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Abstract

High-level synthesis (HLS) compilers enable the rapid creation of custom accelerator circuits [54,

32, 37, 42]. However, HLS-generated RTL (H-RTL) is inconsistent in terms of quality, too verbose

to be comprehensible, and may even have functional errors [38, 26]. We propose a framework that

helps designers inspect, instrument, and profile H-RTL. State-of-the-art tools such as [22, 56] have

predominantly focused on tracing. Unfortunately, tracing requires a massive amount of memory,

limits the H-RTL size, allows for faults to propagate to other modules, and expects the user to

manually identify the signals. Further, the tools can only run post-execution [24, 21, 23] which

limits the types of analysis the designer can perform.

In this thesis, we propose grind, a dynamic instrumentation framework that enables computer ar-

chitects to observe, and modify signals during the execution of the accelerator prototype. The key

technique is guards, additional circuits that we automatically attach to the H-RTL (without requir-

ing human intervention for insertion or removal). Guards perform two activities: i) Run analysis

functions on the values fed from the H-RTL signal. ii) Inject values into registers, wires, and mem-

ory entries of the H-RTL and patch the execution. During prototyping guards get mapped onto the

FPGA along with the H-RTL; grind removes the guards once the H-RTL is finalized. We use

guards to develop a verifier tool that instruments the H-RTL iteratively and locates a faulty module.

Compared to state-of-the-art [56], We also introduce two additional tools: i) H-RTL Faulty, which

uses guards to inject faulty values and observe the propagation of erroneous values in the circuit,

and ii) H-RTL profiler, a lightweight guard for profiling the data values, hardware signals, and ad-

dresses. We require between 200-35000X less DRAM traffic than off-chip profilers

Keywords: Accelerator; RTL Verification; Hardware debugging
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Chapter 1

Introduction

In recent years there has been a surge of research in high-level-synthesis compilers (HLS) that

auto-translate high-level languages [31, 30, 53, 54, 52, 41, 45, 16, 47, 5]. High-Level Synthesis

(HLS) promises improved designer productivity by allowing designers to create digital circuits on

FPGAs. However, the widespread adoption of HLS tools is limited by the lack of on-chip verifica-

tion ecosystems that bridge between the software and the generated hardware. Computer architects

broadly acknowledge that the primary challenge in HLS is the opaqueness and inaccessibility of

the generated RTL (H-RTL) [38]. Further, even industry-standard HLS compilers are known to

break the H-RTL in eccentric ways due to incorrectly specified pragmas [26]. The challenges have

been further compounded by the plethora of HLS compilers targeting both fixed-function and re-

configurable hardware [31, 30, 53, 54, 52, 41, 45, 16, 47, 34, 7, 5]. Recent HLS compilers translate

semantically rich code into hardware, including tasks [41], nested control[32], irregular memory ac-

cesses, and nested parallelism [37]. This, coupled with the fact that HLS compilers also include an

extensive set of optimization passes makes the final H-RTL opaque to the designer and challenging

to manually verify. [13, 54, 32, 48].

1.1 Challenges of working with HLS

A leading HLS expert cites the lack of mature tools to inspect H-RTL as being a key hindrance [13,

Page 8] [38] to HLS adoption. Multiple tools exist (e.g., Valgrind, Dynamorio, gcc -p) to analyze

the output of software compilers (i.e., binaries) on CPUs. However, H-RTL lacks such a framework.

The most widely used approach to verifying HLS-generated RTL (H-RTL) is comparing the

final memory state against the expected values (gathered from the software) after the simulation

and run, the comparison is either done manually by the user or automatically and the first place of

mismatch is reported to the user. However, this method is woefully inadequate: i) When a mismatch

is identified, the designer must look through a long simulation trace and walk backward over time

to narrow the cause, and ii) the process may require a detailed analysis of tens of thousands of

signals, throughout thousands of simulation cycles. further, the primary suggestion from commercial

vendors is to use waveforms [3] for verifying functionality. State-or-the-art works in academia have
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sought to supplement waveforms with execution traces obtained either through simulation or from

an FPGA [24]

Waveforms are the most prevalent approach to analyzing HLS-generated RTL (H-RTL) [3].

This requires the user to inspect the H-RTL netlist through potentially millions of simulation cy-

cles [35]. Due to the associated overheads, waveforms are typically collected using RTL simulation,

not tractable for large designs. State-of-the-art tools help annotate waveforms with additional infor-

mation gathered either through simulation or from an FPGA [25, 9, 20, 28, 56]. They enable the

user to focus on a specific segment of the trace and waveform and place an excessive burden on

the end-user to examine the trace. They leave open the question of "how can a user know which
portion of the H-RTL to focus on, how to catch multiple faults and failures, and how to deal
with faults that cause the execution and run to fail?" Some works have provided a gdb-like in-

teractive environment [8, 12, 23, 29, 11]. The user has to markup the required software variables

and statements, and the HLS compilers track the corresponding portions in the H-RTL. They adopt

stop-the-circuit semantics (similar to an assert [51]) and are useful only for post-mortem. They do

not permit progress past the assertion. This cannot support tools such as fault analysis where the tool

needs the circuit to continue execution with faulty values propagating through the circuit. grind is a

novel tool to tackle the problem of instrumenting H-RTL, while prior work has focused exclusively

on post-execution analysis.

1.2 Why do we suggest a new H-RTL instrumentation tool?

The challenges that designers and users face while verifying H-RTL were mentioned in the previ-

ous section. The main thing we aim to achieve in this work is to help the designer instrument the

HLS-generated RTL with minimum effort and flexibility, to understand the dynamic execution of

hardware. Also, many designers may not be fully familiar with every aspect of the H-RTL, hence, an

automated tool that only requires the user to be familiar with the data flow to run it can be extremely

beneficial. In contrast to previous methods where the designer had to look through the traces of

hardware execution (see Figure 1.2). The goals of this work are as follows:

• Instrumentation of the H-RTL with minimum to zero effort i.e., the designer should be able

to read, analyze and write H-RTL signals without needing to edit the H-RTL manually or

knowing a hardware language.

• Flexible and conditional instrumentation i.e., a configurable framework that adds in or re-

moves additional logic and SRAM only for the signals instrumented in the H-RTL, allowing

the framework to remove the instrumentation entirely from the H-RTL once the accelerator is

analyzed as well.

• Dynamic instrumentation i.e., the instrumentation can analyze and modify signals during the

execution. We demonstrate that live execution analysis is essential to creating verifier tools

that avoid muddled-up logs.

2



1.3 The target platform

We target IR [54] as our platform in this work. IR is an intermediate representation for accel-

erator microarchitectures. IR operates as follows: i) A decoupled graph from the actual hardware

components is generated, which decouples the microarchitecture optimizations from algorithm/pro-

gram optimizations and the actual RTL ii) this graph is translated to Chisel, as intermediate hard-

ware. iii) Finally the Chisel representation translates into FIRTLL and Verilog. The execution model

and cycle-level performance are maintained.

IR graph represents the microarchitecture components of the hardware and the data transition

between these components. Since this graph is written in Chisel, which is at a higher level than RTL,

optimizing the accelerator microarchitecture becomes less complicated and easier [54].

1.4 Our approach

We introduce grind, a framework for dynamically instrumenting HLS-generated RTL. Figure 1.1

shows an abstract view of the concept of grind. We instrument both the intermediate software and

hardware (Chisel.) The instrumentation of LLVM is done to extract helper data (Metadata) and the

instrumentation of Chisel is done to either modify, inject or observe values in the hardware. The key

technique of grind is guards, hardware modules that we attach and inject to the original H-RTL

to tail and shepherd specific register, memory entry, and signals (Chisel instrumentations). grind

builds on modern RTL compilers (Chisel and FIRRTL [27]) to add and remove guards. Guards are

mapped onto the FPGA prototype with H-RTL; they can also be co-simulated in the verilator. During

the execution, guards dynamically extract, run analysis logic, and update the H-RTL’s signals. This

eliminates the need to trace a verbose dump of signals to the DRAM for post-execution analysis, as

guards can decide which data would be useful to record and which data to discard. Guards only need

to write post-analysis data to the DRAM. This saves DRAM traffic, reduces the on-chip SRAM, and

enables larger circuits to be analyzed. Further, the analysis functions run concurrently in hardware

which reduces the overhead typically associated with instrumentation.

Figure 1.2 shows the toolflow of our approach to verify a circuit, the general idea is instrument-

ing the circuit, and in scenarios such as verification, doing it multiple times based on the reports

of the previous instrumentation. This instrumentation allows the user to verify (amongst other side

tools) the design in the way that they prefer, freely and more flexible. Further, we know that not

every user working with an HLS framework is familiar with every piece of code of the framework

as usually multiple designers work on a project, and editing the code manually to observe and ma-

nipulate the design could be a time-consuming task. We also realize that previous debugging tools

face two main obstacles, memory and time. As mentioned above, we address the issue of memory

overhead by only recording the signals that are useful for the user and storing as minimal values on

memory as possible. We also propose a fully automated framework, meaning user interference is

3



Figure 1.1: An abstract overview of the instrumentation of the intermediate software (LLVM) and
the intermediate hardware (Chisel) to implement grind.

not needed after their first interaction with the framework. So time won’t be as much of an obstacle

as it’s just a program running without needing human attention and time.

Our ApproachState-of-the-Art
(e.g., Legup, Vivado)

C++ and 
Pragmas

Intermediate 
Representation

Verilog
Netlist

H
LS C

om
piler

Simulator
(e.g., Verilator)

waveform Verilog netlist
w/ Guards

HLS 
Compiler

µgrind
inst. pass

C++ and 
Pragmas

Simulator

FPGA

Guard
Report

Trace
Chisel

Figure 1.2: This figure provides a comparison between previous trace-based HLS verification
toolflows and the toolflow of our approach.

We create an automated verifier and two other tools to demonstrate the use-cases of grind and

guards. As shown in Figure 1.3 a) H-RTL verifier: a novel verifier, that pinpoints the RTL statements

(alongside their cycles and any other additional information needed) in which the H-RTL deviated

from the expected software values. grind verifier exploits automatic guard injection scripts (imple-
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H-RTL Checker
Check

Patch

H-RTL Faulty

Faults

H-RTL Profiler
Analyze

Figure 1.3: grind Tools

mented using Chisel and FIRRTL [27] tools) to create an iterative and iterative verifier that searches

through subsets of modules instead of the entire circuit and discards part of the circuit that behave

correctly. b) H-RTL Faulty : leverages guards to inject a variety of faults (e.g, stuck-at-zero) into

specific H-RTL signals, while simultaneously using guards to check other signals in the circuit.

Faulty helps the user check the resiliency of the circuit. c) H-RTL Profiler : a tool that builds into

hardware the logic for extracting and summarizing data during execution to avoid large data dumps

to the DRAM. However, as we further demonstrate guards and grind we learn that the use-cases

of this instrumentation platform are not limited to these three tools.

The contributions of grind are as follows:

• An open-source framework for dynamically instrumenting HLS-generated RTL (H-RTL)

with guards (in many ways). FPGA synthesis reveals that guards impose limited overheads,

10—15% extra logic, and 5% Mhz penalty.

• An iterative verifier (one of the instrumentation techniques), that can identify and report hard-

ware errors and help HLS compiler research. We study complete accelerators [50, 49] and

demonstrate that: i) we check circuits 5 larger than prior state-of-the-art, and ii) we can

complete verifying in under 24hrs (including FPGA synthesis) and less than 4 iterations (less

than 2hrs in simulation).

• Two additional tools, H-RTL faulty, for studying fault resiliency and, H-RTL profiler, for

collecting live statistics. These tools demonstrate the benefits of guards that can analyze live

execution without needing to dump signals to the DRAM for post-mortem. We save 200—

35000 DRAM traffic and 2—10 of on-chip SRAM.

We next talk about H-RTL instrumentation and the challenges of it, errors and faults that can

happen in H-RTL and the ones we look at and verify in the evaluation, the benchmarks used to

verify and evaluate our work and their complexity, and prior works done in the field in Background
and Related work.

Next, we look into the design and implementation of Guards in Architecture and Design. The

first step in the design is to instrument the software to extract the DFG values and IDs and the

dependence graph information for the verifier tool. Next, we look into the "Boring" tool and how it

allows us to automatically and conditionally wire guard modules into the main circuit. And finally

the internal design of guards and the wrappers that attach them to the original circuit.
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In the Verifier Tool chapter we look at our main Grind tool. We discuss the idea of iteratively

verifying the design and how the automation of guards helps us do this, the algorithm behind the

verifier, and a working example.

We then look into two additional tools built using Grind in Additional Tools. H-RTL profiler

is a smart profiler that dynamically profiles specific data and H-RTL faulty is a fault injector which

allows the designers to test their design under potential faults.

Finally, we evaluate the introduced tools in Evaluation we first inject bugs into the benchmark

circuits and catch them using the verifier. We further look into an actual bug that we traced using

the iterative verifier as a real-life use case. Next, we evaluate the profiler and fault injector tools by

reporting memory usage and observed outcomes of the injected faults.

Further implementation discussion and instructions of using the platform are presented in the

Appendix.

6



Chapter 2

Background and related work

In this chapter, we present a quick overview of the [54] dynamic dataflow platform and the chal-

lenges of H-RTL instrumentation and the motivation behind Grind. We next introduce several

possible H-RTL faults and errors that we examine and the benchmarks we use to test our tools. We

finally learn that the motivation behind grind is the manual steps that the user had to take to find

and fix faults in [54].

2.1 Dynamic Dataflow

HLS tools such as [54] construct circuits with dataflow components. Such components typically

rely on an asynchronous mechanism to exchange data, or "tokens". We choose IR [54] as our

target platform. The token exchange protocol in IR uses two signals i) one signaling the "avail-

ability" of a new token from the source component ii) the other signaling that the target component

is "ready" to accept it. This protocol is called "Handshaking". The Handshaking implementation in

the components is shown in Figure 2.1. In contrast to a predetermined, centralized controller of stat-

ically scheduled circuits. This asynchronous control allows dataflow circuits to adapt the schedule at

runtime and take into consideration the latency of certain memory access patterns and control-flow

decisions. In addition to standard functional units, dataflow circuits require specialized components

which control the flow of data between components.

The advantage of using IR as an HLS framework compared to the other HLS frameworks for us

is that the hardware components are implemented in Chisel, and we can plug our guard modules as

a hardware pass to the main design using "Boring" Connections from FIRRTL[27], this is further

discussed in the following chapters. However, grind is not limited to only one HLS framework,

and it can work with other HLS frameworks that provide a structure similar to [54]. Figure 2.1

outlines the dataflow components that are common in such designs and in IR.

A summary of these components:

• Compute Node: applies the compute function and replicates every token received at the input

to multiple outputs; it outputs tokens to each successor as soon as possible but does not accept

any new token until all successors have accepted the previous one.

7



Figure 2.1: Dynamic Dataflow Components

• Mux Node: waits for the required input to produce the output and discards the tokens at the

non-selected inputs as soon as they arrive.

• Control Node: implements program control-flow statements (i.e., if or switch) by dispatching

a token (and, sometimes, the corresponding piece of data) received at its single input to one

of its multiple outputs based on a condition.

• Memory: The system interfaces with memory through handshake ports. The write port has

two inputs (data and address) and a control-only signal from the memory interface indicates

successful completion. The read port sends an address to memory and receives data with its

corresponding handshake control.

• Task: Each task contains a set of live-ins, live-outs and local tasks queue that stores ready

and pending tasks. The task is free to process the ready tasks in any order. Each parent task

spawns children to run concurrently and children terminate and return values to the parents.

Tasks communicate either through memory or through registers in the connection.

Next, we look into how software programs are translated to dataflow circuits [54, 32, 13]. In

the absence of control flow and concurrency i.e., a single basic block the translation process is sim-

ple. The HLS compiler simply takes the data dependencies between the operations and creates a

dataflow circuit. The abstraction is broken only at the memory interface. Different HLS compilers

treat memory differently. Legup [13] serializes access to global memory, Dynamatic [32] introduces

a centralized load-store queue, and -IR [54] introduced a distributed queue. HLS tools implement

control flow through either trigger instructions or predication. Typically simple diamond-like con-

trol patterns are converted into predicated dataflow graphs. Some HLS compilers support more

sophisticated control flow. In such cases, the HLS tool processes the compiler program dependence

8



graph to determine the basic blocks and assign a trigger register to each basic block. The trigger

register essentially fans out to the operations in the basic block and serves as a start signal. We then

implement the control flow graph by connecting the labels to the respective branch

In this accelerator microarchitecture there is two primary class of bugs that could be introduced

i) the HLS compiler itself may optimize away a dependency or mismanage the tokens that need to be

exchanged between data-dependent operations resulting in lost data. ii) the HLS compiler typically

includes a library of black-boxed microarchitecture components (e.g., for FPUs, caches). A bug

could have been introduced in the RTL of these components. These components are invisible to

the designer since they are introduced by the compiler during the auto-synthesis process. These are

particularly challenging as the bug may originate at an invisible point in the RTL, but may manifest

in an operation thousands of cycles later. We will discuss the types of bugs we look into in this work

further in this chapter.

Back to the original question: What should a designer do to capture a potential set of faults in

the implementation of each of these components, or the connections between them? The steps are

quite time-consuming and challenging especially for a designer that is not necessarily familiar with

every registered name and component implementation. They have to enable a trace-based profiler,

either in the form of a waveform or printing/storing trace values. The designer then either has to

find the first place the trace behaved wrong manually or, if they are using a more advanced tool such

as [24], they will be informed of it. However, this method i) won’t work if the fault had caused

the circuit to fail ii) it will take a very large amount of memory iii) if there are multiple faults in

the path they won’t be caught unless the designer fixes the fault that came before them. Moreover,

grind can do more than report the faults, as it is originally an instrumentation tool, and if the user

for example wants extra information about each fault, they can manipulate the guard code to gather

it.

2.2 Why do we need an instrumentation tool?

Any large software project is prone to bugs and code rot, HLS compilers are no exception. Industry-

standard HLS tools (particularly the internals) have largely been under the closed source. Only

recently, have there been efforts to systematically document bugs. Herklotz et al. reported between

0.5% to 3% of C microbenchmark suite failed across multiple versions of the industry-standard

HLS tools [26]. Commercial HLS tools have primarily focused on achieving the best performance,

area, and energy tradeoffs, and have often overlooked correctness. HLS bugs are difficult to identify

and exist because it is not clear to the user how the generated design behaves. HLS users implicitly

assume that the RTL is functionally equivalent to the program, but there is no certain way to val-

idate this. The most common approach has been testing and tracing the output memory. However,

this is heavyweight and test benches inherently miss out on circuit regions. There have been for-

mal approaches to prove compiler correctness. [36, 40]. They typically turn off specific compiler

optimizations and this results in designs with higher area and power penalties.
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Further, we highlight the unique challenges of instrumenting H-RTL. We illustrate how dynamic

instrumentation can help catch H-RTL errors introduced by a state-of-the-art HLS compiler [54].

Next, we quantify the complexity of H-RTL circuits we study and motivate the need for automated

tools and finally introduce the types of faults we look into.

2.3 H-RTL instrumentation vs. Binary instrumentation

HLS developers cite the lack of fixed semantics and state as to why H-RTL is harder to instru-

ment [6, 39]. i) Executable (binary) vs. Structural (H-RTL): A binary runs on existing hardware.

Instrumenting the binary entails adding instructions to read and write the registers/memory. These

instrumentation instructions run on the same hardware interleaved with the binary. Adding instru-

mentation edits the structure of H-RTL and is more involved. We have to allocate additional logic,

bind operations to the logic, and physically route values. Implication : Need automation and script-

ing to edit the H-RTL and mix in the instrumentation, after the HLS.

ii) Imperative ISA (binary) vs Concurrent Dataflow (H-RTL) A binary is an imperative

specification in an ISA defined by the underlying processor target. Further, the instrumented binary

implicitly supports sequential semantics enforced by the underlying CPU. H-RTL is a concurrent

specification in which the timing and order of operations have to be defined by grind. Implication:
Need a flexible approach to identify H-RTL events that trigger the guards and enforce the ordering

between the guards and H-RTL signals.

Centralized fixed state (binary) vs Distributed, variable state (H-RTL) Finally, any instru-

mentation framework needs to read and write state from the target https://blog.regehr.

org/archives/1450. With binary, the architectural registers and memory state is defined, cen-

tralized, and accessed via the processor instructions. All binaries refer to the same architectural reg-

isters. HLS customizes the state for each H-RTL circuit and distributes the state across the pipeline

latches, operand buffers, and scratchpads. Implication: grind needs to maintain the software to

hardware mapping so that the instrumentation reports can be presented to the user at a higher level.

We also need to support the removal of instrumentation when not required.

2.4 H-RTL errors and faults

In this section, we look into the possible bugs that can show up in H-RTL by tracking the git com-

mits in a state-of-the-art HLS compiler [54]( IR). We demonstrate how instrumentation can track

signals, variables, and cycle timing to catch underlying errors in H-RTL. We communicated with

the authors of IR and verified the cause of these errors [14, 41, 54].

H-RTL Error 1: Stuck-at-zero merge node
github@muir/SelectNode.scala hash:#3d51bcb301.

Detection: Instrument the merge mux’s output signal.
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Figure 2.2: H-RTL Error 1: Stuck-at-zero merge node caused by LLVM syntax mismatch leading to
incorrect mux wiring.

Figure 2.3: H-RTL Error 2: Incorrect pipeline buffer depth setting leading to faulty operands.

Many HLS compilers translate LLVM’s SSA representation to RTL (e.g., LLVM IR [54, 32, 2]).

LLVM periodically updates the SSA syntax during major releases. In this instance, LLVM reversed

the order of labels in the select and ops. This led the HLS to wire the mux data lines to the merge

node in the incorrect order. Due to the mix-up, the mux is stuck at and always propagates i=0 on

each iteration of the loop; the loop keeps re-executing iteration i = 0. Tracing of waveforms cannot

catch this bug since execution will never terminate. grind’s dynamic instrumentation will capture

the output of the merge signal and the analysis will check if the values of the signal are incrementing

like a loop induction variable.

H-RTL Error 2: Incorrect dataflow pipelining
github@muir/LoopBlock.scala hash:#a4245dd02f

Detection: Instrument the output signal of dataflow operators and check against SSA register values.

These classes of errors are reported even by Xilinx’s Vivado [55]. HLS compilers place FIFO

buffers to i) enable loop iterations to start asynchronously, and ii) to balance the different critical

paths at spawns. In this instance, the HLS compiler miscalculated the latency of paths and created a

buffer with incorrect depth. As shown in the timing diagram this leads to incorrect operands being

placed on the inputs to the adder; one of the operands is from the ith iteration and the other one from

i-1th. Dynamic instrumentation will track the values in the output registers of the nodes, check the
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Figure 2.4: H-RTL Error 3: Incorrect interfacing between H-RTL and Cache leading to missed
request and circuit lockup.

iteration index and the operands of the adder.

HLS Error 3: Faulty Cache Handshaking github@muir/Cache.scala #ea42742eaed

Detection: Instrument the cache request and response lines, and check number of requests/re-

sponses.

A common cause of the error is the interface to the shared cache (or scratchpad). Typically the

cache or scratchpad is a black box IP invisible to HLS. The HLS statically schedules loads and

stores across latency-sensitive request and response ports. In this particular case, IR HLS incor-

rectly scheduled the load(in[i]) on the same cycle as another load. This led to a load being missed by

the cache. IR HLS [54] also reported similar errors causing incorrect response errors due to wrong

address. grind instruments the cache request and response lines along with the memory nodes.

It analyzes the sequence of requests and responses to verify if every request has a corresponding

response. These types of verifiers can be since grind permits the user to define analysis function

within the guards.

Bug Example 4: Blackbox IPs.
Reported: github@muir/CustomComputeNode.scala –commit(cbe1845260e)

Not all RTL modules in the prototype are auto-generated by the HLS. Typically the prototype

and final tape out include multiple BlackBox IPs (e.g., technology PDK-specific RAM modules,

Floating point hardware). The interface to the BlackBox modules is exported to the HLS compiler

along with the timing constraints of the individual ports. In this particular bug, a single configuration

parameter had led to IR-HLS making incorrect assumptions about the pipeline depth. This led to

operands being initiated for the BlackBox earlier than specified and a breakdown of the pipeline.

The challenge with these bugs bug may originate at a point in the RTL invisible to the HLS compiler

but may manifest in an operation thousand of cycles past the statement in H-RTL.

2.5 Complexity of instrumented H-RTL circuits.

We study end-to-end applications from Machsuite [50] Relu, Saxpy, Vadd, Conv2D, Stencil, and

Gemm. Table 2.1 lists the characteristics of the H-RTL circuits. The H-RTL can be viewed here
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App. Verilog LOC # FSM
# Verilog

Mod.
Pipe. Depth Parallel

GEMM 33049 32 366 14 32
Conv2D 37277 16 329 41 48

FFT 37418 4 340 22 56
Relu 21051 4 206 11 48

Saxpy 18060 2 228 9 48
Stencil 26396 8 166 8 768

Table 2.1: RTL Complexity of guarded Accelerators studied in this thesis.

(https://anonymous.4open.science/r/d6f70aaf-3014-4353-9b48-cc5759080898/).

In this paper, we study accelerators and varied types of nested parallelism including loop, data, and

instruction parallelism. Prior works only studied H-RTL circuits with unrolled loops [29, 56].

Since there is no standard metric to quantify RTL-complexity, we use four proxy metrics to

provide intuition on the complexity of the designs we study i) Verilog LOC: The number of lines

of RTL code in each of the circuits; reasonable proxy for the number of H-RTL variables (signals

or registers). ii) Ctrl-states this is indicative of the complexity of the FSM of the circuit. Typically

this is lower for token-driven dataflow circuits that do not use a global FSM. However, in kernels

with multiple nested loops, FSMs are required to coordinate the interactions between the loops.

iii) Verilog modules: The total number of modules instantiated in the code. Higher the number

of modules the more effective grind is for narrowing the site of an error. iv) Pipeline depth:
In HLS, the pipeline structure varies across accelerators. Here, we can see that in some of our

workloads the pipelined depth can be 50 stages (well beyond a conventional processor). This is

indicative of the challenge of instrumenting and analyzing timing-dependent errors that may show

up only in a specific cycle and pipeline register. v) Concurrency: Finally, we measured the number

of concurrent operations on the hardware datapath. The H-RTL circuits we investigate are highly

concurrent; an instrumentation framework is required to track down timing errors.

2.6 Related Work

Prior tools do not support generalized instrumentation and user-defined tools. A key difference com-

pared to our work is the target and type of instrumentation. And also flexibility to manipulate the

checker tool to perform different sorts of verification. Checker tools tailor instrumentation towards

the C/System-C input. These tools require human-in-the-loop to manually identify the scope. Fur-

ther, many of these tools use trace-based approaches that limit the on-chip memory. And hence,

they always face the decision between limiting memory, or optimizing memory usage and losing

verification data.

[22, 20] points out the lack of debugging tools for HLS and the problem of not having visibility

into circuits. Targeting both Hardware and Software designers, they use tracing buffers to trace the

circuit run and capture circuit values to map back to software. However, tracing will take a large
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amount of memory especially since during the run the user will not know which part of the circuit is

faulty. They acknowledge this and look into ways to optimize the trace buffers and on-chip memory.

[8] Further discusses the issue of memory usage vs losing data. Pointing out that since memory

is limited most of the other trace-based methods tend to ask the user to select a number of variables

to trace. But the user does not know which variables may be buggy, or any other information to help

them with the decision. This usually leads to multiple runs. So they propose a method to accelerate

the debug turnaround time.

[43, 44] Present another trace-based debug approach by introducing observability ports and

buffers, the ports are used to observe the variables in the circuit and buffers to trace and record

them. The novelty of this approach is that the user is permitted to make tracing decisions (whether

to store data in a buffer) based on the values they observe. They point out that this method causes

the possible loss of timing relationships of events for different trace buffers. They also need to keep

the user in the loop to make the tracing decision. They propose a method that eliminates timing,

latency, or throughput being affected by their observability tool.

[56] Autoslide, which is the work we evaluate against the most is an automated cross-layer

verification framework. Similar to our approach Autoslide indicates the importance of automation in

debugging and focusing on certain critical operations first. Autoslide is however another trace-based

method and suffers from most disadvantages that other trace-based debuggers do. More comparison

to Autoslide is shown in Table 6.4. Autoslide also maps the RTL datapath to LLVM-IR operations

and C/C++ source code (as we do as well) to minimize user effort.

[9] proposes a gdb-like debugging tool for HLS. They also allow the user to map the HLS

values back to software representation. Supporting both simulation and execution on FPGA, the

framework aims to provide RTL values for each C statement. Similar to other trace-based tools this

approach allows the user to only view the first place of mismatch.

Another common tool HLS designers use is Assertions which are included in the H-RTL at

specific signals and kill the run once activated. Assertions put the responsibility of figuring buggy

locations on the user as it’s the user who must decide where to insert them. Further, asserts typ-

ically check a fixed condition e.g., signal == 0?. They cannot accommodate value-based checks,

tracing, and collecting data the same way debuggers and checkers do. Finally, assert triggers only at

deviating signal; the error may have propagated from the non-assert location.

[33] is an open-source performance profiler that uses out-of-band call stack reconstruction

and performance counters that we compare against. Some of them target hand-written RTL [33]

not verbose HLS-generated RTL. Value-based Prior art does not permit the user to check if the

check depends on the actual value of the H-RTL signals. The exception being simulation-based

approaches [56] that permit use of printfs(). All the value profilers and checkers we have demon-

strated in this paper need to extract the signal values; prior art cannot implement them. Low-effort
and Autogen. The effort required to insert instrumentation into the H-RTL impacts utility. For in-

stance, without low-effort instrumentation, human intervention is needed to decide where and what

to instrument. The majority of prior art lacks a flexible mechanism [22, 20, 56]. Execution analysis
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In prior work, the analysis of the signals is postponed to post-execution. They rely on waveform

extraction, which incurs a significant bandwidth penalty

Note that closed-source formal RTL checkers are only loosely connected to this paper. Catapult

HLS employs SLEC [7] is a form of logic checking for analyzing H-RTL. Logic checking and

translation are computationally intensive. It has only been demonstrated on circuits as complex as

FP ALUs and even that requires 12 hrs [46] per FPU. We demonstrate that we can identify bug

sites in end-to-end accelerators (e.g.Convolution) in 20 hrs. Further, SLEC only works with H-RTL

circuits that are finite-state-machine with datapath [4] and support sequential semantics only. SLEC

cannot be applied to the HLS compilers we target. They generate circuits with concurrent dataflow

semantics, dynamic parallel patterns, and non-deterministic global memory accesses [32, 54, 52,

47, 15].
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Chapter 3

Architecture and Design

In this chapter, We look into the general toolflow of grind shown in Figure 3.1 and the implemen-

tation of grind. We first go through the process of extracting data from the intermediate software,

this data will be used by various grind tools to analyze the H-RTL values. Next, we describe the

guard design and how we generate guards for the intended signals and connect them to components

automatically and conditionally. Finally, we describe the architectural template that integrates with

the H-RTL circuit and gathers data during execution. But first let’s answer a general question: What

is a guard? A guard is a hardware module meant to attach to circuit components and "guard" them.

The "guarding" process is based on the guard function which the user will define, it can be anything

from just observing and recording signals and values to processing and changing them. The default

guard function in this work is set to the verifier-guard, meaning that the guard will compare the

outputs of modules against the expected outputs and if they didn’t match a flag is set to true and

the value is corrected. a Guard module consists of two buffers, one for incoming data and one for

outgoing, plus a "guard function" that performs analysis on the input data and the data observed

from the hardware component it’s attached to and writes the results of the analysis on the output

buffer.

3.1 IR Metadata

First, we look into the verifying tool to check correct execution, we can fundamentally characterize

correct execution with a few properties: input data received, output data produced, conditional con-

trol transitions, the correctness of data propagation through select operations, and forward progress

in execution.

We describe grind verifier designed to identify functional bugs, these types of bugs are the

result of defective hardware units and connections, either caused by the compiler or the actual

implementation. grind verifier aims to provide the user with a clear notion of the places in which

the hardware behaved incorrectly, to achieve this, we first need to have a baseline as the expected

correct behavior to compare against. So let’s assume at first that we can observe and compare the

outputs of all hardware components.
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Figure 3.1: grind Toolflow

While the source code could go through faulty compilers before reaching the intermediate soft-

ware (that will be compiled into the hardware representation), previous modern techniques have

been introduced to ensure software compiler correctness. Relying on these works and assuming that

the software intermediate representation of the code is accurately representative of the source code,

we consider this high-level specification as a golden reference for the behavior of the circuit. This

method, used for example in [19, 18], is often referred to as Discrepancy Analysis [17, 56].

On the intermediate software representation side, our goal is to extract enough information to

A) correctly map back the hardware components to their corresponding software presentation B)

anticipate the correct set of outputs for each component and C) extract the dependence graph and

node information to be further used in our verifying technique.

This is done by instrumenting the LLVM representation, two JSON files are generated, one

containing the golden values which is the set of IDs and the list of their outputs, and the other

containing the dependence graph and node information. Code 3.1 shows a few lines in the extracted

file dependence graph file. The information is that An adder with the ID of 22 and the parent basic

block with the ID 19 has three parents (predecessor) nodes with the IDs 20,21,22. The steps to

generate this file are listed in the Appendix.

The golden values collected from the LLVM can be used as patch values in the verifier. The

guard function can be manipulated to perform many things. However in its default setting (which

is for the verifier) the guard function will report an error if a node’s output does not match these

golden values, but more notably, the guard function will "patch" the faulty output with the correct

golden value to isolate the fault, hence, the name patch value. The advantages of isolating the fault

are further discussed in the next chapter.

1 "id" : 22,

2 "instruction" : " %add = add i32 %mul, %0, !dbg !63, !UID !65",

3 "name" : "binaryOp_add22",

4 "operands" :

5 ["INS_13", "INS_21"],

6 "parent_bb" : 19,

7 "type" : "Binary"

8 "parent_info" :
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9 [ 20, 21, 22]

Code 3.1: Line 273-282 in Relu.muir.JSON which contains the dependence graph information of

the Relu benchmark. The information in this code is available for all node IDs

3.2 Auto-Wiring guards into H-RTL

Figure 3.1 illustrates the passes we have developed to attach guards to the H-RTL. The example

illustrates a simple address verifier that analyzes the loads in the H-RTL circuit. As mentioned

in the previous chapter, we gather data flow information from the LLVM representation. In this

Metadata, the IDs of nodes are also gathered, an ID is a unique decimal number assigned to each

node and its corresponding hardware component. Keeping this mapping information also allows the

user to indicate their region of interest at the program level and we can track down those signals.

In step 2 of Figure 3.1 the guard list is filled based on the instrumentation goals e.g., load nodes

(The iterative verifier introduced in the next chapter will generate this set of nodes automatically).

In step 3, grind iterates over the H-RTL and identifies the signals (registers and wires) within the

module. For each signal, grind attaches a guard in the H-RTL module. In this example, since loads

are instrumented, the address and data fields are annotated. In step 4, we define the guard circuits

and connect them to the actual signals.

Before we go into the design of guards, one major challenge to answer is: How to connect the

guards to the main circuit’s components and remove them automatically? In IR connections are

hardwired using input and output ports and handshaking signals, however, that is not suitable for

automatic and conditional connections.

grind leverages FIRRTL, a compiler that loads H-RTL into a data structure that we can trans-

form and rewrite. The main challenge is guards are separate modules introduced post-H-RTL gen-

eration, while the module signals could be embedded deep in the H-RTL’s module hierarchy. To

wire these up grind uses a FIRRTL pass that “bore” through the module hierarchy (https:

//bit.ly/3ycg5aQ; Figure 3.2 illustrates. The actual bore implementation is included in Ap-

pendix A. A bore connection consists of a sink and a source, each defined in a separate class in

Chisel, and connected through a unique "string" input. To mimic handshaking connections with

Bore, we create three bore definitions for each conditional attachment: ready, valid, and data. The

main difference between the bore handshaking connections and the input/output based connections

is that the bore connections can be placed inside an "if" statement, making their existence con-

ditional to a single enable button, and easy to remove. Code 3.2 Shows an example of Boring

connections used in grind, this particular code is added to the actual module that the guards are

being attached to. A sink connection acts as the receiver side and a source connection as the source.

The ID of the module creates a unique string on the source side of the Bore connection that will

be connected to the Sink side of the connection, which is in another module with the same unique

string.
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1 //import Boring

2 import chisel3.util.experimental.BoringUtils

3

4 if (Guard_enabled) {

5 //Input data from guard

6 BoringUtils.addSink(in_data, s"in_data${ID}")

7 BoringUtils.addSink(in_value_valid, s"in_valid${ID}")

8 BoringUtils.addSource(in_value_ready, s"in_ready${ID}")

9 }

Code 3.2: Boring connections in a module code, the other sides of these connections are guards.

The if statement creates a condition upon the existence of the guard’s attachment to this module.

Figure 3.2: Boring wires between guards and nested H-RTL

3.3 Guard design

Each guard monitors an H-RTL signal and includes five components: i) Trigger: a boolean enabler

signal that activates the guard. ii) Reader buffer (shadow RAM) The metadata is streamed from

DRAM during the execution. Since a node can execute multiple times it’s buffered to the guard,

since each module can be executed many times the buffers hold the values for each execution. iii)

Guard function a logic block that uses the incoming H-RTL signals and input buffered values to

calculate a patch value. The majority of analysis functions require simple logic, e.g., isEqual() or

isRange() that can be accomplished in 1 cycle. iv) Patch value: The patch value overwrites the

H-RTL signal during execution. Patches are useful for patching erring signals during debugging

and injecting faults for testing resiliency. They can be used to fix or break the circuit v) Writer
buffer. Each entry includes: i) runtime context: logical timestamp and cycle time when the guard

was triggered. ii) the signal values from the H-RTL, and iii) the output of the analysis. The guard

function and the Reader buffer are shown in Figure 3.3 as the Analysis process to patch the faulty

output of Load A[i], and the writer buffers are shown outside the guards transferring the guard data

to the memory. The two sided connections between the guards and the modules are implemented

using Bore connections.
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Figure 3.3: Guards wrapped indie the circuit

These traces are collected in the form of packets and must contain enough information to allow

grind to further analyze and give the user a valid insight into what has taken place in the module,

to help the user determine the possible root cause of the fault and how to fix it. As mentioned

previously, each node in the design contains a unique ID, and an opcode that gives information about

the functionality of the node. There can be nodes in the design that have multiple functionalities and

at each iteration, they may execute one of those functions. There is also an iteration counter that

helps to keep track of the partial ordering of the packets. There is a flag that indicates whether

the node has generated a valid output or not, and a reserved field in the debug packet that can be

used for embedding more information during the execution. Figure 3.4 shows two examples of such

packets. In this example, the first packet (a) is been generated by node number 4, the node is a

compute node, OpCode=0x005, and the node the output data is correct. However, the second packet

(b) is been generated by node number 10, the node is a select node, OpCode=0x004 and the data is

wrong. Finally, when the execution of the accelerator finishes, the writer buffer dumps the data into

the memory. The structure of the recorded packet can be updated based on user demands.

There are four files per each guard. The Reader and Writer files that implement the buffering of

data and the hard-coded connections to the memory, parts of the Reader file are shown in Code 3.3.

And Code 3.4 shows an example of a guard function implementation, in this scenario the imple-

mentation is the default (verifier) implementation where the guard patches the node’s output. The

Boring connections connecting the guards to the actual module are not implemented in this file.

1

2 val Data = Module(new Queue(UInt((xlen).W), BufferLen))

3 val queue_count = RegInit(0.U(log2Up(BufferLen).W))
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I D Fl a g O p C o d e It er ati o n R e s er v er d D at a

D e b u g p a c k et f or m at:

0 x 0 4 0 0 x 0 0 0 5 0 x 0 0 0 3 0 x 0 0 0 0 0 x 0 0 0 0 0 0 0 4 0 0 0 0 0
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( a) C o m p ut e p a c k et

( b) S el e ct p a c k et

E xt e n d e d d at a bit s

S el e ct li n e bit m a s k

C orr e ct D at a

Wr o n g D at a

Fi g ur e 3. 4: D at a R e c or d e d f or E a c h N o d e

4 w h e n ( i o . v m e O u t . d a t a . f i r e ) {

5 q u e u e _ c o u n t : = q u e u e _ c o u n t + 1 . U

6 }

7 . . .

8 D a t a . i o . e n q < > i o . v m e O u t . d a t a

9 . . .

1 0 s w i t c h ( r S t a t e ) {

1 1 i s ( s I d e l ) {

1 2 w h e n ( D a t a . i o . c o u n t = = = 0 . U & & i o . o u t . r e a d y ) {

1 3 r S t a t e : = s R e q

1 4 }

1 5 }

1 6 s ( s R e q ) {

1 7 w h e n ( i o . v m e O u t . c m d . f i r e ( ) ) {

1 8 r S t a t e : = s B u s y

1 9 }

2 0 }

2 1 i s ( s B u s y ) {

2 2 w h e n ( q u e u e _ c o u n t = = = ( B u f f e r L e n - 1 ) . U ) {

2 3 r S t a t e : = s I d e l

2 4 a d d r _ r e g : = a d d r _ r e g + ( q u e u e _ c o u n t * ( x l e n > > 3 ) . a s U I n t ( ) )

2 5 }

2 6 }

2 7 }

C o d e 3. 3: T h e i m pl e m e nt ati o n of t h e i n n er p art of t h e g u ar ds, h er e, t h e R e a d er b uff ers t h e d at a fr o m

t h e m e m or y.

1 i f ( G u a r d _ e n a b l e d ) {

2 w h e n ( F U . i o . o u t = / = g o l d e n _ v a l u e ) {

3 i s B u g g y : = t r u e . B

4 / / c o r r e c t t h e o u t p u t

5 i o . O u t . f o r e a c h ( _ . b i t s : = D a t a B u n d l e ( p a t c h _ v a l u e s . g e t ( g u a r d _ i n d e x ) ,

t a s k I D , p r e d i c a t e ) )

6 }

7 . . .

2 1



8 }

9 else {

10 io.Out.foreach(_.bits := DataBundle(FU.io.out, taskID, predicate))

11 }

12 io.Out.foreach(_.valid := true.B)

13 ValidOut()

Code 3.4: The implementation of the guard function for the verifier. In this instance the guard

function compares the node’s output to the patch value. If they don’t match the isBuggy flag is set

to true and the output is patched (corrected) by the guard, In the verifier, patch values are equal to

golden values.

3.4 Guard wrappers

We know so far that each guarded component will have an attached guard, and this guard contains

at least an input buffer, writer buffer, and a guard function. The connections between the guards and

their guarded components or memory are fully ’bore’d and conditional. In each execution, there will

be multiple guarded components. Guard wrappers serve as the top module for all the guards mixed

in with the H-RTL (Figure 3.3). Having a separate guard wrapper can provide shared I/O for the user

to access the guards. If guards were implemented as part of the H-RTL modules, then the I/O ports

of H-RTL modules would have to be redefined. guards can be manipulated to exchange information

with each other for dynamic analysis. The writer wrapper collects the results of the analysis and

writes them to memory using buffers. An important issue we had to consider was how to handle the

write buffers filling up. We keep the circuit completely decoupled from the H-RTL and drop packets

if the buffers fill up. Note that in this case, the guards themselves continue to function, analyze, and

patch values if required. We only drop the outputs for some cycles. However, this approach contin-

ues to maintain the timing independence and fidelity of the H-RTL circuit. Code 3.5 shows parts

of the Reader Wrapper code. "numGuard" is the number of the nodes that are being guarded. And

"boreIDsList(i)" is the list of the IDs of the nodes that are being guarded. For each guard connection

a unique string is created to connect the Reader buffer for that node to the node itself. The same

implementation is done for the Writer buffer and wrappers.

1

2 val read_buffers = Seq.tabulate(numGuard) {i => Module(new ReaderBufferNode(ID =

i))}

3 val read_buf_data = List.fill(numGuard)(Wire(UInt(xlen.W)))

4 ...

5 for(i <- 0 until numGuard){

6 read_buffers(i).io.addrguard := io.addrguard(i)

7 io.vmeIn(i) <> read_buffers(i).io.vmeOut

8

9 read_buf_data(i) := read_buffers(i).io.out.bits
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10 read_buf_valid(i) := read_buffers(i).io.out.valid

11 read_buffers(i).io.out.ready := read_buf_ready(i)

12 //Boring connections to the node

13 BoringUtils.addSource(in_data(i), s"in_data${boreIDsList(i)}")

14 BoringUtils.addSource(read_buf_valid(i), s"in_valid${boreIDsList(i)}")

15 BoringUtils.addSink(read_buf_ready(i), s"in_ready${boreIDsList(i)}")

16 }

Code 3.5: The implementation of the Reader wrapper.

The designer can direct grind to remove the guards from the finalized H-RTL this can also

happen automatically. We use FIRRTL to manipulate the H-RTL and remove the guards [1]. As

shown in Figure 3.1 grind includes two interfaces for the designer to specify which guards to build

in, i)a global table and ii) a per-module flag (e.g., shown here https://bit.ly/3j21U3k ).

To remove all guards the designer has only had to unset a flag in a JSON file for that ID. grind

will not include any guard annotations and FIRRTL will cut the wiring as shown in Figure 3.2. This

makes the guard I/O ports dead i.e., isolated logic with floating I/O ports. Subsequently, dead-code

elimination https://bit.ly/2WxYXyj will mark and remove the guards.

23

https://bit.ly/3j21U3k
https://bit.ly/2WxYXyj


Chapter 4

Verifier Tool

In this chapter, we develop a grind tool that leverages guards to verify the correctness of each

component in a circuit. The Verifier validates the HLS translation from C-to-hardware and per-

forms equivalence checks fully automated and without any user intervention (apart from the initial

interaction). grind Verifier includes the following novelties:

• We pinpoint the exact cycle and additional information an H-RTL signal deviated from the

software values, this additional information can be adjusted as shown in Figure 3.4. As far as

we are aware, we are the first to demonstrate error checking of end-to-end accelerators.

• We create an iterative approach that retains only the scope of an erring H-RTL signal in each

iteration. This helps check larger H-RTL circuits with less memory usage.

• The H-RTL circuit can continue execution even if an error causes a signal to deviate since

guards patch correct values during execution. This enables us to catch multiple errors and
prevent hard-stop failures.

As we go through the behavior of each node in hardware, we look for the nodes that show

unexpected behavior in comparison to the software Metadata (golden values). This misbehavior

can be detected by placing a comparator on each one of the output values or signals (that have

a corresponding golden value). For this framework and the limitations on space and performance

trade-off, we place all guards on the output values of modules (nodes). This means that the guard

function will receive the golden values as an input to compare against the node outputs and patch the

node outputs with the golden values if they don’t match. Nevertheless, data dependency can be the

root cause of many reported bugs, a faulty segment of the design can propagate faulty values through

every path that is data dependent upon it and introduce several correctly implemented components

as buggy. merely because they were fed the incorrect data propagating through the dataflow. This

will make finding the root cause of incorrect behavior more difficult for the user and doesn’t allow

the user to catch other faults unless they fully fix the first one that showed up. And even worse, it

can sometimes interrupt execution.

In [28] the corresponding signals that are needed to determine the dependencies have to be

recorded. The trace data is then analyzed to determine which conditional dependency was relevant
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for the captured execution. However, memory space on chip is limited. And recording all the needed

signals to map back dependency bugs to their root causes would require memory space and human

post-processing. In this work, we take on an approach to isolate faulty locations from the rest of

the circuit and make sure that these bugs do not propagate through the execution. We do that by

implementing the guard function as a comparator that corrects the output of a node. Verifier guards

use unique IDs to map the hardware modules to their software representation, they receive the values

extracted from the software intermediate representation (golden values) for each node alongside

their IDs, check the hardware output with the same ID against them, and rewrite the output if they

did not match. Hence, isolating the rest of the circuit from this misbehavior.

Figure 4.1: Guarding the right location isolates the faulty area: The a+4 adder is producing an
incorrect result. a) The Return node is guarded and the fault propagates through the circuit. b) the
if statement is guarded and the fault remains inside BB0. c) both a 4 and select are faulty. d) the
outputs of BB0 and BB2 are guarded.

(a) Flagged guards (b) Flagged guards (c) Flagged guards (d) Flagged guards
Return b if(a>b) - if(a>b), Return b

Table 4.1: Statements that are reported as faulty in each Figure 4.1 case.

To further look into the usage of guards in dependency bugs, let us look into the dataflow shown

in Figure 4.1, a Control-Flow Dependence is shown where the result of the add operation a a 4

puts a condition on the correctness of the path the program will take as well as the computational

results. In Figure 4.1 (a) and (b) this adder (a a 4) misbehaves, let’s say that it decreases a by

the amount of 4 instead of increasing. The if-else statement will act incorrectly as well, and b 0 is

returned, which causes the return node output to be incorrect. Now let’s assume that the return node

is guarded and its output is corrected, and a fault flag is set to true. as Shown in Figure 4.1(a), (green

stands for module correctness, dark red for root fault, and light red for propagated fault). However,
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the bug was initiated in a 4 if we guard the i f a b statement, this bug will not propagate past

that location and will stay within the BB0 block, we call this process isolating the fault. Now let’s

say there are multiple bugs in the circuit as shown in Figure 4.1(c). in this case both a 4 and select

are faulty, meaning that the select node will both get a wrong input and is faulty itself. Two things

can happen: i) the select node produces a wrong output as well. ii) the two faults cancel each other

out. and the select node (even though faulty) will produce a correct result. The way to effectively

capture both faults in this scenario is to guard both output statements of each basic block BB0 and

BB2 (We refer to the outputs of basic blocks as Live-outs). Figure 4.1(d). Here, both Returnb and

i f a b are flagged as faulty and even though both of them are faulty because of their parent

nodes a 4 and select, the faults are isolated and by guarding the parents the user will capture both

a 4 and select. In a trace-based approach, the user first had to capture a 4 as the first location of

divergence, fixed it and then figured that select is faulty too in the next runs. Table 4.1 further shows

what the user is seeing in the guard reports in each case.

4.1 The iterative Verifier

In previous methods where a trace of the hardware execution is recorded, either a user or a post-

processor has to go through the signal and value trace to look for the place the first divergence hap-

pened. Moreover, in this scenario, since the faulty component was not isolated from the rest of the

dataflow the faulty value will propagate and taint the rest of the path, so the user has to fix this mod-

ule first, and repeat the process to find further buggy behaviors in the rest of the circuit, moreover,

in larger circuits, recording every signal and value will become a huge memory overhead, pushing

designers to choose between recording parts of the needed information for optimization purposes or

record everything in multiple runs. Our proposed debugging algorithm improves upon classic bug-

recording techniques and takes advantage of the guarding interface alongside the Metadata extracted

from the intermediate software. We aim to record every place that the hardware diverged from the

correct path (golden model) while dismissing divergence caused by dependence (this is where the

dependence graph information collected as Metadata comes to use).

Figure 4.1 gave us an idea of how isolating faults can help capture them more efficiently. One

way to use guards to isolate the faulty components from each other and the rest of the circuit is

to set guards and every possible component’s output. Doing so, in one run, every node behaving

functionally incorrect will trigger its guard to replace the output and set the faulty flag to true, pre-

senting the user with a list of the buggy components. With this knowledge, the user will have a clear

notion of the buggy components in the circuit and will further have to examine those components to

understand the root cause for that component’s buggy behavior. However, guards come with a cost.

for each guarded node, a guard function and read/write buffers are placed in the circuit. This amount

of added computation and memory usage will have an overhead on the limited memory, or on the

timing and performance overhead of simulation. Keep in mind that usually, only a small and limited

part of a circuit is buggy, so this approach will practically waste memory and time on processing
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Figure 4.2: The grind iterative H-RTL verifier toolflow.

correct units and fall into the same problems that tracing techniques face. We present an effective

algorithm that takes advantage of guards and the golden values while optimizing memory usage.

Algorithm 1 and Figure 4.2 illustrate this Verifier. As shown in Figure 4.2 the grind works in

three phases. Phase 1:Extract golden is run once on the LLVM code, data is stored to a .JSON file. 1

The HLS compiler [54] dumps the program-dependence graph and the golden values. 2 We insert

software instrumentation to trace the SSA registers and memory live-outs from a CPU run. The

golden values are written to the DRAM, and are consumed by guards during the FPGA or simulator

run. Phase 2: Checking. We instrument the H-RTL signals of the guarded modules (the next section

discussed how we choose those modules). In 3 , the instrumented H-RTL is synthesized and mapped

onto the FPGA. In 4 , the guards write the IDs and information of the mismatched signals to the

DRAM. In Phase 3: Update guards, we use the guard output to identify H-RTL signals that deviated

from the SSA registers. 5 We then backward slice the SSA form and update the guard list to include

the control/data predecessors i.e., we check if the errors originated earlier in the circuit, and with

guarding each slice we isolate the positives. We keep iterating phases 2 and 3 until we find the actual

faults. The actual implementation of this tool is further discussed in the Appendix.

Algorithm 1 shows what happens during the Verifier code execution at a higher level. First, we

need an initial set of nodes to inspect (since we don’t want to guard the entire circuit) we define the

initial set of nodes as Memory ops, control ops, and live out values, since any Basic Block’s output

will show in one of these forms. So basically, we are setting inspecting units at the end of each basic

block. If there is a faulty component inside that basic block, it will show up in one of these forms

and then the Verifier knows which basic blocks contain faulty components and focuses on them.

Step 1: we insert the guards to the initial list and in Step 2 we run. After this run, we know exactly
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which Memory ops, control ops, or Live-outs were faulty, keep in mind that these faults could either

be because they were faulty, or because they were fed faulty values by their predecessors. This is

where the dependence graph in the collected Metadata comes to use. We use the dependence graph

to find the predecessors of these faulty initial nodes and update the list of the next iteration nodes

to i)the nodes that showed a fault in the previous run ii) their predecessors in that basic block. If

there is not enough memory space for all their predecessors, we can add the predecessors in smaller

amounts, even one by one in each iteration. and this is step 3, updating the guards. After iterat-

ing on the entire set of faulty predecessors the verifier is done, if a node had produced a faulty

value at first but generated a correct value when its predecessors were guarded the node is declared

as not faulty, and if it still produced the wrong value after receiving the correct guarded inputs, it

is in fact faulty. The implementation of the verifier tool is further explained in the Appendix chapter.

Algorithm 1: H-RTL Verifier
Global: Guards = [Memory and Control ops, live-out components]; ROI =

1 Verifier(Circuit) while Guards[] predecessors are buggy do
// Inserts guards

2 foreach g in Guard[] do
3 Circuit.add(g)

// Run circuit with guards, simulation or on FPGA
4 ROI = Run(Bit, Golden[])

// Backslicing, add guards to the predecessors of buggy components and
remove guards from correct components

5 foreach signal in ROI do
6 if signal.failed() then
7 Guards.add(signal.predecessors())
8 else
9 Guards.remove(signal)

4.2 Working Example

In this section, we illustrate the tool with an example. Figure 4.3 shows the Relu data flow, a nested

loop. The numbers in each dataflow node indicate the SSA register id. in this example the gep7

node (7 is the node ID) has a stuck-at-error that causes the faulty value to propagate and taint its

successors e.g., load8 select11 comp store12. The goal of the checker is to report only gep7 to the

user, while if we had run this circuit with a tracer, load8 select11 comp store12 gep7 would have

mismatched from the golden value. And aside from the large memory trace, if let’s say select11 was

also faulty, the user would have no way of knowing. The Verifier must first observe Store12 as faulty

in its initial run, and then zoom on only Store12’s predecessors (that includes gep7) and at the end,

present gep7’s ID, the cycle on which it produced the fault and the faulty data to the user.

Going through the steps that the Algorithm will take to identify the fault: In the first iteration, the

guard list is initialized to the live-outs, control-nodes, and memory nodes in the H-RTL. The guards

will compare the outputs of these nodes to the golden values and report store12 as faulty, meaning

the data packet for ID 12 will have the fault flag set to 1 and Guards will patch the output of store12
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Figure 4.3: Illustrating each phase of the H-RTL verifier in a Relu circuit. gep7 has a stuck-at-zero
error.

with golden values of the to ensure subsequent nodes (if available) are not tainted. The intuition

here is that guarding these nodes in the datapath help ’narrow’ the region of interest, since we no

longer will look into nodes such as add13, and cmp14, they are irrelevant. In the second iteration,

we guard the backward slice of the store12 using the dependence graph information, select11 and

gep7 are guarded. In this iteration, gep7 will fail the checks, but store12 will work correctly as gep7

is guarded and patched now, load8 and store12 will be getting correct inputs. In the final iteration,

we guard gep7’s backward slice, its predecessor add6. Since add6 is not faulty it will not set the

fault flag to 1 and we find the true fault i.e., the failing guard from the previous iteration, gep7. The

efficacy of the Verifier is determined by the successive refining and trimming of the guards in each

iteration. As long as the memory space allows us to guard the initial list, the Verifier will manage to

verify the circuit in a number of iterations based on the limit.
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Chapter 5

Additional Tools

In this chapter, we look into two additional grind tools to demonstrate the flexibility of guards

that provides a wide range of tools that can be defined based on user demands. As we previously

mentioned, guards are instrumentation tools and can be manipulated to perform multiple tasks.

While the grind verifier is the main tool we demonstrate in this thesis, the overall idea behind

guards is simple: functional units of hardware that are easily attached to and removed from different

components of the circuit, to inject, observe, manipulate, or process data; or any combination of

these tasks. the guards can be manipulated to implement any data processing unit on the signals of

the component they’re attached to, with or without outsourced data.

The two other tools that are introduced in this chapter are as follows:

• H-RTL Profiler A smart guard-based profiler that dynamically tracks, processes, and records

based on the user’s needs and demands.

• H-RTL Faulty A fault injector, a tool for purposefully breaking the circuit and injecting

faulty values in the circuit. This tool can be used to either inject faults to test certain debug-

gers, or used alongside the profiler to inspect the effects of a faulty module on the behavior

of the circuit.

5.1 H-RTL Profiler

In this section, we build a smart dynamic profiler for H-RTL circuits. When a designer looks into

the traces of a circuit execution, they usually only seek certain values and data which they grep out

of the large full trace. And again, they usually will have to perform a set of logical operations on

that data to finally get the results they wanted to look into. Prior state-of-the-art [33] has relied on

out-of-circuit performance counters. This leads to high DRAM traffic, wastes on-chip SRAM, and

slows down RTL simulation.

Since profilers tend to be relatively simpler circuits, consisting of a memory operation to record

the data and a simple logical unit to process the data beforehand, embedding profiler circuits in

the H-RTL and profiling dynamically during the execution is a better alternative to extracting H-
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Figure 5.1: Using guards to profile H-RTL signals.

RTL signals for post-processing, as opposed to using a large section of memory to trace everything

and later have the user go through the trace. Figure 5.1 illustrates our approach. Profiler guards are

lightweight circuits: i) Read-only the profiler guards only read the signals and do not patch in any

values; this eliminates expensive muxes. ii) Auto-enabled: the profiler are automatically inserted

into the H-RTL and can be dynamically enabled. This enables the profiling to be tuned. iii) On-chip
Stats: Finally, the user can flexibly track the statistics on-chip. An example of this sort of profiling

can be activity factor profilers, let’s say that the user wants to know how many memory accesses

were made during a time cycle interval (a,b). In a trace-based profiler, post-processing of all the

cycle activities has to be made to find this number. However, in the grind profiler, counter guards

will be attached to load and store components, check the cycle each time these components were

active, and increment the counter for the ones that were active in these cycles.

5.2 Guard based fault injector

Next, we study H-RTL circuit resiliency using guards. We use two types of guards for this dynamic

instrumentation. As you might recall, we previously used guards to fix faulty modules, meaning if a

module produced a wrong output the guard fixed it. Here, we do the exact opposite, a fault injector

guard will toggle the output of a node to behave faulty. We will also again use a certain type of

guard that like the verifier guards compares the outputs of the other nodes in the datapath to their

golden value and reports the mismatch, but doesn’t correct them. This way we basically break a part

of the circuit and observe how it affects the rest of the circuit. Figure 5.2 shows the guards that were

injected. We name the two types of guards that are used as faulty and checker. Faulty purposefully

injects buggy values into the circuit signals when enabled to break that module. Checker guards

check the values against golden values and report if they deviate without patching. This allows

faults to propagate through the circuit and affect different parts of the circuit, a designer then can

learn how different faults affect the circuit and evaluate how different faults can cause different

types of failures. Using this tool the HLS compiler designer gains a better understanding of circuit

resiliency and devises circuit transformations to guard against them. The three categories of bugs we

inject are i) Compute Fault: We flip the bits and inject stuck-at-zeros in the ALUs ii) Control Fault
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Figure 5.2: Example of Using guards to inject faults into Load,1 nodes while verifying resiliency in
other nodes in the path.

In this case we introduce faults in the branch and merge operators ii) This can result in incorrect

operations executing in the H-RTL circuit and even deadlock. iii) Memory Fault: Finally we pert

rube the memory addresses of memory operations and check the impact on the final memory state.
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Chapter 6

Evaluation

In this chapter, we study the functionality and performance of the grind iterative verifier, H-RTL

profiler, and H-RTL faulty. We have picked Reli Saxpy FFT Gemm Conv2D, and Stencil appli-

cations, source: Machsuite [50] benchmarks. We choose these designs because they have different

design elements, which shows that grind can be used to verify different designs. The applications

like FFT, Gemm, Conv2D are floating-point applications, and Saxpy and Relu are workloads that

have high bandwidth. The complexity of these benchmarks is discussed in Table 2.1.

6.1 grind verifier evaluation

We introduce two specific case studies and discuss the framework in practice. Using injected faults

and a real example we show how grind Verifier iteratively zooms in on the faulty components in

the accelerator. And using synthetic injected faults we study the performance of the tool.

6.1.1 Case Study I: Analysis of the Verifier by injecting faults

To evaluate the Verifier we study two forms of deployment: running co-simulation within a Ver-

ilog simulator and the other a deployment on Amazon AWS F1, Xilinx UltraScale+ FPGAs. Our

evaluation criteria are i) SRAM usage and bandwidth (§ 6.1.3): The resources consumed by the

guards impact the H-RTL size we can support and large circuits set limits on the grind guards. ii)

Time-to-check: This corresponds to the time taken to identify the faults or confirm the lack of them

(under the specific tests). It depends on the number of iterations required and whether we have to

rebuild the guard list onto the FPGA. iii) H-RTL size: We measure the size of the design-under-test

as a % of the total number of logic resources available on the FPGA. Higher % implies we can check

larger practical designs, without having to scale them down for prototyping and instrumentation.

Observed results:
The grind verifier successfully captures multiple bugs in the same amount of iterations as a

single bug, given unlimited memory.

The grind verifier requires 2—10 less on-chip SRAM than state-of-the-art trace-based

checkers [56]. grind’s iterative approach only checks a subset of signals in each iteration.
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The grind verifier can verify circuits 2—5 larger compared to prior work. We can progres-

sively scale up design size as we narrow the guarded site.

The grind verifier can rapidly trim the circuit to discard correct parts. Guards on nodes that

show no sign of fault will be eliminated by our backward slice in each iteration, which means less

than 3-4 iterations required to check a circuit with unlimited memory.

All accelerator circuits are verified end-to-end in 24hs, if we run them on FPGAs. And less than

2 hours in simulation. Prior state-of-the-art expect humans to manually identify fault from trace, a

process that could take weeks.

6.1.2 SRAM usage for the grind verifier

The average memory usage of the verifier is dependent on the size of the design, test input size, and

the location of the fault in the data flow. We observe that as long as the fault is impacting the func-

tionality of a module inside the circuit the grind verifier will capture it. We introduced multiple

arbitrary bugs in our benchmarks and in all the cases the verifier correctly pinpointed the buggy loca-

tion. We further realized that even though the initial memory usage for all bug locations is the same

since the initial list is constant (Live outs controlandmemoryops), the amount of memory that

guards consume reduces significantly in the next iterations if the bug was placed in the outer loops.

In this chapter, we refer to bugs that are embedded deep in the inner loops as bugs in "hotspots".

Table 6.1 shows the memory usage per iteration for the grind verifier to capture multiple bugs in

hotspot locations of the benchmarks. As we can observe, with no limit on memory, the verifier cap-

tures all the bugs in 3 iterations since, with no limit, all parent nodes of a faulty component inside

the basic block can be added to the guard list in the following iteration. As we can see in Table 6.1

the second iteration uses more memory than the first iteration, that is because since the bug is in the

most inner loop (hotspot) after the initial list report most of the nodes in that region will be guarded.

Relu (KB) 193.1 320.0 64.5
Conv2D (KB) 889.0 1842.6 182.2
Saxpy (KB) 23.0 54.1 7.5
Stencil (KB) 516.0 580.8 82.0
Gemm (KB) 417.0 1536.4 128.7

Table 6.1: Memory usage for hotspot bugs.

Next, we look into the effect of injecting bugs in different layers of the loops. We expect the

bugs in the most inner loops (hotspots) to have the highest average memory usage and the bugs in

the most outer layers the least memory usage. We use the Conv2D benchmark to illustrate this effect

since it has a 4 level nested loop. Table 6.2 shows how the bug placement affects the memory usage,

as we see when the bug is located in the outer loop layer the memory usage decreases significantly

in the 2nd and 3rd iteration.
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Layer1 (KB) 889.0 0.56 0.09
Layer2 (KB) 889.0 2.2 2.2
Layer3 (KB) 889.0 141.6 20.2
Layer4 (KB) 889.0 1842.6 182.2

Table 6.2: Memory usage for Conv2D based on bug location. Layer 1 means the most outer layer of
the loop and layer 4 is the most inner layer.

Finally, we will look into a case where memory is limited. We use the Relu benchmark with a

larger input size and a memory limit of 600KB. In this case, the memory limit will not allow the

verifier to add all the faulty node’s parents to the guard list immediately after the fault flag is set to

true, and must add them separately which will increase the iteration count. We insert the bugs in 4

different locations (adder gep select mul) and report how many iterations it took for the verifier to

finish for each bug. The results can be seen in Table 6.3, with unlimited memory it took 3 iterations

for all bugs.

Bug1 (adder) 12
Bug2 (gep) 9

Bug3 (select) 11
Bug4 (mul) 4

Table 6.3: Number of iterations the verifier took for each bug in Relu with the memory limit of
600KB.

6.1.3 SRAM: State-of-the-Art vs grind

We compare the amount of SRAM required against Autoslide [56] the state-of-the-art trace-based

checker. To obtain a complete picture we study errors from both hotspot regions and low activity

spots. Overall (Figure 6.1), grind has a lower SRAM requirement relative to AutoSlide, while

maintaining a low time-to-completion. grind requires 2–10 less SRAM than trace-based ap-

proaches, as expected since we start with a limited set of components and trim down on them. Also,

traces detect the bug offline and need to collect the region of interest. Since there is no oracle,

traces tend to be collected in a coarse-grained manner across a large portion of the circuit (including

those functioning correctly). grind spreads the verification over multiple iterations starting with

fewer components. In each iteration, we dismiss the correctly functioning parts of the circuit. The

amount of SRAM required is proportionate only to the activity factor and % of the circuit tainted

by the faulty signals. When the instrumented circuit is lowered onto an FPGA there is a trade-

off between time-to-check and H-RTL size. The verifier supports different flows, here we look at

three(Figure 6.12):

• 1-synthesis: We synthesize the H-RTL once onto the FPGA with the complete guard set. All

guards are built into hardware at the beginning, limiting the logic left-over and consequently

H-RTL size.
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Figure 6.1: SRAM requirement of grind vs Autoslide.

Figure 6.12: Tradeoffs between different flows in H-RTL Verifier.

• 1-synthesis: grind only builds in the guards in each iteration. As the guard list trims down,

the amount of used memory lowers as well. We observe that the highest memory usage hap-

pens in either iteration 1 or 2. In this scenario we can also bound the guards to K% of LUT and

BRAM, leaving 100-K% of the FPGA for the design. This limits the number of guards per it-

eration, and we require more iterations to check the required nodes, referred to as N-synthesis
K% in Figure 6.12 with K set to 5.

Something else we can set a limit on is the bandwidth. The bandwidth required by the verifier

depends on the number of guards in each iteration. We observe that with the injected bugs the

bandwidth usage increases between 2% and 7% for each benchmark.

We introduce two metrics i) #Guarded
#Bugs : The ratio of the number of netlist signals guarded to the

number of actual faults in the circuit. The number of bugs is fixed, which means this effectively

measures the wasted guards in each iteration. ii) Accuracy: The percentage of signals and registers

guarded in the overall circuit. This indicates the overhead of guarding in each iteration. Figure 6.15

shows how we improve accuracy as we converge on the bugs. We highlight the rate of change i.e.,

the higher rate implies that grind zooms in on the bug faster. Figure 6.14 shows the percentage of

the circuit that was guarded in each iteration. The lower the % lower the overhead. We find that on

average 69% of the guarded H-RTL signals will be trimmed in each iteration by the backslice. Note

that this rate is not fixed and varies across iterations and benchmarks. It depends on both the H-RTL

dataflow, actual dependencies, and site of error. These factors are considered in the average.

Finally, Table 6.4 summarizes the benefits of grind in comparison to prior work.
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Figure 6.14: #Guards
#Bugs rate in each iteration.

Figure 6.15: Region of interest: % of guarded nodes in the circuit.

6.1.4 Case Study II: Using the Verifier To Find real fault

In this section, we demonstrate the use of the grind verifier to identify an HLS bug reported in

commit # f ae f da of IR [54].

Cases study setup: For HLS framework we picked IR . IR [54] is an open-source HLS

tool that supports high-level languages such as C/C++. It allows users to optimize the accelerator

at the structural IR and generates the hardware accelerator as a dynamic dataflow using the nodes

described in Section chapter 2. In the backend, IR uses an open-source library of hardware com-

ponents, and the designer can extend and incorporate the new modules in the main design as long

as the nodes use dynamic interface to talk with other nodes.

We realized that this IR commit had a non-deterministic cache bug that was only triggered

under specific conditions. Here we describe how the bug was tracked down. During a run with

Machsuite [50], we found that the FFT benchmark failed and produced incorrect values for certain

memory locations non-deterministically. The challenge was that there were multiple memory oper-

ations any of which could be faulty. We used another application, Stencil2D, from Machsuite [50] to
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State-of-the-art
[56, 10]

grind

Target C only H-RTL, HLS and C
Monitoring Offline (post-

execution)
Online (in execution)

Scope User [10],
Coarse [10, 56],
Fine [56]

Whole accelerator (in-
cluding blackbox RTL)

Region-of-interest Wide. Buggy and
Correct RTL state-
ments

Focused. Only RTL
statements dependent
on bug.

Patching — Replaces buggy val-
ues with golden.

Accuracy User Iterative analysis.
Hard failues Yes. Restricts trace

information
No. grind patches

values.
Multiple bugs No. Errors impact

other ops.
. Guards patch to iso-

late error during execu-
tion.

DUT Size Small Large

Table 6.4: State-of-the-art vs grind for verifying H-RTL

check if the bug is benchmark agnostic i.e., Load component faulty. Interestingly, this revealed that

the deviant memory behavior was triggered only in FFT. To further narrow it, we activated guards

on all Load components. Since the grind verifier supports patching, in a single run we identified

which one of these loads was erring. In this case, only one load was faulted. Since others functioned

correctly, we isolated the fault to be external to the load itself. Following this, we instrumented and

guarded only the flagged load, and turned on multiple guards that analyzed all the incoming and

outgoing ports between the erring load and the cache. This detected that the return cache value was

incorrect; however only on specific cycles. Upon further investigation of guards, it turned out that

cache had a register overwritten when you had a read miss followed by a write. This highlights the

benefits of the grind verifier over asserts; we can let the patched execution continue to help us

identify the temporal pattern behind a particular bug. Asserts would simply kill the execution at the

load, leaving us with no further information.

Design Setup: In Figure 6.16 shows the overall system design that we used to run the experi-

ment. The system consists of an accelerator core, which is generated by HLS, which is the design

that we want to verify. The accelerator is interfacing with a cache that is connected to the main

memory using the AXI interface. To enable verifying, grind injects the guard nodes inside the

accelerator core alongside the metadata streamed in. The Verifier shares the AXI bus with cache

through an arbiter. Furthermore, there is a control unit inside the design that allows the host core to

control the accelerator. The verifier writer is connected to the accelerator core using Bore connec-

tions as a hardware compiler pass in FIRRTL. We also provide a memory allocator that allocates

memory for dumping verified traces in the main memory.
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Fi g ur e 6. 1 6: D esi g n S et u p

6. 2 H- R T L p r o fil e r a n d H- R T L f a ult y e v al u ati o n

I n t his s e cti o n w e l o o k i nt o t h e a d v a nt a g es of t h e t w o a d diti o n al t o ols H- R T L pr o fil er a n d H- R T L

f a ult y. We first c o m p ar e t h e a d v a nt a g es a n d m e m or y u as g e of a d y n a mi c pr o fil er wit h st at e- of-t h e-

art. A n d t h e n us e H- R T L f a ult y t o i nj e ct f a ults i nt o o ur b e n c h m ar ks a n d o bs er v e t h e eff e cts.

6. 2. 1 H- R T L p r o fil e r vs st at e- of-t h e- a rt

We q u a ntit ati v el y c o m p ar e o ur d y n a mi c pr o fili n g a g ai nst pri or st at e- of-t h e- art (tr a c e- b as e d). We

c o m p ar e t h e f oll o wi n g pr o fil ers i) B as eli n e: tr a c e v al u es t o D R A M a n d p ost- pr o c ess i n s oft w ar e ii)

A C T: pr o fil e v al u es w h e n a n ot h er B o ol e a n si g n al i n di c at es t h e o p er ati o n is a cti v e (t his is r e pr es e n-

t ati v e of st at e- of-t h e- art). iii) H W: Pr o fil e pi p eli n e si g n als i v) M E M: Pr o fil e t h e m e m or y a d dr ess es

w h e n t h e o p er ati o ns ar e a cti v e. v) A D D E R: Pr o fil e c o m p ut e o p er ati o ns. Fi g ur e 6. 1 7 s h o ws D R A M

tr af fi c r e d u ci n g i n µ gri n d vs st at e- of-t h e- art [ 3 3] a n d Fi g ur e 6. 1 8 ill ustr at es µ gri n d S R A M us a g e vs

st at e- of-t h e- art [ 3 3]. µ gri n d s h o ws a pr o misi n g r e d u cti o n. We o bs er v e t h at:

G u ar d- b as e d pr o fili n g s a v es 2 0 0 x — 3 5 0 0 0 x ti m es D R A M tr af fi c b y b uil di n g i n t h e pr o fil er o n- c hi p

at t h e sit e of t h e H- R T L si g n al a n d eli mi n ati n g t h e n e e d t o writ e t o D R A M.

G u ar d- b as e d pr o fili n g s a v es o n- c hi p S R A M b y h el pi n g t h e us er r a pi dl y cr e at e d y n a mi c pr o fil ers

t h at a ut o-i nstr u m e nt o nl y t h e r e gi o ns of i nt er est.

6. 2. 2 H- R T L f a ult y e v al u ati o n

O ur m et h o d ol o g y f or e v al u ati n g f a ult i nj e cti o n c o nsists of t hr e e st e ps: 1) W h er e t o i nj e ct b u gs ? Usi n g

t h e H L S c o m pil er, w e r a n d o ml y pi c k e d 1 0 % n o d es of e a c h a p pli c ati o n of a n y o n e of t h es e cl ass es.

c o m p ut ati o n, c o ntr ol, or m e m or y. 2) W h at is t h e b u g ? We s el e ct e a c h n o d e’s o ut p ut (t h e n o d e c a n

h a v e m ulti pl e o ut p uts) a n d t h e err or v al u e t o i nj e ct t h at o ut p ut. 3) Err or i nj e cti o ns r u ns: We i nj e ct

o n e f a ult i n t h e H- R T L cir c uit, a n d m o nit or f or cr as h es, d e a dl o c k, a n d o ut p ut c orr u pti o n.

I n Fi g ur e 6. 1 9 w e pl ot t h e distri b uti o n of f a ults f or e a c h t y p e of err or. F F T is a m e m or y-i nt e nsi v e

a p pli c ati o n a n d as a r es ult, t h e pr o b a bilit y of s h o wi n g a m e m or y b u g c o m p ar e d t o ot h er a p pli c ati o ns

3 9



Figure 6.17: DRAM traffic. grind vs state-of-the-art [33]

Figure 6.18: Normalized SRAM. grind vs state-of-the-art [33]. Lower bar means more reduction
in SRAM

is higher. In Conv and Gemm, since the control flow in the application is more complex compared

to the other applications, it is more likely that a new bug in the circuit introduces a control type of

bugs. This information can give insight to HLS compiler designers as to where to start debugging a

faulty change in the compiler.
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Figure 6.19: Outcome of Fault injection
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Appendix A

Code

A.1 Inserting guards

In this section, we look into the actual steps to add a single verifier guard in the circuit. To extract
the data and dependence graph from the LLVM in the IR project follow the instructions below:

1 cd muir/build/scripts
2 source setup.sh
3 cd /muir/build/tests/c
4 make clean
5 make

This will create the JSON files. The files with the names benchmarkname.muir.JSON contain the
dependence garph information.

The steps to insert a guard in the original circuit are as follows: First we change the platform from
IR to IR-sim which is a driver that performs the simulation for IR. In this example we choose

the Relu benchmark to instrument, first we open the file:

1 vim /muir-sim/examples/relu_config.JSON

This file is a config file for the simulation driver. Let’s say we have chosen a node with the ID of 16
to be guarded. The config file has to be updated to show that the number of guards is set to 1 and
the list of guard IDs is equal to 16. This information then is passed to the Reader/Writer wrappers
to set the connections.

1 "Accel" : {
2 "nameAccel" : "relu",
3 "numPtrs" : 2,
4 "numGuard" : 1,
5 "numVals" : 1,
6 ...
7 "boreIDs" : [16],
8 ...

In the generated Scala code, the Guard enable flag has to be set to true and a golden-value file has
to be passed to the node that is being guarded:

47



1 vim muir-sim/hardware/chisel/src/main/scala/generator/relu.scala

1 ...
2 val binaryOp_inc1316 = Module(new ComputeNode(NumOuts = 2, ID = 16, opCode = "

add")(sign = false, Guard = true, GuardVals=GuardReader("relu.dbg"){16}))
3 ...

Make sure that this file, containing the golden values is present in the directory. The first column is
the IDs and the next ones are the values.

1 cd muir-sim/hardware/chisel/src/main/resources/guards/
2 vim relu.dbg

Finally, run and simulate the instrumented circuit with the followiwng command:

1 cd muir-sim
2 python3.7 run.py --accel-config examples/relu_config.JSON

A.2 Verifier implementation

Now that we know how guards can be manually added to the circuit the idea of the iterative verifier
being fully automated seems simple. The verifier takes following steps:

• Add a "benchmarkname".dbg file containing all the golden values to the path:
muir sim hardware chisel src main resources guards

• Enable guards for the initial list using the node IDs modifying the JSON and Scala files.

• Simulate and run.

• Update the guard list based on the dependence graph JSON file, if a node is faulty, add its
parent nodes to the list. if not remove node ID from the list.

• Repeat until there are no more parent nodes in the basic block to inspect.
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