broken down into
individualistic and collectivist subsets which can be ranked using Hoftsede’s Individualism
(IDV) score by placing cultures on a scale between 1 (purely collectivist) to 100 (purely
individualistic) [37]. Individualism characterizes individuals who are loosely tied to others,
prioritizing themselves along with immediate family. On the other hand, collectivism char-
acterizes individuals who are tightly linked with others, prioritizing the well-being of the
group over themselves. Cultures who have low IDV scores have shown to suppress nega-
tive emotions to maintain harmony in social interaction, whereas cultures with high IDV
scores idealize self-expression and open communication [25, 82, 37]. Furthermore, one study
assessed social robots’ cultural sensitivity by using AUs from East Asian culture, as the
definition of universality of facial expressions was more tailored to Western cultures[15].
East Asian participants identified the culturally derived expressions with higher recognition
accuracy compared to the the existing set of expressions that were placed on a robot’s face.
Therefore, indicating that there is also cultural discrepancy regarding how one expresses
and perceives emotions. In addition, [43] found significant differences in the level of activa-
tion of AUs associated with a given emotion when mapping the intensity of each AU across
Western Caucasian and East Asian cultures.

2.0.2 Negative Emotion Expression Recognition Performance

Most affective computing research regarding emotion expression recognition technologies
focus on 7 distinct emotions (i.e., happiness, sadness, anger, disgust, contempt, fear, and
surprise) [53, 84]. There is a tendency to investigate all seven emotions together instead
of separating them into positive and negative groups. Although covering more ground by
including all emotion categories, these studies can become too broad and overshadow under-
lying differences of negative emotions. Furthermore, negative emotion expression recognition
in both technology and humans has been found to have the worst accuracy discrepancy when
performance is compared across different cultures. For example, [15] reviewed 15 different
studies and found that overall human participants from western cultures were able to rec-
ognize fear, disgust, and anger with high accuracy, whereas other cultures’ recognition was
much lower. [87] found that using the popular AffectNet dataset, resulted in accuracy be-
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tween 45% and 54% for each of contempt, anger, and disgust. Happiness, on the otherhand,
had achieved 77% accuracy. In addition, contempt is usually the worst performing negative
emotion. When using the FER+ dataset, [87] found contempt could only reach 20% accu-
racy, whereas happiness reached 95%. [103] also found that not only did contempt perform
the worst, with 23% accuracy, but also that it had fewer examples available in emotion
datasets. This may be due to differences that occur in the display of contempt, which could
be solved when analyzed cross-culturally. As such, although images themselves can be used
for classification purposes (e.g., using a CNN), the current study aims to address how AUs
vary amongst different cultures and how using AUs as attributes can be used to classify
negative emotions in various culture groups.

2.0.3 Negative Emotions and Underlying Social Signals

For the current study, we focused on the emotions of contempt, anger and disgust (the so-
called CAD Triad [80]) across three different cultures that range from highly individualistic
to highly collectivist. As previously mentioned, negative emotions, in particular contempt,
have been hard to predict cross-culturally in both humans and emotion expression recog-
nition technologies [87, 103]. According to the CAD Triad model, each of the mentioned
emotions is evoked when one of the three moral codes are violated. Contempt is elicited
when community codes are violated, anger is elicited when individual rights are violated,
and disgust is elicited when divinity codes are violated causing impurity against oneself,
others or God [80]. In the context of the current study, negative emotions will be broken
down into their social signals, or AUs. As briefly mentioned in chapter 1, AUs map fa-
cial landmarks that are activated when a given emotion is expressed [58, 106]. Disgust,
described as a wrinkled nose and mouth, is associated with the activation of AU4 (brow
lowerer), AU9 (nose wrinkler), AU10 (upper lip raiser), AU17 (chin raiser), and AU20 (lip
stretcher) [86, 81]. Anger, described as protruding teeth and tightened eyes looking down-
ward, is associated with the activation of AU4 (brow lowerer), AU5 (upper lid raiser), and
AU27 (mouth stretch). Contempt, shown in Figure 2.1, involves a raised and tightened
unilateral lip corner and is associated with the activation of AU4 (brow lowerer), AU7 (lid
tightener), AU10 (upper lip raiser), AU25 (lips part), and AU26 (jaw drop) [86, 81, 62].
Using the associated AUs for each emotion we can map their descriptive qualities (e.g.,
activation of AU9 can be mapped to the wrinkled nose description of disgust). Yet these
basic emotion expression templates do not explain the variance of expressions in the wild
[9].
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Figure 2.1: Prototypical contempt expressions from North American, Persian, and Filipino
cultures.

2.1 Dataset

2.1.1 Data Collection Protocol

Our dataset consists of 257 short video clips (between 1 to 11 seconds) collected from
YouTube that depicted contempt, anger, and disgust (the CAD Triad) across Canadian and
American (High Individualism Score) cultures, along with Persian (Medium Individualism
Score) and Filipino (Low Individualism Score) cultures. The Canadian and American groups
were categorized together and considered as one culture called North American culture.
Video clips in each culture were collected and annotated by three data collectors, one from
each culture. Six volunteers in addition to the three data collectors, two from each culture
category, added additional annotation for the clips in their identified culture. A clip was
labeled with a given emotion label where at least two of the three annotators agreed on
the given label, therefore establishing ground truth for each clip. If no annotators agreed
on a given label then that clip was held-out of the experiment as ground truth for that clip
could not be established. These in-the-wild clips were taken from either professionally acted
(e.g., movies or TV shows) or spontaneous (e.g., reality TV or "vlogs") scenarios. Filipino
culture contained 74 videos displaying either anger (25), contempt (30), or disgust (19).
Persian culture contained 75 videos displaying either anger (27), contempt (28), or disgust
(20). Finally, North American culture contained 108 videos displaying either anger (48),
contempt (39), or disgust (21). The entire dataset is over a total of 15 minutes and contains
27020 frames.

2.1.2 Dataset Features

After video collection, OpenFace [7] was used to extract social signals (i.e., activation levels
of AUs) for each frame in a given video. Only 17 AU attributes were collected (i.e., AU1,
AU2, AU4, AU5, AU6, AU7, AU9, AU10, AU12, AU14, AU15, AU17, AU23, AU25, AU26,
and AU45) describing relative values for each AU. Refer to Figure 2.2, which contains AUs
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Figure 2.2: Collected AUs with their associated definitions.

and their associated definitions. Relative values measure the amount of activation for each
AU ranging from 0 to 5 (e.g., high values indicate high activation). Confidence level and
success level, which indicate how confident the software is that a given frame successfully
exhibited a given set of AUs and the associated level of activation, were also collected. For
each frame the originating filename, frame number, and culture were noted indicating origin
of each data point in our dataset.

During preprocessing, extra features produced by OpenFace, such as head movement,
head position, and gaze direction, were removed. Furthermore, we only chose the frames that
had a high confidence level, above 80%, that a given AU was activated. Frames with success
that was less than 1 were also removed. In addition, if a clip contained multiple subjects,
data for the subjects not displaying the emotions were discarded. Since the available clips for
each emotion in each culture had varying amounts, the training dataset for a given emotion
category was balanced by randomly removing videos to make each emotion category have
the same amount of available training data within a given culture. In addition, the smallest
available dataset (i.e., disgust) in each culture is approximately 20 clips. Thus each culture
and emotion category will be trained on a similar amount of clips in order to remove bias
towards one culture or one emotion. For example, the North American dataset had clips
removed randomly for emotion categories contempt and anger, to ensure that they contained
the same amount as the smallest emotion category, disgust.
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2.2 Experimental Methods

2.2.1 Choice of Model for Classification

Establishing a robust machine learning model to classify emotions is important as it can
greatly impact performance outcomes. [94] used a cascade of both a binary and multi-
class support vector machine (SVM) to classify emotions. They found that using an SVM
for classification outperformed state-of-the-art algorithms, specifically when detecting con-
tempt and disgust. Others have also found success using an SVM in comparison to other
commonly used classification methods when recognizing different emotions in older adults
and children [59, 69]. There has also been a rise in research that uses SVM in conjunction
with deep learning models. For example, [68] used a CNN to extract features in images
and then used a SVM to classify images based on the extracted features with 70% to 85%
accuracy. Although results using a CNN with a SVM are good, [7] found even more promise
using a Convolutional Experts Constrained Local Model (CE-CLM) for the toolkit Open-
Face, beating state-of-the-art methods in regards to extracting AUs. Furthermore, given the
current study is exploring the differences in the underlying expressions of negative emotions,
the additional implementation of a deep learning pipeline could reduce interpretability, as
feature embeddings are not as visualizable as activation levels of AUs. As such, OpenFace
was used to extract the activation levels for the various AUs in addition to using a SVM
for classification, given its previous success on negative emotion expression recognition.

A SVM uses binary classification to separate training vectors along with class labels
into two categories using decision boundaries [38]. The training vectors are n-dimensional
and in our case we have 16 AUs, therefore, n is 16. The category labels are emotion cat-
egories. The SVM then maps the input vectors onto a higher-dimensional feature space.
The goal is to optimize the distance between the line that separates the two categories,
called a hyperplane, and support vectors that indicate points that are closest to that line.
Therefore, optimizing our decision boundary and increasing the separation of categories.
The hyperplane is constructed using a kernal function. In the current study, the kernal
function is linear and the cost c = 1.8, as it introduced the least amount of error during
cross-validation. While the linear kernel had the best performance on this dataset, other
work on detecting emotions in still images showed better accuracy using quadratic kernels
[3]. The SVM and k-fold cross-validation was implemented using an open source python
library called Scikit-learn [74].

2.2.2 Experiments

The current chapter has two hypotheses:

1. Cultures express the emotions of the CAD Triad differently, and
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2. The CAD Triad cannot be predicted using machine learning models across three
different cultures when considering all cultures equivalently.

Differing Expressions of CAD Triad

We first hypothesize that for a given CAD emotion, AU activation will be
different for each culture, indicating that social signals used to display the CAD triad
are not universal. To investigate this hypothesis, each AU related to an emotion category
(i.e. contempt, anger, and disgust) will be analyzed using a one-way analysis of variance
(ANOVA). The AUs associated with each emotion will be compared cross-culturally to
identify if there is a significant difference in means of AU activation across each culture.
Furthermore, a heat map, or activation map, will be created using all AUs for each culture
to identify what AUs, with a activation level threshold of at least 2.5, are highly activated
for each emotion. Differences in activation maps would further support the premise that
AUs activated for each culture are different.

Within-Culture and Cross-Cultural Recognition of CAD Triad

Our second hypothesis is the the CAD Triad cannot be predicted cross-culturally
and as such, model performance will be better when cultures are considered
separately. We will test our second hypothesis with two experiments, examining: (1) the
accuracy when performing within-culture training and testing, and (2) the accuracy when
performing cross-cultural training and testing. Both experiments will include each of the
three culture datasets: North American, Persian, and Filipino. Both experiments use a
SVM as a training and prediction model. Since the dataset is relatively small, a 5-fold
cross-validation process will be used. Before feeding data into the two models, around 25%
of the clips will be randomly held out for testing to assess the models ability to generalize.
Accuracy for each fold will also be calculated and averaged over all folds as an evaluation
metric. Both experiment will use prediction performance (i.e., accuracy) to compare cultural
categories.

The goal of the first experiment is to assess model’s recognition performance of each
culture independently, by training an SVM on one culture and testing on the same culture.
The comparison between cultures will provide a baseline to assess how well the model
can predict using our feature set, independently of other cultures. This experiment will also
provide information on the similarity of CAD within a given culture. The second experiment
will be to train an SVM on one of the three culture datasets and test on one of the remaining
two cultures. The accuracy for each training and testing combination will be compared
with one another. We expect that within-culture accuracy will be higher than cross-culture
accuracy, indicating a in-group advantage.
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Table 2.1: Descriptive statistics for the one-way ANOVA for each emotion across all cultures.

2.3 Results

Statistical Analysis. Fleiss’ Kappa Inter-rater agreement was 0.83 for the North American
dataset, 0.40 for the Filipino dataset, and 0.59 for Persian dataset. An one-way ANOVA
(Table 2.1; implemented using Python’s SciPy library[102]) was conducted using on each
emotion category across each culture category to compare the effect of culture on each
emotions’ associated level of AU activation. For contempt, analysis of variance demonstrated
that cultures effect on AU4 (F(2, 8570) = 1586.52, p < .001), AU7 (F(2, 8570) = 197.25, p
< .001), AU10 (F(2, 8570) = 155.74, p < .001), AU25 (F(2, 8570) = 507.10, p < .001), and
AU26 (F(2, 8570) = 468.70, p < .001), were statistically significant. A Post-hoc Tukey Test
(Table 2.2) indicated that each cultural group differed significantly in activation for each
AU, p < .05, except AU10. AU10 did not significantly differ on North American and Filipino
datasets (p = .49; Figure 2.3). For assessing cultures effect on anger, a one-way ANOVA was
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Table 2.2: Descriptive statistics for the Post-hoc Tukey Test for each emotion across all
cultures.

applied to AU4 and AU5 independently. An analysis of variance on AU4 and AU5 resulted
in significant variation amongst culture, F(2, 9935) = 861.68, p < .001; F(2, 9935) = 453.49,
p < .001. Post-hoc Tukey test also indicated that each cultural group differed significantly,
p < .001. Finally, to assess disgust, a one-way ANOVA was applied to AU4, AU9, AU10 and
AU17 independently. An analysis of variance on AU4 (F(2, 4690) = 466.37, p < .001), AU9
(F(2, 4690) = 601.62, p < .001), AU10 (F(2, 4690) = 85.61, p < .001), and AU17 (F(2,
4690) = 521.83, p < .001) resulted in statistically significant variation amongst cultures. A
Post-hoc Tukey test also confirmed the statistical significance for each AU and culture, p <

.05. Except, AU9, p = .57, and AU4, p = .49, did not have a statistically significant result
between the Persian dataset and the Filipino dataset (Figure 2.4) and the North American
and the Filipino dataset (Figure 2.5), respectively. It is important to note that some AUs
were not available for collection or could not be collected reliably using OpenFace, such as
AU20 and AU27 which are associated with disgust and anger, respectively.
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Figure 2.3: Distribution of AU10 cross-culturally for contempt.

Activation Map: Culture-specific social signals of CAD triad. In addition to
conducting a one-way ANOVA, an activation map (shown in Figure 2.6; implemented using
R) was used to illustrate the activation of all AUs in the datasets for each culture. Each
AU is mapped to one or more 2-dimensional facial points as proposed by [30]. A threshold
of at least 2.5 selects AUs that are activated. To simulate the facial movement captured by
AUs, we added random variance in the direction of movement and a small amount of noise
to produce smoother density plots. The activation map indicates which AUs are more likely
to be activated for a given culture and emotion as compared to other AUs within that same
culture and emotion.

2.3.1 Data Analysis

Contempt. North American contempt shows AU25 (lips part), AU2 (outer brow raiser),
AU45 (blink), AU7 (lid tightener) and AU12 (lip corner puller) to be highly activated.
Persian contempt shows the AUs normally found to be highly activated with contempt,
AU4 (brow lowerer), AU10 (upper lip raiser), AU1 (inner brow raiser), AU15 (lip corner
depressor) and AU25 (lips part). Filipino contempt has both AU1 (inner brow raiser), AU2
(outer brow raiser), and AU25 (lips part) highly activated. Figure 2.7 shows an example of
the underlying differences in each culture for contempt given the mentioned activated AUs.

Anger. North American anger is reflected by AU5 (Upper Lid Raiser), AU1 (Inner
Brow Raiser), AU25 (lips part) and AU10 (upper lip raiser). Persian anger has AU4 (brow
lowerer), AU10 (upper lip raiser), AU1 (inner brow raiser) and AU25 (lips part) highly
activated. In terms of Anger, Filipino anger shows high activation of AU1 (inner brow
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Figure 2.4: Distribution of AU9 cross-culturally for disgust.

raiser), AU25 (lips part), AU4 (brow lowerer), AU10 (upper lip raiser) and AU26 (jaw
drop).

Disgust. North American disgust has AU7 (lid tightener), AU25 (lips part), AU9 (nose
wrinkler), and AU10 (upper lip raiser) highly activated. Persian disgust has high activation
of AU4 (brow lowerer), AU10 (upper lip raiser), AU1 (inner brow raiser), AU15 (lip corner
depressor) and AU17 (chin raiser). Finally, Filipino disgust has high activation of AU4
(brow lowerer), AU10 (upper lip raiser), AU1 (inner brow raiser), AU26 (jaw drop), AU25
(lips part), AU7 (lid tightener).

2.3.2 Experimental Results

Within-culture testing accuracy. Figure 2.8 shows the confusion matrix for within-
culture experiments (the diagonal). Testing accuracy (i.e., percentage of correct emotion
labels) for the North American dataset was the highest with 66% accuracy. The next highest
testing accuracy was the Filipino dataset with 39%, followed by the Persian dataset, with
37%. This decreasing trend in recognition accuracy is similar to the agreement scores.

Within-culture confusions. Both disgust and contempt for the within-culture ex-
periment on the North American dataset (Figure 2.9) had the highest accuracy with 72%
and 69%, respectively. Anger performed the worst with 45% accuracy and was incorrectly
classified as disgust 34% of the time. Using the Persian dataset (Figure 2.10), anger per-
formed best with 43%. Anger was also confused 38% of the time with contempt. Disgust was
commonly confused with anger, with 41% of the disgust clips being incorrectly labelled as
anger and only 26% of disgust clips being correctly classified. On the other hand, contempt
was split between either being correctly classified 39% of the time or misclassified, 36% of
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Figure 2.5: Distribution of AU4 cross-culturally for disgust.

the time, with anger. Finally, the within-culture Filipino dataset (Figure 2.11) performance
was highest for anger with 55% accuracy. However, contempt and disgust were frequently
mistaken for anger with 51% of contempt and 72% of disgust being mistaken as anger for
the Filipino dataset.

Cross-culture confusions. The North American dataset achieved the best test results
in the cross-culture experiment (Figure 2.8) with training on Persian with approximately
47% accuracy and training on Filipino with approximately 46% accuracy. The Persian
dataset for the cross-culture experiment performed similarly to the within-culture exper-
iment with 30% accuracy when trained on the Filipino dataset and 40% accuracy when
trained on the North American dataset. When trained on the Persian dataset, the Filipino
dataset resulted in a small increase of 40% accuracy, while 36% accuracy was present when
trained on the North American dataset for the cross-culture experiment.
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Figure 2.6: AU activation map that shows the localization of activation using a threshold
of 2.5. *Movie/TV shows as primary source ; ** mix of Movie/TV shows, Reality TV and
Vlogs as primary source; ***Reality TV and Vlogs as primary source.

Figure 2.7: Examples showing the differences in underlying social signals of contempt.

17



Figure 2.8: Confusion matrix illustrating the results of all within-culture experiments.

Figure 2.9: Confusion matrix illustrating the results of the within-culture experiment on
the North American dataset.
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Figure 2.10: Confusion matrix illustrating the results of the within-culture experiment on
the Persian dataset.

Figure 2.11: Confusion matrix illustrating the results of the within-culture experiment on
the Filipino dataset.
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Chapter 3

Ambient Adaptive Speech
Generation

Humans have the innate ability to adapt their voice to different contexts and social sit-
uations. Although we consider linguistic vocal phenomenon to be our primary means of
communication amongst humans, a significant portion of our communication results from
non linguistic vocal features that can completely alter the meaning of phrases [60]. For
example, someone may say “it’s over.” at the end of a vacation with a sense of sadness, or
they may say “It’s over!” with a sense of enthusiasm after completing an examination they
have been studying for. Without the ability to produce and understand these contextual
non-linguistic vocal features we would have a difficult time navigating everyday life. Voice
is important and it solidifies trust in not only human-to-human interaction but also human-
to-robot interaction [23]. Given the features associated with our speech are important in
communicating in different contexts, it is important for robot’s to be able to communicate
in a similar fashion.

Providing a robot with the opportunity to adapt their voice to different contexts and
social situations has not yet been thoroughly explored. Robots are used every day in vastly
different contexts, therefore, the need for a robot to successfully adapt itself into both
the ambience and the social environment proves important when integrating robots into
humans’ everyday lives [98, 42, 34]. State-of-the-art social robots, such as Pepper, Nao and
iCub, utilize expressive voices custom built by companies, such as Acapela 1. These voices
are exceedingly expensive and resource intensive to generate, and as such, are often outside
the means of individuals and small scale companies developing interactive robots. In these
cases the developers often rely on widely available text-to-speech (TTS) services that only
allow minor adjustments and voice selections.

Our solution is to use a data-driven approach to generate a robot’s voice. For example,
using a corpus of human voices that are collected in different ambiences, we use human

1https://www.acapela-group.com/
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Figure 3.1: A robot in a fine dining restaurant vs. a night club should adapt its voice to the
ambience.

speech features to modify those of a robot’s voice. However, the issue with this method
is that it is difficult to collect clean recordings of realistic data in noisy and crowded en-
vironments. The current study plans to circumvent these challenges by utilizing a readily
available video-conferencing platform. Placing participants into a simulated environment
that is in the comfort of their own home opens the door to easily collect naturalistic data
more efficiently. As such, in this chapter we hope to bridge the following gaps in the litera-
ture:

1. Implementing a novel protocol for collecting realistic contextual audio voice data

2. Investigating human voice adaptation to determine relevant features that can improve
robot voices in different ambient environments

3. Testing human perception to better understand how humans perceive robot voices, in
particular: (a) Comparing baseline TTS, adaptive TTS, voice conversion, and human
voices, (b) How humans perceive voice conversion as adaptive to the environment, and
(c) How humans perceive pitch in TTS against a common social environment

3.0.1 Human Contextual Vocal Modification

Most often human vocal modifications are for the purposes of creating "deliberately clear
speech," when the listener is experiencing reduced comprehension [10]. These modifications
may occur due to auditory hindrance, as is the case when a speaker is distant [33] or when
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in a noisy environment [33]. For example, one of the most well researched and understood
vocal phenomena is the Lombard effect [56]. The Lombard effect is an involuntary increase
in vocal effort, often due to the presence of background noise in order to gain clarity in
noisy environments [33]. Modifications may also be targeted to the listener, such as in speech
directed towards infants and children [11], hearing impaired [50], and machines [63]. In some
cases speech is not modified for clarity, but rather to communicate a specific intent, such
as politeness [12]. For example, modifications are made to get an infant’s attention not to
increase clarity [16]. Altogether, vocal modifications are produced with or without conscious
effort to elicit a specific auditory feature as a result of achieving the aforementioned goals.
Although it is well understood that humans produce these vocal phenomena in response
to social environments, the reproduction of these effects towards ambience in generative
speech is relatively new and sparsely studied.

3.0.2 Current State-of-the-Art Methods for Speech Generation

Text-to-Speech. As previously mentioned, TTS has become an inexpensive and efficient
means to create realistic voices for the purpose of simulating robotic behaviors [17, 101, 72].
Currently, state-of-the-art speech generation tools for TTS use signal processing algorithms
in order to reconstruct speech (e.g., vocoders). For example WaveNet, uses speech samples
to synthesize wave forms for speech reconstruction [88]. Tacotron, another popular method
of speech generation, uses spectrogram synthesis to reconstruct speech. Moreover, Tacotron-
GST’s synthesized speech has the capability to express basic emotions [90, 55, 91, 5]. Compa-
nies like Google2, Amazon3, and Microsoft4 all have their own variations of these vocoders.

Nevertheless, TTS has multiple shortcomings. Firstly, for many years the primary con-
cern for TTS was intelligibility; this resulted in voices being produced by the state-of-the-art
that can be mistaken for a human voice. TTS is also traditionally considered flat and in-
expressive. Although, TTS has become more expressive in recent years [55], features such
as rate-of-speech, are still manipulated linearly, extending vowels, words and pauses evenly
throughout an utterance [61]. Furthermore, TTS still does not have the ability to adapt
to both physical and social environments. This is primarily due to TTS being a rule-based
system and as such, as mentioned in chapter 1, is constrained by SSML. Although the
available features have broadened and include loudness, pitch, and rate-of-speech 5, it is
not clear whether this system of speech generation is sufficient for a robot to flexibly and
automatically adapt its voice to different ambiences.

2https://cloud.google.com/text-to-speech/
3https://aws.amazon.com/polly/
4https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
5https://cloud.google.com/text-to-speech/docs/ssml
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Voice Conversion. Voice conversion is a method whereby a source speaker’s speech
waveforms are adjusted to that of a target speaker [18], as such allowing for the modification
of source speaker’s auditory features to match that of a target speaker [108]. The traditional
method of voice conversion takes on a one-to-one approach, which involves using a single
target speaker and a single source speaker. This method has provided promising results,
using Deep Mind’s WaveNet vocoder in generating a personalized voice with independent
speakers [88]. In addition, the use of parallel data has also been the traditional norm, where
utterances and linguistic information must be identical between source and target speaker.
It, however, has become increasingly more popular to use non-parallel speech, which has
seen the establishment of useful benchmarks and protocols from Voice Conversion Challenge
(VCC) 2016 [88, 46]. Non-parallel speech allows for us to keep intact the underlying linguistic
information (e.g., words) of the source utterances without restricting the target data to be
the same duration and contain the same utterances as the source [36].

A popular method for voice conversion is to make use of statistical methods, such as the
commonly employed Gaussian Mixture Models (GMM) for parallel voice conversion tasks
[18]. With the recent advancements of deep learning models, specifically Generative Adver-
sarial Networks (GAN), non-parallel voice conversion has seen significant improvements. In
addition, there has been heightened attention to supplementing GANs with auto-encoders,
specifically variational auto-encoders (VAE) [88, 109, 88, 36]. Supplementing GANs with
VAEs has provided improvements in not only non-parallel voice conversion, but cross-lingual
voice conversion tasks [89]. For example, allowing the voice of an native-english source
speaker to have the same auditory speech features of a native-german target speaker. Given
the success of parametric statistical models it is also no surprise that utilizing vector quan-
tizations, such as Vector-Quantized Variational Autoencoders (VQ-VAE), has improved
voice conversion output. VQ-VAE’s have seen a rise in popularity for speech generation,
specifically voice conversion tasks, and have comparable results to state-of-the-art speech
generation tools, such as TacoTron [88, 107, 104]. Due to its success, voice conversion may
prove versatile enough to produce Generative speech that is adaptive to a surrounding
ambience.

3.0.3 Voices in Robotics

A recent survey of robotics research found that the vast majority choose robot voices by
convenience rather than considering contextual information to adjust auditory features [64].
This approach to voice generation can be problematic as it has been continually agreed
upon that first impressions with a robot will determine the course of the user experience
[97, 51, 100, 44]. Furthermore, several studies have shown that humans show preferences
for voice depending on context and task [98, 61, 61, 73, 39]. In [98], participants rated the
appropriateness of robotic speech given different contexts including schools, restaurants,
homes and hospitals. They found that even given the same physical appearance, participants
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selected varying voices depending on context and concluded that a robot voice created for
a specific context is likely not generalizable.

Some studies have suggested the incorporation of context based methods such as so-
ciophonetic inspired design [93] and acoustic-prosodic adaption to match user pitch [57].
Further research has also made an attempt to produce the Lombard effect, with research
relying on incremental adaptation of loudness given the distance and target user [26] or
the adjustment of volume based on environmental noise levels [32]. Although these meth-
ods have shown promising results, few are readily available for general use. Even curated
voices of state-of-the-art robots are not necessarily perceived as appropriate in all contexts
[98, 64]. As such, it is important to develop robotic voices that are context-specific, yet
readily available and generalizable.

3.1 Dataset

Due to the trying times of the global pandemic we have created a pioneering method of
virtual data collection using readily available tools that will allow researchers to collect data
with no physical human interaction. Our dataset contains speech utterances and extracted
vocal features from 12 participants.

3.1.1 Data Collection Protocol

During the pandemic, the ability to interact one-on-one in a public area became difficult,
and was prohibited by governmental restrictions in several countries across the world. As
such, it has become particularly difficult for researchers to conduct field studies involving
human participants. One of the novelties of the current study was how we overcame this
issue by devising a protocol mimicking a naturalistic environment over Zoom6.

Zoom is a teleconferencing service which allows individuals to communicate from any-
where in the world online using both face and audio. Using Zoom, we paired two participants
and had them listen to ambient sounds while conversing with one another in the roles of
a waiter and a restaurant-goer. There were a total of 6 ambient sounds and 1 additional
baseline measure that included no sound. The baseline condition was placed between a
randomly chosen pair of ambience conditions. This baseline condition was used to reduce
carry-over from the previous condition and obtain speakers baseline levels. In addition to
sound, participants were asked to change their Zoom background to an image that was
pre-selected to match the given ambience (see Figure 3.2). Between each ambient condition
there was a 1 minute period to update participants’ Zoom backgrounds and prepare for
the next condition serving as a washout to reduce carry-over effect from the previous con-
dition. Each ambience condition was further broken down into 2 subsets: (1) scripted and

6www.zoom.us

24



(2) unscripted; the assigned scripted roles were maintained for the unscripted condition.
The restaurant ambiences included: fine dining, café, lively restaurant, quiet bar, noisy bar,
and night club. The baseline condition was a bakery with no sound or image. The ambient
sounds can be listened to here7.

Scripted condition. Participants first read a brief summary of their character at a
specific restaurant. For example, in the fine dining condition the restaurant-goer was on
a date, while at the noisy bar the restaurant-goer was with a group of friends to watch
the Stanley Cup finals. Once each participant read the summary for their character, they
then read from a script that was slightly tailored for the given ambience; food and drink
choices matched what is usually offered at that given restaurant. Consistency amongst
scripts allowed for comparison of speech features across each condition. The differences
between scripts created a more realistic environment and reduced redundancy to maintain
participant attention.

Unscripted condition. Participants were then told to remain in character and proceed
with the initial scenario description of a waiter taking a customer’s order, but this time there
was no script to read. This allowed participants to be more authentic as they were free to
adapt other features to the ambience, such as their choice of words.

3.1.2 Dataset Demographics

The dataset consisted of 8 females and 4 males. There were a total of 1545 female utterances,
here defined as a single sentence, and 796 male utterances. We used only the female speakers
for the current study. Altogether there were 2341 clips ranging from 1 to 7 seconds. All
recruited participants were undergraduate students at Simon Fraser University who had
either a customer service background, experience in improv, or experience in theater.

3.1.3 Dataset Features

Clips were first converted to a monophonic channel and sampling frequency was set to
24000. We collected 10 features, which can be broken up into (1) loudness features, (2)
spectral features, including pitch, and (3) rate-of-speech features. Our toolbox for vocal
feature extraction can be found here.

Loudness Features

Humans have shown that they increase and project their voice in loud environments in
order to increase quality and sound clearer [56, 92, 75]. Increase of vocal intensity, often
leading to Lombard speech, is commonly employed in noisy environments [13]. As such, we
collected 3 loudness features: (a) mean intensity, (b) energy, (c) maximum intensity. Mean

7https://ehughson.github.io/ambiance.github.io/
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Figure 3.2: Left: Overview of data collection using Zoom: participants’ backgrounds and
shared audio match the current ambient condition. Right: Ambience voice adaptation ap-
proaches for a given ambience: (a) TTS Adaptation using temporal and pitch features, or
(b) Voice conversion for spectral features.
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intensity and energy features were calculated using the Praat 8 library via Parselmouth9,
a Python wrapper. Librosa 10 was used to extract the sound wave to calculate maximum
intensity (power) following the formula provided in Section 1.3.3. of [66].

Spectral Features

We expect that humans adapt spectral features in their voice to both social and ambience
specific contexts. For example, average pitch tends to increase with vocal effort [92], often
as a result of a loud environment or as a sign of politeness[12].

To investigate these expectations we collected 5 spectral features: (a) median pitch, (b)
pitch range, (c) shimmer, (d) jitter, and (e) spectral slope. Parselmouth was used to extract
(a)-(d). Median pitch and pitch range (the difference between the minimum and maximum
pitch in a given segment) are calculated in Hz after removing silences and obtaining pitch
values from voiced utterances. Local shimmer and local jitter, variations in the fundamental
frequency, are perceived as vocal fry and hoarseness. Spectral slope gives an indication of
the slope of the harmonic spectra. For instance a -12dB slope is typical for breathy voice,
and a -3dB slope is typical of richer vocal tones [40]. Spectral slope was calculated with the
use of Parselmouth and Librosa given the formula provided in section 3.3.6 of [52].

Rate-of-Speech Features

Research has pointed to the decrease in speaking rate when intelligibility becomes increas-
ingly important [47], for example, in loud environments. We also posit that formal speech
may be slower and clearer than informal speech. Subsequently, we collected 3 rate-of-speech
features: (a) voiced (silences removed) syllables per second (b) overall (silences are not
removed) syllables per second, and (c) pause rate. We employed syllables per second by
taking the ratio of number of syllables over the duration(s) for both the voiced and overall
utterances. We defined pause rate as the number of pauses, where a pause is defined as
a silence of at least 50 ms between words, over the duration of a entire utterance (both
voiced and overall components). Including the syllables per second for overall utterances
along with pause rate may provide information regarding length of pauses and how pauses
may impact the length of a utterance [61].

8http://www.praat.org/
9https://parselmouth.readthedocs.io/en/stable/

10https://librosa.org/doc/main/index.html
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3.2 Experimental Methods

3.2.1 Voice Conversion Implementation

CRANK is a voice conversion software that implements several variations of a VQ-VAE to
have a source speakers’ speech match that of a target speaker [46]. For the current project,
we used CRANK’s best performing model from [46], which is the Cycle VQ-VAE GAN
with Short Term Fourier Transform (STFT) loss with a speaker adversarial network and
discriminator. The VQ-VAE implementation was a hierarchical implementation, similar to
that of DeepMind’s WaveNet architecture. The Cycle VQ-VAE GAN is a least squares GAN
(LSGAN) with a cyclic VQ-VAE. 400,000 training epochs were performed and the adver-
sarial training for the discriminator was initiated at 200,000 epochs. In addition, training
settings provided in "mlfb_vqvae_24000.yml" and "default.yml" contained in CRANK’s
template folder were used. Input features provided for CRANK are MLFB, pitch, aperi-
odicity and spectrum input [46]. CRANK also uses training speakers for evaluation and
development, called a speaker-closed condition. A pretrained vocoder for speech reconstruc-
tion was trained on the LJ speech dataset [41], which contains entirely female speakers, and
is implemented using the Parallel WaveGAN vocoder repository [105].

3.2.2 Pipeline

Our experimental pipeline can be found in Figure 3.2. We tested several data-driven ap-
proaches, including (1) TTS Adaptation based on speech rate, loudness, pause length and
pitch, and (2) Voice Conversion, first setting the TTS speech rate, loudness, and pause
length, then adjusting the voice’s spectral components using voice conversion.

TTS Adaptation Approach

Our TTS samples used for the perception study contained 6 TTS voices selected from a
set of 9 samples. We generated these samples using Google TTS 11, which allows for the
overall manipulation of (a) loudness, (b) rate-of-speech, and (c) pitch. The first sample
was a baseline TTS, which has no alterations of the stated SSML elements (TTS-bl). The
next sample was a set of 6 TTS voices that were generated by setting the SSML elements
to the average features of all female speakers for each ambience (TTS-avg). Finally, two
TTS samples (TTS-low and TTS-high) were generated with matching loudness and rate-of-
speech elements of TTS-avg but differing levels of the pitch. TTS-low had the pitch element
set to one specific speakers’ pitch, a female undergraduate student from our dataset (714).
TTS-low’s pitch sat between the pitch of TTS-bl and TTS-avg. TTS-high’s pitch element
was set to pitch(TTS-avg) + (pitch(TTS-avg) − pitch(TTS-low)). We narrowed in on pitch

11https://cloud.google.com/text-to-speech/
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alteration as the literature has focused more on loudness and rate-of-speech in different
contexts (e.g., Lombard speech). The utterance used for all perception experiments was,
"Hi there, I hope you are doing well".

Voice Conversion Approach

Our voice conversion approach involved two main steps: temporal adjustment, followed
by spectral adjustment. The initial procedures involved separating the human speakers by
speaker ID then further separating each speaker’s clips into each of the 6 ambience conditions
(speaker-ambience sample). Speaker-ambience training batches contained between 16 to 41
utterances. This was in line with the dataset setup used to train CRANK’s cycle VQ-VAE
GAN [46]. This allows speakers to be independent of one another and to demonstrate a
given ambience’s effect on voice conversion at an individual level. Here, we use TTS as
the source speaker, and all female speaker-ambience samples in our dataset as the target
speakers.

Temporal Adjustment. Initially, TTS-avg was selected as the source speaker. How-
ever, given the perceptually significant differences in voice characteristics (e.g. natural pitch)
between subjects, it was deemed more appropriate to manipulate the source speaker TTS
to match that of a individual speaker. As such, we used the features of speaker 714 to gen-
erate our source speaker training samples (TTS-714). The ambience specific pre-processing
of TTS-714 was integral to the project as voice conversion software primarily uses hu-
man speech utterances as source speakers, whereas we are using a generated robot voice.
CRANK’s Cycle VQ-VAE GAN [46] primarily adjusts spectral features, therefore, non-
spectral features (i.e., loudness, rate-of-speech and pause rate) were added before the voice
conversion process. This resulted in 211 temporally adjusted TTS-714 clips containing
speech utterances of the scripted portions for both waiter and restaurant-goer roles for
each ambience condition.

Spectral Adjustment. We used TTS-714 clips, alongside all female speaker voice clips
to train CRANK’s Cycle VQ-VAE GAN model for each ambience. Because we used a non-
parallel model we were able to use unscripted data, which is not present in the TTS samples,
as a target. This means that utterances can be generated that have never been heard by
the trained model before, further adding socially and contextually appropriate data to our
speaker-ambience training batches. Finally, the waiter utterances for our source TTS were
held out of training to be used as evaluation samples. We then used 6 generated audio
samples, 1 for each ambience, for the perception study. Generated samples where the target
was speaker 714 was used for the perception study.

Post-processing. Voice conversion using CRANK resulted in samples that were slowed
down significantly compared to the original source and target speakers’ rate-of-speech. This
appeared to be due to the presence of TTS voices, as the slowed down effect was not as
extreme in human-to-human voice conversion samples. As such, the audio samples generated
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from our voice conversion approach were sped up using Audacity’s tempo change function,
which maintains spectral envelope and pitch, to match the rate-of-speech of the original
human speaker, 714. In addition, the TTS samples and voice conversion samples were set to
-10.0 dBFS as to be normalized against the background sound to compare the voice quality
and rate-of-speech only.

3.2.3 Perception Study

The perception study leveraged Mechanical Turk and Survey Monkey with 25 Canadian
participants who were fluent English speakers, with 100 Human Intelligence Tasks (HITs)
completed with a 98% acceptance rate. There were 4 research questions explored:

1. How do generated voices compare to human voices within ambiences? (3a of research
goals)

2. How are voice conversion generated voices perceived in context? (3b of research goals)

3. How are voice conversion generated voices perceived when paired with the incorrect
ambience? (3b of research goals)

4. How does a data-driven pitch manipulation for TTS impact human perception? (3c
of research goals)

Listeners were first asked to use headphones and calibrate their audio. Next for each
of the above research questions participants were told the provided audio sample was the
voice of Pepper the robot, who was about to take their order at one of the 6 given ambience
locations. They were given the same scenario description provided during dataset collection.
For example, "You are a customer dining at the city’s fanciest restaurant. The atmosphere is
warm, the music is slow and romantic, and the lights are dimmed. You have waited months
to take your date out to this particular restaurant. In hopes to impress your date you wish
to get the duck, the restaurants staple item. Pepper, the robot, is going to take your order."

After listening to Peppers’ voice over the background sound, participants were asked
to respond to 7 statements using a 7-point likert-scale ranging from 1 (strong disagree) to
7 (strongly agree). The following were the statements provided: (1) Pepper’s voice sounds
socially appropriate for the scene (Figure 3.1), (2) Pepper’s voice sounds robotic, (3) Pepper
is aware of the surrounding ambience, (4) Pepper makes me feel comfortable, (5) Pepper
makes me feel like I am in the given ambience location, (6) Pepper is too loud, and (7)
Pepper is too quiet.
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Figure 3.3: Radar graphs showing the differences amongst collected features across all female
speakers in our dataset. The dotted circle represents the baseline ambience for all features.
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Table 3.1: Summary of statistical results of all features using a rANOVA.

3.3 Results

3.3.1 Trends in Collected Data

A subset of the overall dataset is displayed in Figure 3.3. These radar plots illustrate various
features present in different ambient social environments in our underlying dataset. The
dotted circle indicates average baseline features. They are based on the polarity of the two
chosen ambient conditions. For example, the first radar plot shows the differences between
two ambiences at a similar noise level but with differing social environments (i.e., fine
dining (formal) and café (casual)). Loudness related features, in this condition, appear to
be similar and occur at low levels. Indicating that these two ambiences appear to be on the
more quieter side, which is unsurprising as both these ambiences are quiet at -34 dBFS and
-42 dBFS, respectively. Spectral features appear notably different. Pitch range and median
pitch are increased for the café ambience, while jitter and shimmer are increased for the
fine dining ambience. Therefore, suggesting that in the casual setting of a café, a wider
pitch range and higher median pitch may be preferred. Although spectral features, such as
shimmer and pitch range, increased in the fine dining ambience, median pitch did not. This
is surprising as a increase in median pitch was expected from a formal context not a casual
one [12].

For the second radar graph, two similarly loud ambiences were compared. Participants
experienced a bright, lively restaurant ambience with family-style polka music and trumpet
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Table 3.2: Summary of statistical results of significant features using a Post-Hoc Tukey Test.
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(140 BPM; -15 dBFS) or a dark night club with electronic music (125 BPM; -8 dBFS). As
expected with Lombard speech, both ambiences had a increase in median pitch and lower
than baseline pitch range, however, the pitch range for the lively restaurant was slightly
higher. It is possible that the joyful music in the lively restaurant with a large pitch range
may have induced synchrony in vocal pitch patterns compared to the monotonous electronic
beat. Shimmer, another feature representative of Lombard speech through hoarseness, ap-
pears to be more pronounced in the night club than the lively restaurant, perhaps another
effect of joyful music. Lastly, rate-of-speech appeared notably different between conditions.
There was an increase in overall speech rate and pause rate for the lively restaurant. The
voiced speech rate, however, appeared similar for both night club and lively restaurant,
indicating that pauses may play a role in differentiating the two conditions in-terms of
rate-of-speech.

The last radar plot shows the differences between the noisy bar and quiet bar with a
background ambiences of -21 dBFS and -31 dBFS, respectively. Features associated with
Lombard speech are present in the noisy ambience, including an increase in energy, shimmer,
median pitch and intensity with a decreased pitch range. Whereas the quiet bar had a
increase in spectral slope, pitch range and voiced and overall speech rate.

Statistical Tests

The data for this study was collected as a repeated measures experiment. Six treatments
and a baseline were present; each of the ambiences were applied to each of the study par-
ticipants. Each pair of study participants were independent, however, within the pair of
waiter and restaurant-goer we do not have independence as synchrony and mimicking is
expected to occur. There was no randomization on the order of ambience, that is, the am-
biences were applied in the same order for each experiment. As such, it is important to
note that, in the future, it would be beneficial to increase the number of participants and
complete a full Latin Square Design to better understand carry over effect. We completed
a repeated measures ANOVA (rANOVA) for each of the extracted voice features. Due to
the small sample size of participants and lack of randomization it is difficult to draw formal
conclusions. Nevertheless, we suggest features, shown in Table 3.1, that may prove useful
and warrant further investigation. Post-hoc results, using a pairwise t-test of the features
that found significance in the rANOVA are shown in Table 3.2. In addition, the following
will also showcase results that were significant at a threshold of α = 0.1. Although this
threshold is not considered community standard we want to highlight trends in the data
and possible room for investigation for the future which could have been impacted by small
dataset size.

Energy (F(5,35) = 9.97, p < .001), spectral slope (F(5,35) = 9.43, p < .001),Pause rate
(F(5, 35)=4.93, p < .01), max (F(5,35) = 12.47, p < .001) and mean (F(5,35) = 15.78, p
< .001) intensity were all significant. Median pitch (F(5, 35) = 2.37, p = 0.06) was also
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Figure 3.4: Summary of one-way ANOVA for RQ1 of the Fine Dining Ambience

significant at a threshold of α = .1. Pitch range (F(5, 35) = .96, p = 0.46), shimmer (F(5, 35)
= 1.36, p = .26), jitter (F(5, 35) = 1.01, p = .42), and voiced rate-of-speech (F(5, 35)=1.61,
p = .18) and unvoiced rate-of-speech (F(5, 35) = 1.93, p = .12) were not significant.

For energy, a pairwise t-test for the pairs quiet bar and noisy bar,p < .001, and fine
dining and lively restaurant ,p < .05, remained statistically significant when adjusted. Lively
restaurant and quiet bar restaurant was significant, p < .1, at a threshold of α = .1 after
adjustment. However, when not adjusted, a pairwise t-test for lively restaurant and quiet
bar restaurant ,p < .01, was significant.

A pairwise t-test for spectral slope showed two ambience pairings (fine dining and lively
restaurant; quiet bar and night club) as significant, p < .1, after adjustment. A pairwise
t-test for pause rate was significant for lively restaurant and quiet bar ,p < .01, however,
this significance disappeared when the p-value was adjusted ,p = .12.

Both mean and max intensity showed the most statistical significance across ambiences
post-hoc. For mean intensity, the pairs lively restaurant and quiet bar, p < .01, and quiet
bar and noisy bar, p < .01, were the only ones statistically significant after adjustment. The
remaining pairs, noted in Table 3.2, were significant at a threshold of α = .1. All pairs for
max intensity were statistically significant, p < .1, after adjustment at a threshold of α =
.1.
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Figure 3.5: Summary of one-way ANOVA for RQ1 of the Night Club Ambience

3.3.2 Perception Study Results

RQ1: How do generated voices compare to human voices within ambiences?

Both Tables 3.3 and 3.4 contain summary information of a one-way ANOVA comparing the
average perceptions scores of TTS-avg, TTS-bl, our voice conversion approach and human
voice. The mentioned voices samples were rated by participants for the fine dining and night
club ambiences, which were chosen due to their polarity in formality and loudness.

For the fine dining ambience, there was statistical significance for statement 1 (appro-
priateness; F(3, 95)=12.63, p < .001), statement 2 (comfort; F(3, 96) = 14.47, p < .001),
statement 3 (awareness; F(3, 96) = 4.25, p < .01), and statement 4 (ambience feeling; F(3,
96) = 7.29, p < .001). For appropriateness and comfort, a post-hoc tukey test showed that
the Human voice was significantly different to voice conversion, p < .001, and TTS-bl, p <

.001. Comparing TTS-avg to the human voice, there was more significance in comfort, p <

.001, compared to appropriateness, p < .01. For awareness, the human voice differed sig-
nificantly with only TTS-avg, p < .05, and voice conversion, p < .01. Finally, for ambience
feeling, the human voice was the most significantly different from the voice conversion, p <

.001, followed by TTS-avg, p < .01, and TTS-bl p < .01.
The night club ambience was statistically significant for all of appropriateness (F (3,

96)=20.85, p < .001), comfort (F(3, 96)=21.86, p < .001), and awareness (F(3, 95)=15.48,
p < .001). There was no significance for ambience feeling, (F (3, 95)=1.43, p = 0.239). For
appropriateness, comfort, and awareness, using a post-hoc tukey test, the human voice was
significantly different from TTS-avg, p < .001, and TTS-avg significantly differed from voice
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Table 3.3: Summary of Post-Hoc Tukey Test for RQ1 of the Fine Dining Ambience
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Table 3.4: Summary of Post-Hoc Tukey Test for RQ1 of the Night Club Ambience
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Figure 3.6: RQ1: Comparison of the perceptual rates of four voice types for fine dining (left
two) and night club (right two)

conversion, p < .001, for all three statements. TTS-avg significantly differed from TTS-bl,
p < .001, for appropriateness and comfort, while voice conversion significantly differed from
TTS-bl, p < .001, for awareness. In addition, TTS-bl was slightly less significantly differ-
ent from voice conversion, p < .05, for appropriateness, and was slightly less significantly
different from TTS-bl, p < .05, for awareness. Overall, the voice conversion voice was rated
the lowest for appropriateness, awareness, and comfort, followed by the TTS-bl, which was
ranked as sounding the most robotic in both ambiences. Additionally, all generated voices
were ranked noticeably lower than the human voice (see Figure 3.6). This indicates that a
human voice, confirmed with the aforementioned one-way ANOVA and post-hoc tukey test
results, is more comforting and socially appropriate for the ambiences.

RQ2: How are voice conversion generated voices perceived in context?

Figure 3.7: RQ2: Perception study comparing adapted voice conversion voices against each
of the ambience conditions

Our 6 voice conversion samples for each of the 6 ambiences were assessed (see Figure
3.7). It is important to note, that we did not compare voice conversion samples together
as that was not the goal of RQ2. The quiet bar, noisy bar and night club were rated the
highest for appropriateness, awareness, comfort and ambience feeling. This indicates the
Pepper with voice conversion was socially and contextually appropriate and comforting in
conditions that required a Lombard effect. The fine dining condition was deemed to be
the least socially appropriate, least comfortable and most robotic. The lively restaurant
condition was rated the lowest for awareness and ambience feeling.
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Figure 3.8: RQ 4: A comparison of perceptual rate in four voice types

RQ3: How are voice conversion generated voices perceived when paired with
the incorrect ambience?

Three components were tested: (1) voice conversion sample for café overlaid on background
sound for fine dining, (2) voice conversion sample for fine dining overlaid on background
sound for café, and (3) voice conversion sample for night club overlaid on background
sound for fine dining. Component (1) resulted in a boost for statements on appropriateness,
awareness, comfort and ambience feeling compared to being overlaid with their respective
matching ambiences in RQ2. Component (2) also resulted in improvements compared to
their respective correct pairings. However, (2) was rated higher than (1). This indicates that
the fine dining voice may have been more suited for the café. It is important to note that
the fine dining condition was always first and so it may have taken time for participants
to adjust to the experiment protocol. Appropriateness, awareness, comfort and ambience
feeling were rated the lowest for (3). This result suggests that a voice suited for a loud
social environment does not suit a quiet formal restaurant. In addition, ratings for (3) were
similar to ratings for the fine dining condition in RQ2, where the voice was paired with the
correct ambience.

Using a Welch’s t-test, component (1) compared to the fine dining condition in RQ2
resulted in non-significance for appropriateness (t(0.72) = 47.84, p = .48), awareness (t(1.48)
= 47.92 , p = .15), comfort (t(1.74) = 47.89, p = .09), and ambience feeling (t(1.08) =
47.74, p = .28); component (2) compared to the café condition in RQ2 resulted in non-
significance for appropriateness (t(1.26) = 45.60, p = .22), awareness (t(1.09) = 47.95 ,
p = .28), comfort (t(1.75) = 47.99, p = .09), ambience feeling (t(1.29) = 47.47, p = .20);
component (3) compared to the fine dining condition in RQ2 resulted in non-significance for
appropriateness (t(0.47) = 48.00, p = .64), awareness (t(-0.58) = 47.82 , p = .56), comfort
(t(0.85) = 48.00, p = .40), and ambience feeling (t(0.00) = 47.29, p = 1.0).
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RQ4: How does perception of a data-driven pitch manipulation for TTS compare
to one randomly selected?

Finally, TTS-bl, TTS-avg, TTS-low, and TTS-high were overlaid on the café background
sound and compared. The TTS-bl was rated the lowest for appropriateness, awareness,
comfort and ambience feeling. TTS-bl was deemed to be the most robotic sounding, which
could contribute to why it had low ratings in other categories. The results (as shown in
Figure 3.8) indicate that the human pitched TTS (TTS-low) was deemed more socially and
contextually appropriate, as well as comforting, rating highest on appropriateness, comfort
and ambience feeling, and rated as least robotic sounding. TTS-high condition was rated
second highest for awareness, followed by TTS-low. Altogether, using a data-driven method
to alter pitch demonstrates that humans prefer pitch that matched one specific human’s
pitch and when that pitch matched the current ambient environment. For RQ4, there was
no statistical significance for appropriateness (F (3, 96) = 2.01, p = .12), comfort (F(3, 96)
= 1.50, p = .22), awareness (F(3, 96) = 0.30, p = .83), and ambience feeling (F (3, 96) =
1.86, p = .14), using a one-way ANOVA.
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Chapter 4

Summary and Future Work

From humans’ emotion expression cross-culturally to adaptation to different ambiences, a
spectrum of different social environments was explored. The following two sections (sections
4.1 and 4.2) will go over the implications presented by both studies. Major findings are
highlighted and a discussion of limitations and future studies will be presented in sections
4.4 and 4.5.

4.1 Summary of Culture and Negative Emotion Expression
Recognition

Fundamentally, study 1 aimed to understand data that is used to train emotion expression
recognition models as culture is currently being treated equally in state-of-the-art emotion
expression recognition systems. Underlying differences in our cross-cultural dataset, which
focused on negative emotion expressions, are identified. In recent years, it has become
crucially important to recognize the impact culture has on developing rules to express
oneself [9]. Therefore, to increase emotion expression recognition performance, one must
consider culture. Our first hypothesis in this study was supported using a one-way ANOVA
to illustrate that each culture in our dataset had significantly different means of activation
for AUs related to CAD. As we saw from Figure 2.6, the level of activation for AUs associated
with a given emotion significantly differed for each culture. In particular, AUs related to
the upper half of the face, such as AU4 (brow lowerer), significantly differed. Several AUs
mentioned for each emotion significantly differed cross-culturally, while AUs prototypical to
contempt and disgust were similar cross-culturally. AU9 (nose wrinkler) did not significantly
differ between Persian and Filipino, and AU10 (upper lip raiser) did not significantly differ
between North American and Filipino datasets. AU10 demonstrates a sneer, which is a
social signal commonly attributed to contempt [62], whereas AU9 demonstrates a wrinkling
of the nose, which occurs in displays of disgust [86, 81]. In addition, AU4 (brow lowerer),
which is common among most negative emotions, did not significantly differ for disgust
between the Filipino and North American datasets [81].
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The second hypothesis of study 1, which was that machine learning models perform
poorly if all cultures are considered equal, was only partially supported. The results of the
SVM showed that the North American culture category performed the best on training
and testing in the within-culture experiment compared to the cross-culture experiment.
However, the collectivist cultures had the best recognition accuracy when testing on the
North American dataset. Therefore, the cross-culture experiment performed better than
the within-culture experiment for the collectivist datasets. As previously mentioned, several
studies have hinted at the suppression of negative emotions in collectivist cultures [22, 20,
21]. Thus the results could indicate that individualistic cultures allow emotion expression
recognition systems to be more sensitive to emotion expressions as these cultures encourage
an increase in activation of AUs. If collectivist cultures suppress their emotions this could
indicate that the North American dataset provided stronger training and testing boundaries,
giving a better testing dataset for the collectivist cultures.

In addition, contempt and disgust were commonly confused with anger for the Persian
dataset. One study by [21] found that for both contempt and anger, activation of facial
muscles occurred similarly cross-culturally, whereas, for disgust, activation of facial muscles
differed. The differences noted by [21] could explain why there was confusion with anger, as
some similarities exist in AU activation across all three negative emotions, or that features
were missing that were not present in the Persian dataset, such as hand gestures.

In the Filipino culture dataset, anger was commonly confused with contempt, indicating
similarities between the two emotions in terms of AUs. In addition, disgust was frequently
confused with anger, also suggesting that AUs expressed are similar. Once again, how-
ever, this confusion could indicate features missing from the Filipino dataset that could
be crucial for emotion expression recognition. The study by [21] also attributed that cer-
tain cultures depicted weaker expressions of disgust, leading to confusion with cultures that
showed stronger depictions of disgust. As such, weaker displays of disgust could be why col-
lectivist cultures’ performance in both experiments was low compared to the within-culture
experiment of the North American dataset.

Most interesting were the results obtained from the overall within-culture experiment.
As culture became more collectivist, performance accuracy decreased, resulting in poorer
recognition. Social signals related to the CAD Triad may slowly overlap and become similar.
As mentioned, collectivist cultures tend to encourage the suppression of negative emotions
to maintain harmony. Stemming from environmental factors, collectivist cultures, such as
Filipino and other East Asian and Southeast Asian cultures, encourage low arousal (or
activation) of social signals [54, 82]. Therefore, enhancing the idea that collectivist cultures
do not display emotions the same as individualistic cultures. Consequently, the CAD Triad
may either have low levels of activation or the AUs associated with the CAD Triad become
similar due to suppression of social signals.
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Together, the experiments show that the level of AU activation is different for each cul-
ture in our dataset. Even though the same AUs might have been present in all cultures, this
difference in AU activation supports the idea that the underlying components of negative
emotional expressions are not universal. Therefore, to train emotion expression recogni-
tion systems we must consider culture to remove bias in the dataset and potentially boost
performance.

Explanatory power of selected facial action units. The confusion matrices in
Figures 2.8, 2.9, 2.10, and 2.11 illustrate the limitations of the SVM model with the proposed
feature set, specifically for both the Filipino and Persian datasets. As previously mentioned,
most disgust samples for the Filipino dataset were confused with anger. Upon qualitative
review, AU4 (brow lowerer) was a frequently occurring AU between Filipino anger and
disgust. In addition, Filipino disgust also included an aversive gaze away (AU 51 or AU 52)
which was not present in the study. As such, adding gaze-related action units may improve
the distinction between Filipino disgust and other emotions. Furthermore, a distinctive
feature of prototypical and North American disgust is AU9 (nose wrinkler), but this was
not present in Filipino disgust. A likely explanation was that the North American clips
contained more reality TV depictions of physical disgust (e.g. reactions to aversive food),
whereas Persian and Filipino clips had more moral disgust towards a person. This points
to the importance of distinguishing subtypes of disgust when performing in-the-wild data
collection.

Secondly, Persian anger was often mistaken for contempt in the SVM experiment, and
this confusion, is supported by anger and contempt’s similar AU activations as shown in
Figure 2.6. Qualitative interviews with a Persian annotator suggested that hand gesturing
is an important social signal during these social displays, indicating that the speaker is
referring to another person. Therefore, adding body poses or hand gestures is expected to
improve performance.

The relationship between kappa values and classification. As previously men-
tioned, the North American dataset had the highest agreement amongst annotators with
a Fleiss Kappa value of 0.83. Both Persian and Filipino datasets had a much lower agree-
ment, with Filipino having the lowest at 0.40 and Persian with 0.59. Furthermore, in terms
of within culture classification accuracy, North American (66%) had the highest, followed
by Filipino (39%) and then Persian (37%). Although not linear, the less agreement in the
dataset led to lower accuracy in classification. One reason for this low accuracy might be
the suppression of social signals in the collectivist groups. As previously mentioned by
[25], [82] and [37], collectivist cultures suppress their negative emotions more to maintain
harmony. Therefore, collectivist cultures’ expression of negative emotions can look vastly
different from the stereotypical North American display. This is also demonstrated in Fig-
ure 2.6, which depicts the suppression of commonly seen AUs in collectivist cultures. As
such, suppression of AUs might also explain the lower agreement amongst annotators for
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the collectivist cultures. If collectivist cultures suppress commonly associated AUs, then
it becomes increasingly difficult to decipher what differences do exist between emotions in
these cultures

In summary, facial expressions, commonly considered under a common view (or basic
emotion approach), have been the focus of many studies. The aforementioned approach
results in relatively high accuracy for North American samples. However, our results sug-
gest more investigation into non-facial features, which could improve recognition of CAD
emotions in non-Western cultures. In addition, rather than considering social signals as sup-
pressed for collectivist cultures, it could be that facial features are not enough; important
distinguishing information is communicated through other channels, such as body pose and
gesture as discussed here, voice [96] and context [45], and so on.

4.2 Summary of Ambient Adaptive Speech Generation

Study 2 provided a novel protocol to collect data online to gain insight into the human voice
adaptation to different ambient environments. Human perception of generated voices using
a data-driven approach was also explored. In addition, significant and notable features from
eight female speakers were provided. Potential features that require further exploration
are rate-of-speech, energy, max intensity, mean intensity, pause rate, spectral slope, and
mean pitch. More nuanced features, such as jitter and shimmer, did not show significance
statistically but do indicate a trend in the formal vs. casual ambiences in the first radar
plot (Figure 3.3). Therefore, these two features could be further explored and may prove
significant with a larger dataset. Furthermore, differences in pitch range and median pitch
for the casual vs formal ambience suggested that more casual speech had an increase in
spectral features, similar to Lombard speech [56, 75]. This is surprising as it was expected
that in a formal setting, where politeness is at the forefront of social interactions, the median
pitch would increase [12].

Some results in the second radar plot (Figure 3.3) indicated a level of synchrony to the
background ambience. This synchrony could suggest the development of rapport between
two participants as they want to adapt correctly and coincide in the same ambience [70].
Another avenue to investigate is the level of white noise, which may be perceived as higher in
the night club, thus impacting the night club’s effect on spectral features, such as pitch range.
Moreover, the difference in rate-of-speech in the lively restaurant compared to the night club
may be due to the pause rate, which was higher in the lively restaurant. More specifically,
more pauses that were longer than 50 ms were present in the overall utterance of the lively
restaurant. An increase in pauses could indicate that more breaks in-between words or
phrases occurred. As such, pauses could play an important role in ambience adaptation,
further suggesting that we need to develop TTS voices that can slow down by extending
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pauses in a meaningful way, instead of slowing down the length of the overall utterance
linearly [61].

For the third radar plot, the noisy bar appeared to show a Lombard effect, while the
quiet bar showed an increase in rate-of-speech features. These results suggest that speakers
provided more vocal effort to communicate in the noisy bar. In addition, for the quiet
bar, intelligibility was not at the forefront of communication compared to the noisy bar,
where communication was impaired with the louder background [40]. In other words, a more
breathier voice was present in the quieter ambience, indicating that voice quality was not
as important in the quiet bar as it was in the noisy bar[95, 31, 48]. Furthermore, due to the
increase in rate-of-speech, spectral slope, and pitch range, the quiet bar may have induced an
increased liveliness for this ambience [35]. Therefore, clusters of features should be explored,
as this could indicate what specific features together result in an appropriate voice for a given
ambience. For example, in the quiet bar ambience the increase in mentioned features could
suggest these features together may be more appropriate for such an ambience, compared
to a noisy bar, which had an increase in a different subset of features. It is important to
note that shimmer, jitter, spectral slope, and energy, which combined with pitch and pitch
range, impact overall voice quality [95, 31, 48, 56]. Using a rANOVA and a pair-wise t-test,
we found that features, such as spectral slope and energy, do have a significant difference
amongst ambiences. From these results, we can see that features related to voice quality
assist in human voice adaptation for the ambiences. However, SSML for TTS does not
have these features and as such, given the significance, should be added to the roster of
modifications as they do assist in adaptation.

RQ1: how do generated voices compare to human voices within ambiences?
One main takeaway from the results of RQ1 is that humans prefer a human voice that
matches the social and ambient context. The TTS voice samples had significantly lower
ratings than the human voice on appropriateness, comfort, awareness, and ambience feeling
in study 2. This preference has arisen in other studies, suggesting that when interacting
socially with a robot, a human voice is preferred [49]. On the other hand, others have
suggested that humans favour robot companions that sound less human and more robotic,
however, our study did not show support for this [98]. The voice conversion samples received
the lowest ratings, but the night club ambience had less variability and higher ratings
than the fine dining ambience in both appropriateness and comfort (Figure 3.6). Indicating
that the ambience appeared to influence how we perceived a given voice. It is clear that
since a human voice outperformed TTS there is still room to improve for current state-
of-the-art generated voices. Although there was a preference for human voices, we saw
that participants favoured TTS which is data-driven and altered to match the underlying
ambient environment for the average of female speakers.

RQ2: How are voice conversion generated voices perceived in context? As
voice conversion is a flexible and adaptive solution for speech generation, it shows promise,
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as voice conversion ratings were noticeably different between quiet and loud ambiences as
described by perceivers in RQ2. Specifically, it appeared that the ambiences that encourage
Lombard speech (i.e., lively restaurant, noisy bar, and night club) had the highest ratings
for the voice conversion [56, 75]. Qualitatively, some of our voice conversion samples had
a Lombard effect, as it sounded like someone raising their voice and providing more vocal
effort to be heard. Although the quiet bar was deemed to be a quieter ambience, it had a
social environment that was similar to the noisy bar. Potentially due to the similarity in
social environment, the quiet bar was still rated highly amongst the other voice conversion
samples. The low rating for voice conversion samples present in RQ1 is most likely due
to the low-quality samples generated by CRANK, which may indicate that more audio
samples are required for each speaker-ambience training batch. It also might have to do
with perceptual clarity experienced by the perceivers. In other words, since the CRANK
output was not as clear as the TTS, it was rated poorly. Furthermore, it could be a result
of the lack of significance amongst spectral features noted in the statistical tests in section
3.4.1. Thus, CRANK would not have been able to pick up on the differences in spectral
features amongst ambiences because there are no meaningful differences.

RQ3: How are voice conversion generated voices perceived when paired with
the incorrect ambience? For RQ3, the voice conversion for the fine dining seemed to
be more appropriate for the café ambience. This signifies that a slower rate-of-speech is
more appropriate for a casual setting. This goes against our hypothesis that a fine dining
ambience would require a slower speech rate to induce politeness compared to a more
casual setting where politeness is normally not as important [12]. Ratings for component
(3) indicated that a voice with speech features required for Lombard speech would not suit
a fine dining ambience [56, 75]. This highlights that a voice suited for a loud ambience is
deemed inappropriate for a fine dining restaurant.

RQ4: How does a data-driven pitch manipulation for TTS impact human
perception? Although human perceivers prefer the human voice, in RQ1, they also favour
a TTS that has pitch altered. As shown in both RQ1 and RQ4, when the pitch is altered to
match an ambience it is deemed more favourable than a vanilla TTS (TTS-bl), which has
no alterations. More specifically, TTS-low, which used the pitch of a single person (speaker
714) for a given context in RQ4, was consistently rated high for appropriateness, comfort,
and ambience feeling. The higher ratings indicate that perceivers prefer a TTS voice that
is altered to match a single person. These results also add support that an adaptive TTS,
that uses data-driven methods, is preferable for ambience-specific generated speech.

It is important to note, that our voice conversion approach was trained with approxi-
mately 16 to 41 utterances for each speaker-ambience training batch, compared to the 80
utterances used in [46]. Therefore, since it was able to generate perceivable voices on such a
small dataset, it is expected that the quality will improve as the dataset increases. This also
provides promise that voices built for robots do not require as much data. As such, instead
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of recording hours (or days) worth of data of a single speaker in different ambiences from
companies that custom build expressive voices, it may prove useful to just use one hour of
data of a single speaker. However, this relates specifically to voice conversion and may not
carry over into other speech generation techniques, like TacoTron [90, 55, 91, 5].

4.3 Limitations

There were six main limitations from both studies.
Data Collection Methods. The first such limitation is that, while the data from

study 1 was collected as "in-the-wild" outside of a laboratory using internet sources, analysis
revealed that the data contained both professionally acted material (e.g. scripted TV) and
spontaneous material (e.g. reality TV). A majority of the clips from the North American
dataset contained in-the-wild facial expressions collected from North American YouTube
accounts which were "vlog" style content, reality television shows (e.g., Dance Moms), and
talk shows (e.g., The Late Late show with James Corden). The Persian and Filipino datasets
primarily contained data from YouTube accounts sharing clips from popular TV shows and
movies from that area of the world. Furthermore, according to our Persian confederate,
reality TV shows are uncommon in their culture. The result could point to the importance of
distinguishing between in-the-wild acted vs. in-the-wild spontaneous videos, which currently
is not considered during data collection in affective computing datasets. Consequently, we
plan on diversifying the collectivist datasets with more realistic in-the-wild depictions in
the future. Overall, study 1, attempted to move past solely acted depictions of Western
expressions of contempt, anger and disgust, and this was achieved in this dataset. For study
2, on the other hand, the data was lab controlled, even though it was collected over Zoom
outside of a physical laboratory setting. We tried to create a more authentic experience
with the unscripted portion but it followed the scripted portion of the protocol giving way
for influence in response and behaviour. As such, the data collected in this protocol might
deviate from how one truly adapts to different ambiences in real life. Future studies would
need to attempt to physically go to ambience locations, with the goal of not only collecting
spontaneous in-the-wild data, but also improving the way one collects audio as to get the
same quality as the zoom recorded clips.

Dataset Size. In addition to the type of data collected, the datasets in general were
relatively small in both study 1 and 2. For study 1, each culture category had between
74 to 105 video clips, this amount was further reduced for each culture when considering
each emotion separately. Although the data distribution for each emotion was similar for all
cultures, more data could have increased the accuracy and f1-scores for each experiment.
This is especially so for the Filipino dataset which not only performed the worst in both
experiments but also had the fewest amount of overall video clips. In addition to the dis-
crepancy of culture specific dataset size, the overall accuracy was low. The current study
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only had 257 available video clips, which is relatively small. Other studies have used more
advanced classification techniques to tackle the issue of small datasets. For example, [59]
used XGBoost to classify 1323 video clips of to classify 6 different emotions. They found
that XGBoost outperformed other classification methods, including an SVM. Future studies
will explore the use of XGBoost in addition to increasing dataset size in order to improve
overall classification performance. For study 2, there were only 8 female speakers with ap-
proximately 16 to 41 utterances per training batch (ambience-speaker pairing). CRANK
was originally trained on 85 utterances for each speaker, which is double the amount used
for study 2 [46]. Therefore, an increase in the amount of utterance per training batch would
prove useful and may improve overall quality of the voice conversion samples. Furthermore,
only 25 participants responded to the perception study on Mechanical Turk. As such, it was
hard to gauge how significant the differences in responses were for each of the conditions in
the survey. Future studies will require more participants to complete the perception study.
This will allow for a clear indication of the overall trends occurring in human perception of
generated voices with their respective ambience.

Annotation. Another limitation is that image frames were used as input data for study
1, whereas videos were annotated. We cannot be certain that each individual image from
a given video is depicting the labeled emotion. For example, a video labeled "contempt"
could have one or more frames that do not display the emotion "contempt". The results
are involve relative findings under these constraints. In the future, we will run a pretrained
state-of-the-art AU detector on the dataset and see what it results in, for a more absolute
baseline. Future research can study the dynamic of negative emotions in culture by using
a sequence of frames as input. It is also important to note that although the inter rater
agreement was low for the Filipino dataset, other studies on large affective image datasets
has garnered similar agreement [67].

Automatic Feature Extraction. We also had limited access to available AUs from
OpenFace. There were several AUs that could not be collected that were important when
describing prototypical emotions. For anger AU27 (Mouth Stretcher) was missing and AU20
(Lip Stretcher) was missing for disgust. Furthermore, contextual information could not be
extracted from OpenFace. This contextual information includes hand gestures and audio
information. Upon visual inspection of the Persian dataset, hand gestures were commonly
present. As such, future studies will look into extracting these contextual features and
exploring other modes of detecting more AUs.

Carryover Effects. An initial limitation in the speech generation study was the pres-
ence of a carryover effect. Carryover effects usually occurs when conditions are sequential,
allowing for the effects of one condition to influence the effects of another. For example,
the lively restaurants’ upbeat and joyful music could have influenced the voice features of
the subsequent condition, which was the quiet bar. While a 1 min break was introduced
between ambient conditions, there may still have been some residual context from the pre-
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vious ambience. This effect was further mitigated by randomly placing a baseline condition,
which had no ambient background music or imagery. Nevertheless, because of the lack of
speaker participants, the placement of the baseline condition was difficult to repeat. As
such, without placing the baseline condition between any 2 given ambiences more than a
handful of times it is difficult to say the carryover effect was truly mitigated.

In addition, in study 2 the fine dining restaurant was introduced first and speakers were
initially adjusting to the experiment setup. As such, this could have impacted the vocal
features for this initial condition. Fully randomizing the sequence of all ambience conditions
would be a solution. Although randomization would be useful, this is difficult to ensure as
it requires a significant amount of participants to partake in the data collection protocol.
Another solution could be to shorten the number of ambience conditions to around 3, but
this would require generalizing to the 6 ambiences. Moreover, scripts also varied slightly.
As such, some features could have been further influenced through word choice. In order to
limit independent variables, there was also only one phrase for the perceptual experiments,
"Hi there, I hope you’re doing well." This phrase has a positive valence to it, and it is
possible the voice conversion samples did not match this valence.

Voice Conversion Tools. Finally, the tools used for the speech generation study may
not have been the appropriate method for the current task. More specifically, CRANK only
used spectral features for training. Other features, from the rANOVA results shown in Table
3.1, were deemed more appropriate for ambience adaptation, such as energy. Therefore,
using a voice conversion implementation that specifically uses energy in conjunction with
intensity and rate-of-speech in training, would be beneficial. Nonetheless, voice conversion
tools that use features like energy, rate-of-speech or intensity are not currently accessible,
or readily available. Thus, considering this gap, developing voice conversion tools that not
only use spectral features, but also loudness, energy, and rate-of-speech would be greatly
beneficial when creating voices that adapt to different ambiences.

4.4 Future Studies

When we, as humans, perceive emotion, we do not only pay attention to facial expression
but at the body as a whole [6]. Hence, we cannot ignore the importance of body language
such as head or hand movement. Adding data about body language in later research can
lead us to testing more general hypotheses about role of culture in emotion. Moreover, it
may help to build more accurate classifiers.

Another opportunity to further investigate the role of culture is to provide more detailed
annotations, such as extracting more social signals from videos. As such future work may
use a method other than OpenFace to extract more AUs, since OpenFace is not capable of
extracting some AUs such as, AU27 (Mouth Stretcher), AU44 (Squinting), or AU24 (Lip
Pressor) which we saw in our datasets for study 1.
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Furthermore, potentially establishing culture categories in an already established dataset,
such as AffectNet, could provide not only a larger dataset but an already established ground
truth. Currently, we are establishing an effective method of data augmentation to utilize
advanced deep learning tools, like a CNN, in order to boost recognition accuracy [4]. Finally,
having members of one culture annotate the labels of another culture could increase the ev-
idence that cultures perceive emotions differently and present further underlying differences
in certain social signals.

In the future, we also hope to increase data collection in order to obtain every com-
bination of ambient conditions. Future studies would also use the collected voice features
in study 2 for further assessment. In addition, increasing speaker-ambience batch size and
duration of conditions may provide higher quality output for our voice conversion approach.
Other avenues for automatic speech generation that is adaptive to different ambience envi-
ronments will also be explored.

Finally, we plan to incorporate culture into the speech generation process. Currently,
data from Japan is being collected in order to compare to the English Canadian speaker
samples collected for the current study. This would prove useful as differences in features
that are adapted to a given ambience between Japan and Canada, may be due to culture.
Therefore, providing more evidence that culture is a contextual feature that should be
incorporated into machine learning that involves humans.
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Appendix A

Supplementary Material

Data collection protocol for study 2 (chapter 3) can be found at the link.

Script 1 (Fine Dining):link.
Script 2 (café):link.
Script 3 (Lively Restaurant):link.
Script 4 (Quiet Bar):link.
Script 5 (Noisy Bar):link.
Script 6 (Night Club):link.
Script 7 (Baseline):link.
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Appendix B

Code

Code for study 1 (chapter 2) can be found at this link

Code for study 2 (Chapter 3) can be found at: CRANK, ParallelWaveGAN, Feature Ex-
traction (Voice Toolbox),dataset, and Perception study questionnaire

Note: Dataset for study 2 does not contain raw audio files. These will be made available at
a later time on FRDR as it contains identifiable human participant data.
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