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Abstract

High-level synthesis (HLS) compilers enable the rapid creation of custom accelerator circuits [54,
32, 37, 42]. However, HLS-generated RTL (H-RTL) is inconsistent in terms of quality, too verbose
to be comprehensible, and may even have functional errors [38, 26]. We propose a framework that
helps designers inspect, instrument, and profile H-RTL. State-of-the-art tools such as [22, 56] have
predominantly focused on tracing. Unfortunately, tracing requires a massive amount of memory,
limits the H-RTL size, allows for faults to propagate to other modules, and expects the user to
manually identify the signals. Further, the tools can only run post-execution [24, 21, 23] which

limits the types of analysis the designer can perform.

In this thesis, we propose grind, a dynamic instrumentation framework that enables computer ar-
chitects to observe, and modify signals during the execution of the accelerator prototype. The key
technique is guards, additional circuits that we automatically attach to the H-RTL (without requir-
ing human intervention for insertion or removal). Guards perform two activities: i) Run analysis
functions on the values fed from the H-RTL signal. ii) Inject values into registers, wires, and mem-
ory entries of the H-RTL and patch the execution. During prototyping guards get mapped onto the
FPGA along with the H-RTL; grind removes the guards once the H-RTL is finalized. We use
guards to develop a verifier tool that instruments the H-RTL iteratively and locates a faulty module.
Compared to state-of-the-art [56], We also introduce two additional tools: i) H-RTL Faulty, which
uses guards to inject faulty values and observe the propagation of erroneous values in the circuit,
and ii) H-RTL profiler, a lightweight guard for profiling the data values, hardware signals, and ad-
dresses. We require between 200-35000X less DRAM traffic than off-chip profilers
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Chapter 1

Introduction

In recent years there has been a surge of research in high-level-synthesis compilers (HLS) that
auto-translate high-level languages [31, 30, 53, 54, 52, 41, 45, 16, 47, 5]. High-Level Synthesis
(HLS) promises improved designer productivity by allowing designers to create digital circuits on
FPGAs. However, the widespread adoption of HLS tools is limited by the lack of on-chip verifica-
tion ecosystems that bridge between the software and the generated hardware. Computer architects
broadly acknowledge that the primary challenge in HLS is the opaqueness and inaccessibility of
the generated RTL (H-RTL) [38]. Further, even industry-standard HLS compilers are known to
break the H-RTL in eccentric ways due to incorrectly specified pragmas [26]. The challenges have
been further compounded by the plethora of HLS compilers targeting both fixed-function and re-
configurable hardware [31, 30, 53, 54, 52, 41, 45, 16, 47, 34, 7, 5]. Recent HLS compilers translate
semantically rich code into hardware, including tasks [41], nested control[32], irregular memory ac-
cesses, and nested parallelism [37]. This, coupled with the fact that HLS compilers also include an
extensive set of optimization passes makes the final H-RTL opaque to the designer and challenging
to manually verify. [13, 54, 32, 48].

1.1 Challenges of working with HLS

A leading HLS expert cites the lack of mature tools to inspect H-RTL as being a key hindrance [13,
Page 8] [38] to HLS adoption. Multiple tools exist (e.g., Valgrind, Dynamorio, gcc -p) to analyze
the output of software compilers (i.e., binaries) on CPUs. However, H-RTL lacks such a framework.

The most widely used approach to verifying HLS-generated RTL (H-RTL) is comparing the
final memory state against the expected values (gathered from the software) after the simulation
and run, the comparison is either done manually by the user or automatically and the first place of
mismatch is reported to the user. However, this method is woefully inadequate: i) When a mismatch
is identified, the designer must look through a long simulation trace and walk backward over time
to narrow the cause, and ii) the process may require a detailed analysis of tens of thousands of
signals, throughout thousands of simulation cycles. further, the primary suggestion from commercial

vendors is to use waveforms [3] for verifying functionality. State-or-the-art works in academia have



sought to supplement waveforms with execution traces obtained either through simulation or from
an FPGA [24]

Waveforms are the most prevalent approach to analyzing HLS-generated RTL (H-RTL) [3].
This requires the user to inspect the H-RTL netlist through potentially millions of simulation cy-
cles [35]. Due to the associated overheads, waveforms are typically collected using RTL simulation,
not tractable for large designs. State-of-the-art tools help annotate waveforms with additional infor-
mation gathered either through simulation or from an FPGA [25, 9, 20, 28, 56]. They enable the
user to focus on a specific segment of the trace and waveform and place an excessive burden on
the end-user to examine the trace. They leave open the question of '""how can a user know which
portion of the H-RTL to focus on, how to catch multiple faults and failures, and how to deal
with faults that cause the execution and run to fail?'' Some works have provided a gdb-like in-
teractive environment [8, 12, 23, 29, 11]. The user has to markup the required software variables
and statements, and the HL.S compilers track the corresponding portions in the H-RTL. They adopt
stop-the-circuit semantics (similar to an assert [51]) and are useful only for post-mortem. They do
not permit progress past the assertion. This cannot support tools such as fault analysis where the tool
needs the circuit to continue execution with faulty values propagating through the circuit. grind is a
novel tool to tackle the problem of instrumenting H-RTL, while prior work has focused exclusively

on post-execution analysis.

1.2 Why do we suggest a new H-RTL instrumentation tool?

The challenges that designers and users face while verifying H-RTL were mentioned in the previ-
ous section. The main thing we aim to achieve in this work is to help the designer instrument the
HLS-generated RTL with minimum effort and flexibility, to understand the dynamic execution of
hardware. Also, many designers may not be fully familiar with every aspect of the H-RTL, hence, an
automated tool that only requires the user to be familiar with the data flow to run it can be extremely
beneficial. In contrast to previous methods where the designer had to look through the traces of

hardware execution (see Figure 1.2). The goals of this work are as follows:

* Instrumentation of the H-RTL with minimum to zero effort i.e., the designer should be able
to read, analyze and write H-RTL signals without needing to edit the H-RTL manually or
knowing a hardware language.

* Flexible and conditional instrumentation i.e., a configurable framework that adds in or re-
moves additional logic and SRAM only for the signals instrumented in the H-RTL, allowing
the framework to remove the instrumentation entirely from the H-RTL once the accelerator is

analyzed as well.

* Dynamic instrumentation i.e., the instrumentation can analyze and modify signals during the
execution. We demonstrate that live execution analysis is essential to creating verifier tools

that avoid muddled-up logs.



1.3 The target platform

We target IR [54] as our platform in this work. IR is an intermediate representation for accel-
erator microarchitectures. IR operates as follows: i) A decoupled graph from the actual hardware
components is generated, which decouples the microarchitecture optimizations from algorithm/pro-
gram optimizations and the actual RTL ii) this graph is translated to Chisel, as intermediate hard-
ware. iii) Finally the Chisel representation translates into FIRTLL and Verilog. The execution model
and cycle-level performance are maintained.

IR graph represents the microarchitecture components of the hardware and the data transition
between these components. Since this graph is written in Chisel, which is at a higher level than RTL,

optimizing the accelerator microarchitecture becomes less complicated and easier [54].

1.4 Our approach

We introduce grind, a framework for dynamically instrumenting HL.S-generated RTL. Figure 1.1
shows an abstract view of the concept of grind. We instrument both the intermediate software and
hardware (Chisel.) The instrumentation of LLVM is done to extract helper data (Metadata) and the
instrumentation of Chisel is done to either modify, inject or observe values in the hardware. The key
technique of grind is guards, hardware modules that we attach and inject to the original H-RTL
to tail and shepherd specific register, memory entry, and signals (Chisel instrumentations). grind
builds on modern RTL compilers (Chisel and FIRRTL [27]) to add and remove guards. Guards are
mapped onto the FPGA prototype with H-RTL; they can also be co-simulated in the verilator. During
the execution, guards dynamically extract, run analysis logic, and update the H-RTL’s signals. This
eliminates the need to trace a verbose dump of signals to the DRAM for post-execution analysis, as
guards can decide which data would be useful to record and which data to discard. Guards only need
to write post-analysis data to the DRAM. This saves DRAM traffic, reduces the on-chip SRAM, and
enables larger circuits to be analyzed. Further, the analysis functions run concurrently in hardware
which reduces the overhead typically associated with instrumentation.

Figure 1.2 shows the toolflow of our approach to verify a circuit, the general idea is instrument-
ing the circuit, and in scenarios such as verification, doing it multiple times based on the reports
of the previous instrumentation. This instrumentation allows the user to verify (amongst other side
tools) the design in the way that they prefer, freely and more flexible. Further, we know that not
every user working with an HLS framework is familiar with every piece of code of the framework
as usually multiple designers work on a project, and editing the code manually to observe and ma-
nipulate the design could be a time-consuming task. We also realize that previous debugging tools
face two main obstacles, memory and time. As mentioned above, we address the issue of memory
overhead by only recording the signals that are useful for the user and storing as minimal values on

memory as possible. We also propose a fully automated framework, meaning user interference is
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not needed after their first interaction with the framework. So time won’t be as much of an obstacle

as it’s just a program running without needing human attention and time.
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Figure 1.2: This figure provides a comparison between previous trace-based HLS verification
toolflows and the toolflow of our approach.

We create an automated verifier and two other tools to demonstrate the use-cases of grind and
guards. As shown in Figure 1.3 a) H-RTL verifier: a novel verifier, that pinpoints the RTL statements
(alongside their cycles and any other additional information needed) in which the H-RTL deviated

from the expected software values. grind verifier exploits automatic guard injection scripts (imple-
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Figure 1.3: grind Tools

mented using Chisel and FIRRTL [27] tools) to create an iterative and iterative verifier that searches
through subsets of modules instead of the entire circuit and discards part of the circuit that behave
correctly. b) H-RTL Faulty : leverages guards to inject a variety of faults (e.g, stuck-at-zero) into
specific H-RTL signals, while simultaneously using guards to check other signals in the circuit.
Faulty helps the user check the resiliency of the circuit. ¢) H-RTL Profiler : a tool that builds into
hardware the logic for extracting and summarizing data during execution to avoid large data dumps
to the DRAM. However, as we further demonstrate guards and grind we learn that the use-cases

of this instrumentation platform are not limited to these three tools.

The contributions of grind are as follows:

* An open-source framework for dynamically instrumenting HLS-generated RTL (H-RTL)
with guards (in many ways). FPGA synthesis reveals that guards impose limited overheads,
10—15% extra logic, and 5% Mhz penalty.

* An iterative verifier (one of the instrumentation techniques), that can identify and report hard-
ware errors and help HLS compiler research. We study complete accelerators [50, 49] and
demonstrate that: i) we check circuits 5 larger than prior state-of-the-art, and ii) we can
complete verifying in under 24hrs (including FPGA synthesis) and less than 4 iterations (less

than 2hrs in simulation).

* Two additional tools, H-RTL faulty, for studying fault resiliency and, H-RTL profiler, for
collecting live statistics. These tools demonstrate the benefits of guards that can analyze live
execution without needing to dump signals to the DRAM for post-mortem. We save 200—
35000 DRAM traffic and 2—10 of on-chip SRAM.

We next talk about H-RTL instrumentation and the challenges of it, errors and faults that can
happen in H-RTL and the ones we look at and verify in the evaluation, the benchmarks used to
verify and evaluate our work and their complexity, and prior works done in the field in Background
and Related work.

Next, we look into the design and implementation of Guards in Architecture and Design. The
first step in the design is to instrument the software to extract the DFG values and IDs and the
dependence graph information for the verifier tool. Next, we look into the "Boring" tool and how it
allows us to automatically and conditionally wire guard modules into the main circuit. And finally

the internal design of guards and the wrappers that attach them to the original circuit.



In the Verifier Tool chapter we look at our main  Grind tool. We discuss the idea of iteratively
verifying the design and how the automation of guards helps us do this, the algorithm behind the
verifier, and a working example.

We then look into two additional tools built using Grind in Additional Tools. H-RTL profiler
is a smart profiler that dynamically profiles specific data and H-RTL faulty is a fault injector which
allows the designers to test their design under potential faults.

Finally, we evaluate the introduced tools in Evaluation we first inject bugs into the benchmark
circuits and catch them using the verifier. We further look into an actual bug that we traced using
the iterative verifier as a real-life use case. Next, we evaluate the profiler and fault injector tools by
reporting memory usage and observed outcomes of the injected faults.

Further implementation discussion and instructions of using the platform are presented in the

Appendix.



Chapter 2

Background and related work

In this chapter, we present a quick overview of the [54] dynamic dataflow platform and the chal-
lenges of H-RTL instrumentation and the motivation behind Grind. We next introduce several
possible H-RTL faults and errors that we examine and the benchmarks we use to test our tools. We
finally learn that the motivation behind grind is the manual steps that the user had to take to find
and fix faults in [54].

2.1 Dynamic Dataflow

HLS tools such as [54] construct circuits with dataflow components. Such components typically
rely on an asynchronous mechanism to exchange data, or "tokens". We choose IR [54] as our
target platform. The token exchange protocol in IR uses two signals i) one signaling the "avail-
ability" of a new token from the source component ii) the other signaling that the target component
is "ready" to accept it. This protocol is called "Handshaking". The Handshaking implementation in
the components is shown in Figure 2.1. In contrast to a predetermined, centralized controller of stat-
ically scheduled circuits. This asynchronous control allows dataflow circuits to adapt the schedule at
runtime and take into consideration the latency of certain memory access patterns and control-flow
decisions. In addition to standard functional units, dataflow circuits require specialized components
which control the flow of data between components.

The advantage of using IR as an HLS framework compared to the other HLS frameworks for us
is that the hardware components are implemented in Chisel, and we can plug our guard modules as
a hardware pass to the main design using "Boring" Connections from FIRRTL[27], this is further
discussed in the following chapters. However, grind is not limited to only one HLS framework,
and it can work with other HLS frameworks that provide a structure similar to [54]. Figure 2.1
outlines the dataflow components that are common in such designs and in  IR.

A summary of these components:

* Compute Node: applies the compute function and replicates every token received at the input
to multiple outputs; it outputs tokens to each successor as soon as possible but does not accept

any new token until all successors have accepted the previous one.
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Figure 2.1: Dynamic Dataflow Components

* Mux Node: waits for the required input to produce the output and discards the tokens at the

non-selected inputs as soon as they arrive.

* Control Node: implements program control-flow statements (i.e., if or switch) by dispatching
a token (and, sometimes, the corresponding piece of data) received at its single input to one

of its multiple outputs based on a condition.

* Memory: The system interfaces with memory through handshake ports. The write port has
two inputs (data and address) and a control-only signal from the memory interface indicates
successful completion. The read port sends an address to memory and receives data with its

corresponding handshake control.

* Task: Each task contains a set of live-ins, live-outs and local tasks queue that stores ready
and pending tasks. The task is free to process the ready tasks in any order. Each parent task
spawns children to run concurrently and children terminate and return values to the parents.

Tasks communicate either through memory or through registers in the connection.

Next, we look into how software programs are translated to dataflow circuits [54, 32, 13]. In
the absence of control flow and concurrency i.e., a single basic block the translation process is sim-
ple. The HLS compiler simply takes the data dependencies between the operations and creates a
dataflow circuit. The abstraction is broken only at the memory interface. Different HLS compilers
treat memory differently. Legup [13] serializes access to global memory, Dynamatic [32] introduces
a centralized load-store queue, and -IR [54] introduced a distributed queue. HLS tools implement
control flow through either trigger instructions or predication. Typically simple diamond-like con-
trol patterns are converted into predicated dataflow graphs. Some HLS compilers support more

sophisticated control flow. In such cases, the HLS tool processes the compiler program dependence



graph to determine the basic blocks and assign a trigger register to each basic block. The trigger
register essentially fans out to the operations in the basic block and serves as a start signal. We then
implement the control flow graph by connecting the labels to the respective branch

In this accelerator microarchitecture there is two primary class of bugs that could be introduced
1) the HLS compiler itself may optimize away a dependency or mismanage the tokens that need to be
exchanged between data-dependent operations resulting in lost data. ii) the HLS compiler typically
includes a library of black-boxed microarchitecture components (e.g., for FPUs, caches). A bug
could have been introduced in the RTL of these components. These components are invisible to
the designer since they are introduced by the compiler during the auto-synthesis process. These are
particularly challenging as the bug may originate at an invisible point in the RTL, but may manifest
in an operation thousands of cycles later. We will discuss the types of bugs we look into in this work
further in this chapter.

Back to the original question: What should a designer do to capture a potential set of faults in
the implementation of each of these components, or the connections between them? The steps are
quite time-consuming and challenging especially for a designer that is not necessarily familiar with
every registered name and component implementation. They have to enable a trace-based profiler,
either in the form of a waveform or printing/storing trace values. The designer then either has to
find the first place the trace behaved wrong manually or, if they are using a more advanced tool such
as [24], they will be informed of it. However, this method i) won’t work if the fault had caused
the circuit to fail ii) it will take a very large amount of memory iii) if there are multiple faults in
the path they won’t be caught unless the designer fixes the fault that came before them. Moreover,

grind can do more than report the faults, as it is originally an instrumentation tool, and if the user
for example wants extra information about each fault, they can manipulate the guard code to gather
1t.

2.2 Why do we need an instrumentation tool?

Any large software project is prone to bugs and code rot, HLS compilers are no exception. Industry-
standard HLS tools (particularly the internals) have largely been under the closed source. Only
recently, have there been efforts to systematically document bugs. Herklotz et al. reported between
0.5% to 3% of C microbenchmark suite failed across multiple versions of the industry-standard
HLS tools [26]. Commercial HLS tools have primarily focused on achieving the best performance,
area, and energy tradeoffs, and have often overlooked correctness. HLS bugs are difficult to identify
and exist because it is not clear to the user how the generated design behaves. HLS users implicitly
assume that the RTL is functionally equivalent to the program, but there is no certain way to val-
idate this. The most common approach has been testing and tracing the output memory. However,
this is heavyweight and test benches inherently miss out on circuit regions. There have been for-
mal approaches to prove compiler correctness. [36, 40]. They typically turn off specific compiler

optimizations and this results in designs with higher area and power penalties.



Further, we highlight the unique challenges of instrumenting H-RTL. We illustrate how dynamic
instrumentation can help catch H-RTL errors introduced by a state-of-the-art HL.S compiler [54].
Next, we quantify the complexity of H-RTL circuits we study and motivate the need for automated

tools and finally introduce the types of faults we look into.

2.3 H-RTL instrumentation vs. Binary instrumentation

HLS developers cite the lack of fixed semantics and state as to why H-RTL is harder to instru-
ment [6, 39]. i) Executable (binary) vs. Structural (H-RTL): A binary runs on existing hardware.
Instrumenting the binary entails adding instructions to read and write the registers/memory. These
instrumentation instructions run on the same hardware interleaved with the binary. Adding instru-
mentation edits the structure of H-RTL and is more involved. We have to allocate additional logic,
bind operations to the logic, and physically route values. Implication : Need automation and script-
ing to edit the H-RTL and mix in the instrumentation, after the HLS.

ii) Imperative ISA (binary) vs Concurrent Dataflow (H-RTL) A binary is an imperative
specification in an ISA defined by the underlying processor target. Further, the instrumented binary
implicitly supports sequential semantics enforced by the underlying CPU. H-RTL is a concurrent
specification in which the timing and order of operations have to be defined by grind. Implication:
Need a flexible approach to identify H-RTL events that trigger the guards and enforce the ordering
between the guards and H-RTL signals.

Centralized fixed state (binary) vs Distributed, variable state (H-RTL) Finally, any instru-
mentation framework needs to read and write state from the target https://blog.regehr.
org/archives/1450. With binary, the architectural registers and memory state is defined, cen-
tralized, and accessed via the processor instructions. All binaries refer to the same architectural reg-
isters. HLS customizes the state for each H-RTL circuit and distributes the state across the pipeline
latches, operand buffers, and scratchpads. Implication: grind needs to maintain the software to
hardware mapping so that the instrumentation reports can be presented to the user at a higher level.

We also need to support the removal of instrumentation when not required.

2.4 H-RTL errors and faults

In this section, we look into the possible bugs that can show up in H-RTL by tracking the git com-
mits in a state-of-the-art HLS compiler [54]( IR). We demonstrate how instrumentation can track
signals, variables, and cycle timing to catch underlying errors in H-RTL. We communicated with
the authors of IR and verified the cause of these errors [14, 41, 54].

H-RTL Error 1: Stuck-at-zero merge node

github@muir/SelectNode.scala hash:#3d51bcb301.

Detection: Instrument the merge mux’s output signal.
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Figure 2.2: H-RTL Error 1: Stuck-at-zero merge node caused by LLVM syntax mismatch leading to
incorrect mux wiring.
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Figure 2.3: H-RTL Error 2: Incorrect pipeline buffer depth setting leading to faulty operands.

Many HLS compilers translate LLVM’s SSA representation to RTL (e.g., LLVM IR [54, 32, 2]).
LLVM periodically updates the SSA syntax during major releases. In this instance, LLVM reversed
the order of labels in the select and ops. This led the HLS to wire the mux data lines to the merge
node in the incorrect order. Due to the mix-up, the mux is stuck at and always propagates i=0 on
each iteration of the loop; the loop keeps re-executing iteration i = 0. Tracing of waveforms cannot
catch this bug since execution will never terminate. grind’s dynamic instrumentation will capture
the output of the merge signal and the analysis will check if the values of the signal are incrementing

like a loop induction variable.

H-RTL Error 2: Incorrect dataflow pipelining

github@muir/LoopBlock.scala hash:#a4245dd02f

Detection: Instrument the output signal of dataflow operators and check against SSA register values.
These classes of errors are reported even by Xilinx’s Vivado [55]. HLS compilers place FIFO

buffers to i) enable loop iterations to start asynchronously, and ii) to balance the different critical

paths at spawns. In this instance, the HLS compiler miscalculated the latency of paths and created a

buffer with incorrect depth. As shown in the timing diagram this leads to incorrect operands being

placed on the inputs to the adder; one of the operands is from the ith iteration and the other one from

i-1th. Dynamic instrumentation will track the values in the output registers of the nodes, check the
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Figure 2.4: H-RTL Error 3: Incorrect interfacing between H-RTL and Cache leading to missed
request and circuit lockup.
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iteration index and the operands of the adder.

HLS Error 3: Faulty Cache Handshaking github@muir/Cache.scala #ea42742eaed
Detection: Instrument the cache request and response lines, and check number of requests/re-
sponses.

A common cause of the error is the interface to the shared cache (or scratchpad). Typically the
cache or scratchpad is a black box IP invisible to HLS. The HLS statically schedules loads and
stores across latency-sensitive request and response ports. In this particular case, IR HLS incor-
rectly scheduled the load(in[i]) on the same cycle as another load. This led to a load being missed by
the cache. IR HLS [54] also reported similar errors causing incorrect response errors due to wrong
address. grind instruments the cache request and response lines along with the memory nodes.
It analyzes the sequence of requests and responses to verify if every request has a corresponding
response. These types of verifiers can be since grind permits the user to define analysis function

within the guards.

Bug Example 4: Blackbox IPs.

Reported: github@muir/CustomComputeNode.scala —commit(cbe1845260e)

Not all RTL modules in the prototype are auto-generated by the HLS. Typically the prototype
and final tape out include multiple BlackBox IPs (e.g., technology PDK-specific RAM modules,
Floating point hardware). The interface to the BlackBox modules is exported to the HLS compiler
along with the timing constraints of the individual ports. In this particular bug, a single configuration
parameter had led to IR-HLS making incorrect assumptions about the pipeline depth. This led to
operands being initiated for the BlackBox earlier than specified and a breakdown of the pipeline.
The challenge with these bugs bug may originate at a point in the RTL invisible to the HLS compiler

but may manifest in an operation thousand of cycles past the statement in H-RTL.

2.5 Complexity of instrumented H-RTL circuits.

We study end-to-end applications from Machsuite [50] Relu, Saxpy, Vadd, Conv2D, Stencil, and
Gemm. Table 2.1 lists the characteristics of the H-RTL circuits. The H-RTL can be viewed here
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App. | Verilog LOC | # FSM # ﬁ;gog Pipe. Depth | Parallel
GEMM 33049 32 366 14 32
Conv2D 37277 16 329 41 48

FFT 37418 4 340 22 56

Relu 21051 4 206 11 48

Saxpy 18060 2 228 9 48
Stencil 26396 8 166 8 768

Table 2.1: RTL Complexity of guarded Accelerators studied in this thesis.

(https://anonymous.4open.science/r/d6£70aaf-3014-4353-9b48-cc5759080898/).
In this paper, we study accelerators and varied types of nested parallelism including loop, data, and
instruction parallelism. Prior works only studied H-RTL circuits with unrolled loops [29, 56].
Since there is no standard metric to quantify RTL-complexity, we use four proxy metrics to
provide intuition on the complexity of the designs we study i) Verilog LOC: The number of lines
of RTL code in each of the circuits; reasonable proxy for the number of H-RTL variables (signals
or registers). ii) Ctrl-states this is indicative of the complexity of the FSM of the circuit. Typically
this is lower for token-driven dataflow circuits that do not use a global FSM. However, in kernels
with multiple nested loops, FSMs are required to coordinate the interactions between the loops.
iii) Verilog modules: The total number of modules instantiated in the code. Higher the number
of modules the more effective grind is for narrowing the site of an error. iv) Pipeline depth:
In HLS, the pipeline structure varies across accelerators. Here, we can see that in some of our
workloads the pipelined depth can be 50 stages (well beyond a conventional processor). This is
indicative of the challenge of instrumenting and analyzing timing-dependent errors that may show
up only in a specific cycle and pipeline register. v) Concurrency: Finally, we measured the number
of concurrent operations on the hardware datapath. The H-RTL circuits we investigate are highly

concurrent; an instrumentation framework is required to track down timing errors.

2.6 Related Work

Prior tools do not support generalized instrumentation and user-defined tools. A key difference com-
pared to our work is the target and type of instrumentation. And also flexibility to manipulate the
checker tool to perform different sorts of verification. Checker tools tailor instrumentation towards
the C/System-C input. These tools require human-in-the-loop to manually identify the scope. Fur-
ther, many of these tools use trace-based approaches that limit the on-chip memory. And hence,
they always face the decision between limiting memory, or optimizing memory usage and losing
verification data.

[22, 20] points out the lack of debugging tools for HLS and the problem of not having visibility
into circuits. Targeting both Hardware and Software designers, they use tracing buffers to trace the

circuit run and capture circuit values to map back to software. However, tracing will take a large
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amount of memory especially since during the run the user will not know which part of the circuit is
faulty. They acknowledge this and look into ways to optimize the trace buffers and on-chip memory.

[8] Further discusses the issue of memory usage vs losing data. Pointing out that since memory
is limited most of the other trace-based methods tend to ask the user to select a number of variables
to trace. But the user does not know which variables may be buggy, or any other information to help
them with the decision. This usually leads to multiple runs. So they propose a method to accelerate
the debug turnaround time.

[43, 44] Present another trace-based debug approach by introducing observability ports and
buffers, the ports are used to observe the variables in the circuit and buffers to trace and record
them. The novelty of this approach is that the user is permitted to make tracing decisions (whether
to store data in a buffer) based on the values they observe. They point out that this method causes
the possible loss of timing relationships of events for different trace buffers. They also need to keep
the user in the loop to make the tracing decision. They propose a method that eliminates timing,
latency, or throughput being affected by their observability tool.

[56] Autoslide, which is the work we evaluate against the most is an automated cross-layer
verification framework. Similar to our approach Autoslide indicates the importance of automation in
debugging and focusing on certain critical operations first. Autoslide is however another trace-based
method and suffers from most disadvantages that other trace-based debuggers do. More comparison
to Autoslide is shown in Table 6.4. Autoslide also maps the RTL datapath to LLVM-IR operations
and C/C++ source code (as we do as well) to minimize user effort.

[9] proposes a gdb-like debugging tool for HLS. They also allow the user to map the HLS
values back to software representation. Supporting both simulation and execution on FPGA, the
framework aims to provide RTL values for each C statement. Similar to other trace-based tools this
approach allows the user to only view the first place of mismatch.

Another common tool HLS designers use is Assertions which are included in the H-RTL at
specific signals and kill the run once activated. Assertions put the responsibility of figuring buggy
locations on the user as it’s the user who must decide where to insert them. Further, asserts typ-
ically check a fixed condition e.g., signal == 0?. They cannot accommodate value-based checks,
tracing, and collecting data the same way debuggers and checkers do. Finally, assert triggers only at
deviating signal; the error may have propagated from the non-assert location.

[33] is an open-source performance profiler that uses out-of-band call stack reconstruction
and performance counters that we compare against. Some of them target hand-written RTL [33]
not verbose HLS-generated RTL. Value-based Prior art does not permit the user to check if the
check depends on the actual value of the H-RTL signals. The exception being simulation-based
approaches [56] that permit use of printfs(). All the value profilers and checkers we have demon-
strated in this paper need to extract the signal values; prior art cannot implement them. Low-effort
and Autogen. The effort required to insert instrumentation into the H-RTL impacts utility. For in-
stance, without low-effort instrumentation, human intervention is needed to decide where and what

to instrument. The majority of prior art lacks a flexible mechanism [22, 20, 56]. Execution analysis
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In prior work, the analysis of the signals is postponed to post-execution. They rely on waveform
extraction, which incurs a significant bandwidth penalty

Note that closed-source formal RTL checkers are only loosely connected to this paper. Catapult
HLS employs SLEC [7] is a form of logic checking for analyzing H-RTL. Logic checking and
translation are computationally intensive. It has only been demonstrated on circuits as complex as
FP ALUs and even that requires 12 hrs [46] per FPU. We demonstrate that we can identify bug
sites in end-to-end accelerators (e.g.Convolution) in 20 hrs. Further, SLEC only works with H-RTL
circuits that are finite-state-machine with datapath [4] and support sequential semantics only. SLEC
cannot be applied to the HLS compilers we target. They generate circuits with concurrent dataflow
semantics, dynamic parallel patterns, and non-deterministic global memory accesses [32, 54, 52,
47, 15].
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Chapter 3

Architecture and Design

In this chapter, We look into the general toolflow of grind shown in Figure 3.1 and the implemen-
tation of grind. We first go through the process of extracting data from the intermediate software,
this data will be used by various grind tools to analyze the H-RTL values. Next, we describe the
guard design and how we generate guards for the intended signals and connect them to components
automatically and conditionally. Finally, we describe the architectural template that integrates with
the H-RTL circuit and gathers data during execution. But first let’s answer a general question: What
is a guard? A guard is a hardware module meant to attach to circuit components and "guard" them.
The "guarding" process is based on the guard function which the user will define, it can be anything
from just observing and recording signals and values to processing and changing them. The default
guard function in this work is set to the verifier-guard, meaning that the guard will compare the
outputs of modules against the expected outputs and if they didn’t match a flag is set to true and
the value is corrected. a Guard module consists of two buffers, one for incoming data and one for
outgoing, plus a "guard function" that performs analysis on the input data and the data observed
from the hardware component it’s attached to and writes the results of the analysis on the output
buffer.

3.1 IR Metadata

First, we look into the verifying tool to check correct execution, we can fundamentally characterize
correct execution with a few properties: input data received, output data produced, conditional con-
trol transitions, the correctness of data propagation through select operations, and forward progress
in execution.

We describe  grind verifier designed to identify functional bugs, these types of bugs are the
result of defective hardware units and connections, either caused by the compiler or the actual
implementation. grind verifier aims to provide the user with a clear notion of the places in which
the hardware behaved incorrectly, to achieve this, we first need to have a baseline as the expected
correct behavior to compare against. So let’s assume at first that we can observe and compare the

outputs of all hardware components.
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Figure 3.1:  grind Toolflow

While the source code could go through faulty compilers before reaching the intermediate soft-
ware (that will be compiled into the hardware representation), previous modern techniques have
been introduced to ensure software compiler correctness. Relying on these works and assuming that
the software intermediate representation of the code is accurately representative of the source code,
we consider this high-level specification as a golden reference for the behavior of the circuit. This
method, used for example in [19, 18], is often referred to as Discrepancy Analysis [17, 56].

On the intermediate software representation side, our goal is to extract enough information to
A) correctly map back the hardware components to their corresponding software presentation B)
anticipate the correct set of outputs for each component and C) extract the dependence graph and
node information to be further used in our verifying technique.

This is done by instrumenting the LLVM representation, two JSON files are generated, one
containing the golden values which is the set of IDs and the list of their outputs, and the other
containing the dependence graph and node information. Code 3.1 shows a few lines in the extracted
file dependence graph file. The information is that An adder with the ID of 22 and the parent basic
block with the ID 19 has three parents (predecessor) nodes with the IDs 20,21,22. The steps to
generate this file are listed in the Appendix.

The golden values collected from the LLLVM can be used as patch values in the verifier. The
guard function can be manipulated to perform many things. However in its default setting (which
is for the verifier) the guard function will report an error if a node’s output does not match these
golden values, but more notably, the guard function will "patch" the faulty output with the correct
golden value to isolate the fault, hence, the name patch value. The advantages of isolating the fault

are further discussed in the next chapter.

o "id" : 22,
2 "instruction" : " %add = add i32 %$mul, %0, !'dbg !63, !UID !65",
3 "name" : "binaryOp_add22",

4 "operands"

s ["INS_13", "INS_21"],
6 "parent_bb" : 19,

7 "type" : "Binary"

8 "parent_info"
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o [ 20, 21, 22]

Code 3.1: Line 273-282 in Relu.muir.JSON which contains the dependence graph information of
the Relu benchmark. The information in this code is available for all node IDs

3.2 Auto-Wiring guards into H-RTL

Figure 3.1 illustrates the passes we have developed to attach guards to the H-RTL. The example
illustrates a simple address verifier that analyzes the loads in the H-RTL circuit. As mentioned
in the previous chapter, we gather data flow information from the LLVM representation. In this
Metadata, the IDs of nodes are also gathered, an ID is a unique decimal number assigned to each
node and its corresponding hardware component. Keeping this mapping information also allows the
user to indicate their region of interest at the program level and we can track down those signals.
In step 2 of Figure 3.1 the guard list is filled based on the instrumentation goals e.g., load nodes
(The iterative verifier introduced in the next chapter will generate this set of nodes automatically).
In step 3, grind iterates over the H-RTL and identifies the signals (registers and wires) within the
module. For each signal, grind attaches a guard in the H-RTL module. In this example, since loads
are instrumented, the address and data fields are annotated. In step 4, we define the guard circuits
and connect them to the actual signals.

Before we go into the design of guards, one major challenge to answer is: How to connect the
guards to the main circuit’s components and remove them automatically? In IR connections are
hardwired using input and output ports and handshaking signals, however, that is not suitable for
automatic and conditional connections.

grind leverages FIRRTL, a compiler that loads H-RTL into a data structure that we can trans-
form and rewrite. The main challenge is guards are separate modules introduced post-H-RTL gen-
eration, while the module signals could be embedded deep in the H-RTL’s module hierarchy. To
wire these up grind uses a FIRRTL pass that “bore” through the module hierarchy (https:
//bit.ly/3ycg5aQ; Figure 3.2 illustrates. The actual bore implementation is included in Ap-
pendix A. A bore connection consists of a sink and a source, each defined in a separate class in
Chisel, and connected through a unique "string" input. To mimic handshaking connections with
Bore, we create three bore definitions for each conditional attachment: ready, valid, and data. The
main difference between the bore handshaking connections and the input/output based connections
is that the bore connections can be placed inside an "if" statement, making their existence con-
ditional to a single enable button, and easy to remove. Code 3.2 Shows an example of Boring
connections used in  grind, this particular code is added to the actual module that the guards are
being attached to. A sink connection acts as the receiver side and a source connection as the source.
The ID of the module creates a unique string on the source side of the Bore connection that will
be connected to the Sink side of the connection, which is in another module with the same unique

string.
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)

//import Boring

import chisel3.util.experimental.BoringUtils

if (Guard_enabled) {
//Input data from guard
BoringUtils.addSink (in_data, s"in_data${ID}")
BoringUtils.addSink (in_value_valid, s"in_valid${ID}")
BoringUtils.addSource (in_value_ready, s"in_readyS${ID}")

}
Code 3.2: Boring connections in a module code, the other sides of these connections are guards.

The if statement creates a condition upon the existence of the guard’s attachment to this module.
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Figure 3.2: Boring wires between guards and nested H-RTL

3.3 Guard design

Each guard monitors an H-RTL signal and includes five components: i) Trigger: a boolean enabler
signal that activates the guard. ii) Reader buffer (shadow RAM) The metadata is streamed from
DRAM during the execution. Since a node can execute multiple times it’s buffered to the guard,
since each module can be executed many times the buffers hold the values for each execution. iii)
Guard function a logic block that uses the incoming H-RTL signals and input buffered values to
calculate a patch value. The majority of analysis functions require simple logic, e.g., isEqual() or
isRange() that can be accomplished in 1 cycle. iv) Patch value: The patch value overwrites the
H-RTL signal during execution. Patches are useful for patching erring signals during debugging
and injecting faults for testing resiliency. They can be used to fix or break the circuit v) Writer
buffer. Each entry includes: i) runtime context: logical timestamp and cycle time when the guard
was triggered. ii) the signal values from the H-RTL, and iii) the output of the analysis. The guard
function and the Reader buffer are shown in Figure 3.3 as the Analysis process to patch the faulty
output of Load A[i], and the writer buffers are shown outside the guards transferring the guard data
to the memory. The two sided connections between the guards and the modules are implemented

using Bore connections.
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Figure 3.3: Guards wrapped indie the circuit

These traces are collected in the form of packets and must contain enough information to allow
grind to further analyze and give the user a valid insight into what has taken place in the module,
to help the user determine the possible root cause of the fault and how to fix it. As mentioned
previously, each node in the design contains a unique ID, and an opcode that gives information about
the functionality of the node. There can be nodes in the design that have multiple functionalities and
at each iteration, they may execute one of those functions. There is also an iteration counter that
helps to keep track of the partial ordering of the packets. There is a flag that indicates whether
the node has generated a valid output or not, and a reserved field in the debug packet that can be
used for embedding more information during the execution. Figure 3.4 shows two examples of such
packets. In this example, the first packet (a) is been generated by node number 4, the node is a
compute node, OpCode=0x005, and the node the output data is correct. However, the second packet
(b) is been generated by node number 10, the node is a select node, OpCode=0x004 and the data is
wrong. Finally, when the execution of the accelerator finishes, the writer buffer dumps the data into
the memory. The structure of the recorded packet can be updated based on user demands.

There are four files per each guard. The Reader and Writer files that implement the buffering of
data and the hard-coded connections to the memory, parts of the Reader file 